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ABSTRACT 

 

 

Title: Analysis of Peristaltic MHD Ellis Fluid in a Porous Inclined Asymmetric Channel 

 

This thesis aims to investigate the effects of heat and mass transfer on the peristaltic flow and 

investigate the peristaltic transport of Ellis fluid in a porous inclined asymmetric channel. The 

study also considers slip conditions. The governing equations for Ellis fluid are introduced. Stream 

functions are taken into account to reduce the number of dependent variables in the governing 

PDEs. These equations are then solved using the perturbation method to provide temperature and 

velocity profiles. The impact of various parameters on temperature, pressure, velocity, and 

streamlines is examined. The graphs were generated using the Mathematica software. 
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                                           CHAPTER NO 1   

 

INTRODCTION AND LITERATURE RIVEW 

 

  

1.1     Introduction  

 

               Fluid mechanics states that a fluid can be recognized by its behavior under external 

forces. When a solid is sheared, it deforms until the tension applied from the outside equals the 

internal shear resistance. A fluid is a substance that tends to flow. A fluid substance can generally 

spread and change shape in response to its environment without providing internal resistance.  A 

substance is fluid if it has a definite structure and can yield easily to external pressure. Fluid 

mechanics provides the framework for comprehending the behavior of fluids both at rest and in 

motion. It provides knowledge of fluid behavior, energy conservation, and system design in a range 

of real-world scenarios, making it essential to the natural sciences and engineering.  

  

1.2   Peristalsis   

              

              The periodic contractions of the muscles lining tubular organs, including the 

gastrointestinal tract, are referred as peristalsis. This procedure makes it easier for substances to 

pass through these organs, which helps with waste removal, nutrition absorption, and digestion. 

The autonomic nervous system controls peristalsis, an involuntary mechanism that facilitates the 

smooth transfer of materials and food from the mouth to the anus.  Latham [1] was the first to 

describe and investigate the peristaltic process. Shapiro et al. [2] enhanced Latham’s notion by 

assuming peristaltic pumping in a 2-D channel with a long wavelength assumption.  By taking into 

account the higher-order components and expanding the research to include scenarios with greater 
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Reynolds numbers intended by Shapiro [2], Jaffrin [3] improved the low Reynolds number 

hypothesis that was initially proposed.   

Mishra and Rao [4] provided an explanation of the peristaltic phenomena in viscous fluid flow in 

an asymmetrical channel, as well as the high wavelength and minimal Reynolds number 

assumptions. Srivastasa et al. [5] studied blood peristaltic transport using the Casson model, 

highlighting the non-Newtonian nature of most natural fluids, impacting both physical and 

scientific aspects. Nadeem and Akbar [6] examined the peristaltic flows of Williamson fluids along 

an inclined, asymmetrical channel utilizing partial slip and heat transmission effects. Abd El 

Hakeem et al. [7] investigated peristaltic viscous flow in an endoscope use and found that pressure 

increased with wave number, amplitude, and radius ratio but decreased with viscosity ratio. Burns 

and Parkes [8] investigated creeping flow in the framework of peristaltic flow across vertically 

symmetrical pipes and channels. Vaidya et al. [9] examined how several parameters affected the 

Jeffrey fluid flow through an asymmetric tapering permeable channel exhibiting the peristaltic 

mechanism.  

Ali and Hayat [10] analyzed the micropolar fluid in an asymmetrical conduit with peristaltic waves 

induced at the walls. Nadeem et al. [11] investigated the effects of magnetic fields and viscosity 

on the peristaltic flow of a viscous, incompressible Newtonian fluid.  The perturbation expansion 

approach produces analytical solutions to both temperature and fluid velocity. Using common 

perturbation expansion techniques, the temperature and velocity fields' analytical solutions are 

obtained. 

   

1.3 Magnetohydrodynamics 

 

               Magnetohydrodynamics is the investigation of magnetic field dynamics in electrically 

conducting fluids. It combines concepts from magnetism and fluid dynamics.  Hannes Alfvan is 

credited with developing the field of MHD [12]. In 1970, he was also awarded a Nobel Prize. Fluid 

dynamics uses the Naiver-Stokes equations to describe MHD, whereas electromagnetics uses the 

Maxwell equations to illustrate MHD. Gnaneswara and Venugopal [13] investigated the influence 

of joule heating and chemical reactions on MHD peristaltic flow in a porous media. Rafiq et al. 
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[14] investigated the impact of activation energy, magnetohydrodynamics and variable 

characteristics of the peristaltic flow of Jeffrey fluid in a porous wall channel.  

 

Gnaneswara et al. [15] described MHD peristaltic flow in a pair stress fluid along an asymmetric 

porous channel. Long wavelength and low Reynolds number assumptions were used in the non-

dimensional governing flow equations. Abbasi et al. [16] studied the MHD peristaltic transport of 

nanofluids. The investigation used temperature and velocity slip conditions, as well as four distinct 

types of nanoparticles: gold, copper, silver, and iron oxide. Ali et al. [17] studied the peristaltically 

accelerated MHD Jeffrey nanofluids' flow and slip characteristics. The study explores Jeffrey 

Nanofluids' peristaltic flow within a magnetic field, aiming to understand how nanofluids transport 

heat for potential cancer treatment.  Srinivas and Kothandapani [18] examined MHD peristaltic 

flow in a porosity zone with compliant walls to explore the effects of heat and mass transmission. 

 

 

1.4   Ellis Fluid Model  

                One particular type of non-Newtonian fluid model used to explain the rheological 

properties of particular fluids is the Ellis fluid model. Newtonian fluids have a viscosity that 

fluctuates with the shear rate, whereas Newtonian fluids have a viscosity that remains constant 

independent of the applied shear rate. The Ellis model predicts the behavior of materials under 

various flow circumstances, which aids in the design of machinery and procedures for the 

production of paints, polymers, and other shear-thinning materials. 

 An Ellis model subclass is a generalized Newtonian fluid with low shear forces due to shear 

thinning, indicating Newtonian behavior without shear pressures. Ellis fluid bioconvective flow 

was numerically simulated by Ahmed et al. [19]. The finite difference technique was used to build 

the mathematical algorithm for nanofluid flow that takes into consideration of the activation energy 

distribution throughout the wedge. Saravana et al. [20] evaluated the impact of total velocity slip 

on the axisymmetric peristaltic transfer of Ellis fluid through a uniformly flexible tube using a long 

wavelength and a very low Reynold number.  
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Goud and Reddy [21] used long wavelengths and imprecise estimates of the Reynolds number to 

explain the Ellis fluid model traveled in a uniform upward tube across wall defects. Ellis fluid 

viscoelastic characteristics were examined by Asghar et al. [22] centered on chemical reactions, 

wave propagation, and the connection between magnetic fields and slip conditions. Narahari et al. 

[23] examined the peristaltic flow of an Ellis fluid through a circular tube. Abbas et al. [24] 

demonstrated the peristaltic flow of Ellis fluid in a non-uniform conduit with compliant walls. For 

the Ellis model, Khan et al. [25] used hybrid nanoparticles to investigate the effects of both 

consistent and different conditions on the creation of entropy analysis. Kumar et al. [26] 

investigated the peristaltic pumping of an Ellis fluid model in an inclined tube with wall properties. 

 

 

1.5   Porous Medium  

  

                   A substance having pores is called a porous medium. Generally, a fluid (gas or liquid) 

fills the pores. Porous voids can be observed in many natural and artificial systems, including 

tissues from living organisms, rocks, soil, and man-made materials like ceramics, foams, and 

sponges. Porous media are crucial for numerous industrial uses as well as natural processes.  

El Shehawey and Husseny [27] proposed a mathematical model for the peristaltic movement of an 

incompressible, viscous fluid across a porous medium.  The study investigated peristaltic pumping 

in a porous channel filled with viscous, incompressible fluid, revealing nonsymmetric fluid 

motion, increasing mean axial velocity, and reversal flow with varying permeability parameters. 

El-Sayed et al. [28] explored how the mass distribution of chemical species affected heat transfer 

across vertical porous media and peristaltic transport between circular tubes with mass. The effects 

of vacuum porosity and heat transfer on a peristaltic movement in a vertical asymmetry channel 

were studied by Mekheimer et al. [29]. The perturbation approach was used to solve the nonlinear 

PDE system after the governing equations were linearized using the long wavelength 

approximation. Frictional forces and pressure rise were computed numerically yet the flow is 

analyzed. Using the homotopy perturbation method, Tripathi and Bég [30] examined a modified 

Maxwell fluid's peristaltic flow through a porous media.  
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The Hall effect and the peristaltic flow of a Maxwell fluid through a porous medium were 

examined by Hayat et al. [31]. Vajravelu et al. [32] examined heat transmission and peristalsis in 

flow through a vertical porous tube. Bhargava et al. [33] demonstrated the peristaltic flow of blood 

through stenosed arteries by treating arteries as porous channels and blood as a micro-polar fluid. 

Hayat et al. [34] investigated the peristaltic motion of an electrically conducting fluid with heat 

transfer across a porous area. 

