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ABSTRACT

Title:

On Hankel Determinant of the Inverse of q̌-Bounded Turning Functions

The aim of this thesis is to investigate the Hankel determinants of the inverse functions of a

subclass of univalent functions known as q̌-bounded turning functions. This class, which gen-

eralizes classical bounded turning functions by incorporating the parameter q̌, has attracted

attention due to its connections with fractional analysis and q̌-calculus. In this work, we focus

on estimating the third Hankel determinant for the inverse functions associated with this class.

By leveraging the analytical properties of q̌-Carathéodory functions and the relationships be-

tween a function’s coefficients and those of its inverse, we derive an exact inequality for the

determinant. Using tools from q̌-calculus, subordination theory, and coefficient bounds, we ob-

tain new sharp bounds that explicitly illustrate how the parameter q̌ influences the determinant’s

value. The results not only generalize known outcomes for classical bounded turning functions

but also provide new insights into the analytic structure and geometric behavior of inverse q̌-

bounded turning functions in the open unit disc. Furthermore, we discuss geometric properties

of the inverses and explore applications to extremal problems, thereby extending the under-

standing of coefficient problems in Geometric Function Theory. A minor graphical analysis is

also performed to validate the new results against the classical literature.
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

The concept of Geometric Function Theory(GFT) was introduced in the beginning of

the 20th century. Even if real analysis concern the same ideas, complex analysis has been more

affected by the geometry of functions. GFT offers a wide range of applications in science and

Mathematics. Bernard Riemann found the Riemann Mapping Theorem result in 1851, for detail

see [1]. As the keystone of GFT, this theorem is fundamental. The univalent function theory’s

basis was built in the nineteenth century along the major tasks of Weierstrass, Riemann, and

Cauchy. Subsequently, in 1907, Koebe proposed functions that are univalent and analytically

defined on the open unit disk M, see [2]. Researchers have studied these functions comprehen-

sively.

Within complex analysis, GFT is the subfield dedicated to the geometric study of holo-

morphic functions. However, Krzyz et al. [3] studied constraints such as starlike functions on

their initial coefficients of the inverse of α-order, and Kapoor and Mishra [4] built on their find-

ings. Additionally, Ali [5] examined the sharp bounds for coefficients of the inverse function

when the function belongs to the extremely starlike function class. GFT focuses on the geomet-

ric transformation aspects of functions, such as how they distort shapes, preserve angles, map

domains, and affect the geometry of the complex plane, rather than just evaluating functions

regarding power series or differential equations.

Understanding the geometric behavior of conformal and univalent (one-to-one) map-



pings, particularly in domains like the unit disk, is the basic concept of GFT. This area of

mathematics integrates methods from differential geometry, topology, complex analysis, and

potential theory. The development of GFT started in the early 1900s, when mathematicians

such as Henri Poincaré and Felix Klein developing concepts related to conformal mappings.

Ludwig Bieberbach is renowned for the Bieberbach Conjecture, which Louis de Branges was

established in 1985. The Loewner differential equation, being an integral part of modern GFT

and stochastic processes, was introduced by Charles Loewner. Coefficient bounds are part of

many undergraduate courses and subclasses of the coefficient inequalities of GFT. Functions in

this framework are divided into various subfamilies that are members of the analytic normal-

ized family of class A functions. The German mathematician Ludwig Bieberbach introduced

Bieberbach’s theorem in 1916, which was a remarkable result of that period. The theorem holds

true solely to the class S, which consist of univalent functions. For the function of class S, or

univalent functions, he computed the second coefficient α̂2. Bieberbach conjecture, which re-

sulted in substantial progress in the field as well as being regularly sought in attempts to prove

it, is based on this theorem.

For a function of class S, the known function conjecture ξ , stated that if ξ ∈ S, then the

function’s coefficients ξ meet the relation |cm| ≤ m for m ∈ {2,3,4, . . .}. If a function ξ was

either the Koebe Function or one of it rotations, he demonstrated |c2| ≤ 2 with equality. The

bieberbach conjecture is simple to articulate; it posed a significant challenge to mathematicians

for many decades, see [6].

Although many of the mathematicians have attempted to verify this hypothesis many

times, it has proven to be an obstacle to overcome. Karl Loewner, a mathematician, demon-

strated in 1923 that |c̆3| ≤ 3, see [7]. This proof made it possible for others to demonstrate this

outcome in broader context. Before Gangadharan et al. [8] confirmed Bieberbach conjecture

for m = 4 for the first time in 1955, that is |c̆4| ≤ 4, more then 30 years had passed with no

advancement.

In 1985, mathematician Louis-de-Branges successfully demonstrated the broad form

of the Bieberbach conjecture; for detail see [9]. He created an elaborate, time-consuming yet

precise evidence for this theory. In 1933 Feketo-Szego developed the Feketo-Szego inequal-

ity, which is related to the Bieberbach conjecture and mostly utilized in complex analysis. It

involves polynomial coefficients with specific features, for detail see [10].

The inverse of a class of analytic functions called bounded turning functions, which
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are defined by normalization h(0) = 0 and h′(0) = 1. These functions satisfy the condition

Re(h′(k))> 0 within the open unit disc M.

Although previous work had established sharp bounds for H3,1(h), the exact bound for

H3,1(h−1) remained unresolved. The authors systematically determine exact relations among

the coefficients of the function and use them to compute H3,1(h−1) explicitly. This is achieved

by expressing the derivative h′(k) as a Carathéodory functionp(k), such that h′(k) = p(k) and

Re(p(k) > 0, for detail see [11]. This approach leads to a precise evaluation of sharp inverse

function’s upper bound for the third Hankel determinant.

1.2 Literature Review

Let suppose

h(k) = k+
∞

∑
n=2

cnkn (1.1)

is a univalent function such that M = {k : |k|< 1}. The relationship between geometry functions

and complex analysis is perhaps one of the most interesting areas of complex function theory. A

function from the analytic class A can be expressed in series form given in (1.1). The function

h(k) is holomorphic in a field which is complex if it is differentiable at every point in the given

area. A function with complex value can be differentiated at h0, if it has derivative at h0, such

as

h′(k) = lim
k→k0

h(k)−h(k0)

k− k0
. (1.2)

A function is analytic at k0 if it is differentiable at each point in its locality. Some of the

advantages of all orders of theory of complex cunction are that k0 must have a derivative and

that h has a Taylor series expansion, that is converges in some open unit disk, which is centered

on k0.

Koebe [2] created the univalent function theory, elegant and intricate in the complex analysis in

1907. The class S was named on the set of functions in the disk M that are analytic and univalent

and satisfy normalization criteria. This analysis’s major focus will be on the subclasses of S

functions h(k) = k+ c2k2 + c3k3 + ...., univalent and analytic in M. It contains every univalent

function that has been normalized by these conditions h(0) = 0 and h′(0) = 1.

The foundation of the concept of the Univalent functions is the relationship between the

GFT and the analytic structure of complex functions. In a domain, a single-valued function is

3



called a univalent function if it has various values for different points, that is h(k1)−h(k2) = 0,

if k1 = k2. Pommerenke [12] introduced the Hankel determinant in 1967 of univalent functions.

The Hankel determinant of a few analytic functions was inspected by Noonan and Thomas [13].

For each h in S, the inverse h−1 is provided by

h−1(e) = e+
∞

∑
n=2

tnen, |e|< r0;(r0(h)≥
1
4
). (1.3)

Libera found a correlation between h and h−1 coefficients for each h, when h(M) is a

region that is convex. Conversely, Kapoor and Mishra expanded upon the discoveries made

by Krzyz, who examined first-order coefficient constraints for inverse Starlike functions. For

k, the vth-Hankel determinant of order u with v, u ∈ N = {1,2,3, ...}, was characterized by

Pommerenke given by

Hv,u(h) =

∣∣∣∣∣∣∣∣∣∣∣∣

au au+1 · · · au+v−1

au+1 au+2 · · · au+v
...

... . . . ...

au+v−1 au+v · · · au+2v−2

∣∣∣∣∣∣∣∣∣∣∣∣
. (1.4)

Research on estimating maximum values regarding Hankel determinant of the third order de-

rived for v = 3 and u = 1 in (1.3) has been conducted recently, as follows

H3,1(h) =

∣∣∣∣∣∣∣∣∣
1 a2 a3

a2 a3 a4

a3 a4 a5

∣∣∣∣∣∣∣∣∣ , (1.5)

which numerous writers have addressed, see [14, 15]. The sharp bounds of
∣∣H3,1(h)

∣∣
includes a number of well-known subfamilies, including convex, bounded turning, analytic, and

starlike functions are represented by the R, T , S∗ and K correspondingly meeting the Analytic

requirements Re (h(k)
k )> 0, Re (h

′
(k))> 0, Re

{
kh′(k)
h(k)

}
> 0, and Re

{
1+ kh′′(k)

h′(k)

}
> 0 in the

unit disc M, were provided by Kowalczyk and derived the bounds as 4, 1
4 ,4

9 , 4
135 , for detail

see [16–20]. Numerous writers have obtained additional result on the sharp limits of Hankel’s

third Determinant for different subclass of functions that are analytic, see [21]. Rath calculated

the third Hankel determinant’s sharp bound very recently, for the starlike function’s inverse with

regard to symmetric points.

The class R, referred to as the class of bounded turning functions, is an essential subject

in the GFT, for detail see [22]. To fully comprehend the central themes of our recent research,

4



we must go over a few fundamental notions, for detail see [23]. These are analytic functions

h(k) normalized by h(0) = 0 and h′(0) = 1, in accordance with the criterion, transfer the unit

disk M into a domain whose boundary has finite turning Re(h′(k)) > 0 for all k ∈ M, see [24].

The functions of bounded turning meet Suffridge’s inequality and have a number of important

characteristics, including being univalent (one-to-one) in M which is |h′(k)| ≤ 1+|k|
1−|k| , k ∈ M,

Chichra’s inequality |h′′(k)| ≤ 2
(1−|k|)2 , k ∈M, and the Noshiro-Warschawski inequality |an| ≤ n,

n ≥ 2 for their Maclaurin series expansion h(k) = k+∑
∞
n=2 ankn. The class P is strongly related

to starlike and convex functions, which are significant subclasses of univalent functions, and is

the biggest known subclass of univalent functions for which the Bieberbach conjecture remains

true. Many mathematicians have investigated estimates on the coefficients of bounded turning

functions and other functionals in detail, since they have applications in diverse fields such as

GFT, differential equations, and potential theory. Because of its intriguing characteristics and

links to other significant function classes, bounded turning functions are still a subject of active

study in GFT.

In GFT, Hankel determinants have attracted a lot of attention, especially because of

their fundamental properties and some findings concerning the third Hankel determinant. Han-

kel derivations symbol Hv,u(k) for an analytical function h, are determined by a determinant

that contains the coefficients of the function expansion in the Taylor series. Particularly when

considering univalent functions, these determinants are essential to comprehending the charac-

teristics of analytic functions. Important findings about the coefficients and behavior of Hankel

determinants have been established by foundational studies, like those by Pommerenke, pro-

viding the framework for additional research in this field. Lately, studies have concentrated

on the third Hankel determinant, H3,1(h), which, for functions of bounded rotation, has been

demonstrated to have sharp boundaries. They show that the third Hankel determinant can be

well determined to some classes of analytic functions, which gives the relations between the

coefficients of these functions. Additional studies have addressed the way such determinantal

inequalities affect classes of entire or other holomorphic functions, including the Lemniscate of

Bernoulli, and have found more involved links between geometrical properties and analytical

behavior. Overall, the third Hankel determinant and studies of Hankel determinants in general

are prolific areas of research that increase our comprehension of analytic functions in GFT.

