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Abstract

Title: Teleparallel Homothetic Vector Fields of Static Spherically Symmetric Space-Times

in f (T ) gravity

In general relativity, Einstein Field Equations (EFEs) are fundamental equations which are

used to explain how geometry of a space-time is affected with the presence of massive objects.

EFEs are the set of non-linear differential equations of second order that govern the behavior of

metric tensor. Since the beginning of this theory, a wide range of physically interesting exact

solutions to these equations have been discovered. Considering the non-linearity of EFEs,

finding the exact solutions to them is a task. This task may be achieved by placing certain

symmetry limitations on the metrics. The static spherically symmetric (SS) solutions to EFEs

in f (T ) gravity have already been existed in the literature. These solutions are further classified

which arose 20 cases. In this paper, we solved each case individually to see the existence

of Teleparallel Homothetic Vector Fields (THVFs) of static SS space-times in f (T ) gravity.

We find that no such case exists for which the space-time admit THVFs and for all the cases

THVFs become TKVFs. To complete the study, the energy density and pressure of each model

is computed. Additionally, the solutions are categorized based on energy conditions. Not to

mention, the results of all the cases have been shown by designing certain tables.
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Chapter 1

Introduction

1.1 Classical Gravity to Modified Theories: a journey

1.1.1 Gravitational Phenomena

Despite tremendous advances in science and technology, the universe is huge and full of

mysteries that remain beyond our comprehension. From the star studies of ancient civilizations

to the exploration of far-off galaxies and celestial events by contemporary telescopes and space

missions, the understanding of humans for the cosmos has expanded enormously throughout

the ages. Despite this in-depth understanding, humans cannot fully understand the mystery

behind gravity which considered to be the most captivating topic for scholarly work. Com-

mon individuals view gravity as a force responsible for keeping them on the crust of the earth.

Gravity’s significance goes beyond mere attraction; it also plays a vital role in determining the

orbital paths taken by planets as they revolve around the sun. Gravitational interaction, in fact,

was the initial subject to be experimentally investigated because it was relatively simple to con-

struct the necessary experimental equipment [1].
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Among the philosophers of ancient times, Aristotle possessed a remarkable understanding

of substantial bodies. He asserted that universe was made up of exactly five elements which in-

clude four earthly elements: earth, water, air, fire and one heavenly element which was ‘ether.’

According to his law of terrestrial movement, ‘all terrestrial bodies are inclined to return to

their natural state of rest.’ So, anything taken from the earth will eventually fall back to it, as

it’s their natural state of rest. In the late 16th century, Galileo Galilei initiated the concept of

terrestrial gravity by employing pendulums and inclined planes in his scientific investigation

[2–5]. In one of the studies carried out by Galileo, he simultaneously dropped two unequally

sized cannonballs from the top of the Leaning Tower of Pisa, and they appeared to fall freely to

the Earth at the same time. Numerous comparable experiments have been conducted, all yield-

ing comparable absolute results. Thus, it is well known that all bodies, regardless of mass, free

fall (accelerate) equally under the force of gravity. The study of gravity profoundly impacted

Galileo’s views on the essentiality of experimentation in scientific investigation, which had a

significant impact on the advancement of scientific thinking [6]. This basic yet remarkably

persuasive empirical law convinced Issac Newton to incorporate it into his ‘Law of Universal

Gravitational Attraction.’

1.1.2 Law of Universal Gravitational Attraction: Issac Newton

Drawing from Galileo’s law of equal gravitational acceleration, Newton inferred that all

planets descend equally towards the sun regardless of their significantly different masses [7].

He even made efforts to explain Galileo’s paradoxical law through his own observations and

experiments involving pendulums [8]. However, in Galileo’s work, terrestrial gravity was not
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directly linked to celestial gravity in a single theory until, in 1665, Isaac Newton gave his Law

of Universal Gravitational Attraction. Newton asserted that gravity is an intrinsic quality pos-

sessed by every particle. All mass-containing bodies are subject to gravitational attraction from

one another, even if this force might become infinitesimally tiny at larger separations between

bodies. His law articulates the idea that “The gravitational attraction situated between two

mass containing bodies (m1) and (m2) grows proportionally with their mass product (m1m2)

and varies inversely with the the squared distance separating their centers(i.e. r2)”. This is also

renowned as a ‘Universal law,’ also Terrestrial gravity and Celestial gravity were unified under

a single theory [9, 10]

Considering that every consistent theory is evidently ‘right’, it will not be appropriate to de-

clare if Newton’s theory, or any other physical theory, is correct or incorrect. Instead, it would

be more relevant to ask how well this theory aligns with the real world. The predictions made

by Newton’s theory proved to be accurate for various scenarios and for multiple sizes, such as

planetary body motion and terrestrial tests. Newton’s Gravitational Theory comprised of two

fundamental concepts:

1. The concept of absolute space; assumes that space is a rigid environment in which phys-

ical processes take place, is actually fixed, unaffected structure.

2. The idea behind the Weak Equivalence Principle, that in terms of Newtonian Theory,

proclaims that gravitational and inertial masses hold equal value.

During the first two decades after the inception of Newtonian gravity, it was obvious that it

successfully explained every aspect of gravity which should be explained at that time. But

sooner or later, all of the aforementioned concerns were raised. In the 19th century, there were

several experimental findings which Newton’s theory of gravity could not articulate. These
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include 1855’s discovery by Urbain Le Verrier, in which he revealed an irregularity in Mer-

cury’s orbital path, with an excess precession of 35 arc second [11, 12]. Afterwards, more

accurate measurement of a 43 arc-seconds excess precession made by Newcomb [13]. In ad-

dition, Dicke proposed that the gravitational constant should depend on the mass distribution

[14] unlike Newton, who believed that the gravitational constant ought to be a universal con-

stant. These events caused scientists of the era to question the underlying axioms of Newton’s

gravitational theory.

1.1.3 Einstein Theories

Newtonian theory faced a major challenge when Albert Einstein finished the Theory of

Special Relativity in 1905. This theory is referred to as the “Special Theory of Relativity” as

it applies only to bodies that adhere to the principles of inertial motion and no external forces

acting upon them. Through a synthesis of experimental data and physical arguments made so

far, Albert Einstein constructed a set of novel principles that provide an enriched knowledge

of the intrinsic nature of space, time, matter and energy. In adherence to the Special theory of

Relativity, observers in inertial reference frames perceive that the speed of light and the laws of

physics as invariant. This theory relies on a flat space-time structure and managed to describe

a number of Non-Gravitational events related to physics [15]. Time dilation and length con-

traction, two perplexing characteristics of time and length, led to the popularity of this theory,

which was later shown to be accurate. By conducting the theoretical framework and experi-

mental investigations into the propagation of light observed from the perspectives of observers

in motion, the properties of time and length were demonstrated. The mass-energy equivalency
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relation, which is expressed by the well-known equation- E = mc2, is another important aspect

of Special Relativity Theory. This theory emphasizes the proportional relationship between

mass and energy within the framework of physical system and the relationship between mass

and energy equivalence is determined by the numerical constant representing the speed of light,

abbreviated as "c." It appeared that non-inertial frames should be included in the topic of Spe-

cial Relativity in a certain manner.

In 1907, Albert Einstein proposed the idea that gravity and inertia are equivalent, and he

later used this theory to forecast an exact gravitational redshift. Following that, he rounded

off his General Relativity (GR) theory in 1915. GR was an extended framework of Special

Relativity that considers the effects of gravity with any frame experiencing acceleration. The

fundamental strategy of this conceptual framework was to visualize space-time as a geomet-

ric structure, enabling us to understand how gravity operates between massive objects. At the

heart of this theory is the proposition that "gravity leads to curvature." As an illustration, when

a heavy ball is positioned at the center of a trampoline, gravity will cause the center of tram-

poline to sink, creating a deviation from a perfectly flat surface. The aforementioned example

can be explained as "the mass of the ball is causing the trampoline to bend."
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Figure 1: A distorted space-time due to the gravitational force of a mass.

Remarkably, the Lense-Thirring gravitomagnetic effect (1918) and other experimental re-

sults, including the Mercury’s orbital precession matched perfectly with General Relativity

theory [16–19]. General Relativity (GR) replaces Newtonian Gravity, commonly accepted the-

ory of gravity today. Like many other scientific hypotheses, Newtonian gravity continues to

be widely accepted by scientists. Although it has been acknowledged that its applicability is

limited in comparison to General Relativity, yet it is enough for the majority of gravity-related

applications. Under conditions of weak gravitational field strengths and low velocities, GR ul-

timately reduces to Newtonian gravity. Although generalizations have been made to Newton’s

gravity equations, some fundamental axioms (like the existence of an absolute frame) have

been abandoned. However, several fundamental principles from his theory continue to shape

the core of GR. Though it has been rephrased to be more appropriate for the situation. The

Equivalence Principle is the most well-known illustration of this.
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To understand our universe, having a clear understanding on the physical and geometric

nature of our space-times is essential. GR appears to be the most relativistic theory in order to

understand these geometrical features among all the theories that have been developed so far, at

least on a classical level. In General Relativity, gravity is understood as the distortion of space-

time, which occurs due to matter and energy. This distortion of space-time indicates how much

the fabric of space-time bends away from being perfectly flat and is exclusively defined through

its metric tensor. In GR, the metric of space-time does not have to be flat, unlike the scenario

presented in Special Relativity theory. The structure and space-time dynamics are determined

by "Einstein’s Field Equations” or "EFEs" which exhibit a notable degree of non-linearity and

play a vital role in explaining how mass and energy determine space-times geometry and how

that geometry affects the motion of matter. Thus, in order to deal with EFEs effectively, cer-

tain symmetry restrictions must be imposed. That’s the reason why certain symmetries are

acknowledged in GR. Even though Einstein’s General Relativity has been passed through nu-

merous astrophysical trails and is a very successful theory for understanding the structure of

the universe [20, 21], however, it is restricted by several prime limitations.

1.1.4 Existence of Invisible Matter Components

Theoretical models have yet to offer a straightforward approach to integrate quantum ef-

fects into the framework of General Relativity. At present, there is no unified quantum theory

that clearly describes the behavior of gravity. Recent research highlights that the behavior

of accelerated expansion of universe have become more significant yet interesting subject in

today’s cosmological and astrophysical fields. Current advancements in cosmological fields
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have revealed innovative ideas to understand the pivotal and observational advancements that

explain the universe’s rapid expansion and the mysterious existence of invisible matter compo-

nents gravitating towards the clusters of celestial bodies. Different observations might offer an

evidence supporting accelerated expansion as a result of high red-shift supernova experiments

[22, 23]. The intriguing phenomenon of expansion is governed by Einstein’s relativity theory

and the classical dynamics of solar objects. An apparent explanation for these atypical phe-

nomena could involve the occurrence of some non-standard matter components, including dark

matter and energy [24]. Nevertheless, GR theory has certain limitations, as it fails to properly

address some significant issues like dark energy (DE), dark matter, late-time cosmic accelera-

tion, initial singularity and flatness problems. Such concerns stimulate the effort to explore the

modified or extended theory of gravity that can address scenarios where GR yields inadequate

results [25, 26].

1.1.5 Teleparallelism

Finding a stable theory that combines the essential concepts of Quantum Mechanics and

the primary objective of theoretical physics is to develop the General Theory of Gravity. In

1920’s, Einstein tried to develop such a theory. He combined electromagnetic and gravity by

taking the help of the mathematical framework of Teleparallelism, which is also called "Ab-

solute Parallelism." The fundamental property of Teleparallelism is the ability to calculate the

angle between vectors that are far away. Einstein suggested the introduction of the tetrad field

as an essential component, which represents a field of orthonormal basis existing within the

tangent space generated for every coordinate within the four-dimensional space-time manifold.

In total, there are 16 individual components within the tetrad framework and metric only has
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10 [27]. Einstein postulated that there must be some sort of relationship between the six com-

ponents of the electromagnetic field and these additional six aspects of the field. Unfortunately,

this attempt was likewise unsuccessful, and it eventually came to light that the additional com-

ponents pertain to Lorentz invariance of the theory. Despite the failure of the first attempt at

unification, a new way of describing gravity called "Teleparallel Gravity" was born [28]. A

different interpretation of gravity within the domain of GR is provided by the “Teleparallel

Theory” (TT). In the framework of general relativity, space-time’s curvature defines its overall

geometric layout, represented by the Riemann Curvature tensor. However, in Teleparallelism,

space-time’s shape is flat, with no curvature, but it does possess a distinctive feature known as

’Torsion.’

We are basically going to find the Teleparallel Homothetic Vector Fields (THVFs) of Static

Spherically Symmetric (SS) Space-Times in f(T) gravity. By looking at gravity through the lens

of teleparallelism, vector fields exhibiting homothetic qualities are called Teleparallel Homoth-

etic Vector Fields. These fields provide scaling transformations (where distances are uniformly

scaled at each point in space by a constant factor). A static SS space-time is a solution to field

equations of Einstein in GR where the gravitational force field strength is spherically sym-

metric and is independent to time. f(T) gravity is an alternative explanation for gravitational

phenomenon that modifies Einstein’s general relativity by considering functions of the torsion

scalar T , which emerges as a geometric parameter derived from the torsion tensor in teleparal-

lel gravity.
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1.2 Literature Review

Over the past few years, there has been a heightened enthusiasm among researchers for

investigating the symmetries which also involves homothetics vector fields. McIntosh et al.

[29] examined the characteristics of homothetic motion in GR by focusing on vacuum and

perfect-fluid space-times. It was proved that vacuum space-times can only admit nontrivial

homothetic motions if the HVF is non-null and not hypersurface orthogonal. In 2015 [30],

Azeb Alghanemi et al. classified the Bianchi type I space-times based on their homothetic

vectors in Lyra geometry. Non-linear coupled Lyra homothetic equations were formulated and

solved for several cases. Homothetic and Killing vectors were obtained for Bianchi type I

space-times in GR by considering the displacement vector in Lyra geometry to be zero. It was

seen that some space-times admit proper Lyra homothetic vectors (LHVs) for specific metric

functions, while others only admit Lyra Killing vectors (LKVs). Eardley et al. [31] presented

some results which revealed that Einstein’s equations do not have solutions with conformal or

homothetic symmetry. It was shown that homothetic or conformal killing fields are Killing in

spatially compact space-times. M. Jamil Khan et al. made an attempt to find the proper HVFs

in plane symmetric perfect fluid static space-times in f(R,T) gravity theory by simple integra-

tion technique. The existence of six cases was seen in which proper Homothetic Vector Fields

(HVFs) exists in four cases whereas in the other two situations HVFs become Killing Vector

Fields (KVFs) [32]. In theoretical physics, the idea of teleparallelism provides a different way

to express gravity. If we talk about Teleparallel Homothetic Vector Fields (THVFs), different

researchers in relativity, work in these kinds of fields. In 2010, Shabbir et al. made used of the

direct integration strategy so that they can examine THVFs associated with TT of Bianchi type
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I space-times. Dimensions of THVFs were discovered which were four, five, seven, or eleven

and were exactly identical in quantity as those observed in general relativity. For special choice

of space-times, proper THVFs exist in dimensions four, five or seven. And eleven THVFs ex-

hibit zero torsion components entirely. It was concluded that General Relativity’s homothetic

vector fields (HVFs) are retrieved, and space-time is converted to Minkowski space [33]. In

another article, authors Ghulam Shabbir and Suhail Khan opted the direct integration approach

for categorization of cylindrically symmetric static space-times based on their THVFs. It was

examined that the dimensions of the THVFs are four, five, seven or eleven, which are exactly

identical in numbers to the dimensions in GR. For special choice of space-times, Proper THVFs

exist into the dimensions four, five or seven. In the case of dimension eleven of Teleparallel

Homothetic Vector Fields, every component has zero torsion which results in the transition of

space-times to Minkowski. In the end, it was concluded that THVFs in this particular scenario

are exactly similar to vector fields in GR [34]. In 2011, Ghulam Shabbir and Suhail Khan used

the direct integration to categorize plane symmetric non-static space-times based on THVFs.