 

  1.6   Heat Transfer   

 

                        Heat transfer processes can be broadly classified into three categories: radiation, 

convection, and conduction. Nadeem and Akbar [35] investigated the impact of heat and mass 

transfer on peristaltic motion across an annulus with a radically changing magnetic field. Ellahi et 

al. [36] examined the three-dimensional peristaltic flow with mass and heat transfer through a non-

uniform rectangular conduit and obtained precise solutions. Ogulu [37] investigated blood mass 

and heat transfer in a single lymphatic artery with a consistent magnetic field. The cumulative 

impact of concentration and heat convection on the peristaltic Powell-Eyring nanofluid transport 

in an inclined asymmetrical channel was examined by Akram et al. [38]. 

 

 The impact of heat and mass transfer on the peristaltic transport of Maxwell fluid with creeping 

flow was theoretically examined by Saleem and Haider [39]. The study of mixed convective heat 

and mass transfer on peristaltic flow of Fene-P fluid with chemical reaction was investigated by 

Asghar and Ali [40]. A vertical tube's magnetohydrodynamic peristaltic flow of Jeffery nanofluid 

with heat transfer across a porous media was examined by Eldabe et al. [41]. A comprehensive 

investigation of peristaltic flow in connection to Prandtl material properties and heat transmission 

was presented by Alsaedi et al. [42]. 

 

 Tamizharasi et al. [43] investigated the heat and mass transport phenomenon in the peristalsis of 

nanoliquid utilizing an asymmetric arrangement of infinite length. Hina et al. [44] used the 

Buongiorno mode to investigate the peristaltic movement of the asymmetric channel carrying a 

Carreau-Yasuda nanofluid. A Buongiorno model was adopted with electro-kinetic body force and 
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a Carreau-Yasuda nanofluid, the work investigated peristaltic flow in an asymmetric channel. The 

Debye-Huckel linearization assumption and the lubrication approximation were applied. Using a 

temperature-dependent viscosity effect, Hasona et al. [45] measured the peristaltic movement's 

heat transfer of Jeffrey the nanofluid by analyzing the fluid's physical characteristics.  

 

 

 1.7 Asymmetric Channel  

  

                  A flow path where the geometry or boundary conditions are not symmetric concerning 

the centerline is referred to as an asymmetric channel. These channels are frequently seen in natural 

systems and a variety of technical applications where a non-uniform flow field is produced by the 

form, boundary conditions, or other reasons. Because of their irregular form, asymmetric channels 

can display diverse flow characteristics and behaviors.  

 

To evaluate the significance of the heat transference study of an MHD peristaltic flow, 

an asymmetric permeability channel with slipping conditions and fluid dissipation components 

was investigated by Das [46]. A Jeffrey fluid's peristaltic flow in an asymmetrical channel was 

investigated by Abd-Alla et al. [47]. Shear stress, axial velocity, stream operation, pressure 

gradient, and pressure rise on the channel walls were all numerically calculated using closed-form 

formulas based on long wavelength and Low Reynolds number assumptions. 

 

 The MHD peristaltic flow of a viscous fluid in an asymmetry channel with heat transfer has been 

investigated by Srinivas and Kothandapani [48]. The MHD peristaltic motion of a Sisko fluid in 

an asymmetric channel was analyzed by Wang et al. [49]. Abd-Alla et al. [50] investigated a fluid 

that was peristaltically moving in an asymmetric, inclined channel. A mathematical analysis of the 

peristaltic flow of blood along an inclined asymmetric channel with mass transfer, heat and an 

inclined magnetic field was done.  

 

 Elshehawey et al. [51] examined the problem of peristaltic movement of a viscous incompressible 

in an asymmetric channel. Using the Adomian decomposition approach, they were able to provide 
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an explicit description of the peristaltic passage across fluid with holes in asymmetric channels. 

The study examined the impact of low Reynolds number assumption and longer wavelength on 

pressure rise, velocity field, and pumping characteristics.  

 

Javed et al. [52] investigated the impact of porosity on biological flow in curved channels. They 

concluded that sinusoidal waves enhance porosity effects, which increases efficacy and creates 

new bioengineering opportunities for mediation systems and chemical processes. 

 

  

 1.8   Contribution to Thesis   

 

                    This thesis includes a detailed analysis of Abbasi's work [55]. This research work is 

extended by taking inclined asymmetric passage along with magnetic field also inclined and 

porosity. The temperature profile of the model is also examined and graphs for the velocity, 

pressure gradient and temperature are plotted to check the impact of the added body forces on the 

model. 

 

 1.9 Thesis Organization   

 

Chapter 1 provides a few basic definitions related to the proposed work. A brief literature survey 

is also included in each section to build a base of the suggested model. 

Chapter 2 offers basic concepts and dimensional parameters that are utilized to get the results 

of flow patterns.  

Chapter 3 presents a comprehensive review of the peristaltic flow of a chemically reactive Ellis 

fluid through an asymmetric channel, focusing on the analysis of heat and mass transfer. This 

research was done by Abbasi et al. [55]. 
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Chapter 4 delivers a detailed extended model of the work discussed in Chapter 3. Graphical 

demonstration of the velocity, pressure gradient and temperature profiles of the fluid are also 

included to check the impact of inclined magnetic field parameter, porosity parameter, Ellis fluid 

parameter and others.  

Chapter 5 contains the conclusions derived in chapter 4. This chapter also offers how this 

proposed model can be extended. 

All references used in this study are provided at the end of the document. 
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CHAPTER NO  2 

 

BASIC DEFINITIONS AND CONCEPTS 

 

This chapter includes basic definitions and guidelines to help readers comprehend the analysis.   

  

  2.1 Dynamics of Fluid  

  

                      The mechanics of fluids is a branch of physics that studies the properties of gases, 

liquids, and plasmas in both static and moving states. It covers two primary topics: fluid dynamics, 

which deals with fluids in motion, and fluid statics, which studies fluids that are not moving. 

Important ideas like pressure, flow rate, and viscosity which characterize how fluids behave under 

various stresses and conditions are explored in this discipline. Understanding how water flows 

through pipes, how air moves around airplanes, and even how blood circulates in the human body 

are just a few of the many uses for fluid mechanics. Since it is fundamental to understanding the 

behavior of liquids and gases, fluid mechanics is used extensively in many fields. For example, in 

civil engineering, it helps with the design of water supply systems, dams, and flood control 

structures; in mechanical engineering, it optimizes hydraulic systems, HVAC systems, and 

refrigeration processes; in the aerospace industry, fluid mechanics is used to understand 

aerodynamics, which is important for designing aircraft and spacecraft; in automotive engineering, 

it enhances vehicle fuel efficiency and aerodynamics; and in environmental engineering, it is used 

to control water flow, wastewater treatment, and pollution control.  

  

 2.2    Fluid   
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                Any substance that rapidly flows and changes shape in response to an applied force is 

considered a fluid. Gases, plasmas, and liquids are examples of fluids. Fluids assume the shape of 

their container and lack a distinct shape, in contrast to solids, which have a set shape. A substance 

is said to be fluid if it has a definite structure and can yield easily to external pressure. Fluids are 

materials that have zero shear modulus, meaning that they are unable to withstand shear forces, 

[53]. Fluids can be broadly classified into numerous types based on their physical attributes and 

actions. Here are a few common types of fluids:   

  

 

2.2.1 Newtonian Fluid  

 

            Shear stress and deformation rate in Newtonian fluids, which are capable of having 

unchanging viscosities, are directly and linearly correlated. In fluids where particle contact has no 

effect on flow behavior, Newtonian behavior is observed. Among them are water, air, and most 

oils, [53].  

  

 

 2.2.2   Non-Newtonian Fluid 

                     Depending on conditions, non-Newtonian fluids show a relationship that is not linear 

between stress and deformation rate as well as variable viscosity. Another name for these fluids is 

second-grade fluids. Different circumstances cause these fluids to behave differently when they 

flow. Ketchup and toothpaste are two examples. Based on their viscosity, non-Newtonian fluids 

are further separated into Bingham and pseudo-plastic fluids, [53]. 

 

 Shear-Thinning Substances 

 Viscosity falls as the shear rate rises.  (such as blood or ketchup)   

 Shear-Thickening Fluids 
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 As the shear rate increases, viscosity increases.  (Examples are water and cornstarch 

mixture).  

 Viscoelastic Fluids 

 Exhibit both flexible and viscoelastic properties (Examples are Silly Putty, polymer 

solutions).  

 

2.2.3   Ideal Fluid  

 

               Ideal fluids are a theoretical concept. Perfect fluids are said to have possess constant 

density and incompressibility and lack turbulence, surface tension, and viscosity. Perfect fluids 

sustain constant pressure over time, [53].  

 

 

  2.2.4  Real Fluid 

 

                 Real fluids behave differently from ideal ones because of their viscosity, 

compressibility, and other characteristics. Oils, air, and water are a few examples, [53].  

