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ABSTRACT

Title: A Study of Spin Precession Effects of Axisymmetric Black Holes

Recent advances in gravitational theory and cosmology have emphasized the need to ex-

plore black hole structures within extended frameworks beyond general relativity. This thesis

investigates the spin precession effects induced by both spacetime rotation and curvature in two

distinct black hole models: a rotating black hole in Brans–Dicke (BD) gravity, which includes a

dynamical scalar field, and a rotating black hole surrounded by a string cloud in the presence

of dark energy. The study aims to understand how spin precession behaves in these modified

gravitational settings and how it can serve as a tool to distinguish between black holes and naked

singularities.

By analyzing the precession of a test gyroscope near the central object, it is found that diver-

gent precession frequencies are indicative of black hole horizons, while finite precession rates

point toward naked singularities. This establishes spin precession as a potential observational

criterion for differentiating these two types of compact objects. Furthermore, the influence

of scalar fields and exotic matter components, such as dark energy and string clouds, on the

precession behavior is explored, offering new insights into how such fields affect the spacetime

geometry and the motion of spinning test particles. Overall, the results contribute to a deeper

theoretical understanding of compact object classification in alternative gravity theories through

physically measurable quantities.
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CHAPTER 1

INTRODUCTION

1.1 Einstein’s Theory of Gravity

In Newtonian gravity, time is regarded as a universal and absolute quantity that remains the

same for all observers, regardless of their speed or position in space. Therefore, Newton’s theory

of gravity is based on a three-dimensional framework in which all events occur. Isaac Newton

presented the law of gravity, which states that all objects in the universe with mass attract one

another. Further, the force depends on the masses of the objects and the distance between them.

Newton’s law of gravity was accepted for over two centuries and proved remarkably effective

in predicting the motion of most objects. It has been used successfully in various practical

applications, including space missions such as those that landed astronauts on the Moon. Today,

it remains widely used for many practical purposes. However, Newton’s law does not explain

why gravity exists; it only describes the apparent effects of gravity on objects. According to

Newton’s theory, the gravitational force between two objects increases with their masses and

decreases as the distance between them becomes larger. This force acts along the straight line

joining their centres of mass. Mathematically, we can express the force F as [1]

F = G
M1M2

r2 , (1.1)

where G is Newton’s gravitational constant, M1 and M2 represent the masses of the objects, and

r represents the distance between their centres of mass. Further, according to Newton’s theory of

gravity, time is a universal quantity; that is, it is the same for everyone, whether you are close to
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a gravitational object or far from it, moving at high speed or at rest. While Newton described

gravity as a law based on his observations, there are certain situations,especially under extreme

conditions,where his law does not accurately explain what occurs. In science, an explanation of

what consistently happens in nature is called a law.

Einstein’s GR builds upon and extends Newton’s theory of gravity. While Newton described

gravity as a force acting at a distance between two masses, Einstein proposed a different

explanation. According to him, gravity is not a force but the result of the curvature of space and

time, collectively known as space-time, caused by the presence of mass and energy. His theory is

based on a set of mathematical expressions called the EFE. In contrast to Newton’s assumption

of absolute space and time, Einstein showed that space and time are dynamic and interconnected,

forming a four-dimensional spacetime. This means that time is not constant for all observers; it

can vary depending on their velocity and position in a gravitational field, being affected by both

motion and gravity [2, 3]. In Einstein’s view, massive objects create curvature in spacetime, and

this curvature determines the motion of other objects. Spacetime becomes more curved as mass

increases. Although Einstein developed his theory through complex mathematical methods, a

simple analogy can help illustrate it: massive objects like the Sun distort spacetime similarly to

how a bowling ball deforms a stretched rubber sheet. As an object’s mass increases, the curvature

it causes becomes stronger. Thus, unlike Newton’s view of gravitational attraction, Einstein

explained that objects move along the curved paths defined by spacetime geometry [3, 4].

Thus, unlike Newton’s view of gravitational attraction, Einstein explained that objects move

along the curved paths defined by spacetime geometry. The amount of curvature depends on the

distribution of mass-energy in spacetime. To describe this relationship mathematically, Einstein

formulated the EFE, which provides the foundation of his theory. These EFE can be expressed

in tonsorial form, as follows [3, 4]

Rαβ − 1
2

Rgαβ = kTαβ , (1.2)

with α,β = 0,1,2,3 and R and Rαβ represent the Ricci scalar and Ricci tensor, respectively, gαβ

denotes the metric tensor of spacetime, Tαβ represents the stress-energy tensor, and k = 8πG/c4

is the Einstein constant. These equations show how the curvature of spacetime (given by

Rαβ −1/2Rgαβ ) is influenced by the presence of matter and energy (represented by the stress-

energy tensor Tαβ ). In simple terms, they relate the geometry of spacetime to its physical content.

The EFE are a set of ten interrelated differential equations that determine how mass and energy

tell spacetime how to curve, and how this curvature affects the motion of objects. John Archibald
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Wheeler summarized this as: "Spacetime tells matter how to move; matter tells spacetime how to

curve" [3].

The EFE establish a deep analogy with Maxwell’s equations, which relate electromagnetic

fields to electric charges and currents. Similarly, the EFE related the geometry of spacetime to

the distribution of mass, energy, momentum, and stress. Given a distribution of stress-energy, the

EFE can be used to determine the spacetime metric gµν , just as Maxwell’s equations determine

electromagnetic fields from charge and current distributions.

The connection between the metric and curvature tensors expressed through the EFE can be

written as a system of partial differential equations. If we know the mass-energy distribution in

the spacetime, solutions to these equations yield the components of the metric tensor, which in

turn determine the spacetime geometry. Once the geometry is known, the geodesic equation can

be applied to determine the trajectories of particles and radiation [3]. Similarly, if we know the

curvature of spacetime, we can obtain the mass-energy that is producing the given curvature.

The EFE are consistent with the principle of local conservation of energy and momentum,

that is, in the weak gravitational fields approximation and slow-motion conditions (velocities

significantly less than the speed of light, that is, v/c → 0), they reduce to Newton’s law of

gravitation, thereby recovering classical gravity as an approximation.

Exact solutions to the EFE are rare and often require assumptions of symmetry and other sim-

plifications. Nevertheless, these equations can describe a wide range of gravitational phenomena,

including rotating BHs, gravitational waves, and the expanding universe. By further assuming

small deviations from flat spacetime, the linearized EFEs can be derived [3]. These simplified

forms are particularly useful in the study of gravitational waves and related phenomena.

1.2 Black Hole

The minimal velocity needed for any non-propelled object to escape from a gravitational

body’s field is called the escape velocity. The escape velocity vesc of a gravitational object with

mass M at a point P, located at a distance r from its center of mass, can be determined using the

following condition:

Kinetic energy+Gravitational potential energy = 0 (1.3)
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which can also be written as

1
2

mv2
esc −

GMm
r

= 0. (1.4)

Solving for vesc, we get:

1
2

mv2
esc =

GMm
r

,

which simplifies to:

vesc =

√
2GM

r
. (1.5)

The above formula for the escape velocity shows that the escape velocity, vesc, is independent

of the object’s mass m. The escape velocity depends only on the mass M of the central object

and the distance r from its center. Therefore, the escape velocity increases with the square root

of mass and decreases with the square root of distance from the center. For example, the Earth’s

surface its value is 11.186km/s, whereas at the surface of the Sun it is about 617.5km/s.

In 1784, John Michell wrote a letter to Henry Cavendish suggesting the possibility of "dark

stars" in our universe. These stars possessing enough mass and extreme density can have a

surface escape velocity that exceeds the speed of light. As a result, no light could escape from

them, making them invisible to us. However, they could still be detected due to their strong

gravitational influence on nearby objects [5]. In addition to John Michell’s suggestion, a similar

idea was proposed by the French mathematician and astronomer Pierre-Simon Laplace. In 1796,

Laplace speculated in his work "Exposition du Système du Monde" that there could be objects

in the universe with such strong gravitational fields that not even light could escape from them

While he did not directly use the term "BH," Laplace’s idea closely mirrored Michell’s concept

of "dark stars" [6, 7]. Laplace believed that these objects, if they existed, would be completely

invisible, yet their presence could be inferred by their gravitational effects on nearby bodies.

Laplace’s work contributed to the early theoretical foundations of BH physics, even though

the concept was not fully developed until the 20th century, after Einstein’s theory of general

relativity provided a framework for understanding such extreme gravitational phenomena [8].

A BH is an extremely dense object whose escape velocity is greater than that of the speed

of light, meaning that nothing, not even light, can escape its gravitational pull. The concept of

the BH plays a crucial role in testing Einstein’s theory of general relativity, which, as discussed

earlier, describes the relationship between mass, space, and time. Over the past decade, significant

advancements have been made in detecting signals from BH collisions and capturing images of
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the light from gas swirling around them, thereby teaching scientists much about the cosmos [9].

BHs have also played a key role in testing the predictions of general relativity.

The Universe is full of BHs, and while there are many different kinds, one of the most

fundamental types is the Schwarzschild black hole(SBH), which has only one parameter: the

mass. From an astronomical perspective, a BH is often considered the ultimate result of a massive

star’s gravitational collapse. The solution of EFE in this context initially seemed impractical.