It was seen that the dimensions of the THVF’s are six, seven, eight or eleven. For the dimen-

sions six, seven or eight, the existence of Proper THVFs for special choice of the space-times

is shown. When it comes to eleven, all components of torsion vanish and this lack of torsion

components causes the space-time to transition into the Minkowski phase which completely

agreed to GR. After a lot of discussion, it was made clear that for non-static plane symmet-

ric space-times, the existence of torsion within space-time does not really affect or raise the

number of proper Homothetic Vector Fields and it turned out to be similar to GR, Teleparallel

theory demonstrates the existence of just one proper HVF under observation [35]. Masoom

Ali Shahani et al. in the year of 2017, explored the non-static cylindrically symmetric space-
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times to explore proper THVFs using direct integration and diagonal tetrads. The space-times

like static cylindrically symmetric, Bianchi type I, non-static, and static plane symmetric were

also covered in this article. It was shown that the special classes of these space-times produce

six, seven, and eight THVFs with non-zero torsion [36]. In another study of 2018, Amjad

Ali sought out teleparallel proper HVFs on Lorentzian manifolds characterizing special axially

symmetric static space-times. Using the teleparallel Lie derivative on the metric for homothetic

equations, a set of ten differential equations exhibiting non-linearity and with interrelations is

obtained. Following this, the equations are tackled one by one to determine potential solutions

for each metric function. It came to light that solely in a single case, teleparallel proper HVFs

exists for particular metric function scenario. Within the context of space-times, there exist

eight dimensional Teleparallel Homothetic Vector Fields, among them only single vector satis-

fies the criteria for being a proper teleparallel HVF while the other seven vectors identified as

teleparallel Killing Vector Fields (KVFs) [37].

Apart from Teleparallel Homothetic Vector Fields, authors tried to research in static SS

space-times. Within the paradigm of GR, a term "static" often employed to depict different

forms of SS space-times line elements. For static SS space-times they find their analytical

solutions. In one of the studies [38], Takeno present the notion of "staticness" inherent in a

spherically symmetric space-time as an essential characteristic of the space-times, this char-

acteristic is based on the concept that the mathematical aspect of GR is conceptualized as a

theory of analytical invariants. Subsequently, various characteristics of SS symmetric space-

times are described. An approach utilized by the author in his research is in accordance with

the framework of characteristic systems applied to spherically symmetric space-time models, as

formulated by an author. Examples were also given in the work. In another study, an approach

12



known as “Noether symmetry approach” was used by Paliathanasis et al. and SS solutions

were obtained for f (T ) gravity models. After generating solutions, it was concluded that the

solutions accomplished are of greater generality than those acquired through typical solution

techniques [39]. In the year 2015, Ali et al. presented a categorization of static SS space-times

based on their Noether symmetries. Firstly, equations defining the Noether symmetries were

derived from the usual Lagrangian of a static space-times with spherical symmetry which were

then integrated for each specific case. The research revealed that spherically symmetric static

space–times can be classified into six distinct categories each category corresponds to the di-

mensions of the associated Noether algebras: five, six, seven, nine, eleven, and seventeen. By

utilizing Noether’s theorem, the first integrals were determined associated with each symmetry.

And some new spherically symmetric static solutions were obtained [40]. In another article

which was published in 2016, Zubair et al. investigated the wormhole solutions within the con-

text of f (R,T ) theory of gravity. Here, R symbolizes the scalar curvature while T represents

the sum of the diagonal elements of the stress-energy tensor associated with matter. Three dif-

ferent scenarios of static spherically symmetric (SS) geometry were considered alongside the

inclusion of matter contents in the form of anisotropic, isotropic, and barotropic fluids. It was

analyzed how energy conditions manifest across different fluid types, gave their solutions and

present a graphical representation of the acquired results. In summary, it was determined that

wormhole solutions featuring anisotropic matter are both realistic and stable in f (R,T ). To

wrap up, the investigation revealed that wormhole solutions sustained by anisotropic matter ex-

hibit both realism and stability within this gravitational framework [41]. Another analysis is be-

ing persued by Khan et al. to explore teleparallel CKVFs in plane symmetric non-static space-

times. Through calculations, ten equations were derived governing the behavior of teleparallel
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Conformal Killing Vectors which exhibit linearity with respect to the elements of teleparallel

CKVFs. Given certain integrability requirements, a general solution to these equations was

given by utilizing the CKVFs and conformal factor components. To achieve the ultimate ex-

pression of teleparallel CKVFs and conformal factor, the integrability conditions were fully

investigated for seven distinct metric functions selection. It was demonstrated that for three

cases, teleparallel CKVFs have been reduced to THVFs or TKVFs. While in other four cases,

proper CKVFs were obtained [42]. In 2018, Shabbir et al. categorized static SS space-times

considering f (R) gravity theory based on their CVFs. Direct integration technique was em-

ployed and revealed that within the paradigm of f (R) gravity, static SS space-times exhibit that

CVFs are just KVFs or HVFs. Among the six scenarios deliberated, it was found that only one

led to the transformation of CVFs into HVFs and in remaining cases, CVFs transformed into

KVFs [43]. In 2021, a paper was published in which Bokhari et al. examined HVFs of Bianchi

type I space-times by taking help of Rif tree method. Rather than opting for direct integration,

homothetic symmetry equations were transformed into reduced involutive form by means of a

computer algorithm. It divided the integration problem into multiple cases, each of which was

presented as a tree with constraints on the metric functions. The metrics explicit expressions

and their corresponding Homothetic Vector Fields were determined by solving a set of homo-

thetic symmetry equations subject to these constraints. New physically realistic metrics were

obtained, differing from those found using direct integration [44]. In another study attempt had

been made by Khan et al. with the hope of identifying all the static, cylindrically symmetric

space-time metrics that exhibit homothetic symmetries. Bearing that in mind, authors utilized a

Maple-developed algorithm to analyze the homothetic symmetry equations which results in all

possible static, cylindrically symmetric metrics that could exhibit proper homothetic symmetry.
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In each case, solutions were derived for the homothetic symmetry equations, resulting in the

ultimate expression of homothetic symmetry vector fields. Then the derived results underwent

a comparison process with those derived directly through integration techniques. Moreover, it

has come to attention that the Rif tree method they applied yields not only replicates the metrics

derived from direct integration techniques, but the method also uncovers new metrics [45]. In

another article of 2022, Hussain et al. discusses the classification of Lie symmetries for SS

symmetric space-times using Rif tree methodology. An analysis of Lie symmetry equations

is conducted using Maple algorithm, with the goal of uncovering possible static spherically

symmetric admitting Lie symmetries. Lie symmetries were presented for all of the obtained

metrics, which were given by Killing, Homothetic, and Conformal Vector Fields respectively.

Through this approach, it has been determined that all previously acquired metrics from direct

integration techniques are reproduced as well as several new physically realistic metrics have

been attained [46]. In another article, Hussain et al. examines how Conformal Vector Fields

(CVFs) were utilized to categorize static SS perfect fluid space-times within f(T) gravity. Their

initial focus lied in examining static spherically symmetric solutions achieved by tackling the

EFEs within f(T) gravity’s context. Afterward, a direct integration approach was adopted to cat-

egorize the solutions. In the procedure of categorization, 20 cases were observed. They study

those cases individually and found that in three scenarios, when space-times is analyzed within

f(T) gravity, it permits proper CVFs. Meanwhile, in the other sixteen instances, the space-times

either conform to flatness or exhibit the presence of Killing Vector Fields, the space-time in

remaining one case admits proper Homothetic Vector Fields [47].
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Chapter 2

Basic Concepts and Definitions

2.1 Inertial Frame of Reference

This term particularly refers to reference frame where an object continues in a state of rest

or follows a straight path at a steady speed unless influenced by an external force. If an object is

in inertial frame then it is necessary for an object to follow the principles of Newton’s first law.

It is a non-accelerating frame of reference which means if we ever observe some acceleration

on an object in this frame, it will be due to the forces acting on an object, not due to the frame

itself. Furthermore, if one frame is inertial then any reference frame moving at a uniform

velocity relative to it is also inertial. Thus, we cannot deny the fact that inertial frames are

relative to each other.

A person standing still on an escalator that is moving at a steady speed and a ball placed on

a flat table inside a room without external disturbances can be used to demonstrate this frame

of reference.
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2.2 Non-Inertial Frame of Reference

It refers to the reference frame which is either accelerating or rotating. In this frame, objects

are influenced by fictitious or pseudo-forces (the forces experienced by observers in non-inertial

frames that do not exist in inertial frames) due to the acceleration of the frame itself. In order

to describe the motion of objects correctly in non-inertial frames, Newton laws of motion must

be modified to include these pseudo-forces. The frame undergoes a change in velocity which

implies that the non-inertial frames are accelerating, either linearly or rotationally.

A feeling of a person being pushed back into their seat as the car suddenly accelerates for-

ward (this feeling is actually due to the ‘pseudo-force’ that seems to push them in the opposite

direction of the car’s acceleration) can be used to demonstrate this frame of reference.

2.3 Terrestrial Gravity

Terrestrial gravity refers to the Earth’s gravitational force acting on objects. It is the gravi-

tational force that is responsible for drawing objects towards the center of the Earth. Terrestrial

gravity determines the weight of the objects and cause them to fall when dropped. It is undeni-

able that this gravity varies with an altitude and latitude.

The phenomena of free falling of objects, swinging motion of pendulum, projectile motions

and weight measurement are few of the many effects of a terrestrial gravity.
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2.4 Calestial Gravity

Celestial gravity refers to the gravitational forces exerted by celestial bodies such as planets,

stars, moon and other astronomical objects. These gravitational forces dictate the movements

and interactions of bodies in space, i.e., from the orbits of planets around stars to the behavior

of galaxies. We experience calestial gravity by noticing the moon’s gravitational attraction to-

ward the Earth, as it causes the sea levels to rise and fall in a periodic pattern known as ‘Tides.’

By considering the space-time we notice calestial gravity by observing that the Sun’s grav-

itational pull causes the Earth to orbit it. The nearly circular orbit results from the balance

between the earth’s forward motion and the pull of the sun’s gravity. Apart from planetry or-

bits, black holes also exert an extremely strong gravitational force due to their massive mass

concentrated in a small volume. They have a very strong gravity which warps the space-time

and create a region from which not even light can escape.

2.5 Speed of Light

The speed at which electromagnetic waves, such as, visible light, move through a vacuum

is referred to as the ‘speed of light.’ It serves as a core principle of nature, represented by

(c) and its value is around 299,792,458 ms−1 [48]. For the sake of simplicity and ease in

calculations and scientific investigations it is a common practice to round this value to 3∗108

ms−1. According to Einstein’s relativity theory, c is a crucial element which represents the

ultimate speed limit for the transmission of information and the movement of objects with

some mass and does not change for any observer, no matter how they move in relation to the

light source.
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2.6 Newtonian Gravity

In 1686, Sir Isaac Newton proposed his classical theory of gravitation (Newtonian Gravity)

in his work Philosophiæ Naturalis Principia Mathematica [49]. It is one of the first compre-

hensive theory which is able to explain how objects with certain masses attract each other.

According to Newton, all mass-containing bodies exert attractive forces on each other due to

gravity. He explained his concepts by giving his ‘Law of Universal Gravitational Attraction’

which is discussed in section (1.1.2). Newtonian Gravity had certain limitations in it like; it

failed to explain the precession of Mercury’s orbit and was inadequate in describing strong

gravitational fields, like those around black holes.

2.7 Special Theory of Relativity

In 1905, Albert Einstein put forward this Theory of Special Relativity. At the heart of this

fundamental theory are two crucial postulates. The first one is the Principle of Relativity ac-

cording to which all non-accelerating reference frames observe the same physics laws. The

second postulate asserts that the speed of light remains constant for every observer within an

inertial reference frame. These two postulates lead to several non-intuitive but experimentally

verified consequences like time dilation, length contraction and mass-energy equivalence rela-

tion.

2.7.1 Time Dilation:

This phenomenon occurs when time passes more slowly for an object traveling at a consid-

erable fraction of the speed of light, as observed by a stationary observer. This phenomenon
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intensifies as the object’s velocity gets closer to the speed of light. This is not just a theoretical

concept as it has real-world applications too. As an example, the high speeds of GPS satellites

orbiting the Earth cause them to experience time dilation.

2.7.2 Length Contraction:

This refers to the phenomenon where a fast moving object, will appear shortened in the

direction of motion from the perspective of a stationary observer. This phenomenon only occurs

along the axis of the object’s motion and shows significant effects as objects reach the speed of

light.

2.7.3 Mass-Energy Equivalence Relation:

This relation is one of the most famous results of relativity theory. It is expressed by a

mathematical equation:

E = mc2. (2.1)

The equation (2.1) reveals the essential correlation between mass and energy by showing

that they are interchangeable and any object with mass (m) has an equivalent amount of energy

(E) , where ‘c’ refers to light’s speed in a vaccum discussed in section (2.5). Furthermore, a

small fraction of mass can be changed into an enormous quantity of energy because of the c2

factor, which is a very large number (i.e. c = 3∗108ms−1).
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2.8 Equivalence Principle

This principle was proposed by Albert Einstein in 1907, which marked the beginning of

his development of General Relativity. According to this principle, observations taken by an

observer in an inertial frame having gravitational field and observations taken by an observer in

an accelerated reference frame in the absence of gravity are equivalent. This principle can be

separated into two distinct parts, commonly called the ‘Weak Equivalence Principle’ and the

‘Strong Equivalence Principle.’

2.8.1 Weak Equivalence Principle

This demonstrates that:

"A test particle’s motion in the field of gravity does not rely on its mass or what it is made

of."

The term ‘test particle’ refers to the particle that moves through a gravitational field but

does not modify or contribute to the field in any way. Hence, if the only acting force on a free-

falling object is a force of gravity, then both the composition and body’s mass will not have any

kind of effect on the motion of a body.

In the 17th century, Galileo Galilei conducted an experiment in which he dropped two

distinct things with different compositions and masses at the same time from the roof of Pisa’s

Tower. According to his weak principle of equivalence, both things must get to the ground at the

same time, despite the fact that they have different masses. He saw that a body’s composition

and mass have no effect on its motion when it is subjected to the force of gravity (assuming

that no other external forces are present outside gravity). Because of this experiment, this idea
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is also called as "Galilean Equivalence Principle" [50].

2.8.2 Strong Equivalence Principle

This states that:

"A particle’s movement in a gravitational field is equivalent to the behavior of a particle at

rest in an accelerating system."

We can also take it as, an observer in a gravitational field will experience the same physical

effects as an observer accelerating at the same rate in a gravity-free scenario. We can demon-

strate this principle with the help of an experiment known as the ‘elevator experiment,’ in which

an observer is placed in an elevator which is either stationary on the earth’s surface or accel-

erating through empty space. For the observer, the physical effects being inside a stationary

elevator are the same as those felt in an elevator accelerating at the same rate [50].

2.9 General Theory of Relativity

In 1915, Albert Einstein generalized his Special Theory of Relativity to include the effects

of acceleration and introduced a generalized version of the theory which we called as ‘General

Relativity (GR) theory.’ This GR theory was completely dependent on gravity and in this

theory, gravity was not seen as just a force but it was a result of the distortion of space-time.

Question arises here is that what is curvature? According to GR, Anything that influences the

energy-momentum tensor and produces a gravitational field is defined as ‘matter.’ Einstein in

his theory posits that space-time bends under the influence of enormous objects (matter) which

we called ‘curvature.’ Hence, this curvature is owing to the existence of energy and mass. It

was described that massive objects (like stars and planets) causes the space-time to curve, and

22



this curvature impacts how objects move and how time flows. Different objects which moves

in this curved space-time follow the paths called ‘geodesics.’ The curvature also explains why

planets orbit stars, what causes light to bend in the presence of massive objects (gravitational

lensing) and why time flows differently in intense gravitational fields (time dilation).

2.9.1 Gravitational Lensing

Einstein’s GR theory predicted the phenomenon of Gravitational Lensing, where light from

a distant source, such as a star or galaxy, bent as it travels near a massive object. The actual

reason behind this bending of light is that the gravity of an object with a dense mass bends the

space-time around it, and light follows the curved paths of space-time. This phenomenon of

Gravitational Lensing can be illustrated in Figure 2:

Figure 2: An observed bending of light due to the effect of gravitational lensing.
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2.10 Space-time

In the era before Relativity Theory, time was regarded as a universal quantity, which is

progressing at a steady rate in every frame of reference and is not influenced by the motion of an

observer. Hence, time remains uniform regardless of whether an object is moving or stationary.