 

2.2.5   Compressible Fluid  

   

                  These fluids' volume and density can change in response to changes in pressure and 

temperature. These liquids behave in a manner akin to gasses. When there is a sudden shift in 

pressure, these fluids can produce shock waves. (e.g. air, hydrogen), [53].  
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2.2.6   Incompressible Fluid 

  

                   These fluids have a constant volume regardless of changes in temperature and 

pressure. These materials behave like liquids. Incompressible fluids are heat transfer mediums 

because their fixed volume features provide consistent heat exchange performance. (e.g. water, 

oil), [48].   

  

 2.2.7    Laminar Flow 

 

                    This type of fluid flow is distinguished by the fluid flowing in parallel, smooth layers 

with minimal disruption between them. Laminar flow produces a continuous and predictable 

motion by having adjacent fluid layers slide past one another in an ordered manner. The fluid 

moves at a relatively slow speed, with viscous forces outweighing inertial forces, [53].  

  

 2.2.8   Turbulent Flow 

 

                    Turbulent flow is defined by disorganized, irregular fluid motion where the fluid 

particles travel in a disorderly and unpredictable manner. Eddies and swirls are produced in 

turbulent flow, which causes a substantial amount of mixing between the fluid layers. This kind of 

flow happens quickly and is primarily driven by inertial forces as opposed to viscous forces, [53].  

  

2.3 Density  

  

                The quantity of mass that a substance contains in a specific volume is measured by its 

density. In mathematical terms, it is stated as 
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𝜌 =
𝑚𝑎𝑠𝑠

𝑣𝑜𝑙𝑢𝑚𝑒 
. 

 

                                           

Density is measured in kilograms per cubic meter (kg/m3), The International System of Units' 

standard unit of density (SI). On smaller scales, density can alternatively be expressed in per cubic 

centimeter, in grams (𝑔/𝑐𝑚3) and its dimension is [𝑀𝐿−3],[54]. 

 

 

 2.4    Ellis Fluid   

 

                    When the force applied to an Ellis fluid increases, its viscosity lowers, making it a 

non-Newtonian shear-thinning fluid whose viscosity rises as shear force increases. The Ellis fluid 

model is specifically intended to explain the flow properties of fluids that, while exhibiting non-

Newtonian features (shear-thinning) at higher shear stress, behave like Newtonian fluids at low 

shear stress.  

A structural model called the Ellis fluid model is used to explain the flow characteristics of several 

non-Newtonian fluids, particularly shear-thinning fluids. This model describes fluids whose 

viscosity reduces with increasing applied shear stress. Compared to more straightforward models 

like the power-law model, it offers a more accurate estimate of viscosity behavior at both low and 

high shear rates.  

The Ellis fluid Model equation is  

𝜇

𝜇1
= 1 + (

𝜏

𝜏1
)
𝛼−1

. 

 

The viscosity at a given symbol for shear stress is 𝜇,  the zero shear viscosity is represented by 𝜇1 

and the viscosity at very low Shear stress is generated by 𝜏 , the shear stress at which the viscosity 

is decreased to half of the viscosity at zero shear and the dimensionless parameter 𝛼 controls how 

much shear-thinning there is.   
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2.5 Streamline  

 

           A line is drawn in a fluid flow field so that, at any given position, the fluid's velocity is 

perpendicular to the line. Streamlines describe the instantaneous direction of fluid motion in stable 

flows. A streamline is a path that depicts the steady-flowing flow of a fluid, such as water or air. 

The fluid's velocity vector, which indicates the direction of the fluid's motion at each point along 

a streamline, is tangent to the line at that location, [54]. 

  

 2.6 Stress  

 

            The internal force per unit area that a material creates in reaction to an externally applied 

force is called stress. It shows how strong internal forces are within a material to prevent 

deformation in response to loads from the outside.  

  

Stress can be expressed mathematically as:  

𝜎 =
𝐹

𝐴
. 

                                                                   

In the SI, the Pascal (Pa), which is equivalent to one Newton per square meter 𝑁𝑚2, is the unit of 

stress.  

 

 2.7 Cauchy Stress Tensor   

  

              Cauchy stress tensors describe the internal forces that are dispersed throughout a fluid as 

a result of external loads, pressure, and other reasons. It characterizes the level of stress in a fluid 

at a specific place. It is essential to comprehend how fluids behave mechanically under different 

flow circumstances, [54]. 

 

 



15 

 

  2.8 Extra Stress Tensor  

 

              Analyzing viscous behavior in fluids requires an understanding of the link between the 

rate of strain tensor and the extra stress tensor in fluid mechanics. In Newtonian fluids, where the 

rate of strain tensor through the dynamic viscosity is precisely proportional to the additional stress 

tensor, this relationship is very important, [54]. 

 

  2.9 Specific Heat Capacity  

  

            Specific heat capacity, or simply specific heat, is the amount of heat needed to raise a 

substance's temperature by one degree Celsius (or one Kelvin) per unit mass. It is an essential 

characteristic of fluid mechanics and thermodynamics because it affects the fluid's response to heat 

transfer, [54].  

 

  2.10 Pressure   

 

              According to fluid mechanics, pressure (𝑃) is the normal force that a fluid at rest or in 

motion exerts per unit area. It demonstrates the force that fluid molecules apply when they interact 

with a surface. 

Mathematically  

𝑃 =
𝐹

𝐴
 . 

                                             

Pressure is measured in 𝑁𝑚−2 its dimension is [𝑀𝐿−1𝑇−2]. 

 

 2.11 Thermal Conductivity   

 

The characteristic that reflects a material's capacity to conduct heat is called thermal conductivity. 

It measures the speed at which a temperature differential causes heat to move through a substance. 
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Fourier's law of heat conduction, which asserts the following, is frequently used to express the 

thermal conductivity (k):  

𝑞 = −𝐾𝐴
∆𝑇

𝐿
, 

                                                        

thermal conductivity is measured in watts per meter-kelvin (𝑊𝑀−1𝐾−1) in SI units.  

 

 2.12 Newton's Law of Viscosity  

                       According to the law of viscosity by Newton, the rate of shear stress is exactly 

proportional to shear strain in a fluid. 

Its formula is given by 

𝜏 = 𝜇
𝑑𝑢

𝑑𝑦
 . 

 

 2.13   Viscosity  

  

                  A fluid's resistance to flow or deformation is measured by its viscosity. It indicates how 

"thick" or "sticky" a fluid is, to put it another way. Internal friction, which occurs when fluid 

molecules move relative to one another, is the cause of viscosity. A fluid's resistance to flow and 

deformation is measured by its viscosity. Viscosity is a measure of a fluid's thickness or stickiness; 

a higher viscosity indicates more internal friction between fluid molecules. 

 

 2.14 Heat Transfer   

 

                 The movement of thermal energy from one physical system to another as a result of a 

temperature differential is known as heat transfer. The flow of energy is always from a hotter 

region to a colder region until thermal equilibrium is achieved.   

The transfer of heat occurs primarily in three ways. 
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 2.14.1 Conduction  

  

                 This occurs when heat is transferred through a substance without the substance moving 

at all. It happens when energy is transferred from molecules or atoms to one another through 

vibrations and collisions. For example, when one end of a metal rod is heated, heat flows through 

it.  

  

  2.14.2   Convection  

  

               In this instance, heat is transferred from a solid surface to a moving fluid, like a gas or 

liquid. The combined effects of fluid motion, which improves heat transfer, and conduction (inside 

the fluid) result in convection.  

Heat transmission from a heated surface to air passing over it is one example.  

 

 2.14.3 Radiation   

 

                 Radiation specifically, is one type of electromagnetic wave that is used in this manner 

of heat transmission. Heat transmission can happen in a vacuum and doesn't need a medium.  

Heat transmission from the Sun to the Earth, for instance.  

  

 

 2.15 Non-Dimensional Parameters 

     2.15.1 Prandtl Number   

 

              A dimensionless quantity called the Prandtl number (𝑃𝑟) is used in heat transfer and fluid 

mechanics to describe the relative thickness of a fluid's thermal and velocity boundary layers. It 
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gives an indication of how important thermal diffusivity, or heat conduction, is compared to 

momentum diffusivity, or viscous effects, in a fluid flow.  

The kinematic viscosity to The Prandtl number is the ratio of dispersion to heat.  

𝑃𝑟 =
ѵ

𝛼∗
 . 

The fluid's kinematic viscosity (m²/s) is denoted by 𝜈, while its thermal diffusivity (𝑚2/𝑠) is 

represented by 𝛼∗.   

As an alternative, it might be stated as:   

𝑃𝑟 =
𝜇𝑐𝑝

𝑘
. 

            

 2.15.2 Eckert Number   

 

              The dimensionless Eckert number (𝐸𝑐), which is used in fluid mechanics and heat 

transfer, shows the association between kinetic energy and enthalpy in a flow. It is the ratio of the 

flow's kinetic energy to the enthalpy difference caused by fluctuations in temperature.  

The Eckert number formula is as follows: 

𝐸𝑐 =
𝑢2

𝐶𝑝∆𝑇
. 

                           .  