In the 1920s, it was discovered that a massive star could become a white dwarf because the

degeneracy pressure of electrons would prevent the star from completely collapsing without

nuclear fusion. However, Subrahmanyan Chandrasekhar proposed in 1931 that if the mass of

a star exceeds a certain limit, known as the Chandrasekhar limit (about 1.44 times the mass of

the Sun), the degeneracy pressure of electrons would no longer be able to stop the star from

collapsing further [10, 11]. This theory was initially rejected by many scientists, including

Arthur Eddington, who thought some other force could halt the collapse. Later, it was discovered

that a neutron star could form from a star’s collapse above the Chandrasekhar limit, halting the

collapse at that moment [10].

Albert Einstein himself rejected the idea of BHs in 1939, stating that it was not feasible for

stars to shrink to zero size and that no astronomical object could have such a strong gravitational

pull that even light could not escape from it [12]. Despite Einstein’s rejection, J. R. Oppenheimer

and H. S. Snyder in 1939 showed through their work on gravitational collapse that BHs could

indeed form [13, 14], though they suggested that no observable effects could be detected with

the telescopes of the time.

The idea of BHs gained more credence in the 1950s when quasars, extremely bright active

galactic nuclei, were discovered. Initially, it was unclear what process was responsible for

generating quasars, but in 1964, Edwin Salpeter and Yakov Zel’dovich separately postulated

that quasars might be fueled by a binary hypernova extracting material from a nearby massive

star, forming an accretion disk [15, 16]. In 1964, the first BH was identified as Cygnus X-1,

with its mass determined to be more than a neutron star as suggested by the study of its orbital

motion [17]. This discovery led scientists to acknowledge the existence of BHs in the universe.

Advancements in technology have furthered BH astrophysics. The detection of gravitational

waves by LIGO and Virgo, which result from the merger of two BHs, has opened up new avenues

of study [18, 19]. In 2019, the first-ever image of a supermassive BH at the center of galaxy M87

was captured using the Event Horizon Telescope. This BH has a mass approximately 6.5 billion
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times that of the Sun [9]. These findings have provided new insights into the various facets of

BHs and have resolved long-standing debates regarding their existence, offering support for the

predictions made by Newton’s and Einstein’s theories of gravity. Through these observations and

discoveries, BHs have not only tested Einstein’s GR but have also deepened our understanding

of space, time, and gravity.

1.3 Naked Singularity

Relativistic astrophysics and gravitational theory are profoundly concerned with the grav-

itational collapse of a massive star and its eventual outcome. When a giant star exhausts its

nuclear fuel, the gravitational force of the star’s own mass overcomes the internal pressure that

was previously counteracting the collapse. As a result, the star begins to collapse, becoming

denser and denser under the dominance of gravity. The ultimate fate of this collapse depends on

the star’s initial mass. For stars with a mass less than three times that of the Sun, the collapse

will likely end in the formation of a white dwarf or a neutron star. However, for significantly

more massive stars, the collapse continues, eventually leading to the formation of a spacetime

singularity [20].

A spacetime singularity represents a point where the curvature of spacetime becomes infinite,

and physical quantities such as mass and energy lose their well-defined meaning, making the

laws of physics no longer applicable. According to the uniqueness theorem of general relativity,

a singularity can either be visible to external observers, in which case it is called a NS, or it can

be hidden behind the event horizon of a BH, making it invisible to the observer outside the BH

[3, 21]. Thus, we define the event horizon as a trapping boundary beyond which nothing, not

even light, can escape the BH’s due to the gravitational pull. In the case of a BH, the singularity

is enclosed and hence covered by the event horizon, rendering it undetectable to any external

observers.

The nature of the collapsing star’s internal dynamics determines whether the singularity

becomes a NS or is covered and by the the event horizon of a BH. If the final outcome of the

star’s collapse is a BH, the event horizon serves as the defining feature of the BH, marking

the boundary beyond which any information or matter cannot escape. The event horizon of a

black hole is a crucial surface, playing a significant role in distinguishing between two possible
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outcomes: a black hole with a hidden singularity or a naked singularity that challenges the

predictions of general relativity.

In this thesis, we explore both scenarios, focusing on how the spin precession frequency

of the axis of a sniping test gyroscope can serve as a tool to differentiate between naked

singularities (NSs) and Kerr-like BHs [22]. This distinction is central to understanding the nature

of gravitational collapse and the boundary conditions of spacetime singularities.

1.4 Types of Black Hole

If a spacetime admits the timelike Killing vector ∂t , it is considered stationary. This indicates

that ∂gµν/∂ t = 0, which mean the metric components gµν are independent of t. If the metric

of a stationary spacetime remains unchanged when the time coordinate t is changed to −t, it

is referred to as static. If the metric components of a spacetime does no change by changing

the azimuthal angle coordinate φ around the axis of symmetry, meaning that ∂gµν/∂φ = 0, this

spacetime is considered axisymmetric. Based on the conditions outlined above, if all components

of the metric are independent of both time (t) and the azimuthal angle (φ ), then the following

conditions must hold:

gtr = grφ = gtθ = gθφ = 0. (1.4)

Consequently, the spacetime must be both stationary and axisymmetric. Further, if the metric has

no cross term like dtdθ ,drdφ , and the angular part of must be invariant under SO(3) rotations,

that is, it must be of the form a2(r)dΩ2 = a2(r)(r2 + r2 sin2
θ).

1.5 Schwarzschild Black Hole

The Schwarzschild black hole (SBH) spacetime metric is the first solution to EFE, as

presented by Karl Schwarzschild in 1916. To obtain this solution, Schwarzschild considered

vacuum spacetime outside a spherically symmetric gravitational source of mass M, situated at the

origin. The Schwarzschild metric is a one-parameter solution (with the parameter being the mass

of the gravitational source), and it provides an excellent approximation for the gravitational field
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due to non-rotating spherically symmetric gravitational source, such as a star, planet, or static

BH. The line element of SBH (which gives the metric tensor) can be mathematically written as

[3, 4]

ds2 =−
(

1− 2GM
c2r

)
c2dt2 +

1(
1− 2GM

c2r

)dr2 + r2 (dθ
2 + sin2

θ dφ
2) . (1.5)

In natural units, where G = 1 = c, the Schwarzschild metric simplifies to

ds2 =−
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2 (dθ
2 + sin2

θ dφ
2) . (1.6)

From the line element (1.6), we can see that the metric components gtt and grr become singular

at r = 0 and r = 2M. Specifically, at r = 0, both gtt and grr become infinite, whereas at r = 2M,

gtt = 0 and grr becomes infinite [3, 4]. At r = 0, the spacetime encounters a physical singularity

(also known as a crushing singularity). At this point, the spacetime curvature becomes infinite,

and therefore we are unable to apply general relativity, and we say that the laws of physics break

down. In contrast, another important location is at r = 2M, where the metric component grr

becomes infinite while the curvature remains finite. This indicates that the singularity arises

due to a poor choice of coordinates and is, in fact, a coordinate singularity that can be removed

through a suitable coordinate transformation. Geometrically, r = 2M corresponds to the event

horizon of the BH. The event horizon is a null hypersurface that separates the BH’s interior from

the exterior.

At the event horizon, the escape velocity equals the speed of light, as we discussed earlier;

this is a defining property of the event horizon. The metric defined by (1.5) is valid only in the

region outside the horizon, that is, for r > 2M, which ensures that the spacetime lies outside the

black hole. For a long time, this solution was considered non-physical; however, it is now widely

accepted as describing a real, physical object known as the SBH.

The Schwarzschild solution is considered a static solution to the EFEs, as the metric compo-

nents are independent of the time coordinate t, making the metric invariant under time translations.

A BH that lacks both electric charge and angular momentum is known as a Schwarzschild BH or

a static BH (non-rotating). The SBH is characterized by its spherical event horizon, and it serves

as the prototype for other BHs. This solution can be generalized to the Reissner-Nordström black

hole (RNBH) by adding the charge along with the mass of the BH.
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1.6 Reissner-Nordström Black Hole

In general relativity, the inclusion of electric charge leads to spacetime geometries that extend

the Schwarzschild solution by incorporating electromagnetic effects. Under the assumptions

of spherical symmetry and time independence, such geometries describe non-rotating charged

black holes.