The role of Hankel determinants in the study of the coefficients of analytic functions has

been established through the pioneering work. The third Hankel determinant is denoted through

5



the symbol H3,1(h) being particularly crucial in the understanding of the geometric properties

of functions. Specifically, in the case of functions with bounded turning, recent findings (e.g.,

Kowalczyk and Lecko) included sharp bounds of the third Hankel determinant, demonstrat-

ing that the above upper bound may be effectively restricted in some instances. Comparative

analyses of various function subclasses have produced a range of results, demonstrating how

difficult it is to define precise boundaries. For starlike and convex functions, the third Hankel

determinant has been studied, particular upper bounds have been derived, and their connections

to the coefficients of these functions have been investigated. Furthermore, studies of the in-

verses of some classes, including Ozaki-type close-to-convex functions, have shed more light

on how Hankel determinants behave. All things considered, the continued study of the third

Hankel determinant’s sharp bounds advances both the field of GFT and the comprehension of

analytic functions by illuminating complex relationships between function properties and their

coefficient determinants.

The study of Hankel determinants for inverse functions has gained significant attention

in complex analysis. Specifically, the study focuses on how these determinants behave for lim-

ited turning functions under certain normalizing requirements. The Hankel determinants that

offer important information concerning the characteristics of the function are generated using

the coefficients of the analytic function. The second Hankel determinant was later dealt with in

the research work that generated predominantly precise and generalizable bounds. The defini-

tion of the determinants accounts for normalized functions from which the requirements should

be stipulated in the framework under analysis. These requirements are h(0) = 0 and h′(0) = 1.

Special focus has been placed on the third Hankel determinant H3,1(h) has been examined in

terms of functions with limited turning. It is important to carefully analyze the normalization

requirements because research has demonstrated that the behavior of Hankel determinants for

inverse functions can differ dramatically from their direct counterparts. Studies have proven,

for instance, the relationship of the coefficients of the function and the inverse function’s coef-

ficients, with more accurate bounds as well as with a better understanding of the geometrical

properties of the functions. Overall, the exploration of Hankel determinants of the inverse func-

tion, particularly with the normalization assumptions of the bounded turning function, is an

influential area of research that contributes further to the discussion on the structure of analytic

functions in GFT.

In mathematical analysis and other applications, the Hankel determinant is used widely,

6



and its consequences. Particularly in the univalent functions and certain subclasses of this.

These limitations encompass information associated with the characteristics of the analytic

functions. Precise estimates of third-order Hankel determinants were determined using the

bounded turning functions, the convex functions, and starlike functions, which become useful

tools in the sense of determining the geometrical features of functions. New results in this direc-

tion, some of which appear in Kowalczyk and Lecko, verified that the absolute value inequality

|H3,1(h)| ≤ 1
4 is acute for the functions in the bounded turning class, advancing our understand-

ing of geometrical effects of function coefficient interactions. Hankel determinants are found

from the orders that come as v and u as fixed values. If u = 1 and v = 2, then

|H2,1(h)|=

∣∣∣∣∣∣a1 a2

a2 a3

∣∣∣∣∣∣= |a3 −a2
2|, where a1 = 1.

Note that H2,1(h) = a3 −a2
2 is traditional Fekete-Szego function. The ultimate possible

value of the latter upper bound of every subclass |H2,1(h)| of the family A was discussed by

Islam et al. [25]. These are precise bounds with real-world applications that extend far beyond

their theoretical significance due to the possibility of using the bounds in any number of other

alternative applications, such as complex analysis, numerical analysis, and even applied fields

such as fluid dynamics and engineering, where the understanding of the extent of the behavior

of the analytic functions is critical. These findings provide the impetus toward more research in

the nature of the Hankel determinants in other subclasses of functions along with new families

of functions and the corresponding determinants, for detail see [26–28]. The role of the sharp

borders in pure and applied mathematics is emphasized in this present research, which also gen-

eralises the subject matter of the GFT and extends possibilities of interdisciplinary applications.

Overall, the Hankel determinants and the sharp borders study is nonetheless quite active with

future breakthroughs in the realm of knowledge, see [29].

1.3 Preface

This thesis is intended to analyze and describe the Hankel determinant concerning the

inverse of q̌-bounded turning functions. The work is organized into five distinct chapters, each

accompanied by a concise introduction as outlined below:

Chapter 1 offers an extensive introduction literature review that delves into the funda-

mental concepts of q̌-bounded turning functions. This work included classes of analytic func-

7



tions, Caratheodory functions, and univalent functions, along with the inverse of q̌-bounded

turning functions.

Chapter 2 mainly focuses on the fundamental theory of Geometric Functions, which

serves as a crucial framework of subsequent chapters. After studying the ideas behind normal-

ized univalent functions and analytic functions, Hankel determinant, coefficient bounds, and

functions of bounded turning with reference to the open unit disk, it defines the multiple basic

subclasses of univalent functions. Finally, the chapters end with preliminary lemmas that will

be presented in the next chapters.

Chapter 3 focuses on the sharp bounds for the inverse of the Hankel determinant of

third order associated with bounded turning functions. The study improves our knowledge of

how inverse functions behave in GFT. The findings provide a foundation for future research and

build upon earlier findings.

Chapter 4 presented the inverse of the q̌-bounded turning function’s Hankel determi-

nant, which is the extension of the sharp bound of the inverse of the bounded turning function’s

third Hankel determinant. It contains the most recent findings from earlier researchers.

Chapter 5 concludes this thesis by giving a thorough overview of the work completed

and the primary contributions made. In order to highlight their importance within the context of

GFT, the main ideas, approaches, and analytical findings established during the study are briefly

reviewed. This chapter also includes closing thoughts and suggestions for future research that

might be used as a foundation for more studies in related fields.

8



1

CHAPTER 2

DEFINITIONS AND PRELIMINARY CONCEPTS

2.1 Introduction

This chapter focuses on providing a framework for ongoing investigation by covering

some basic definitions and traditional outcomes. Consideration will be given to a few impor-

tant functions and preparatory lemmas. In complex function theory, the connection between

geometric functions and complex analysis is arguably its most fascinating aspect.

2.2 Analytic Functions and Class A

Analytic functions are complex-valued functions that are both defined and differentiable

at each stage of a particular area of the complex plane, commonly known as a holomorphic

function, see [30].

Definition 2.2.1. [31] The function h is differentiable at each point in an area, then it is said

to be analytic in that area. The series representation of an analytic function can be expressed

as

h(k) = k+
∞

∑
n=2

cnkn. (2.1)

Definition 2.2.2. [32] The well-known class A contains such functions that are analytic and

normalized. Miller and Mocanu [33] defined a mathematical technique called subordination



by using Schwartz functions. It is normalized using these condition h(0) = 0 and h
′
(0) = 1 in

open unit disk.

2.3 Univalent Functions and Class S

A univalent function is a complex valued function that is analytic and one-to-one in a

given domain of complex plane.

Definition 2.3.1. [34] Let h be a analytic function with complex values that is defined on open

unit disk M of a complex plane then any two points k1,k2,∈ M, like h(k1) = h(k2) such that

k1 = k2, is called a univalent function.

Definition 2.3.2. [6] Assume that h is a function belongs to class A and injective in the open

unit disk M , then h ∈ S. The normalized univalent function of the S class is important in GFT.

Class S holds four major subclasses, such as class of starlike function S∗, the class of Convex

functions C, class of close-to-convex functions K and the class of Quasi-Convex functions C∗.

This evaluation was first made in an endeavour to brace the Bieberbach conjecture.

These subclasses of univalent functions as described below;

2.3.1 Starlike Functions (S∗)

Definition 2.3.3. [35, 36] Let a function h is called Starlike if it is analytic and univalent in

M = {h ∈C : |h|< 1}, and satisfy the condition

Re
(

kh′(k)
h(k)

)
> 0,k ∈ M, (2.2)

and the image h(M) is a Starlike domain with respect to origin that is, the line segment connects

the origin to any point in (h)M lies entirely in h(M).

The following figure represents the subclass in which all starlike functions are included.
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Figure 2.1: Starlike Domain

2.3.2 Convex Functions (C)

The disk M is transferred by a convex function into a convex domain M origin-centered,

as presented in Figure 2.2. The subclass of S that comprises all Convex functions and is repre-

sented by C.

Definition 2.3.4. [37] A function h ∈ A is called Convex if it is univalent in a Domain M and

the image h(M) is Convex domain in a complex plane. Analytically, a function h ∈ A is convex

if and only if it satisfy this inequality

R
(

1+
kh′′(k)
h′(k)

)
> 0, for all h ∈ M. (2.3)

Definition 2.3.5. [38] In a complex plane, when the domain M is convex, then a line segment

that connects two of its points is fully included within it, such as

[ν(k1)+(1−ν)k2] ∈ M, (2.4)

where both k1,k2 belong to M with {0 ≤ k ≤ 1}.

3



Figure 2.2: Convex Domain

2.3.3 Close-to-Convex Function (K)

Definition 2.3.6. [39, 40] The function h is refered to as close-to-convex function if

R

(
h
′
(k)

g′
(k)

)
> 0, (2.5)

for some convex univalent function g. All functions that are close to convex are also univalent,

but not all close to convex are characterized as starlike or convex.

2.3.4 Qausi Convex Function (C∗)

Definition 2.3.7. [41, 42] A function h is called Qausi-convex function if

R

(
h
′
(k)

g(k)

)
> 0,k ∈ M. (2.6)

Correspondingly, for some convex function g;

kh′(k)
g(k)

≺ k+1
1− k

. (2.7)

The convexity is expanded by this subordination condition. If g(k) = h(k), then it is

determined that h is starlike.
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2.4 Caratheodory Functions and Class P

These functions are fundamental to GFT because of their close relationship to univa-

lent functions, convex functions, and Herglotz representation, which expresses any p(k) as an

integral over the unit circle involving a positive measure.

Definition 2.4.1. [31] A Caratheodory function in complex analysis is a holomorphic function

p(k) defined in M = {k : |k|< 1,k ∈C} such that Re(p(k))> 0, for all k ∈ M; all these types of

functions belonging to class P. It can be expressed as

p(k) = 1+
∞

∑
n=1

cnkn. (2.8)

2.5 Bounded Turning Functions

Assume that h is a univalent (one-to-one) function that is defined on the unit disk M,

which is often the domain M.

Definition 2.5.1. [43] A function h is said to have bounded turning if there is a constant j > 0

such that, for any two points k1,k2 ∈ M, and the following condition holds:

1
j
|k1 − k2| ≤ |h(k1 −h(k2)| ≤ |k1 − k2|. (2.9)

Because of this inequality, when a distance is mapped by h, it is neither too much compressed

nor too much enlarged within the domain.

To put it another way, the function prevents extremely large distance distortion, see

[44, 45].

1. |k1 − k2| indicates the distance in Euclidean terms between the two points in the domain, k1

and k2.

