List of Content
Back to Listing
Title | Abstract | Action(s) |
---|---|---|
Teleparallel Homothetic Vector Fields of Static Spherically Symmetric Space-Times in f(T) gravity. | In general relativity, Einstein Field Equations (EFEs) are fundamental equations which are used to explain how geometry of a space-time is affected with the presence of massive objects. EFEs are the set of non-linear differential equations of second order that govern the behavior of metric tensor. Since the beginning of this theory, a wide range of physically interesting exact solutions to these equations have been discovered. Considering the non-linearity of EFEs, deriving their exact solutions poses a significant challenge. This task may be achieved by placing certain symmetry limitations on the metrics. The static spherically symmetric (SS) solutions to EFEs in f (T) (extended general relativity theory) gravity already exist in the literature. These solutions are further classified which arose 20 cases. In this thesis, we solved each case individually to see the existence of Teleparallel Homothetic Vector Fields (THVFs) of static spherically symmetric space-times in f (T) gravity. We find that no such case exists for which the space-times admit THVFs and for all the cases THVFs become TKVFs. To complete the study, the energy density and pressure of each model is computed. Additionally, the solutions are categorized based on energy conditions. Not to mention, the results of all the cases have been shown by designing certain tables. iii |
|