The Reissner–Nordström black hole (RNBH) is specified by two physical parameters, namely

the mass M and the electric charge Q. It emerges as a static and spherically symmetric solution of

the Einstein–Maxwell field equations and characterizes the spacetime surrounding a non-rotating,

electrically charged compact object. In spherical coordinates and natural units, the corresponding

line element is given by [3, 4]

ds2 =− f (r)dt2 +
1

f (r)
dr2 + r2dθ

2 + r2 sin2
θdφ

2. (1.7)

where

f (r) = 1− 2M
r

+
Q2

r2 . (1.7)

The electromagnetic field at every location in space is described by the four-potential

Aµ =

(
Q
r
,0,0,0

)
. (1.8)

Note that, unlike the SBH, the RNBH has two horizons, called the inner and outer horizons,

denoted by r±. These horizons lie where the radial component of the metric, grr, goes to zero

[11]. These horizons are located at

r± = M±
√

M2 −Q2 (1.9)

Now, the quantity inside the square root indicates two possibilities: (i) Q ≤ M, which makes

the expression non-negative and hence r±, and (ii) Q < M and hence no real r±. For Q ≤ M,

the condition M = Q represents an extremal BH with a single event horizon. If Q > M, the

solution corresponds to an NS. The line element in Eq. (1.7) exhibits a coordinate singularity

at the RNBH horizons, r±, and an essential singularity at r = 0, where the spacetime geometry

becomes undefined. In the case where Q = 0, the RNBH reduces to the SBH.

The study of distinguishing BHs from naked singularities is an ongoing topic of research, as

this distinction helps understand the nature of spacetime singularities. The Reissner-Nordström

BH’s horizons and singularity are key aspects in this ongoing study of BH and singularity

classification [4].



10

1.7 Kerr Black Hole

Roy Kerr derived in 1963 the vacuum solution of the EFEs that provided the spacetime

structure outside a rotating gravitational body. Thus, the spacetime so obtained by solving the

EFEs involved two parameters, the mass M and angular momentum J of the spacetime, and it is

known as Kerr spacetime. The line element is stationary, axisymmetric, and in Boyer–Lindquist

coordinates, it can be expressed as [3, 4]

ds2 =−
(

1− 2Mr
Σ

)
dt2 +

Σ

∆
dr2 +Σdθ

2 + sin2
θ
(r2 +a2)2 −a2∆sin2

θ

Σ
dφ

2, (1.8)

− 4Mar sin2
θ

Σ
dφ dt, (1.10)

where

∆ = r2 −2Mr+a2, Σ = r2 +a2 cos2
θ , a =

J
M
. (1.9)

As in the case of the RNKB, the KBH also possesses two coordinate horizons, located at the

roots of ∆ = 0, which comes from the condition grr = 0 (or equivalently, 1/grr = 0) which on

solving gives

r± = M±
√

M2 −a2. (1.14)

Now, depending on the parameters M and a, the line element describes two horizons if a ≤ M,

and for a = M the horizons coincide into a single horizon; in this case, the BH is said to be

an extremal BH. If a > M, the horizons disappear, and the central singularity becomes visible,

resulting in an NS.

Another important surface in the Kerr geometry is the stationary limit surface (SLS), defined

by the vanishing of the gtt component of the metric:

gtt =−
(

1− 2Mr
Σ

)
= 0. (1.15)

Solving for r, we obtain the location of the stationary limit surface:

rSLS(θ) = M+
√

M2 −a2 cos2 θ . (1.16)

This surface lies outside the outer event horizon (rSLS > r+ for θ ̸= 0,π) and coincides with the

horizon at the poles. The region bounded between the event horizon and the stationary limit

surface (shown by the gray region in Fig. [?]) is called the ergosphere.
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Figure 1.1: The Structure of the Kerr black hole.

Within the ergosphere, although particles can still escape to infinity, they cannot remain

stationary with respect to a distant observer. This is because the timelike Killing vector ∂t

becomes spacelike inside the ergosphere, indicating that no static observer can exist there. Due

to the frame-dragging effect, all objects are inevitably drawn into co-rotation with the black hole.

This region is essential for energy extraction mechanisms such as the Penrose process.

The KBH also possesses a ring singularity at Σ = 0, that is, at r = 0, θ = π

2 , located in

the equatorial plane. This is a real curvature singularity, where spacetime curvature becomes

infinitely large.

Unlike the SBH and RNBH, the KBH is not static because the metric is not invariant under

the transformation t 7→ −t. Because the black hole rotates, Kerr spacetime loses its spherical

symmetry and becomes merely axisymmetric. These characteristics give rise to a variety of rich

and complex physical effects that distinguish rotating BHs from their non-rotating counterparts.

1.8 Kerr–Newman Black Hole

In 1965, Ezra T. Newman extended the Kerr solution to include electric charge, leading to the

spacetime now known as the Kerr–Newman black hole (KNBH). This solution is stationary and

axisymmetric, satisfying the coupled Einstein–Maxwell equations. It describes the spacetime
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surrounding a rotating object that carries an electric charge. The black hole is fully specified by

three parameters: its mass M, electric charge Q, and angular momentum J. In Boyer–Lindquist

coordinates, the corresponding line element can be expressed as [?, ?]: [3, 4]

ds2 =− ∆

ρ2

(
dt −asin2

θ dφ
)2

+ρ
2 dθ

2 +
ρ2

∆
dr2 +

sin2
θ

2

[
−adt +(r2 +a2)dφ

]2
, (1.28)

where

ρ
2 = r2 +a2 cos2

θ , ∆ = r2 −2Mr+Q2 +a2, a =
J
M
. (1.10)

The electromagnetic field associated with the KNBH is defined via the four-potential one-

form:

Aµdxµ =−Qr
ρ2

(
dt −asin2

θ dφ
)
. (1.29)

The KNBH possesses two horizons, which are obtained from the condition ∆ = 0, or

equivalently from 1/grr = 0. Solving this quadratic equation in r yields

r± = M±
√

M2 −Q2 −a2, (1.30)

with the condition Q2 +a2 ≤ M2 to ensure the existence of real horizons. The surface at r = r+

is the event horizon, while r = r− is the inner (Cauchy) horizon. If Q2 + a2 > M2, the roots

become complex and the line element instead represents a NS.

The stationary limit surface (SLS), where the time-time component of the metric vanishes

(gtt = 0), defines the boundary beyond which no observer can remain stationary. Setting gtt = 0,

we find

gtt =−
(

1− 2Mr−Q2

ρ2

)
= 0, (1.31)

which gives the location of the SLS as

rSLS(θ) = M+
√

M2 −Q2 −a2 cos2 θ . (1.32)

As with the Kerr BH, the region between the SLS given by rSLS and the event horizon given by r+

is called the ergosphere. Within this region, the timelike Killing vector ∂/∂ t becomes spacelike,

implying that no static observer can exist. Frame-dragging effects dominate this region and play

a crucial role in energy extraction mechanisms [23].

The KNBH also has an essential ring singularity at Σ = 0, which occurs at r = 0 and θ = π

2

in the equatorial plane. This singularity is similar to that of the KBH. When Q = 0, the KN

metric reduces to the Kerr solution, and if a = 0, the RNBH is recovered. These limiting cases

demonstrate the consistency of the KNBH as a unifying solution in general relativity [24].
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1.9 Precession in Curved Spacetime: Geodetic and Lense-Thirring Effects

Precession refers to the change in orientation of the rotational axis of a spinning object over

time. It is a well-known phenomenon in classical mechanics, such as the wobbling motion of

a spinning top, where the axis traces out a conical surface due to external torques. In general

relativity, precession has deeper implications due to the curvature and dynamics of spacetime

itself.

1.9.1 Geodetic Precession

A gyroscope is a spinning object whose axis of rotation tends to maintain its orientation

in an inertial frame. In general relativity, a small spinning test particle,effectively a gyro-

scope,experiences a gradual change in its spin axis as it moves through curved spacetime. This

effect, known as geodetic precession, was first suggested by Willem de Sitter in 1916 [25].

According to general relativity, massive objects curve the spacetime around them, and all

freely falling bodies,including gyroscopes,follow geodesics, the straightest possible paths in that

curved geometry. While the gyroscope axis remains fixed in a locally inertial frame, its direction

appears to change with respect to distant observers because the spacetime itself is curved.

To visualize this, consider a circle of radius R = 400 miles in flat (Euclidean) space. Its

circumference is 2πR. Now imagine inserting a massive object at the center of this circle, warping

the surrounding spacetime. Even if the radial coordinate still reads R, the actual circumference

will be slightly less than 2πR,by approximately 1.1 inches. A gyroscope orbiting along this circle

will experience a shift in the orientation of its spin axis due to this deviation from flat geometry.

This precession caused solely by spacetime curvature is called geodetic precession [25].

1.9.2 Lense–Thirring Precession

In 1918, Josef Lense and Hans Thirring proposed that a rotating mass drags the spacetime

around it, an effect now known as frame dragging or the Lense-Thirring (LT) effect [26, 27, 28].

This effect causes the local inertial frames near the rotating mass to be twisted in the direction of

the rotation, much like a spoon swirling honey.
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For a gyroscope orbiting a rotating massive object, this frame dragging induces an additional

precession of its spin axis,distinct from geodetic precession. The resulting motion is known as

Lense-Thirring precession. Although predicted shortly after the formulation of general relativity,

the LT effect was extremely difficult to test experimentally due to the weak nature of frame

dragging near Earth and the lack of observational evidence for BHs at the time.

In 1959, Stanford physicist Leonard Schiff proposed that frame dragging could be measured

using precision gyroscopes in Earth orbit. Following this idea, Stanford University initiated an

ambitious experiment in 1962. This eventually led to Gravity Probe B, a satellite launched by

NASA in 2004, designed specifically to measure both geodetic and Lense-Thirring precession

around Earth. The final results, announced in 2011, confirmed Einstein’s predictions within

experimental uncertainty [29].

