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Abstract

Title: Teleparallel Killing Vector Fields of Static Spherically Symmetric Space-Times in

f (T ) gravity.

Symmetries principle play a crucial role in solving various problems,as they underpin conser-

vation laws and fundamental interactions. The connection between conservation principle and

symmetry in physics is both fundamentally important and highly useful. Curved space-time

symmetries are produced by Killing vectors, also known as isometries. These symmetries aid

in the classification and solution solving in connection with Einstein field equations (EFEs). As

a result, symmetries are important for explaining space-time geometry. A fascinating theory

that has gained traction in recent decades is teleparallel gravity (TG) in which torsion takes the

place of curvature. It accomplishes by this replacing the Levi-Civita connection, which is built

on curvature, with a teleparallel connection, which is based on torsion. This thesis provides

a comprehensive analysis of Teleparallel Killing vector fields (TKVFs) of static spherically

symmetric space-times within the framework of f (T ) gravity, an extended theory of gravity

based on torsion rather than curvature. Static spherically symmetric solutions to Einstein field

equations in f (T ) gravity have already been existed in the literature.The classification of those

solutions via TKVFs have been done. In this study, 20 distinct solutions have been explored.

Ten coupled partial differential equations were obtained for each solution. To determine the

TKVFs these equations were solved using the direct integration technique. Teleparallel Killing

vector fields were found in all those 20 cases. Every scenario is thoroughly examined to inves-

tigate the ways in which the changed gravity framework affects the presence and characteristics

of teleparallel Killing vector fields. The study concludes with a thorough analysis of the find-
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ings that emphasizes the main distinctions from general relativity.
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Chapter 1

The Theory of General Relativity

1.1 Introduction

In the interplay of gravity and geometry, mathematics helps us understand the beautiful

order of the universe — this thesis begins that exploration. In modern theoretical physics, one

of the most essential areas of study has been gravitational theory. Science has always relied

heavily on experimentation in physics. When a new phenomena in nature is found that cannot

be explained, there are two possible explanations: either there is something new and unexplored

in physics, or our comprehension of the established theory is lacking. It is noteworthy that the

most mysterious interaction is still gravity, despite the fact that it is the easiest to explain without

specialist knowledge and is highly connected to everyday happenings. Actually, since it was so

simple to construct an appropriate experimental setup, gravitational interaction was the first to

be investigated through the prism of experimental research [1].
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1.2 Newton Theory of Gravity

Newton introduced the idea of a hard body, or particle, in his Principia. He clarified that

mass is the result of volume times density. Since density was not adequately defined when it

was rejected by many critics as a fake definition, this definition may seem tautological. This

method, while not illogical, is unable to restructure Newton’s theory of the structure of matter,

starting with the idea of atoms. In Newton’s view, matter consists of extremely tiny particles,

or atoms. The advancement of atomic physics in the nineteenth century effectively validated

this idea. Newton was the first to understand the significance of a product’s speed, which we

refer to as its momentum. This quantity remains constant in the absence of outside influences.

It was initially noted by Galileo that the Aristotelian principle needed to be revised. Galileo

conducted numerous experiments to determine that a body that is not affected by an outside

force can yet retain its motion. It never stops, but it keeps moving forever [2]. Galileo Galilei

used pendulums and inclined planes to perform ground-breaking research on terrestrial gravity

in the late 16th century [1]. The movements of all the bodies in a particular space move in the

same way, whether the space is moving in a straight line without any circular motion or is at

rest [3].

1.3 Special Relativity

Two physical theories are included in the term relativity. Established in 1905, the more

traditional theory known as special relativity describes electromagnetic and mechanical events

occurring in a reference system that moves rapidly in relation to an observer but is unaffected

by gravitational forces. As a closed theory, it is regarded. In 1915, General Relativity was
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published. Under the effect of gravity, it explained the core principles governing time along-

side space, as well as mechanical and electromagnetic processes [4]. A thorough analysis of

Einstein’s special relativity theory and his writings from modern scientific and philosophical

viewpoints revealed that, at the turn of the 20th century, these viewpoints were not fully de-

veloped to comprehend the issues that physicists were facing and that Einstein attempted to

address with his theory. No matter how great a scientist he was, Einstein was constrained in his

quest by false philosophical beliefs that were common at the time. The principles of Einstein’s

special relativity theory, such as the invariance of the velocity of light, the relativity of simul-

taneity, and the principle of relativity, can no longer be defended. Consequently, Einstein’s

endeavor to integrate light and electromagnetic with mechanics, his notion of light, space, and

time, as well as the entirety of relativity and its ramifications, are unable to accurately depict

the actualities of the physical universe [5]. As the father of relativity, Einstein is consistently

portrayed. Both special and general relativity are viable theories. Electron microscopy (EM) is

described by a set of formulas called Maxwell’s equations (1873). These computations show

that our common concept of speed—that the speed of light is constant—is flawed. It is resolved

by special relativity. In 1892, the Lorentz transformation was introduced as the first step to-

wards special relativity (Lorentz, 1892). Notably, Einstein said that Lorentz’s basic research

was necessary for him to discover special relativity. When a clock approaches the speed of

light, it appears to run more slowly than when it is at rest due to the Lorentz transformation,

which alters the flow of time. We term this dilation of time. Lorentz presented his work in 1892.

Poincaré (1900) then worked on the synchronization of clocks with the notion that time-flow

is changing and came to the conclusion that simultaneity is lost if time-flow varies. Einstein’s

initial works on special relativity, which defended the Lorentz transformation, were published

3



Figure 1: Light Cone

in 1905 (Einstein, 1905) [6]. The relationship between space and time is stated by the physics

theory known as special relativity or the special theory of relativity. This is commonly referred

to as STR hypothesis. The special theory of relativity is based on two basic postulates.

(1) The laws of physics are invariant.

(2) In a vacuum, light travels at the same speed in every other space, independent of the

light source.

Entitled "On the Electrodynamics of Moving Bodies," Albert Einstein first put out this idea

in 1905. Special relativity entails the following concepts: universal speed limit, relativity of

simultaneity, mass-energy equivalency, and length contraction. The conventional notion of an

absolute universal time is replaced by a time that depends on the physical context and reference

frame.

The special theory of relativity’s definitions are based on the idea that light moves at a

constant speed in a vacuum. The shape of causality and the four-dimensional continuum that

surrounds tiny phenomena are determined by this principle. These concepts from relativity

theory are carried over to a distinct universe in contemporary theory, which is fundamentally
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different from the world of elementary particles. However, the history of science also teaches

us that qualitative changes in the physical laws typically coincide with a shift in scale. As a

result, it stands to reason that there would be an elementary length that acts as a scale for the

region of space-time where the structure of space-time may, in theory, differ from that which

is known to us in the macroworld [7]. The special theory of relativity, formulated by Einstein,

governs motion at relative velocities below the speed of light. Above all, the new transforma-

tions give well-defined formulas without introducing complicated physics or fictitious masses

at all. They behave singularly when the relative velocity becomes close to the speed of light

and function within the same mathematical framework as the Lorentz transformation. [8]. The

Special Theory of Relativity is generalized into the General Theory of Relativity, as the name

suggests. Einstein created it, and it is unquestionably one of the most amazing scientific dis-

coveries to date. The scientific work of Einstein was situated within this theoretical framework

of physics at the start of the twentieth century:

a. The connection imposed by Michelson-Morley’s experiment, which demonstrated the ab-

sence of interference and, consequently, the absence of ether.

b. The widely held belief among physicists that Newton’s absolute reference frame, from which

Fitzgerald-Poincarè-Lorentz’s scientific publications were formed, is necessary to preserve the

ether and, by extension, the absolute reference frame.

c. Maxwell’s finished electromagnetic theory created doubts about the constancy of the speeds

of electromagnetic waves and light because it appeared to go against the Relativity principle

[9].
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1.4 General Relativity

In 1915, Einstein essentially finished the theory of General Relativity (GR), which encom-

passed gravity and any accelerating frame. According to his theory, gravity is a geometric

phenomena because matter and energy shape space-time. The idea that one particle is drawn to

another is produced by the way that energy sources curve space-time. A malleable space-time

is proposed in place of Newtonian gravity, which is based on the gravitational force. A number

of assumptions are necessary for it to work, including the equivalency principle, which holds

that gravitational fields and accelerated frames are equivalent [10]. GR has shown to be a very

fruitful theory. It has undergone testing at Solar System scales with good precision. Addi-

tionally, additional phenomena that are absent from normal Newtonian gravity are described

by GR. Black holes, gravitational waves, gravitational lensing, and redshift are a few of them.

A few of these impacts have been measured in various contexts. Moreover, the discovery of

gravitational waves in 2016 provided the final unchallenged confirmation of general relativity

(GR) and opened up a new window for astronomical observations [11, 12]. General relativity

built upon special relativity as a more comprehensive theory. Its validity was surprisingly cor-

roborated by experimental evidence such as the Lense-Thirring effect, the orbital precession

of Mercury, and the gravitomagnetic wave precession (1918) .[13–15]. Albert Einstein made a

connection between space-time and gravity through the theory of equivalency. This signified

the introduction of a new paradigm in understanding gravity, meant to confront many lingering

mysteries—though not all of them [16]. GR has proven to be a highly effective hypothesis. The

discovery of gravitational waves in 2016 also provided us with the final unproven confirmation

of general relativity (GR) and a new window for astronomical observations [11].
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1.5 Teleparallel Killing Vector Field

Symmetry principles play a crucial role in solving various physics problem. The connection

between conservation principles and symmetry in physics is both fundamentally important and

highly useful. Killing vectors, also referred to as isometries, are the source of curved space-

time symmetries. Other space-time symmetries include matter collineations (MCs), curvature

collineations (CCs), and Ricci collineations (RCs). These symmetries aid in the classification

and solution solving in connection with Einstein field equations (EFEs). As a result, sym-

metries are important for explaining space-time geometry [17]. A fascinating theory that has

gained traction in recent decades, teleparallel gravity (TG) has emerged as a prominent topic in

the literature, in which torsion takes the place of curvature as the method via which geometric

distortion results in a gravitational field. It accomplishes by this replacing the Levi-Civita con-

nection, which is built on curvature, with a teleparallel connection, which is based on torsion.

There are actually thousands of papers on the topic in the literature at current time. Torsion-

based gravity has given rise to a number of theories, including the teleparallel equivalent of

general relativity (TEGR), which is dynamically similar to GR but indiscernible by conven-

tional testing[18]. General relativity’s teleparallel formulation, which we’ll just call telepar-

allel gravity from here on, allows for an alternative scientific explanation of the gravitational

interaction in terms of torsion rather than curvature. Its ability to understand general relativity

as a gauge theory has drawn attention in the past. In an attempt to combine gravity and elec-

tromagnetic that failed, Einstein proposed the teleparallel theory of gravity (TPG). This is seen

as an alternate interpretation of gravity that relates to a Weitzenböck geometry-based gauge

theory for the translation group. In this case, the curvature tensor vanishes in the same way that
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when the torsion is not zero assumes the function of force. This method eliminates geodesics

and uses force equations to characterize the gravitational interaction that resemble the Lorentz

force in electrodynamics explained mathematically. As a result, we are able to state that grav-

itational pull might be expressed either in the context of torsion, as in TPG, in the context of

curvature, as in GR [17]. It wasn’t long after Einstein’s general theory of relativity was de-

veloped that modifications were investigated. Constructing a cogent geometric framework that

could incorporate the two then-known forces of nature, gravity and electromagnetic, was the

main objective of these early studies. Late in the 1920s, Einstein [19] tried to unite electromag-

netic and gravity through the use of the teleparallelism (sometimes called absolute parallelism)

mathematical framework. Teleparallalism’s fundamental ability is in order to determine the

angle between two distant vectors. In particular, Einstein suggested the creation of the tetrad

field, a field of Tangent space vectors with orthonormal bases that is produced at every point on

the structure of space-time in four dimensions. According to Einstein, there should be a corre-

lation between the six components of the electromagnetic field and six extra field properties, as

the tetrad comprises 16 linearly independent components, whereas the metric consists of only

10. It was ultimately discovered that the additional components are connected to the theory’s

Lorentz invariance, but regrettably, this attempt likewise failed. Despite the first unification

attempt’s failure, teleparallel gravity—a novel description of gravity—was developed.

1.6 Generalization of Teleparallel Gravity

Recent efforts have focused on extending teleparallel gravity frameworks,particularly through

f (T ) gravity to generalize Einstein theory of general relativity. The expansion of the theories’

Lagrangian was expressed as f (T ), where T is the Lagrangian of teleparallel gravity and f is a

8



suitably differentiable function. The claim that these theories’ dynamics deviate from general

relativity’s while maintaining second-order derivative in their equations piqued interest because

it meant that these theories might be able to explain the universe’s accelerated expansion while

avoiding pathologies [20]. It has been common practice to match two distinct space-times in

order to explain certain intriguing physical phenomena or to build new models that shed light

on theoretical issues that the original divided models were unable to address. Analyzing the re-

lationship between two different and well-known space-times allows one to investigate models

of cosmic inhomogeneities, gravitational wave interactions, collapsing or expanding stars, and

other related phenomena.

1.7 Literature Review

The study of teleparallel gravity has gained significant attention as an alternative to general

relativity, particularly in the context of modified gravity theories. In order to provide insight

into significant advancements, commonly used approaches, and the urgent need for more re-

search within f (T ) gravity, this review of the literature attempts to summarize previous studies

on (TKVFs) in static spherically symmetric space-times. Here are the work of some authors.

