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      ABSTRACT 

Title: General Solutions for Magnetohydrodynamics Flow of a Viscoelastic Fluid   

through Porous Medium 

 

In this thesis, a theoretical investigation is undertaken for simple Couette flow and acceleration 

flow for non-Newtonian fluid. Exactly, we establish exact solution for the fully developed 

unsteady laminar flows of an incompressible hydromagnetic Maxwell fluid ℎ lies between two 

parallel plates. One of the plate is stationary while the other plate moves with the velocity 

𝑈𝑓(𝑡), where 𝑓(𝑡) = 𝐻(𝑡) or 𝑓(𝑡) = 𝐻(𝑡)𝑡𝑎(𝑎 > 0). Also, the effect of porous medium is 

taken into account and the constant pressure is applied in the direction of the flow. The 

analytical solution for the velocity field, shear stress and the volume flux are obtained in simple 

form by means of finite Fourier sine transform. These solution, depending on the initial and 

boundary condations are presented as a sun of steady and transient solutions. Furthermore, the 

solutions for Newtonian fluid performing the same motion are also obtained for simple Couette 

flow and the accelerating flows are also obtained as limiting cases for our general solution. 

Finally, the effect of the material parameters on the velocity profile and shear stress are 

spotlighted by means of the graphical illustration. 
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CHAPTER 1  

INTRODUCTION AND LITRATURE REVIEW 

1.1 Non-Newtonian Fluid 

Newtonian fluid provides ease of theoretical modeling because of their constant 

viscosity, which is independent of shear stress or strain rate. Nevertheless, a large number of 

fluids seen in practical applications are non-Newtonian, with viscosities that change in response 

to pressure, time, or shear rate. Because of their non-linear behavior and requirement for 

mathematical techniques like fractional calculus or non-linear differential equations, non-

Newtonian fluids such as those controlled by power-law viscosity-pressure dependencies 

present considerable difficulties. 

The flow of a second-grade incompressible fluid over a porous plate was examined by 

Rajagopal et al. [1], who looked into suction and blowing solutions. In contrast to classical 

Newtonian behavior, their results showed that the presence of solutions is strongly influenced 

by the material moduli. The pressure-dependent viscosity in flows between parallel plates was 

also read by Fetecau et al. [2], who provided solutions for shear stress and velocity under time-

dependent bottom plate motion. These investigations highlighted how important viscosity 

differences are in defining flow properties. 

Asif et al. [3] used Fourier integral transformations to model shear stresses in non-Newtonian 

(Brinkman) flows driven by oscillatory shear forces. They emphasized the distinctions between 

non-Newtonian and Newtonian behaviors in these kinds of flows. These studies were expanded 

to unstable, compressible second-grade fluids by Rajagopal et al. [4], who examined time-

periodic Poiseuille flow and oscillating plate-induced flows. 
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1.2  Maxwell Fluid 

Maxwell fluids combine the characteristics of a fluid and a solid, exhibiting viscoelastic 

qualities. Because of these features, stylish mathematical techniques are required to take strain-

rate dependency and stress relaxation into consideration. Differential equations that describe 

how a fluid reacts to time-dependent forces are frequently used in accurate solutions.  

Oscillatory Maxwell fluid flow in triangular tubes was studied by Sun et al. [5], who derived 

velocity and phase difference formulae impacted by Deborah numbers and relaxation time. 

Wenchang et al. [6] demonstrated the adaptability of this method by modeling unsteady 

Maxwell fluid flows between plates, driven by impulsive and periodic motions, using fractional 

calculus. 

The effects of magnetic fields, relaxation parameters, and oscillation frequencies on Maxwell 

fluid flows close to semi-infinite plates were examined by Bao et al. [7]. Stability under 

absorbing boundary circumstances was highlighted in their findings. In order to examine heat 

and mass transfer in Maxwell fluids, Riaz et al. [8] created fractional differential operators, 

such as the Atangana-Baleanu derivative, and demonstrated their benefits over conventional 

derivatives. Together, these investigations showed how important fractional calculus and 

numerical methods are for simulating Maxwell fluids. 

1.3 Magnetohydrodynamic (MHD) 

MHD integrates fluid dynamics and electromagnetism principles to study how 

electrically conducting fluids behave in magnetic fields. Electric currents are produced when 

fluid velocity and magnetic fields interact, which has an impact on heat transfer and flow 

stability. 

Zheng et al. [9] used fractional calculus to evaluate and generate solutions for MHD flows of 

Oldroyd-B fluids caused by accelerating plates. Their results provided information on Maxwell 

fluids and generalized second-grade fluids under magnetic forces. This work was expanded to 

dusty fluids in boundary layer flows by Jalil et al. [10], who focused on skin friction and 

magnetic field-induced velocity variations. 
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Rehman et al. [11] in Newtonian and non-Newtonian fluids, investigated revealed that 

cylindrical planes outperform them in relations of heat transfer rate and temperature regime. 

These advantages are further enhanced by magnetic fields, which advance our knowledge of 

the thermophysical aspects of flow fields. Analytical solutions for Maxwell fluids in porous 

media were presented by Fetecau et al. [12] and [13], who emphasized the impact of porous 

materials on steady-state behavior and slower flow rates in comparison to Newtonian fluids. 

1.4 Porous Medium 

The study of fluid flow in porous media is vital for applications such as filtration, 

groundwater flow, and enhanced oil recovery. The interaction between fluid properties and 

porous structures introduces additional complexities, requiring advanced mathematical 

modeling. 

Hassan et al. [14] explored nanofluid flows in porous media, demonstrating that nanoparticle 

concentration enhances convection heat transfer, while porous interactions reduce it. Krishna 

et al. [15] analyzed MHD convective flows over inclined plates in porous media, emphasizing 

ion slip and Hall effects. Yang et al. [16] examined water-alumina oxide nanofluids in wavy 

porous media, highlighting the impacts of electromagnetic fields and entropy formation on heat 

transfer. These studies underscore the importance of porous structures in modifying flow and 

thermal behaviors, with implications for energy and environmental systems. 

1.5 Couette Flow  

Viscosity and boundary layer phenomena can be fundamentally understood using the 

Couette flow model, which is the shear flow between two parallel plates. Wall transpiration, 

oscillatory wall motion, and dipolar fluids have all been added to its scope in recent studies. 

When Jordan et al. [17] examined unstable Couette flow of dipolar fluids under fast top plate 

motion, they discovered backflows and discontinuities in velocity. Wall slip effects were 

examined by Khaled et al. [18], who discovered that excessive slip lessens transients in Couette 

flow and decreases oscillation amplitudes and transients in Stokes flow.  

In their explicit solutions for inhomogeneous shear flows, Ershkov et al. [19] showed 

counterflows and vorticity distributions in Couette flow. Sun et al. [20] investigated boundary-
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layer transitions to the asymptotic suction boundary layer (ASBL) and critical Reynolds 

numbers in Couette flow with continuous wall transpiration. 

1.6 Contribution to Thesis 

The work is extended to investigate the MHD Maxwell fluid flow in the presence of a 

porous material with particular initial and boundary conditions, after the review study by 

Fetecau et al. [21] is detailed. Using the integral transform, exact analytical solutions are found 

for two scenarios: simple couette flow and flow caused by an accelerating plate. Mathematica 

and MATLAB applications are used to learn the graphical behaviors of several relevant 

parameters. 

1.7 Thesis Organization 

These are the structure of the remaining thesis:  

Chapter 1 gives an overview of the main ideas as well as an introduction to the thesis. 

Chapter 2 gives some basic definitions used in the study to obtain numerical findings for the 

flow problem.  

Chapter 3 discusses in detail the general solutions for hydromagnetic flow of viscous fluids 

between horizontal parallel plates through porous medium by Fetecau, et al. [21]. 

Chapter 4 provides extended work based on Fetecau, et al. [21]. 

Chapter 5 concludes by discussing the complete research process and the possible future uses 

of this finding.  

References a list of the references consulted for this thesis can be found in the Bibliography. 
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CHAPTER 2  

Fundamental and Basic Definitions  

2.1 Fluid 

A fluid is a material that flows and conforms to the shape of its cylinder. It contains both 

liquids and gasses. Fluids are distinguished by their ease of movement and features such as 

viscosity (flow resistance) and hydrostatic pressure (uniform pressure exerted in all directions). 

They are essential in many natural processes and industry, including transportation, 

engineering, and medicine, see [22]. 

2.1.1 Special Qualities of Fluids 

 Hydrostatic pressure: Fluids can apply pressure uniformly in all directions. 

 Viscosity: The flow resistance of a fluid. 

 Fluids vary in viscosity (thick/high viscosity vs. thin/low viscosity). 

2.1.2   Applications of Fluids 

 Fluids are critical in: 

 Engineering, transportation, weather forecasting, and medical fields. 

 Processes such as blood circulation, hydraulic systems, cooling systems, and 

weather patterns. 
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2.2  Newtonian Fluid 

  The viscosity of a Newtonian fluid remains constant regardless of the force or stress 

applied to it. This implies that its flow behavior remains constant even when pressure or stress 

levels vary, see [22]. 

 

Examples: 

 Water 

 Air 

 Oil 

 Alcohol 

2.3  Non-Newtonian Fluid 

  A non-Newtonian fluid is one whose viscosity varies as stress or force is applied. Non-

Newtonian fluids, as opposed to Newtonian fluids, have a variable viscosity Dr. R.K. Bansal. 

[22] 

Examples: 

 Ketchup: Becomes thinner (flows more easily) when shaken or squeezed (shear-

thinning). 

 Toothpaste: Stays thick in the tube but flows when squeezed out (shear-thinning). 

 Blood: Acts as a non-Newtonian fluid as its flow characteristics change under different 

conditions. 

2.4   Compressible Fluid 

A compressible fluid is one whose density varies affectedly under pressure. Gases are 

usually compressible fluids because their molecules are widely apart and may be pressed closer 

together under pressure. 
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Example:  

 air 

 helium 

 natural gas 

 

Application: 

 

 Compressible fluids are important in aerodynamics, gas pipelines, and engines 

because pressure fluctuations affect performance. 

2.5   Incompressible Fluid 

An incompressible fluid is one whose density remains almost constant even while under 

pressure. Most liquids are considered incompressible because their molecules are densely 

packed and resistant to further compression. 