1.10 MATHEMATICAL FRAMEWORK FOR GYROSCOPIC SPIN PRE-

CESSION

This section outlines the mathematical tools required to analyze the spin precession of a

test gyroscope within curved spacetime. Such an investigation is fundamental to understanding

how both the curvature and the rotational properties of spacetime affect the orientation of a

gyroscope’s spin vector as it traverses a path. We start by deriving a generalized expression for

spin precession before specializing the analysis for scenarios involving black holes.

To establish this, consider a test gyroscope associated with an observer who remains stationary

by following a Killing trajectory, K, within a stationary spacetime. Based on previous work [22,

30], the frequency of spin precession is defined by the following expression:

Ωs =
1

2K2 ∗ (K̃ ∧dK̃) (1.11)

In the above formula, the squared magnitude of the Killing vector is determined by:

K2 = g00 +2Ωg0c +Ω
2gcc. (1.12)

In the context of a stationary and axisymmetric spacetime, there exist two primary symmetries

represented by a temporal Killing vector ∂0 and an azimuthal Killing vector ∂φ . A typical

stationary observer follows a trajectory that is a linear combination of these two vectors, given
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by:

K = ∂0 +Ω∂φ (1.13)

where Ω represents the observer’s angular velocity. Because of the inherent symmetries of the

spacetime, the metric coefficients do not depend on the x0 and xc coordinates. Consequently, the

covector (one-form) linked to K is given by:

K̃ = g0ν dxν +Ωgγc dxγ . (1.14)

In a four-dimensional spacetime setting, let the indices ν and γ be defined over the set {0,c,2,3}.

By partitioning the expression into its temporal and spatial contributions, we can write:

K̃ =
(
g00 dx0 +g0c dxc +g0i dxi)+Ω

(
g0c dx0 +gcc dxc +gic dxi) , (1.15)

where the spatial index i takes the values 2 and 3. Within the ergoregion of a stationary,

axisymmetric spacetime, the metric components g0i and gic vanish, simplifying the above

expression to:

K̃ =
(
g00 dx0 +g0c dxc)+Ω

(
g0c dx0 +gcc dxc) . (1.16)

Taking the exterior derivative yields:

dK̃ =
(

g00,k dxk ∧dx0 +g0c,k dxk ∧dxc
)
+Ω

(
g0c,k dxk ∧dx0 +gcc,k dxk ∧dxc

)
. (1.17)

Substituting K̃ and dK̃ into the definition of spin precession and simplifying under the as-

sumptions of stationarity and axisymmetry, we arrive at the generalized expression for the spin

precession frequency:

Ωp =
εckℓ

2
√
−g
(

1+2Ω
g0c
g00

+Ω2 gcc
g00

) ×

[(
g0c,k −

g0c

g00
g00,k

)
+Ω

(
gcc,k −

gcc

g00
g00,k

)
+Ω

2
(

g0c

g00
gcc,k −

gcc

g00
g0c,k

)]
. (1.18)

For a spacetime that is both stationary and axisymmetric, using the coordinate basis {0,r,θ ,φ},

Eq. (1.14) reduces to the following form:

Ω̃p =
1

2
√
−g
(

1+2Ω
g0φ

g00
+Ω2 gφφ

g00

)[√grr

(
g0φ ,θ −

g0φ

g00
g00,θ

)

+Ω

(
gφφ ,θ −

gφφ

g00
g00,θ

)
+Ω

2
(

g0φ

g00
gφφ ,θ −

gφφ

g00
g0φ ,θ

)]
r̂

+

[
√

gθθ

(
g0φ ,r −

g0φ

g00
g00,r

)
+Ω

(
gφφ ,r −

gφφ

g00
g00,r

)
+Ω

2
(

g0φ

g00
gφφ ,r −

gφφ

g00
g0φ ,r

)]
θ̂ .

(1.19)
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In the special case when Ω = 0, the expression reduces to:

Ω̃p
∣∣
Ω=0 =

1
2
√
−g

[
−√

grr

(
g0φ ,θ −

g0φ

g00
g00,θ

)
r̂+

√
gθθ

(
g0φ ,r −

g0φ

g00
g00,r

)
θ̂

]
. (1.20)

This formula is valid only outside the ergoregion and describes the Lense-Thirring precession

frequency experienced by a test gyroscope due to the rotation of a general stationary and

axisymmetric spacetime.
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CHAPTER 2

SPIN PRECESSION EFFECTS OF KERR BLACK HOLES

The present chapter examines the characteristics of spin precession within the framework of

Kerr spacetime by linking a test gyroscope to a stationary observer. For the remainder of this

analysis, the term "spin precession" specifically denotes the motion of a gyroscope coupled with

such an observer. This phenomenon provides a robust mechanism for differentiating between a

Kerr black hole (KBH) and a neutron star (NS). In KBH geometries, the precession frequency

exhibits divergent behavior as the observer nears the event horizon, a manifestation of the intense

frame-dragging and spacetime curvature present in that region. Conversely, in the case of an NS,

this quantity remains finite throughout the entirety of the spacetime, with the sole exception of

the singularity itself [8].

Beyond the analysis of spin precession, we also investigate two related relativistic effects: the

Lense-Thirring (frame dragging) effect and the geodetic precession frequency in Kerr geometry.

These studies deepen our understanding of how the rotation of spacetime influences gyroscopic

motion and further aid in distinguishing between the Kerr BH and NS configurations [30].

2.1 Spin Precession Frequency for Stationary Observers

This section focuses on the generalised spin precession as measured by a stationary observer

in Kerr spacetime. The studies show that the intricate dependence of spin dynamics on the
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rotation of the spacetime and provides a theoretical basis for discriminating between BHs and

NSs. The formulation presented here follows the spin precession method introduced in Chapter 1.

The Kerr spacetime’s line element in Boyer–Lindquist coordinates is given as [4]:

ds2 =−
(

1− 2Mr
ρ2

)
dt2 +

ρ2

∆
dr2 +ρ

2dθ
2 − 4Mar sin2

θ

ρ2 dtdφ

+

(
r2 +a2 +

2Mra2 sin2
θ

ρ2

)
sin2

θ dφ
2, (2.1)

where

ρ
2 = r2 +a2 cos2

θ , ∆ = r2 −2Mr+a2. (2.2)

The horizon equation (grr)
−1 = 0 has the solution of the form

r± = M±
√

M2 −a2, (2.3)

Depending on the black hole parameter, the line element represents black hole or naked singu-

larity if a ≤ M or M < a. In addition to the event horizons, the Kerr geometry possesses two

important boundaries known as the stationary limit surfaces. These are defined by the condition

gtt = 0, and the corresponding equation is:

r2 −2Mr+a2 cos2
θ = 0. (2.4)

Solving this yields the radii of the inner and outer stationary limit surfaces:

rs± = M±
√

M2 −a2 cos2 θ . (2.5)

At the poles (θ = 0,π), the stationary limit surface coincides with the event horizon. The

region between the outer event horizon r+ and the outer stationary limit surface rs+ is called the

ergosphere [31]. Within this region, the dragging of inertial frames prevents any observer from

remaining stationary relative to a distant inertial observer.

The determinant of the Kerr metric, which appears in many relativistic calculations, has the

square root:
√
−g = ρ

2 sinθ . (2.6)

To distinguish between an NS and a BH, we analyse the spin precession in Kerr spacetime.

Using the metric components gµν of the Kerr geometry, the general spin precession Ω⃗p is derived

as:

Ω⃗p =
1
C

[
A
√

∆cosθ r̂+Bsinθ θ̂

]
, (2.7)
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where r̂ and θ̂ denote unit vectors in the directions of the corresponding coordinates, respectively,

and Ω is the angular velocity of the observer [32]. The coefficients A, B and C are given by:

A = 2aMr− Ω

8
[
8r2 +8a2r2 +16a2Mr+3a4 +a4 cos4θ +4a2(2∆−a2)cos2θ ]

+2Ω
2a3Mr sin4

θ , (2.8)

B = aM(r2 −a2 cos2
θ)+Ω

[
a4r cos4

θ + r2(r3 −3Mra2(1+ sin2
θ))

+a2 cos2
θ(2r3 −Mr2 +a2M(1+ sin2

θ))
]

+Ω
2aM sin2

θ
[
r2(3r2 +a2)+a2 cos2

θ(r2 −a2)
]
. (2.9)

C = ρ
3 [(ρ2 −2Mr)+4ΩMar sinθ −Ω

2 sin2
θ
{

3Ma2r sin2
θ +ρ

2(r2 +a2)
}]

. (2.10)

Note that here the angular velocity Ω plays a critical role in distinguishing a static observer

from a stationary one. In the following subsection, we analyse the allowed range of Ω for

stationary observers.