Fayos gave his general results on matching spherically symmetric space-times through a time

like hypersurface are presented in this study, exposing straightforward requirements for viabil-

ity. It reveals all feasible models by applying these techniques to general flat Robertson-Walker

space-time matching and Vaidya’s radiating metric. These models, which were not previously

taken into consideration, explain intriguing physical circumstances [21]. In [22] the author

discussed the stationary solutions in massive gravity that have spherically symmetry and are

produced by "stars" that have regular interiors. It refutes the idea that discontinuity close to the
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source can be healed by nonlinear effects. Numerical investigation shows that for tiny m, solu-

tions lead to singularities. On the other hand, a unique class of solutions that resemble general

relativistic solutions and have spontaneous symmetry breaking characteristics are discovered.

In [23] the author investigated spherically symmetric space-time properties, with particular at-

tention to a practical metric in polar-areal coordinates. It draws attention to the Hawking mass’s

monotonicity, its consistency with Newtonian mechanics, and its use in resolving the spheri-

cally symmetric Einstein-Klein-Gordon equations. Wagh S, M discussed in [24] that the idea

of self-similarity in spherically symmetric space-times results in a freely distributed radial mat-

ter profile, a separate metric with non-vanishing energy flux and shear, and the separability of

the space-time metric using co-moving coordinates. Complete analytical solutions in terms of

Kleinian sigma functions are offered for the geodesic equation of heavy test particles in higher

dimensions. The particle’s energy, mass, angular momentum, gravitational source charge, and

cosmological constant all affect its orbits. For orbits up to 11 dimensions, when the escape and

bound orbits cross separate universes, the solution is explicit [25]. For four-dimensional f (T )

gravitational theories, Schwarzschild geometry continues to be a vacuum solution, functioning

as ultraviolet deformations of general relativity. The vacuum solutions of infrared-deformed

f (T ) gravities are circularly symmetric, and their effective cosmological constant varies with

infrared scale [26]. According to Wei, S. W. [27] particle orbits with distinct characteristics can

yield distinct traces of gravitational observable occurrences, which can be helpful in evaluating

compact astrophysical objects in general relativity or altered theories of gravity. Furthermore,

it demonstrates that in an asymptotically flat space-time, stable and unstable static spheres are

always found in pairs. This paper focuses on teleparallel conformal Killing vector fields (CK-

VFs) in non-static plane-symmetric spacetimes. The ten derived linear CKVF equations are
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given a generic solution under integrability requirements. Four examples give accurate CK-

VFs, but three show that CKVFs drop to teleparallel homothetic or Killing vector fields.[28].

In [29] the author compares teleparallel conformal Killing vector fields (CKVFs) with gen-

eral relativity in LRS Bianchi type V space-times. Killing’s equations have a generic solution,

and in one instance the LRS Bianchi type V space-times admit proper CKVF, whereas in the

other cases KVFs are found. Ganiou, M. G. [30] uses flat Friedmann-Robertson-Walker equa-

tions to examine autonomous dynamical systems within the context of gravity. The analysis

of these systems in vacuum and non-vacuum gravities is the main emphasis of the work. In

the quasi-de Sitter inflationary age, the study finds stable de Sitter attractors and unstable fixed

points; unstable fixed points indicate eras dominated by matter, whereas stable attractor fixed

points describe eras dominated by dark energy. In [17] Teleparallel theory of gravitation has

been used to assess Killing vectors of spherically space-times. We also look into the Friedmann

metrics’ Killing vectors. It is discovered that there are seven Killing vectors for static spheri-

cally space-times and six teleparallel Killing vectors for Friedmann models. Next, a comparison

is made between the outcomes and General Relativity. In [31] Direct integration and algebraic

methods are used to derive and solve teleparallel Killing equations. The space-time admits two,

three, four, five, or six teleparallel Killing vectors, according to this analysis. The results are

described in comparison with general relativity, in which two, three, four, or six Killing vectors

are admitted in the same space-time. M-Sharif in [32] discussed the Lie derivative of a generic

tensor of rank p+ q, as well as the second-order tensor in the context of teleparallel gravity,

have also been investigated. This definition is then applied to find the Killing vectors of the

Einstein world. It is discovered that the Killing vectors in Einstein’s cosmos are identical in

both teleparallel theory and general relativity. Suhail khan [33] Killing and proper Homothetic
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vector fields were examined for a non-diagonal tetrad of Kantowski-Sachs space-time in the

context of teleparallel gravity. The direct integration approach has been applied for the goal. It

comes out that there are either four or seven Killing vector fields. Three generators are lost and

the remaining seven teleparallel Killing vector fields generators, which are in charge of spin

angular momentum, linear momentum, and energy conservation, are regained. Gulam Shabir

[34] Teleparallel conformal vector fields in non-static plane-symmetric space-times were found

by researchers using diagonal tetrads and direct integration. The study also investigated static

planar symmetric space-times. Non-static plane-symmetric space-times in teleparallel theory

have zero curvature, whereas additional symmetries are made possible via torsion. In [35] the

Einstein field equations (EFEs) for static spherically symmetric (SS) ideal fluid space-times in

the context of f (T,B) gravity are developed algebraically. The retrieved solutions are then used

to obtain the conformal vector fields (CVFs). It is crucial to remember that our methods make it

easier to modify previously created f (T,B) gravity models to produce a variety of space-times

structures.
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Chapter 2

Basic Concepts and Definitions

Basic concepts and guidance are given in this chapter to assist readers in understanding

analysis. Complex ideas are made simpler for easy understanding. The strategy makes sure

that readers can understand the content efficiently and clearly.

2.1 Space-Time

Einstein’s physical intuition inspired the formulation of special relativity, while Hermann

Minkowski’s mathematical formulation was required for the development of general relativity.

Minkowski’s inclusion of time to the three spatial dimensions created a four-dimensional man-

ifold for representing space-time. A manifold is a topological space with locally flat points,

as represented by Euclidean geometry. This implies that a flat neighbourhood exists around

each point. A manifold is a surface with an infinite number of flat space-times that overlap

smoothly and continuously. Our planet, Earth, exemplifies this principle clearly. The Earth

seems flat to the human eye, despite its spherical shape. Special relativity theory states that

the space-time manifold is flat, not only in the near region but also elsewhere. However, when
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discussing general relativity, this becomes less applicable. We define events in space-time as

points on a manifold. Given the four-dimensional nature of space-time, each point requires four

coordinates to be uniquely characterized. Coordinates are typically interpreted as having three

spatial coordinates and one time coordinate. The conventional notation is x0,x1,x2,x3, with x0

representing the time coordinate. However, we have the flexibility to use any option as needed

[36].

2.2 Metric Tensor

Defining the metric tensor is important for calculating angles and distances between lo-

cations in space-time. This tensor, gα β , is a rank-2 symmetric tensor defined on a smooth

manifold. The metric requires a Lorentzian signature to accurately characterize space-time.

Depending on tradition, the signature could be (+−−−)or (−+++). The non-degenerate

metric has three eigenvalues with the same sign and one with the opposite sign. Given a metric

and coordinates xα , the local line element in space-time can be defined as follows:

ds2 = gα β dxαdxβ . (2.1)

This study follows Einstein’s summation convention, summing repeated indices across their

whole range. The line element calculated the distance between two infinitesimal points located

at xα and xα +dxα . The metric’s determinant, denoted by g, is neither zero or disappear since

it does not degenerate. In non-degenerated space-times, the inverse metric gα β is always well-

defined. This meets the condition: gα β gβ λ = δ λ
α . The metric and its inverse allow us to map

both contravariant and covariant vectors. Additionally, we can map both covariant and con-

travariant vectors thanks to the metric and its inverse. If one were to take any random covariant
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vector να and contract it using the metric να = gα β νβ , one would receive the corresponding

contravariant vector να . For every covariant vector,this is possible [37, 38].

2.3 The Connection

A vector Uα can be translated in parallel from a point Xα to a point Xα +dxα , which

transforms the vector specified by [37].

dUα =−Γ
α

β γUβ dxγ , (2.2)

where Γα

β γ is the connection on manifold. There are 43 = 64 distinct component of this connec-

tion. Specifically, this link offers a tensorial generalization of partial derivatives on manifolds,

which is referred to as the covariant derivative. The covariant derivative δαUβ of a vector Uβ

defined as

∇αUβ = ∂αUβ +Γ
β

α γU γ (2.3)

. And higher rank tensors can be easily generalized to using this equation (2.3). This relation-

ship physically identifies the observers who are inertial to their own local coordinate system

in addition to specifying our space-time’s geodesic structure. Specifically, connection does not

form a tensor.

2.4 Curvature Tensor

The Riemann curvature for a particular connection is defined as follows [39]:

Rb
adc = Γ

b
ad,c−Γ

b
cd,a+Γ

ν
a dΓ

b
cν −Γ

ν
c dΓ

b
aν , (2.4)
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where comma ”,”depicts the partial derivative or ordinary derivative operator. The Riemann

curvature tensor is a tool used to quantify a manifold’s curvature with regard to its surrounding

space.The Riemann tensor measures the displacement of a vector from its initial location in

the tangent space following its movement along a closed loop on a manifold. By showing

how parallel transport around the loop alters the vector’s orientation, it calculates the space’s

curvature. Intrinsic curvature is revealed by this discrepancy. It is crucial to remember that the

curvature tensor’s final two indices are anti symmetric, with

Rb
acd =−Rb

adc. (2.5)

2.5 Einstein Field Equations

Newton’s theory of gravity was derived from his universe model, which was characterized

by a great deal of simplicity. Newton’s model states that particles move and interact within

of space, which is always equal to itself. A more precise version of the field equations was

needed to remedy this issue. After much trial and error, Einstein came to the conclusion that

the Riemann geometry, which Gauss had first postulated and Riemann had later extended to

any dimension, could account for the curvature of space caused by the different distributions of

matter. In 1915, Einstein developed the field Equations [40]

Rab −
1
2

Rgab = κ
2Uab. (2.6)

Einstein proposed this famous equation almost immediately, and in 1917 he proposed the first

variation. In order to reach his objective of a static universe, Einstein calculated that equation
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(2.6) needed to have one more term added. According to his logic, the cosmos had to be static

and it had to accept the principle of Mach. Furthermore, he thought that this extra component

was necessary for his equation to work and stop the gravitational collapse. The factor that he

discovered can be used to modify his field equations in order to also satisfy the requirement of a

static Universe is referred to as the cosmological constant. This modification is given explicitly

by and is referred to as the Einstein field equations with cosmological constant [41]

Rab −
1
2

Rgab +Λgab = κ
2Uab, (2.7)

where the cosmological constant is Λ, and κ2 = 8πG
c4 and a,b from 0,1,2,3.

2.6 Lie Derivative

The Lie derivative makes it easier to calculate the changes in a tensor field as it travels down

the manifold M from one point to another. The congruence of curves that have been built so

that there is precisely one curve that passes through each point in the manifold will be looked

at first. Afterwards, we can utilize any curve that constitutes the congruence,Xa = xα(ν), to

find the tangent vector field dxa

dν
along the curve. Upon repeating this procedure for every curve

included in the congruence, we will ultimately reach a vector field Xα that is defined throughout

the entire manifold [42]. The Lie derivative of the tensor, say W,of type (u,v) is given by,

LxW a1...au
b1...bv =W a1...au

b1...bv,cXc −
u

∑
i=1

W a1..c..au
b1...bvX

ai,c+
v

∑
j=1

W a1...au
b1..c..bvX

c,b j. (2.8)

2.7 Symmetries in General Relativity

The idea of "symmetry" is important in physics since it can help to simplify a wide range

of issues. The theory of classical general relativity gives us a comprehensive understanding
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of space-time symmetries by using vector fields on space-time. Because the Einstein field

equations form a complex system of nonlinear partial differential equations, solving them is

extremely challenging. From a number of angles, space-time symmetries’ implementation is

crucial. The main benefit of utilizing symmetries is that they provide restrictions that make

PDEs easier to manage by converting them into ODEs. Secondly, symmetries have a tendency

to group and arrange the precise answers to EFEs. It is helpful to remember that the covariant

derivative of ξ may always be split into its symmetric and skew-symmetric parts (hereξ is a

smooth vector field defined on manifold M) such that [38]

ξ j;h=
1
2

h jh +Fjh (2.9)

Where h jh = 2ξ( j;h) = L jh and Fjh = 2ξ[ j;h]. The conformal vector field (CVF) denoted by ξ

and equipped with a metric g jh can be represented mathematically as follows:

Lξ g jh = g jh,b ξ
b +g jbξ

b,h+ghbξ
b, j= 2ψg jh (2.10)

where ψ (ψ:M → R) is a real valued function on M.

ξ =



KV Fs, i f ψ = 0,

HV Fs, i f ψ = constant,

Proper CV Fs, Otherwise.

(2.11)

2.8 Weitzenböck Connection

The metric theory of gravity is called general relativity that functions in Riemannian space,

where the Einstein field equations determine the Levi-Civita and the metric link defines the Rie-

mann curvature tensor. By modeling gravity through torsion in a flat environment, teleparallel
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theory differs from general relativity’s curvature-based methodology. Although it is not an easy

task, a universally flat space can be obtained by selecting a suitable connection as indicated by

the Weitzenböck connection. [43]. A smooth tetrad field serves as the basis for inducing the

Weitzenböck connection on the manifold.

Γ
α

βγ = eb
α

∂γ eb
β =−eb

β ∂γ eb
α . (2.12)

The lower two indices of the Weitzenböck link exhibit non-symmetry. Regardless of the line

connecting two tangent spaces, two vectors are parallel if their projections on the tetrad are

proportionate. Absolute parallelism is present on a manifold if and only if there is no curvature

[44].