 

Examples: 

 
 water 

 oil 

 most liquids 

Application: 

 

 Incompressible fluids are frequently assumed in hydraulic systems, fluid dynamics, and 

civil engineering to simplify computations. 
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2.6  Types of Flow 

2.6.1  Steady Flow 

A system is said to be in steady flow when the fluid properties remain consistent throughout 

time at any given point. Stated differently, flow properties such as temperature, pressure, and 

velocity don't change over time at a certain location. Think about a river whose flow rate is 

constant. Selecting a specific location in the river and tracking the water's characteristics over 

time will reveal that they remain constant, see [23].  

2.6.2  Unsteady Flow 

In unsteady flow, flow characteristics such as temperature, pressure, density, and velocity 

change over time, unlike steady flow, which has continuous fluctuations, see [24]. 

Examples: 

 
 Gusty breeze  

 

 Ocean waves and tsunamis 

 

   Arteries' blood flow  

 

 Unstable rocket aerodynamics 

2.6.3 Incompressible Flow 

Incompressible flow maintains a constant density independent of pressure changes. This 

indicates that the volume of the fluid constituents remains constant, even when pressure or 

temperature changes. Under normal conditions, liquids such as water are commonly thought to 

be incompressible. In circumstances with modest flow speeds and moderate pressure 

fluctuations, the density remains almost constant, simplifying fluid dynamics calculations. [25] 
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2.6.4   Laminar Flow 

  Laminar flow is an effect of fluid particles move smoothly and orderly in parallel strata 

with little mixing between layers. When fluid particles move in laminar flow along clearly 

defined paths, there is minimal or no turbulent motion, see [26]. 

2.7  Viscosity 

A fluid's resistance to the force that causes it to flow is known as its viscosity. In simple 

terms, it determines a fluid's internal friction. Kinematic viscosity, apparent viscosity, relative 

viscosity, and dynamic (absolute) viscosity are among the several forms of viscosity. 

 

Examples: 

 Honey: High viscosity, flows slowly. 

 Water: Low viscosity, flows quickly. 

 Motor oil: Medium viscosity, varies with temperature. 

2.8     Porous Medium 

A material is considered a porous medium if it contains a continuous form and many 

communicated pores. Because the substance's pores are filled with fluid, the fluid can leave. 

There are many different shapes and sizes of pores in a porous medium. Whether a medium 

such as dry bread, wood, beach sand, sandstone or is porous is determined by its porosity.  

2.8.1   Porosity 

The medium porosity is the ratio of the entire area of a material to its related void area. 

It is characterized by 𝜑. As a result, the substance's section. Porosity is defined as the proportion 
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of linked voids to total volume. When all pore space is not linked, such as in sponges, wood, 

rubber, and some rocks, this is referred to as effective porosity.  

2.8.2   Permeability 

Permeability refers to a material's ability to enable fluids to flow through it. It measures 

the ease with which water or other fluids may flow through porous materials such as soil or 

rock. High permeability suggests that fluids may flow freely, whereas low permeability shows 

that fluid movement is limited. It is essential for applications such as groundwater movement, 

oil extraction, and environmental engineering 

2.8.3   Darcy’s Law 

Darcy’s Law describes the movement of fluids through a porous media. It asserts that 

the flow rate is directly proportional to the pressure differential across the medium and 

conversely proportional to the fluid's viscosity and the medium's resistance. 

                            𝒒 =
−𝐾

𝜇
𝜵𝑝,                                                         (2.1)  

where 𝜵𝑝 is pressure drop,  μ is the dynamic viscosity , 𝐾 is Porosity parameter and 𝒒 is 

the instantaneous flow rate.  

2.9     Continuity Equation 

The law of mass conservation, known as the continuity equation, states that the entrance 

mass of a system is equal to the sum of its exit mass and the internally developed entry mass.  

The equation for continuity is expressed as follows:  

                        
𝜕𝜌

𝜕𝑡
+  𝜵. (𝜌 𝑽) = 0,                            (2.2)  



12 

 

 

 

where 𝑽 is the velocity and 𝜌 the density of fluid. For incompressible fluid,  

                                               𝜵. 𝑽 = 0.                                                      (2.3) 

2.10   Momentum Equation 

The momentum equation, which is based on Newton's second law of motion, compares 

the sum of forces exerted on the fluid component with its increase in velocity or momentum 

transformation. Incompressible fluids have a particular equation of movement:  

                   𝜌
𝑑𝑽

𝑑𝑡
=  𝜵. 𝑻 − 𝜌𝒃                                     (2.4)                           

   

where 
𝑑

𝑑𝑡
 the upper convective derivative, 𝜌 is density, 𝑻 is Cauchy stress tensor , 𝒃  the 

body force .  

2.11  Integral Transforms 

To determine the initial point of an integral transform, the Fourier integral formula was 

frequently used. Integral transformations have been used in applied mathematics and 

engineering research to solve numerous difficulties. An integral transform is a one-of-a-kind 

mathematical process for transforming to convert an actual or complex-valued function into an 

additional function.  The integral transform's foremost purpose is to make a complex 

mathematical problem easier to understand so that it can be resolved quickly and directly 

without the need for complicated and lengthy computations. It has been demonstrated that 

integral transformations are effective methods for resolving linear differential equations, initial 

boundary value issues, and initial value difficulties of integrals. These problems typically arise 

whereas investigating issues related to fluid mechanics, see [27]. 
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2.12   Finite Fourier Sine Transform   

The finite fourier sine transform is a sort of fourier transform that expresses a function 

specified over a limited interval with sine functions. It is widely used to solve problems with 

specified boundary conditions, such as heat conduction or wave equations, in which the function 

disappears at the borders. 

Formula: 

For a function 𝑓(𝑥) defined on the interval [0, 𝐿], the finite Fourier sine transform 𝐹𝑠(𝑘) is:

                          𝐹𝑠(𝑘) = ∫ 𝑓(𝑥)𝑠𝑖 𝑛 (
𝑘𝜋𝑥

𝐿
)𝑑𝑥,

𝐿

0
                               (2.5) 

where 𝑘 is a positive integer (mode number) and 𝐿 is the length of the interval. 

The function 𝑓(𝑥) can be reconstructed using the inverse finite Fourier sine transform 

𝑓(𝑥) = ∑ 𝐹𝑠(𝑘)𝑠𝑖𝑛 (
𝑘𝜋𝑥

𝐿
).∞

𝑘=1                            (2.6)               
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CHAPTER 3 

General Solutions for Hydromagnetic Flow of Viscous Fluids 

between Horizontal Parallel Plates through Porous Medium [𝟐𝟏] 

3.1 Introduction  

In this chapter, the detailed review of research work done by C. Fetecau et al [21] is 

presented. The hydromagnetic flow of an incompressible viscous fluid between two infinitely 

parallel horizontal plates is analyzed mathematically and analytical solutions are obtained, by 

taking into account the effects of a porous media. The bottom plate moves with arbitrary 

velocity. The work highlights the combined impact of magnetic and porous effects on flow 

behavior by examining a number of theoretically significant motions. Shear stress fields and 

dimensionless velocity are analyzed in relation to the Reynolds number for motions caused by 

a plate that is suddenly relocated or accelerates continuously. Moreover, the solutions for 

couette flow and accelerated flows are established graphically. 

 

 

 



15 

 

 

 

3.2 Problem Geometry 

 

 

Figure 3.1: Physical sketch of the problem 

3.3 Mathematical Formulation 

In a porous media, between two infinite horizontal parallel plates spaced ℎ apart, an electrically 

connected incompressible viscous fluid flows. Plates are subject to a constant magnetic field of 

intensity 𝐵 acting perpendicularly. It is possible to disregard the induced magnetic field. At 

least for partially charged fluids or magnetic liquids with a sufficiently low magnetic Reynolds 

number, such an assumption is true. 

Consider the following flow velocity;                        

          𝑽 =  (𝑢(𝑦, 𝑡), 0, 0),                                                           (3.1) 

and the unsteady flows' constitutive equations are provided by 

Continuity Equation 

                                      𝛁. 𝑽 = 0 .                 (3.2) 
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Momentum Equation 

𝜌 
𝑑𝑽

𝑑𝑡
= 𝑑𝑖𝑣 𝑻 + 𝑭𝑏 + 𝑹 ,                                                 (3.3) 

where the Maxwell fluid's stress tensor is provided below 

 

𝑻 = −𝑝 𝑰 + 𝜇𝑨𝟏 ,                                                        (3.4)               

where 𝑻 is Cauchy stress tensor, 𝑭𝑏 is the Lorentz force, 𝜇 is the dynamic viscosity, 𝜌 is the 

density, 𝑽 is velocity of fluid, 𝑝 is pressure, 𝑑/𝑑𝑡 is material time derivative, 𝑹 is the Darcy 

resistant, ⊺ denotes the transpose and 𝑨𝟏 is the first  Rivlin-Ericksen tensor provided by 

𝑨𝟏 = (𝑳 + 𝑳⊺) ,                                  (3.5) 

through 

  𝑳 = (𝑔𝑟𝑎𝑑𝑽) = [
0

𝜕𝑢

𝜕𝑦
0

0 0 0
0 0 0

]     and      𝑳⊺ = (𝑔𝑟𝑎𝑑𝑽)⊺ = [

0 0 0
𝜕𝑢

𝜕𝑦
0 0

0 0 0

] . 

Using Eq. (3.1), we have 

𝑨𝟏 =

[
 
 
 0

𝜕𝑢

𝜕𝑦
0

𝜕𝑢

𝜕𝑦
0 0

0 0 0]
 
 
 

 .                                               (3.6) 

Substituting Eq. (3.6) in Eqs. (3.3) and (3.4) and simplify, we get 

𝜏(𝑦, 𝑡) = 𝜇
𝜕𝑢(𝑦,𝑡)

𝜕𝑦
 ,                                                 (3.7) 

and 
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𝜌
𝜕𝑢(𝑦,𝑡)

𝜕𝑡
=

𝜕𝜏(𝑦,𝑡)

𝜕𝑦
− 𝜎𝐵2𝑢(𝑦, 𝑡) −

𝜇

𝑘
𝑢(𝑦, 𝑡) ,                    (3.8) 

 

where 𝜏(𝑦, 𝑡) is non-zero shear stress, 𝜎 is electrical conductivity of the fluid and 𝑘 is porous 

medium's permeability. 