2. |h(k1)− h(k2)| is the Euclidean separation, under the function h, between the pictures of

those points.

3. The distortion’s magnitude is set by the constant J. More distortion is permitted with a bigger

J, whereas a smaller j denotes less distortion.
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Figure 2.3: Bounded Turning Functions

2.6 Hankel determinant

Definition 2.6.1. [46–48] The Hankel determinant is the determinant of its associated Han-

kel matrix. Pommerenke [49] investigated the Hankel determinant for the class of univalent

functions for positive integers v,u ∈ N= {1,2,3, ...} such that

Hv,u(h) =

∣∣∣∣∣∣∣∣∣∣∣∣

au au+1 · · · au+v−1

au+1 au+2 · · · au+v
...

... . . . ...

au+v−1 au+v · · · au+2v−2

∣∣∣∣∣∣∣∣∣∣∣∣
. (2.10)

The Hankel determinant is helpful in both the study of singularities and the analysis of

integral coefficient power series. Babalola [43] initiated the Hankel determinant of third-order

for the well-known disk M-convex and starlike function classes. For a convex function, the

Hankel determinant is H3,1(h)≤ 15
24 , while that of a star-like function is H3,1(h)≤ 16.

2.7 Fekete-Szego Inequality

In complex analysis, the Fekete-Szegő inequality has a number of significant ramifica-

tions. The main goal of Fekete-Szegö problem is to determine the ideal constant µ , for any

6



analytic function that equals to µ or such that the inequality is less than it. A well-known

Fekete-Szegö inequality for univalent function h is |c3 − c2
2| = H2(1). It is commonly written

as |c3 − µc2
2| for undeniable µ , where µ could be real or complex. Fekete-Szego provided a

difficult inequality that holds for, 0 ≤ µ < 1.

Definition 2.7.1. [50–52] A well-known finding in complex analysis is the Fekete-Szego in-

equality, which determines the supremum of the determinant in absolute terms for a specific

class of analytic functions. It specifically pertains to functions specified in M = {|k| ≤ 1,k ∈C}

and normalized such that h(0) = 0,h
′
(0) = 1. It gives an upper bounds with respect to the

absolute value of k considering modulus |k|.

2.8 The Class R

Definition 2.8.1. [23] Let h be defined on an open unit disk M = {k ∈C : |k|< 1} normalized

such that h(0) = 0 and h′(0) = 1 and satisfy the condition Re(h′(k)) > 0 for all k ∈ M. The

functions in this class are referred to as real derivatives or functions with bounded turnings

because the derivative has a strictly positive real part across the disk.

2.9 Quantum Calculus(q̌-derivative)

The foundation of quantum calculus were laid by American mathematicaian Jackson in

the early twentieth century. Jackson was the first mathematician to define the q̌-analog of the

derivative and integral operator.

Definition 2.9.1. [53, 54] In the study of GFT, the q̌-calculus represents a variation of classi-

cal calculus that includes the parameter q̌ and alters the conventional definitions of integrals,

and other operators. This area of research is referred to as q̌-calculus or quantum calculus,

and it deals with calculus without the requirement for limits. Special functions, orthogonal

polynomials, and fractal geometry are some common applications of q̌-calculus.

The q̌-calculus is helpful in GFT because it makes it possible to explore some map-

pings, deformations, and transformations that are more flexible than those covered in classical

calculus. Additionally, by modeling discrete and continuous systems concurrently, the idea has

significant implications for approximation theory, complex analysis, and geometric functions.
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Definition 2.9.2. [55] The extension of the classical derivative is q̌-derivative operator and

is especially useful in exploring q̌-analogs of analytic and univalent functions. It is defined for

analytic functions h(k) particularly when h(0) = 0, and introduce a deformation parameter into

a traditional parameter theory. The q̌-derivative Operator is given by

Dq̌h(k) =
h(k)−h(q̌k)
(1− q̌)k

for (0 < q̌ < 1). (2.11)

It converges to the ordinary derivative when q̌ → 1−.

Now we define a new class using the q̌-derivative operator as in the following.

2.10 The class Rq̌

Definition 2.10.1. A function h is a member of class Rq̌ if it is analytic on the open unit disk M

normalized, so that h((0) = 0 and its q̌-derivative satisfy

Re(Dq̌h(k))> 0 (2.12)

for every k ∈ M,. The classical class R can be obtained from this generalization as q̌ → 1−.

2.11 Lemmas

Lemma 2.11.1. [56] For functions R(k) = 1+k
1−k ,k ∈ M, equality is obtained for p ∈ P, where

|ct |< 2 and t ∈ N.

Lemma 2.11.2. For p ∈ P, we obtain C2 =
1
2

[
c2

1 + tω
]

c3 =
1
4

[
c3

1 +2c1t − c1tω2 +2t(1−|ω|2)τ
]

c4 =
1
8

{
c4

1 + tω
[

c2
1(ω

2 −3ω +3)+4ω

]
−4t(1−|ω|2)

[
c1(ω −1)τ − (1−|τ|2)ξ +ωτ2

]}
,

where t = 4− c2
1 for some ω,τ and ξ with |ω| ≤ 1, |τ| ≤ 1, |ξ | ≤ 1.
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CHAPTER 3

THE SHARP BOUND OF THE THIRD HANKEL

DETERMINANT FOR THE INVERSE OF BOUNDED

TURNING FUNCTIONS

3.1 Introduction

This research work investigates a sharp bounds regarding the inverse function of the

third-order Hankel determinant of H3,1(h) related to bounded turning functions, indicated by R,

containing holomorphic function h in the unit disk such that Re(h
′
(k)) > 0. Although several

coefficient estimates exist for functions in R, finding the exact value of the inverse functions for

the Hankel determinant remained unresolved, see [57]. Let A stand for the family of mappings

h of this kind.

h(k) = k+
∞

∑
n=2

cnkn (3.1)

in M = {k : |k|< 1} is the Open unit disk, where S denotes the subgroup A class with functions

that are univalent. Each h in S possesses an inverse h−1, which is provided by

h−1(e) = e+
∞

∑
n=2

cnen, |e|< r0(h);
(

r0(h)≥
1
4

)
. (3.2)

Assume that P is the class of every function in M that has a positive real component.

p(k) = 1+
∞

∑
t=1

ctkt (3.3)



All of these functions are referred to as Caratheodory functions, for detail see [58]. To

obtain our result, we employ the method that Libera and Zlotkiewicz have been using. The

required sharp estimates, which apply functions with a positive real portion, are also used in the

form of lemmas shown below.

3.2 Final Results

Theorem 3.2.1. If h ∈ R and h−1(e) = e+∑
∞
n=2 tnen is the inverse of h then

|H3,1(h−1)| ≤ 44
135

, (3.4)

the inequality is sharp for

h1(k) =
log(1+ k)
(1− k)

− k. (3.5)

Proof. There is a holomorphic function p ∈ P for h ∈ R, where

h′(k) = p(k) (3.6)

h(k) = k+
∞

∑
n=2

tnkn (3.7)

h(k) = k+a2k2 +a3k3 +a4k4 + · · ·

h
′
(k) = 1+2a2k+3a3k2 +4a4k3 + . . .

p(k) = 1+
∞

∑
t=1

ctkt (3.8)

= 1+ c1k1 + c2k2 + c3k3 + . . .

here

h
′
(k) = p(k)

1+2a2k+3a3k2 +4a4k4 + . . .= 1+ c1k+ c2k2 + c3k3 + . . . ,

by comparing

2a2k+3a3k2 +4a4k3 + . . .= c1k1 + c2k2 + c3k3 + . . .

2a2 +3a3 +4a4 + . . .= c1 + c2 + . . .cn + cn−1

nan = cn−1

an =
cn−1

n
. (3.9)
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Using the concept of the inverse function h, we obtain since h ∈ R.

h−1(e) = e+
∞

∑
n=2

tnen. (3.10)

e = h(h−1) = e+
∞

∑
n=2

tnen +
∞

∑
n=2

an(e+
∞

∑
n=2

(tnen)n), (3.11)

through simplification

(t2 +a2)e2 +(t3 +a3 +2a2t2)e3 +(t4 +a4 +2a2t3 +a2t2
2 +3a3t2)e4

+(t5 +2a2t4 +2a2t2t3 +3a3t3 +3a3t2
2 +4a4t2 +a5)e5 + . . .= 0. (3.12)

By comparing the coefficients of the same powers

t2 =−a2

t3 =−a3 +2a2
3

t4 =−a4 +5a2a3 −5a3
2

t5 =−a5 +6a2a4 −21a2
2a3 +3a2

3 +14a2
2, (3.13)

from equation (3.9),

t2 =
−c1

2

t3 =
−2c2 +3c2

1
6

t4 =
−6c3 +20c1c2 −15c3

1
24

t5 =
−24c4 +90c1c3 −210c2

1c2 +40c2
2 +105c4

1
120

. (3.14)

Now,

H3,1(h−1) =

∣∣∣∣∣∣∣∣∣
1 t2 t3

t2 t3 t4

t3 t4 t5

∣∣∣∣∣∣∣∣∣ . (3.15)

After putting the value of t2, t3, t4, t5 we get

=

(
−2c2 +3c2

1
6

)(
−24c4 +90c1c3 −210c2

1c2 +40c2
2 +105c4

1
120

)

11



−
(
−6c3 +20c1c2 −15c3

1
24

)2

+
c1

2

[
− c1

2

(
−24c4 +90c1c3 −210c2

1c2 +40c2
2 +105c4

1
120

)
−
(
−2c2 +3c2

1
6

)
(
−6c3 +20c1c2 −15c3

1
24

)]
+

(
−2c2 +3c2

1
6

)[
− c1

2

(
−6c3 +20c1c2 −15c3

1
24

)

−
(
−2c2 +3c2

1
6

)]
. (3.16)

=
1

720
[
48c2c4 −180c1c2c3 +420c2

1c2
2 −80c3

2 −210c4
1c2 −72c2

1c4 +180c3
1c3

−630c4
1c2 +120c2

1c2
2 +315c6

1

]
− 1

576
[
36c2

3 −120c1c2c3 +90c3
1c3 −120c1c2c3 +400c2

1c2
2

−300c4
1c2 +90c3

1c3 −300c4
1c2 +225c6

1

]
+

c1

2

[
1

240

(
24c1c4 −90c2

1c3 +210c3
1c2 −40c1c2

2 −105c5
1

)
− 1

144

(
12c2c3 −40c1c2

2 +30c3
1c2 −18c2

1c3 +60c3
1c2 −45c5

1

)]
+

(
−2c2 +3c2

1
6

)[
1

48
(
6c1c3 −20c2

1c2 +15c4
1
)

− 1
36
(
4c2

2 −6c2
1c2 −6c2

1c2 +9c4
1
)]

. (3.17)