2.9 Tetrad Field

The dynamical object that TEGR is interested in is the tetrad. At every point q on the

manifold M, there are four orthonormal vectors that make up the tetrad field, represented by

the notation ea(x). The tangent space represented by the symbol is TqM based on these vectors.

The co-tangent space, represented by T ∗
q M, is based on the dual co-frame, indicated by the

notation ea(x) [45].

eα = eα
µ dxµ and eα = eα

µ
∂µ , (2.13)

where eα
µ and eα

µ are the respective components that satisfy

eα
µ eβ

µ = δ
α

β
and eα

µ eα
ν = δ

ν
µ . (2.14)

A tetrad field eα = eα
µ ∂µ , also known as vierbein meaning "four legs" connects g to the

metric on tangent-space η = ηpqdxpdxq by the relation [46]

ηmn = gµν em
µ en

ν , (2.15)
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The Minkowski metric is represented here by ηmn = diag(1,1,1,−1). The metric may be

extracted from the tetrad thanks to the orthonormality criterion. In fact, equation (2.14) can be

used to reverse this relation and derive the metric Obtained from the tetrad as follows:

gµν = ηmn em
µ en

ν or gµν = η
mn em

µ en
ν . (2.16)

Furthermore, e = det(eα
µ) =

√
−g connects the metric’s determinant to the tetrad’s determi-

nant.

2.10 Modified Theory of Gravity

Various conceptual and experimental issues in astrophysics, cosmology, and high-energy

physics, such as those pertaining to inflation, dark energy, dark matter, large-scale structure,

and quantum gravity, are intended to be resolved by extended gravity theories. Two theoretical

challenges confronting contemporary astrophysical and cosmological models are dark energy

and dark matter issues. A number of candidates, such as modified gravity and dark energy

models, have been put up to explain the Universe’s accelerated expansion. Vacuum energy,

dynamical fields, and Einstein’s General Relativity are some examples of dark energy. Galactic

dynamics can be explained by modified gravity in the absence of dark matter, and dark matter

may exist at both galactic and extra-galactic scales [47]. Further insights into general relativity

(GR) can be gained by studying modified gravity theories (TEGR). As a generalization of GR,

TEGR makes it possible to find new properties that are difficult to find through direct study

of GR. GR can be adjusted in a number of ways, including by creating modified theories with

screening processes, adding new terms, and forming an Einstein-Hilbert action. There isn’t yet

a comprehensively updated theory that can address every query, though.
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2.11 Teleparallel Theory

A very successful theory that shows excellent agreement with observations is general rel-

ativity. Nonetheless, the theory encounters certain difficulties, which are commonly encapsu-

lated as the dark energy and dark matter issues. One way that the dark matter issue shows up

in the universe is through flattened galaxy rotation curves. About 27% of the matter in the uni-

verse dark matter, a major component of the structure of the cosmos, has a significant impact

on its dynamics. The remaining matter is made up of dark energy, which makes up roughly

68% of the matter in the universe. However, the observed faster expansion of the Universe can

be attributed to dark energy. The cosmological constant λ could be accepted in theory as an

extra component of physics, but this presents significant issues when the cosmological term is

understood as a vacuum expectation value. Considerations for modifications to general relativ-

ity (GR) began nearly immediately after the theory was developed. A wide range of models

were motivated by developments in other areas of theoretical physics, and many of those early

research focused on integrating electromagnetism into the new geometrical framework. One

method based on this it is constructed using a geometric framework. finding that dates back to

Weitzenböck Connection, who noted that a specific connection may always be defined so that

the space is universally flat. The geometrical framework consists of a manifold that has the so-

called Weitzenböck Connection and curves and torsion. This serves as the foundation for what

is currently known as general relativity’s teleparallel equivalent. Since the torsion scalar T is

also not invariant under local Lorentz transformations—there is a total derivative term between

the torsion Ricci scalar and the scalar—it is widely known that f (T ) gravity is not invari-

ant under these transformations. This method simplifies things compared to the fourth-order
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derivatives of f (R) gravity, the resulting f (T ) gravity theory is a second-order theory.Through

a new analysis of these models, we determine the teleparallel counterpart of f (R) gravity as a

specific subset of models that rely on a boundary term and the torsion scalar. We prove that this

theory is the only one of its kind that remains invariant under the local Lorentz transformation.

Additionally,we are able to demonstrate that f (T ) gravity is the only theory that admits field

equations of second order [48].

2.12 f (R) Gravity

Even if one determines that altering gravity is the best course of action, this is a difficult

undertaking. First off, there are lots of ways to stray from GR. Setting aside scalar-tensor the-

ory, the most well-known alternative to general relativity, and the early attempts to generalize

Einstein’s theory Will, 1981, most of which have been shown to be impractical. There are still

many arguments for modified gravity in modern literature, including those made by Brans and

Dicke (1961), Dicke (1962), Bergmann (1968) and others. This review focuses on a distinct

category of ideas known as f(R) theories of gravity.A simple generalization of the Lagrangian

in the Einstein-Hilbert action leads to these theories.

S f (R) =
1

2κ2

∫ √
−g f (R)d4x. (2.17)

.

2.13 f (T ) Gravity

The f (T ) gravity is one of the finest modified theory introduced by Bengochea where T

represent torsion scalar. It makes sense to consider the f (R) gravity when discussing the metric
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formulation of gravity. It is no longer possible to examine the feasibility of carrying out work

using a function of the Ricci scalar. a plausible notion if we were to suppose that the TEGR

was the underlying theory instead. By changing the teleparallel Lagrangian, the theory of f (T )

gravity is created, which enables T to be represented as a generic function f (T )[49].

S f (T ) =
1

2κ2

∫
e f (T )d4x. (2.18)

.

2.14 Symmetries in Teleparallel Theory of Gravity

In covariant teleparallel gravity theories, the function of an isometry is less evident than

in metric-based theories. The tetrad [or (co)frame] and spin-connection take the place of the

metric as the main subject of investigation in a teleparallel geometry since they are utilized in

the computation of the field equations and the torsion tensor. Because of this, we can think

of the metric as a derived tensor made up of the symmetric products of the frame elements.

Asking if the collection of isometries and the symmetries of a specific teleparallel geometry

coincide is worthwhile [50].

LT
K gλ ρ = gλ ρ , j K j,+ g jρ K j

λ
+ gλ j K j,ρ + K j (gσ ρ T σ

λ j + gλ σ T σ
ρ j) = 2η gλ ρ (2.19)

ξ =



T KV F, i f η = 0,

T HV F, i f η = constant,

Proper TCV F, Otherwise.

(2.20)
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Chapter 3

Killing Symmetries of Static Spherically

Symmetric Space-Times within General

Relativity

3.1 Introduction

The work done by A. Qadir and A. H. Bokhari and [51] is thoroughly examined in this

chapter. This study attempts to explore and comprehend the symmetries of static, spherically

symmetric space-times in order to establish the relationship between symmetries and conserved

quantities as specified by Noether’s theorem. The motion of particles in gravitational fields

are represented by geometries such as Kerr-Newman, Schwarzschild, and Reissner-Nordström

space-times has been studied using this concept. These symmetries are expressed as Killing

vector fields, which correspond to conserved properties of space-time in the context of gen-

eral relativity. The complexity and structure of the symmetries in space-time are reflected in
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the number of independent Killing vectors. Instead of investigating these symmetries through

group theory, this method uses a methodical elimination process to find every potential Killing

vector field inside a spherically symmetric, unchanging space-time framework.

3.2 Mathematical Formulation

The study found that when space-time symmetry is reduced to minimal static spherical

symmetry, the number of Killing vector fields decreases from 10 to 4. Regardless of Einstein’s

field equations, maximal symmetry is a characteristic unique to the de Sitter, anti-de Sitter, and

Minkowski metrics. The metric tensor g must have a Lie derivative equal to zero for J to be

considered a Killing vector fields that is, LJg = 0. In (2.10) if ψ =0 we get Killing vector field

in Torsion-free space. The most thorough static spherically symmetric line element taken into

account in this investigation is provided by.

ds2 =−eλ (r)dr2 + eν (r)dt2 − r2dθ
2 − r2 sin2 dφ

2. (3.1)

We will consider the Killing equations for all possibilities.

3.3 Procedure Adopted

To produce an entire collection of connected partial differential equations of the first order,

first substitute Equation (3.1) into Equation (2.9), from which the Killing vectors (KVF’s) for

the metric specified by Equation (3.1) has been obtained. We obtain identities between equation

pairs by differentiating these equations, leading to decoupled partial differential equations of

either the first or second order. The separation of variables method is then used to solve these

decoupled equations. After that, the integration and separation constants are allowed to have
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any value, including zero, negative, and positive. Nevertheless, in some situations, the selection

of these integration constants is limited by the need for the positivity of particular functions,

such as eλ (r) and eν (r).

3.4 Main Results

By expanding (2.10) by taking ψ =0 the following set of equations has been obtained:

ν
∗(r)R1 +2 R0,0= 0, (3.2)

eν (r)R0,1−eλ (r)R1,0= 0, (3.3)

eν (r)R0,2−r2R2,0= 0, (3.4)

eν (r)R0,3−r2 sin2
θR3,0= 0, (3.5)

λ
∗(r)R∗+2R1,1= 0, (3.6)

eλ (r)R1,2+r2R2,1= 0, (3.7)

eλ (r)R1,3+r2 sin2
θR3,1= 0, (3.8)

R1 + rR2,2= 0, (3.9)

R2,3+sin2
θR3,2= 0, (3.10)

R1 + r cotθR2 + rR3,3= 0, (3.11)

Here, the asterik (∗) represents differentiation with respect to r. The differential equation in

this equation is dependent on R and its derivative with respect to r (3.6). Consequently, it might

be combined with regard to r to produce

R1 = B(t,θ ,φ)e−λ (r)/2, (3.12)
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The function B(t,θ ,φ) acts as the "constant" of integration in this context. Two different pos-

sibilities arise:

(I) B ̸= 0, and (II) B = 0. We examine case (I) first. Equations (3.9) and (3.7) can be compared

by taking the derivatives of Equation (3.9) with respect to r and θ , respectively. (as B ̸=0)

B(θ ,φ , t)θ θ/B(φ , t,θ) =−(1+ rλ
∗(r)/2)e−λ (r) =−α, (3.13)

where Bθ θ = ∂ 2B/∂θ 2. Given that the right-hand side of Equation (3.13) is a function of r

while the left-hand side is not, α is a separation constant. Now there are three possibilities; (1)

α < 0, (2) α > 0, or (3) α = 0.

Consider first Case 1. Here Equation (3.13) can be resolved rapidly to produce

B(t,θ ,φ) = cos
√

αθB1(t,φ)+ sin
√

αθ ,B2(t,φ), (3.14)

e−λ (r) = (α +β
r2), (3.15)

where B2(t,θ), B1(t,θ), and β are constants of integration. Once more, there are three possible

situations;(a) β>0,(b) β<0, or (c) β=0. We will begin with Case 1.

Differentiating Equation (3.2) with respect to r and Equation (3.3) with respect to t and then

comparing the results with Equations (3.2), (3.14), and (3.15), we draw the following conclu-

sion:

B1(t,φ)t t cos
√

αθ +B2(t,φ)t t sin
√

αθ

B1(t,φ)cos
√

αθ +B2(t,φ)sin
√

αθ
= ν

∗∗(α +β r2)
1
2
+βν

∗r = γ, (3.16)

where γ is the separation constant.Once more there are three options: (a1) γ> 0, (b2) γ < 0, or

(c3) γ = 0. We consider case (a1). Equation (3.16) after some algebric maniplution give the

following results,

B1(t,φ) = B11(φ)cosh
√

γt +B12(φ)sinh
√

γt, (3.17)
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B2(t,φ) = B21(φ)cosh
√

γt +B22(φ)sinh
√

γt, (3.18)

eν (r) =−(γ/αβ )(α +β r2) =−(γ/αβ )e−λ (r). (3.19)

From equation (3.19) it can be seen that for eν (r) to be positive, α must be nonzero and γ and β

must have opposing signs, Using the value of R1 in equation (3.9) and after some simflication

we get

R2 =−[(α +β r2)/
√

αr][B11(φ)cosh
√

γt −B21(φ)cosh
√

γt +A1(t,r,φ)

+B12(φ)sinh
√

γt sin
√

αθ +B22(φ)sinh
√

γt cos
√

αθ ].

(3.20)

Integrating Equation (3.4) w.r.t θ and by using equation (3.20), we obtain

R0 = [β r/(γ(α +β r2))]
1
2 [B11(φ)sinh

√
γt +B12(φ)cosh

√
γt cos

√
αθ +A2(t,r,π)

+B22(φ)cosh
√

γt]−αβθA1(t,φ)t/γ(α +β r2)+B21(φ)sinh
√

γt.

(3.21)

Differentiating equation (3.21) with respect to r and compared with Equation (3.3),it has been

observe that A1 is a function of φ only and A2 is a function of t and φ . Integratiting Equation

(3.8) with respect to r and Using R1 one obtains:

R3 = [(α +β r2)
1
2/αr sin2

θ ][B11(φ)φ cosh
√

γt +B12(φ)φ sinh
√

γt cos
√

αθ

+(B21(φ)φ cosh
√

γt +B22(φ)φ sinh
√

γt)sin
√

αθ ]+A3(t,θ ,φ).

(3.22)

Using equations (3.21) and (3.22) A3 is a function of t and φ , but A2 is a function of t alone.

Utilize Equations (3.20) and (3.22) in Equation (3.10) to verify consistency, which suggests
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that it is satisfied only if

−2[(α +β r2)/αr]
1
2 [(B11(φ)φ cosh

√
γt +B12(φ)phisinh

√
γt)(

√
α sinθ sin

√
αθ + cosθ cos

√
αθ)

− (B12(φ)φ cosh
√

γt +B22(φ)φ sinh
√

γt × (
√

α sinθ cos
√

αθ − cosθ − cosθ sin
√

αθ ]

[A3(φ ,θ)sin2
θ +A1(φ)φ ]sinθ = 0.