Initial and Boundary Conditions 

The appropriate boundary and initial condations are described below; 

I.C:    𝑢(𝑦, 0) =  0,                0 ≤  𝑦 ≤  ℎ ,                                     (3.9)    

and 

B.C:       𝑢(0, 𝑡) = 𝑈𝑓(𝑡),       𝑢(ℎ, 𝑡) = 0,      𝑡 ≥  0 ,                         (3.10) 

where   

i. 𝑓(𝑡) = 𝐻(𝑡) ,        (Simple Couette Flow) 

ii. 𝑓(𝑡) = 𝐻(𝑡)𝑡ᵃ, (𝑎 > 0), (Flow Induced by an Accelerating Plate)  

Consider the form's dimensionless parameters: 

𝑦∗ =
𝑦

ℎ
 ,      𝑡∗ =

𝑈

ℎ
𝑡 ,      𝑢∗ =

𝑢

𝑈
 ,      𝜏∗ =

1

𝜌𝑈2
𝜏.                             (3.11)  

In Eqs. (3.8) - (3.10) the following dimensionless problems after eliminate the star notation, we 

get 

𝜏(𝑦, 𝑡) =
1

𝑅𝑒

𝜕𝑢(𝑦,𝑡)

𝜕𝑦
 ,                                                  (3.12) 

and 
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𝜕𝑢(𝑦,𝑡)

𝜕𝑡
=

𝜕𝜏(𝑦,𝑡)

𝜕𝑦
− 𝐾eff 𝑢(𝑦, 𝑡)       0 < 𝑦 < ℎ,     𝑡 > 0 .              (3.13) 

I.C               𝑢(𝑦, 0) = 0,                       0 ≤ 𝑦 ≤ 1 ,                                       (3.14) 

B.C      𝑢(0, 𝑡) = 𝑓(𝑡) ,          𝑢(1, 𝑡) = 0 ,          𝑡 ≥ 0 ,                            (3.15)  

 

Eliminating 𝜏(𝑦, 𝑡) from Eq. (3.13) produces the following governing equation of the form 

𝜕𝑢(𝑦,𝑡)

𝜕𝑡
=

1

𝑅𝑒

𝜕2𝑢(𝑦,𝑡)

𝜕𝑦2
− 𝐾eff 𝑢(𝑦, 𝑡),       0 < 𝑦 < 1,     𝑡 > 0 ,                 (3.16) 

where 𝑅𝑒 =
𝑈ℎ

𝜈
  and 𝐾eff = 𝑀 +

1

𝐾
 are the effective permeability and Reynolds number. 

         𝑀 =
𝜎𝐵2ℎ

𝜌𝑈
=

𝜎𝐵2

𝜇

ℎ2

𝑅𝑒
     and    𝐾 =

𝑘𝑈

𝜐ℎ
=

𝑘𝑅𝑒

ℎ2
 .                                          (3.17) 

3.4     Solution of the Problem 

To solve the dimensionless boundary and initial value problem given by Eqs. (3.14)- 

(3.16), using the finite fourier sine transform and its inverse, 

𝑢𝐹𝑠(𝑛, 𝑡) = ∫ 𝑢(𝑦, 𝑡)𝑆𝑖𝑛(𝜆𝑛𝑦)𝑑𝑦 ,
1

0
            

and 

𝑢(𝑦, 𝑡) = 2∑ 𝑢𝐹𝑠(𝑛, 𝑡)𝑆𝑖𝑛(𝜆𝑛𝑦)∞
𝑛=1  ,                              (3.18) 

where 𝜆𝑛 =   𝑛𝜋 . 

Therefore, the acquired solution is  
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𝑢(𝑦, 𝑡) =
2

𝑅𝑒
∑ 𝜆𝑛𝑆𝑖𝑛(𝜆𝑛𝑦)∞

𝑛=1 ∫ 𝑓(𝑡 − 𝑠)𝑒−(
𝜆𝑛
2

𝑅𝑒
+𝐾eff)𝑠𝑑𝑠

𝑡

0
 ,                  (3.19) 

 

or equivalently, 

 𝑢(𝑦, 𝑡) = 2𝑓(𝑡)∑
𝜆𝑛𝑆𝑖𝑛(𝜆𝑛𝑦)

𝜆𝑛
2+𝐾eff𝑅𝑒

− 2∑
𝜆𝑛𝑆𝑖𝑛(𝜆𝑛𝑦)

𝜆𝑛
2+𝐾eff𝑅𝑒

∞
𝑛=1

∞
𝑛=1                           (3.20) 

−∫ 𝑓(𝑡 − 𝑠)𝑒
−(

𝜆𝑛
2

𝑅𝑒
+𝐾eff)𝑠𝑑𝑠 .                               

𝑡

0

  

The boundary condition Eq. (3.15) in the first part of the Eq. (3.19) and (3.20) appears to be 

unfulfilled, therefore 

𝑢(𝑦, 𝑡) = (1 − 𝑦)𝑓(𝑡) − 2𝐾eff𝑅𝑒𝑓(𝑡)∑
𝑆𝑖𝑛(𝜆𝑛𝑦)

𝜆𝑛(𝜆𝑛
2+𝐾eff𝑅𝑒)

   ∞
𝑛=1                 (3.21)               

                                −2∑
𝜆𝑛𝑆𝑖𝑛(𝜆𝑛𝑦)

𝜆𝑛
2+𝐾eff𝑅𝑒

∞
𝑛=1 ∫ 𝑓′(𝑡 − 𝑠)𝑒

−(
𝜆𝑛
2

𝑅𝑒
+𝐾eff)𝑠𝑑𝑠

𝑡

0
 , 

and 

𝜏(𝑦, 𝑡) = −
𝑓(𝑡)

𝑅𝑒
− 2𝐾eff𝑓(𝑡)∑

𝐶𝑜𝑠(𝜆𝑛𝑦)

𝜆𝑛
2+𝐾eff𝑅𝑒

   ∞
𝑛=1                    (3.22)                                        

                          −
2

𝑅𝑒
∑

𝜆𝑛
2𝐶𝑜𝑠(𝜆𝑛𝑦)

𝜆𝑛
2+𝐾eff𝑅𝑒

∞
𝑛=1 ∫ 𝑓′(𝑡 − 𝑠)𝑒

−(
𝜆𝑛
2

𝑅𝑒
+𝐾eff)𝑠𝑑𝑠

𝑡

0
 , 

hence, all the boundary condations are satisfied. 

The fluid's drag, or nondimensional frictional forces per unit area, acting on two plates is 

determined by 

 𝜏0(𝑦, 𝑡) = 𝜏(0, 𝑡) = −
𝑓(𝑡)

𝑅𝑒
− 2𝐾eff𝑓(𝑡)∑

1

𝜆𝑛
2+𝐾eff𝑅𝑒

   ∞
𝑛=1                    (3.23)               

                              −
2

𝑅𝑒
∑

𝜆𝑛
2

𝜆𝑛
2+𝐾eff𝑅𝑒

∞
𝑛=1 ∫ 𝑓′(𝑡 − 𝑠)𝑒

−(
𝜆𝑛
2

𝑅𝑒
+𝐾eff)𝑠𝑑𝑠 ,

𝑡

0
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and 

𝜏1(𝑦, 𝑡) = 𝜏(1, 𝑡) = −
𝑓(𝑡)

𝑅𝑒
− 2𝐾eff𝑓(𝑡)∑

(−1)𝑛

𝜆𝑛
2+𝐾eff𝑅𝑒

   ∞
𝑛=1                    (3.24)               

                             −
2

𝑅𝑒
∑

(−1)𝑛𝜆𝑛
2

𝜆𝑛
2+𝐾eff𝑅𝑒

∞
𝑛=1 ∫ 𝑓′(𝑡 − 𝑠)𝑒

−(
𝜆𝑛
2

𝑅𝑒
+𝐾eff)𝑠𝑑𝑠

𝑡

0
 . 

Volume Flux 

The formulae for the volume flux 𝑄(𝑡) per unit width of a plane perpendicular to the flow is  

 using Eq. (3.21) in the form 

𝑄(𝑡) = ∫ 𝑢(𝑦, 𝑡)𝑑𝑡
1

0
=

𝑓(𝑡)

2
− 4𝐾eff𝑅𝑒𝑓(𝑡)∑

1

𝜆2𝑛+1
2 (𝜆2𝑛+1

2 +𝐾eff𝑅𝑒)
   ∞

𝑛=1     (3.25)                  

                       −4∑
1

𝜆2𝑛+1
2 +𝐾eff𝑅𝑒

∞
𝑛=1 ∫ 𝑓′(𝑡 − 𝑠)𝑒

−(
𝜆2𝑛+1
2

𝑅𝑒
+𝐾eff)𝑠𝑑𝑠 .

𝑡

0
 

3.5 Special Cases: 

3.5.1 Case I: 𝑓(𝑡) = 𝐻(𝑡) (Simple Couette Flow) 

By replacing 𝑓(𝑡) in Eqs. (3.21) and (3.22) with the Heaviside unit step function 𝐻(𝑡) 

and utilizing the knowledge that 𝐻′(𝑡) = 𝛿(𝑡) (the Dirac delta function) and 

∫ 𝛿(𝑡 − 𝑠)ℎ(𝑠)𝑑𝑠 = ℎ(𝑡)
𝑡

0
 .                                                                             (3.26) 

The initial solutions are as follows 

𝑢𝑐(𝑦, 𝑡) = 1 − 𝑦 − 2𝐾eff𝑅𝑒 ∑
𝑆𝑖𝑛(𝜆𝑛𝑦)

𝜆𝑛(𝜆𝑛
2+𝐾eff𝑅𝑒)

   ∞
𝑛=1                    (3.27)               

                               −2∑
𝜆𝑛𝑆𝑖𝑛(𝜆𝑛𝑦)

𝜆𝑛
2+𝐾eff𝑅𝑒

∞
𝑛=1 𝑒

−(
𝜆𝑛
2

𝑅𝑒
+𝐾eff)𝑡 , 
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and 

𝜏𝑐(𝑦, 𝑡) = −
1

𝑅𝑒
− 2𝐾eff ∑

𝐶𝑜𝑠(𝜆𝑛𝑦)

𝜆𝑛
2+𝐾eff𝑅𝑒

   ∞
𝑛=1                    (3.28)               

                               −
2

𝑅𝑒
∑

𝜆𝑛
2𝐶𝑜𝑠(𝜆𝑛𝑦)

𝜆𝑛
2+𝐾eff𝑅𝑒

∞
𝑛=1 𝑒

−(
𝜆𝑛
2

𝑅𝑒
+𝐾eff)𝑡 . 