=
c2c4

15
− c1c2c3

4
+

7c2
1c2

2
12

−
c3

2
9
−

7c4
1c2

24
−

c2
1c4

10

+
c3

1c3

4
−

7c4
1c2

9
+

c2
1c2

2
6

+
7c6

1
16

−
c2

3
16

+
5c1c2c3

24

−
5c3

1c3

32
+

5c1c2c3

24
−

25c2
1c2

36
+

25c4
1c2

48
−

5c3
1c3

32
+

25c4
1c2

48
−

25c6
1

64

+
c1

2

[
c1c4

10
−

3c2
1c3

8
+

7c3
1c2

8
−

c1c2
2

6
−

7c5
1

16
− c2c3

12
+

5c1c2
2

18

−
5c3

1c2

24
+

c2
1c3

8
−

5c3
1c2

12
+

5c5
1

16

]
+

(
−2c2 +3c2

1
6

)
[

c1c3

8
−

5c2
1c2

12
+

5c4
1

16
−

c2
2

19
+

c2
1c2

6
+

c2
1c2

6
−

c4
1

4

]
,

=
c2c4

15
− c1c2c3

4
+

7c2
1c2

2
12

−
c3

2
9
−

7c4
1c2

24
−

c2
1c4

10

+
c3

1c3

4
−

7c4
1c2

8
+

c2
1c2

2
6

+
7c6

1
16

−
c2

3
16

+
5c1c2c3

24

12



−
5c3

1c3

32
+

5c1c2c3

24
−

25c2
1c2

2
36

+
25c4

1c2

48
−

5c3
1c3

32

+
25c4

1c2

48
−

25c6
1

64
+

c2
1c4

20
+

3c3
1c3

16
+

7c4
1c2

16

−
c2

1c2
2

12
−

7c6
1

32
− c1c2c3

24
+

5c2
1c2

2
36

−
5c4

1c2

24
−

c3
1c3

16

−
5c4

1c2

24
+

5c6
1

32
− c1c2c3

24
+

5c2
1c2

2
36

−
5c4

1c2

48
+

c3
2

27
−

c2
1c2

2
18

−
c2

1c2
2

18
+

c4
1c2

12
−

c3
1c3

16
−

5c4
1c2

24
+

5c6
1

32
−

c2
1c2

2
18

+
c4

1c2

12
+

c4
1c2

12
−

c6
1

8
,

=
7c6

1
16

−
25c6

1
64

−
7c6

1
32

+
5c6

1
32

+
5c6

1
32

−
c6

1
8
−

7c4
1c2

24

−
7c4

1c2

8
+

25c4
1c2

48
+

25c4
1c2

48
+

7c4
1c2

16
−

5c4
1c2

24

−
c4

1c2

24
−

5c4
1c2

48
+

c4
1c2

12
−

5c4
1c2

24
+

c4
1c2

12
+

c4
1c2

12

+
7c2

1c2
2

12
+

c2
1c2

2
6

−
25c2

1c2
2

36
−

c2
1c2

2
12

+
5c2

1c2
2

36
+

5c2
1c2

2
36

−
c2

1c2
2

18
−

c2
1c2

2
18

−
c2

1c2
2

18
+

c2c4

15
−

c2
1c4

10
+

c2
1c4

20
− c1c2c3

4

+
5c1c2c3

24
+

5c1c2c3

24
− c1c2c3

24
− c1c2c3

24
−

c3
2

9

+
c3

2
27

−
c2

3
16

+
c3

1c3

4
−

5c3
1

c3
−

5c3
1c3

32

−
c3

1c3

16
−

c3
1c3

16
+

3c3
1c3

16
,

=
1

8640

[
135c6

1 −540c4
1c2 +720c2

1c2
2 +576c2c4

−432c2
1c4 +720c1c2c3 −640c3

2 −540c2
3

]
. (3.18)

Using Lemmma (2.11.2);

c2 =
1
2

[
c2

1 + tω
]

−540c4
1c2 =−270

[
c6

1 + c4
1tω
]

−640c3
2 =−640

[
1
2
(
c2

1 + tω
)]3

−640c3
2 =−80

[
c6

1 +3c4
1tω +3c2

1t2
ω

2 + t3
ω

3
]

720c2
1c2

2 = 720c2
1

[
1
2
(
c2

1 + tω
)]2

= 90
[
c6

1 +3c2
1tω +2c2

1t2
ω

2 − c4
1tω2 − c2

1t2
ω

3 +2t
(
c3

1 + c1tω
)(

1−ω
2)

τ

]
13



−540c2
3 =−540

[
1
4
(
c3

1 +2c1tω − c1tω2 +2t
(
1−ω

2)
τ
)]2

=−135
4

[
c6

1 +4c4
1tω +4c2

1t2
ω

2 −2c4
1tω2 −4c2

1t2
ω + c2

1t2
ω

4

+4t
(
c3

1 +2c1tω − c1tω2)(1−ω
2)τ +4t2(1−ω

2)τ2

]

576c2c4 −432c2
1c4 =

1
8

(
c4

1 + tω
[
c2

1(ω
2 −3ω +3)+4ω

]
−4t(1−ω

2)
[
c1(ω −1)τ +ωτ

2 − (1− τ
2)ξ
])

×
(

576
(1

2
(c2

1 + tω)
)
−432c2

1

)
= 18

[
− c6

1 −3c4
1tω − c2

1(4−3c2
1)− c4

1tω3 −4c3
1t(1−|ω|2)(1−|ω|)τ

+4c2
1t(1−|ω|2)τ2 +2c4

1tω −4c3
1t(1−|ω|)(1− tτ)+6c2

1t2
ω

2

+2(4−3c2
1)t

2
ω

3 +2c2
1t2

ω
4 +8t2c1ω(1−|ω|2)(1−|ω|)τ

−8t2(1−|ω|2)2
ω

2
τ

2 +8t2(1−|τ|2)ωτ(1−|ω|2)
]
. (3.19)

Putting these values in (3.18), we get

=
1

8640

[
135c6

1 −270c6
1 −270c4

1tω +180c6
1 +360c4

1tω +180c2
1t2

ω
2

−18c6
1 −54c4

1tω −18c2
1(4−3c2

1)−18c4
1tω3 −18c3

1t(1−|ω|)(1−|ω|2)τ

−72c2
1t(1− t)φ +72c2

1t(1−|ω|2)ωτ
2 +36c4

1tω +108c2
1t2

ω
2

+36(4−3c2
1)t

2
ω

3 +36c2
1t2

ω
4 +144t2c1ω(1−|ω|)τ(1−|ω|2)

−144t2
ω

2
τ

2(1−|ω|2)+144t2(1−|ω|2)(1−|ω|2)ωτ

+90c6
1 +270c4

1tω +180c2
1t2

ω
2 −90c4

1tω2 −90c2
1t2

ω
3

+2t(1−ω
2)τ(c3

1 + c1tω)−80c6
1 −240c4

1tω −240c2
1t2

ω
2 −80t3

ω
3

− 135
4

c6
1 −135c4

1tω −135c2
1t2

ω
2 +

135
2

c4
1tω2 +135c2

1t2
ω

3 − 135
4

c2
1t2

ω
4

−135t(c3
1 +2c1tω − c1tω2)τ(1−|ω|2)− (1−|ω|2)τ2135t2

]
.

=
1

8640

[
13
4
+ t

(
−33c4

1ω +
63
2

c4
1ω

2 −72c2
1ω

2 +93c2
1tω‘2 −18c4

1ω
3
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+ t
(
−63c2

1ω
3 +

9
4

c2
1ω

4 +144ω
3 −80tω3

)
+
(
(−27+72ω)c3

1 + c1tω(54−9ω)
)
(1−ω

2)τ

+
(
72c2

1ω − t(135+9ω
2)
)
(1−|ω|2)τ2

+72
(
2tω − c2

1
)
(1−|ω|2)(1−|τ|2)ξ

)]
. (3.20)

Put c1 = c and t = 4− c2 in (3.20), we get

H3,1(h−1) =
1

8640

[
13
4

c6 +(4− c2)
(
−33c4

ω +
3
2

c2(200−41c2)ω2 −18c4
ω

3

+(4− c2)
(9

4
c2

ω
4 − (176−17c2)ω3))

+
[
(−27+72ω)c3 + c(4− c2)ω(−41)

]
(1−|ω|2)τ

+
(

72c2
ω

2 − (4− c2)(135+9ω
2)(1−|ω|2)τ2

+72(2(4− c2)ω − c2)(1−|ω|2)(1−|τ|2)ξ
)]

. (3.21)

The modulus of each side taken with |ω| = x such that x ∈ (0,1), |τ| = y and y lies between

0 and 1,c1 = c and c lies between 0 and 2, and ω ≤ 1.

∣∣H3,1(h−1)
∣∣≤ φ(c,x,y)

8640
, (3.22)

H3,1(h−1) =
1

8640

[
13
4

c6 +(4− c2)
(
−33c4x+

3
2

c2(200−41c2)x2 −18c4x3

+(4− c2)

(
9
4

c2x4 − (176−17c2)x3
))

+
[
(−27+72x)c3 + c(4− c2)x(−41)

]
(1− x2)y

+
(

72c2x2 − (4− c2)(135+9x2)(1− x2)y2

+72
(
2(4− c2)x− c2)(1− y2)(1− x2)ξ

)]
. (3.23)

here φ(c,x,y);R3 → R means three Dimensional space to real numbers as

φ(c,x,y) =

[
13
4

c6 +(4− c2)

(
−33c4x+

3
2

c2(200−41c2)x2 −18c4x3

15



+(4− c2)
(9

4
c2x4 − (176−17c2)x3))

+
(
(−27+72x)c3 + c(4− c2)x(57−98)

)
(1− x2)y+(72c2

2x2

− (4− c2)(135+9x2)(1− x2)y2)+72(2(4− c2)(x− c2)(1− x2)(1− y2))

]
. (3.24)

Now we will maximize the region of Parallellopiped established by [0,2]× [0,1]× [0,1],

where c ∈ [0,2],x ∈ [o,1],y ∈ [0,1].

A. First, we find eight vertices of a parallelepiped.

(i) φ(0,0,0) = 0

(ii) φ(2,0,0) = 13
4 (2)

6 +0 = 832
4 +0 = 208

(iii) φ(2,1,0) = 13
4 (2)

6 +0 = 208

(iv) φ(2,1,1) = 13
4 (2)

6 +0 = 832
4 +0 = 208

(v) φ(2,0,0) = 13
4 (2)

6 +0 = 832
4 = 208.

(vi) For y = 1.

φ(0,0,1) =
13
4
(0)6 +(4−0)

[
33(0)+

3
2
(0)2(200−41(0)2)(0)2 +18(0)3

+(4−0)
(

9
4
(0)4 +(176−17(0)3)(0)3

)
+(27+72(0)+0(4−0)(0)(57+9(0)))(1−0)(1)

+(72(0)+(4−0)(135+9(0)))(1−0)(1)

+72(2(4−0)(0)+0)(1−0)(1−1)

]
= 0+4 [0+4(0)+0+540+72(0)]

= 2160. (3.25)

(vii) For x = 1.

φ(0,1,0) =
13
4
(0)6 +(4−0)

[
0+

3
2
(0)+0+4(176)+0+0+72(0)

]
= 0+4 [0+4(176)]

= 4(704)

= 2816. (3.26)
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(viii) For x = 1,y = 1.

φ(0,1,1) =
13
4
(0)+4

[
33(0)+

3
2
(0)+18(0)+4(0+176)+0+72(0)+0

]
= 0+4(0+4(176))

= 2816. (3.27)

B. Now we take eight parallelepiped edges.

(i) For x = 1,y = 0 and x = 1,y = 1.