In a pre-relativity framework, three numbers (spatial coordinates) are used to specify the point’s

location. For instance, in cartesian coordinate system, these are ‘x,y,z’, while in the polar

coordinate system, these are ‘r,θ ,φ .’ The formulation of General Relativity (GR) relied heavily

on Hermann Minkowski’s mathematical formulation. With time added as a fourth dimension,

Minkowski was able to merge the three spatial dimensions into a 4-dimensional manifold to

represent space-time. A manifold is a topological space where the area around each point

is approximately flat and this region can be represented by Euclidean geometry. This means

that a neighbourhood of surrounding points that is essentially flat and this neighbourhood exists

around every point. This concept is illustrated clearly when we observe Earth. Despite knowing

that Earth is spherical, it looks flat from the perspective of the average human eye. We define

events in the space-time as points on the manifold. As we are working in a space-time which is

four-dimensional, each of these points will need four coordinates so that it can be represented in

a unique way. In spherical coordinates, we refer these points in coordinate form as (t,r,θ ,φ),

the standard notation is (x0,x1,x2,x3), where x0 corresponds to the time coordinate. On the

other hand, we can be able to use either one of them whenever necessary.

Mathematically, a space-time (M,g) is defined as a four-dimensional, smooth, Hausdorff

manifold M together with a Lorentz metric g, of signature (+,−,−,−) or (−,+,+,+) [51].

Space-time M is composed of elemnets known as events while the Lorentz metric g determines
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the geometry of M. In GR, the presence of energy leads to the curvature of space-time, as

defined by the Riemann curvature tensor. This tensor vanishes in Special Relativity, making

space-time flat and defining it as ‘Minkowski Space.’ The metric tensor within Minkowski

space is referred to as the Minkowski metric, usually denoted by η .

2.11 Curvature and some other important Tensors

The term curvature represents the extent to which a geometric object deviates from a flat

shape. Here, the word ‘flat’ does not always means that it’s a straight line. It can have different

meanings based on different situations. Likewise, in the case of curves, the term flat represent a

straight line, while for surfaces, it may correspond to the Euclidean plane. Curvature is defined

in two distinct forms which are extrinsic curvature and intrinsic curvature. The concept of

extrinsic curvature is restricted to objects situated in higher-dimensional spaces. On the other

hand, intrinsic curvature can be defined for any manifold, regardless of whether it is situated

within a higher-dimensional space. The curvature of a manifold can be described by a tensor.

Below some of the tensors like Metric Tensor, Riemann Curvature Tensor and Ricci Tensor are

defined:

2.11.1 Metric Tensor

If we want to determine angles on curves and distances between points in space-times, it

is necessary to define the term metric tensor. This tensor, which is labeled as gpq is a rank-2

symmetric tensor that is defined on a smooth manifold. To effectively describe space-time, the

metric must have a Lorentzian signature. Based on the convention, this could mean that the

signature is either (+,−,−,−) or (−,+,+,+). This implies that the metric should have the
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property of non-degeneracy.

The metric tensor is commonly denoted by ds2 and in relation to its components gpq and

coordinates, one can define the local line element on the space-time as follows:

ds2 = gpqdxpdxq, (2.2)

where p and q are the Einstein summations and can take the values 0,1,2 and 3. The metric

tensor on an n-dimensional manifold with the signature of (1,n − 1) or (n − 1,1) is called

Lorentzian. Additionally, the metric of space-time is inherently Lorentzian [52].

2.11.2 Riemann Curvature Tensor

On a Riemannian manifold, the Riemann curvature tensor (RCT) defines a tensor at each

point to describe the curvature of the manifold. Or we can say that it is used to describe

the extent to which the manifold is curved. The Levi-Civita connection is used to derive this

connection. This is defined using Christoffel symbols as [53]:

Rb
acd = Γ̄

b
ad,c − Γ̄

b
cd,a + Γ̄

ν
ad Γ̄

b
cν − Γ̄

ν
cd Γ̄

b
aν , (2.3)

where comma "," represents the operator for ordinary or partial derivatives. The Riemann

tensor specifically quantifies how much a vector deviates from its original position in tangent

space when it is moved from one point to another around a closed loop in the manifold. Re-

member that in last two indices the Riemann tensor is antisymmetric, with

Rb
acd =−Rb

adc. (2.4)
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2.11.3 Ricci Tensor

Ricci tensor is the component of space-time curvature that indicates how matter tends to

focus or converge over time. This tensor, which is expressed as Rab, is a Rank-2 symmetric

tensor, i.e. Rab=Rba. In the absence of a metric, the first and third indices of Riemann curvature

tensor given in equation (2.3) are contracted:

Rad = Rb
abd. (2.5)

Thus, we can say that no metric was necessary in order to execute this contraction. If we make

an assumption that metric is defined on manifold and then contract it with the Ricci tensor, we

derive the Ricci scalar, expressed as:

gabRab = R. (2.6)

2.11.4 Energy-Momentum Tensor

This EMT (often denoted as the Stress-Energy Tensor) is a mathematical key object in GR.

This tensor is of second order and exhibits symmetry, typically denoted as Upq, which describes

the stress, density, and flux of energy and momentum in space-time. This describes how energy

and momentum are distributed and flow throughout the space-time, helping to comprehend how

energy and matter affect the space-time’s curvature. Energy-Momentum Tensor also satisfies

law of conservation, which implies that energy and momentum are conserved. Just like matter,

EFEs use this tensor as a source to associate the geometry of space-time (curvature) to the

matter it contains. The terms p and q in the Upq are the indices of space-time that may take on

values 0, 1, 2 and 3 only.
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2.11.5 Torsion Tensor

This tensor is mostly used in theories like Teleparallel Gravity. It can help us to measure

how much a space-time is ‘twisted’ or how much the parallel transport of vectors fails to be

symmetric, which implies that this tensor captures how much the symmetry is broken. It is

represented by the symbol T α

νλ
, and can be expressed as [54]:

T α

νλ
= Γ

α
λν −Γ

α
νλ = ei

α(∂νei
λ −∂λ ei

ν), (2.7)

which is comprised of 24 independent components. The Γα
λν in equation (2.7) is the symbol

used to represent the Weitzenböck Connection. Furthermore, the last two indices of the torsion

tensor are antisymmetric.

2.12 Manifold

Manifold is a fundamental concept which is used to generalize and extend the idea of sur-

faces and spaces. Through manifolds, we gain insights into the dynamics of matter, energy,

and gravitational interactions. In GR, space-time is modeled as a four-dimensional manifold.

This means that at every point in space-time, we can locally describe the space-time using the

familiar coordinates of Euclidean space, but globally, the structure is be more complex and

curved. The term "curve" refers to a one-dimensional manifold, even though it need not to be

curved in the traditional sense. Key instances of one-dimensional manifolds include the real

line, circle, and parabola. Surfaces are manifolds of dimension two. These manifolds include

the plane, sphere, cylinder, paraboloid, and ellipsoid. Similarly, a 3-dimensional manifold’s ex-

ample is the set of points, called the unit 3-sphere, defined by (x1,x2,x3,x4)∈R4 and satisfying

the expression x1
2 + x2

2 + x3
2 + x4

2 = 1. And, if we define M as a four-dimensional compact,
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smooth and connected Hausdorff manifold and g as a symmetric (0,2)-type tensor with non-

degeneracy, called the Lorentzian metric on M then an ordered pair of the form (M,g) is labeled

as space-time.

2.13 Einstein Field Equations for General Relativity

Issac Newton in his Newton’s model of the universe believed that space is always equiv-

alent to itself, and inside it, particles move and interact with one another. Furthermore, the

effects of gravity may spread at an infinitely high rate of speed. On the other hand, Einstein

thought that the existing idea of space did not seem realistic, thus he formulated the remarkable

concept that space is a gravitational field [55]. To address this issue, a more precise version of

the field equations was needed. After going through a process of trial and error, he arrived at

the conclusion that the Riemann geometry could clearly explain the curvature of space that was

a cause of diverse distribution of matter.

According to Riemann’s geometry, the Riemann curvature tensor Rαβγν quantifies the de-

gree at which two vectors move in parallel. The reason that this tensor is named as ‘curvature’

is because it disappears if the space is flat [56]. The year 1915 marks the year when Einstein

developed the field equations given by [57]:

Rpq −
1
2

Rgpq = κ
2Upq. (2.8)

The equations shown above are collectively called as "Einstein Field Equations" or EFEs. On

the LHS of equation (2.8), R represents the Ricci scalar, Rpq denotes Ricci tensor and the grav-

itational field is shown by the metric tensor gpq whereas Upq is the energy-momentum tensor

which is responsible for identifying the form of energy and momentum that is existing at every
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single point in space-time. In order to meet the conditions of the Newtonian limit, the value of

coupling constant κ2 should be equal to 8πG.

Ten non-linear partial differential equations make up the system of EFEs. Due to their com-

plex non-linear form, determining exact solutions for these equations is exceptionally challeng-

ing. In the vacuum case, i.e. when Upq = 0, equation (2.8) becomes Rpq = 0, which may be

very difficult to solve. Thus, the equations, in their most basic form, are challenging to solve,

but they may be managed if certain space-time symmetries are assumed to exist. Or if we as-

sume specific geometric constraints on the metric and Ricci or energy-momentum tensors, The

field equations can be reduced to provide exact solutions. Within the literature, various exact

solutions to EFEs have been investigated by presuming the existence of specific symmetries

[58, 59].

2.14 Cosmological Constant

The equations of Einstein showed that the gravity would cause the universe to collapse un-

der its own weight. So, he offered the first modification of his EFEs in 1917. And in order to

achieve his goal of a ‘static universe,’ he suggested that one extra term must be added to equa-

tion (2.8). He believed that the universe is static in size, so an additional element is required in

his EFE in order to prevent the gravitational collapse. This additional element is now known

as ’Cosmological Constant.’ The variation of cosmological constant with EFEs is given [60] as:

Rpq −
1
2

Rgpq +Λgpq = κ
2Upq (2.9)

where Λ is a cosmological constant. Not long after Einstein proposed the cosmological con-

stant, astronomical measurements confirmed that the universe is expanding (not static) [61].
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Later on, he considered introducing this factor into his equation as the greatest mistake of his

professional life.

2.15 Geodesics

In General Relativity, we have another concept of Geodesics which is of notable interest.

Geodesics are known to be the paths which is followed by the free-falling objects through

space-time. These paths are determined by space-times curvature, which in turn is influenced

by the distribution of mass and energy. It can also be explained as the shortest path connecting

two points in a warped space or space-time. To illustrate, a geodesic is essentially a straight

line in flat and two-dimensional Euclidean geometry. If we imagine a flat piece of paper, then

shortest distance between the two points on that paper will be a straight line. And in curved

spaces (i.e. Riemannian Geometry), geodesics are more complex. If we imagine a surface of a

sphere (like the Earth), the geodesics will be the great circles and the shortest path connecting

two points on a sphere lies along the arc of a great circle.

2.16 Black Holes

Through the concept of space-time curvature and EFEs, GR postulates the presence of

black holes in the universe. As stated earlier in the section (2.9), that massive objects causes

the space-time to curve. So imagine, when a massive object (i.e. star) die and collapses under

its own gravity, it can become so dense that it creates a black hole. Black hole is basically a

region where space-time is curved so steeply that not even light can escape from it. The EFEs

predicted that due to an excessive concentration of mass in a small enough space, the space-
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time’s curvature becomes infinite at a point known as ‘singularity.’ This point of singularity

lies at the center of the black hole. The area surrounding the singularity is referred to as the

‘event horizon’ where the gravitational pull is so strong that escape is impossible and anything

which crosses this boundary is permanently lost.

2.17 Reasons to Modify GR (or TEGR)

Considering that TEGR (or GR) successfully explains an enormous variety of experimen-

tally known phenomena, then why would we find the need to modify it? Some of the review

articles [1, 62–64] provide more explanations of modified gravity. Let’s talk about some of

the cosmological concerns. GR requires a cosmological constant Λ that behaves as a fluid

under negative pressure pΛ = −pΛ in order to understand the present accelerating nature of

universe. This scenario can only be generated by GR, by incorporating additional scalar fields,

without resorting to a cosmological constant. A significant mismatch exists between the value

of cosmological constant calculated from observations and value predicted when considering

both quantum and classical components of vacuum energy. This issue is often referred to as

‘cosmological constant problem,’ which few scientists believe can’t be solved without making

modifications to GR, introducing new scalar fields, or revising the Standard Model [61].

The presence of cosmic singularities poses yet another challenge in the field of cosmology.

Cosmic singularities such as those at the centers of black holes and the Big Bang, where space

time curvature becomes infinite, and the laws of physics as we know them break down. Avoid-

ing these singularities in GR is an impossible thing but according to certain modified theories,

bounce solutions can be constructed to avoid certain singularities that are linked to the begin-

ning of universe [1].
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During the early stages of the universe’s expansion, it went through a phase of rapid acceler-

ation. As inflation [65] is followed by a radiation period and the cosmological constant cannot

stop the inflation (acceleration), it is impossible to utilize one to characterise this epoch. Using

a scalar field called the inflaton, GR can explain this accelerated epoch. GR does not explain

the underlying cause of inflation and neither the cause of the inflation nor its characteristics are

explained by GR. Modified gravity has the potential to thoroughly describe the inflationary era

[66, 67].

At present, the order of magnitude of total matter energy density (dark matter+baryonic) is

same as the dark energy density. But why they are identical now is not yet understood. Is there

a physical explanation that could justify why such quantities should possess the same magni-

tude? This issue has been referred to as the "coincidence problem" [68, 69]. Until now, there

is not a theoretical explanation for this. Even according to some physicists it is not really an

issue and is only a coincidence. This issue might be resolved by making certain modifications

to GR.

2.18 Teleparallel Theory of Gravity or TEGR

Teleparallel Equivalent of General Relativity or TEGR framework provides an alternative

perspective Einstein’s GR theory. In TEGR, the term ‘torsion’ is used instead of using the term

‘curvature’ to describe the gravity. Torsion basically measures how much space-time "twists"

rather than how it "bends" like in GR . A detailed analysis comparing torsion and curvature has

been presented in [70] .The TEGR presents an alternative formulation that is based on space

that is universally flat in which torsion replaces curvature as the defining feature of gravity.

TEGR is dynamically equivalent to GR which implies that the equations of motion and physi-
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cal predictions in TEGR are the same as those in GR. From the motion of planets to the bending

of light to the expansion of the universe, both theories describe the same gravitational phenom-

ena. Although these two theories yield the same results but their underlying mathematical

framework and interpretation of gravity are different. In the framework of GR, the curvature

of space-time is described by RCT and in TEGR theory, the connection named Weitzenböck is

used which has zero curvature but non-zero torsion. TEGR provides a foundation for extending

and modifying General Relativity, such as in the domain of f (T ) gravity, the torsion scalar T is

modified to function f (T ). These modifications aim to address unresolved issues in cosmology

and gravity, such as dark energy and quantum gravity.

2.19 f(T) Gravity

Another variation of GR is the theory of f (T ) gravity, which serves as an extension to

TEGR. This finest modified theory was introduced by Bengochea [71] in which T represents

the torsion scalar. It is believed by some scientists that quantam theory of gravity may contain

f (T ) gravity as its theoretical foundation. The purpose of f (T ) gravity is that it may be able

to explain wide range of phenomenon such as the presence of dark matter and energy and

universe’s rapid acceleration. Apart from studying accelerated expansion, f (T ) gravity further

aids in reconstructing various cosmological models, addressing perturbations in both vacuum

and matter [72]. Following this, Linder and Myrzakulov [73, 74] recommended several f (T )

gravity models to study various physical phenomena. Capozziello et al. also explained the

influence of f (T ) gravity to the development of cosmography by shedding light on the large-

scale behavior of the universe [75]. Moreover, f (T ) gravity, under reasonable constraints,

agrees with GR and is consistent with studies involving the solar system and binary pulsars
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[76].

The EFEs of f (T ) gravity are given as [47]:

Sνβ

µ ∂νT FT +
[
e−1

∂ν(eSνβ

µ )− eλ
µT α

νλ
Sνβ

α

]
F +

1
4

eβ

µ f = kei
µT β

i , (2.10)

where Sνβ

µ is the spin tensor, f = f (T ), F(T ) =
d f (T )

dT
, e denotes the determinant of tetrad field

eλ
µ , T α

νλ
has been used for the torsion tensor, k = 4πG, where G is the gravitational constant

and T β

i indicates the Energy-Momentum Tensor.

2.20 Fundamentals of Teleparallel Theory of Gravity

2.20.1 Tetrad Field

In the context of TEGR, the tetrad is the main object of dynamical interest. Tetrad is said

to be the most dynamic and basic gravitational field which is also called vierbein meaning

‘four legs.’ Tetrad field replaces the metric as the main object describing space-time geometry.

At each point p on the manifold M, the tetrad field is represented by a set of four linearly

independent vectors. These vectors form a basis for the tangent space denoted by TpM. The

tetrad field at each point in space-time signifies a local inertial frame where the space-time

looks flat. By space-time appears ‘flat’ means that the space-time will be Minkowski space-

time and the laws of physics will resemble those in special relativity.