(3.23)

The above equation is satisfied when each of the coefficients of sin0 and r is zero. Thus

(B11(φ)φ cosh
√

γt +B12(φ)φ sinh
√

γt)(
√

α sinθ sin
√

θ + cosθ cos
√

αθ

− (B21(φ)φ cosh
√

γt +B22(φ)φ sinh
√

γt)(α sinθ cos
√

αθ − cosθ sin
√

αθ) = 0,

(3.24)

A3(θ ,φ) = A4(φ)+ cotθA1(φ)φ . (3.25)

Equation (3.24), may hold in two different situations. The first is (
⊗

) α= 1 and the second

is (⊥) α ̸=1.For the first case, we obtain the de Sitter metric with β = − 1
R2 .. From Equation

(3.24) we see that B11 and B12 are constants, say c1 and c2,respectively. Differentiating and

using Equation (3.22) and (3.11), we obtain (3.22) we obtain

B21 = c3 cosφ + c4 sinφ ,

B22 = c5 cosφ + c6 sinφ ,

A1 = c7 cosφ + c8 sinφ ,

A4 = c9.

(3.26)
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Using Equation (3.3) Verifying that A2 is an integration constant is now easy let’s say c10. As

a result, we have ten KVs for the de Sitter metric:

R0 = [r/T 0/(γ(1− r2/T 2))
1
2 ][(c1 sinh

√
rt + c2 cosh

√
γt)∗ cosθ+

(c3 cosφ + c4 sinφ)sinh
√

γt +(c6 sinφ + c5 cosφ)cosh
√

rt sinθ ]+ c7,

R1 = (1− r2/T 2)
1
2 [cosθ(c1 cosh

√
γt + c2 sinh

√
γt)+

(c3 cosφ + c4 sinφ)cosh
√

γt +(c5 cosφ + c6 sinφ)sinh
√

γt sinθ ],

R2 =−[(1− r2/T 2)
1
2/r][(c1 cosh

√
γt + c2 sinh

√
γt)∗ sinθ−

(c3 cosφc4 sinφ)cosh
√

γt + c5 cosφ + c6 sinφ)sinh
√

γt cosθ ]+ (c8 cosφ + c9 sinφ),

R3 = [(1− r2/T 2)
1
2/r sinθ ][(−c3 sinφ + c4 cosφ)∗ cosh

√
γt+

(−c5 sinφ + c6 cosφ)sinh
√

γt]+ cosθ(−c8 sinφ + c9 cosφ)+ c10.

(3.27)

Anti-de Sitter metric: In this case, there is an additional possibility (1.b.b2.⊗). Using the

same process as in the initial instance (replacing γ by -γ and β by 1
R2 ). The anti-de Sitter metric

has unique and accessible Killing vector fields. Once more, the fields in the Killing vector are

10 with sinh
√

γt(cosh
√

γt) replaced by sin
√

γt(cos
√

γt in Equations (3.27).

The Minkowski metric: Consider the case now. (1.c3.c.⊗). Equation (3.16) give

eν (r) = ebr+a. (3.28)

Two choices are now available:(Θ) b=0,(ω) b=0. The Minkowski metric is defined in the first

situation (assuming that the zero-zero coefficient is unity, modulo a constant). We have again

10 KVFs:

R0 = r[c2 cos(φ + c3)sinθ + c1 cosθ+]+ c4, (3.29)
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R1 = t[c1 cosθ − c2 cos(φ + c3)sinθ ]+ c5 cosθ + c6 cos(φ + c7)sinθ , (3.30)

R2 =−(t/r)[c1 sinhθ − c2cos(φ + c3)cosθ ]− (1/r)[c5 sinθ

− c6 cos(φ + c7)cosθ ]+ c8 cos(φ + c9),

(3.31)

R3 =−(1/r sinθ [tc2 sin(φ + c3)+ c6 sin(φ + c7)− c8 sin(φ + c9)cotθ ]+ c10). (3.32)

Now considering the instance (⊥) where the reduction is readily apparent and KVs from 4 to 10

only. In case (⊥) Equation (3.24) is satisfied if B11,B12,B21, and B22 are all constants. Using

equations, we can verify consistency (3.12), (3.14), (3.15), and (3.19) in Equation (3.11). As it

happens, every one of the aforementioned constants is exactly zero. In this instance A1 and A4

are provided by Equations (3.26). The KVs are

R0 = c1,

R1 = 0,

R2 = sinφc3 + cosφc2,

R3 = cotθ(c3 cosφ − sinφc2)+ c4.

(3.33)

The Schwarzschild metric’s Killing vectors are normal, it should be mentioned. The one-one

and zero-zero components of the metric tensor in this instance are given by Equations (3.15) and

(3.18). According to the positivity of the following, the other subcases in case I are acceptable

eλ (r) and eν (r) requirements, we now write eν (r):

Cases: eν (r)

(1.a.c3) a+(b/
√

β )sinh− 1
√

β/αr,

(1.b.c3) a+(b/
√

β )sinh− 1
√

β/αr,

(1.c.a1) −2γ/αν∗∗,
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(1.c.c3 ̸=) a+br,

(2.b.b2) −(γ/αβ )(α +β r2),

(2.b.c3) a+(b/
√

β )sinh− 1
√

β/αr,

(3.b.b2) −2γ/β (ν∗r)∗,

(3.b.c3) ar.

The identical process yields only four KVs in each of the aforementioned scenarios. These

vector fields can be seen in set of Equations (3.33).

Case 2

Now discuss case (II) B = 0. In this case Equation (3.12) gives R1 = 0

Using the value of R in Equations (3.2) and (3.3) It is evident that R0 is a function of θ and φ

only. Also Equations (3.7) and (3.9) suggest that R2 can only rely on t and φ . Differentiating

Equations (3.5) with respect to t we get

R3 = A1(φ ,θ)+A2(φ ,θ)t. (3.34)

Equation (3.4) is now being differentiated with regard to θ , and following a process we obtain

R0 = A3(φ)+A6(φ)θ . (3.35)

Additionally, in order to get, differentiate Equation (3.4) with respect to t first, and then inte-

grate with respect to t.

R2 = A6(φ)t +A5(φ). (3.36)

Now we can solve Equations (3.10), by using Equation (3.34) and (3.36) we get
A1 = cotθA5(φ)φ +A7(φ),

A2 = cotθA6(φ)φ +A8(φ).

(3.37)
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For uniformity using values of R0 and R2 in Equation (3.4) it happens that,

A4(φ)eν (r) = r2A6(φ). (3.38)

Equation (3.38) may be divided in r and φ with the separation constant γ and solved to give

eν (r) = γr2,A6(φ) = γA4(φ). (3.39)

Observe that in this case, the separation constant may exceed 0 [because γ ≤ 0 in Equation

(3.36) is not allowed]. Applying the aforementioned findings to Equation (3.11), we obtain

A4 = cosφc3 + sin4,

A5 = cos1+sin2,

A7 = c5,

A8 = c6.

(3.40)

It is clear from Equation (3.14) that A3 is a constant and that c3, c4,, and c6 are all zero. Using

the values from Equations (3.37) and (3.40) into Equations (3.34)-(3.36) we get the same four

KVs given by Equation (3.33). Equation (3.38), in case II, where A4 = 0, suggests that A

must be zero. Thus eν (r) or eλ (r) in case (II) have no constraints. For arbitrary ν(r) and λ (r)

this results in the form of KVF’s being provided by Equation (3.33) while preserving spherical

symmetry and staticity.

3.5 Summary and Conclusion

The number of Killing vectors (KVF’s) in a static, spherically symmetric space-time can

be either 4 or 10. The maximum degree of symmetry, represented by α = 1, permits 10KVF’s

in space-times like de Sitter, anti-de Sitter, and Minkowski. In the case where α ̸= 1 and some
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terms (such as B11 to B22) are zero, the symmetry decreases to 4KVF’s. Further requirements

must be enforced by the Einstein field equations in this instance since the metric components

eν (r) andeλ (r) are not limited. Depending on the field equations and separation constants,

several metrics with 4 KVF’s emerge, illustrating the connection between space-time symmetry

and its geometric characteristics.
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Chapter 4

Investigating Static Spherically Symmetric

Space-times through Teleparallel Killing

Symmetrizes in f (T ) Gravity

The primary focus of this chapter is to classify static spherically symmetric space-times

via Teleparallel Killing vector fields in f (T ) gravity. It expended the work work done by A.

Qadir and A. H. Bokhari and [51]. System of highly non-linear partial differential equations

have been obtained that are solved using direct integration technique. Ten cases are discussed

in detail whlie the rest are tabulated in the form of table.
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4.1 Static Spherically Symmetric Solutions of the Einstein

Field Equations and their Teleparallel Killing Vector Fields

in f (T ) Gravity

The line element to generate a static spherically symmetric space-time in the typical coor-

dinate (t,r,θ ,φ) with the labels (y0,y1,y2,y3) is respectively given as [52]

ds2 =−ei(r)dt2 + e j(r)dr2 +Q2(r)[dθ
2 + sin2

θdφ
2], (4.1)

where the radial coordinate r has unknown functions i = i(r), j = j(r), and Q = Q(r). The

minimum Killing vector fields that the aforementioned space-times allow are [53]: Y1 = ∂t ,Y2 =

cosφ cotθ∂φ + sinφ∂θ ,Y3 = −sinφ cotθ∂φ + cosφ∂θ and Y4 = ∂φ . The solutions of static

spherically symmetric space-times in f (T ) gravity is given in [53]. The following situations

arise from this [53].

1. i = constant, j = j(r),e− j j′r+2e− j −2 = 0 implies j = ln( 1
1+E1r2 ),T = ( 2

r2 +2E1)and

Q = r,where E1 ∈ ℜ /{0}.

2. i = i(r), j = j(r), i = j−1, ei( i′′
2 + i′2

2 − 1
r2 )+

1
r2 = 0 = i = ln(1− 2M

r ), j = ln(1− 2M
r )−1 and

T = 2
r2 ,and Q = r where the Arnowitt-Deser-Misner mass is denoted by M.

3. i= i(r), j = j(r), i= j−1, r2(i′′+ i′2)−2(1−e−i) implies i= ln(1− Λr2

3 , j = ln(1− Λr2

3 )−1,

T = ( 2
r2 −2Λ) and Q = r,where the cosmological constant is Λ.

4. i = constant = E1 ̸= 0, j = constant = E2 ̸= 0, j = ln(E2), i = ln(E1) QQ′′−Q′2 +E2 = 0

implies T = 2
E2r2 and Q = r

√
E2 ,where E1,E2 ∈ ℜ/{0} with E1 ̸= E2.

5. j == E1 ̸= 0 constant i = i(r) ,r2i′′− ri′− 2 = 0 → i = (E2r2

2 +E3 − lnr), T = 2E2
eE 1, and

Q = r where E1, E2, E3 ∈ ℜ (E1,E2 ̸= 0).
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6. j = j(r), i = i(r), ( i′′
2 + i′2

4 ) = 0 → i = ln(E1r+E2
2 )2, −E1 j′e− j + 2(E1r +E2) = 0, which

implies j = ln
(

E1
E1E3−E1r2−2k2r

)
, T = 0, and Q = 1 where E1, E2, E3 ∈ ℜ/{0}.

7. i= i(r), j = j(r), ri′′−i′= 0 implies i=(E1r2

2 +E2), r j′(ri′+1)+2= 0→ j = ln
(

E3
√

E1r2+1
r

)2

,

T = 2
E2

3 ,
and Q = r where E1, E2, E3 ∈ ℜ(E1, E3 ̸= 0).

8. i = i(r), j = constant 2ri′′+ ri′2 −2i′ = 0 → i = lnr4, e j = 1, T = 10r−2, and Q = r.

9. i = i(r), j = j(r), 1+ r j′ = 0 implies j = ln(E1
r ), r2i′′− r j′− 2 = 0 → a = ln(E3eE 2r

r ,

T = 2k2
k3

,and Q = r where E1, E2, E3 ∈ ℜ(E1,E3 ̸= 0).

10. i= i(r), j = j(r), i= j−1, r2( j′′− j′2)+2(1−e j) = 0 implies j = ln(1− E1
r + E2r2

3 )−1, i=

ln(1− E1
r + E2r2

3 ), T = ( 2
r2 +2k2) and Q = r where E1, E2 ∈ ℜ/{0}.

11. i= i(r), j = j(r), ri′+1= 0 which gives i= ln(E1
r ), 4e j−r j′+1= 0 implies j = ln( r

E2−4r)

T = 0, and Q = r where E1, E2 ∈ ℜ/{0}.

12. i = i(r), j = j(r), ri′− 2 = 0 implies i = ln(E1r2), e j − r j′− 2 = 0 → j = ln( 2
1+2E2r2 ),

T = 3(1+2E2r2)
r2 , and Q = r where E1, E2 ∈ ℜ/{0}.

13. i= i(r), j = j(r), i′′= 0 implies i(E1r+E2), ri′(1+r j′)+r j′+2= 0 → j = ln
[

E3(E1r+1)
r2

]
and T = 2

E3,
where E1, E2, E3, ∈ ℜ(E1, E3 ̸= 0).

14. i = i(r), j = j(r), i = j−1, i′′+ i′2 +2e−i = 0 implies i = ln(E2 −E1r− r2), j = ln(E2 −

E1r− r2)−1, T = 0 and Q = 1 where E1, E2 ∈ ℜ/{0}.