 2.15.3 Brinkman Number   

 

             The importance of viscous dissipation the transformation of mechanical energy into heat 

as a result of viscosity in relation to conductive heat transmission in a fluid flow is gauged by the 

dimensionless Brinkman number (Br). It is particularly helpful in situations with high-viscosity 

fluids or significant frictional heating, like in high-viscosity materials, high-speed flows, or 

lubrication.  

𝐵𝑟 =
𝜇𝐶2

𝐾∆𝑇
. 
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The fluid's dynamic viscosity (𝑃𝑎. 𝑠) is represented by 𝜇, its characteristic velocity (𝑚/𝑠) by u, 

its conductivity of heat by k, and the temperature differential (K) by ∆T.  

 

2.15.4 Schmidt Number  

 

              Schmidt number (𝑆𝑐) is a dimensionless quantity in fluid dynamics and mass transfer 

processes. It is employed to characterize fluid flows in which mass diffusion and momentum 

processes occur simultaneously. It is the mass diffusivity divided by momentum diffusivity 

(kinematic viscosity). 

𝑆𝑐 =
𝜇

𝐷
. 

2.15.5 Froude Number  

              

            Froude number (𝐹𝑟) is a dimensionless quantity in fluid dynamics. It is the ratio of inertial 

force to the gravitational force. It helps to classify the different flow regimes (fluvial or torrential 

motion). 

 

 2.16   Equation of Continuity   

 

                A fundamental concept in fluid mechanics, the equation of continuity describes how 

mass is conserved in a fluid flow. It asserts that, under steady flow and no mass buildup, a fluid's 

mass flow rate must stay constant across a pipe or channel's cross sections.  

The continuity equation's differential form for a typical three-dimensional compressible fluid flow 

is: 

𝜕𝜌

𝜕𝑡
+ 𝛁. (𝜌𝑽) = 0. 

                                                          .  

The divergence operator is indicated by the symbols ∇, 𝜌 is the fluid density (𝑘𝑔/𝑚3), Velocity  

(m/s) is represented by 𝑽, and time by t. 
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 2.17 Momentum Equation 

 

                    The conservation of momentum, which postulates that the sum of the external forces 

acting on a fluid element equals the rate at which its momentum changes, is expressed 

mathematically by the momentum equation in fluid mechanics. It describes the behavior of fluids 

under external body force, pressure, and viscosity. It comes from Newton's second law of motion.  

The general momentum equation, for an incompressible fluid is 

𝜌 (
𝜕𝑽

𝜕𝑡
+ 𝑽. ∇𝑽) = −𝛁. 𝝉 + 𝜌𝒃. 

.  

The fluid density is denoted by 𝜌, the velocity vector by 𝑽, the time by 𝑡, 𝝉 signifies Cauchy stress 

tensor while the body forces are represented by 𝒃. 

 

2.18 Energy Equation 

 

  The First Law of Thermodynamics, also referred to as the Law of Energy 

Conservation is frequently used to develop the energy equation in fluid mechanics It was derived 

from thermodynamics' first law. According to this law, the thermodynamic system's surroundings 

enhance internal energy while the amount of heat energy introduced to the system is less than the 

work the system performs. 

 

                                                            𝜌𝑐𝑝 (
𝑑𝑇

𝑑𝑡
) = 𝜅∇2𝑇 + 𝜏. 𝐿. 

𝒄𝒑 is specific heat, the thermal conductivity is denoted by 𝜿, 𝝉. 𝑳 signifies viscous dissipation. 

 

2.19 Perturbation Method 

           A mathematical technique called the perturbation method is used to estimate solutions to 

difficult problems, especially in the domains of engineering, physics, and applied mathematics. It 

is particularly helpful for handling differential equation-based situations that are hard or 

impossible to answer precisely. In applied mathematics and engineering, the perturbation method 



21 

 

is a vital instrument that offers a systematic method for solving challenging issues. This approach 

makes it possible to obtain approximate solutions that are useful for comprehending how physical 

systems behave under little perturbations by adding a small parameter and growing the solution in 

a series.  

 

 2.20 Heat Flux 

          The rate of heat energy transmission per unit area in a specific direction is termed as the heat 

flux. Heat flux is a vector quantity used in fluid dynamics and thermodynamics to describe the 

movement of thermal energy caused by a temperature difference. 

2.21 Velocity Field 

            The velocity of fluid particles at different places in space and time is represented 

mathematically by a velocity field. It shows how a flow field's velocity vector, which includes both 

speed and direction varies. It gives a thorough explanation of the flow pattern of a fluid at each 

location. 

2.22 Lubrication Approach Theory 

In fluid dynamics, this theory explains the fluids flow in thin layers. This approach is particularly 

useful in studying fluid flow between closely spaced surfaces.   
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CHAPTER NO 3 

 

THE PERISTALTIC FLOW OF CHEMICALLY REACTIVE                            

ELLIS FLUID THROUGH AN ASYMMETRIC CHANNEL 

HEAT AND MASS TRANSFER ANALYSIS 

 

 

 3.1 Introduction  

 

               A comprehensive discussion of the research work by Abbasi et al. [55] is given in this 

chapter. This study explored how the simultaneous transfer of heat and mass influenced Ellis 

fluid's peristaltic transport while considering no slip conditions. The study explores the peristaltic 

pattern of Ellis fluid in a channel, finding that fluid velocity decreases with higher fluid parameters 

and pressure rise improves with material parameters. The series solution of the generated 

differential system is derived using a regular perturbation strategy, and the temperature, heat 

transfer coefficient, axial velocity, and concentration are obtained.  

 

 3.2 Mathematical Formulation and Governing Equation  

 

                  This study demonstrated heat and mass transmission of the peristaltic flow of 

chemically reactive Ellis fluid through asymmetric channel. The problem is described by following 

the governing equation  

 

                                                                 𝛁. 𝑽∗ = 0,                                                                                    (3.1) 

                                                            𝜌
𝑑𝑽∗

𝑑𝑡∗
= −∇𝑃∗ + 𝑑𝑖𝑣𝑺∗ ,                                                                (3.2)  

                                                      𝜌𝐶𝑝
𝑑𝑇∗

𝑑𝑡∗
= 𝑘∇∗2𝑇∗ + 𝑇∗. 𝛁𝑽∗,                                                         (3.3) 

                                                  
𝑑𝐶∗ 

𝑑𝑡∗
= 𝐷∇2𝐶∗ − 𝑘1(𝐶

∗ − 𝐶𝑂
∗) ,                                                          ( 3.4) 
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where ρ is density velocity, the material derivative is 
𝑑

𝑑𝑡∗
,  the temperature is 𝑇∗,  the concentration 

is 𝐶∗ the additional stress tensor 𝑺∗, the hydrostatic pressure is 𝑃∗, and the thermal conductivity is  

𝑘, concentration   𝐶∗, 𝐶𝑝 is specific heat capacity , mass diffusivity chemical reaction is 𝑘1. 

 

Also, the Ellis model's stress tensor 𝑺∗ is given as  

 

                                                           𝑺∗ =
𝜇

1+(
𝑆

𝜏0
)
𝛼−1  𝐴1 ,                                                                    (3.5)                                 

where  

 

                                         𝐴1 = (𝑔𝑟𝑎𝑑 𝑽
∗) + (𝑔𝑟𝑎𝑑 𝑽∗)𝑇.                                                   (3.6) 

 

In the above tensor, the material constants are represented by (𝜏𝑜 , 𝛼) and first Rivillin-Ericksen 

tensor by 𝐴1. 

Both channel boundaries are mathematically described as  

 

                                                     𝐻1
∗ = 𝑑1

∗ + 𝑎1
∗cos [

2𝜋

𝜆
(𝑋∗ − 𝑐∗𝑡∗)],                                      (3.7) 

                                                 𝐻2
∗ = −𝑑2

∗ − 𝑏1
∗𝑐𝑜𝑠 [

2𝜋

𝜆
(𝑋∗ − 𝑐∗𝑡∗) + 𝜙].                                     (3.8)    

 

The phase difference with the wave amplitude (𝑎1
∗  , 𝑏1

∗) equals (∅), channel width is (𝑑1
∗ + 𝑑2

∗) 

and wavelength is signified by 𝜆. 𝑐 is the speed of the sinusoidal wave train across the channel 

walls. 