In a porous material, this is equivalent to hydromagnetic simple Couette flow. A moving plate's 

frictional force can be shown on 

𝜏0𝑐(𝑡) = −
1

𝑅𝑒
− 2𝐾eff ∑

1

𝜆𝑛
2+𝐾eff𝑅𝑒

   ∞
𝑛=1                    (3.29)               

                                    −
2

𝑅𝑒
∑

𝜆𝑛
2

𝜆𝑛
2+𝐾eff𝑅𝑒

∞
𝑛=1 𝑒

−(
𝜆𝑛
2

𝑅𝑒
+𝐾eff)𝑡 . 

Also, the volume flow then becomes 

 

𝑄𝑐(𝑡) =
1

2
− 4𝐾eff𝑅𝑒 ∑

1

𝜆2𝑛+1
2 (𝜆2𝑛+1

2 +𝐾eff𝑅𝑒)
   ∞

𝑛=1            (3.30)                  

                         −4∑
1

𝜆2𝑛+1
2 +𝐾eff𝑅𝑒

∞
𝑛=1 𝑒

−(
𝜆2𝑛+1
2

𝑅𝑒
+𝐾eff)𝑡 ,           𝑡 > 0 .              

For 𝑡 =  0, both the volume flux 𝑄𝑐(𝑡) and the fluid velocity 𝑢𝑐(𝑦, 𝑡) are zero, as predicted. 

When transient components of initial solutions are small, the fluid flows according to steady 

(permanent) solutions at large time 𝑡 

            𝑢𝑐𝑝(𝑦, 𝑡) = 1 − 𝑦 − 2𝐾eff𝑅𝑒 ∑
𝑆𝑖𝑛(𝜆𝑛𝑦)

𝜆𝑛(𝜆𝑛
2+𝐾eff𝑅𝑒)

 ,∞
𝑛=1                           (3.31) 

and 

 𝜏𝑐𝑝(𝑦, 𝑡) =
1

𝑅𝑒
− 2𝐾eff𝑅𝑒 ∑

𝐶𝑜𝑠(𝜆𝑛𝑦)

𝜆𝑛
2+𝐾eff𝑅𝑒

  .∞
𝑛=1                                         (3.32) 
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These solutions meet the boundary requirements and governing equations, but are not affected 

by the starting condition Eq. (3.14). The frictional force 𝜏0𝑐(𝑡) on the moving plate and volume 

flux 𝑄𝑐(𝑡)tend to be stable expressions.                        

 

            𝜏0𝑐𝑝(𝑦, 𝑡) = −
1

𝑅𝑒
− 2𝐾eff ∑

1

𝜆𝑛
2+𝐾eff𝑅𝑒

 ,∞
𝑛=1                                      (3.33) 

and 

 𝑄𝑐𝑝(𝑦, 𝑡) =
1

2
− 4𝐾eff𝑅𝑒 ∑

1

𝜆2𝑛+1
2 (𝜆2𝑛+1

2 +𝐾eff𝑅𝑒)
∞
𝑛=1  ,                              (3.34) 

for 𝑡 → ∞ . 

Direct calculations indicate that the stable solutions from Eqs. (3.31) to (3.34) can be stated in 

simpler forms. The stable sections 𝜏𝑐𝑝(𝑦) and 𝑢𝑐𝑝(𝑦) from Eq. (3.30) for example, can be 

expressed in the appropriate forms 

          𝑢𝑐𝑝(𝑦) =
𝑆𝑖𝑛ℎ[(1−𝑦)√𝐾eff𝑅𝑒]

𝑆𝑖𝑛ℎ√𝐾eff𝑅𝑒
 ,                                                              (3.35) 

and 

𝜏𝑐𝑝(𝑦) = −√
𝐾eff

𝑅𝑒
 
𝐶𝑜𝑠ℎ[(1−𝑦)√𝐾eff𝑅𝑒]

𝑆𝑖𝑛ℎ√𝐾eff𝑅𝑒
 .                                                          (3.36) 

Solving the associated boundary value problem yields the analogous expression in the first part 

of  the Eq. (3.35)and (3.36) for the steady component of velocity, 𝑢𝑐𝑝(𝑦). 

       
1

𝑅𝑒

𝑑2𝑢(𝑦)

𝑑𝑦2
− 𝐾eff𝑢(𝑦) = 0 ,          𝑢(0) = 1,      𝑢(1) = 0 .                            (3.37) 

The solutions for simple Couette flow and hydromagnetic simple Couette flow through porous 

media are simple to obtain, with 𝐾 →  ∞ and 𝑀 →  0, respectively, and 𝐾eff = 0. Velocity 

expression for basic Couette flow 
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𝑢(𝑦, 𝑡) = 1 − 𝑦 − 2∑
𝑆𝑖𝑛(𝜆𝑛𝑦)

𝜆𝑛
𝑒(−

𝜆𝑛
2

𝑅𝑒
𝑡) .∞

𝑛=1                                                     (3.38) 

3.5.2 Case II: 𝑓(𝑡) =  𝐻(𝑡)𝑡𝑎 (𝑎 >  0) (Flow Induced by an Accelerating 

Plate) 

Changing 𝑓(𝑡) in Eqs. (3.21) and (3.22) to 𝐻(𝑡)𝑡𝑎  (𝑎 >  0) yields solutions for fluid 

motion caused by an accelerated plate. 

𝑢1(𝑦, 𝑡) = (1 − 𝑦)𝑡 − 2𝐾eff𝑅𝑒𝑡 ∑
𝑆𝑖𝑛(𝜆𝑛𝑦)

𝜆𝑛(𝜆𝑛
2+𝐾eff𝑅𝑒)

   ∞
𝑛=1                    (3.39)               

                            −2𝑅𝑒 ∑
𝜆𝑛𝑆𝑖𝑛(𝜆𝑛𝑦)

(𝜆𝑛
2+𝐾eff𝑅𝑒)2

{1 −∞
𝑛=1 𝑒

−(
𝜆𝑛
2

𝑅𝑒
+𝐾eff)𝑡} , 

and 

𝜏1(𝑦, 𝑡) =
𝑡

𝑅𝑒
− 2𝐾eff𝑡 ∑

𝐶𝑜𝑠(𝜆𝑛𝑦)

𝜆𝑛
2+𝐾eff𝑅𝑒

   ∞
𝑛=1                    (3.40)               

                         −2∑
𝜆𝑛

2𝐶𝑜𝑠(𝜆𝑛𝑦)

(𝜆𝑛
2+𝐾eff𝑅𝑒)2

{1 −∞
𝑛=1 𝑒

−(
𝜆𝑛
2

𝑅𝑒
+𝐾eff)𝑡} , 

equivalent to 𝑓(𝑡) = 𝐻(𝑡) when the bottom plate is continuously accelerated. Eqs. (3.23 - 3.25) 

can be used to calculate frictional forces and volume flow between two plates. Furthermore, 

considering the formulations of 𝑢𝑐𝑝(𝑦) and 𝜏𝑐𝑝(𝑦) provided by Eqs. (3.27) and (3.28) it is easy 

to establish that 

𝑢𝑛(𝑦, 𝑡) = (𝑛!) ∫ ∫ ∫ , … . ,
𝑠2

0

𝑠1

0

𝑡

0
∫ 𝑢𝑐(𝑦, 𝑠𝑛)𝑑𝑠1𝑑𝑠2, … , 𝑑𝑠𝑛

𝑠𝑛−1

0
 ,             (3.41) 

𝜏𝑛(𝑦, 𝑡) = (𝑛!) ∫ ∫ ∫ ,… . ,
𝑠2

0

𝑠1

0

𝑡

0
∫ 𝜏𝑐(𝑦, 𝑠𝑛)𝑑𝑠1𝑑𝑠2, … , 𝑑𝑠𝑛

𝑠𝑛−1

0
 ,              (3.42) 
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where 𝑢𝑛(𝑦, 𝑡) and 𝜏𝑛(𝑦, 𝑡) are solutions corresponding to 𝑓(𝑡) = 𝐻(𝑡)𝑡𝑛. Knowing the 

solutions 𝑢𝑐(𝑦, 𝑡) and 𝜏𝑐(𝑦, 𝑡) of the basic Couette flow allows for determining the solutions 

𝑢𝑛(𝑦, 𝑡) and 𝜏𝑛(𝑦, 𝑡) by simple or multiple integrations. 

3.6   Results and Discussion 

Analytical study of the hydromagnetic flow of viscous fluids between parallel plates 

immersed in a porous material was conducted. General formulae in series and integral form 

have been found for the nonvoid shear stress fields and velocity, as well as for the volume flux 

𝑄(𝑡) per unit width. Moreover, motion characteristics rely on the porous and magnetic 

parameters 𝐾 and 𝑀 via the effective permeability. The impact of Reynolds number, and the 

combined porous and magnetic effect on velocity field and shear stress are graphically 

undefined and depicted in Figs. 3.2-3.7. 

Fig. 3.2 shows the comparison between two forms of steady components of velocities given by 

Eqs. (3.32) and (3.36) and comparison of steady components of shear stress is given by Eqs. 

(3.33) and (3.37) for different value of  𝐾eff , respectively. It can be seen that by increasing the 

value of effective permeability 𝐾eff the velocity profile is decreasing. Moreover, combined 

effect of porosity and constant magnetism shows the retardation in fluid motion, for two 

different forms of the velocity profile and the corresponding shear stress. 

Figs. 3.3-3.5 and 3.6-3.8 show the fluctuation of shear stress and velocity fields versus 𝑦 for 

flows caused by uniform or constantly accelerating motion of the bottom plate for different 

values of Reynolds number (𝑅𝑒), effective permeability (𝐾eff), and time (𝑡). In both cases, the 

fluid shear stress 𝜏 (𝑦, 𝑡) and velocity 𝑢 (𝑦, 𝑡)  in terms of absolute value gradually decline from 

maximum values on the moving plate to zero values on the stationary plate. The fluid velocity 

as a result of these figures increases with time and drops for increased Reynolds numbers 𝑅𝑒 or 

𝐾eff over the whole flow domain. 