The tetrad field consists of four vectors eµ
p where p represents the local frame indices and

µ are the space-time indices (i.e. µ = 0,1,2,3). Mathematically, the representation of tetrad is,

(e0
p,e

1
p,e

2
p,e

3
p). The first component of the vector is a timelike vector and the remaining three

components are spacelike vectors. The field eµ
p can also connects the space-time metric gµν to
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the metric on tangent-space η = ηpqdxadxb by the relation [77]:

ηpq = gµν ep
µ eq

ν , (2.11)

where ηpq = diag(−1,1,1,1) signifies the Minkowski metric. The orthonormality constraint

makes it possible to get the metric from the tetrad. The metric can be derived from the tetrad in

the manner as follows:

gµν = ηpq ep
µ eq

ν or gµν = η
pq ep

µ eq
ν . (2.12)

Additionally, e = det(ep
µ) =

√
−g relates tetrad determinant to the metric determinant.

2.20.2 Weitzenböck Connection

General Relativity operates within Riemannian space, where the RCT is determined through

the Levi-Civita connection, while the metric is set by the EFEs. The gravitational field in

Teleparallel Theory (TT) is defined by the torsion tensor and in order to define this tensor, TT

employs the Weitzenböck connection which is an alternate link to the Levi-Civita connection.

This Weitzenböck connection illustrates that how vectors change as they are parallel transported

over a curved space-time. The curvature of space-time can affect both the direction and length

of vectors being transported in parallel. However, one of the crucial feature of the Weitzenböck

connection is that the length of vectors parallel transported across it is preserved. Torsion can be

defined as the degree to which the transport of vectors along a curve deviates from the vector’s

direction, therefore, a torsion-free connection means ‘the parallel transport of vectors maintains

the vector’s direction.’ Thus, Weitzenböck connection is characterized by the condition that the

parallel transport of vectors preserves the vector norm and that the connection is torsion-free,

i.e. the length and direction of the vector are retained.
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2.21 Teleparallel Lie Derivative

In geometry, Lie derivative helps compare a geometric object’s value at one point on a

curve to its value as it moved to another point along the same curve. So basically, it determines

how the tensor field changes from one point on the manifold M to another. Lie derivative is

useful when it comes to identifying and studying the symmetries in space-time. Teleparallel

Lie derivative (TLD) was introduced by [78]. And the TLD ‘L’ of a second-rank covariant

tensor along a vector field Y can be written as:

LT
Y Mpq ≡ Mpq,c Y c +Mcq Y c

,p +Mpc Y c
,q +Y c(MσqT σ

pc +Mpσ T σ
qc). (2.13)

Where, the Lie derivative of the metric tensor gpq along a vector field Y is expressed as:

LT
Y gpq ≡ gpq,c Y c +gcq Y c

,p +gpc Y c
,q +Y c(gσqT σ

pc +gpσ T σ
qc) = 2ψgpq. (2.14)

2.22 Space-time Symmetries

The GR theory, as described in section (2.13), is derived by EFEs that are markedly non-

linear. Given their significant non-linearity, determining their exact solutions is a tough chal-

lenge. Hence, the incorporation of space-time symmetries is essential for various reasons. One

major advantage of employing symmetries is their ability to transform PDEs into ODEs through

specific constraints which are therefore easier to manage. Secondly, symmetries often help in

categorizing and classifying the exact solutions to EFEs. Although there are various space-time

symmetries, but we will restrict our attention to three essential ones, specifically; Killing, Ho-

mothetic and Conformal symmetries.

A vector field X is called a TKVF if the Lie derivative of the metric tensor gpq with respect
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to Y vanishes and equation (2.14) becomes:

LT
Y gpq ≡ gpq,c Y c +gcq Y c

,p +gpc Y c
,q +Y c(gσqT σ

pc +gpσ T σ
qc) = 0, (2.15)

The equation (2.15) implies that the metric is invariant under the flow generated by Y or

that the space-time has a symmetry associated with Y .

Similarly, a vector field Y will be THVF when if it satisfies:

LT
Y gpq ≡ gpq,c Y c+gcq Y c

,p+gpc Y c
,q +Y c(gσqT σ

pc+gpσ T σ
qc) = 2ψgpq, ψ = constant (2.16)

In other words, a Teleparallel vector field Y is called proper THVF when ψ ̸= 0. The

equation (2.16) implies that the metric tensor gpq is scaled by a constant factor under the flow

of Y , rather than being fully invariant.

And the vector field Y will be TCFV when:

LT
Y gpq ≡ gpq,c Y c +gcq Y c

,p +gpc Y c
,q +Y c(gσqT σ

pc +gpσ T σ
qc) = 2ψgpq, (2.17)

where ψ(y) is a scalar function depending on the coordinates.

2.23 Energy Conditions

Energy conditions play a crucial rule in order to address the momentous cosmological is-

sues. They assist in determining whether the matter within stellar compact objects is normal or

exotic in nature. These energy conditions are basically the number of conditions which must

be satisfied for energy-momentum tensor Upq to properly reflect any known matter fields. The

fulfillment of these requirements ensures that the Upq accurately reflects genuine sources of

energy and momentum, and the tensor becomes less arbitrary.

Mathematically, energy conditions serve as boundary constraints that ensure the energy
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density remains positive. Despite this, the model is not bound by the physical restrictions im-

posed by the energy conditions. Nevertheless, these conditions offer important insights into

the energy-matter content in real-world models. The energy conditions namely weak energy

conditions (WECs), strong energy conditions (SECs), dominant energy conditions (DECs) and

null energy conditions (NECs) are defined as:

1. Weak Energy Condition (WEC): 0 ≤ p+ρ and ρ ≥ 0

2. Strong Energy Condition (SEC): 0 ≤ p+ρ and ρ +3p ≥ 0

3. Dominant Energy Condition (DEC): ρ ≥ 0 and ρ ≥ |p|.

4. Null Energy Condition (NEC): 0 ≤ p+ρ .

39



Chapter 3

Classification of Static Spherically

Symmetric Perfect Fluid Space-Times via

Conformal Vector Fields in f(T) gravity

3.1 Introduction

In this chapter, the paper of Fiaz Hussain et al. [47] in which static SS perfect fluid space-

times have been classified via conformal vector fields (CVFs) in f (T ) gravity have been re-

viewed. The study of static SS space-times plays a pivotal role in the field of GR and its

modifications, particularly when considering physical systems such as stars, black holes, and

cosmological models. In the case of f (T ) gravity, CVFs help in the classification of static SS

perfect fluid space-times by determining the conditions under which such space-times possess

enhanced symmetry. In this chapter, firstly static SS solutions are explored by solving the Ein-

stein Field Equations in f (T ) gravity. Consequently, the resulting solutions are classified in
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which 20 cases arise. Each case is thoroughly analyzed to check the existence of CVFs. The

outcomes of this investigation are presented through tables.

3.2 Mathematical Formulation

Consider a static SS space-times in the usual coordinates (t,r,θ ,φ) labeled (η0,η1,η2,η3)

respectively with the line element [58]

ds2 =−eu(r)dt2 + ev(r)dr2 +P2(r)
[
dθ

2 + sin2
θdφ

2] , (3.1)

where u = u(r), v = v(r)and P = P(r) are unknown functions of r (radial coordinate) and are

non-zero everywhere. The minimum number KVFs admitted by the above space-times (3.1)

are [79]

η1 = ∂t , η2 = sinφ∂θ + cosφ cotθ∂φ , η3 = cosφ ∂θ − sinφ cotθ ∂φ , η4 = ∂φ . (3.2)

Assuming a diagonal tetrad, the torsion scalar T for the above space-times (3.1) are:

T =
2e−vP′

P

(
u′+

P′

P

)
, (3.3)

where u′ and P′ represents derivative of the functions (i.e. d
dr ). To examine the CVFs of static

SS space-times, EFEs of f (T ) gravity have been used which are [71]:

Sνβ

µ ∂νT FT +
[
e−1

∂ν(eSνβ

µ )− eλ
µT α

νλ
Sνβ

α

]
F +

1
4

eβ

µ f = kei
µT β

i , (3.4)

where Sνβ

µ is the spin tensor, f = f (T ), F(T ) =
d f (T )

dT
, e represents the determinant of tetrad

field eλ
µ , T α

νλ
has been used for the torsion tensor, k = 4πG, where G is the gravitational constant

and T β

i is the Energy-Momentum Tensor. By assuming that matter content is perfect fluid as
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defined by the EMT, a set of equations is obtained by making use of a diagonal tetrad that is

formed by putting equation (3.1) into equation (3.4)

f
4
−
[

e−v

P

(
u′P′− v′P′+

2P′2

P
+2P′′

)
− 1

P2

]
· F

2
− e−v P′T ′

P
fT T = 4πρ, (3.5)

[
e−v

P

(
2u′P′+

2P′2

P

)
− 1

P2

]
− F

4
= 4πρ, (3.6)

e−v
(

3u′P′

2P
+

u′′

2
+

u′2

4
− u′h′

4
− v′P′

2P
+

P′2

P2 +
P′′

P

)
· F

2
− f

4
+

T ′e−v

2

(
u′

2
+

P′

P

)
fT T = 4πρ,

(3.7)

where the p and ρ in the above equations denotes the pressure and energy density (ED) of the

fluid’s distribution respectively. The equations of motion in f (T ) gravity corresponding to a

diagonal tetrad field in static SS space-times (3.1) involve an additional equation that emerges

from the (r,θ) component [90]

e−
3v
2 cotθ fT T T ′ = 0, (3.8)

where T ′ =
[
−u′P′′

P +(u′+ v′)P′2

P2 +
2P′3

P3 + P′

P

(
u′v′−u′′− 2P′′

P

)]
. Then equations (3.5) to (3.8)

are solved which is comprised of unknowns u,v,P, f ,ρ and p. According to the equation (3.8),

it follows that either fT T is zero or T ′ = 0. The first scenario results in linear f (T ) gravity,

while second suggests that the equations of motion above admit solutions where the torsion

scalar remains constant. Each case is examined individually. When fT T , we have f (T ) =

d1T + d2, where d1,d2 ∈ ℜ. Undoubtedly, linear f (T ) gravity simplifies the EFEs to great

extent. However, due to the presence of non-linearity in the space-time components, system

of equations (3.5) to (3.7) is difficult to solve. Hence, the solution is seek by classification

procedure. Using the fact fT T = 0 which indicates f (T ) = d1T + d2, in equations (3.5) to

(3.7). After substitution, the subtraction of equations (3.6) and (3.7) from equation (3.5) is
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done which provides a set of two equations, from which subtracting one from the other leads to

e−v
[

u′′

2
+

u′2

4
− u′P′

2P
− u′v′

4
− v′P′

2P
− P′2

P2 +
P′′

P

]
+

1
P2 = 0. (3.9)

To find a solution to equation (3.9), specific constraints on the space-time components are

imposed which are given as

i. u = u(r), v = constant and P = P(r).

ii. u = constant, v = v(r) and P = P(r).

iii. u = u(r), v = v(r) and P = constant.

iv. u = u(r) and v(r) = P(r).

v. u(r) = v(r) and P = P(r).

vi. u(r) = P(r) and v = v(r).

vii. u = constant and v(r) = P(r).

viii. u(r) = P(r) and v = constant.

ix. u(r) = v(r) and P = constant.

x. u = u(r) and v = P = constant.

xi. u = P = constant and v = v(r).

xii. u = v = constant and P = P(r).

xiii. u(r) = v(r) = P(r).

xiv. u = v = P = constant.
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By using the above mentioned possibilities, the solutions of equation (3.9) are represented by

the following cases in which torsion scalar is also deduced by employing the obtained solutions

in equation (3.3)

1. u = constant, v = v(r), e−vv′r+ 2e−v − 2 = 0 implies v = ln
(

1
1+k1r2

)
, P = r

and T =
(

2
r2 +2k1

)
, where k1 ∈ ℜ\{0}.

2. u = u(r), v = constant, 2ru′′+ru′2−2u′ = 0 =⇒ u = lnr4, ev = 1, P = r and T = 10r−2.

3. u= u(r), v= v(r), u= v−1, r2 (v′′− v′2
)
+2(1−ev)= 0 implies v= ln

(
1− k1

r + k2r2

3

)−1
,

u = ln
(

1− k1
r + k2r2

3

)
, P = r and T =

(
2
r2 +2k2

)
, where k1,k2 ∈ ℜ\{0}.

4. u = u(r), v = v(r), u = h−1, eu
(

u′′
2 + u′2

2 − 1
r2

)
+ 1

r2 = 0 =⇒ u = ln
(
1− 2M

r

)
, v =

ln
(
1− 2M

r

)−1
, P= r and T =

(
2
r2

)
, where M represents the Arnowitt-Deser-Misner mass.

5. u = u(r), v = v(r), u = v−1, r2 (u′′+u′2
)
− 2(1− e−u) = 0 implies u =

ln
(

1− Λr2

3

)
, v = ln

(
1− Λr2

3

)−1
, P = r and T =

(
2
r2 −2Λ

)
, where Λ is the cosmo-

logical constant.

6. u= u(r), v= v(r), ru′+1= 0 which gives u= ln
(

k1
r

)
, 4ev−rv′+1= 0 implies v=

ln
(

r
k2−4r

)
, P = r and T = 0, where k1,k2 ∈ ℜ\{0}.

7. u = u(r), v = v(r), ru′ − 2 = 0 implies u = ln
(
k1r2) , ev − rv′ − 2 = 0 =⇒ v =

ln
(

2
1+2k2r2

)
, P = r and T = 3(1+2k2r2)

r2 , where k1,k2 ∈ ℜ\{0}.

8. u = u(r), v = v(r),
(

u′′

2
+

u′2

4

)
= 0 =⇒ u =ln

(
k1r+k2

2

)2
, −k1v′e−v+2(k1r+k2) = 0

which implies v = ln
(

k1
k1k3−k1r2−2k2r

)
, P = 1 and T = 0, where k1,k2,k3 ∈ ℜ\{0}.

9. u = u(r), v = v(r), u = v−1, u′′ + u′2 + 2e−u = 0 implies u = ln
(
k2 − k1r− r2) ,

v = ln
(
k2 − k1r− r2)−1

, P = 1 and T = 0, where k1,k2 ∈ ℜ\{0}.
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10. u = constant = k1 ̸= 0, v = constant = k2 ̸= 0, u = ln(k1), v = ln(k2), PP′′ −

P
′2 + k2 = 0 implies P = r

√
k2 and T = 2

k2r2 , where k1,k2 ∈ ℜ \ {0} with k1 ̸= k2.

Now, the second possibility which arises from equation (3.8), i.e. T ′ = 0, gives

[
−u′P′′

P
+
(
u′+ v′

) P′2

P2 +
2P′3

P3 +
P′

P

(
u′v′−u′′− 2P′′

P

)]
= 0. (3.10)

Equation (3.10) yields solutions with a torsion scalar that is constant, as dictated by the

condition T ′ = 0.

For the sake of finding the solutions for equation (3.10), a similar classification procedure

is performed which is done for finding the solutions of equation (3.9). We have identified

the following cases

11. u = u(r), v = v(r), ru′′−u′ = 0 implies u =
(

k1r2

2 + k2

)
, rv′(ru′+1)+2 = 0 =⇒ v

= ln
(

k3
√

k1r2+1
r

)2

, P = r and T = 2
k2

3
, where k1,k2,k3 ∈ ℜ (k1,k3 ̸= 0).

12. u = u(r), v = v(r), 1+ rv′ = 0 implies v = ln
(

k1
r

)
, r2u′′− rv′−2 = 0 =⇒ u =

ln
(

k3ek2r

r

)
, P = r and T = 2k2

k3
, where k1,k2,k3 ∈ ℜ(k1,k3 ̸= 0).

13. u = u(r), v = v(r), 2+ rv′ = 0 implies v = ln
(

k1
r2

)
, ru′′− u′(1+ rv′) = 0 =⇒ u =

ln(k3rk2), P = r and T = 2(k2+1)
k1

, where k1,k2,k3 ∈ ℜ(k1,k2,k3 ̸= 0).

14. u = u(r), v = v(r), 2+ ru′ = 0 implies u = ln
(

k1
r2

)
, ru′′− v′(1+ ru′) = 0 =⇒ v =

ln
(

k2
r2

)
, P = r and T = −2

k2
, where k1,k2 ∈ ℜ (k1,k2 ̸= 0).