φ(c,1,y) =
13
4

c6 +(4− c2)

[
33c4 +

3
2

c2(200−41c2)+18c4 +(4− c2)

(
9
4

c2 +176−17c2
)]

= 2816−44c2 −48c4 − c6 ≤ 2816, for c ∈ (0,2). (3.28)

(ii) For c = 0,y = 0.

φ(0,x,0) =
13
6
(0)+(4−0)

[
33(0)+

3
2
(0)(200−41 ·0)x+18(0)

+(4−0)

(
9
4
(0)+(176−17(0))x3 +

(
(27+72x)0

+(4−0)(135+9x2)(1− x2) ·0+72(2(4−0)x+0)(1− x2)(1−0)

)]
= 5312x3 +2304x ≤ 2816, where x ∈ (0,1). (3.29)

(iii) For x = 0,y = 1.

φ(c,0,1) =
13
4

c6 +(4− c2)
[
0+0+0+(4− c62)(0+0)+(27c3 +0)

+
(
0+(4− c2)(135)

)
(1)+72(0+ c2)(0)

]

= 2160+
13
4

c6 −27c2(4(5− c)+5(4− c2)+ c3)

≤ 2160+
13
4

c6 ≤ 2368. (3.30)
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(iv) For c = 0,y = 1.

φ(0,x,1) =
13
4
·0+(4−0)

[
0+

3
2
·0+18 ·0+(4−0)(0+(176−17)x3)

+(0+0)(1− x2)+
(
72 ·0+4(135+9x2)

)
(1− x2)

+72(2 ·4 · x+0)(1− x2) ·0
]

= 4
[
(4)(159x3)+4(135+9x2)(1− x2)

]
= 4

[
636x3 +4(135+9x2)(1− x2)

]
= 2544x3 +16(135+9x2)(1− x2)

≤ 2816, for x ∈ (0,1). (3.31)

(v) For c = 0,y = 0.

φ(0,0,y) =
13
4
(0)+4

[
135(4y2)

]
= 2160y2 ≤ 2160 for y ∈ (0,1). (3.32)

(vi) For c = 0,y = 1.

φ(0,1,c) =
13
4
(0)+(4−0)

[
0+0+(4−0)(0+176)+72(0)+135((0)4y2)+72(0+0+0)

]
= 2816. (3.33)

(vii) With c = 2, the conditions are evaluated for x = (0,1) and y = (0,1).

φ(c,x,y) = 208. (3.34)

(viii) When x = 0,y = 0.

φ(c,0,0) =
13
4
(c)6 +(4− c2)

[
0+0+0+(4− c2)(0+0)+27c3(1−0)y+72(c2)

]
= 288c2 −72c4 +

13
4

c6 for c ∈ (0,2)

≤ 288c2 +
13
4

c6 ≤ 1360. (3.35)

C. Consider six faces of a Parallelopiped.

(i) For c = 2.

φ(2,x,y) = 208, for (x,y) ∈ (0,1). (3.36)
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(ii) For c = 2.

φ(0,x,y) = 0+(4−0)
[
0+704x3 +(0+4(135+9x2)(1− x2)y2)+72(8x)(1− x2)(1− y2)

]
= 2304x+5123 +144(1+ x)(15− x)(1− x2)

≤ 2816. (3.37)

(iii) For x = 0.

φ(c,0,y) =
13
4

c6 +(4− c2)
[
27c3y+135(4− c2)y2 +72c2(1− y2)

]
=

13
4

c6 +(4− c2)
[
27c3y+540y2 + c2(72−207y2)

]
≤ 13

4
c6 +(4− c2)

[
27c3y+540+72c2]

≤ 2368. (3.38)

(iv) For x = 1.

φ(c,1,y) =−444c2 −48c4 − c6 +2816

≤ 2816, for c ∈ (0,2). (3.39)

(v) For y = 0.

φ(c,x,0) =
13
4

c6 +(4− c2)

[
33c4x+

3
2

c2(200−41c2)x2 +18c4x3

+(4− c2)

(
9
4

c2x4 +(176−17c2)x3
)
+72

(
2(4− c2)x+ c2)(1− x2)

]
≤ 13

4
c6 +(4− c2)

(
704+72c2 +6c4)

≤ 2816 for c ∈ (0,2), x ∈ (0,1). (3.40)

(vi) For y = 1

φ(c,x,1) =
13
4

c6 +(4− c2)
[
33c4x+

3
2

c2(200−41c2)x2 +18c4x3

+(4− c2)

(
9
4

c2x4 +(176− c2)x3
)

+
(
(27+72x)c3 + c(4− c2)x(57+9x)(1− x2)

)
+
(
72cx2 +(4− c2)(135+9x2)

)
(1− x2)

]
= g(c,x) with c ∈ (0,2) and x ∈ (0,1). (3.41)
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Further

∂g
∂c

=−2160c+324c2 +540c3 −135c4 +
39c5

2
+864x+576cx−432c2x+240c3x

−90c4x−198c5x+144x2 +4416cx2 −540c2x2 −2688c3x2 +180c4x2

+369c5x2 −864x3 −3936cx3 +432c2x3 +1824c3x3 +90c4x3 −210c5x3

−144x4 +216cx4 +216c2x4 −108c3x4 −45c4x4 +
27c5x4

2
,

and

∂g
∂x

= 864c+288c2 −144c3 +60c4 −18c5 −33c6 −4032x+288cx+4416c2x

−360c3x−1344c4x+72c5x+123c6x+8448x2 −2592cx2 −5904c2x2

+432c3x2 +1368c4x2 +54c5x2 −105c6x2 −576x3 −576cx3 +432c2x3

+288c3x3 −108c4x3 −36c5x3 +9c6x3. (3.42)

∂g
∂c = 0 and ∂g

∂x = 0 with (0,2).(0,1) and (c1,x1) = (0.248233,0.445259)

Taking again partial derivatives of ∂g
∂c and ∂g

∂x

we get

∂ 2g
∂c2 =−2160+648c+1620c2 −540c3 +

195
2

c4 +576x−864cx+720c2x

−360c3x−990c4x+4416x2 −1080cx2 −8064c2x2 +720c3x2 +1845c4x2

−3036x3 +864cx3 +5472c2x3 −180c3x4 +
135
2

c4x4,

∂ 2g
∂x2 =−4032+288c+4416c2 −360c3 −1344c4 +72c5 +123c6 +1689x−5184cx

−11808c2x+864c3x+2768c4x+108c5x−210c6x−1728x2 −1728cx2

+1296c2x2 +864c3x2 −324x2 −108c5x2 +27c5x2. (3.43)

∂ 2g
∂c∂x

= 864+576−432c2 +240c3 −90c4 −396x+288c2x−1080c3x

−5376cx+360c4x. (3.44)

Hence (
∂ 2g
∂c2

)(
∂ 2g
∂x2

)
−
(

∂ 2g
∂c∂x

)2

< 0. (3.45)
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Therefore, at y = 1, there is no critical point.

D. Now, examining the parallelepiped’s interior with: (0,1)∗ (0,2)∗ (0,1),

hence ∂φ

∂y = 0 exactly when

y0(c,x) =
4cx(x+6)+ c3(3+2x− x2)

2(x−1)(c2(x−23)−4(x−15))
. (3.46)

This is true for only (c,x) ∈ (0,2)∗ (0,1), also c2(x−23) ̸= 4(x−15).

The equation systems ∂φ

∂x (c,x,y0(c,x)) = 0 and ∂φ

∂c (c,x,y0(c,x)) = 0 are as follows.

(c ≈±2.1038, x ≈ 107.05), (c ≈±1.5487, x ≈−0.95411),

(c ≈±0.88470, x ≈ 16.439), (c ≈±2, x ≈−0.24168).

Consequently,the interior of the parallelepiped does not have a critical point for φ(c,x,y).

From A,B,C and D we have

max [φ(c,x,y) ; c ∈ (0,2), x ∈ (0,1), y ∈ (0,1)] = 2816. (3.47)

From (3.22) and (3.47), we get

|H3,1(h−1)| ≤ 2816
8640

. (3.48)

By Simplifying

|H3.1(h−1)| ≤ 44
135

. (3.49)

This is the required result.

3.3 Conclusion

In this research work, we estimate the third-order Hankel determinant of the inverse

function of h, provided that h belongs to the class of bounded turning functions. In our study, we

have employed the relationship between the Carathéodory class and the coefficients of functions

belonging to the class under consideration.

Considering the function’s coefficient h and its inverse h−1, we calculated the coefficient

of h−1 using the Carathéodory class function’s coefficient. The results gained in this study can

be used to get similar results for other well-known subclasses of univalent functions.
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CHAPTER 4

ON HANKEL DETERMINANT OF THE INVERSE OF

q̌-BOUNDED TURNING FUNCTIONS

4.1 Introduction

The purpose of this chapter is to determine the optimal bounds for the inverse of the

third Hankel determinant of q̌-bounded turning functions. In the analytic theory of functions,

much interest is taken by the analysis of functions like Hankel determinants that give much

information about the growth, distortion and behaviour of coefficients of univalent and related

functions. The Hankel determinant plays a critical role in researching sharp estimates and

coefficients inequalities and is applied to research the second-order and higher-order coefficient

inequalities. The Hankel determinant is the inverse Property of the third-order functions in

the theory of turning functions. This is aimed at developing an improved understanding of the

analytic structure of such inverse functions, and developing the topic of GFT with the techniques

of the q̌-calculus and new estimates of coefficients.

Let suppose

h(k) = k+
∞

∑
n=2

cnkn (4.1)

is a univalent function such that M = {k : |k|< 1}. One of the most interesting topics in complex

function theory is probably the relationship between the theory of geometric functions and



complex analysis. A function from analytic class A can be expressed in series form as,

h(k) = k+
∞

∑
n=2

cnkn,k ∈ M. (4.2)

The Hankel determinants of order vth and third-order are shown in equations (1.4) and (1.5).

The Class R represented by

R = h ∈ A : Re(h
′
(k))> 0,k ∈C, (4.3)

in the form of qth derivative

Rq = h ∈ A : Re{Dqh(k)}> 0,k ∈C. (4.4)

The class p represented by

p(k) = 1+
∞

∑
n=1

cnkn. (4.5)

4.2 Final Results

Theorem 4.2.1. If h ∈ R and h−1(e) = e+∑
∞
n=2 tnen is given by the inverse of h, subsequently

|H3,1(h−1)| ≤ 4
(1+ q̌+ q̌2)(1+ q̌+ q̌2 + q̌3 + q̌4)

− 16
(1+ q̌+ q̌2)3 , (4.6)

this inequality is sharp for ∑
∞
n=1

q̌n−1

n kn.