15. i = i(r), j = j(r), 2+ r j′ = 0 implies j = ln(E1
r2 ), ri′′− i′(1+ r j′) = 0 → i = ln(E3rE 2),

T = 2(E2+1)
E1

and Q = r where E1, E2, E3 ∈ ℜ (E1, E2, E3 ̸= 0).

16. j = j(r), i = i(r), 2+ ri′ = 0 implies i = ln(E1
r2 ),ri′′ − j′(1+ ri′) = 0 → j = ln

(
E2
r2

)
,

T = −2
E2

, and Q = r where E1, E2 ∈ ℜ(E1, E2 ̸= 0).

17. i= i(r), j = j(r),r2i′′−2= 0 implies i= ln(eE r
1

E 2

r2 ), i′+ j′(1+ri′)= 0 → j = ln
[

E3(E1r−1)
r2

]
,

T = 2
k3

and Q = r where E1, E2, E3 ∈ ℜ(E1, E3 ̸= 0).

37



18. i = constant = E1 ̸= 0, j = constant = E2 ̸= 0, i = ln(E1), j = ln(E2), QQ′′−Q′2 = 0

implies Q = eE r
3+

E 4 and T =
2E2

3
eE 2 where E1, E2, E3, E4 ∈ ℜ(E3 ̸= 0) with E1 ̸= E2.

19. i = constant = E1 ̸= 0, j = j(r), Q′′ = 0 implies Q = (E2r+E3), j′Q+2Q′ = 0 → j =

ln
[

E4
(E2r+E3)2

]
and T =

2E2
2

E4
, where E1, E2, E3, E4 ∈ ℜ(E1, E2, E4 ̸= 0).

20. i = constant, j = j(r), r j′+2 = 0 → j = ln(E1
r2 ), ei = 1, and T = 2

E1,
,and Q = r where

E1 ∈ ℜ/{0}.

In this section, we will look at ten situations in detail, while a table presents the key conclusions

for the remaining cases.

4.2 Main Results

We will discuss in detail some of the cases rest will be present in the form of table.

Case 1:

i = constant, j = j(r),e− j j′r+2e− j −2 = 0 implies b = ln( 1
1+E1r2 ), T = ( 2

r2 +2E1)and Q = r,

where E1 ∈ ℜ /{0}.

The space-times (4.1 ) takes from

ds2 =−dt2 +

[
1

1+ k1r2

]
dr2 + r2(dθ

2 + sin2
θdφ

2). (4.2)

Expanding (2.19) and using (4.2) we get following set of equations

X0,0= 0, (4.3)

r2X2,0−X0,2= 0, (4.4)

r2 sin2
θX3,0−X0,3= 0, (4.5)

−X0,1+
1

1+K1r2 X1,0= 0, (4.6)
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− K1r
1+K1r2 X1 +X1,1= 0, (4.7)

r2X2,1+
1

1+K1r2 X1,2+rX2 = 0, (4.8)

r2 sin2
θX3,1+

1
1+K1r2 X1,3+r sin2

θX3 = 0, (4.9)

X2,2= 0, (4.10)

sin2
θX3,2+X2,3= 0, (4.11)

cotθX2 +X3,3= 0. (4.12)

From Eqation (4.3), Equation (4.10), Equation (4.11) and Equation (4.7) the following system

of Equation is obtain. 

X0 = K1(r,θ ,φ),

X1 =
√

1+ k1r2 K4(t,θ ,φ),

X2 = K2(t,r,φ),

X3 = K2
φ
(φ ,r, t)cotθ +K3(φ ,r, t),

(4.13)

where K1(r,φ ,θ),K3(t,r,φ),K2(r,φ , t) and K4(φ ,θ , t) are function of integration. Using the

Equation (4.13) in Equation (4.4) we obtain

r2K2
t (t,r,φ)−K1

θ (r,θ ,φ) = 0. (4.14)

Differentiating w.r.t θ and after some simplification we get

K1(φ ,r,θ) = θD1(φ ,r)+D2(φ ,r),

where D1(φ ,r) and D2(φ ,r) are constants of integration. Substituted all values in Equation

(4.14) one gets

r2K2
t (t,r,φ)−D1(φ ,r) = 0. (4.15)
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Taking the derivative of Equation (4.15) with respect to t we obtain K2(t,φ ,r) = tD3(φ ,r)+

D4(φ ,r). So, the system of Equation (4.13) takes the form

X0 = θD1(r,φ)+D2(r,φ),

X1 =
√

1+ k1r2K4(t,θ ,φ),

X2 = D4(r,φ)+ tD3(r,φ),

X3 = K2
φ
(t,φ ,r)cotθ +K3(t,φ ,r).

(4.16)

Now we consider Equation (4.5) and using set of Equation (4.16) we get

r2 sin2
θ [D3

φ (φ ,r)]cotθ +K3
t (t,φ ,r)−D1(φ ,r) = 0. (4.17)

Differentiate with respect to t and after some algebraic manipulation we obtain K2
φ
(φ ,r, t) =

tD5(φ ,r)+D6(φ ,r). 

X0 = θD1(φ ,r)+D2(φ ,r),

X1 =
√

1+ k1r2 K4(t,φ ,θ),

X2 = tD3(φ ,r)+D4(φ ,r),

X3 = [tD5(φ ,r)+D6(φ ,r)]cotθ +K3(t,r,φ).

(4.18)

Using Equation (4.11) we obtain D5(r,φ) = D3
φ
(r,φ) and in the view of (4.18) we get the

following set of Equation

X0 = θD1(r,φ)+D2(r,φ),

X1 =
√

1+ k1r2 K4(t,φ ,θ),

X2 = tD3(φ ,r)+D4(φ ,r),

X3 = [tD3
φ
(r,φ)+D6(r,φ)]cotθ +K3(t,φ ,r).

(4.19)
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Equation (4.4) we obtain D1(r,φ) = r2D3(r,φ) and using (4.5) we get K3(t,φ ,r) = tD7(φ ,r)+

D8(φ ,r) →D3(r,φ) = 0 putting all these values and in the light of (4.19) we get the following

set of equation 

X0 = θD1(r,φ)+D2(r,φ),

X1 =
√

1+ k1r2 K4(t,φ ,θ),

X2 = D4(φ ,r)+ tS1(r),

X3 = D6(φ ,r)cotθ + tD7(φ ,r)+D8(φ ,r).

(4.20)

Using Equation (4.4) and considering set of Equations (4.20) we get the system of Equation

X0 = θD1(r,φ)+D2(r,φ),

X1 =
√

1+ k1r2 K4(t,θ ,φ),

X2 = D4(r,φ)+ t S2(r)
r2 ,

X3 = D6(r,φ)cotθ + tD7(r,φ)+D8(r,φ).

(4.21)

Now using Equation (4.8) and in the light of Equation (4.21) we get

−2tS2
r (r)+ tS2

r (r)+ r2D4
r (r,φ)+

1√
1+ k1r2

K4
θ (t,θ ,φ)+ t

s2

r
+D4(r,φ) = 0. (4.22)

Differentiating w.r.t. θ and after some calculations, we get the value K4(t,θ ,φ) = θD9(t,φ)+

D10(t,φ). Substituting into Equation (4.22) we obtain D9(t,φ) = 0. By using all these infor-
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mation in Equation (4.21) we get the system of Equation

X0 = θS2(r)+D2(r,φ),

X1 =
√

1+ k1r2 D10(t,φ),

X2 = D4(r,φ)+ t S2(r)
r2 ,

X3 = D6(r,φ)cotθ + tD7(r,φ)+D8(r,φ).

(4.23)

Now using Equation (4.23) in (4.6) we get

−2θS2
r (r)+D2

r (r,θ)+
2

1+ k1r2

√
1+ k1r2 D1

t
0(t,φ) = 0. (4.24)

Differentiating w.r.t t we obtain D10(t,φ) = tS3(φ)+ S4(φ). Using (4.24) we get S2(r) = c1.

Implementing all these information in Equation (4.23) we get

X0 = θc1 +D2(r,φ),

X1 =
√

1+ k1r2t S3(φ)+S4(φ),

X2 = D4(r,φ)+ t S2(r)
r2 ,

X3 = D6(φ ,r)cotθ + tD7(φ ,r)+D8(φ ,r).

(4.25)

Now we can use Equation (4.5) we obtain D7(r,φ) = 0 and D2(r,φ) = S5(r) , Equation (4.6)

after some simplification and in the light of Equation (4.25) we get

X0 = θc1 +S5(r),

X1 =
√

1+ k1r2 tc2 +S4(φ),

X2 = D4(r,φ)+ t c1
r2 ,

X3 = D6(r,φ)cotθ + tD7(φ ,r)+D8(φ ,r).

(4.26)
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Now using Equation (4.8) we obtain c1 = 0, Equation (4.3), Equation (4.7) after some algebraic

manipulation and considering Equation (4.26) we get

X0 = S5(r),

X1 = 0,

X2 = S5(φ)
r ,

X3 = S5(φ)
r2 cotθ +D8(r,φ).

(4.27)

Now using Equation (4.6) we obtain S5(r) = c4. Now using Equation (4.12) we obtain S5(φ) =

c5 cosφ + c6 sinφ and in the light of Equation (4.27) we get so the system of Equation is

X0 = c4,

X1 = 0,

X2 = 1
r (c5 cosφ + c6 sinφ),

X3 = 1
r (−c5 sinφ + c6 cosφ)cotθ +D8(r,φ).

(4.28)

Now we can use Equation (4.12) we obtain D8(r,φ) = S6(r).Using Equation (4.11) we

obtain S6(r) = 0 and using Equation (4.9) after some algebraic manipulation we get the final

result 

X0 = c4,

X1 = 0,

X2 = 1
r (c5 cosφ + c6 sinφ),

X3 = 1
r (−sin5+cosφc6)cotθ + c10 − er.

(4.29)
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Thus the case 1 we get the following TKVS: ∂t ,
1
r cosφ∂θ − 1

r sinφ cotθ∂φ ,
1
r sinφ∂θ +

1
r cosφ cotθ∂φ ,er∂φ

Case 2

i = i(r), j = j(r), i = j−1, ei( i′′
2 + i′2

2 − 1
r2 )+

1
r2 = 0 = i = ln(1− 2M

r ), j = ln(1− 2M
r )−1 and

T = 2
r2 ,and Q = r where the Arnowitt-Deser-Misner mass is denoted by M. The space-time

takes from.

ds2 = 1− 2M
r

dt2 +(1− 2M
r
)−1dr2 +Q2(r)[dθ

2 + sin2 dφ
2]. (4.30)

Expanding Equation (2.19) and using Equation (4.30) we get

X0,0= 0, (4.31)

r2X2,0−
(

r−2M
r

)
X0,2= 0, (4.32)

r2 sin2
θX3,0−

[
r−2M

r

]
X0,3= 0, (4.33)[

−r+2M
r

]
X0,1+

[
r

r−2M

]
X1,0−

(
M
r2

)
X0 = 0, (4.34)

−2M
r(r−2M)

X1 +2X1,1= 0, (4.35)

r2X2,1+

[
r

r−2M

]
X1,2+rX2 = 0, (4.36)

r2 sin2
θX3,1+

[
r

r−2M

]
X1,3+r sin2

θX3 = 0, (4.37)

X2,2= 0, (4.38)

sin2
θX3,2+X2,3= 0, (4.39)

cotX2 +X3,3= 0. (4.40)

From Equation (4.31), Equation (4.38), Equation (4.39) and Equation (4.35) the following
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system of equation is obtain.

X0 = K1(r,φ ,θ),

X1 =
√
−2M+r

r K4(t,θ ,φ),

X2 = K2(φ , t,r),

X3 = K2
φ
(φ ,r, t)cotθ +K3(φ ,r, t),

(4.41)

where K1(φ ,θ ,r),K2(φ , t,r),K3(r,φ , t) and K4(t,φ ,θ), are function of integration. We can

use Equation (4.36) and after some simplification we get K4(t, ,φ ,θ) = θD1(t,φ)+D2(t,φ),

where D1(φ , t),D2(φ , t) are function of integration. Putting all these values in set of Equation

(4.41) we obtain 

X0 = K1(r,φ ,θ),

X1 =
√

r−2M
r θD1(t,φ)+D2(t,φ),

X2 = K2(t,r,φ),

X3 = K2
φ
(t,r,φ)cotθ +K3(t,r,φ).

(4.42)

Using Equation (4.32) in Equation (4.42) we get.

r2 K2
t (t,r,φ)−

(
r−2M

r

)
K1

θ (r,θ ,φ) = 0 (4.43)

Differentiating w.r.t t and after some algebraic manipulation we derive K2(φ , t,r) = tD3(r,φ)+

D4(r,φ). Differentiate w.r.t. φ we obtain K2
φ
(t,r,φ) = tD3

φ
(φ ,r)+D4

φ
(φ ,r) substituting back in

Equation (4.43) we derive K1(θ ,φ ,r) = D5(φ ,r)θ +D6(φ ,r). In the light of Equation (4.42)
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and using all these information we get

X0 = θD5(φ ,r)+D6(φ ,r),

X1 =
√

r−2M
r [θD1(t,φ)+D2(t,φ)],

X2 = tD3(φ ,r)+D4(φ ,r),

X3 = [tD3
φ
(φ ,r)+D4

φ
(φ ,r)]cotθ +K3(t,φ ,r).

(4.44)

Considering Equation (4.34) and after some algebraic manipulation the above system of Equa-

tion takes the form 

X0 = θD5(φ ,r)+D6(φ ,r),

X1 =
√

r−2M
r [θ{tS1(φ)+S2(φ)}+D2(t,φ)],

X2 = tD3(φ ,r)+D4(φ ,r),

X3 = [tD3
φ
(r,φ)]cotθ +K3(t,r,φ).