2.1.1 Range of Ω

Note that the general spin precession defined by Eq. (2.7) is valid for timelike observers,

which may reside inside the ergoregion. Hence, Eq. (2.7) holds both inside and outside the

ergoregion, but for a timelike observer, the following condition must be satisfied:

K2 = gφφ Ω
2 +2gtφ Ω+gtt < 0. (2.11)

This inequality is satisfied only when the angular velocity Ω at any fixed point (r,θ) lies within

the range

Ω− < Ω < Ω+, (2.12)

where

Ω± =
−gtφ ±

√
g2

tφ −gφφ gtt

gφφ

. (2.13)

Using the metric components gµν from Eq. (2.1), this becomes

Ω± =
2Mar sinθ ±ρ2

√
∆

sinθ [ρ2(r2 +a2)+2Ma2r sin2
θ ]

. (2.14)
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From this expression, it is can be seen that when the observer approaches the horizon (i.e.,

∆ → 0), the two limits Ω± converge, and we have

ΩH =
a

2Mr+
. (2.15)

In the equatorial plane (θ = π/2), Eq. (2.13) simplifies to

Ω±

∣∣∣
θ= π

2

=
2Ma± r

√
∆

r(r2 +a2)+2Ma2 . (2.16)

In the case of an NS, there is no horizon, and the ergoregion extends till the ring singularity.

Further, in this plane the two limiting frequencies Ω+ and Ω− coincide at r = 0, the location of

the singularity. Consequently, no stationary observer can exist at the event horizon for a black

hole or at the ring singularity for a naked singularity. Therefore, the spin precession expression

(2.13) is not valid exactly at these locations, although it remains valid in their vicinity [33].

To analyse the spin precession for various stationary observers, we parametrise the angular

velocity Ω as

Ω = qΩ++(1−q)Ω−, (2.17)

and we can also rewrite this as

Ω = ω − (1−2q)
√

ω2 − gtt

gφφ

, (2.18)

where 0 < q < 1 and ω = −gtφ/gφφ . Clearly, as q → 0, Ω → Ω−, and as q → 1, Ω → Ω+.

Substituting the Kerr metric components, the angular velocity becomes

Ω =
2Mar sinθ − (1−2q)ρ2

√
∆

sinθ [2Ma2r sin2
θ +ρ2(r2 +a2)]

. (2.19)

Thus, the full range of Ω between Ω− and Ω+ is smoothly covered as q varies from 0 to 1.

The spin precession frequency is then given by

Ωp =
(r2 +a2)2 −a2∆sin2

θ

4q(1−q)ρ7

[
A
√

∆cosθ r̂+Bsinθ θ̂

]
. (2.20)

The above expression provides the general form of spin precession, incorporating the effects of

both spacetime rotation and curvature. It serves as a valuable tool for the upcoming discussion of

black holes (BHs) and neutron stars (NSs). Moreover, the spin precession remains well-defined

even within the ergosphere. In the following section, we will discuss two important types of spin

precession: Lense-Thirring precession (arising due to rotation) and geodetic precession (arising

due to curvature).



21

2.2 Lense-Thirring precession

Consider a test gyroscope in a rotating spacetime. If the gyroscope is orbiting around a

central object, then after completing one full orbit, its axis of rotation will no longer point in the

same direction as it did at the start of the motion. Instead, it changes its orientation due to the

rotation of spacetime and this precession is Lense-Thirring (LT) precession, and it is sometimes

referred to as the frame-dragging effect. To derive the expression for LT precession (ΩLT) and

understand its relation to spacetime rotation, we set Ω = 0 in the general spin precession formula

given by equation (2.20)

Ω⃗LT = a
2Mr

√
∆cosθ r̂+M

(
r2 −a2 cos2 θ

)
θ̂

(r2 +a2 cos2 θ)
3/2

(r2 −2Mr+a2 cosθ)
, (2.21)

The expression for LT precession diverges at the stationary limit surface, where the condition

r2 − 2Mr + a2 cos2 θ = 0 is satisfied. Furthermore, inside this surface, the spin precession

formula is no longer valid. For this reason, to study the behaviour both inside the stationary

limit surface and outside the event horizon, we have generalised the spin precession as given

in equation (2.20). The spin precession frequency depends not only on the radial coordinate r,

but also on the polar angle θ . To analyse how the spacetime rotation parameter affects the LT

precession, we consider a gyroscope orbiting in the equatorial plane

Ω⃗LT|θ=π/2 = a
Mr2 θ̂

r3(r2 −2Mr)
= a

M θ̂

r3(1−2M
r )

. (2.22)

In the weak field approximation, that is, when M
r ≪ 1, and by replacing aM = J, we can easily

see that the magnitude of the LT precession becomes:

ΩLT =
J
r3 . (2.23)

This shows that the LT precession is directly proportional to the angular momentum J of the

black hole, and it decreases inversely with the cube of the radial distance.

2.3 Geodetic Precession in Schwarzschild Spacetime

In this section, we examine the phenomenon of geodetic precession induced by an SBH. By

setting the rotation parameter a = 0 in the general expression for the spin precession of a KBH
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[see Eq. (2.7)], the resulting precession arises solely due to the black hole’s mass, rather than its

spin. This mass-induced precession is known as geodetic precession

We consider the case when the rotation parameter vanishes (a = 0), leading to the following

expression for spin precession:

Ωp
∣∣
a=0 = Ω · −r cosθ

√
r−2M r̂+ sinθ(r−3M) θ̂

r−2M− r3Ω2 sin2
θ

. (2.24)

Here, Ω is constrained to values that ensure the four-velocity u remains within the timelike

regime. Due to the spherical symmetry of Schwarzschild spacetime, this effect is the same for

all values of θ . For simplicity, we restrict our analysis to the equatorial plane, where Eq. (2.24)

reduces to:

Ωp
∣∣
θ=π/2,a=0 = Ω

r−3M
r−2M− r3Ω2 . (2.25)

This implies that a gyroscope in motion within the static Schwarzschild spacetime experiences

precession. For motion along a circular geodesic, Ω must match the Keplerian angular velocity,

given by ΩKep =
√

M/r3. Substituting this into Eq. (2.25), we obtain:

Ωp
∣∣
Ω=ΩKep,a=0 = Ω =

√
M
r3 . (2.26)

In the Copernican frame, the above expression gives the precession frequency relative to

proper time τ . In the coordinate system, the corresponding frequency is obtained by the relation

dτ =
√

1− 3M
r dt, connecting the appropriate time τ and the coordinate time t. Therefore, the

frequency in coordinate time is:

Ω
′ =

√
M
r3

√
1− 3M

r
. (2.27)

The net angular displacement of the spin vector during a complete circuit is determined by

calculating the difference between Ω and Ω′:

Ωgeodetic =

√
M
r3

(
1−
√

1− 3M
r

)
. (2.28)

This result reflects the geodetic precession Ωgeodetic, which arises solely due to the spacetime

curvature caused by mass. This is consistent with characterisations in the literature [34]. This

shows that the geodetic precession increases with increasing mass, as the spacetime curvature

becomes stronger, and decreases with increasing radial distance.
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2.4 Differentiating Kerr Naked Singularities from Black Holes via Gyroscopic

Precession

The current section investigates the characteristics of spin precession for a variety of stationary

observers. These observers are identified by their angular velocity Ω, which is defined using the

parameter q. Following the formalism in [35], the scalar magnitude of the precession frequency,

Ωp = |⃗Ωp|, is expressed as a function of the parameter q in the following manner:

Ωp =
(r2 +a2)2 −a2∆sin2

θ

4a(1−q)ρ7∆

√
A2∆cos2 θ +B2 sin2

θ , (2.29)

where A and B are functions of Ω, defined in Eqs. (2.8) and (2.9). This expression is complex,

so we analyse it graphically by plotting |Ωp| as a function of r for different values of q. The spin

precession frequency in the Kerr black hole spacetime is shown in Fig. 2.1, while for the NS

case, it is depicted in Fig 2.1(b).

The graphical analysis demonstrates that Ωp exhibits distinct behaviour in black hole and NS

spacetimes. For KBHs, the spin precession Ωp diverges at all the points near the event horizon

for all observers except ZAMOs, who have q = 0.5 [see Fig. 2.1(c)]. In contrast, for Kerr naked

singularities, Ωp remains finite for all observers, even as r → 0 at the equatorial plane.

Using the parameters a, q, r, and θ , we investigate the variation of the spin precession. From

earlier results, it is evident that the denominator of Ωp becomes zero when any of the conditions

ρ = 0, ∆ = 0, or q = 0,1 are met. Since the functions A and B remain finite. Ωp diverges

wherever its denominator approaches zero. Specifically, at the event horizon, that is where ∆ = 0

and at the ring singularity, where ρ = 0, at the horizon boundary, while q = 0,1 correspond to

the angular velocity limits.

Conversely, the right-hand panels of Fig. 2 indicate that for a Kerr NS with a∗ = 1.1, the

precession frequency remains finite across the entire domain, including as r → 0 for 0 < θ < π .

An exception occurs at the ring singularity point r = 0,θ = 90◦, where Ωp diverges. This sharply

contrasts with the black hole case, where divergence occurs much farther from the centre, near

the event horizon. Moreover, for q > 0.5, the appearance of local maxima and minima in Ωp

indicates additional structure that could assist in identifying the observer’s angular velocity

relative to the ZAMO.