Figs. 3.5 and 3.8 cannot accurately forecast the influence of a magnetic field or a porous media 

on velocity and shear stress due to the unlimited range of 𝑀 and 𝐾 values. However, these 

graphical representations apply to the same fluid flow for which 𝑀 =  1, 3 or 7 in the absence 

of a porous media, or for movements in which the magnetic field is absent, and 𝐾 = 1 ,
1

3
  or 
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1

7
. As a result, the fluid velocity decreases with respect to the magnetic parameter 𝑀 while 

increases with respect to 𝐾. More precisely, the presence of a magnetic field or the porous 

material suggests a reduction in the fluid velocity. 

 

 

 

 

Figure 3.2: Profile of steady components 𝑢𝑐𝑝(𝑦, 𝑡) and 𝜏𝑐𝑝(𝑦, 𝑡) for different values of 𝐾eff       

        and 𝑅𝑒 = 70.  
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Figure 3.3: Velocity and shear stress variations for 𝑡  provided by Eqs. (3.27) and (3.28). 
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Figure 3.4: Velocity and shear stress variations for 𝑅𝑒  provided by Eqs. (3.27) and (3.28). 
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Figure 3.5: Velocity and shear stress variations for 𝐾eff  provided by Eqs. (3.27) and (3.28). 
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Figure 3.6: Velocity and shear stress variations for 𝑡  provided by Eqs. (3.39) and (3.40).  
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Figure 3.7: Velocity and shear stress variations for 𝑅𝑒  provided by Eqs. (3.39) and (3.40). 
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Figure 3.8: Velocity and shear stress variations for 𝐾eff  provided by Equ. (3.39) and (3.40)  
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CHAPTER 4  

General Solutions for Magnetohydrodynamics Flow of a 

Viscoelastic Fluid through Porous Medium 

4.1 Introduction 

Consider unsteady, one dimensional and incompressible hydromagnetic Maxwell fluid that are 

along the x-axis between two parallel, horizontal plates. The impact of porosity is considered. 

The fluid motion is created by one of the plates is couette flow or accelerating in its own plane, 

and the solutions meet all initial and boundary requirements. FFST is used to find the precise 

exact analytical solution for the dimensionless velocity field, shear stress, and volume flux. The 

limiting case for the Newtonian fluid [21] is recovered. Moreover, the effects of various 

pertinent parameter of the flow are discussed through graphs. 
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4.2 Mathematical Modeling 

One dimensional, unsteady, Incompressible , hydromagnetic Maxwell fluid lies between 

two infinite horizontal parallel plates at a distance ℎ apart is considered. Also, the effect of 

porous media are also considered. The velocity and stress field profiles of the form determine 

the flow, 

      𝑽 =  (𝑢(𝑦, 𝑡), 0, 0) ,      and           𝐒 = 𝐒(𝑦, 𝑡) ,                                              (4.1) 

and constitutive equations for the unsteady flow are given by: 

Continuity Equation 

                                      𝛁. 𝑽 = 0 ,                (4.2) 

Momentum Equation  

 𝜌
𝑑𝑽

𝑑𝑡
= div 𝑻 + 𝑭𝑏 + 𝑹 ,                                                    (4.3) 

where the Maxwell fluid's stress tensor is provided below: 

𝑻 = −𝑝 𝑰 + 𝑺 ,                                                        (4.4)               

  and 

             𝑺 + 𝜆 (
𝐷𝑆

𝐷𝑡
) = 𝜇𝑨𝟏  ,                                                      (4.5) 

in which 

     
𝐷𝑺

𝐷𝑡
=

𝑑𝑺

𝑑𝑡
− 𝑳𝑺 − 𝑺𝑳⊺ ,                                                       (4.6) 
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where 𝑻 is Cauchy stress tensor, 𝑺 is extra stress tensor, 𝑭𝑏  is the Lorentz force , 𝑽 is velocity 

of fluid,  𝑝 is pressure, 
𝑑

𝑑𝑡
 is material time derivative, 

𝐷

𝐷𝑡
  is upper convective time derivative, 

𝜆 is the relaxation time, 𝑳 is the velocity gradient, 𝐀𝟏 is the first tensor of Rivlin-Ericksen , ⊺ 

denotes the transpose, 𝑹 is the Darcy resistant and 𝜇 is the dynamic viscosity is provided by: 

𝑨𝟏 = (𝑳 + 𝑳⊺) ,                                 (4.7) 

through 

         𝑳 = (grad 𝑽) = [
0

𝜕𝑢

𝜕𝑦
0

0 0 0
0 0 0

]     and      𝑳⊺ = (grad 𝑽)⊺ = [

0 0 0
𝜕𝑢

𝜕𝑦
0 0

0 0 0

] . 

Using Eq. (4.1), we have 

𝑨𝟏 =

[
 
 
 0

𝜕𝑢

𝜕𝑦
0

𝜕𝑢

𝜕𝑦
0 0

0 0 0]
 
 
 

 ,                                                    (4.8) 

          
𝐷𝑺

𝐷𝑡
=

[
 
 
 
 

𝜕

𝜕𝑡
𝑆𝑥𝑥 − 2𝑆𝑦𝑥

𝜕𝑢

𝜕𝑡

𝜕

𝜕𝑡
𝑆𝑥𝑦 − 𝑆𝑦𝑦

𝜕𝑢

𝜕𝑡

𝜕

𝜕𝑡
𝑆𝑥𝑧 − 𝑆𝑦𝑧

𝜕𝑢

𝜕𝑡
𝜕

𝜕𝑡
𝑆𝑦𝑥 − 𝑆𝑦𝑦

𝜕𝑢

𝜕𝑡

𝜕

𝜕𝑡
𝑆𝑦𝑦

𝜕

𝜕𝑡
𝑆𝑦𝑧

𝜕

𝜕𝑡
𝑆𝑧𝑥 − 𝑆𝑧𝑦

𝜕𝑢

𝜕𝑡

𝜕

𝜕𝑡
𝑆𝑧𝑦

𝜕

𝜕𝑡
𝑆𝑧𝑧 ]

 
 
 
 

 .                     (4.9) 

Substitution of Eqs. (4.8) and (4.9) into Eq. (4.4) one can write Eq. (4.5) in the component form 

as 

𝑆𝑥𝑥 + 𝜆 (
𝜕𝑆𝑥𝑥

𝜕𝑡
− 2𝜆𝑆𝑦𝑥

𝜕𝑢

𝜕𝑦
) = 0 ,                                     (4.10) 

𝑆𝑥𝑦 + 𝜆 (
𝜕𝑆𝑥𝑦

𝜕𝑡
− 𝑆𝑦𝑦

𝜕𝑢

𝜕𝑦
) = 𝜇

𝜕𝑢

𝜕𝑦
  ,                               (4.11) 
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𝑆𝑥𝑧 − 𝜆 (
𝜕𝑆𝑥𝑧

𝜕𝑡
− 𝑆𝑦𝑧

𝜕𝑢

𝜕𝑦
) = 0 ,                          (4.12) 

𝑆𝑦𝑦 + 𝜆 (
𝜕𝑆𝑦𝑦

𝜕𝑡
) = 0 ,                                (4.13) 

𝑆𝑦𝑧 + 𝜆 (
𝜕𝑆𝑦𝑧

𝜕𝑡
) = 0 ,                             (4.14) 

and 

𝑆𝑧𝑧 + 𝜆 (
𝜕𝑆𝑧𝑧

𝜕𝑡
) = 0 .                                  (4.15) 

Considering initial conditions of the form 

𝑆(𝑦, 0) =
𝜕𝑆(𝑦,0)

𝜕𝑡
= 0 .                               (4.16) 

Eqs. (4.10) - (4.13) becomes 

𝑆𝑥𝑥 = 𝑆𝑦𝑧 = 𝑆𝑧𝑧 = 𝑆𝑥𝑧 = 𝑆𝑦𝑦 = 0 .                            (4.17) 

4.3     Statement of the Problem 

Consider unsteady, incompressible and hydromagnetic Maxwell fluid placed between 

two parallel plates along 𝑥-axis. Initially, both the plates and the fluid are at rest. At  𝑡 =  0+, 

the lower plate starts to move in its own plane with the velocity 𝑈𝑓(𝑡). The fluid moves 

gradually due to shear and the continuity equation is true for Eq. (4.2). In the constitutive Eqs. 

(4.11), introduce the velocity field provided by Eq. (4.1), and since: 

 

          𝑽 =  (𝑢(𝑦, 𝑡), 0, 0),      and         𝐒(𝑦, 0) = 0 , 0 ≤ 𝑦 ≤ ℎ .                       (4.18) 

therefore, we get the following statement of the form 
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(1 + 𝜆
𝜕

𝜕𝑡
) 𝑆𝑥𝑦(𝑦, 𝑡) = 𝜇

𝜕𝑢(𝑦,𝑡)

𝜕𝑦
 ,                                                             (4.19) 

or 

(1 + 𝜆
𝜕

𝜕𝑡
) 𝜏(𝑦, 𝑡) = 𝜇

𝜕𝑢(𝑦,𝑡)

𝜕𝑦
 ,                                                           (4.20) 

where τ(y, t) = 𝑆𝑥𝑦(𝑦, 𝑡)  are the non-trivial component of shear stress and 

𝜌
𝜕𝑢(𝑦,𝑡)

𝜕𝑡
= −

𝜕𝑝

𝜕𝑥
+

𝜕τ(y,t)

𝜕𝑦
+ 𝐹𝑥 + 𝑅𝑥(𝑦, 𝑡) ,                                          (4.21) 

0 = −
𝜕𝑝

𝜕𝑦
  ,                                                                      (4.22) 

and 

0 = −
𝜕𝑝

𝜕𝑧
            ⇒ 𝑝 ≠ 𝑝(𝑦, 𝑧) ,                                  (4.23)     

where 𝜌 is the fluid density, 𝐹𝑥 is the body force along the 𝑥- axis and 𝑅𝑥(𝑦, 𝑡) is the Darcy 

resistance along 𝑥- axis [28]:    