15. u = u(r), v = v(r), r2u′′−2 = 0 implies u = ln
(

ek1r+k2

r2

)
, u′+v′(1+ru′) = 0 =⇒ v

= ln
[

k3(k1r−1)
r2

]
, P = r and T = 2

k3
, where k1,k2,k3 ∈ ℜ (k1,k3 ̸= 0).

16. u= constant, v= v(r), rv′+2= 0 =⇒ v= ln
(

k1
r2

)
, eu = 1, P= r, T = 2

k1
, where

k1 ∈ ℜ\{0}.
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17. u= u(r), v= constant= k1 ̸= 0, r2u′′−ru′−2= 0 =⇒ u=
(

k2r2

2 − lnr+ k3

)
, P=

r, T = 2k2
ek1

, where k1,k2,k3 ∈ ℜ\{0}.

18. u = u(r), v = v(r), u′′ = 0 implies u = (k1r+ k2) , ru′(1+ rv′)+ rv′+2 = 0 =⇒ v

= ln
[

k3(k1r+1)
r2

]
, P = r and T = 2

k3
, where k1,k2,k3 ∈ ℜ(k1,k3 ̸= 0).

19. u = constant = k1 ̸= 0, v = v(r), P′′ = 0 =⇒ P = k2r + k3, v′P+ 2P′ = 0 =⇒ v =

ln
(

k4
(k2r+k3)2

)
, T =

2k2
2

k4
, where k1,k2,k3,k4 ∈ ℜ\{0}.

20. u = constant = k1 ̸= 0, v = constant = k2 ̸= 0, P′′ − P′2 = 0 =⇒ P = ek3r+k4, T =

2k2
3

ek2
, where

k1,k2,k3,k4 ∈ ℜ\{0}, withk1 ̸= k2.

The above 20 solutions are further utilize to identify the CVFs which are in accordance with

the following equation

LT
Y gpq ≡ gpq,c Y c +gcq Y c

,p +gpc Y c
,q +Y c(gσqT σ

pc +gpσ T σ
qc) = 2αgpq, (3.11)

where L,gpq,α = α(t,r,θ ,φ) and comma represents the Lie derivative, metric tensor, confor-

mal factor and partial derivative respectively. The CVFs for the cases 1,2 and 3 are determined

in [80]. Accordingly, these three cases are overlooked with the remaining cases which are

solved here. The results of all the calculations are shown in the table below
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Table 1: CVFs of the obtained Static Spherically symmetric metrics.

Case No Metric components CVFs Conformal Factor Description

4. u = ln
(

1− 2M
r

)
, v = ln

(
1− 2M

r

)−1

and P = r. η1, η2, η3 andη4. α = 0. KVFs

5. u = ln
(

1− Λr2

3

)
, v = ln

(
1− Λr2

3

)−1

and P = r. η1, η2, η3 andη4. α = 0. KVFs

6. u = ln
(

k1

r

)
, v = ln

(
r

k2−4r

)
and P = r. η1, η2, η3 andη4. α = 0. KVFs

7. u = ln
(
k1r2) , v = ln

(
2

1+2k2r2

)
and P = r. η1, η2, η3, η4, η

∗∗
5 = rt

√
1+2k2r2 ∂

∂ r
+

2
k1

ln
( √

2k2r
1+

√
1+2k2r2

)
∂

∂ t
and η

∗∗
6 = r

√
1+2k2r2 ∂

∂ r
. α =

√
1+2k2r2 (c1t + c2) , where, c1,c2 ∈ ℜ(c1 ̸= 0). CVFs

8. u = ln
(

k1r+ k2

2

)2

, v = ln
(

k1

k1k3− k1r2−2k2r

)
and P = 1. η1, η2, η3, η4, η5 =− [Ω1 cosψ]

∂

∂ t
− [Ω2 sinψ]

∂

∂ r
and η6 = [Ω1 sinψ]

∂

∂ t
− [Ω2 cosψ]

∂

∂ r
. α = 0. KVFs

9. u = ln
(
k2− k1r− r2) , v = ln

(
k2− k1r− r2)−1

and P = 1. η1, η2, η3, η4, η5 =− [Ω3 cosψ1]
∂

∂ t
− [Ω4 sinψ1]

∂

∂ r
and η6 = [Ω3 sinψ1]

∂

∂ t
− [Ω4 cosψ1]

∂

∂ r
. α = 0. KVFs

10. u = ln(k1) , v = ln(k2)and P = r
√

k2. η1, η2, η3, η4, η
∗
5 = t

∂

∂ t
+ r

∂

∂ r
. α = c1, where c1 ∈ ℜ. HVFs

11. u =

(
k1r2

2
+ k2

)
, v = ln

(
k3
√

k1r2+1
r

)2

and P = r. η1, η2, η3 and η4. α = 0. KVFs

12. u = ln
(

k3ek2r

r

)
, v = ln

(
k1

r

)
and P = r. η1, η2, η3 and η4. α = 0. KVFs

13. u = ln
(

k3rk2
)
, v = ln

(
k1

r2

)
and P = r. η1, η2, η3 and η4. α = 0. KVFs

14. u = constant, v = ln
(

k2

r2

)
and P = r. η1, η2, η3 and η4. α = 0. KVFs

15. u = ln
(

ek1r+k2

r2

)
, v = ln

[
k3(k1r−1)

r2

]
and P = r. η1, η2, η3 and η4. α = 0. KVFs

16. u = constant, v = ln
(

k1

r2

)
and P = r. η1, η2, η3, η4, η

∗∗
5 = e

t√
k1

(
r√
k1

∂

∂ t
+

r2
√

k1

∂

∂ r

)
and η

∗∗
6 = e

−t√
k1

(
−r√

k1

∂

∂ t
+

r2
√

k1

∂

∂ r

)
. α =

rψ

k1
, where ψ =

[
c1e

t
k1 + c2e

−t
k1

]
with c1,c2 ∈ ℜ ̸= 0. CVFs

17. u =

(
k2r2

2
− lnr+ k3

)
, v = constant = k1 ̸= 0 and P = r. η1, η2, η3 and η4. α = 0. KVFs

18. u = (k1r+ k2) , v = ln
[

k3(k1r+1)
r2

]
and P = r. η1, η2, η3 and η4. α = 0. KVFs

19. u = constant = k1 ̸= 0, v = ln
[

k4

(k2r+ k3)2

]
and P = (k2r+ k3). η1, η2, η3 and η4. α = 0. KVFs

20. u = ln(k1) , v = ln(k2) and P = ek3r+k4. η1, η2, η3, η4, η
∗∗
5 = ek3Ω5

(
1√
k1k2

∂

∂ t
+

1√
k2

∂

∂ r

)
and η

∗∗
6 = ek3Ω6

(
−1√
k1k2

∂

∂ t
+

1√
k2

∂

∂ r

)
. α =

k3ψ

k2
, where ψ =

[
c1ek3Ω5 + c2ek3Ω6

]
with c1,c2 ∈ ℜ ̸= 0. CVFs

In the above table, η1,η2,η3 and η4 represent the CVFs given in equation (3.2) whereas

η∗
5 ,η∗∗

5 and η∗∗
6 are the proper CVFs.

3.3 Results and Discussion

From the very beginning of General Relativity (GR) and its modified forms, the methods

of investigating the solutions of the EFEs and using them to address problems in related areas

have been a topic of discussion. In the context of GR, extensive work has been carried out in

[58], focusing on different background structures known as space-time geometries. At points

where General Relativity (GR) must be modified or extended, the task of finding solutions is

made considerably easier by applying symmetries, especially Noether symmetries present in a

given space-time [81, 82]. Symmetries have been shown to play a pivotal role in exploring and
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classifying the known solutions to the EFEs. Conformal symmetry is used not just to generate

solutions but also offers characteristics that enable the discussion of numerous physical phe-

nomena in contemporary cosmology and astrophysics. In astrophysical studies, compact stars,

dense stars, and gravstars require conformal motion to examine their internal structure.

HVFs represent another significant discovery in this study. These vector fields are useful

for analyzing constants of motion, which, in turn, help in tracking particle trajectories in space-

time. The singularity issues in General Relativity have been tackled by utilizing homothetic

symmetry. HVFs are crucial in the analysis of self-similar solutions of the EFEs [80]. The so-

lutions derived here can be classified into several categories. They may be conformally flat or

may not be flat. In cases 1 and 2, the space-times are found to be conformally flat, achieving the

maximum dimension of 15 and the CVFs for case 3 are explored in [80] where the space-time

resulting from this contains four KVFs. For the remaining cases, following results have been

discovered as a consequence of categorization.

• The CVFs in cases 4, 5, 6, 8, 9, 11, 12, 13, 14, 15, 17, 18, and 19 become KVFs. In

physical terms, KVFs are responsible for conservation laws i.e. the conservation of linear

momentum and energy are associated with the translational KVFs ∂t and ∂φ respectively,

while the conservation of angular momentum is represented by the rotational isometries

η2 and η3.

• For cases 7, 16, and 20, the space-times possess proper CVFs. The CVFs in the given

cases have been found to possess a dimension of six, with four of them being KVFs, as

expressed in the equation (3.2), and the other two being proper CVFs, namely η∗∗
5 and

η∗∗
6 .
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• In case 10, the space-time admits proper HVFs as a result of the conformal factor α being

a non-zero constant. HVFs are of great importance for several reasons. First, they have

proven useful in analyzing constants of motion, which are essential for studying particle

trajectories in space-time. Second, homothetic motion helps tackle the singularity prob-

lem in GR. Moreover, the study of self-similar solutions to the EFEs has highlighted the

significant role of HVFs.
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Chapter 4

Teleparallel Homothetic Vector Fields of

Static Spherically Symmetric Space-Times

in f(T) gravity

4.1 Introduction

The main aim of this chapter is the classification of static spherically symmetric (SS) space-

times as per their THVFs in f (T ) theory of gravity. It extends the work of Fiaz Hussain et al.

[47] in which static SS perfect fluid space-times have been classified via conformal vector fields

(CVFs) in f (T ) gravity. Static SS space-times refers to the type of space-time which is "static"

and "spherically symmetric." The term "static" implies that the geometry of a space-time does

not vary with time, which implies that the properties of the space-time remain constant as time

progresses or it represent a space-time which is time-independent that is, gravitational field

and the space-time metric (which describes distances and times between events in space-time)
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remain constant in time. The term "spherically symmetric" implies that the geometry of a

space-time is invariant under rotations about a central point, which means that properties of

the space-time remain unchanged if you rotate or twist it around the central point. Also in SS

space-time, the space-time metric is dependent on the radial coordinate r.

4.2 Mathematical Formulation

Consider a static SS space-times in the usual coordinates (t,r,θ ,φ) labeled (y0,y1,y2,y3)

respectively with the line element [58]

ds2 =−eu(r)dt2 + ev(r)dr2 +P2(r)
[
dθ

2 + sin2
θdφ

2] , (4.1)

where u = u(r), v = v(r)and P = P(r) are unknown functions of r (radial coordinate) alone

and are non-zero everywhere. The least number of KVFS which above space-times (4.1) admit

are [79]

Y1 = ∂t , Y2 = sinφ∂θ + cosφ cotθ∂φ , Y3 = cosφ ∂θ − sinφ cotθ ∂φ , Y4 = ∂φ . (4.2)

Using equation (2.7), the corresponding non-vanishing torsion components are:

T 0
10 =−T 0

01 =
u̇
2
, T 2

12 =−T 2
21 =

Ṗ
P
, T 3

13 =−T 3
31 =

Ṗ
P
, (4.3)

where u̇ and Ṗ represents derivative of the functions u and P with respect to r. Using equations

(4.1) and (4.3) in equation (2.16), we get the following ten set of equations:

Y 0
, 0 = α, (4.4)

−2eu(r)Y 0
, 1 +2ev(r)Y 1

, 0 − u̇eu(r)Y 0 = 0, (4.5)

−eu(r)Y 0
, 2 +P2(r)Y 2

, 0 = 0, (4.6)
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−eu(r)Y 0
, 3 +P2(r)sin2

θY 3
, 0 = 0, (4.7)

v̇Y 1 +2Y 1
, 1 = 2α, (4.8)

ev(r)Y 1
, 2 +P2(r)Y 2

, 1 +PṖY 2 = 0, (4.9)

ev(r)Y 1
, 3 +P2(r)sin2

θY 3
, 1 +PṖsin2

θY 3 = 0, (4.10)

Y 2
, 2 = α, (4.11)

Y 2
, 3 + sin2

θY 3
, 2 = 0, (4.12)

cotθY 2 +Y 3
, 3 = α. (4.13)

By integrating equations (4.4), (4.8), (4.11) and (4.12) and doing some simplifications on

them. The following equations are obtained:

Y 0 = α t +M1 (r,θ ,φ),

Y 1 = α e−
v
2
∫

e
v
2 dr+ e−

v
2 M4 (t,θ ,φ),

Y 2 = α θ +M2 (t,r,φ),

Y 3 = cotθ M2
φ
(t,r,φ)+M3 (t,r,φ),

(4.14)

where M1 (r,θ ,φ), M2 (t,r,φ), M3 (t,r,φ) and M4 (t,θ ,φ) are functions of integration which

are to be determined. In order to find solution for equations (4.4) to (4.13), Each possible form

of the metric for static SS space-times will be considered and then addressed individually.

The solution of the EFEs of static SS space-times in f (T ) gravity has already been found

in [47]. Here we have the following 20 cases followed from [47]:

1. u = constant, v = v(r), e−vv′r+ 2e−v − 2 = 0 implies v = ln
(

1
1+k1r2

)
, P = r

and T =
(

2
r2 +2k1

)
, where k1 ∈ ℜ\{0}.
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2. u = u(r), v = constant, 2ru′′+ru′2−2u′ = 0 =⇒ u = lnr4, ev = 1, P = r and T = 10r−2.

3. u= u(r), v= v(r), u= v−1, r2 (v′′− v′2
)
+2(1−ev)= 0 implies v= ln

(
1− k1

r + k2r2

3

)−1
,

u = ln
(

1− k1
r + k2r2

3

)
, P = r and T =

(
2
r2 +2k2

)
, where k1,k2 ∈ ℜ\{0}.

4. u = u(r), v = v(r), u = h−1, eu
(

u′′
2 + u′2

2 − 1
r2

)
+ 1

r2 = 0 =⇒ u = ln
(
1− 2M

r

)
, v =

ln
(
1− 2M

r

)−1
, P= r and T =

(
2
r2

)
, where M represents the Arnowitt-Deser-Misner mass.

5. u = u(r), v = v(r), u = v−1, r2 (u′′+u′2
)
− 2(1− e−u) = 0 implies u =

ln
(

1− Λr2

3

)
, v = ln

(
1− Λr2

3

)−1
, P = r and T =

(
2
r2 −2Λ

)
, where Λ is the cosmo-

logical constant.

6. u= u(r), v= v(r), ru′+1= 0 which gives u= ln
(

k1
r

)
, 4ev−rv′+1= 0 implies v=

ln
(

r
k2−4r

)
, P = r and T = 0, where k1,k2 ∈ ℜ\{0}.

7. u = u(r), v = v(r), ru′ − 2 = 0 implies u = ln
(
k1r2) , ev − rv′ − 2 = 0 =⇒ v =

ln
(

2
1+2k2r2

)
, P = r and T = 3(1+2k2r2)

r2 , where k1,k2 ∈ ℜ\{0}.

8. u = u(r), v = v(r),
(

u′′

2
+

u′2

4

)
= 0 =⇒ u =ln

(
k1r+k2

2

)2
, −k1v′e−v+2(k1r+k2) = 0

which implies v = ln
(

k1
k1k3−k1r2−2k2r

)
, P = 1 and T = 0, where k1,k2,k3 ∈ ℜ\{0}.

9. u = u(r), v = v(r), u = v−1, u′′ + u′2 + 2e−u = 0 implies u = ln
(
k2 − k1r− r2) ,

v = ln
(
k2 − k1r− r2)−1

, P = 1 and T = 0, where k1,k2 ∈ ℜ\{0}.

10. u= constant= k1 ̸= 0, v= constant= k2 ̸= 0, u= ln(k1), v= ln(k2), PP′′−P
′2+k2 =

0 implies P = r
√

k2 and T = 2
k2r2 , where k1,k2 ∈ ℜ\{0} with k1 ̸= k2.

11. u = u(r), v = v(r), ru′′−u′ = 0 implies u =
(

k1r2

2 + k2

)
, rv′(ru′+1)+2 = 0 =⇒ v

= ln
(

k3
√

k1r2+1
r

)2

, P = r and T = 2
k2

3
, where k1,k2,k3 ∈ ℜ (k1,k3 ̸= 0).
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12. u = u(r), v = v(r), 1+ rv′ = 0 implies v = ln
(

k1
r

)
, r2u′′− rv′−2 = 0 =⇒ u =

ln
(

k3ek2r

r

)
, P = r and T = 2k2

k3
, where k1,k2,k3 ∈ ℜ(k1,k3 ̸= 0).