Proof. For h ∈ R, there exist such a univalent function p ∈ P,

h
′
(k) = p(k) (4.7)

Dq̌h(k) = p(k),

Dq̌[k+
∞

∑
n=2

ankn] = 1+
∞

∑
n=2

ctkt ,

∞

∑
n=2

[n]q̌ankn−1 +1 =
∞

∑
n=2

ctkt +1,

1+[2]q̌a2k+[3]q̌a3k2 +[4]q̌a4k3 + . . .= 1+ c1k1 + c2k2 + c3k3 + c4k4 + . . . ,

[2]q̌a2k1 +[3]q̌a3k2 +[4]q̌a4k3 + . . .= c1k1 + c2k2 + c3k3 + . . . ,

[2]q̌a2 +[3]q̌a3 + . . . [n]q̌an = c1 + c2 + · · ·+ cn−1,
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an =
cn−1(1− q̌)
(1− q̌n)

, (4.8)

where

[n]q̌ =
1− q̌n

(1− q̌)
,

a2 =
c1

[2]q̌
=

c1

(1+ q̌)
,

a3 =
c2

[3]q̌
=

c2

(1+ q̌+ q̌)
,

a4 =
c3

[4]q̌
=

c3

(1+ q̌+ q̌2)
,

a5 =
c4

[5]q̌
=

c4

(1+ q̌+ q̌2 + q̌3 + q̌4)
. (4.9)

Here is the inverse function

e = h(h−1) = e+
∞

∑
n=2

tnen +
∞

∑
n=2

an(e+
∞

∑
n=2

(tnen)n). (4.10)

through simplification

(t2 +a2)e2 +(t3 +a3 +2a2t2)e3 +(t4 +a2t2
2 +2a2t3 +3a3t2 +a4)e4

+(t5 +2a2t2t3 +2a2t4 +3a3t3 +4a4t2 +3a3t2
2 +a5)e5 + · · ·= 0. (4.11)

Coefficients are equated like powers

t2 =−a2,

t3 = 2a2
3 −a3,

t4 = 5a2a3 −5a3
3 −a4,

t5 =−a5 +6a2a4 −21a2
2a3 +3a2

3 +14a2
2, (4.12)

from equation (4.9),

t2 =
−c1

1+ q̌

t3 =− c2

(1+ q̌+ q̌2)
+

2c2
1

1+2q̌+ q̌2

t4 =
−c3

(1+ q̌+ q̌2 + q̌3)
−

5c3
1

(1+3q̌+3q̌2 + q̌3)
+

5c1c2

(1+2q̌+2q̌2 + q̌3)

t5 =
−c4

(1+2q̌+3q̌2 +2q̌3 + q̌4)
−

21c2
1c2

(1+3q̌+4q̌2 +2q̌3 + q̌4)

+
6c1c2

(1+2q̌+2q̌2 +2q̌3 + q̌4)
+

3c2
2

(1+2q̌+3q̌2 +2q̌3 + q̌4)
+

14c4
1

(1+ q̌)4 , (4.13)
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here

H3,1(h−1) =

∣∣∣∣∣∣∣∣∣
1 t2 t3

t2 t3 t4

t3 t4 t5

∣∣∣∣∣∣∣∣∣ . (4.14)

After putting the values of ti(i = 1,2,3, ,4,5), we obtain

= 1
[(

− c4

(1+ q̌+ q̌2 + q̌3 + q̌4)
+

6c1c2

(1+2q̌+2q̌2 +2q̌3 + q̌4)
−

21c2
1c2

(1+3q̌+4q̌2 +2q̌3 + q̌4)

+
c4

1
(1+q)4 +

3c2
2

(1+2q̌+3q̌2 +2q̌3 + q̌4)

)(
− c2

(1+ q̌+ q̌2)
+

2c2
1

(1+2q̌+ q̌2)

)
−
(

5c1c2

(1+2q̌+2q̌2 + q̌3)
− c3

(1+ q̌+ q̌2 + q̌3)

−
5c3

1
(1+3q̌+3q̌2 + q̌3)

)(
−

5c3
1

(1+3q̌+3q̌+ q̌3)
+

5c1c2

(1+2q̌+2q̌2 +2q̌3 + q̌3)

)]
+

c1

(1+ q̌)

[(
−c1

1+ q̌

)(
−c4

(1+ q̌2 + q̌+ q̌3 +q4)
+

6c1c2

(1+2q̌+2q̌2 +2q̌3 + q̌4)

−
21c2

1c2

(1+3q̌+4q̌2 +2q̌3 + q̌4)
+

3c2
2

(1+2q̌+3q̌2 +2q̌3 + q̌4)
+

c4
1

(1+ q̌)4

)
−
(

−c3

(1+ q̌+ q̌2 + q̌3)
−

5c3
1

(1+3q̌+3q̌2 + q̌3)
+

5c1c2

(1+2q̌+2q̌2 +2q̌3 + v4)

)
(

−c2

(1+ q̌+ q̌2)
+

2c2
1

(1+2q̌+ q̌2)

)
+

2c2
1

(1+2q̌+ q̌2)

− c2

(1+ q̌+ q̌2)

[(
−c1

(1+q)

)(
−c3

(1+ q̌+ q̌2 + q̌3)
+

5c1c2

(1+2q̌+2q̌2 + q̌3)

)
−
(

−c2

(1+ q̌+ q̌2)
+

2c2
1

(1+2q̌+ q̌2)

)2]
,

=
c2c4

(1+ q̌+ q̌)(1+ q̌+ q̌2 + q̌3 + q̌4)
− 6c1c2c3

(1+2q̌+2q̌2 + q̌3)(1+ q̌+ q̌2 + q̌3)

+
21c2

1c2
2

(1+2q̌+ q̌2)(1+ q̌+ q̌2)2 −
3c3

2
(1+ q̌+ q̌2)3

−
14c4

1c2

(1+2q̌+ q̌2)2(1+ q̌+ q̌2)
−

2c2
1c4

(1+ q̌+ q̌2 + q̌3 + q̌4)(1+2q̌+ q̌2)

+
12c3

1c3

(1+ q̌)(1+2q̌2 + q̌2)(1+ q̌+ q̌2 + q̌3)
−

42c4
1c2

(1+ q̌)2(1+2q̌+ q̌2)(1+2q̌+ q̌2)

+
28c6

1
(1+2q̌+ q̌2)2(1+2q̌+ q̌2)

+
6c2

1c2
2

(1+2q̌+ q̌2)(1+2q̌+3q̌2 +2q̌3 + q̌4)

+
5c1c2c3

(1+2q̌+2q̌2 + q̌3)(1+ q̌+ q̌2 + q̌3)
−

c2
3

(1+ q̌+ q̌2 + q̌3)2

−
5c3

1c3

(1+ q̌)3(1+ q̌+ q̌2 + q̌3)
+

5c1c2c3

(1+2q̌+2q̌2 + q̌3)(1+ q̌+ q̌2 + q̌3)

25



+
25c4

1c2

(1+2q̌+ q̌2)2(1+ q̌+ q̌2)
−

25c2
1c2

2
1+2q̌+ q̌2)(1+ q̌+ q̌2)2

+
25c4

1c2

(1+2q̌+ q̌2)2(1+ q̌+ q̌2)
−

5c3
1c3

(1+ q̌)3(1+ q̌+ q̌2)

−
25c6

1
(1+ q̌)6 +

c2
1c4

(1+2q̌+ q̌2)(1+ q̌+ q̌2 + q̌3 + q̌4)

+
21c4

1c2

(1+2q̌2 + q̌2)2(1+ q̌+ q̌2)
−

6c3
1c3

(1+ q̌)3(1+ q̌+ q̌2 + q̌3)

−
3c2

1c2
2

(1+2q̌+ q̌2)(1+2q̌+3q̌2 +2q̌3 + q̌4)
−

14c6
1

(1+ q̌)6

+
2c3

1c3

(1+ q̌)(1+ q̌+ q̌2 + q̌3)(1+2q̌+ q̌2)
− c1c2c3

(1+2q̌+2q̌2 + q̌3)(1+ q̌+ q̌2 + q̌3)

+
5c2

1c2
2

(1+2q̌+ q̌2)(1+ q̌+ q̌2)2 −
10c4

1c2

(1+2q̌+ q̌2)(1+ q̌+ q̌2)(1+2q̌+ q̌2)

−
5c4

1c2

(1+2q̌+ q̌2)2(1+ q̌+ q̌2)
+

10c6
1

(1+2 q
+ q̌2)2(1+2q̌+ q̌2)

− c1c2c3

(1+ q̌+ q̌2 + q̌3)(1+2q̌+2q̌2 + q̌3)
+

5c2
1c2

2
(1+2q̌+2q̌2 + q̌3)(1+2q̌+2q̌2 + q̌3)

−
5c4

1c2

(1+2q̌+2q̌2 + q̌3)(1+3q̌+3q̌2 + q̌3)
+

c3
2

(1+ q̌+ q̌2)3

−
2c2

1c2
2

(1+ q̌+ q̌2)2(1+2q̌+ q̌2)
−

2c2
1c2

2
(1+2q̌+ q̌2)(1+ q̌+ q̌2)2

+
4c4

1c2

(1+ q̌+ q̌2)2(1+2q̌+ q̌2)
+

2c3
1c3

(1+2q̌+ q̌2)(1+ q̌)(1+ q̌+ q̌2 + q̌3)

−
10c4

1c2

(1+2q̌+ q̌2)(1+2q̌+ q̌2)(1+ q̌+ q̌2)
+

10c6
1

(1+2q̌+ q̌2)2(1+2q̌+ q̌2)

−
2c2

1c2
2

(1+ q̌+ q̌2)2(1+2q̌+ q̌)
+

4c4
1c2

(1+2q̌+ q̌2)2(1+ q̌+ q̌2)

+
4c4

1c2

(1+ q̌+ q̌2)(1+2q̌+ q̌2)2 −
8c6

1
(1+2q̌+ q̌2)3 . (4.15)

This simplifies to

=
c6

1
(1+ q̌)6 −

3c4
1c2

(1+ q̌+ q̌2)(1+2q̌+ q̌2)2

+
3c2

1c2
2

(1+2q̌+ q̌2)(1+ q̌+ q̌2)2 +
c2c4

(1+ q̌+ q̌2 + q̌3 + q̌4)(1+ q̌+ q̌2)

−
c2

1c4
2

(1+2q̌+ q̌2)(1+ q̌+ q̌2 + q̌3 + q̌4)
+

2c1c2c3

(1+ q̌)(1+ q̌+ q̌2)(1+ q̌+ q̌2 + q̌3)

−
2c3

2
(1+ q̌+ q̌2)3 −

c2
3

(1+ q̌+ q̌2 + q̌3)2 . (4.16)
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In the view of Lemma (2.11.2), we obtain

C2 =
1
2

[
c2

1 + tω
]

c3 =
1
4

[
c3

1 +2c1t − c1tω2 +2t(1−|ω|)2
τ

]
c4 =

1
8

c4
1 + tω

[
(c2

1(ω
2 −3ω +3)+4ω)−4t(1−|ω|2)(c1(|ω|−1)|tau+ωτ

2

− (1−|τ|c2)ξ )
]
. (4.17)

From (4.16) and (4.17), we get

=
c6

1
(1+ q̌)6 −

3
[
c6

1 + c4
1tω
]

2(1+2q̌+ q̌2)2(1+ q̌+ q̌2)

+
3
[
c6

1 + c2
1ω2t2 +2c4

1ωt
]

4(1+2q̌+ q̌2)(1+ q̌+ q̌2)2

+
1

16(1+ q̌+ q̌2)(1+ q̌+ q̌2 + q̌3 + q̌4)