(1 + 𝜆
𝜕

𝜕𝑡
)𝑅𝑥 = −

𝜇𝜑

𝑘
𝑢(𝑦, 𝑡) ,                                               (4.24) 

where 𝜑 is the porous medium's permeability and 𝑘 is the porosity parameter. The equation that 

results from removing 𝜏(𝑦, 𝑡) from Eqs. (4.20) and (4.21) while keeping in mind Eq. (4.24), 

looks like: 

       (1 + 𝜆
𝜕

𝜕𝑡
)

𝜕𝑢(𝑦,𝑡)

𝜕𝑡
= 𝜈

𝜕2𝑢(𝑦,𝑡)

𝜕𝑦2
+

1

𝜌
(1 + 𝜆

𝜕

𝜕𝑡
)𝜎𝐵𝜊

2𝜇 −
𝜈

𝑘
𝑢(𝑦, 𝑡),        

                                     0 < 𝑦 < ℎ, 𝑡 > 0 ,                            (4.25) 

where 𝜈 =
𝜇

𝑘
  is the fluid of kinematic viscosity. The appropriate initial and boundary conditions 

are defined below: 
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I.C               𝑢(𝑦, 0) = 0 ,          
𝜕𝑢(𝑦,𝑡)

𝜕𝑡
|𝑡=0 = 0 ,               0 ≤ 𝑦 ≤ ℎ ,          (4.26) 

and 

B.C      𝑢(0, 𝑡) = 𝑓(𝑡) ,       𝑢(ℎ, 𝑡) = 0 ,           𝑡 > 0 .                              (4.27) 

4.4 Solution of the Problem 

To make the recommended model non-dimensional, dimensionless variables are defined: 

𝑦∗ =
𝑦

ℎ
 ,    𝑡∗ =

𝑈

ℎ
𝑡 ,       𝑢∗ =

𝑢

𝑈
 ,        𝜏∗ =

1

𝜌𝑈2
𝜏  .                              (4.28)  

Substituting Eq. (4.28) into Eqs. (4.25) – (4.27), the following dimensionless problem is 

obtained after removing the star notation 

(1 + 𝑊𝑒
𝜕

𝜕𝑡
)

𝜕𝑢(𝑦,𝑡)

𝜕𝑡
=

1

𝑅𝑒

𝜕2𝑢

𝜕𝑦2
− 𝐾eff 𝑢(𝑦, 𝑡) − 𝑀𝑊𝑒

𝜕𝑢(𝑦,𝑡)

𝜕𝑡
 ,  0 < 𝑦 < ℎ,    𝑡 > 0,   

                   (4.29) 

      𝑢(𝑦, 0) =
𝜕𝑢(𝑦,𝑡)

𝜕𝑡
|𝑡=0 = 0,       for       0 ≤ 𝑦 ≤ 1,                                    (4.30) 

and 

𝑢(0, 𝑡) = 1,  and    𝑢(1, 𝑡) = 0    if         𝑡 > 0,                                    (4.31) 

where in Eq. (4.29), 𝐾eff is the effective permeability, 𝑊𝑒 is the Weissenberg number and 𝑅𝑒 

is the Reynolds number defined below, 
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𝑅𝑒 =
𝑈ℎ

𝜈
,    𝑊𝑒 =

𝜆𝑢

ℎ
,    𝐾eff = 𝑀 +

1

𝐾
 ,   𝐾 =

𝑘𝑈

𝜈ℎ
,   𝑀 =

𝜎𝐵2ℎ

𝜌𝑈
   .             (4.32) 

Dimensionless forms of the (4.20) is given below, 

(1 + 𝑊𝑒
𝜕

𝜕𝑡
) 𝜏(𝑦, 𝑡) =

1

𝑅𝑒

𝜕𝑢(𝑦,𝑡)

𝜕𝑦
  ,                                                            (4.33) 

the corresponding initial condations are: 

    𝜏(𝑦, 0) = 0,       0 ≤ 𝑦 ≤ 1.                                                                 (4.34) 

Multiplying Eq. (4.29) by 𝑠𝑖𝑛(𝜆𝑛𝑦), where 𝜆𝑛  =  𝑛𝜋, and while keeping the condition in mind, 

the result is integrated with respect to 𝑦 from 0 to 1 by using Eq. (4.31), it results that, 

𝑅𝑒𝑊𝑒
𝜕2𝑢𝐹𝑠(𝑡)

𝜕𝑡2
+ 𝑅𝑒(1 + 𝑀𝑊𝑒)

𝜕𝑢𝐹𝑠(𝑡)

𝜕𝑡
+ 𝑅𝑒 (𝐾eff +

𝜆𝑛
2

𝑅𝑒
) 𝑢𝐹𝑠(𝑡) = 𝜆𝑛𝑓(𝑡) , 

           𝑡 > 0 ,                   (4.35) 

with initial conditions  

𝑢𝐹𝑠(0) =
𝜕𝑢𝐹𝑠

𝜕𝑡
|𝑡=0 = 0,          n= 1,2,3…… . .,                                (4.36) 

where 𝑢𝐹𝑠(𝑡) is the finite Fourier sine transform of 𝑢(𝑦, 𝑡), and 𝜆𝑛 = 𝑛𝜋 .  
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4.4.1 Case I: 𝑓(𝑡) = 𝐻(𝑡) (Simple Couette Flow) 

The solution of the Eq. (4.35) by using initial conditions Eq. (4.36) is given below:  

    𝑢𝐹𝑠(𝑛, 𝑡) =
𝜆𝑛

𝜇𝑛
2 (

𝑟1𝑛

𝑟2𝑛−𝑟1𝑛
) 𝑒𝑟2𝑛𝑡 −

𝜆𝑛

𝜇𝑛
2 (

𝑟2𝑛

𝑟2𝑛−𝑟1𝑛
) 𝑒𝑟1𝑛𝑡 +

𝜆𝑛

𝜇𝑛
2  ,                    (4.37) 

where  𝑟1𝑛, 𝑟2𝑛 =
−(1+𝑀𝑊𝑒)±√(1+𝑀𝑊𝑒)2−4𝑊𝑒

𝜇𝑛
2

𝑅𝑒

2𝑊𝑒
  are the causes and 𝜇𝑛

2 = λn
2 + keffRe. 

Using Eq. (4.37) and the inverse FFST, we obtain: 

 

𝑢(𝑦, 𝑡) = 2∑ {(
𝑟1𝑛

𝑟2𝑛−𝑟1𝑛
) 𝑒𝑟2𝑛𝑡 − (

𝑟2𝑛

𝑟2𝑛−𝑟1𝑛
) 𝑒𝑟1𝑛𝑡}

𝜆𝑛𝑆𝑖𝑛(𝜆𝑛𝑦)

𝜇𝑛
2   ∞

𝑛=1            

                +2∑
𝜆𝑛𝑆𝑖𝑛(𝜆𝑛𝑦)

𝜇𝑛
2  ∞

𝑛=1 ,                                                                 (4.38) 

or equivalently 

          𝑢𝑐(𝑦, 𝑡) = 1 − 𝑦 − 2𝐾eff𝑅𝑒 ∑
𝑆𝑖𝑛(𝜆𝑛𝑦)

𝜆𝑛(𝜆𝑛
2+𝐾eff𝑅𝑒)

   ∞
𝑛=1    

                       −2∑
𝜆𝑛𝑆𝑖𝑛(𝜆𝑛𝑦)

𝜇𝑛
2

∞
𝑛=1 [(

𝑟2𝑛

𝑟2𝑛−𝑟1𝑛
) 𝑒𝑟1𝑛𝑡 − (

𝑟1𝑛

𝑟2𝑛−𝑟1𝑛
) 𝑒𝑟2𝑛𝑡] .           (4.39) 

Introducing 𝑢(𝑦, 𝑡) from Eq. (4.39) into Eq. (4.33) and integrating the result by keeping in mind 

the condition Eq.(4.34), it results that: 

     𝜏𝑐(𝑦, 𝑡) = (1 − 𝑒−
𝑡

𝑊𝑒)(−
1

𝑅𝑒
− 2𝐾eff ∑

𝐶𝑜𝑠(𝜆𝑛𝑦)

𝜇𝑛
2 )   ∞

𝑛=1         

                       −
2

𝑅𝑒
∑

𝜆𝑛
2𝐶𝑜𝑠(𝜆𝑛𝑦)

𝜇𝑛
2

∞
𝑛=1 [

𝑟2𝑛(1+𝑊𝑒 𝑟2𝑛)𝑒𝑟1𝑛𝑡−𝑟1𝑛(1+𝑊𝑒 𝑟1𝑛)𝑒𝑟2𝑛𝑡

(𝑟2𝑛−𝑟1𝑛)(1+𝑊𝑒 𝑟1𝑛)(1+𝑊𝑒 𝑟2𝑛)
] .    (4.40) 
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In a porous material, this is equivalent to hydromagnetic simple Couette flow. For example, 

frictional force on a moving plate can be 

𝜏0𝑐(𝑡) = (1 − 𝑒−
𝑡

𝑊𝑒)(−
1

𝑅𝑒
− 2𝐾eff ∑

1

𝜇𝑛
2)   

∞
𝑛=1    

             −
2

𝑅𝑒
∑

𝜆𝑛
2

𝜇𝑛
2

∞
𝑛=1 [

𝑟2𝑛(1+𝑊𝑒 𝑟2𝑛)𝑒𝑟1𝑛𝑡−𝑟1𝑛(1+𝑊𝑒 𝑟1𝑛)𝑒𝑟2𝑛𝑡

(𝑟2𝑛−𝑟1𝑛)(1+𝑊𝑒 𝑟1𝑛)(1+𝑊𝑒 𝑟2𝑛)
] .                   (4.41) 

The volume flux 𝑄(𝑡) per unit width of a plane normal to the flow is also a crucial factor in this 

scenario. Eq. (4.39) describes its expression 

𝑄𝑐(𝑡) = ∫ 𝑢𝑐(𝑦, 𝑡)𝑑𝑦
1

0
=

1

2
− 4𝐾eff𝑅𝑒 ∑

1

𝜆2𝑛+1
2 (𝜆2𝑛+1

2 +𝐾eff 𝑅𝑒)
   ∞

𝑛=1   

            −4∑
1

𝜆2𝑛+1
2 +𝐾eff 𝑅𝑒

∞
𝑛=1 [(

𝑟2𝑛

𝑟1𝑛−𝑟2𝑛
) 𝑒𝑟1𝑛𝑡 − (

𝑟1𝑛

𝑟1𝑛−𝑟2𝑛
) 𝑒𝑟2𝑛𝑡] , 𝑡 > 0 .     (4.42) 

For 𝑡 =  0, both the volume flux 𝑄𝑐(𝑡)  and the fluid velocity 𝑢𝑐(𝑦, 𝑡) are zero, as predicted. 