We also observe that as Ω approaches its limiting values Ω±, the spin precession frequency

Ωp increases sharply. The figures in this study, ranging from Figure 1-4, illustrate the behaviour
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Figure 2.1: Spin precession Ωp for a stationary observer in KBH spacetime (a = 0.9), shown for different angular

velocity parameters q and angles θ .

of the spin precession frequency Ωp for different values of the parameters q and the spin
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Figure 2.2: We have plotted the spin precession frequency of a stationary observer for different values of angular

velocity in NS spacetime with rotational parameter a = 1.1, for different values of the angle θ .

a. Figures 1–3 show Ωp for Kerr black holes and naked singularities with varying q and a,
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highlighting that the precession remains regular inside and outside the ergoregion and diverges

only at the horizon for most values of q. Figure 4 focuses on near-extremal and high-spin

naked singularities, showing that Ωp remains smooth across spacetime except near the ring

singularity. Collectively, these figures provide a clear visual distinction between black holes and

naked singularities and demonstrate the consistency of precession behaviour across different

spin parameters and configurations.
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CHAPTER 3

SPIN PRECESSION FREQUENCY OF KERR-LIKE BLACK

HOLES

In this chapter, we investigate the effects of spin precession in Kerr-like black holes (KLBH)

within the framework of Brans-Dicke theory, considering a cloud of strings and a perfect fluid

background. We study spin precession as a means to distinguish BHs from NSs. As established

in our earlier discussion in the previous chapter, gyroscopic precession for a KBH exhibits a

singularity as the event horizon is approached. In contrast, for an NS, the precession frequency

remains bounded throughout the entire spacetime, with the sole exception being the central

singularity. Additionally, we examine the LT effect and geodetic precession frequencies in the

spacetime of a KLBH to gain deeper insight into its unique gravitational characteristics.

3.1 Kerr-like Black Hole in Brans-Dicke Theory

The line element for a KLBH in Brans-Dicke theory is given by [36]:

ds2 =
1

ψ (r,θ)

[
−
(

∆−a2 sin2
θ

ρ2

)
dt2 +

((
r2 +a2)2 −a2∆sin2

θ

ρ2

)
sin2

θdφ
2

]

−2
asin2

θ
(
r2 +a2 −∆

)
ψ(r,θ)ρ2 dtdφ +ψ (r,θ)

[
ρ2

∆
dr2 +ρ

2dθ
2
]
, (3.1)
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where

∆ = r2 −2Mr+a2, (3.2)

ρ
2 = r2 +a2 cos2

θ , (3.3)

and the scalar field ψ is defined as

ψ (r,θ) = ∆
2/(2ω+3) sin4/(2ω+3)

θ , (3.4)

where the parameter ω lies in the range −5/2 < ω <−3/2 [36]. We can see that the Kerr-like

black hole in Brans-Dicke theory has two horizons, r± where ∆ is given by Eq. (3.2), which can

be obtained by solving ∆ ≡ 0. This gives the same horizon locations as in the Kerr black hole.

Since these black holes also involve rotation, similar to the Kerr black hole, they are referred

to as KLBH. It is evident that the line element (3.1) represents a BH with two horizons when

M > a, and an NS when M < a. We verify this by studying spin precession in this spacetime, for

which we need to calculate the spin precession frequency.

3.2 Spin Precession of rotating spacetime in Bran-Dicke theory

In this section, we analyze the spin precession Ωp of the gyro in rotating spacetime Bran-

Dicke theory . The precession frequency Ω⃗p for rotating spacetime in Bran-Dicke theory.

Substituting the metric components from (3.1) into (1.19) , we obtain:

Ω⃗p =
1

√
ψ

Ω⃗
Kerr
p =

1
C

[(
A
√

∆cosθ

)
r̂+(Bsinθ) θ̂

]
, (3.5)

where

A = 2aMr− Ω

8
[
3a4 +8r4 +8a2r (2M+ r)+a2{a2 cos4θ +4

(
2∆−a2)cos2θ

}]
+2MrΩ

2a3 sin4
θ , (3.6)

B = aM
(
r2 −a2 cos2

θ
)
+Ω

[
a4r cos4

θ + r2 (r3 −a2M
(
1+ sin2

θ
)
−3Mr2)]

+Ωa2 cos2
θ
{

2r3 +a2M
(
1+ sin2

θ
)
−Mr2}

+aMΩ
2 sin2

θ
[
r2 (3r2 +a2)+a2 cos2

θ
(
r2 −a2)] , (3.7)

C = ρ
3√

ψ
[
ρ

2 −2Mr+4ΩarM sin2
θ −Ω

2 sin2
θ
{

2Mra2 sin2
θ +ρ

2 (r2 +a2)}] . (3.8)
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One should observe that as ψ → 1, this relationship recovers the conventional spin precession

formula for the KBH. Furthermore, the precession frequency described by Eq. (3.5) applies

strictly to timelike observers maintained at constant r and θ . This requirement dictates a specific

constraint on the observer’s angular velocity, Ω:

Ω− < Ω < Ω+, (3.9)

where

Ω± =
2Mrasinθ ±ψρ2

√
∆

sinθ
[
(r2 +a2)ρ2 +2Mra2 sin2

θ
] . (3.10)

3.2.1 Lense-Thirring Precession Frequency

As discussed in the previous chapter, the formula for spin precession Ωp given by Eq. (3.6)

is a generalized expression that includes both Lense-Thirring as well as geodetic contributions.

To isolate this frame-dragging part, as it arises due to the dragging of inertial frames, we set

Ω = 0 in Eq. (3.5). This yields the following expression:

ΩLT =
1
2

εi jl√
−g

[
g0i, j

(
∂l −

g0l

g00
∂0

)
− g0i

g00
g00, j∂l

]
, (3.11)

Since the KLBH in Brans-Dicke theory is stationary, the covector form of the precession

frequency becomes:

Ω⃗LT =
1

2
√
−g

[
−√

grr

(
g0φ ,θ −

g0φ

g00
g00,φ

)
r̂+

√
gθθ

(
g0φ ,r −

g0φ

g00
g00,r

)
θ̂

]
, (3.12)

Using the metric components from equation (3.1), we obtain:

Ω⃗LT =
1

√
ψ

Ω
Kerr
LT =

aM
√

ψ

[(
2r
√

∆cosθ

)
r̂+ sinθ

(
r2 −a2 cos2 θ

)
θ̂

]
(ρ2)3/2 (ρ2 −2Mr)

. (3.13)

This generalizes the results for the KLBH, and we can see how it is related to the radial distance

in the weak-field approximation, when M/r ≪ 1. In the equatorial plane and under the weak-field

approximation, the BD scalar field takes the form

ψ|θ=π/2 ≈
1

r
4

2ω+3
, (3.14)

and hence the magnitude of the LT precession in the equatorial plane and weak field approxima-

tion takes the following form:

Ω⃗LT−weak ∝
J

r
6ω+11
2ω+3

. (3.15)

where J is the angular momentum of the spacetime. Now, we will discuss how it behaves near the

ergosphere, as the formalism for the LT precession frequency is only valid outside the ergosphere.
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3.3 Geodetic Precession

In this section, we analyze the geodetic precession frequency caused by a Schwarzschild-like

(i.e., static) black hole in the presence of string cloud gravity. To do this, we set the rotation

parameter a = 0 in the generalized spin precession expression for the Kerr-like black hole in

Brans-Dicke theory given in Eq. (3.2.1), which yields:

Ω⃗p

∣∣∣
a=0

= Ω
(r−3M)sinθ θ̂ −

√
r2 −2Mr cosθ r̂

√
ψ
[
r−2M− r3Ω2 sin2

θ
] . (3.16)

Here, Ω can take any value such that the observer’s 4-velocity u remains timelike. Due to the

spherical symmetry of the Schwarzschild-like spacetime in Brans-Dicke theory, we simplify the

expression for the equatorial plane (θ = π/2) as:

Ω⃗p =
(r−3M)θ̂

√
ψ [r−2M− r3Ω2]

. (3.17)

The Keplerian frequency ΩKep for a particle orbiting in the equatorial plane of a black hole

spacetime can be expressed in terms of the metric components as:

ΩKep =
g′tφ +

√
(g′tφ )

2 −g′ttg′φφ

g′
φφ

. (3.18)

This implies that a gyroscope moving in a Schwarzschild-like spacetime will experience

precession. When the gyroscope moves along a circular geodesic with angular frequency

Ω = ΩKep, the expression in Eq. (3.3) evaluated at θ = π/2 becomes:

Ωp
∣∣
a=0,Ω=ΩKep

= Ω =

(
M
r3

)1/2

. (3.19)

This confirms that a gyroscope in a static Schwarzschild spacetime undergoes precession.