[
c6

1 + c2
1tω

(
c2

1(ω
2 −3ω +3)+4ω

)
−4c2

1t(1−|ω|2)(c1ωτ − c1τ + τ
2
ω − (1−|ω|2)ξ )+ c4

1tτ

+ t2
ω

2(c2
1(ω

2 −3ω +3)+4ω)−4t2
ω(1−ω

2)(c1(ω −1)τ +ωτ
2 − (1−|τ|2)ξ

]
−

1
[
c6

1 + c2
1tω(4ω + c2

1(ω
2 −3ω +3))− c2

1t(1−ω2){ωτ2 + c1ωτ − c1τ − (1−|τ|2)ξ}
]

8(1+2q̌+ q̌2)(1+ q̌+ q̌2 + q̌3 + q̌4)

+
1
[
c6

1 +3c4
1tω +2c2

1t2ω2 − c2
1t2ω3 +2c1t2ω(τ − τω2)+2c3

1t(τ − τω2)− c4
1tω2]

4(1+2q̌+2q̌2 + q̌3)(1+ q̌+ q̌2 + q̌3)

−
1
[
c6

1 +3c4
1tω +3c2

1t2ω2 + t3ω3]
4(1+ q̌+ q̌2)3

− 1
16(1+ q̌+ q̌2 +q3)2

[
c6

1 +4c2
1t2

ω
2 +4t2(1−|ω|2)τ2 − c2

1t2
ω

4

+4c4
1tω −2c4

1tω2 +4c3
1t(1−|ω|2)τ −4c2

1t2
ω

3 +4c1t2
ω(1−|ω|2)τ

−4c2
1t2

ω
2(1−|ω|2)τ

]
, (4.18)

for c1 = c , t = 4− c2 in (4.18), we get

=
c6

(1+ q̌)6 −
3
[
c6 + c4(4− c2)ω

]
2(1+2q̌+ q̌2)2(1+ q̌+ q̌2)

+
3
[
c6 + c2ω2(4− c2)+2c4(4− c2)ω

]
4(1+2q̌+ q̌2)(1+ q̌+ q̌2)2

+
1

16(1+ q̌+ q̌2 + q̌3 + q̌4)(1+ q̌+ q̌2)

[
c6 + c2(4ω −ωc2)

(
c2(ω2 −3ω +3)+ω

)
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−4c2(4− c2)(1−|ω|2)(c(ω −1)τ + τω
2 − (1−|ω|2)τ)+ c4(4− c2)τ +(4− c2)2

ω
2

(c2(ω2 −3ω +3)+4ω)−4(4− c2)2
ω(1−|ω|2)c1(ωτ − τ)+ τ

2
ω

2 − (1−|τ|2)ξ
]

− 1
8(1+ q̌+ q̌2 + q̌3 + q̌4)(1+ q̌)2

[
c6 + c2(4− c2)ω(c2(ω2

−3ω +3)+4ω)− c2(4− c2)(1−ω
2)(c(ω −1)τ +ω

2
τ

2 − (1−|τ|)2
ξ )

]
+

1
4(1+2q̌+2q̌2 + q̌3‘)(1+ q̌+ q̌2 + q̌3 + q̌4)

[
c6 +3c4(4− c2)ω +2c2(4− c2)2

ω
2

− c4(4− c2)ω2 − c2(4− c2)2
ω

3 +2c2(4− c2)2
ω(1−|ω|2)τ +2c3(4− c2)(1−|ω|2)τ

]
−
[
c6 +3c4(4ω − c2ω)+3c2(4− c2)2ω2 +(4− c2)3ω3]

4(1+ q̌+ q̌2)3

− 1
(16)(1+ q̌+ q̌2 + q̌3)2

[
c6 +4c2(−c2 +4)2

ω
2 − c2(−c2 +4)2

ω
4

+4(−c2 +4)2(1−|ω|2)τ2 +4c4(−c2 +4)ω −2c4(4− c2)ω2 +4c3(4− c2)(1−ω
2)τ

−4c2(4− c2)2
ω

3 +4c(4− c2)2
ω(1−|ω|2)τ −4c2(4− c2)2

ω
2(1−|ω|2)τ

]
. (4.19)

Applying the modulus to both sides of (4.9) with |ω|= x ∈ (0,1), |τ|= y ∈ (0,1),c ∈ (0,2),

we obtain

|H3,1 (h−1)| ≤ φ(c,x,y) (4.20)

φ(c,x,y) =
c6

(1+ q̌)6 −
3
[
c6 + c4(4− c2)x

]
2(1+2q̌+ q̌2)2(1+ q̌+ q̌2)

+
3
[
c6 +2c4(4− c2)x+ c2(4− c2)x2]

4(1+2q̌+ q̌2)(1+ q̌+ q̌2)2

+
1

16(1+ q̌+ q̌2)(1+ q̌+ q̌3 + q̌2 + q̌4)

[
c6 + c2(4x− c2x)

(
4x+(x2 −3x+3)c2)

−4c2(4− c2)(1− x2)(c(x−1)y+ yx2 − (1− x2)y)+ c4(4− c2)y+(4− c2)2x2

(4x+ c2(x2 −3x+3))−4(4− c2)2x(1− x2)(c(x−1)y+ y2x2 − (1− y2)

]
− 1

8(1+ q̌)2(1+ q̌+ q̌2 + q̌3 + q̌4)

[
c6 + c2(4− c2)x(4x+ c2(x2 −3x+3))

− c2(4− c2)(1− x2)c(x−1)y+ x2y2 − (1− y)2
]

+
1

4(1+ q̌+ q̌2)(1+ q̌+q2 + q̌3)(1+ q̌)

[
c6 +3c4(4− c2)x+2c2(4− c2)2x2

− c4(4− c2)x2 − c2(4− c2)2x3 +2c2(4− c2)2x(1− x2)y+2c3(4− c2)(1− x2)y
]
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−
1
[
c6 +3c4(4− c2)x+3c2(4− c2)2x2 +(4− c2)3x3]

4(1+ q̌+ q̌2)3

− 1
16(1+ q̌+ q̌2 + q̌3)2

[
c6 +4c2(4− c2)2x2 + c2(4− c2)2x4

+4(4− c2)2(1− x)2y2 +4c4(4− c2)x−2c4(4− c2)x2 +4c3(4− c2)(1− x2)y

−4c2(4− c2)2x3 +8c(4− c2)2x(1− x2)y−4c2(4− c2)2x2(1− x2)y
]
. (4.21)

Now, φ(c,x,y) will be maximized within parallelepiped defined by [0,1]× [0,2]× [0,1] ,

with c ∈ (0,2), y ∈ (0,1) and x ∈ (0,1).

A. The parallelepiped Vertices will be

φ(0,0,0) = 0,

φ(2,1,0) = φ(2,0,0) =
64

(1+ q̌)6 −
96

(1+ q̌+ q̌2)(1+2q̌+ q̌2)2 +
48

(1+2q̌+ q̌2)(1+ q̌+ q̌2)2

+
4

(1+ q̌+ q̌2 + q̌3 + q̌4)(1+ q̌+ q̌2)
− 8

(1+ q̌+ q̌2 + q̌3 + q̌4)(1+ q̌)2

+
16

(1+ q̌+ q̌2 + q̌3)(1+2q̌+2q̌2 + q̌3)
− 16

(1+ q̌+ q̌2)3 −
4

(1+ q̌+ q̌2 + q̌3)2 ,

φ(0,0,1) =
−4

(1+ q̌+ q̌2 + q̌3)2 ,

φ(0,1,0) = φ(0,1,1) =
4

(1+ q̌+ q̌2 + q̌3 + q̌4)(1+ q̌+ q̌2)
− 16

(1+ q̌+ q̌2 + q̌3)3 . (4.22)

B. Now, we are looking at the eight edges of the Parallelepiped.

(i). At x = 1,y = 0 and x = 1,y = 1, we have

φ(c,1,y) =
c6

(1+ q̌)6 −
3
[
c6 + c4(4− c2)

]
2(1+ q̌+ q̌2)(1+2q̌+ q̌2)2

+
3
[
c6 + c2(4− c2)+2c4(4− c2)

]
4(1+ q̌+ q̌2)2(1+2q̌+ q̌2)

+
1
[
c6 + c4(4− c2)+5c4(4− c2)+(4− c2)(c2 +4)

]
16(1+ q̌+ q̌2 + q̌3 + q̌4)(1+ q̌+q2)

−
1
[
c6 + c2(4− c2)(4− c2))

]
8(1+2q̌+ q̌2)(1+ q̌+ q̌2 + q̌3 + q̌4)

+
1
[
c6 +3c4(4− c2)− c4(4x2 − c2x2)+2c2(4− c2)2 − c2(4− c2)

]
4(1+2q̌+2q̌2 + q̌3)(1+ q̌+ q̌2 + q̌3)

−
1
[
c6 +3c4(4− c2)+3c2(4− c2)2 +(4− c2)3]

4(1+ q̌+ q̌2)3
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−
1
[
c6 +(4− c2)24c2 +(4− c2)2c2 +4c4(4− c2)−2c4(4− c2)−4c2(4− c2)2]

16(1+ q̌+ q̌2 + q̌3)2

≤ 4
(1+ q̌+ q̌2)(1+ q̌+ q̌2 + q̌3 + q̌4)

− 16
(1+ q̌+ q̌2)3 for c ∈ (0,2). (4.23)

(ii) At y = 0,c = 0.

φ(0,x,0) =
4x2

(1+ q̌+ q̌2)(1+ q̌+ q̌2 + q̌3 + q̌4)
− 16

(1+ q̌+ q̌2)3

≤ 4
(1+ q̌+ q̌2)(1+ q̌+ q̌2 + q̌3 + q̌4)

− 16
(1+ q̌+ q̌2)4 . (4.24)

(iii) When x = 0,y = 1.

φ(c,0,1) =
c6

(1+ q̌)6 −
3
[
c6]

2(1+2q̌+ q̌2)2(1+ q̌+ q̌2)

+
3
[
c6]

4(1+2q̌+ q̌2)(1+ q̌+ q̌2)2

+
1
[
c6 + c4(4− c2)+4c2(4− c2)(−c−1)

]
16(1+ q̌+ q̌2 + q̌3 + q̌4)(1+ q̌+ q̌2)

−
1
[
c6 − c2(4− c2)(−c)

]
8(1+2q̌+ q̌2)(1+ q̌+ q̌2 + q̌3 + q̌4)

+
1
[
c6 +2c3(4− c2)

]
4(1+2q̌+2q̌2 + q̌3)(1+ q̌+ q̌2 + q̌3)

−
1
[
c6
]

4(1+ q̌+ q̌2)3

−
1
[
c6 +16(4− c2)2 +4c3(4− c2)

]
16(1+ q̌+ q̌2 + q̌3)2

≤ −4
(1+ q̌+ q̌2 + q̌3)2 . (4.25)

(iv) When c = 0,y = 1.

φ(0,x,1) =
1
[
64x3 + x2]

16(1+ q̌+ q̌2)(1+ q̌2 + q̌3 + q̌4)

− 64x3

4(1+ q̌+ q̌2)3 −
64(1− x2)

16(1+ q̌+ q̌2 + q̌3)2

≤ 4
(1+ q̌+ q̌2)(1+ q̌+ q̌3 + q̌4)

− 16
(1+ q̌+ q̌2)2 , for x ∈ (0,1). (4.26)

(v) When (c,x) = (0,0).