13. u = u(r), v = v(r), 2+ rv′ = 0 implies v = ln
(

k1
r2

)
, ru′′− u′(1+ rv′) = 0 =⇒ u =

ln(k3rk2), P = r and T = 2(k2+1)
k1

, where k1,k2,k3 ∈ ℜ(k1,k2,k3 ̸= 0).

14. u = u(r), v = v(r), 2+ ru′ = 0 implies u = ln
(

k1
r2

)
, ru′′− v′(1+ ru′) = 0 =⇒ v =

ln
(

k2
r2

)
, P = r and T = −2

k2
, where k1,k2 ∈ ℜ (k1,k2 ̸= 0).

15. u = u(r), v = v(r), r2u′′−2 = 0 implies u = ln
(

ek1r+k2

r2

)
, u′+v′(1+ru′) = 0 =⇒ v

= ln
[

k3(k1r−1)
r2

]
, P = r and T = 2

k3
, where k1,k2,k3 ∈ ℜ (k1,k3 ̸= 0).

16. u= constant, v= v(r), rv′+2= 0 =⇒ v= ln
(

k1
r2

)
, eu = 1, P= r, T = 2

k1
, where

k1 ∈ ℜ\{0}.

17. u= u(r), v= constant= k1 ̸= 0, r2u′′−ru′−2= 0 =⇒ u=
(

k2r2

2 − lnr+ k3

)
, P=

r, T = 2k2
ek1

, where k1,k2,k3 ∈ ℜ\{0}.

18. u = u(r), v = v(r), u′′ = 0 implies u = (k1r+ k2) , ru′(1+ rv′)+ rv′+2 = 0 =⇒ v

= ln
[

k3(k1r+1)
r2

]
, P = r and T = 2

k3
, where k1,k2,k3 ∈ ℜ(k1,k3 ̸= 0).

19. u = constant = k1 ̸= 0, v = v(r), P′′ = 0 =⇒ P = k2r + k3, v′P+ 2P′ = 0 =⇒ v =

ln
(

k4
(k2r+k3)2

)
, T =

2k2
2

k4
, where k1,k2,k3,k4 ∈ ℜ\{0}.

20. u = constant = k1 ̸= 0, v = constant = k2 ̸= 0, P′′ − P′2 = 0 =⇒ P = ek3r+k4, T =

2k2
3

ek2
, where

k1,k2,k3,k4 ∈ ℜ\{0}, withk1 ̸= k2.

In this section, we shall discuss only four cases in detail and in the remaining cases, main

results are shown. The four detailed cases are given below:
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Case 1

In the case 1, we are given u = constant, v = ln
(

1
1+k1r2

)
and P = r where k1 ∈ ℜ\{0}. For

this case, the equation of space-time (4.1) will take the form:

ds2 =−dt2 +
1

(1+ k1r2)
dr2 + r2 [dθ

2 + sin2
θdφ

2] . (4.15)

For Case 1, the ten set of equations from (4.4) to (4.13) will take the form:

Y 0
, 0 = α, (4.16)

−Y 0
, 1 +

1
(1+ k1r2)

Y 1
, 0 = 0, (4.17)

−Y 0
, 2 + r2Y 2

, 0 = 0, (4.18)

−Y 0
, 3 + r2 sin2

θY 3
, 0 = 0, (4.19)

−k1r
(1+ k1r2)

Y 1 +Y 1
, 1 = α, (4.20)

1
(1+ k1r2)

Y 1
, 2 + r2Y 2

, 1 + rY 2 = 0, (4.21)

1
(1+ k1r2)

Y 1
, 3 + r2 sin2

θY 3
, 1 + r sin2

θY 3 = 0, (4.22)

Y 2
, 2 = α, (4.23)

Y 2
, 3 + sin2

θY 3
, 2 = 0, (4.24)

cotθY 2 +Y 3
, 3 = α. (4.25)
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Moreover, the system of equations (4.14) will take the form:

Y 0 = α t +M1 (r,θ ,φ),

Y 1 = α
√

1+ k1r2
[

1√
k1

sinh−1(
√

k1r)
]
+ c1 +

[√
1+ k1r2

]
M4 (t,θ ,φ),

Y 2 = α θ +M2 (t,r,φ),

Y 3 = cotθ M2
φ
(t,r,φ)+M3 (t,r,φ).

(4.26)

where M1 (r,θ ,φ), M2 (t,r,φ), M3 (t,r,φ) and M4 (t,θ ,φ) are integration functions that need

to be determined.

Considering the system of equations (4.26) and equation (4.17) , we get the following form

1√
1+ k1r2

M4
t (t,θ ,φ)−M1

r (r,θ ,φ) = 0. (4.27)

By differentiating equation (4.27) with respect to t, we obtain

1√
1+ k1r2

M4
tt(t,θ ,φ) = 0. (4.28)

After simplifying an equation (4.28), we obtain

M4(t,θ ,φ) = tN1(θ ,φ)+N2(θ ,φ), (4.29)

where N1(θ ,φ) and N2(θ ,φ) are integration functions. By replacing the obtained value into

the equation (4.27) we get the following form

1√
1+ k1r2

[
N1(θ ,φ)

]
−M1

r (r,θ ,φ) = 0. (4.30)

After simplifying an equation (4.30) we get

M1(r,θ ,φ) =
1√
k1

[
sinh−1(

√
k1r)

]
N3(θ ,φ)+N4(θ ,φ), (4.31)
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where N3(θ ,φ) and N4(θ ,φ) are integration functions. By replacing the obtained value in

system (4.26), we get the following system of equations:

Y 0 = α t +
1√
k1

[
sinh−1(

√
k1r)

]
N3(θ ,φ)+N4(θ ,φ),

Y 1 = α
√

1+ k1r2
[

1√
k1

sinh−1(
√

k1r)+ c1

]
+
√

1+ k1r2
[
tN1(θ ,φ)+N2(θ ,φ)

]
,

Y 2 = α θ +M2 (t,r,φ),

Y 3 = cotθ M2
φ
(t,r,φ)+M3 (t,r,φ).

(4.32)

Considering equation (4.18) and using system of equations (4.32), we get

− 1√
k1

sinh−1(
√

k1r)N3
θ (θ ,φ)−N4

θ (θ ,φ)+ r2M2
t (t,r,φ) = 0. (4.33)

Differentiating (4.33) in terms of t, we get r2M2
tt(t,r,φ)= 0, =⇒ M2

tt(t,r,φ)= 0, =⇒ M2
t (t,r,φ)=

N5(r,φ) and after some simplifications, the equation will take the form

M2 (t,r,φ) = tN5(r,φ)+N6(r,φ), (4.34)

where N5(r,φ) and N6(r,φ) are integration functions. Substituting back the above value in

(4.33) we get

− 1√
k1

sinh−1(
√

k1r)N3
θ (θ ,φ)−N4

θ (θ ,φ)+ r2N5(r,φ) = 0. (4.35)

By firstly differentiating (4.35) with respect to θ , we get − 1√
k1
.sinh−1(

√
k1r).N3

θθ
(θ ,φ)−

N4
θθ
(θ ,φ)= 0, then differentiating with respect to r leads to − 1√

k1

[
1√

1+k1r2

]
.
√

k1.
[
N3

θθ
(θ ,φ)

]
=

0, and with the help of some simplifications, we get the value of the function of integration

N3(θ ,φ) which is,

N3(θ ,φ) = θD1(φ)+D2(φ), (4.36)
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where D1(φ) and D2(φ) are integration functions. Now, using the above calculated values in

equation (4.35), we obtain

− 1√
k1

sinh−1(
√

k1r)
[
D1(φ)

]
−N4

θ (θ ,φ)+ r2N5(r,φ) = 0. (4.37)

Differentiating above equation with respect to θ , we get −N4
θθ
(θ ,φ) = 0 and further simplifi-

cations leads to

N4(θ ,φ) = θD3(φ)+D4(φ), (4.38)

where D3(φ) and D4(φ) are functions of integration. By making use of the above value in

equation (4.37), we get

N5(r,φ) =
1

r2
√

k1
sinh−1(

√
k1r)

[
D1(φ)

]
+

1
r2

[
D3(φ)

]
. (4.39)

Now, refreshing the system of equation (4.32) with the help of above information

Y 0 = α t +
1√
k1

sinh−1(
√

k1r)
[
θD1(φ)+D2(φ)

]
+θD3(φ)+D4(φ),

Y 1 = α
√

1+ k1r2.
1√
k1

sinh−1(
√

k1r)+ c1 +
√

1+ k1r2
[
tθD1(φ)+ tD2(φ)

]
+N2(θ ,φ),

Y 2 = α θ +

[
t

r2
√

k1
sinh−1(

√
k1r)

][
D1(φ)

]
+

t
r2

[
D3(φ)

]
+N6(r,φ),

Y 3 = cotθ

[
tN5

φ
(r,φ)+N6

φ
(r,φ)

]
+M3(t,r,φ).

(4.40)

Considering equation (4.19) and set of equations (4.40) we get

− 1√
k1

sinh−1(
√

k1r).θ .D1
φ (φ)−

1√
k1

sinh−1(
√

k1r)D2
φ (φ)−θ .D3

φ (φ)−D4
φ (φ)

+r2 sin2
θ cotθN5

φ (r,φ)+ r2 sin2
θM3

t (t,r,φ) = 0.

(4.41)

Differentiating (4.41) with respect to t, we get r2 sin2
θM3

tt(t,r,φ)= 0, =⇒ M3
tt(t,r,φ)= 0, =⇒

M3
t (t,r,φ) = N7(r,φ) and after some simplifications, the equation will take the form

M3 (t,r,φ) = tN7(r,φ)+N8(r,φ), (4.42)
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where N7(r,φ) and N8(r,φ) are integration functions. Substituting the value obtained above

into the equation (4.41) and after simplifying it, we get

− 1√
k1

sinh−1(
√

k1r)
[
θD1

φ (φ)−D2
φ (φ)

]
−θD3

φ (φ)−D4
φ (φ)+

r2

2
[2sinθ cosθ ]N5

φ (r,φ)

+r2 sin2
θN7(r,φ) = 0.

(4.43)

Differentiating equation (4.43) twice with respect to θ , we obtain

r2 [−2sin2θ ] .N5
φ (r,φ)+ r2 [2cos2θ ] .N6(r,φ) = 0. (4.44)

The simplifications in equation (4.44) yields N6(r,φ) = 0 and N5
φ
(r,φ) = 0 =⇒ N5(r,φ) =

D5(r) where D5(r) are the integration functions. Refreshing the system of equation results in

equation (4.45) given below:

Y 0 = α t +
1√
k1

sinh−1(
√

k1r)
[
θD1(φ)+D2(φ)

]
+θD3(φ)+D4(φ),

Y 1 = α
√

1+ k1r2.
1√
k1

sinh−1(
√

k1r)+ c1 +
√

1+ k1r2
[
tθD1(φ)+ tD2(φ)

]
+N2(θ ,φ),

Y 2 = α θ +

[
t

r2
√

k1
sinh−1(

√
k1r)

][
D1(φ)

]
+

t
r2

[
D3(φ)

]
+N6(r,φ),

Y 3 = cotθ

[
N6

φ
(r,φ)

]
+N8(r,φ).

(4.45)

Considering equation (4.25) and set of equations (4.45) we get

cotθ

[
α θ +

(
t

r2
√

k1
.sinh−1(

√
k1r)

)
.D1(φ)+

t
r2 .D

3(φ)+N6(r,φ)
]

+cotθ

[
N6

φφ (r,φ)
]
+N8

φ (r,φ) = α.

(4.46)

Simplification and differentiation of equation (4.46) with respect to t brings out

1√
k1
.sinh−1

√
k1r.D1(φ)+D3(φ) = 0. (4.47)

Differentiating equation (4.47) with respect to r yields

1√
k1
.

1√
1+ k1r2

.
√

k1.D1(φ) = 0. (4.48)
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By simplifying (4.48) we get D1(φ) = 0. Substitution of the value D1(φ) = 0 in equation (4.47)

gives D3(φ) = 0. Now, using these values in equation (4.46) we get an equation of form:

cotθ .α θ + cotθ .N6(r,φ)+ cotθ .N6
φφ (r,φ)+N8

φ (r,φ) = α. (4.49)

Dividing both sides of the above equation with cotθ and then taking its derivative with respect

to θ , we derive an equation that takes the form

N8
φ (r,φ) = α. tan2

θ . (4.50)

Again differentiating it with θ will give:

2α tanθ sec2
θ = 0. (4.51)

=⇒ α = 0. (4.52)

In equation (4.52), α = 0 implies that we will have Teleparallel Killing Vector Fields for this

case and not the Teleparallel Homothetic Vector Fields which we wanted to find. That being

the scenario, we end our Case 1 by stating the fact that no such THVFs exists for this case.

Case 2

For the given case, we have u = ln
[
1− 2M

r

]
, v = ln

[
1− 2M

r

]−1
, and P = r where M repre-

sents the Arnowitt-Deser-Misner mass. For this case, the equation of space-time (4.1) will take

the form:

ds2 =

[
2M
r

−1
]

dt2 +

[
1− 2M

r

]−1

dr2 + r2 [dθ
2 + sin2

θ dφ
2] . (4.53)

For Case 2, the ten set of equations from (4.4) to (4.13) will take the following form:

Y 0
, 0 = α, (4.54)
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(
2M− r

r

)
Y 0
, 1 +

(
r

r−2M

)
Y 1
, 0 −

M
r2 Y 0 = 0, (4.55)(

2M− r
r

)
Y 0
, 2 + r2Y 2

, 0 = 0, (4.56)(
2M− r

r

)
Y 0
, 3 + r2 sin2

θY 3
, 0 = 0, (4.57)(

−M
r2 −2Mr

)
Y 1 +Y 1

, 1 = α, (4.58)(
r

r−2M

)
Y 1
, 2 + r2Y 2

, 1 + rY 2 = 0, (4.59)(
r

r−2M

)
Y 1
, 3 + r2 sin2

θY 3
, 1 + r sin2

θY 3 = 0, (4.60)

Y 2
, 2 = α, (4.61)

Y 2
, 3 + sin2

θY 3
, 2 = 0, (4.62)

cotθY 2 +Y 3
, 3 = α. (4.63)

Moreover, the system of equations (4.14) will take the form:

Y 0 = α t +M1 (r,θ ,φ),

Y 1 = α

√
r−2M

r

∫ 1√
r−2M

r

dr+

√
r−2M

r
M4 (t,θ ,φ),

Y 2 = α θ +M2 (t,r,φ),

Y 3 = cotθ M2
φ
(t,r,φ)+M3 (t,r,φ).

(4.64)

where M1 (r,θ ,φ), M2 (t,r,φ), M3 (t,r,φ) and M4 (t,θ ,φ) are integration functions that need

to be determined.

Considering the system of equations (4.64) and equation (4.56) , we get the following form

[
2M− r

r

][
M1

θ (r,θ ,φ)
]
+ r2 [M2

t (t,r,φ)
]
= 0. (4.65)
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By differentiating equation (4.65) with respect to t, we get

r2M2
tt(t,r,φ) = 0. =⇒ M2

t (t,r,φ) = N1(r,φ). (4.66)

After simplification, we obtain

M2(t,r,φ) = tN1(r,φ)+N2(r,φ), (4.67)

where N1(r,φ) and N2(r,φ) are integration functions. Placing the aforementioned value back

into the equation (4.65) we get the following form[
2M− r

r

][
M1

θ (r,θ ,φ)
]
+ r2N1(r,φ) = 0. (4.68)

Differentiating an equation (4.68) with respect to θ we get[
2M− r

r

]
M1

θθ (r,θ ,φ) = 0. (4.69)

Simplifying the above equation gives the value of function of integration M1(r,θ ,φ)

M1(r,θ ,φ) = θN3(r,φ)+N4(r,φ), (4.70)

where N3(r,φ) and N4(r,φ) are integration functions. Inserting the values from the above step

in system (4.64), we obtain the following system of equations:

Y 0 = α t +θN3(r,φ)+N4(r,φ),

Y 1 = α

√
r−2M

r

∫ 1√
r−2M

r

dr+

√
r−2M

r
M4 (t,θ ,φ),

Y 2 = α θ + tN1(r,φ)+N2(r,φ),

Y 3 = cotθ

[
tN1

φ
(r,φ)+N2

φ
(r,φ)

]
+M3 (t,r,φ).