 

The suitable boundary conditions are                         

                                                            

𝑈∗ = 0,                 𝑎𝑡     𝐻1  , 𝐻2,
𝑇∗ = 𝑇1

 ∗,       𝐶∗ = 𝐶1
∗,     𝑎𝑡    𝐻1,

𝑇∗ = 𝑇𝑂
∗,         𝐶∗ = 𝐶𝑂

∗ ,   𝑎𝑡   𝐻2.
}                                         (3.9) 

 

The x any y-components of the momentum equation are 
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                     𝜌 [
𝜕

𝜕𝑡∗
+𝑈∗

𝜕

𝜕𝑋∗
+ 𝑉∗

𝜕

𝜕𝑌∗
] 𝑈∗ = −

𝜕𝑃∗

𝜕𝑋∗
+
𝜕𝑆𝑋∗𝑋∗ 

∗  

𝜕𝑋∗
+
𝜕𝑆𝑋∗𝑌∗

∗

𝜕𝑌∗
,                               (3.10) 

 

                           𝜌 [
𝜕

𝜕𝑡∗
+ 𝑈∗

𝜕

𝜕𝑋∗
+ 𝑉∗

𝜕

𝜕𝑌∗
] 𝑉∗ = −

𝜕𝑃∗

𝜕𝑌∗
+
𝜕𝑆𝑋∗𝑌∗

∗  

𝜕𝑋∗
+
𝜕𝑆𝑌∗𝑌∗

∗

𝜕𝑌∗
.                          (3.11) 

The energy and concentration equations are  

    𝜌𝐶𝑃 [
𝜕

𝜕𝑡∗
+𝑈∗

𝜕

𝜕𝑋∗
+ 𝑉∗

𝜕

𝜕𝑌∗
] 𝑇∗ = 𝐷 [

𝜕2𝑇∗

𝜕𝑋∗2 
+

𝜕2𝑇∗

𝜕𝑌∗2
] + 𝑆𝑋∗𝑌∗

∗ 𝜕𝑈∗ 

𝜕𝑋∗
+ 𝑆𝑌∗𝑌∗

∗ 𝜕𝑉∗

𝜕𝑌∗
 

                                                                                                    + (  
𝜕𝑉∗ 

𝜕𝑋∗
  +  

𝜕𝑈∗

𝜕𝑌∗
) 𝑆𝑋𝑌

∗                       (3.12) 

     

                    (
𝜕

𝜕𝑡∗
+ 𝑈∗

𝜕

𝜕𝑋∗
+ 𝑉∗

𝜕

𝜕𝑌∗
) 𝐶∗ = 𝐷 [

𝜕2𝐶∗

𝜕𝑋∗
2
 
+

𝜕2𝐶∗

𝜕𝑌∗
2] +

𝐷𝐾𝑇∗

𝑇𝑚
∗
(
𝜕2𝑇∗

𝜕𝑋∗
2
 
+

𝜕2𝑇∗

𝜕𝑌∗
2) −

                                                                                                       𝑘1(𝐶
∗ − 𝐶𝑂

∗ ).                                    (3.13) 

Taking into account the following transformation and non-dimensional parameters 

𝑥∗ = 𝑋∗ − 𝑐∗𝑡∗,    𝑦∗ = 𝑌∗, 𝑢∗ = 𝑈∗ − 𝑐∗, 𝑣∗ = 𝑉∗, 𝑝∗(𝑥) = 𝑃∗(𝑋∗, 𝑡∗)    

 

   𝑦∗ =
𝑦∗

𝑑1
∗  

,     𝑢∗ =
𝑢∗

𝐶∗ 
,    𝑥∗ =

𝑥∗

𝜆
, 𝑣∗ =

𝑣∗

𝐶∗𝛿
,    𝛿 = 

𝑑1
∗

𝜆
,      𝑏 =  

𝑎2
∗

𝑑1
∗,    𝑆

∗ =
𝜇 𝑐∗

𝑎
,    

      

𝜃 =
𝑇∗−𝑇0

∗

𝑇∗−𝑇0
∗,    𝑃

∗ = 
𝑑1
2𝑝∗

𝜆µ𝑐∗
,      𝜓∗ =

𝜓∗

𝑐∗𝑑1
∗,          ∅ =

𝐶∗−𝐶𝑂
∗

𝐶∗−𝐶𝑂
∗ ,     Re = 

𝜌𝑐∗𝑎1

𝜇
,     𝑆𝑟 =

𝜌𝐷𝐾(𝑇1
∗−𝑇𝑂

∗)

𝑇𝑚
∗  𝜇(𝐶∗− 𝐶𝑂

∗ )
, 

    

      𝑃𝑟 =
𝜇𝑐∗𝑃∗   

𝑘
,   𝑆𝑐 =

𝜇

𝑃∗𝐷
,     𝛾 =

𝐾1𝑑
∗
1 
2

𝑣
, d = 

𝑑2
∗

𝑑1
∗,    ℎ1 = 

𝐻1
∗

𝑑1
∗ ,     ℎ2 =

𝐻2
∗

𝑑1
∗ ,                    (3.14) 

 

where 𝑆𝑐 is the Schmidt number, Prandtl number (Pr), wave number (𝛿), and Re is a Reynolds 

number. The dimensionless parameter of chemical reaction is represented by γ. The kinematic 

viscosity is represented by ѵ . 

The use of non-dimensional quantities transforms the governing equation as 

  

                                                                    𝛿
𝜕𝑢∗

𝜕𝑥∗
+

𝜕𝑣∗

𝜕𝑦∗
= 0 ,                      (3.15) 
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                           𝑅𝑒 [(𝛿𝑢∗
𝜕

𝜕𝑥∗ 
+ 𝑣∗

𝜕

𝜕𝑦∗
) 𝑢∗] = −

𝜕𝑝∗

𝜕𝑥∗
+ 𝛿

𝜕

𝜕𝑥∗
𝑆𝑥∗𝑥∗ +

𝜕

𝜕𝑦∗
𝑆𝑥∗𝑦∗ ,                     (3.16) 

 

                            𝛿Re [(𝛿𝑢∗
𝜕

𝜕𝑥∗ 
+ 𝑣∗

𝜕

𝜕𝑦∗
) 𝑣∗] = −

𝜕𝑝∗

𝜕𝑦
+ 𝛿2

𝜕𝑆𝑥∗𝑦∗
∗

𝜕𝑥∗
+ 𝛿

𝜕𝑆𝑦∗𝑦∗
∗

𝜕𝑦∗
,                      (3.17) 

 

                                                           𝑆𝑥∗𝑥∗
∗ =   

2𝛿
𝜕𝑢∗

𝜕𝑥∗

1+(𝛽𝑋∗)𝛼−1
 ,                                                         (3.18)  

 

                                                                    𝑆𝑥∗𝑦∗
∗ =  

(
𝜕𝑢∗

𝜕𝑦∗ 
+𝛿

𝜕𝑣∗

𝜕𝑥∗
) 

1+(𝛽𝑋∗)𝛼−1 
 ,                                                           (3.19) 

 

                                                                            𝑆𝑦∗𝑦∗ 
∗ =

2
𝜕𝑣∗

𝜕𝑦∗

1+(𝛽𝑋∗)𝛼−1 
  ,                                                                  (3.20) 

where 

𝑋∗ = [
1

2
(𝑠𝑥∗𝑥∗
∗ )2 + 2(𝑠𝑥∗𝑦∗

∗ )
2
+ (𝑠𝑦∗𝑦∗

∗ )
2
]

1

2
. 

 

The temperature and concentration equations in non-dimensional form are  

 

                                Re [(𝛿𝑢∗
𝜕

𝜕𝑥∗ 
+ 𝑣∗

𝜕

𝜕𝑦∗
) 𝜃] =

1

𝑃𝑟
(
𝜕2

𝜕𝑥∗
2 +

𝜕2

𝜕𝑦∗
2) 𝜃 + 

                                                               𝐸𝑐 [𝛿
𝜕𝑢∗

𝜕𝑥∗
(𝑆𝑥∗𝑥∗

∗ − 𝑆𝑦∗𝑦∗
∗ ) + ( 𝛿

𝜕𝑣∗

𝜕𝑥∗
+
𝜕𝑢∗

𝜕𝑦∗
) 𝑆𝑥∗𝑦∗

∗ ],       (3.21) 

                  Re [(𝛿𝑢∗
𝜕

𝜕𝑥∗ 
+ 𝑣∗

𝜕

𝜕𝑦∗
) ∅] =

1

𝑆𝑐
(𝛿2

𝜕2∅

𝜕𝑥∗2
+

𝜕2∅

𝜕𝑦2
) + 𝑆𝑟 (𝛿2

𝜕2𝜃

𝜕𝑥∗2
+
𝜕2𝜃

𝜕𝑦2
) − 𝛾∅ .         (3.22) 

Making use of the following stream functions in the above equations to reduce the dependent 

variables.     