(4.45)

Next we use Equation (4.33) and Equation (4.37) and after some calculations we get

X0 = θS4(r)+D6(φ ,r),

X1 =
√

r−2M
r [θ{tS1(φ)+S2(φ)}+D2(t,φ)],

X2 = D4(r,φ)+ tS3(r),

X3 = D4
φ
(φ ,r)cotθ +D8(φ ,r).

(4.46)

Now from Equation (4.40) we get S3(r) = 0. Similarly from Equation (4.36) we get S1(φ) = c1

and after some simplifications we obtain c1 = 0. From Equation (4.34) we get D2
t = (t,φ) =

S5(φ) ⇒ D2
t = (t,φ) = tS5(φ)+S6(φ). Substituting all these information the above system of
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equation takes the form 

X0 = θS4(r)+D6(φ ,r),

X1 =
√

r−2M
r [θS2(φ)+ tS5(φ)+S6(φ)],

X2 = D4(r,φ),

X3 = D4
φ
(φ ,r)cotθ +D8(φ ,r).

(4.47)

Using the above system of equation into Equation (4.30) we get S4(r) = 0. Similarly from

equation (4.31) and Equation (4.32) one gets D6(r,φ) = S7(r) and S5(r) = c2 respectively. By

updating the above system we obtain

X0 = S7(r),

X1 =
√

r−2M
r [θS2(φ)+ tc2 +S6(φ)],

X2 = D4(r,φ),

X3 = D4
φ
(r,φ)cotθ +D8(r,φ).

(4.48)

Now substituting the values from system of equation (4.48) into Equation (4.40)and Equa-

tion (4.37) and after some calculations we get D8(r,φ) = S10(r) and D4 = c3
r cosφ + c4

r sinφ

substituting back these values we get the following system of Equation

X0 = S7(r),

X1 =
√

r−2M
r [θS2(φ)+ tc2 +S6(φ)],

X2 = c4
r sinφ + c3

r cosφ ,

X3 =−[c3
r cosφ + c4

r sinφ ]cotφ +S10(r).

(4.49)

Now we can use Equation (4.35), Equation (4.34) and Equation (4.37) after performing calcu-
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lations. We get the final system of the Equation given below

X0 = [c1(r−2M)
r ]

−1
2 ,

X1 = 0,

X2 = c3
r cosφ + c4

r sinφ ,

X3 = [−c3
r cosφ + c4

r sinφ ]cotφ + c5e−x.

(4.50)

Thus for Case 2 we get the following TKVF: [ r−2M
r ]

1
2 ∂t ,

1
r cosφ∂θ − 1

r cosφ cotθ∂φ ,
1
r sinφ∂θ +

1
r sinφ cotθ∂φ , e−x∂φ .

Case 3 i = i(r), j = j(r), i = j−1, r2(i′′+ i′2)− 2(1− e−i) implies i = ln(1− Λr2

3 ), j =

ln(1− Λr2

3 )−1, T = ( 2
r2 −2Λ) and Q = r,where the cosmological constant is Λ.

The space-times takes from

ds2 =−
(

3−Ar2

3

)
dt2 +

(
3

3−Ar2

)
dr2 + r2[dθ

2 + sin2
θdφ

2]. (4.51)

Expanding (2.19) and using (4.51) we get

X0,0= 0, (4.52)

r2X2,0−
(

3−Ar2

3

)
X0,3= 0, (4.53)

r2 sin2
θX3,0−

(
3−Ar2

3

)
X0,3= 0, (4.54)[

Ar2 −3
3

]
X0,1+

(
3−Ar2

3

)
X1,0+

(
Ar
3

)
X0 = 0, (4.55)(

Ar
3−Ar2

)
X1 +X1,1= 0, (4.56)

r2X2,1+
3

3−Ar2 x1,2+rX2 = 0, (4.57)

r2 sin2
θX3,1+

(
3

3−Ar2

)
X1,3+r sin2

θX3 = 0, (4.58)
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X2,2= 0, (4.59)

sin2
θX3,2+X2,3= 0, (4.60)

cotX2 +X3,3= 0. (4.61)

From Equation (4.52), Equation (4.59), Equation (4.60) and Equation (4.56) the following

system of Equation is obtain.

X0 = K1(r,θ ,φ),

X1 =
√

3−Ar2

3 K4(t,θ ,φ),

X2 = K2(φ , t,r),

X3 = cotθK2
φ
(φ , t,r)+K3(φ , t,r),

(4.62)

where K1(r,θ ,φ),K2(φ , t,r),K3(t,φ ,r),K4(t,φ ,θ) are function of integration. We can use

Equation (4.53) and after some simplification we get K1(r,φ ,θ) = θD1(φ ,r)+D2(φ ,r). Using

Equation (4.57) and after some calculation we get K4(t,θ ,φ) = D3(φ , t)θ +D4(φ , t). And in

the light of (4.62) we get 

X0 = θD1(φ ,r)+D2(φ ,r),

X1 =
√

3−Ar2

3 [θD3(φ , t)+D4(φ , t)],

X2 = K2(t,r,φ),

X3 = K2
φ
(r,φ , t)cotθ +K3(r,φ , t), .

(4.63)

Equation (4.55), and after some calculations we get D3(t,φ) = S1(φ), and D4(t,φ) = tS2(φ)+

S3(φ). Equation (4.53) and after some simplification we get K2(t,φ ,r) = tD5(φ ,r)+D6(φ ,r)

and K2
φ
(t,r,φ) = tD5

φ
(r,φ) +D6

φ
(r,φ) and Equation (4.54) and after some simplification we
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obtain D7(φ ,r) = 0 and D5(φ ,r) = S4(r) after using all the values and in the light of (4.63) we

get the following set of Equation

X0 = θD1(r,φ)+D2(r,φ),

X1 =
√

3−Ar2

3 [θS1(φ)+ tS2(φ)+S3(φ)],

X2 = tS4(φ)+D6(r,φ),

X3 = D6
φ
(r,φ)cotθ +D8(r,φ).

(4.64)

By using equation (4.54) we get D1(r,φ) = S5(r) and D2(r,φ) = S6(r). And using (4.55) and

after some calculation we get S2(φ) = c1. Using all these information and in the light of (4.64)

we get 

X0 = θS5(r)+S6(r),

X1 =
√

3−Ar2

3 [θS1(φ)+ tc1 +S3(φ)],

X2 = tS4(φ)+D6(r,φ),

X3 = D6
φ
(r,φ)cotθ +D8(r,φ).

(4.65)

Using Equation (4.57) and after performing calculation S4(φ) = 0 and using (4.53) we get

S5(r) = 0 and in the light of (4.65) we get

X0 = S6(r),

X1 =
√

3−Ar2

3 [θS1(φ)+ tc1 +S3(φ)],

X2 = D6(r,φ),

X3 = D6
φ
(r,φ)cotθ +D8(r,φ).

(4.66)

Using (4.61) and after performing some calculations we get D6(φ ,r) = S7(r)cosφ +S8(r)sinφ

and D6
φ
(φ ,r) =−sinφS7(r)+cosφS8(r) and D8(r,φ) = S9(r). Using (4.58) we get D6(r,φ) =
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c2
r cosφ + c3

r sinφ and S9(r) = c4
r and in the light of (4.66) we get

X0 = s6(r)

X1 =
√

3−Ar2

3 [θS1(φ)+ tc1 +S3(φ)],

X2 = c3
r cosφ + c4

r sinφ ,

X3 = [−c3
r cosφ + c4

r sinφ ]cotφ + c4
r .

(4.67)

Using Equation (4.56) and after some calculation we get S1(φ) = 0, c1 = 0 and S3(φ) = 0.

Using Equation (4.55) after some calculation and in the light of (4.67) we get the final system

of Equation 

X0 = C5√
Ar2−3

,

X1 =
√

3−Ar2

3 [θS1(φ)+ tc1 +S3(φ)],

X2 = c3
r cosφ + c4

r sinφ ,

X3 = [−c3
r cosφ + c4

r sinφ ]cotφ + c4
r .

(4.68)

Thus for case 3 we get the following TKVF: 1√
Ar2=−3

∂t ,
√

3−Ar2

3 t∂r
1
r cosφ∂θ − 1

r cosφ cotθ∂φ ,

1
r sinφ∂θ +

1
r sinφ cotφ∂φ , 1

r ∂φ .

Case 4 i = constant = E1 ̸= 0, j = constant = E2 ̸= 0, i = ln(E1), j = ln(E2), QQ′′−Q′2+

E2 = 0 implies T = 2
E2r2 and Q = r

√
E2, where E1,E2 ∈ ℜ/{0} with E1 ̸= E2. The space-time

takes from

ds2 =−k1dt2 + k2dr2 + r2k2[dθ
2 + sin2

θdφ
2]. (4.69)

Expanding (2.19) and using (4.69) we get

X0,0= 0, (4.70)

r2K2X2,0−K1X0,2= 0, (4.71)
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r2K2 sin2
θX3,0−K1X0,3= 0, (4.72)

−2K1X0,1+2K2X1,0= 0, (4.73)

X1,1= 0, (4.74)

r2X2,1+X1,2+X2 = 0, (4.75)

r2 sin2
θX3,1+X1,3+esin2

θX3 = 0, (4.76)

X2,2= 0, (4.77)

sin2
θX3,2+X2,3= 0, (4.78)

cotX2 +X3,3= 0. (4.79)

From Equation (4.70), Equation (4.77), Equation (4.78) and Equation (4.74) and after some

calculations we get 

X0 = K1(r,θ ,φ),

X1 = 1√
k2 K4(t,θ ,φ),

X2 = K2(t,r,φ),

X3 = K2
φ
(φ , t,r)cotθ + k3(φ , t,r).

(4.80)

K1(φ ,θ ,r),K2(r, t,φ),k3(t,φ ,r) and K4(φ ,θ , t) are function of integration. Now, we use Equa-

tion (4.71) and after simplification we get K2(r, t,φ) = tD3(φ ,r)+D4(φ ,r) and derivative w.r.t

φ we obtain K2
φ
(t,φ ,r) = tD3

φ
(φ ,r)+D4

φ
(φ ,r). Equation (4.72) and after performing calcu-

lations we obtain K3(φ , t,r) = tD5(φ ,r) +D6(φ ,r) and D3(φ ,r) = S1(φ) and D5(φ ,r) = 0

Equation (4.71) and some calculation we getD1(φ ,r) = S2(r) and again using Equation (4.72)
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and after some calculations and considering (4.80) we get

X0 = θS2(r)+S3(r),

X1 = 1√
k2 K4(φ , t,θ),

X2 = tS1(r)+D4(r,φ),

X3 = D4
φ
(r,φ)cotθ +D6(r,φ).

(4.81)

Now using Equation (4.73) we gets K4(r, t,φ)= tD7(φ ,r)+D8(φ ,r), S2(r)= c1 and D7(φ ,r)=

S4(r). Equation (4.74), Equation (4.76), one gets S4(r) = c2 →D8(r,φ) = S5(φ) and others

c2 = 0. 

X0 = S3(r)+θc1,

X1 = 1√
k2 S5(φ),

X2 = tS1(r)+D4(φ ,r),

X3 = cotθD4
φ
(r,φ)+D6(φ ,r).

(4.82)

Equation (4.79) and Equation (4.71) after some calculations and considering (4.82) we get

the following set of Equation



X0 = c2,

X1 = 1√
k2 S5(φ),

X2 = S6(r)cosφ +S7(r)sinφ ,

X3 = (−S6(r)sinφ +S7(r)cosφ)cotθ −S8(r).

(4.83)

Now using (4.76) and after some algebric maniplution we get S6(r) = c3
r , S7(r) = c4

r and
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S8(r) = c5
r and S5(φ) = c6 substituting back into (4.83) we get the final system of the equation

X0 = c2,

X1 = 1√
k2 c6,

X2 = cosφ
c3
r + c4

r sinφ ,

X3 = [−sinφ
c3
r + cosφ

c4
r ]cotθ − c5

r .

(4.84)

Thus for case 4 we gets the following TKVF: ∂t , 1√
k2 ∂r

1
r cosφ∂θ − 1

r sinφ cotθ∂φ ,
1
r sinφ∂θ +

1
r cosφ cotθ ,−1

r ∂φ

Case 5

j = E1 ̸= 0 constant i = i(r) ,r2i′′− ri′−2 = 0 → i = (E2r2

2 +E3 − lnr), T = 2E2
eE 1, and Q = r

where E1, E2, E3 ∈ ℜ (E1,E2 ̸= 0).