When transient components of initial solutions are small, the fluid flows according to steady 

(permanent) solutions at large time 𝑡. 

            𝑢𝑐𝑝(𝑦, 𝑡) = 1 − 𝑦 − 2𝐾eff𝑅𝑒 ∑
𝑆𝑖𝑛(𝜆𝑛𝑦)

𝜆𝑛(𝜆𝑛
2+𝐾eff𝑅𝑒)

  ,∞
𝑛=1                        (4.43) 

and 

 𝜏𝑐𝑝(𝑦, 𝑡) =
1

𝑅𝑒
− 2𝐾eff𝑅𝑒 ∑

𝐶𝑜𝑠(𝜆𝑛𝑦)

𝜆𝑛
2+𝐾eff𝑅𝑒

  .∞
𝑛=1                                      (4.44) 

These solutions meet the boundary requirements and governing equations, but are not affected 

by the initial condition (Eq. 4.26). The frictional force 𝜏0𝑐(𝑡) on the moving plate and volume 

flux 𝑄𝑐(𝑡) tend to be stable expression. 

            𝜏0𝑐𝑝(𝑦, 𝑡) = −
1

𝑅𝑒
− 2𝐾eff ∑

1

𝜆𝑛
2+𝐾eff𝑅𝑒

  ,∞
𝑛=1                                       (4.45) 
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and 

 𝑄𝑐𝑝(𝑦, 𝑡) =
1

2
− 4𝐾eff𝑅𝑒 ∑

1

𝜆2𝑛+1
2 (𝜆2𝑛+1

2 +𝐾eff𝑅𝑒)
  ,∞

𝑛=1                               (4.46) 

for 𝑡 → ∞. 

Direct calculations indicate that the stable solutions from Eqs. (4.43) - (4.46) can be stated in 

simpler forms. The stable sections 𝜏𝑐𝑝(𝑦) and 𝑢𝑐𝑝(𝑦) from Eqs. (4.43) and (4.44), for example, 

can be expressed in the appropriate forms defined blow 

          𝑢𝑐𝑝(𝑦) =
𝑆𝑖𝑛ℎ[(1−𝑦)√𝐾eff𝑅𝑒]

𝑆𝑖𝑛ℎ√𝐾eff𝑅𝑒
 ,                                                               (4.47) 

and   

𝜏𝑐𝑝(𝑦) = −√
𝐾eff

𝑅𝑒

𝐶𝑜𝑠ℎ[(1−𝑦)√𝐾eff𝑅𝑒]

𝑆𝑖𝑛ℎ√𝐾eff𝑅𝑒
 .                                                           (4.48) 

Solving the associated boundary value problem yields the analogous expression in the first part 

of  the Eq. (4.45) for the steady component of velocity  𝑢𝑐𝑝(𝑦). 

4.4.2 Case II: 𝑓(𝑡) = 𝐻(𝑡)𝑡𝑎(𝑎 > 0) (Flow Induced by an Accelerate Plate) 

The solution of the Eq. (4.35) by using initial conditions Eq. (4.36) is given below: 

𝑢𝐹𝑠(𝑛, 𝑡) = (
𝜇𝑛

2+𝑟1𝑛𝑅𝑒(1+𝑀 𝑊𝑒)

𝑟2𝑛−𝑟1𝑛
) 𝑒𝑟2𝑛𝑡 − (

𝜇𝑛
2+𝑟2𝑛𝑅𝑒(1+𝑀 𝑊𝑒)

𝑟2𝑛−𝑟1𝑛
) 𝑒𝑟1𝑛𝑡 +

𝜆𝑛

𝜇𝑛
2 (𝑡 −

𝑅𝑒

𝜇𝑛
2) , 

                 (4.49) 

where  𝑟1𝑛, 𝑟2𝑛 =
−(1+𝑀𝑊𝑒)±√(1+𝑀𝑊𝑒)2−4𝑊𝑒

𝜇𝑛
2

𝑅𝑒

2𝑊𝑒
  are the roots and 𝜇𝑛

2 = λn
2 + keffRe. 
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Using Eq. (4.49) and the inverse FFST, we obtain: 

 

𝑢1(𝑦, 𝑡) = ∑ {𝑡 −
𝑅𝑒

𝜇𝑛
2 −

(𝜇𝑛
2+𝑟1𝑛𝑅𝑒(1+𝑀 𝑊𝑒))𝑒𝑟2𝑛𝑡+(𝜇𝑛

2+𝑟2𝑛𝑅𝑒(1+𝑀 𝑊𝑒)𝑒𝑟1𝑛𝑡

(𝑟2𝑛−𝑟1𝑛)𝜇𝑛
4 }  ∞

𝑛=1                

                  ×
𝜆𝑛𝑆𝑖𝑛(𝜆𝑛𝑦)

𝜇𝑛
2  ,                                                                                          (4.50) 

or equivalently 

𝑢1(𝑦, 𝑡) = (1 − 𝑦)𝑡 − 2𝑡𝐾eff𝑅𝑒 ∑
𝑆𝑖𝑛(𝜆𝑛𝑦)

𝜆𝑛𝜇𝑛
2  − 2𝑅𝑒 ∑ [1∞

𝑛=1   ∞
𝑛=1            

              + 
(𝜇𝑛

2+𝑟1𝑛𝑅𝑒(1+𝑀 𝑊𝑒))𝑒𝑟2𝑛𝑡−(𝜇𝑛
2+𝑟2𝑛𝑅𝑒(1+𝑀 𝑊𝑒))𝑒𝑟1𝑛𝑡

𝑅𝑒(𝑟2𝑛−𝑟1𝑛)
]

𝜆𝑛𝑆𝑖𝑛(𝜆𝑛𝑦)

𝜇𝑛
4  .       (4.51) 

Introducing 𝑢(𝑦, 𝑡) from Eq. (4.51) into Eq. (4.33) and integrating the result by keeping in mind 

the initial condition Eq.(4.34), it results that: 

𝜏1(𝑦, 𝑡) = −
𝑡

𝑅𝑒
+

𝑊𝑒

𝑅𝑒
(1 − 𝑒−

𝑡

𝑊𝑒) − 2𝐾eff ∑ {𝑡 − (𝑊𝑒 −
𝜆𝑛

2

𝜇𝑛
2 (1 +  𝑀 𝑊𝑒)∞

𝑛=1   

       × (1 − 𝑒−
𝑡

𝑊𝑒))}
𝐶𝑜𝑠(𝜆𝑛𝑦)

𝜇𝑛
2 − 

2

𝑅𝑒
∑ {

𝜇𝑛
2+𝑟1𝑛𝑅𝑒(1+𝑀 𝑊𝑒)

1+𝑊𝑒 𝑟2𝑛

∞
𝑛=1 𝑒𝑟1𝑛𝑡  

                 −(
𝜇𝑛

2+𝑟2𝑛𝑅𝑒(1+𝑀 𝑊𝑒)

1+𝑊𝑒 𝑟1𝑛
) 𝑒𝑟1𝑛𝑡}

𝜆𝑛
2𝐶𝑜𝑠(𝜆𝑛𝑦)

𝜇𝑛
4(𝑟2𝑛−𝑟1𝑛)

+ 
2

𝑅𝑒
𝑒−

𝑡

𝑊𝑒  

      × ∑ {
((𝜇𝑛

2+𝑟1𝑛𝑅𝑒(1+𝑀 𝑊𝑒))(1+𝑊𝑒 𝑟1𝑛))−(𝜇𝑛
2+𝑟2𝑛𝑅𝑒(1+𝑀 𝑊𝑒)(1+𝑊𝑒 𝑟2𝑛)

(1+𝑊𝑒 𝑟1𝑛)(1+𝑊𝑒 𝑟2𝑛)(𝑟2𝑛−𝑟1𝑛)
}∞

𝑛=1                                                                                                                                                                        

                ×
𝜆𝑛

2𝐶𝑜𝑠(𝜆𝑛𝑦)

𝜇𝑛
4  .                                                                                    (4.52) 
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4.5     limiting Case (𝑊𝑒 → 0 , Newtonian fluid) 

Taking  𝑊𝑒 → 0 into Eqs. (4.39), (4.40), (4.42) (4.51) and (4.52), we get the similar solution 

for Newtonian fluid  

𝑢𝑐(𝑦, 𝑡) = 1 − 𝑦 − 2𝐾eff𝑅𝑒 ∑
𝑆𝑖𝑛(𝜆𝑛𝑦)

𝜆𝑛(𝜆𝑛
2+𝐾eff𝑅𝑒)

− 2∑
𝜆𝑛𝑆𝑖𝑛(𝜆𝑛𝑦)

𝜆𝑛
2+𝐾eff𝑅𝑒

∞
𝑛=1 𝑒

−(
𝜆𝑛
2

𝑅𝑒
+𝐾eff)𝑡 ,∞

𝑛=1    

      (4.53)  

𝜏𝑐(𝑦, 𝑡) = −
1

𝑅𝑒
− 2𝐾eff ∑

𝐶𝑜𝑠(𝜆𝑛𝑦)

𝜆𝑛
2+𝐾eff𝑅𝑒

−
2

𝑅𝑒
∑

𝜆𝑛
2𝐶𝑜𝑠(𝜆𝑛𝑦)

𝜆𝑛
2+𝐾eff𝑅𝑒

∞
𝑛=1 𝑒

−(
𝜆𝑛
2

𝑅𝑒
+𝐾eff)𝑡 ,∞

𝑛=1                      

      (4.54)     

𝑄𝑐(𝑡) =
1

2
− 4𝐾eff𝑅𝑒 ∑

1

𝜆2𝑛+1
2 (𝜆2𝑛+1

2 +𝐾eff𝑅𝑒)
   ∞

𝑛=1            (4.55)                  