                                                     𝑢∗ =
𝜕𝜓∗

𝜕𝑦∗
          and     𝑣∗ = −𝛿

𝜕𝜓∗

𝜕𝑥∗
 .                                                   (3.23) 

After dropping the asterisk, the ruling equations are given as 

  

                                     Reδ [(
𝜕

𝜕𝑥 

𝜕𝜓

𝜕𝑦
−

𝜕

𝜕𝑦

𝜕𝜓

𝜕𝑥
)
𝜕𝜓

𝜕𝑦
] = −

𝜕𝑝

𝜕𝑥
+ 𝛿

𝜕𝑆𝑥𝑥

𝜕𝑥
+
𝜕𝑆𝑥𝑦

𝜕𝑦
 ,                               (3.24) 

                                     Reδ2 [(
𝜕

𝜕𝑥 

𝜕𝜓

𝜕𝑦
−

𝜕

𝜕𝑦

𝜕𝜓

𝜕𝑥
)
𝜕𝜓

𝜕𝑥
] = −

𝜕𝑝

𝜕𝑦
+ 𝛿2

𝑆𝑥𝑦

𝜕𝑥
+ 𝛿

𝜕𝑆𝑦𝑦

𝜕𝑦
 ,                         (3.25) 
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                                                                   𝑆𝑥𝑥 =
2𝛿

𝜕2𝜓

𝜕𝑦

1+(𝛽𝑋)𝛼−1 
 ,                                                   (3.26) 

                                                                            𝑆𝑥𝑦 =
(
𝜕2𝜓

𝜕𝑦 
−𝛿2

𝜕2𝜓

𝜕𝑥2
) 

1+(𝛽𝑋)𝛼−1 
 ,                                                    (3.27)   

                                                                            𝑆𝑦𝑦 =
−2𝛿

𝜕𝜓

𝜕𝑦𝜕𝑥

1+(𝛽𝑋)𝛼−1 
,                                                           (3.28) 

 

                                Reδ (
𝜕𝜓

𝜕𝑦

𝜕

𝜕𝑥 
−
𝜕𝜓

𝜕𝑥

𝜕

𝜕𝑦
) 𝜃 =

1

𝑃𝑟
(
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
) 𝜃 + 𝐸𝑐 [𝛿

𝜕𝑢

𝜕𝑥
(𝑠𝑥𝑥 − 𝑠𝑦𝑦) +

                                                                                 ( 𝛿
𝜕2𝜓

𝜕𝑥2
+
𝜕2𝜓

𝜕𝑦2
) 𝑆𝑥𝑦] ,                                             (3.29) 

 

                             Reδ (
𝜕𝜓

𝜕𝑦

𝜕∅

𝜕𝑥 
−
𝜕𝜓

𝜕𝑥

𝜕∅

𝜕𝑦
) =

1

𝑆𝑐
(
𝜕2∅

𝜕𝑥2
+

𝜕2∅

𝜕𝑦2
)     =

1

𝑆𝑐
(
𝜕2∅

𝜕𝑥2
+

𝜕2∅

𝜕𝑦2
) +

                                                                   𝑆𝑟 (𝛿2
𝜕2∅

𝜕𝑥2
+

𝜕2∅

𝜕𝑦2
) − 𝛾∅ .                                                  (3.30) 

 

3.3     Exact solution  

Assuming the lubrication approach in the above modeled equations, (3.24) - (3.30) are simplified 

as follows: 

 

                                                                                  
 𝜕𝑝

𝜕𝑥
=

𝜕𝑆𝑥𝑦

𝜕𝑦
,                                                           (3.31) 

                                                                          
𝜕𝑝

𝜕𝑦
= 0,                                                             (3.32) 

                                                                     𝑆𝑥𝑦 = 𝑆𝑦𝑦 = 0 ,                                                                  (3.33) 

                                                                               𝑆𝑥𝑦 =
(
𝜕2𝜓

𝜕𝑦2 
) 

1+(𝛽𝑋)𝛼−1 
,                                                           (3.34) 

                                                                    
𝜕2𝜃

𝜕𝑦2
+ 𝐵𝑟

𝜕𝜓2

𝜕𝑦2
𝑆𝑥𝑦 = 0,                                                     (3.35) 

                                                         
𝜕2∅

𝜕𝑦2
− 𝑆𝑐 𝛾∅ + 𝑆𝑐𝑆𝑟

𝜕2𝜃

𝜕𝑦2
= 0 .                                                  (3.36) 
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The non-dimensional boundary conditions are                                               

                                

𝜓 =
𝐹

2
,       𝑎𝑡         𝑦 = ℎ1 = 1 + 𝑐𝑜𝑠2𝜋𝑥,

𝜓 = −
𝐹

2
,      𝑎𝑡    𝑦 = ℎ2 = −𝑑 − 𝑏𝑐𝑜𝑠[2𝜋𝑥 + 𝜑],

𝜕𝜓

𝜕𝑦
= −1,       𝑎𝑡   𝑦 = ℎ1,        𝑦 = ℎ2,

𝜃 = 0,    ∅ = 0   , 𝑦 = ℎ2  , 𝜃 = 1, ∅ = 1    , 𝑦 = ℎ1.}
 
 

 
 

                                (3.37) 

 

Pressure expression is considered constant so equation (3.31) integrates with respect x. 

 

                                                          
𝑑𝑝

𝑑𝑥
𝑦 + 𝐶2 = 𝑆𝑥𝑦,                                                                     (3.38) 

                                                                 𝐶1𝑦 + 𝐶2 = 𝑆𝑥𝑦,                                                                     (3.39) 

where           

                                                                      
𝑑𝑝

𝑑𝑥
= 𝐶1                                                                       (3.40) 

 

Putting in the equation and integrating it twice 

                                       𝜓 =
𝑦3

6
𝐶1 +

𝛽𝛼−1(𝐶1𝑦 + 𝐶2)
𝛼+2

𝐶1
2(𝛼 + 1 )(𝛼 + 2 )

+ 𝐶3𝑦 + 𝐶4,                                         (3.41) 

where 𝐶1, 𝐶2, 𝐶3, 𝐶4 are constants,  
𝑑𝑝

𝑑𝑥
 are nonlinear terms in constant. 

The velocity profile of the fluid is given in the expression 

                                      𝑢 =  
𝜕𝜓

 𝜕𝑦
=
𝑦2𝐶1
2

+
𝛽𝛼−1(𝐶1𝑦 + 𝐶2)

𝛼−1

𝐶1(𝛼 + 1 )
+ 𝐶3,                                          (3.42) 

while flow rate is 

                                        𝑄 = ∫ (𝑈 + 1 )𝑑𝑦 = ∫ 𝑈𝑑𝑦 
ℎ1

ℎ2

+∫ 𝑑𝑦
ℎ1

ℎ2

ℎ2

ℎ1

 ,                                             (3.43) 

 

𝑄 =
𝐶1
8
(ℎ1

4 + ℎ2
4) +

𝛽𝛼−1(𝐶1ℎ1 + 𝐶2)
2𝛼−1

𝐶1
2(𝛼 + 1 )

−
𝛽𝛼−1(𝐶1ℎ2 + 𝐶2)

2𝛼−1

𝐶1
2(𝛼 + 1)

 − 𝐶3(ℎ1 − ℎ2) + 

                                                                                                                     ℎ1 − ℎ2 .                               (3.44) 

 

                                                                              𝑄 = 𝑞 + 1 + 𝑑.                                                          (3.45) 
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3.4 Results and Discussion  

 

                   The physical explanation of the parameters behavior as it links to the velocity, 

concentration distribution 𝜙, temperature distribution 𝜃 and pressure p, is the focus of this section. 

The velocity profile 𝑢 for the conduct of different factors is plotted in figures 3.1 – 3.3. In figures 

3.4 – 3.5, the effects of various parameters on the pressure rise ∆𝑝 are examined. Figures 3.6 – 3.7, 

illustrate the impact of parameters on the temperature distribution while figures 3.8 – 3.10 

demonstrate the concentration profile of the fluid with diverse parameters. 

 

Figure 3.1. depicts the influence of the material parameter 𝛼 on the velocity of the fluid. The 

velocity declines in the upper half of the channel while an opposite behavior can be seen in the 

lower half. The impact of Ellis parameter 𝛽 is shown in Figure 3.2, when 𝛽 is increased, axial 

velocity increases when moving higher to a lower region in fluid as shown in Figure 3.2. 

Additionally, it can be seen that velocity decreases close to the upper channel as the viscous 

behavior of the fluid changes. Figure 3.3 depicts that the velocity declines near the lower wall as 

the phase angle 𝜙 enhances.  

 

The impact of 𝛼 and 𝛽 on pressure rise per wavelength is shown in figure 3.5 and 3.6. The figure 

consists of three distinct regions. The area where the flow rate Q > 0 and pressure (∆𝑝) > 𝑂 is 

known as the peristaltic pumping region. In this region, to overcome the resistance provided by 

the pressure gradient, the fluid flows forward along the peristalsis of walls. For free pumping 

region ∆𝑝 = 0, Q > 0, fluid flow only happens when walls move peristaltically and the last region, 

which is referred as the argument pumping region ∆𝑝 < 0. It can be perceived from figure 3.5, as 

α increases, the pressure increases per wavelength in the peristaltic pumping area with a given 

value-defined flow rate. It can be witnessed in figure 3.5 that the impact of 𝛽, the second liquid 

constant that specifies the Ellis fluid model, is the opposite of that of 𝛼. 
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The distribution of temperature 𝜃 against 𝑦 is shown in figures 3.6 and 3.7. These graphs show 

that raising 𝛼 and 𝛽 have varied effects on temperature. The fluid becomes more viscous as 𝛼 

increases. Due to the influence of 𝛽, temperature declines as depicted in figure 3.7.  

 

Figure 3.8 deals with the concentration profile inspection. With the surge in the values of the Ellis 

parameter 𝛽, inclination in the concentration profile is observed. The chemical reaction parameter 

is signified by 𝛾. Concentration profile grows (Figure. 3.9) as the chemical reaction parameter is 

enhanced due to surge in the rate of reaction. Figure 3.10 shows how the Schmidt number 

𝑆𝑐 influences the concentration to change. Since mass diffusivity is reduced, the profile shown 

exhibits a decreasing change in concentration with Schmidt number 𝑆𝑐.  