For a circular geodesic path, the frequency of precession, denoted by Ωgeodetic, is:

Ωgeodetic =
1

√
ψ

(
M
r3

)1/2
(

1−
√

1− 3M
r

)
, (3.20)

where it has been previously established that the sole contributor to this precession is the geodetic

effect.
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3.4 Distinguishing Naked Singularities from Kerr-like Black Holes

In this section, we investigate the behavior of the spin precession frequency for different

stationary observers, where the angular velocity Ω is related to the parameter q. To do this, we

express the magnitude of the spin precession frequency Ωp = |⃗Ωp| as a function of the angular

velocity parameter q, which can be written as:

Ωp =
(r2 +a2)2 −a2∆sin2

θ

4a(1−q)ψ2ρ7∆

√
F2∆cos2 θ +H2 sin2

θ . (3.21)

This equation describes the spin precession frequency for a Kerr-like black hole. If we set the

parameters ψ = 0 and ∆ = 0, the spin precession becomes arbitrarily large when the denominator

becomes singular. Notably, the terms F and H remain finite. This means that the spin precession

is important to study.

In the previous plots, the spin parameter a was kept less than 1, with q and θ varied.

Specifically, for the black hole case, a was assigned values such as a = 0.6, and the spin

parameter q and angle θ were adjusted to examine how the spin precession frequency behaves

under varying conditions. For naked singularities, however, a was chosen to exceed 1, marking a

key distinction. In these cases, the values of q and θ were systematically varied as well.

The spin precession for different black hole and the naked singularity cases for different

values of black hole parameters has been plotted in Fig-3.1 - 3.5. These results suggest that

for naked singularities, the spin precession remains finite across all values of r, except at the

ring singularity where the frequency diverges whereas for black hole it diverges as the observer

approach the black hole horizons in all the directions.
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Figure 3.1: We have plotted the spin precession frequency of a stationary observer for different values of angular

velocity in KBH spacetime with rotational parameter a = 0.6, for different values of the angle θ .
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Figure 3.2: We have plotted the spin precession frequency in Kerr-like in Brans-Dicke gravity with rotational

parameter a = 0.9, ω =−2, for different values of the angle θ .
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Figure 3.3: We have plotted the spin precession frequency in Kerr-like in Brans-Dicke gravity with rotational

parameter a = 0.7, ω =−2.4, for different values of the angle θ .
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(a) q = 0.1

(b) q = 0.5 (ZAMO)

(c) q = 0.9

Figure 3.4: We have plotted the spin precession frequency of a stationary observer for different values of angular

velocity, varying the parameter q, in KBH spacetime with rotational parameter a = 0.9 and for different values of θ .
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(a) q = 0.1

(b) q = 0.5 (ZAMO)

(c) q = 0.9

Figure 3.5: We have plotted the spin precession frequency of a stationary observer for different values of angular

velocity, varying the parameter q, in the spacetime of a NS with a rotational parameter a = 0.9, considering various

values of θ .
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CHAPTER 4

BLACK HOLE WITH CLOUD OF STRINGS/GLOBAL

MONOPOLE WITH DARK ENERGY

In this chapter, we investigate black holes with a cloud of strings and global monopoles in

the presence of dark energy. A horizon analysis is carried out by examining the horizon equation

and mapping the parameter space that differentiates black holes from naked singularities. To

confirm these results, we further analyse the spin precession frequency in the corresponding

spacetime, providing a consistent framework for validating the horizon structure. This study

highlights the role of spin precession and examines how the presence of global monopoles and

the dark energy parameter influences these effects, particularly in distinguishing black holes

from naked singularities.

4.1 Black Hole with Cloud of Strings/Global Monopole with Dark Energy

In this section, we will study the The line element of the black hole with the cloud of strings

with a perfect fluid background can be written [37]

ds2 =−
(

∆−a2 sin2
θ

ρ2

)
dt2 −2asin2

θ

(
1− ∆−a2 sin2

θ

ρ2

)
dtdϕ +

ρ2

∆
dr2 +ρ

2dθ
2

+ sin2
θ

[
ρ

2 +a2 sin2
θ

(
2− ∆−a2 sin2

θ

ρ2

)]
dϕ

2 (4.1)
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where the function

∆(r,θ) = r2 +a2 −2Mr− cr2 +Q2
E +Q2

M − α

r3ω−1 .

Here, the parameters QE and QM represent electric and magnetic charge, c is the cloud string

parameter, and α and ω are dark energy parameters. Depending on the values of spacetime, all

these parameters, the line element (4.1) represents the BH or NS in other cases, but unlike the

KBH case, the condition on the BH parameters in both cases is not as simple as in KBH, but we

need very careful analysis of the horizon equation to get the parameter bounds to differentiate

the BH and NS cases. For that purpose, we conducted a detailed horizon analysis.

4.2 Horizons Analysis

In this section to discussed the horizon geometry of the BH given by line element (4.1), we

represents the radial distance and BH parameters in the units of BH gravitational mass M, that

is, we replace r/M → r, a/M → a, QE/M → QE , QM/M → QM, and α/M → α . Further, for

simplicity, we suppose b = 1−3ω and c = 8πη2. Thus, with this choice of units and notations,

the BH horizons are roots of the horizon equation

∆ = r2 −2r+a2 − cr2 +Q2
E +Q2

M −αrb = 0. (4.2)

For any value of ω in the allowed range, the horizon equation has three real roots, repeated

real roots and one real root and henceforth, the line element (4.1) represents a BH with three

horizons, an extremal BH or a naked singularity, respectively.

Considering new parameter A a function of r and α as

A(r,α)≡ a2 +Q2
E +Q2

M = 2r− (1− c)r2 +αrb. (4.3)

This parameter A has an extremal value for the dark matter parameter α as

αe = 2
[
(1− c)r−1

brb−1

]
. (4.4)

The extrema of this parameter is called the critical value αc, and it is located at

re =
(b−1)

(b−2)(1− c)
. (4.5)
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Thus, the critical value of dark meter parameter αc and the corresponding value of Ac are given

as

αc =
2
b

(
1− c
b−1

)b−1

(b−2)b−2 and Ac(αc)≡ a2 +Q2
E +Q2

M =
(b−1)

b(b−2)(1− c)
. (4.6)

In term of ω , we get

αc =
2

(1−3ω)

(
1− c
−3ω

)−3ω

(−1−3ω)−1−3ω and Ac(αc) =
(−3ω)2

(1−3ω)(−1−3ω)(1− c)
.

(4.7)

Thus, for any choice of parameter −1 < ω <−1/3, the line element (4.1) can represent a BH

only if α ≤ ac and the point (a,QE ,QM) lies inside the sphere of radius Ac in aQEQM−space.

Further, for α = αc and all points (a,QE ,QM) on the surface of the sphere, the line element (4.1)

represents an extremal BH with all horizons equal. In addition, if ω →−1, αc → 2(1− c)3/27,

Ac(αc)→ 9/8(1− c), that is, both αc and Ac are finite. When ω →−1/3, αc(α)→ 1− c and

Ac(α)→ ∞, which means that a BH for very large values of a, QE and QM can be formed.

4.2.1 For ω =−2/3

In this subsection, we will discuss the horizon equation (4.2) for ω =−2/3. If the horizon

equation (4.2) has three real roots, then (4.1) represents a BH with three horizons; if it has

repeated real roots, then the line element represents an extremal BH, otherwise, it represents

naked singularities. The horizon equation for ω =−2/3 is

∆ = r2 −2r+a2 − cr2 +Q2
E +Q2

M −αr3 = 0. (4.8)

The extreme values of ∆ can be obtained from the condition

d∆

dr
= 2(1− c)r−2−3αr2 = 0. (4.9)

which gives their locations at

rmin =
1− c−

√
(1− c)2 −6α

3α
and rmax =

1− c+
√

(1− c)2 −6α

3α
, (4.10)

For ω = −2/3, αc = (1− c)2/6, and for any value of α ≤ αc, we have real rmin and rmax

and for α = αc, rmin = rmax. Here rmin is minima and rmax is maxima of the ∆. The inner

horizon r−, outer horizons r+, quintessential horizon rq and extreme values of ∆ are such that



40

BH

NS

NS
Amax

Amin

αc

Ac

αc

0.00 0.05 0.10 0.15
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

α

A

(a) ω =−2/3, c ≈ 10−5 and A = a2 +Q2
E +Q2

M

0 1 2 3 4 5

-1.0

-0.5

0.0

0.5

1.0

1.5

r

Δ

(b) α = 0.1, QE = 0.2, QM = 0.2 (ZAMO)

Figure 4.1: (a) The region for the existence of a BH is plotted. The graphs show that the line element (4.1)

represents a BH with three horizons for α ≤ αc if A ≤ Amin and for αc < α ≤ αc if Amax ≤ A ≤ Amin with

αc ≈ 0.1246. Further, for any α ≤ αc, if A = Amin or A = Amax, then the the BH is extremal BH. (b) We have plotted

∆ vs r (in units of M,) which shows a BH with three horizons (solid blue line), an extremal BH with r− = r+ (blue

dashed line), an extremal BH with r+ = rq (black dashed line) and a naked singularity (solid black line).

r− ≤ rmin ≤ r+ ≤ rmax ≤ rq. Using the values of rmin and rmax in (4.2), we will get minimum

and maximum value of the A = a2 +Q2
E +Q2

M that are given by

Amin =
rmin

3
[4− (1− c)rmin] and Amax =

rmax

3
[4− (1− c)rmax] . (4.11)

These values of A play an important role in differentiating a black hole from a naked singularity.