                         −4∑
1

𝜆2𝑛+1
2 +𝐾eff𝑅𝑒

∞
𝑛=1 𝑒

−(
𝜆2𝑛+1
2

𝑅𝑒
+𝐾eff)𝑡 , 

𝑢1(𝑦, 𝑡) = (1 − 𝑦)𝑡 − 2𝑡𝐾eff𝑅𝑒 ∑
𝑆𝑖𝑛(𝜆𝑛𝑦)

𝜆𝑛(𝜆𝑛
2+𝐾eff𝑅𝑒)

   ∞
𝑛=1                    (4.56)               

                    −2𝑅𝑒 ∑
𝜆𝑛𝑆𝑖𝑛(𝜆𝑛𝑦)

(𝜆𝑛
2+𝐾eff𝑅𝑒)2

{1 −∞
𝑛=1 𝑒

−(
𝜆𝑛
2

𝑅𝑒
+𝐾eff)𝑡} , 

and 

𝜏1(𝑦, 𝑡) =
𝑡

𝑅𝑒
− 2𝐾eff𝑡 ∑

𝐶𝑜𝑠(𝜆𝑛𝑦)

𝜆𝑛
2+𝐾eff𝑅𝑒

   ∞
𝑛=1                    (4.57)               

                 −2∑
𝜆𝑛

2𝐶𝑜𝑠(𝜆𝑛𝑦)

(𝜆𝑛
2+𝐾eff𝑅𝑒)2

{1 −∞
𝑛=1 𝑒

−(
𝜆𝑛
2

𝑅𝑒
+𝐾eff)𝑡} . 
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4.6   Results and Discussion 

The simple Couette flow of an incompressible hydromagnetic Maxwell fluid in the presence of 

a porous medium between two parallel plates with constantly increasing acceleration is 

addressed in this chapter. The fluid moves as a result of simple Couette flow or plate 

acceleration brought on by constant pressure. Analytical solutions for the velocity field, 

connected shear stress and volume flux are obtained using integral transform. In order to shed 

light on specific physical elements of the obtained results, the effect of the material elements 

on the motion of fluid is illustrated by graphic representation of shear stress and the velocity 

field i.e. for the flow induced by a simple Couette flow and constantly accelerating plate. 

Moreover, the similar solutions are recovered for Newtonian fluid as in the limiting case when 

𝑊𝑒 →  0. We examine these findings in relation to variations in the Reynolds number (𝑅𝑒), 

effective parameter (𝐾eff), Weissenberg number (𝑊𝑒), and different values of the time 𝑡. 

 

Figure 4.1 and 4.5 represents how different values are related to Reynolds numbers (𝑅𝑒) i.e.   

𝑅𝑒 =  10, 20 and 70  for  𝑡 =  1 , and 𝐾𝑒ff = 1, for velocity and shear stress given by             

Eqs. (4.39), (4.40), (4.51) and (4.52), respectively. In both situations, the boundary condition is 

obviously satisfied since the velocity profile 𝑢(𝑦, 𝑡) drops from its maximum values to zero 

values and the shear stress 𝜏(𝑦, 𝑡) decreases in magnitude as y gets closer to 1.The Reynolds 

number (𝑅𝑒) measures the ratio of inertial forces to viscous forces in fluid flow, impacting the 

velocity distribution. 

Figure 4.2  shows the impact of  different values of 𝐾eff on velocity profile 𝑢(𝑦, 𝑡) and shear 

stress 𝜏(𝑦, 𝑡) i.e for 𝐾eff = 2 , 4.3 and 6  for 𝑡 =  1 and 𝑅𝑒 = 20 given by Eq. (4.39) and (4.40), 

respectively. As 𝐾eff increases, the velocity profile decreases more steeply, indicating a stronger 

damping effect and shear stress starts from its maximum magnitude at 𝑦 = 0 and approaches 

zero as 𝑦 nears 1. 

Figure 4.3  shows the impact of different values of 𝑡 on velocity 𝑢(𝑦, 𝑡) and shear stress 𝜏(𝑦, 𝑡) 

i.e for 𝑡 = 4 , 6 and 9 for 𝐾eff = 6 and 𝑅𝑒 = 20  given by Eqs.(4.39) and (4.40) respectively.    

I can be see that velocity is an increasing function at time and shear stress 𝜏(𝑦, 𝑡), is decreasing 

in magnitude with time, start negatively near (𝑦 = 0) and nearing zero as 𝑦 → 1.  
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Figure 4.4 shows the effect of different values of 𝐾eff on velocity and shear stress i.e for      

𝐾eff = 0.6 , 0.8 and 1.5 for 𝑡 = 5 and 𝑅𝑒 = 20 given by Eq. (4.51) and (4.52), respectively .The 

velocity 𝑢(𝑦, 𝑡) and shear stress 𝜏(𝑦, 𝑡) variations are shown in the graphs together with the 

parameter 𝐾eff . Reduced resistance and smoother flow are indicated by smaller magnitudes of 

shear stress and a faster decrease of velocity with higher 𝐾eff . Lower 𝐾eff on the other hand, 

indicates greater resistance or connection in the system and produces larger velocity gradients 

and higher shear stress. 

Figure 4.6 shows the impact of different values of 𝑡 on velocity 𝑢(𝑦, 𝑡) and shear stress 𝜏(𝑦, 𝑡) 

i.e 𝑡 = 1 , 3 and 5 for 𝐾eff = 1 and 𝑅𝑒 = 20  given by Eqs. (4.51), and (4.52), respectively. It 

can be seen that the velocity profile is an increasing function of time. Also, the magnitude of 

tangential stress is also increases by increasing time. 

Figure 4.7 and 4.8 display the profile of velocity 𝑢(𝑦, 𝑡) presented by Eqs. (4.39), and (4.51) 

and corresponding shear stress 𝜏(𝑦, 𝑡) presented by Eqs. (4.40), and (4.52), respectively, for 

different values of 𝑊𝑒 i.e. for 𝑊𝑒 = 0 (Newtonian fluid), 2.9 , 3.9 and 5, for 𝑡 = 0, 𝑅𝑒 = 0 

and 𝐾eff = 0. It is observed in both figures, the  velocity field is an increasing function of 𝑊𝑒. 

Moreover , the profile of velocity for 𝑊𝑒 = 0 (Newtonian fluid) is much smaller than the 

Maxwell fluid. Furthermore, magnitude of shear stress is also increasing by increasing 𝑊𝑒. 
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Figure 4.1:  Velocity and shear stress variations for 𝑅𝑒  provided by Eqs. (4.39) and (4.40). 
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Figure 4.2: Velocity and shear stress variations for 𝐾𝑒ff  provided by Eqs. (4.39) and (4.40). 
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Figure 4.3: Velocity and shear stress variations for 𝑡  provided by Eqs. (4.39) and (4.40). 
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Figure 4.4: Velocity and shear stress variations for 𝐾eff  provided by Eqs. (4.51) and (4.52). 

 

 

 



50 

 

 

 

 

  

Figure 4.5: Velocity and shear stress variations for 𝑅𝑒  provided by Eqs. (4.51) and (4.52). 
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Figure 4.6: Velocity and shear stress variations for 𝑡  provided by Eqs. (4.51) and (4.52). 
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Figure 4.7: Velocity and shear stress variations for 𝑊𝑒  provided by Eqs. (4.39) and (4.40). 
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  Figure 4.8: Velocity and shear stress variations for 𝑊𝑒  provided by Eqs. (4.51) and (4.52). 
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CHAPTER 5  

CONCLUSION AND FUTURE WORK 

Initiating precise analytical solutions for simple Couette flow and accelerating flow of the same 

boundary of a non-Newtonian fluid has been the main goal of this thesis. The unsteady flows 

of a Newtonian fluid presented in chapter#3 and the work of chapter#3 is extended to 

incompressible hydromagnetic Maxwell (ch#4) and effects of porous media were taken into 

consideration. Integral transform is used to develop analytical solution for shear stress, velocity 

profiles and volume flux. Solutions, which describe fluid motion at short and large times were 

obtained for simple Couette flow. These solutions help identify the point at which only 

permanent behavior remains after temporary effects vanish. Maxwell (𝑊𝑒 ≠ 0) and Newtonian 

(𝑊𝑒 = 0) were displayed graphically for both motion of the boundary. The major findings and 

contributions made by this research and presented in previous chapters (ch#3 and ch#4) are 

precisely summarized as follows.    

 

In chapter 3, we have displayed the unsteady, incompressible MHD flow of viscous fluid that 

is placed among two horizontals, parallel plates with a porous medium present. Pressure is 

considered as constant and fluid motion was induced by the simple Couette flow and the 

accelerating bottom plate. The solutions for velocity field, shear stress and the volume flux are 

obtained by means of FFST, that convert the partial differential equation into ordinary motion 

characteristic of these two flows depend on magnetic and porous parameters 𝐾and 𝑀 with 

permutation 𝐾eff = 𝑀 +
1

𝐾
 , i.e called effective permeability. The graphical illustration shows 

the impact of different rheological parameters of the dimensionless parameters. Fluid velocity 

was shown to be reduced in the presence of a magnetic field or porous media. 

 

Lastly, we have examined the general solutions for the hydromagnetic, unsteady Maxwell fluid 

in the existence of porous material in chapter 4. Two parallel plates separated ℎ apart contain 

an incompressible Maxwell fluid, when pressure is applied constantly. The bottom plate's 
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simple Couette or accelerating motion created the motion in the fluid. Using the FFST, 

analytical solutions for the volume flow, shear stress, and dimensionless velocity field were 

found. All initial and boundary conditions were met by these solutions. 

The main findings of the chapter are summarizing below for both simple Couette flow and 

accelerating flow; 

 

 As the Reynold number 𝑅𝑒 and effective permeability 𝐾eff increases, the Maxwell 

fluid's velocity and shear stress decrease. 

 With respect to time 𝑡, both the shear stress and the velocity field increase. 

 The Weissenberg number 𝑊𝑒 increases with velocity and shear stress. 

 The Newtonian fluid is shown to have a smaller velocity profile and shear stress than 

the Maxwell fluid.  

 

5.1 Future recommendation  

Future work can extend the analysis to include heat transfer effects and variable magnetic fields 

to explore thermal and electromagnetic influences on flow behavior. Additionally, the impact 

of slip boundary conditions and non-Newtonian fluid properties can be investigated for more 

realistic applications. Numerical simulations and experimental validations can further support 

the analytical findings and provide insights into complex flow regimes. 
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