 

3.5 Conclusion  

 

Heat and mass transfer through the dynamics of an Ellis fluid through an asymmetric channel are 

investigated in the presence of a chemical reaction. The study concluded by emphasizing certain 

characteristics' importance in determining how Ellis fluid flow behaves. When the Ellis fluid 

parameter is raised, the bolus size close to the upper wall increases but fluid velocity decreases. A 

rising pressure with material quality indicates stronger resistance to fluid movement. While 

variations in the temperature field decrease the Prandtl number and the material constant, 

variations in the power-law index α enhance the temperature profile. Furthermore, the 

concentration falls as the Soret constant and Schmidt number rise, highlighting the interaction 

between mass diffusion and heat. Ultimately, as the phase angle increases, the bolus size decreases, 

highlighting the dynamic interplay of flow, thermal characteristics, and material factors. The 

optimization of fluid behavior in engineering and industrial applications can be greatly enhanced 

by these findings. 
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Graphs:  

 

Fig. 3.1: Variation in the plots of velocity with diverse values of 𝛼. 

 

 

Fig. 3.2: Variation in the plots of velocity with diverse values of 𝛽. 
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Fig. 3.3: Variation in the plots of velocity with diverse values of 𝜙. 

 

 

 

Fig 3.4: Variation in the plots of ∆𝑝 with diverse values of 𝛼. 
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Fig. 3.5: Variation in the plots of ∆𝑝 with diverse values of 𝛽. 

 

 

Fig.3.6: Variation in the plots of temperature with diverse values of 𝛼. 
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Fig.3.7: Variation in the plots of temperature with diverse values of 𝛽. 

 

 

     Fig.3.8: Variation in the plots of concentration with diverse values of 𝛽. 

 

 



34 

 

 

   Fig.3.9: Variation in the plots of concentration with diverse values of 𝛾. 

 

      

 

 

 

   

 

    

    

           

 

                                                      

                     

Fig.3.10: Variation in the plots of concentration with diverse values of 𝑆𝑐. 
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CHAPTER NO 4 

 

ANALYSIS OF PERISTALTIC MHD ELLIS IN  

POROUS INCLINED ASYMMETRIC CHANNEL  

 

4.1 Introduction  

  

This study explores the characteristics of the laminar flow of Ellis fluid within a peristaltic flow in 

a porous, inclined, asymmetric tapered channel. The rheological equation is expressed in the 

Cartesian system, and the magnetohydrodynamics (MHD) and porosity effects are generated by 

the momentum equation's body force term. Profiles of temperature and velocity are used to display 

data visually. The problem's geometry is explained as follows: 

 

Fig. 4.1: Visual Framework of the Proposed Channel. 

4.2 Problem Formation  

 

                          This study investigates the peristaltic (MHD) Ellis fluid's mass and heat transport 

in a two-dimensional porous inclined asymmetry channel. Sinusoidal waves are produced through 
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maintaining a steady speed on the channel walls c by the fluid's electrical conductivity at a uniform 

magnetic and inclined angle. The geometry of walls is provided by  

 

                                        𝐻1( 𝑋, 𝑡) = 𝑑1 + 𝑎1 sin [
2𝜋

𝜆
(𝑋 − 𝑐𝑡)],                                               (4.1) 

                                          𝐻2(𝑋, 𝑡) = −𝑑2 − 𝑎2 sin [
2𝜋

𝜆
(𝑋 − 𝑐𝑡) + 𝜙] ,                                       (4.2) 

where 𝜆 is the wavelength, t is a time, 𝑎1, 𝑎2  are the amplitudes, the channel's width is  𝑑1 + 𝑑2 

and 𝜙 is a phase difference. 

The velocity components are  

 

                                                      𝑽 = [𝑈(𝑥, 𝑦), 𝑉(𝑥, 𝑦), 0].                                                       (4.3) 

  

The ruling equations of the proposed model are given by 

 

                                                              𝛁. 𝑽 = 0,                                                                                (4.4) 

                                                            𝜌
𝑑𝑽

𝑑𝑡
= 𝑑𝑖𝑣 𝝉 + 𝜌𝒃,                                                                (4.5) 

                                                         𝜌𝑐𝑝
𝑑𝑇

𝑑𝑡
= −𝑑𝑖𝑣 𝒒 + 𝝉. 𝑳,                                                                (4.6) 

where  

𝒒 = −𝑘𝑔𝑟𝑎𝑑 𝑇. 

The Ellis fluid model's equations that govern are provided by  

                                                       
𝜕𝑈

𝜕𝑋
+
𝜕𝑉

𝜕𝑌
= 0.                                                           (4.7) 

The equation for the x-component momentum is as follows:  

                   𝜌 [
𝜕𝑈

𝜕𝑡
+ 𝑈

𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑈

𝜕𝑌
] = −

𝜕𝑃

𝜕𝑋
+
𝜕𝑆𝑋𝑋

𝜕𝑋
+
𝜕𝑆𝑋𝑌

𝜕𝑌
+ 𝜌𝑔𝑠𝑖𝑛𝛾 −

                                                                    𝜎𝐵0
2𝑐𝑜𝑠𝜃[𝑈𝑐𝑜𝑠𝜃 − 𝑉𝑠𝑖𝑛𝜃]  −

𝜇

𝑘1
𝑈.                                 (4.8 ) 

The y-component momentum equation has been given as 
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  𝜌 [
𝜕𝑉

𝜕𝑡
+ 𝑈

𝜕𝑉

𝜕𝑋
+ 𝑉

𝜕𝑉

𝜕𝑌
] = −

𝜕𝑃

𝜕𝑌
+
𝜕𝑆𝑋𝑌

𝜕𝑋
+
𝜕𝑆𝑌𝑌

𝜕𝑌
− ρgcosγ + σBo

2𝑠𝑖𝑛𝜃(𝑈𝑐𝑜𝑠𝜃 − 𝑉𝑠𝑖𝑛𝜃) −

                                                                         
𝜇

𝑘1
𝑉 .                                                                                  (4.9)  

 

 The equation for energy is  

  

𝜌𝑐𝑝 [
𝜕𝑇

𝜕𝑡
+ 𝑈

𝜕𝑇

𝜕𝑋
+ 𝑉

𝜕𝑇

𝜕𝑌
]

= 𝐾 (
𝜕2𝑇

𝜕𝑋2
+
𝜕2𝑇

𝜕𝑌2
) + 𝑇𝑋𝑋

𝜕𝑈

𝜕𝑋
+ 𝑇𝑌𝑌

𝜕𝑉

𝜕𝑌
+ 𝑇𝑋𝑌 (

𝜕𝑉

𝜕𝑋
+
𝜕𝑈

𝜕𝑌
),                          (4.10) 

 

here 𝑐𝑝 is specific heat capacity, K is the fluid's thermal conductivity, 𝛾 is the inclination of the 

channel, g is the acceleration due to the gravity, 𝜇 is viscosity, 𝜌 is density, 𝐵𝑜 is a magnetic field, 

𝜃 is the inclination angle of the magnetic field. 

The coordinates and velocities in two frames are defined by following the relations:  

 

𝑥 = 𝑋 − 𝑐𝑡,   𝑦 = 𝑌,    𝑣 = 𝑉, 𝑢 = 𝑈 − 𝑐. 

 

The stream functions are given as   

 

                                         𝑢 =
𝜕𝜓

𝜕𝑦
          and     𝑣 = −𝛿

𝜕𝜓

𝜕𝑥
.                                                     (4.11) 

 

For the dimensionless analysis process, we set up the following quantities 

𝑎 =
𝑎1

𝑑1
, 𝑏 =

𝑎2

𝑑1
, 𝑑 =

𝑑2

𝑑1  
,    𝑦∗ =

𝑦

𝑑1 
,    𝑥∗ =

𝑥

𝜆
, 𝑢∗ =

𝑢

𝑐  
,    𝑣∗ =

𝑣

𝑐 
,    𝑢 =

𝜕𝜓

𝜕𝑦
,      𝑣 = −

𝜕𝜓

𝜕𝑥
, 

𝑀2 =
𝜎𝐵0

2𝑑1

𝜇
,   𝑅𝑒 =

𝜌𝑐𝑑1

𝜇
,  ℎ1 =

𝐻1

𝑑1 
,  ℎ2 =

𝐻2

𝑑1 
,   𝛿 =

𝑑1

𝜆 
, 𝑡∗ =

𝑐𝑡

𝜆
,    𝑝∗ =

𝑑1
2𝑝

𝑐𝜆𝜇 
,  𝐹𝑟 =

𝑐2

𝑔𝑑1
, 

                                          𝑘1
∗ =

𝑘1

𝑑1
2,   Br = 𝐸𝑐𝑃𝑟,     

𝑇−𝑇0

𝑇1−𝑇0
= 𝜃∗.                                             (4.12) 

 

𝑅𝑒 is the Reynold number, 𝛿 is the wave number, 𝑀 is the Hartman number, and 𝑘1 is the Darcy 

number. The Froude number is 𝐹𝑟, and the temperature distribution is denoted by 𝜃∗. 𝑃𝑟 is Prandtl 

number, and 𝐸𝑐 is an Eckert number. 
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After utilizing the above quantities in the governing equations and by assuming the lubrication 

approach, we arrive at the following equations: 

                                          
𝜕𝑝

𝜕𝑥
=
𝜕𝑇𝑥𝑦

𝜕𝑦
+
𝑠𝑖𝑛𝛾

𝐹𝑟
− (𝑀2 cos2 𝜃)

𝜕𝜓

𝜕𝑦
−
1

𝑘1

𝜕𝜓

𝜕𝑦
,                                    (4.13) 

                                                                                
𝜕𝑝

𝜕𝑦
= 0,                                                                      (4.14) 

                                                              
𝜕2θ

𝜕𝑦2
+ 𝐵𝑟 𝑇𝑥𝑦 (

𝜕2𝜓

𝜕𝑦2
) =  0.                                                  (4.15) 

with  

𝑇𝑥𝑦 =
(
𝜕2𝜓
𝜕𝑦2

) 

1 + (𝛽𝑋)𝛼−1 
 . 