The space-times takes from

ds2 = exp
(

k2r2

2
− lnr+ k3

)
dt2 +dr2 + r2 [dθ

2 + sin2
θ dφ

2]. (4.85)

Expanding Equation (2.19) and using Equation (4.85) we get

X0,0= 0, (4.86)

r2X2,0−e(
k2r2

2
− lnr+ k3)X0,2= 0, (4.87)

r2k2 sin2
θX3,0−e(

k2r2

2
− lnr+ k3) X0,3= 0, (4.88)

−2exp

(
k2r2

2 −lnr+k3

)
X0,1+2X1,0−e

(
k2r2

2 −lnr+k3

)
(k2r− 1

r ) X0 = 0, (4.89)

2X1,1= 0, (4.90)

r2X2,1+X1,2+rX2 = 0, (4.91)

r2 sin2
θX3,1+X1,3+r sin2

θX3 = 0, (4.92)
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X2,2= 0, (4.93)

sin2
θX3,2+X2,3= 0, (4.94)

cotX2 +X3,3= 0. (4.95)

From Equation (4.86), Equation (4.93), Equation (4.94) and Equation (4.90) and after de-

termining we get 

X0 = K1(r,θ ,φ),

X1 = e
−k1

2 K4(θ , t,φ),

X2 = K2(r,φ , t),

X3 = K2
φ
(φ , t,r)cotθ +K3(φ , t,r),

(4.96)

where K1(r,φ ,θ),K2(r,φ , t),K3(t,φ ,r) and K4(t,θ ,φ) are constant of integration. Now,we use

Equation (4.87) and after some calculation we derive K2(r,φ , t) = tD3(φ ,r) +D4(φ ,r) and

derivative w.r.t φ we obtain K2
φ
(r,φ , t) = tD3

φ
(φ ,r)+D4

φ
(φ ,r). Now using Equation (4.88) we

get K3(φ , t,r) = tD5(φ ,r)+D6(φ ,r) and D3(r,φ) = S1(r) and D5(r,φ) = 0 Equation (4.91)

after deriving and in the view of Equation (4.96) we get

X0 = θD1(r,φ)+D2(r,φ),

X1 = e
−k1

2 [c2 +θ(tc1)+D8(t,φ)],

X2 = tS1(r)+D4(r,φ),

X3 = D4
φ
(r,φ)cotθ +D6(r,φ).

(4.97)

55



Using Equation (4.95) upon solving and in the view of Equation (4.97) we get

X0 = θD1(r,φ)+D2(r,φ),

X1 = e
−k1

2 [c1θ +S6(φ)t + c3],

X2 = cosφS3(r)+S4(r)sinφ ,

X3 = (−sinφS3(r)+ cosφS4(r))cotθ −S5(r).

(4.98)

Now using Equation (4.87) we get D1(r,φ)= 0 Equation (4.89) we get c2 = 0, and D8(t,φ)=

tS6(φ)+c3 Equation (4.88) D2(r,φ) = S7(r) and Equation (4.92) we get S3(r) = c4
r ,S

4(r) = c5
r

and S5(r) = c6
r after determining results and in the view of Equation (4.98) we get

X0 = S7(r),

X1 = e
−k1

2 [c1θ + tS6(φ)+ c3],

X2 = cosφ
c4
r + c5

r sinφ ,

X3 = [−sinφ
c4
r + cosφ

c5
r ]cotθ − c6

r .

(4.99)

Using Equation (4.91) we get c1 = 0, Equation (4.89) and after determining results and consid-

ering Equation (4.99) we get the final system of the Equation

X0 = c7.
∫

e
1
2r −

k2r
2 dr+ c8,

X1 = e
−k1

2 [tc7 + c3],

X2 = c4
r cosφ + c5

r sinφ ,

X3 = [−c4
r sinφ + c5

r cosφ ]cotθ − c6
r .

(4.100)

Thus for case 5 we get the following TKVF:
∫

e
1
2r −

k2r
2 dr∂t ,e

−k1
2 ∂r,

1
r cosφ∂θ − 1

r sinφ cotθ∂φ ,
1
r sinφ∂θ +

1
r cosφ cotθ∂θ ,

1
r ∂φ
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Case 6 j = j(r), i = i(r), ( i′′
2 + i′2

4 ) = 0 → i = ln(E1r+E2
2 )2, −E1 j′e− j + 2(E1r+E2) = 0,

which implies j = ln
(

E1
E1E3−E1r2−2k2r

)
, T = 0, and Q = 1 where E1, E2, E3 ∈ ℜ/{0}. The

space-times takes place

ds2 =+[
k2

r2 ]dr2 − k1

r2 dt2 + r2(dθ
2 + sin2

θdφ
2). (4.101)

Expanding (2.19) and using (4.101) We get

X0,0= 0, (4.102)

r2X2,0−
k1

r2 X0,2= 0, (4.103)

r2 sin2
θX3,0−

k1

r2 X0,3= 0, (4.104)

−k1X0,1+k2X1,0+
k1

r
X0 = 0, (4.105)

−−1
r

X1 +X1,1= 0, (4.106)

r2X2,1+
k2

r2
X1,2+rX2 = 0, (4.107)

r2 sin2
θX3,1+

K2

r2 X1,3+r sin2
θX3 = 0, (4.108)

X2,2= 0, (4.109)

sin2
θX3,2+X2,3= 0, (4.110)

cotθX2 +X3,3= 0. (4.111)

From Equation (4.102), Equation (4.109), Equation (4.110) and Equation (4.106) and after

deriving results we get 

X0 = K1(r,θ ,φ),

X1 =
√

r2

k2
K4(t,φ ,θ),

X2 = K2(t,φ ,r),

X3 = K2
φ
(t,φ ,r)cotθ +K3(t,φ ,r),

(4.112)

57



where K1(r,φ ,θ),K2(r,φ , t),K3(t,φ ,r) and K4(θ ,φ , t) are constant of integration. Now, we

use Equation (4.103) we get K2(t,φ ,r) = tD1(φ ,r) +D2(φ ,r) and derivative w.r.t φ we get

K2
φ
(r,φ , t) = tD1

φ
(φ ,r)+D2φ(φ ,r) and K1(θ ,φ ,r) = θD3(φ ,r)+D4(φ ,r), Equation (4.104)

K3(t,r,φ) = tD5(φ ,r)+D6(φ ,r), D1(φ ,r) = S1(r) and D5(φ ,r) = 0. Equation (4.105) we get

K4(θ ,φ , t) = tD7(φ ,θ)+D8(φ ,θ)→D7(θ ,φ) = θS2(φ)+ S3(φ). Equation (4.108) and after

determining results and in the light of Equation (4.112) we get

X0 = θD3(r,φ)+D4(r,φ),

X1 =
√

r2

k2
t[θc1 + c2]+D8(θ ,φ),

X2 = tS1(r)+D2(r,φ),

X3 = D2
φ
(r,φ)cotθ +D6(r,φ).

(4.113)

Using Equation (4.103) upon solving we get

[D3(r,φ)] = S4(r), (4.114)

where S1(r), D3(r,φ) are function of integration. Now using Equation (4.104) we get D4(r,φ)=

S5(r). Now using Equation (4.107) we get D8(θ ,φ) = θS6(φ)+ c3, Equation (4.111) we get

S1(r) = 0, and using Equation (4.103) we getS4(r) = 0. Now the system of the Equation is

X0 = S5(r),

X1 =
√

r2

k2 t[θc1 + c2]+θS6(φ)+ c3,

X2 = D2(r,φ),

X3 = D2
φ
(r,φ)cotθ +D6(r,φ),

(4.115)

where c1,c2,c3 are constants. Now using Equation (4.105) we get c1 = 0 Equation (4.106) and
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after some calculations and in the view of Equation (4.115) we get

X0 = S5(r),

X1 = 0,

X2 = D2(r,φ),

X3 = D2
φ
(r,φ)cotθ +D6(r,φ).

(4.116)

Using Equation (4.111) and after processing and in the view of Equation (4.116) we get

X0 = c4
r ,

X1 = 0,

X2 = S7(r)cosφ +S8(r)sinφ ,

X3 = [−S7(r)sinφ +S8(r)cosφ ]cotθ +S9(r).

(4.117)

Now using Equation (4.108) and after some simplification and in the view of (4.117) we obtain

the final set of Equation 

X0 = c4
r ,

X1 = 0,

X2 = cosφ
c5
r + c6

r sinφ ,

X3 = [−sinφ
c5
r + c6

r cosφ ]cotθ + c7
r .

(4.118)

Thus for case 6 we get the following TKVF: 1
r ∂t ,

1
r [cosφ∂θ −sinφ cotθ∂φ ],

1
r [sinφ∂θ +cosφ∂θ ],

1
r ∂φ .

Case 7 j = j(r), i = i(r), ri′′− i′ = 0 implies i = (E1r2

2 +E2), r j′(ri′+1)+2 = 0 → j =

ln
(

E3
√

E1r2+1
r

)2

, T = 2
E2

3 ,
and Q = r where E1, E2, E3 ∈ ℜ(E1, E3 ̸= 0)

The space-times takes from

ds2 =−k1r exp
(

k1r2

2
+k 2

)
dt2 +

k3
√

k1r2 +1
r

dr2 + r2(dθ
2 + sin2

θdφ
2). (4.119)
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Expanding equation (2.19) and Using (4.119) we get

X0,0= 0, (4.120)

r2X2,0−
(

e
k1r2

2 +k2

)
X0,2= 0, (4.121)

r2 sin2
θX3,0−

(
e

k1r2

2 +k2

)
X0,3= 0, (4.122)

−2(e
k1r2

2 +k2)X0
1 +2

k3
√

k1r2 +1
r

dX1,0−
(

e
k1r2

2 +k2

)
X0 = 0, (4.123)

− 1
r(k1r2 +1)

X1 +X1,1= 0, (4.124)

r2X2,1+

[
k3
√

k1r2 +1
r

]2

X1,2+rX2 = 0, (4.125)

r2 sin2
θX3,1+

[
k3
√

k1r2 +1
r

]2

X1,3+r sin2
θX3 = 0, (4.126)

X2,2= 0, (4.127)

sin2
θX3,2+X2,3= 0, (4.128)

cotθX2 +X3,3= 0. (4.129)

From Equation (4.120), Equation (4.127), Equation (4.128) and Equation (4.124) and after

deriving results we get the following set of Equation

X0 = K1(r,θ ,φ),

X1 = r
k3
√

k1r2+1
K4(t,θ ,φ),

X2 = K2(r, t,φ),

X3 = K2
φ
(r, t,φ)cotθ +K3(r, t,φ),

(4.130)

where K1(φ ,θ ,r), k2(φ , t,r), k3(φ , t,r) and K4(φ , t,θ) are function of integration. Now, we

use Equation (4.121) we get K1(r,θ ,φ) = θD1(φ ,r) + D2(φ ,r) →K2(r, t,φ) = tD3(φ ,r) +
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D4(φ ,r), derivative w.r.t φ we derive K2
φ
(r, t,φ) = tD3

φ
(φ ,r)+D4

φ
(φ ,r). Equation (4.122) we

get K3(r, t,φ) = tD5(φ ,r)+D6(φ ,r) →D3(φ ,r) = S1(r), and D5(φ ,r) = 0. Equation (4.121)

we get D1(φ ,r) = S2(r) and Equation (4.123) after deriving results and in the view of (4.130)

we get 

X0 = θS2(r)+S3(r),

X1 = r
k3
√

k1r2+1
[t(c1θ +S5(φ))+D8(θ ,φ)],

X2 = tS1(r)+D4(φ ,r),

X3 = cotθD4
φ
(φ ,r)+D6(φ ,r).

(4.131)

Using Equation (4.129) after some calculations and considering Equation (4.131) we get

X0 = θS2(r)+S3(r),

X1 = r
k3
√

k1r2+1
[t(θc1 +S5(φ))+D8(θ ,φ)],

X2 = cosφS6(r)+ sinφS7(r),

X3 = (−sinφS6(r)+ cosφS7(r))cotθ −S8(r).

(4.132)

Now using Equation (4.121) we get S2(r) = 0, Equation (4.123) we get S5(φ) = c2 and

c1 = 0, Equation (4.125) we obtain D8(θ ,φ) = S9(φ)θ +S10(φ),and Equation (4.126) we the

values of S6(r) = c3
r S7(r) = c4

r and S8(r) = c5
r and after deriving results and in the light of

Equation (4.132) we get

X0 = S3(r),

X1 = r
k3
√

k1r2+1
[tc2)+θS9(φ)+S10(φ)],

X2 = cosφ
c3
r + c4

r sinφ ,

X3 = cotθ [−sinφ
c3
r + c4

r cosφ ]− c5
r .

(4.133)
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Using Equation (4.125) we obtain S9(φ)= 0, Equation (4.123) we obtain S3(r)= −1
2 c7e

−1
2 r,

Equation (4.126) deriving results S10(φ) = c8 where c8 is constant and in the light of Equation

(4.133) we get the following system

X0 = −1
2 c7e

−1
2 r,

X1 = r
k3
√

k1r2+1
[tc2 + c8],

X2 = c3
r cosφ + sinφ

c4
r ,

X3 = [−sinφ
c3
r + c4

r cosφ ]cotθ − c5
r .

(4.134)

Thus for case 7 we get the following TKVF:−1
2 e

−1
2 r∂t ,

r
k3
√

k1r2+1
∂r cosφ

1
r +sinφ

1
r ,

1
r cosφ∂θ −

1
r cotθ cosφ∂φ ,

1
r sinφ∂θ +

1
r cosφ cotθ∂θ ,c4∂φ .