For any α ≤ αc with αc ≈ 0.1246, the line element (4.1) represents black hole with three

horizons if the point (a,QE ,QM) lies inside the sphere of radius Amin and for αc < α ≤ ac it

represent black hole if the point (a,QE ,QM) lies between the spheres of radius Amin and Amax.

This situation can be explained in FIG:(4.2). In FIG:(4.2)(a), the functions Amin and Amax are
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plotted that separate BH solutions versus naked singular states. Within FIG:(4.2)(b) the

horizons equation ∆ for α = 0.13 is plotted. The solid blue line is generated using A = 0.8, which

represents the case of three-horizon BHs. The blue dashed line is plotted for A = Amin, which

represents an extremal BH where r− = r+ while the dark dashed line is plotted for A = Amax,

which corresponds to a degenerate BH state where r+ = rq. This solid dark-colored line plotted

for A > Amin represents a naked singularity.

4.3 Lense-Thirring Precessional Shift

The present segment examines the Lense-Thirring (LT) gravitomagnetic effect frequency in

the spacetime associated with a spinning BH influenced due to stringy cloud matter and dark

energy. We derive the mathematical form for the LT frequency and analyze its behaviour in

relation to various spacetime parameters. Furthermore, we present graphical plots depicting

the LT behavior under varying the string cloud parameter, dark energy parameters, and the

angular momentum of the BH. These plots help us understand how each parameter affects the

frame-dragging effect and provide insights into distinguishing between BHs and NSs

ΩLT =
a

Σ3/2 [Σ− (r2 +a2 −∆)]

[√
∆cosθ(r2 +a2 −∆)r̂+ sinθ

[
M
(
r2 −a2 cos2

θ
)

−r
(
Q2

E +Q2
M + ca2 cos2

θ
)
+

α

2
rb−1{(2−b)r2 −ba2 cos2

θ
}]

θ̂

]
. (4.12)

The LT precession arises due to spacetime rotation and can be studied by calculating its magnitude

ΩLT =
a
C

[
Ar̂+Bθ̂

]
, (4.13)

where

A =
√

∆cosθ(r2 +a2 −∆),

B = sinθ

[
M
(
r2 −a2 cos2

θ
)
− r
(
Q2

E +Q2
M + ca2 cos2

θ
)
+

α

2
rb−1{(2−b)r2 −ba2 cos2

θ
}]

,

C = ρ
3 [

Σ− (r2 +a2 −∆)
]
.

The magnitude of this the LT precession |ΩLT| is given as

|ΩLT|=
a
|C|

(A2 +B2)
1
2 . (4.14)
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Now, the results of the LT precession are plotted in Fig. 4.1- 4.4, which shows that if we

consider the electric charge QE and increase it the LT precession frequency decreases. Also,

we know the LT precession which is sometime called frame-dragging effect increases with the

rotation parameter a increases reflecting the stronger frame-dragging effect associated with faster

spinning black holes. In the similar way we can study effects of the dark energy parameter ω

which shows increase in LT precession frequency, indicating the significant influence of dark

energy on spacetime geometry. This analysis also locates regions where precession effects take

over, providing insight into the relativistic physics occurring near the horizon.
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Figure 4.2: The LT precession frequency ΩLT (in M−1 ) verse r (in M) in the plane θ = π/4 for ω = −2/3,

c = 10−5 and different parameters is plotted.
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Figure 4.3: The LT precession frequency ΩLT (in M−1 ) verse r (in M) in Kerr-like BH in cloud string and dark

energy background with parameters α = 0.1, c = 10−5, QM = 0.2, QE = 0.3, ω =−2/3, for different values of the

angle a and θ .
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Figure 4.4: The LT precession frequency ΩLT (in M−1 ) verse r (in M) in Kerr-like BH in cloud string and dark

energy background with parameters α = 0.1, c = 10−5, QM = 0.2, QE = 0.3, a = 0.5, for different values of the

angle a and θ .
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CHAPTER 5

CONCLUSION

5.1 Conclusion

In recent years, the challenge of distinguishing between black holes (BHs) and naked singu-

larities (NSs) has gained significant attention in the field of gravitational physics. Understanding

the final fate of gravitational collapse has long intrigued researchers, as it holds the key to

unveiling the true nature of these extreme compact objects. In this thesis, we study the spin

precession of test gyroscopes attached to test particles to differentiate Kerr-like black holes from

naked singularities. We review the work for the standard Kerr black hole (KBH) and then extend

the work to Kerr-like solutions within Brans–Dicke theory and a perfect fluid with a cloud of

strings. The study of spin precession due to spacetime rotation and spacetime curvature has

significant importance, and NASA has conducted the Gravity Probe B mission to measure these

effects for Earth, which confirms that these effects are not just theoretical but that the measured

values agree with predictions. In particular, differences in the behaviour of spin precession near

black holes and naked singularities can serve as distinguishing markers, helping to address the

long-standing cosmic censorship conjecture. Moreover, the sensitivity of gyroscopic motion to

both the rotational and curvature-induced properties of spacetime makes it an invaluable probe

for testing alternative theories of gravity. As observational precision improves with upcoming

space missions and ground-based experiments, such precision-based diagnostics are expected

to play an increasingly central role in the quest to uncover the true endpoints of gravitational
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collapse.

5.2 Kerr-like Black Hole in Brans-Dicke Gravity

In this section, we summarise our findings on distinguishing BHs from NSs within the frame-

work of Brans-Dicke gravity. This theory introduces a background scalar field characterised by

the Brans-Dicke parameter ω . Our focus is on rotating BHs in Brans-Dicke gravity, specifically

analysing a Kerr-like spacetime. The primary objective is to establish criteria that differentiate

BHs from NSs in this context. The Kerr-like rotating BH features an additional parameter in its

line element. Notably, the horizon equation for a KBH and that for a Kerr-like BH in Brans-Dicke

gravity share the same form, enabling a direct comparison of the number and size of horizons.

In this work, we have studied spin precession effects arising from both spacetime rotation

and curvature. These effects are significantly influenced by the Brans-Dicke parameter ω ,

which plays a critical role in altering the behaviour of test gyroscopes. We derived expressions

demonstrating that geodetic precession explicitly depends on ω , and that spin precession is

similarly affected. Notably, we use the nature of spin precession as a diagnostic tool to distinguish

BHs from NSs in the Brans-Dicke framework. If the spin precession remains finite everywhere

except in the case of a naked singularity, whereas it diverges as the observer approaches the event

horizon in the case of a black hole, this distinction becomes evident through graphical analysis.

To further differentiate between black holes and naked singularities, we examined the angular

velocity of observers, parameterised by a dimensionless factor k, where k = 0.5 corresponds to

a Zero Angular Momentum Observer (ZAMO). The precession frequency of a test gyroscope

was evaluated for stationary observers moving in opposite directions. A divergent precession

frequency in all directions as the observer approaches the compact object indicates a BH

spacetime. In contrast, if the precession remains finite in most directions, the object is identified

as a naked singularity. This behaviour stems from the nature of the horizon: black holes exhibit

infinite precession near the horizon in all directions, whereas naked singularities display such

divergence only along the equatorial plane (θ = π/2).

Through this analysis, we demonstrate that spin precession serves as a powerful probe for

understanding the geometric structure and horizon properties of exotic astrophysical objects in

modified gravity theories.
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5.3 Kerr-like Black in Cloud String and dark energy

In this section, we summarise our findings on distinguishing BHs from NSs in a space-

time influenced by a cloud of strings and dark energy. This extended framework incorporates

additional physical features,namely, a string cloud parameter c and dark energy parameters

α and ω ,which modify the underlying geometry of the Kerr-like rotating black hole. These

modifications introduce new degrees of freedom into the metric, offering a richer structure to

study the nature of compact objects.

This study analyzes a rotating black hole embedded in a background influenced by dark

energy and a cloud of strings, showing how these factors modify the horizon structure and causal

boundaries. By determining critical parameter values, the work distinguishes black holes from

naked singularities and identifies the conditions for extremal black holes. Additionally, the

study examines how spacetime rotation and curvature affect spin precession, deriving analytical

expressions for geodetic and Lense–Thirring precession. These spin precession features are

shown to be sensitive probes for differentiating black holes from naked singularities in modified

spacetimes.

5.4 Future Work

This research work has been conducted for the class of Kerr-like rotating spacetimes with

spherically symmetric horizon structures, considering different background fields, particularly

to differentiate black holes from naked singularities. It would also be worthwhile to study

spin precession and use it to analyze the structure of black holes and naked singularities by

incorporating NUT parameters and other scalar fields; for instance, this would clarify how

specific geometric structures help differentiate black holes from naked singularities. Additionally,

studying cylindrically symmetric solutions, sometimes called black strings, would allow us to

examine whether spin precession remains an effective diagnostic tool in non-spherical geometries,

and investigating higher-dimensional spacetimes would enable us to test the consistency of spin

precession as a probe within modified gravity frameworks. Such research would ultimately

deepen our understanding of how compact objects behave across a diverse array of gravitational
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settings.
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