(4.71)

Considering equation (4.57) and using system of equations (4.71), we get[
2M− r

r

]
.
[
θN3

φ (r,φ)+N4
φ (r,φ)

]
+ r2 sin2

θ

[
cotθ .N1

φ (r,φ)+M3
t (t,r,φ)

]
= 0. (4.72)
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Differentiating (4.72) with respect to t, we get r2.sin2
θ .M3

tt(t,r,φ) = 0, =⇒ M3
t (t,r,φ) =

N5(r,φ), and after some simplifications, the equation will take the form

M3 (t,r,φ) = tN5(r,φ)+N6(r,φ), (4.73)

where N5(r,φ) and N6(r,φ) are integration functions. Now, substituting the above calculated

value into the equation (4.72) and doing some simplifications in it, we obtain[
2M− r

r

]
.θ .N3

φ (r,φ)+
[

2M− r
r

]
.N4

φ (r,φ)+
r2

2
.sin2θ .N1

φ (r,φ)+ r2.sin2
θ .N5(r,φ) = 0.

(4.74)

Differentiating equation (4.74) twice with respect to θ , we get an equation of form

2r2
[
−sin2θ .N1

φ (r,φ)+ cos2θ .N5(r,φ)
]
= 0. (4.75)

Further simplification of equation (4.75) gives N1
φ
(r,φ) = 0 =⇒ N1(r,φ) = D1(r), which also

leads to N5(r,φ) = 0. Using these values in equation (4.74) we get:[
2M− r

r

]
.θ .N3

φ (r,φ)+
[

2M− r
r

]
.N4

φ (r,φ) = 0. (4.76)

Some simplifications of (4.76) and taking its derivative with respect to θ yields the value of

N3(r,φ) = D2(r) and N4
φ
(r,φ) = 0 =⇒ N4(r,φ) = D3(r). Now, using all the values we find till

now to update our system (4.71).

Y 0 = α t +θD2(r)+D3(r),

Y 1 = α

√
r−2M

r

∫ √ r
r−2M

dr+

√
r−2M

r
M4 (t,θ ,φ),

Y 2 = α θ + tD1(r)+N2(r,φ),

Y 3 = cotθ N2
φ (r,φ)+N6(r,φ).

(4.77)

Considering equation (4.59) and set of equations (4.77) we get√
r

r−2M
.M4

θ (t,θ ,φ)+ r2 [tD1
r (r)+N2

r (r,φ)
]
+ r
[
α θ + tD1(r)+N2(r,φ)

]
= 0. (4.78)
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Differentiating (4.78) with respect to θ gives

√
r

r−2M
M4

θθ (t,θ ,φ)+ rα = 0. (4.79)

Again differentiating the above equation with respect to θ lead to M4
θθθ

(t,θ ,φ) = 0, =⇒

M4
θθ
(t,θ ,φ) = N7(t,φ), =⇒ M4

θ
(t,θ ,φ) = θN7(t,φ) + N8(t,φ) which after simplification

gives

M4 (t,θ ,φ) =
θ 2

2
.N7(t,φ)+θN8(t,φ)+N9(t,φ), (4.80)

where N7(t,φ) and N8(t,φ) and N9(t,φ) are integration functions. By replacing the above

value in (4.79), we get √
r

r−2M
.N7 (t,φ)+ rα = 0. (4.81)

Differentiation of equation (4.81) with respect to t gives N7
t (t,φ) = 0, =⇒ N7(t,φ) = D4(φ),

where D4(φ) is an integration function. Using the aforementioned value in equation (4.81), we

get √
r

r−2M
.D4(φ)+ rα = 0. (4.82)

Differentiation of equation (4.82) with respect to φ gives D4
φ
(φ) = 0 =⇒ D4(φ) = c1, where

c1 is the constant of integration. Putting the calculated value in equation (4.82), we get

√
r

r−2M
.c1 + rα = 0. (4.83)

Differentiation of equation (4.83) with respect to r gives

1

2
√

r
r−2M

.c1.
d
dr

[
r

r−2M

]
+α = 0. (4.84)

Simplification of equation (4.84) lead us to equation (4.85) given below

−Mc1

[
1√
r
(r−2M)−

3
2

]
+α = 0. (4.85)
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Differentiation of equation (4.85) with respect to r gives an equation of the form

−Mc1

[
− 1

2r
3
2
.(r−2M)−

3
2 +(r−

1
2 ).

(
−3

2(r−2M)
5
2

)]
= 0. (4.86)

Simplifying an equation (4.86), we get a form

Mc1(2r−M)

r
3
2 (r−2M)

5
2
= 0, (4.87)

=⇒ Mc1(2r−M) = 0. (4.88)

By differentiating equation (4.88) with respect to r, we get

2Mc1 = 0. (4.89)

In equation (4.89), it has been already given that M represents the Arnowitt-Deser-Misner mass.

And mass cannot be zero. Hence, c1 = 0 and equation (4.89) will take the form

c1 = 0. (4.90)

Putting value of c1 in equation (4.85) gives

α = 0. (4.91)

The equation above, with α = 0, indicates that we will obtain Teleparallel Killing Vector Fields

instead of the Teleparallel Homothetic Vector Fields. We conclude Case 2 by affirming that no

such THVFs are found in this case.

Case 3

In this case, we have u= ln(k1), v= ln(k2), and P= r
√

k2 where k1,k2 ∈ℜ\{0} with k1 ̸= k2.

For this case, the equation of space-time (4.1) will take the following form:

ds2 =−k1dt2 + k2dr2 + r2k2
[
dθ

2 + sin2
θ dφ

2] . (4.92)
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For Case 3, the ten set of equations from (4.4) to (4.13) will take the following form:

Y 0
, 0 = α, (4.93)

−k1Y 0
, 1 + k2Y 1

, 0 = 0, (4.94)

−k1Y 0
, 2 + r2k2Y 2

, 0 = 0, (4.95)

−k1Y 0
, 3 + r2k2 sin2

θY 3
, 0 = 0, (4.96)

Y 1
, 1 = α, (4.97)

Y 1
, 2 + r2Y 2

, 1 + rY 2 = 0, (4.98)

Y 1
, 3 + r2 sin2

θY 3
, 1 + r sin2

θY 3 = 0, (4.99)

Y 2
, 2 = α, (4.100)

Y 2
, 3 + sin2

θY 3
, 2 = 0, (4.101)

cotθY 2 +Y 3
, 3 = α. (4.102)

As well, the system of equations (4.14) will take the form:

Y 0 = α t +M1 (r,θ ,φ),

Y 1 = α r + c1 +
1√
k2
.M4 (t,θ ,φ),

Y 2 = α θ +M2 (t,r,φ),

Y 3 = cotθ M2
φ
(t,r,φ)+M3 (t,r,φ).

(4.103)

where M1 (r,θ ,φ), M2 (t,r,φ), M3 (t,r,φ) and M4 (t,θ ,φ) are the functions arising from inte-

gration that are yet to be found.

Considering the system of equations (4.103) and equation (4.95) , we get the following form

− k1
[
M1

θ (r,θ ,φ)
]
+ r2k2

[
M2

t (t,r,φ)
]
= 0. (4.104)
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By differentiating equation (4.104) with respect to θ , we get

−k1M1
θθ (r,θ ,φ) = 0. (4.105)

After simplifying an equation (4.105), we obtain

M1(r,θ ,φ) = θN1(r,φ)+N2(r,φ), (4.106)

where N1(r,φ) and N2(r,φ) are integration functions. Substituting the value of M1(r,θ ,φ) in

equation (4.104) we get the following form

−k1
[
N1(r,φ)

]
+ r2k2

[
M2

t (t,r,φ)
]
= 0. (4.107)

After differentiating an equation (4.107) with respect to t we get

k2.M2
tt(t,r,φ) = 0. (4.108)

Simplification of the above equation (4.108) gives with respect to t gives M2
t (t,r,φ) = N3(r,φ)

which lead to

M2(t,r,φ) = tN3(r,φ)+N4(r,φ), (4.109)

where N3(r,φ) and N4(r,φ) are integration functions. Using the above information in system

(4.103), we derive the following set of equations:

Y 0 = α t +θN1(r,φ)+N2(r,φ),

Y 1 = αr+
1√
k2

M4 (t,θ ,φ)+ c1,

Y 2 = α θ + tN3(r,φ)+N4(r,φ),

Y 3 = cotθ

[
tN3

φ
(r,φ)+N4

φ
(r,φ)

]
+M3 (t,r,φ).

(4.110)

Considering equation (4.96) and using system of equations (4.110), we get

−k1

[
θN1

φ (r,φ)+N2
φ (r,φ)

]
+ r2k2 sin2

θ

[
cotθ N3

φ (r,φ)+M3
t (t,r,φ)

]
= 0. (4.111)
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Differentiating (4.111) with respect to t we get

r2k2 sin2
θM3

tt(t,r,φ) = 0. (4.112)

After some simplifications, the equation (4.112) will take the form

M3 (t,r,φ) = tN5(r,φ)+N6(r,φ), (4.113)

where N5(r,φ) and N6(r,φ) are integration functions. By replacing the above value into the

equation (4.111) and doing some simplifications in it, we obtain

−k1

[
θN1

φ (r,φ)+N2
φ (r,φ)

]
+ r2k2 sin2

θ

[
cotθ N3

φ (r,φ)+N5(r,φ)
]
= 0. (4.114)

After doing some simplifications in equation (4.114) we get

−k1.θ .N1
φ (r,φ)− k1.N2

φ (r,φ)+
r2

2
.k2.2sinθ cosθ .N3

φ (r,φ)+ r2.k2.sin2
θ .N5(r,φ) = 0.

(4.115)

Differentiating (4.115) with respect to θ we acquire

−k1.N1
φ (r,φ)+ r2.k2.cos2θ .N3

φ (r,φ)+ r2.k2.sin2θ .N5(r,φ) = 0. (4.116)

Again differentiating the above equation with respect to θ we get N3
φ
(r,φ) = 0 =⇒ N3(r,φ) =

D1(r) which also leads to N5(r,φ) = 0. Using the value of N5(r,φ) = 0 we also get N1
φ
(r,φ) =

0 =⇒ N1(r,φ) = D2(r) =⇒ N2(r,φ) = D3(r). Now, using all the values we find till now to

update our system (4.110). 

Y 0 = α t +θD2(r)+D3(r),

Y 1 = αr+
1√
k2

M4 (t,θ ,φ)+ c1,

Y 2 = α θ + tD1(r)+N4(r,φ),

Y 3 = cotθ

[
N4

φ
(r,φ)

]
+N6(r,φ).

(4.117)
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Considering equation (4.94) and set of equations (4.117) we get

−k1
[
θD2

r (r)+D3
r (r)

]
+
√

k2.M4
t (t,θ ,φ) = 0. (4.118)

Differentiation of (4.118) with respect to t gives M4
tt(t,θ ,φ) = 0, =⇒ M4

t (t,θ ,φ) = N7(θ ,φ)

which lead to the value of M4(t,θ ,φ) given below

M4(t,θ ,φ) = tN7(θ ,φ)+N8(θ ,φ), (4.119)

where N7(θ ,φ) and N8(θ ,φ) are integration functions. At this point system of equations will

take the form: 

Y 0 = α t +θD2(r)+D3(r),

Y 1 = αr+
1√
k2

[
tN7(θ ,φ)+N8(θ ,φ)

]
+ c1,

Y 2 = α θ + tD1(r)+N4(r,φ),

Y 3 = cotθ

[
N4

φ
(r,φ)

]
+N6(r,φ).

(4.120)

Using the equation (4.98) and system of equations (4.119) we get

1√
k2

[
tN7

θ (θ ,φ)
]
+

1√
k2

[
N8

θ (θ ,φ)
]
+r2 [tD1

r (r)+N4
r (r,φ)

]
+r
[
α θ + tD1(r)s+N4(r,φ)

]
= 0.

(4.121)

Differentiation of equation (4.120) with respect to θ gives

1√
k2

[
tN7

θθ (θ ,φ)
]
+

1√
k2

[
N8

θθ (θ ,φ)
]
+ rα = 0. (4.122)

Differentiation of equation (4.122) with respect to r will turn the above equation into form

α = 0. (4.123)

In the aforementioned equation, α = 0 suggests that no THVFs exists for this case.
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Case 4

In this case, given that u = ln(k1), v = ln(k2), and P = ek3r+k4 where k1,k2,k3,k4 ∈ ℜ (k3 ̸=

0) with k1 ̸= k2. For this case, the equation of space-time (4.1) will take the form:

ds2 =−k1 dt2 + k2 dr2 + e2(k3r+k4)
[
dθ

2 + sin2
θ dφ

2] . (4.124)

For Case 5, the ten set of equations from (4.4) to (4.13) will take the following form:

Y 0
, 0 = α, (4.125)

−k1Y 0
, 1 + k2Y 1

, 0 = 0, (4.126)

−k1Y 0
, 2 + e2[k3r+k4]Y 2

, 0 = 0, (4.127)

−k1Y 0
, 3 + e2[k3r+k4] sin2

θ Y 3
, 0 = 0, (4.128)

Y 1
, 1 = α, (4.129)

k2Y 1
, 2 + e2[k3r+k4]Y 2

, 1 + k3 e2[k3r+k4]Y 2 = 0, (4.130)

k2Y 1
, 3 + e2[k3r+k4] sin2

θ Y 3
, 1 + k3 e2[k3r+k4] sin2

θY 3 = 0, (4.131)

Y 2
, 2 = α, (4.132)

Y 2
, 3 + sin2

θY 3
, 2 = 0, (4.133)

cotθY 2 +Y 3
, 3 = α. (4.134)
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Moreover, the system of equations (4.14) will take the form:

Y 0 = α t +M1 (r,θ ,φ),

Y 1 = α r + c1 +
1√
k2

M4 (t,θ ,φ),

Y 2 = α θ +M2 (t,r,φ),

Y 3 = cotθ M2
φ
(t,r,φ)+M3 (t,r,φ).

(4.135)

where M1 (r,θ ,φ), M2 (t,r,φ), M3 (t,r,φ) and M4 (t,θ ,φ) are functions which derived from

the integration and are yet to be determined.

Considering the system of equations (4.134) and equation (4.126) , we get the following form

− k1
[
M1

r (r,θ ,φ)
]
+
√

k2
[
M4

t (t,θ ,φ)
]
= 0. (4.136)

By differentiating equation (4.135) with respect to t, we get

√
k2 M4

tt(t,θ ,φ) = 0. (4.137)

After simplifying an equation (4.137), we obtain

M4(t,θ ,φ) = tN1(θ ,φ)+N2(θ ,φ), (4.138)

where N1(θ ,φ) and N2(θ ,φ) are integration functions. By replacing the above value into the

equation (4.136) we get the following form

− k1
[
M1

r (r,θ ,φ)
]
+
√

k2 N1(θ ,φ) = 0. (4.139)

Differentiating an equation (4.139) with respect to r we get

−k1 M1
rr(r,θ ,φ). (4.140)

Simplifying the above equation gives the value of function of integration M1(r,θ ,φ) which is

M1(r,θ ,φ) = rN3(θ ,φ)+N4(θ ,φ), (4.141)
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where N3(θ ,φ) and N4(θ ,φ) are integration functions. Placing the aforementioned value back

in system (4.135), we get the following system of equations:

Y 0 = α t + rN3(θ ,φ)+N4(θ ,φ),

Y 1 = α r + c1 +
1√
k2

[
tN1(θ ,φ)+N2(θ ,φ)

]
,

Y 2 = α θ +M2 (t,r,φ),

Y 3 = cotθ M2
φ
(t,r,φ)+M3 (t,r,φ).