Case 8

i = i(r), j = constant 2ri′′+ ri′2 − 2i′ = 0 → i = lnr4, e j = 1, T = 10r−2, and Q = r. The

space-times takes from

ds2 = dr2 − r4dt2 +(dθ
2 + sin2

θdφ
2)r2. (4.135)

Expanding (2.19) and using (4.135) we get

X0,0= 0, (4.136)

X2,0−r2X0,2= 0, (4.137)

sin2
θX3,0−r2X0,3= 0, (4.138)

−r4X0,1+X1,0−2r3X0 = 0, (4.139)

X1,1= 0, (4.140)

r2X2,1+X1,2+rX2 = 0, (4.141)
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r2 sin2
θX3,1+X1,3+r sin2

θX3 = 0, (4.142)

X2,2= 0, (4.143)

sin2
θX3,2+X2,3= 0, (4.144)

cotθX2 +X3,3= 0. (4.145)

From Equation (4.136), Equation (4.143), Equation (4.144) and Equation (4.140) after deriving

results we get 

X0 = K1(r,θ ,φ),

X1 = K4(t,φ ,θ),

X2 = K2(t,φ ,r),

X3 = K2
φ
(t,φ ,r)cotθ +K3(t,φ ,r),

(4.146)

where K1(r,φ ,θ),K2(t,φ ,r),K3(t,φ ,r) and K4(t,θ ,φ) are the function of integration. We can

use Equation (4.137) we obtain K1(r,φ ,θ) = θD1(φ ,r)+D2(φ ,r)→K2(t,φ ,r) = tD3(φ ,r)+

D4(φ ,r) and derivative w.r.t φ we obtain K2
φ
(t,r,φ) = tD3

φ
(r,φ)+D4

φ
(r,φ). Equation (4.141)

we get K4(t,φ ,θ) = θD5(φ , t)+D6(φ , t)→D4(t,φ) = tS1(φ)+ S2(φ). Equation (4.139) we

get D6(t,φ) = tS3(φ)+ S4(φ). Equation (4.138) we obtain K3(t,φ ,r) = tD7(φ ,r)+D8(φ ,r),

and Equation (4.140) after determining we get

X0 = θD1(r,φ)+D2(r,φ),

X1 = θS2(φ)+S4(φ),

X2 = tD2(φ ,r)+D3(φ ,r),

X3 = [tD2
φ
(φ ,r)+D3

φ
(φ ,r)]cotθ + tD4(φ ,r)+D5(φ ,r).

(4.147)
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Using Equation (4.138) we obtain D2(r,φ) = S5(r)→D4(r,φ) = 0. Equation (4.145) after

determining results and considering (4.147) we get

X0 = θS2(r)+S3(r),

X1 = θS2(φ)+S4(φ),

X2 = cosφS6(r)+ sinφS7(r),

X3 = (−sinφS6(r)+ cosφS7(r))cotθ −S8(r).

(4.148)

Now using Equation (4.137) we obtain D1(r,φ) = 0 , Equation (4.138) we get D2(r,φ) =

S9(r), Equation (4.139) we obtain S9(r) = − c1
2r and Equation (4.142) after solving and in the

light of (4.148) we get 

X0 =− c1
2r ,

X1 = θS2(φ)+S4(φ),

X2 = c2
r cosφ + c3

r sinφ ,

X3 = [−c2
r sinφ + c3

r cosφ ]cotθ − c4
r .

(4.149)

Using Equation (4.142) and in the view of (4.149) we obtain the final set of the Equation

X0 =− c1
2r ,

X1 = θc5,

X2 = c2
r cosφ + c3

r sinφ ,

X3 = [−c2
r sinφ + c3

r cosφ ]cotθ − c4
r ,

(4.150)

where, c1,c2,c3,c4 and c5 are constants. Thus for case 8 we get the following TKVS: 1
2r ∂t ,θ∂r,

1
r cosφ∂θ −

1
r cosφ cotθ∂φ ,

1
r sinφ∂θ +

1
r sinφ cotθ∂θ ,

1
r ∂φ .
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Case 9

i = i(r), j = j(r), 1 + r j′ = 0 implies j = ln(E1
r ), r2i′′ − r j′ − 2 = 0 → i = ln(E3eE 2r

r ),

T = 2k2
k3

,and Q = r where E1, E2, E3 ∈ ℜ(E1,E3 ̸= 0). The space-times takes from

ds2 =−k3ek2r

r
dt2 +

[
k1

r

]
dr2 + r2(dθ

2 + sin2
θdφ

2). (4.151)

Expanding (2.19) and using (4.151) we get

X0,0= 0, (4.152)

r2X2,0−− K3ek2r

r
X0,2= 0, (4.153)

r2 sin2
θX3,0−− K3ek2r

r
X0,3= 0, (4.154)

−X0,1+
1

1+K1r2 X1,0−
k3ek2r−1

r2 X0 = 0, (4.155)

−−1
r

X1 +2X1,1= 0, (4.156)

r2X2,1+
k1

r
X1,2+rX2 = 0, (4.157)

r2 sin2
θX3,1+

k1

r
X1,3+r sin2

θX3 = 0, (4.158)

X2,2= 0, (4.159)

sin2
θX3,2+X2,3= 0, (4.160)

cotθX2 +X3,3= 0. (4.161)

From Equation (4.152), Equation (4.159), Equation (4.160) and Equation (4.156) and after

deriving results we get
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

X0 = K1(r,θ ,φ),

X1 =
√

r
k1

K4(t,θ ,φ),

X2 = K2(φ , t,r),

X3 = K2
φ
(φ , t,r)cotθ +K3(t,φ ,r).

(4.162)

where K1(θ ,φ ,r), K4(t,θ ,φ), K2
φ
(φ , t,r) and K3(r, t,φ) are constant of integration. Now,we

use Equation (4.153) we obtain K1(r,θ ,φ) = θD1(φ ,r)+D2(φ ,r) →K2(r, t,φ) = tD3(φ ,r)+

D4(φ ,r), derivative w.r.t φ K2
φ
(r, t,φ) = tD3

φ
(φ ,r)+D4

φ
(φ ,r). Equation (4.154) K3(r, t,φ) =

tD5(φ ,r)+D6(φ ,r)→D3(φ ,r)= S1(r) and D5(φ ,r)= 0. Equation (4.153) we obtain D1(φ ,r)=

S2(r), and Equation (4.155) deriving results and considering Equation (4.162) we get

X0 = θS2(r)+D1(r,φ),

X1 =
√

r
k1

[t(θC1 +S4(φ))+D8(θ ,φ)],

X2 = tS1(r)+D4(φ ,r),

X3 = D4
φ
(φ ,r)cotθ +D6(φ ,r).

(4.163)

Using Equation (4.154) we obtain D2(φ ,r)= S5(r) and Equation (4.161) we obtain D4(φ ,r)=

S6(r)cosφ +S7(r)sinφ and D6(φ ,r) = S8(r) and in the view of Equation (4.163) we get

X0 = θS2(r)+S3(r),

X1 =
√

r
k1

[t(θC1 +S4(φ))+D8(θ ,φ)],

X2 = cosφS6(r)+ sinφS7(r),

X3 = (−sinφS6(r)+ cosφS7(r))cotθ −S8(r).

(4.164)

where D8(θ ,φ),S2(r),S3(r),S4(φ),yS6(r),S7(r) and S8(r) are constant of integration. Now

using Equation (4.153) we obtain S2(r) = 0, Equation (4.155) we obtain c1 = 0 and S4(φ) = c2,
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Equation (4.157) we obtain D8(φ ,θ) = S9(φ)θ + S10(φ), Equation (4.156) we obtain c1 =

0,S9(φ) = 0 and S10(φ) = 0 Equation (4.158) we obtain S6(r) = c3
r ,S

7(r) = c4
r and S8(r) = c5

r

and in the light of Equation (4.164) we get

X0 = S5(r),

X1 = 0,

X2 = cosφ
c3
r + c4

r sinφ ,

X3 =−[sinφ
c3
r + c4

r cosφ ]cotθ − c5
r .

(4.165)

Using Equation (4.158) after some simplification and in the view of (4.165) the set of Equation

is 

X0 = c7ek2r2−2r lnr+2rc6 ,

X1 = 0,

X2 = cosφ
c3
r + sinφ

c4
r ,

X3 = [−c3
r sinφ + c4

r cosφ ]cotθ − c5
r .

(4.166)

where, c3,c4,c5,c6 and c7 are constants. Thus for case 9 we get the following are TKVS:

ek2r2−2r lnr+2r ∂t ,
1
r cosφ∂θ − 1

r sinφ cotθ∂φ ,
1
r sinφ∂θ+

1
r cosφ cotθ∂θ ,

1
r ∂φ .
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Table 1: Killing Vector Fields of Static Spherically Symmetric Space-times in f (T ) gravity.

Case No Metric Components Killing Vector Fields Killing Factor Description

(10)
i = i(r), j = j(r), i = ln

(
1− E1

r
+

E2r2

3

)
,

j = ln
(

1− E1

r
+

E2r2

3

)−
1, Q = r

.

X0 = c6 e
∫

k1
r2 +

2k2r
3

−2+
2k1

r −
2k2r

3

X1 = 0

X2 = sinφ
c2

r
+

c1

r
cosφ ,

X3 = cotθ [cosφ
c2

r
− c1

r
sinφ ]+

c3

r

η = 0. TKVF

(11)
i = i(r), j = j(r) Q = ri = ln(

E1

r
),

j = ln
(

r
E2 = 4r

)
,

X0 = c6r
1
2 ,

X1 = 0,

X2 =
c3

r
cosφ + sinφ

c4

r

X3 = [−sinφ
c3

r
+ cosφ

c4

r
]cotθ +

c5

r

η = 0. TKVF

(12)
i = i(r), j = j(r),

i = ln(E1r2), j = ln(
2

1+2E2r2)
, Q = r

X0 = c6r
1
2 ,

X1 = 0,X2 =
c3

r
cosφ +

c4

r
sinφ

X3 = [
c4

r
cosφ − c3

r
sinφ ]cotθ +

c5

r

η = 0. TKVF

(13)
i = i(r), j = j(r), i = ln

(
E1r+E2

2

)2

j = ln
(

E1

E1E3 −E1r2 −2E2r

)
,Q = r

X0 =
k1

2
c7e−r,X1 = 0,

X2 = c3 cosφ + c4 sinφ

X3 = [−c3 sinφ + c4

cosφ ]cotθ + c5

η = 0. TKVF

(14)
i = i(r), j = j(r), i = ln(E2 −E1r− r2),

j = ln(E2 −E1r− r2)−1, Q = 1

X0 = c8

√
r2 − k1r+K2,

X1 = 0,

X2 = (sinφc6 + c5 cosφ),

X3 = [c6 cosφ − c5 sinφ ]cotθ + c7

η = 0. TKLF

(15)
i = i(r), j = j(r), i = ln(E3 rE 2),

j = ln(
E1

r2 ), Q = r

X0 = c8 e(
−1
2 −

rk2
k2 ),

X1 = 0,

X2 =−c5

r
cosφ +

c6

r
sinφ ,

X3 =
[
−c5

r
sinφ +

c6

r
cosφ

]
cotθ +

c7

r
.

η = 0. TKVF
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Table 2: Killing Vector of Static Spherically Symmetric space-times in f (T ) gravity.

Case No Metric Components Killing Vector Fields Killing Factor Description

(16)
i = i(r), j = j(r) , i = (E1r+E2),

j = ln
[

E3(E1r+1
r2

]
Q = r

X0 =C8 e(
−1
2 −

rk2
k2 ),

X1 = 0,

X2 =−c5

r
cosφ +

c6

r
sinφ ,

X3 =
[
−c5

r
sinφ +

c6

r
cosφ

]
cotθ +

c7

r
.

η = 0. TKVF

(17)

i = i(r), j = j(r), i = ln
eE 1r+E

2

r2 ,

j = ln
[

E3(E1r+1
r2

]
r2),

j = Q = r,

X0 = c7.
r

e
k1
2 r

,

X1 = 0,

X2 =
c3

r
cosφ +

c4

r
sinφ

X3 =
[
−c3

r
sinφ +

c4

r
cosφ

]
cotθ +

c5

r

η = 0. TKVF

(18)
i = constant, j = constant,

i = ln(E1), j = ln(E2), Q = eE r
3
+E

4

X0 = c1

X1 = 0,

X2 = c2erk3 cosφ+

c3erk3 sinφ

X3 =
[
−c2erk3 sinφ+

c3erk3 cosφ

cotθ +(
c5

r
)

η = 0. TKVF

(19)
i = constant, j = j(r),

j = ln
[

E4

(E2r−E3)2

]
,Q = r

X0 =
E1

2
c7e−r,X1 = 0,

X2 = c3 cosφ + c4 sinφ

X3 = [−c3 sinφ + c4

cosφ ]cotθ + c5

η = 0. TKVF

(20)
i = constant, j = j(r),

j = ln
E1

r2 , Q = r

X0 = c6

X1 = 0,

X2 =−c5

r
sinφ +

c4

r
cosφ

X3 = [
c5

r
cosφ − c4

r
sinφ ]

cotθ + c7e−r.

η = 0. TKVF
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Chapter 5

Conclusion

In this thesis, we investigated the Teleparallel Killing vector fields (TKVFs) of static spher-

ically symmetric space-times in f (T ) gravity. Specifically, we classified 20 known solutions by

employing the direct integration technique to determine the existence of TKVFs in each case.

Our analysis revealed that Teleparallel Killing vector fields exist for all 20 solutions, indicating

the presence of underlying symmetries in these space-times.

The existence of TKVFs in all cases suggests that teleparallel gravity, particularly in the

context of f (T ) gravity, maintains certain structural symmetries similar to those found in Gen-

eral Relativity. This reinforces the role of Killing vector fields in characterizing the geometric

and physical properties of modified gravitational theories. Additionally, our classification pro-

vides a systematic framework for identifying symmetries in teleparallel formulations of gravity,

which may have implications for further theoretical developments.
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5.1 Future work

The analysis of Teleparallel Killing vector Fields of static spherically symmetric space-

times in f (T ) gravity can be extended to generalized f (T ) models with higher-order torsion

or matter couplings, as well as more complex geometries like rotating or cylindrically sym-

metric space-times. Research opportunities are provided by applications in cosmology and

astrophysics, such as early-universe scenarios, neutron stars, and black holes. Numerical sim-

ulations can be used to study dynamic or perturbative space-times, and the generated Killing

Vector Fields can be used to compute conserved quantities such as energy and angular momen-

tum. Future research could possibly extend the framework to higher-dimensional space-times

or compare theoretical predictions with observational evidence, connecting f (T ) gravity with

contemporary physical theories and observations.
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