The corresponding boundary conditions are: 

                      𝜓 =
𝐹

2 
,     

𝜕𝜓

𝜕𝑦
= −1,     𝑇 = 0,               𝑎𝑡        𝑦 = ℎ1(𝑥),                                              (4.16) 

                    𝜓 = −
𝐹

2
,      

𝜕𝜓

𝜕𝑦
= −1,     𝑇 = 1,          𝑎𝑡        𝑦 = ℎ2(𝑥),                                             (4.17) 

where  

                                                      ℎ1(𝑥) = 1 + asin(2𝜋𝑥), 

ℎ2(𝑥) = −𝑑 − 𝑏𝑠𝑖𝑛(2𝜋𝑥 + 𝜙). 

                                                                  𝐹 = ∫
𝜕𝜓

𝜕𝑦

ℎ1(𝑥)

ℎ2(𝑥)
𝑑𝑦.                                                               (4.18) 

 

Making use of the built-in tool NDSolve in MATHEMATICA software, the above modelled 

equations were numerically solved and graphs were plotted to check the results.  
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4.3 Results and Discussion  

 

This section is dedicated to discuss the interpret the graphical results deduced by using the software 

to check the impact of diverse parameters on the velocity, pressure gradient and temperature profile 

of the proposed model. Fig. 4.2 – 4.5 are plotted to check the influence of parameters on the 

velocity of the fluid. Fig. 4.6 – 4.11 show the changes in the pressure gradient while with the 

impact of different attributes in it. Fig. 4.12 – 4.16 depict the temperature profile of the fluid. 

 

Fig. 4.2 illustrates how the velocity profile decreases as the value of the parameter 𝛽 increase. The 

viscous nature of the fluid changes with the increase in the 𝛽, thus causing fall in the velocity of 

the fluid.  The increase in the porosity indicates more proportion of the void spaces in the channel, 

creating decline in the velocity as shown in the fig. 4.3. The other material parameter 𝛼 shows a 

reverse result to 𝛽. Fluid flows with more velocity in the center of the channel with the increase in 

the values of 𝛼. The magnetic field creates a resistance in the flow of the fluid due to Lorentz force 

presence. The magnetic field parameter is denoted by 𝑀. Fig. 4.5 shows decline in the velocity 

with the growth in the values of 𝑀.  

 

The amount of pressure change over a certain range is pressure gradient. It is crucial to study as it 

shows how quickly pressure enhances or declines in a certain direction. Fig. 4.6 shows surge in 

the pressure gradient by increasing the values of the material parameter 𝛼. Decline in the pressure 

gradient can be seen in fig. 4.7 due to increasing values of the magnetic parameter 𝑀. The Ellis 

fluid parameter 𝛽 causes increase in the pressure gradient with growing values. The pressure 

gradient declines with the increasing values of the porosity parameter 𝑘1 as demonstrated in the 

fig. 4.9. The ratio of inertial forces to gravitational forces is Froude number. Lower Froude number 

indicates that gravitational forces are dominating. Thus, increase in the pressure gradient can be 

observed in fig. 4.10. The inclination of the channel is signified by 𝛾. Increase in the pressure 

gradient can be observed in fig. 4.11 by increasing the values of 𝛾. 

 

 

Fig. 4.12 shows the influence of the magnetic parameter on the temperature of the fluid. 

Temperature rises as the magnetic field parameter is growing. Growth in the temperature is 
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observed with the rising values of the Ellis fluid parameter. The shear thinning properties of the 

fluid enhances with the increased values of 𝛽 thus, energy dissipation enhances and more heat 

conduction occurs in the fluid. Due to increased void spaces in the channel which slower down the 

fluid velocity. More heat energy is absorbed by the fluid causing rise in the temperature as shown 

in fig. 4.14. Influence of the material parameter 𝛼 on the temperature profile can be seen in fig. 

4.15. Decay in the temperature is observed with the growing values of 𝛼. Brinkman number helps 

us to understand the conversion of energy into heat in the fluid flow. Higher Brinkman number 

means that the viscous heating dominates thus resulting rise in the temperature as demonstrated in 

fig. 4.16. 

 

 

 

 

Fig. 4.2: Variation in the plots of velocity profile under the influence of 𝛽. 
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Fig. 4.3: Variation in the plots of velocity profile under the influence of 𝑘1. 

 

 

 

Fig. 4.4: Variation in the plots of velocity profile under the influence of 𝛼. 
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Fig. 4.5: Variation in the plots of velocity profile under the influence of 𝑀. 

 

 

 

Fig. 4.6: Variation in the plots of pressure gradient under the influence of 𝛼. 
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Fig. 4.7: Variation in the plots of pressure gradient under the influence of 𝑀. 

 

 

Fig. 4.8: Variation in the plots of pressure gradient under the influence of 𝛽. 
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Fig. 4.9: Variation in the plots of pressure gradient under the influence of 𝑘1. 

 

 

 

Fig. 4.10: Variation in the plots of pressure gradient under the influence of 𝐹𝑟. 
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 Fig. 4.11: Variation in the plots of pressure gradient under the influence of 𝛾. 

 

 

 

 

Fig. 4.12: Variation in the plots of temperature under the influence of 𝑀. 
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Fig. 4.13: Variation in the plots of temperature under the influence of 𝛽. 

 

 

 

Fig. 4.14: Variation in the plots of temperature under the influence of 𝑘1. 
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Fig. 4.15: Variation in the plots of temperature under the influence of 𝛼. 

 

Fig. 4.16: Variation in the plots of temperature under the influence of 𝐵𝑟. 
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CHAPTER NO 5 

 

CONCLUSION AND FUTURE WORK 

 

 

The peristaltic motion of an Ellis fluid in a porous, inclined asymmetric channel, while subjected 

to a magnetic field (MHD), is examined. The analysis takes into account how the fluid behaves 

when its rheology, channel inclination, magnetic field intensity, and porous medium permeability 

are all combined. Additionally, the Ellis fluid's non-Newtonian properties are crucial in 

determining the flow pattern, particularly in areas with low shear rates. The efficiency of pressure 

distribution flow is impacted by additional complications introduced by the channel's inclination 

angle and asymmetry. The results highlight how these parameters interact to maximize fluid flow 

in both industrial and biomedical settings. 

 

The proposed model is formulated mathematically by using partial differential equations. Steam 

functions are utilized to reduce the number of dependent variables. Due to the complexity of the 

model, numerical approach has been used to obtain the graphical results.  

 

Important findings show that the strength of the magnetic field has a major impact on fluid 

velocity, with higher magnetic intensity leading to flow retardation while the temperature 

enhanced and the pressure gradient declined. The increase in the porosity parameter resulted in 

decay of the velocity and pressure gradient while rise in the temperature occurred. Increase in the 

Ellis fluid parameter enhances the shear thinning properties of the fluid. Pressure gradient and 

temperature increased by increasing this parameter, while velocity declined. The material 

parameter has an opposite impact on the fluid’s velocity, pressure gradient and temperature than 

the Ellis fluid parameter 𝛽. 

 

Future work 

The study might be improved to include heat and mass transfer effects within the framework of 

peristaltic flow in order to better understand thermal and concentration gradients. Additionally, 
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magnetohydrodynamic (MHD) peristaltic flow systems can be simulated more accurately by 

including changeable magnetic field strength and direction. To determine whether elastic walls 

improve or hinder flow characteristics, it is crucial to look into how they affect fluid transport 

phenomena. Studying how nanoparticles, or nanofluids, affect fluid characteristics might also 

enhance system performance and heat transfer efficiency. To ensure practical application, 

experimental experiments are conducted to validate and corroborate theoretical and numerical 

conclusions. A more comprehensive knowledge of practical peristaltic flow applications in a 

variety of engineering and biomedical systems can be obtained by investigating three-dimensional 

flow geometries. 
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