(4.142)

Considering equation (4.127) and using system of equations (4.142), we get

−k1
[
rN3

θ (θ ,φ)+N4
θ (θ ,φ)

]
+ e2[k3r+k4]

[
M2

t (t,r,φ)
]
= 0. (4.143)

Differentiating (4.143) with respect to t, we get e2[k3r+k4]
[
M2

tt (t,r,φ)
]
= 0, =⇒ M2

tt (t,r,φ) =

0, =⇒ M2
t (t,r,φ) = N5(r,φ), and this leads to

M2 (t,r,φ) = tN5(r,φ)+N6(r,φ), (4.144)

where N5(r,φ) and N6(r,φ) are integration functions. Substituting the above value back in

(4.143) and doing some simplifications in it, we obtain

−k1
[
rN3

θ (θ ,φ)
]
− k1

[
N4

θ (θ ,φ)
]
+ e2[k3r+k4]

[
N5(r,φ)

]
= 0. (4.145)

Differentiating equation (4.145) with respect to θ , we get an equation of form

−k1
[
rN3

θθ (θ ,φ)
]
− k1

[
N4

θθ (θ ,φ)
]
= 0. (4.146)

Now, differentiating the above equation (4.145) with respect to r, we get −k1N3
θθ
(θ ,φ) = 0,

=⇒ N3
θθ
(θ ,φ) = 0 which further gives,

N3(θ ,φ) = θD1(φ)+D2(φ), (4.147)
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where D1(φ) and D2(φ) are functions of integrations. Now, using the value of N3(θ ,φ) in

equation (4.146) we get the value of N4(θ ,φ) which is

N4(θ ,φ) = θD3(φ)+D4(φ), (4.148)

where D3(φ) and D4(φ) are integration functions. Now, taking use of all the values we found

till now to update our system (4.142).

Y 0 = α t + r
[
θD1(φ)+D2(φ)

]
+θD3(φ)+D4(φ),

Y 1 = α r + c1 +
1√
k2

[
tN1(θ ,φ)+N2(θ ,φ)

]
,

Y 2 = α θ + tN5(r,φ)+N6(r,φ),

Y 3 = cotθ

[
tN5

φ
(r,φ)+N6

φ
(r,φ)

]
+M3 (t,r,φ).

(4.149)

Considering equation (4.128) and set of equations (4.149) we get

−k1

[
rθD1

φ (φ)+ rD2
φ (φ)+θD3

φ (φ)+D4
φ (φ)

]
+ e2[k3r+k4] sin2

θ[
cotθ N5

φ (r,φ)+M3
t (t,r,φ)

]
= 0.

(4.150)

Differentiation of equation (4.151) with respect to t gives

M3
tt (t,r,φ) = 0. (4.151)

Simplification of above equation gives,

M3 (t,r,φ) = tN7(r,φ)+N8(r,φ), (4.152)

where N7(r,φ) and N8(r,φ) are integration functions. Substituting the above value back in

(4.151) implies

−k1rθD1
φ (φ)− k1rD2

φ (φ)− k1θD3
φ (φ)− k1D4

φ (φ)+
1
2
.e2[k3r+k4] .sin2

θ cotθ .N5
φ (r,φ)

+e2[k3r+k4].sin2(θ).N7(r,φ) = 0.
(4.153)
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By differentiating the above equation with respect to θ , we get

−k1rθD1
φ (φ)−k1D3

φ (φ)+
1
2
.2cos2θ .e2[k3r+k4] .N5

φ (r,φ)+2sinθ cosθ .e2[k3r+k4] .N7(r,φ) = 0.

(4.154)

Again differentiation of equation (4.154) with respect to θ gives

2e2[k3r+k4]
[
−sin2θ N5

φ (r,φ)+ cos2θ N7(r,φ)
]
= 0. (4.155)

By differentiating once again (4.155) with respect to θ we get N5(r,φ) = D5(r) and from

equation (4.155) we get N7(r,φ) = 0., where D5(r) is an integration function. Putting the

above values in equation (4.154), we get

−k1

[
rD1

φ (φ)+D3
φ (φ)

]
= 0. (4.156)

Differentiation of equation (4.156) with respect to r gives D1
φ
(φ) = 0 =⇒ D1(φ) = c1, and

D3
φ
(φ) = 0 =⇒ D3(φ) = c2, where c1 and c2 are the constants of integration. Putting the

above values in equation (4.153), we get

−k1

[
rθD2

φ (φ)+D4
φ (φ)

]
= 0. (4.157)

Differentiation of equation (4.157) with respect to r gives D2
φ
(φ) = 0 =⇒ D2(φ) = c3, and

D4
φ
(φ) = 0 =⇒ D4(φ) = c4, where c3 and c4 are the constants of integration. Using the found

information we update of system of equation which is

Y 0 = α t + r θ c1 + r c3 +θ c2 + c4,

Y 1 = α r + c1 +
1√
k2

[
tN1(θ ,φ)+N2(θ ,φ)

]
,

Y 2 = α θ + tD5(r)+N6(r,φ),

Y 3 = cotθ N6
φ
(r,φ)+N8(r,φ).

(4.158)
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Using an equation (4.130) and considering the system of equation (4.158) we get

k2

[
1√
k2

tN1
θ (θ ,φ)+

1√
k2

N2
θ (θ ,φ)

]
+ e2[k3r+k4]

[
tD5

r (r)+N6
r (r,φ)

]
+ k3e2[k3r+k4]

[
αθ + tD5(r)+N6(r,φ)

]
= 0. (4.159)

Differentiation of equation (4.159) with respect to θ gives an equation of the form

√
k2 t N1

θθ (θ ,φ)+
√

k2 N2
θθ (θ ,φ)+ k3 e2[k3r+k4]α = 0. (4.160)

Differentiation of above equation with respect to t gives
√

k2 N1
θθ
(θ ,φ)= 0 implies N1

θθ
(θ ,φ)=

0 and N1
θ
(θ ,φ) = D6(φ) implies N1(θ ,φ) = θD6(φ)+D7(φ), where D6(φ) and D7(φ) are the

functions of integration. Using the value of N1
θθ
(θ ,φ) in equation (4.160) we get

√
k2 N2

θθ (θ ,φ)+ k3 e2[k3r+k4]α = 0. (4.161)

Differentiation of equation (4.161) with respect to r lead to

2k3
2 .e2[k3r+k4] .α = 0, (4.162)

=⇒ α = 0. (4.163)

In the above equation, α = 0 shows that Teleparallel Killing Vector Fields will arise in this

situation. Therefore, we end our Case 4 by acknowledging that no THVFs exists for this case.
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Table 2: The classification of Static Spherically symmetric space-times using THVFs.

Case No Metric components THVFs Teleparallel Homothetic Factor Description

2. u = lnr4, v = constant and P = r. Y1, Y2, Y3, Y4. α = 0. TKVFs

3. u = ln
(

1− k1

r
+

k2r2

3

)
, v = ln

(
1− k1

r
+

k2r2

3

)−1

and P = r. Y1, Y2, Y3, Y4. α = 0. TKVFs

5. u = ln
(

1− Λr2

3

)
, v = ln

(
1− Λr2

3

)−1

and P = r. Y1, Y2, Y3, Y4. α = 0. TKVFs

6. u = ln
(

k1

r

)
, v = ln

(
r

k2−4r

)
and P = r. Y1, Y2, Y3, Y4. α = 0. TKVFs

7. u = ln
(
k1r2) , v = ln

(
2

1+2k2r2

)
and P = r. Y1, Y2, Y3, Y4. α = 0. TKVFs

8. u = ln
(

k1r+ k2

2

)2

, v = ln
(

k1

k1k3− k1r2−2k2r

)
and P = 1. Y1, Y2, Y3, Y4. α = 0. TKVFs

9. u = ln
(
k2− k1r− r2) , v = ln

(
k2− k1r− r2)−1

and P = 1. Y1, Y2, Y3, Y4. α = 0. TKVFs

11. u =

(
k1r2

2
+ k2

)
, v = ln

(
k3
√

k1r2+1
r

)2

and P = r. Y1, Y2, Y3, Y4. α = 0. TKVFs

12. u = ln
(

k3ek2r

r

)
, v = ln

(
k1

r

)
and P = r. Y1, Y2, Y3, Y4. α = 0. TKVFs

13. u = ln(k3rk2), v = ln
(

k1

r2

)
and P = r. Y1, Y2, Y3, Y4. α = 0. TKVFs

14. u = constant, v = ln
(

k1

r2

)
and P = r. Y1, Y2, Y3, Y4. α = 0. TKVFs

15. u = ln
(

ek1r+k2

r2

)
, v = ln

[
k3(k1r−1)

r2

]
and P = r. Y1, Y2, Y3, Y4. α = 0. TKVFs

16. u = constant, v = ln
(

k1

r2

)
and P = r. Y1, Y2, Y3, Y4. α = 0. TKVFs

17. u =

(
k2r2

2
− lnr+ k3

)
, v = constant = k1 ̸= 0 and P = r. Y1, Y2, Y3, Y4. α = 0. TKVFs

18. u = (k1r+ k2) , v = ln
[

k3(k1r+1)
r2

]
and P = r. Y1, Y2, Y3, Y4. α = 0. TKVFs

19. u = constant = k1 ̸= 0, v = ln
[

k4

(k2r+ k3)2

]
and P = (k2r+ k3). Y1, Y2, Y3, Y4. α = 0. TKVFs

The Y1, Y2, Y3 and Y4 of Table (2) represents the KVFs mentioned in equation (4.2). This table

shows that no THVFs exists for Static Spherically symmetric space-times in f (T ) gravity.
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4.3 Physical Parameters of Solutions

By plugging in the values of the metric components and torsion scalar T in equation (3.5)

to (3.7), we get the values of dynamical parameters like Energy Density (ρ) and pressure com-

ponents for the aforementioned cases listed below:
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1.
u
=

co
ns

ta
nt
,

v
=

ln
( 1

1+
k 1

r2

) an
d

P
=

r.
ρ
=

1 16
π
(d

2
−

6k
1d

1)
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p
=
−

1 16
π
(d

2
−

2k
1d

1)
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u
=

ln
r4 ,

v
=

co
ns

ta
nt
,

an
d

P
=

r.
ρ
=

d 2 16
π
.

p
=

1 16
π

[ 8d
1

r2
−

d 2
] .

3.
u
=

ln
( 1

−
k 1 r
+

k 2
r2

3

) ,
v
=

ln
( 1

−
k 1 r
+

k 2
r2

3

) −1 an
d

P
=

r.
ρ
=
−

1 16
π
(2

k 2
d 1

−
d 2
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p
=

1 16
π
(2

k 2
d 1

−
d 2
).
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u
=

ln
( 1

−
2M r
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=

ln
( 1

−
2M r

) −1 an
d

P
=

r
ρ
=

d 2 16
π
.

p
=
−

d 2 16
π
.

5.
u
=

ln
( 1

−
Λ

r2 3

) ,
v
=

ln
( 1

−
Λ

r2 3

) −1 an
d

P
=

r.
ρ
=

1 16
π
(2

Λ
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+
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p
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−

1 16
π
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Λ
d 1

+
d 2
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u
=

ln
( k 1 r
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v
=

ln
( r
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−

4r
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d

P
=

r.
ρ
=

d 2 16
π
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p
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−

d 2 16
π
.

7.
u
=

ln
( k 1

r2) ,v
=

ln
( 2

1+
2k

2r
2
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d

P
=

r.
ρ
=

1 16
π

[( 1−
6k

2r
2

r2

) d 1
+

d 2
]

p
=

1 16
π

[( 1+
6k

2r
2

r2

) d 1
−

d 2
] .

8.
u
=

ln
( k 1

r+
k 2

2

) 2 ,
v
=

ln
(

k 1
k 1

k 3
−

k 1
r2
−

2k
2r
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d

P
=

1.
ρ
=

d 2 16
π
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p
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−
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.
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ln
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−
k 1
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d
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=

1.
ρ
=

d 2 16
π
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p
=
−

d 2 16
π
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u
=

ln
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1)
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v
=

ln
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2)
an

d
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=

r√
k 2
.

ρ
=

d 2 16
π
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p
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−

d 2 16
π
.

11
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u=

( k 1
r2

2
+

k 2
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=

ln
( k 3

√
k 1

r2
+

1
r
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r.
ρ
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1 16
π

[ 2 k2 3
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+
d 2
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p
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−

1 16
π

[ 2 k2 3
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+
d 2
] .

12
.

u
=

ln
( k 3

ek 2
r

r

) ,
v
=

ln
( k 1 r
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d

P
=

r.
ρ
=

1 16
π

[ 2k
2

k 3
d 1

+
d 2
] .

p
=
−

1 16
π

[ 2k
2

k 3
d 1

+
d 2
] .

13
.

u
=

ln
[ k 3

rk 2
] ,v=

ln
[ k 1 r2

] ,
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d
P
=

r.
ρ
=

1 16
π

[ 2(
k 2
+

1)
k 1

d 1
+

d 2
] .

p
=
−

1 16
π

[ 2(
k 2
+

1)
k 1

d 1
+

d 2
] .

14
.

u
=

co
ns

ta
nt
,

v
=

ln
( k 1 r2

) an
d

P
=

r.
ρ
=

1 16
π

[ −
2 k 2
d 1

+
d 2
] .

p
=
−

1 16
π

[ −
2 k 2
d 1

+
d 2
] .

15
.

u
=

ln
( ek 1

r+
k 2

r2

) ,
v
=

ln
[ k 3

(k
1r
−

1)
r2

] an
d

P
=

r.
ρ
=

1 16
π

[ 2 k 3
d 1

+
d 2
] .

p
=
−

1 16
π

[ −
2 k 3
d 1

+
d 2
] .
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16
.
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=
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ns
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=

ln
( k 1 r2
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d
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=

r.
ρ
=

1 16
π
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] .
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−
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+
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] .
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−
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=
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d
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=
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=
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+
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+
d 2
] .
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+
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=
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4.4 Classification of Solutions via Energy Conditions

Considering the physical aspects, the energy bounds for the current solutions provided in

the Cases 1 to 20 are displayed in the table provided below:
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4.5 Results and Discussion

By examining the exact solutions of the EFEs through symmetry properties, one can eas-

ily analyze the geometry and uncover the underlying physical nature of the space-time struc-

ture. Undoubtedly, symmetries create necessary constraints that function as a guide to simplify

the physical problems being addressed. In this chapter, we classify static SS space-times via

THVFs in the scope of f (T ) gravity. For this investigation, we observe the EFEs given in paper

[47], in which direct integration technique has been used to categorize the resulting solutions.

The classification revealed a total of 20 cases. We solved all those 20 cases individually for

the sake of classifying the static SS space-times as per their THVFs in f (T ) gravity. By utiliz-

ing space-time (4.1) and non-zero torsion components (4.3), we obtain ten set of equations (i.e.

from (4.4) to (4.13)) and after doing simplifications on some of them we get equation (4.14). To

determine the solutions of equations (4.4) to (4.13), we consider every single case from those

20 cases and solve each possibility in turn. Out of the 20 cases, 4 cases have been discussed

briefly in section (4.2). In all the cases, we obtain that THVFs are the TKVFs. The results of

all cases is shown in Table (2). Additionally, the solutions are also classified via Energy Con-

ditions. The density ρ and the pressure components of all cases have been found and shown in

Table (3). And the detailed classification of solutions via energy conditions is in Table (4).
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Chapter 5

Conclusion

This research investigates the Teleparallel Homothetic Vector Fields of static SS space-

times within the framework of f (T ) gravity. The primary objective of this work was to extend

our understanding of extended theories of gravity, specifically the TEGR and its extensions,

such as f (T ) gravitational theory, by analyzing the solutions of the field equations under spe-

cific conditions. Different cases are solved to see whether the THVFs exists for the particular

space-time or not. The cases yields that for the given space-time, the TKVFs exist and no such

THVFs are found. The absence of THVFs for the given space-time indicates that the space-time

does not exhibit any scaling symmetry and our results will coincide with those derived from

General Relativity. Dynamical parameters like energy density ρ and pressure p are also evalu-

ated. For every static SS model corresponding to the cases (1)-(10), the ρ and p have different

values. While for the cases (11)-(20), the relationship between the non-zero constants ED and

pressure is given by ρ =−p. The energy density and p for cases (1),(3),(4),(5),(6),(8),(9) and

(10)-(20) are linked as ρ =−p, which demonstrates that the dominant universes resemble those

filled with dark energy or energy density associated with a vacuum or cosmological constant.
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In cases (2) and (7), the ED and pressure are positive if the constants d1 and d2 are found to

be positive. Instances like these generate an attractive gravitational effect on the expansion of

our universe, while dark energy exerts negative pressure is often understood as an antigravity

effect. Furthermore, the solutions are classified based on energy conditions.

5.1 Future Work

We can extend this research by finding the THVFs in other modified theories of gravity.

Likewise, we can explore the THVFs for static SS space-times in f (R) theory of gravity. Be-

sides, one can extend the study of THVFs to different symmetry classes, such as cylinderically

symmetric space-times or plane symmetric space-times. As gravity is influenced by matter and

energy, thus by introducing specific matter models (i.e. scalar fields, electromagnetic fields

or perfect fluids), we can study how these matter sources affect the structure of THVFs. The

interaction of HVFs with black hole solutions can also be investigated. These extensions will

provide new insights and solutions to current cosmological and astrophysical problems.
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