φ(0,0,y) =− 4
(1+ q̌+ q̌2)3 ≤− 4

(1+ q̌+ q̌2 + q̌3)2 . (4.27)

(vi) When (c,x) = (0,1).

φ(0,1,y) =
4

(1+ q̌+ q̌2 + q̌3 + q̌4)(1+ q̌+ q̌2)
− 16

(1+ q̌+ q̌2)3

≤ 4
(1+ q̌+ q̌2)(1+ q̌+ q̌2 + q̌3 + q̌4)

− 16
(1+ q̌+ q̌2)3 . (4.28)
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(vii) At c = 2,y = 1,c = 2,y = 0,c = 2 and x = 1,c = 0,x = 0, we have

φ(c,x,y) =
64

(1+ q̌)6 −
96

(1+2q̌+ q̌2)2(1+ q̌+ q̌2)
+

48
(1+ q̌+q2)2(1+2q̌+ q̌2)

+
4

(1+ q̌+ q̌2)(1+ q̌+ q̌2 + q̌3 + q̌4)
− 8

(1+ q̌+q2 + q̌3 + q̌4)(1+2q̌+ q̌2)

+
16

(1+ q̌+ q̌2)(1+ q̌)(1+ q̌+ q̌2 + q̌2)

− 16
(1+ q̌+ q̌2)3 −

4
(1+ q̌+ q̌2 + q̌3)2 . (4.29)

(viii). At x = 0,y = 0.

φ(c,0,0) =
c6

(1+ q̌)6 −
3c6

2(1+2q̌+ q̌2)2(1+ q̌+ q̌2)

+
3c6

4(1+2q̌+ q̌2)(1+ q̌+ q̌2)2 +
c6

16(1+ q̌+ q̌+ q̌2)(1+ q̌+ q̌2 + q̌3 + q̌4)

− c6

8(1+ q̌)2((1+ q̌+ q̌2 + q̌3 + q̌4)
+

c6

4(1+ q̌+ q̌2 + q̌3)(1+2q̌+ q̌2)

− c6

4(1+ q̌+ q̌2)3 −
c6

16(1+ q̌+ q̌2 + q̌3)2

≤ 4
(1+ q̌+ q̌2 + q̌3 + q̌4)(1+ q̌+ q̌2)

− 16
(1+ q̌+ q̌2)3 . (4.30)

C. Now we examine six parallelepiped faces.

(i) When c = 2.

φ(2,x,y) =
64

(1+ q̌)6 −
96

(1+2q̌+ q̌2)2(1+ q̌+ q̌2)
+

48
(1+2q̌+ q̌2)(1+ q̌+ q̌2)2

+
4

(1+ q̌+ q̌2)(1+ q̌+ q̌2 + q̌3 + q̌4)
− 8

(1+ q̌+ q̌2 + q̌3 + q̌4)(1+2q̌+ q̌2)

+
16

(1+ q̌+ q̌2)(1+ q̌+ q̌2 + q̌3)(1+ q̌)

− 16
(1+ q̌+ q̌2)3 −

4
(1+ q̌+ q̌2 + q̌3)2 for (x,y) ∈ {(0,1)}. (4.31)

(ii) When c = 0.

φ(0,x,y) =
64x3 −64x(1− x2)(x2y2 − (1− y2))

16(1+ q̌+ q̌2 + q̌3 + q̌4)(1+ q̌+ q̌2)
− 64x3

4(1+ q̌+ q̌2)3

≤ 4
(1+ q̌+ q̌2 + q̌3 + q̌4)(1+ q̌+ q̌2)

− 16
(1+ q̌+ q̌2)3 . (4.32)
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(iii) When x = 0.

φ(c,0,y) =
c6

(1+ q̌)6 −
3c6

2(1+2q̌+ q̌2)2(1+ q̌+ q̌2)

+
3c6

4((1+ q̌+ q̌2)2(1+2q̌+ q̌2)

+
1
[
c6 + c4(4− c2)y−4c2(4− c2)(−cy− y)

]
16(1+ q̌+ q̌2)(1+ q̌+ q̌2 + q̌3 + q̌4)

−
1
[
c6 − c2(4− c2)(−cy− (1− y))

]
8(1+2q̌+ q̌2)(1+ q̌+ q̌2 + q̌3 + q̌4)

+
1
[
c6 +2c3(4y− c2y)

]
4(1+2q̌+2q̌2 + q̌3)(1+ q̌+ q̌2 + q̌3)

−
1
[
c6]

4(1+ q̌+ q̌2)3 −
1
[
c6 +4(4− c2)y2 +4c3(4− c2)y

]
16(1+ q̌+ q̌2 + q̌3)2

≤− 4
(1+ q̌+ q̌2 + q̌3)2 , for (c,y) ∈ {(0,1)}. (4.33)

(iv) When x = 1.

φ(c,1,y) =
c6

(1+ q̌)6 −
3
[
c6 + c4(4− c2)

]
2(1+2q̌+ q̌2)2(1+ q̌+ q̌2)

+
3
[
3c6 + c2(4− c2)+2c4(4− c2)

]
4(1+ q̌+ q̌2)2(1+2q̌+ q̌)

+
1

16(1+ q̌+ q̌2)(1+ q̌+ q̌2 + q̌3 + q̌4)

[
c6 + c2(4− c2)

(
c2 +4

)
+ c4(4− c2)y+(4− c2)2c2(4)y2 − (1− y2)

]
−

1
[
c6 + c2(4− c2)c2 +4+ y2 − (1− y)2]

8(1+2q̌+ q̌2)(1+ q̌+ q̌2 + q̌3 + q̌4)

+
1

4(1+2q̌+2q̌2 + q̌3)(1+ q̌+ q̌2 + q̌3)

[
c6 +3c4(4− c2)+2c2(4− c2)2

− c4(4− c2)+2c2(4− c2)2(1− x2)y− c2(4− c2)2
]

−
1
[
c6 +3c4(4− c2)+3c2(4− c2)2 +(4− c2)3]

4(1+ q̌+ q̌2)3

− 1
(16)(1+ q̌+ q̌2 + q̌3)2

[
c6 +4c2(4− c2)2 + c2(4− c2)2

+ c4(16−4c2)− c4(8−2c2)−4c2(4− c2)2
]

≤ 4
(1+ q̌+ q̌2 + q̌3 + q̌4(1+ q̌+ q̌2 −

16
(1+ q̌+ q̌2)3 , for c ∈ (0,2). (4.34)

(v) At y = 0.
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φ(c,x,0) =
c6

(1+ q̌)6 −
3
[
c6 + c4(4x− c2x)

]
2(1+2q̌+ q̌2)2(1+ q̌+ q̌2)

+
3
[
c6 + c2(4− c2)x2 +2c4(4− c2)x

]
4(1+2q̌+ q̌2)(1+ q̌+ q̌2)2

+
1

16(1+ q̌+ q̌2)(1+ q̌+ q̌2 + q̌3 + q̌3)

[
c6 + c2(4x− c2x)

(
c2(x2 −3x+3)+4x

)
+(4− c2)x2(c2(x2 −3x+3)+4x)+4(4− c2)2x(1− x2)

]
− 1

8(1+ q̌+ q̌2 + q̌3 + q̌4)(1+2q̌+ q̌2)

[
c6 + c2(4x− c2x)(c2(x2 −3x+3)

+4x)+ c2(4− c2)(1− x2)

]
+

1
4(1+2q̌+2q̌2 + q̌3)(1+ q̌+ q̌2 + q̌3

[
c6 +3c4(4x− c2x)+2c2(4− c2)2x2

− c4(4x2 − c2x2)− c2(4− c2)2x3
]

−
[
c6 +3c4(4x− c2x)+3c2(4− c2)2x2 +(4− c2)3x3]

4(1+ q̌+ q̌2)3

− 1
(16)(1+ q̌+ q̌2 + q̌3)2

[
c6 +4c2(4− c2)2x2 + c2(4− c2)2x4

+4c4(4− c2)2x−2c4(4− c2)x2 −4c2(4− c2)2x3
]

≤ 4
(1+ q̌+ q̌2 + q̌3 + q̌4)(1+ q̌+ q̌2)

− 16
(1+ q̌+ q̌2)3

for c,x ∈ (0,2)× (0,1). (4.35)

(vi) When y = 1 and c = (0,2),x = (0,1), we have

φ(c,x,1) =
c6

(1+ q̌)6 −
3
[
c6 + c4(4− c2)x

]
2(1+2q̌+ q̌2)2(1+ q̌+ q̌2)

+
3
[
c6 + c2(4− c2)x2 +2c4(4− c2)x

]
4(1+2q̌+ q̌2)(1+ q̌+ q̌2)2

+
1

16(1+ q̌+ q̌2 + q̌3 + q̌4)(1+ q̌+ q̌2)

[
c6 + c2(4x− c2x)(c2(x2 −3x+3)+4x)

−4c2(4− c2)(c(x−1)+ x2 − (1− x2))(1− x2)+ c4(4− c2)

+(4− c2)2x2(c2(x2 −3x+3)+4x)−4(4− c2)2x(1− x2)(c(x−1)+ x2)

]
−
[
c6 + c2(4− c2)(c2(x2 −3x+3)+4x)x− c2(4− c2)(1− x2)(c(x−1)+ x2)

]
8(1+2q̌+ q̌2)(1+ q̌+ q̌2 + q̌3 + q̌4)
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+
1

4(1+2q̌+2q̌2 + q̌3)(1+ q̌+ q̌2 + q̌3)

[
c6 +3c4(4x− c2x)+2c2(4− c2)2x2

− c4(4− c2)x2 − c2(4− c2)2x3 +2c2(4− c2)2x(1− x2)+2c3(4− c2)(1− x2)

]
−
[
c6 +3c4(4x− c2x)+3c2(4− c2)2x2 +(4− c2)x3]

4(1+ q̌+ q̌2)3

− 1
16(1+ q̌+ q̌2 + q̌3)2

[
c6 +4c4(4− c2)2x2 + c2(4− c2)2x4 +4(4− c2)2

(1− x2)2 +4c4(4− c2)x−2c4(4− c2)x2 +4c3(4− c2)(1− x2)−4c2(4− c2)2x3

−4c2(4− c2)2x2(1− x2)+8c(4− c2)2x(1− x2)

]
= g(c,x) where c ∈ (0,2),x ∈ (0,1). (4.36)

∂g
∂c

=
6c5

(1+ q̌)6 −
3
[
6c5 +16cx −6c5x

]
2(1+2q̌+ q̌2)2(1+ q̌+ q̌2)

+
3
[
6c5 +31cx2 +6c5x2 −32c3 +32c3x−12c5x

]
4(1+2q̌+ q̌2)(1+ q̌+ q̌2)2

+
1

16(1+ q̌+ q̌2)(1+ q̌+ q̌2 + q̌3 + q̌4)

[
16c3x3 −48c3x2 +48c3x+32cx2 −6c5x3

+18c5x2 −18cx −16c3x2 −36c2x+48c2x3 −20c4x3 +36c2 −48c2x2 +20c4x2

+16cx2 +64cx4 −32c3x4 +24c−32cx2 +16c3x2 +4c3

+32cx4 +6c5x4 −32c3x−96cx3 −18c5x3 +96c3x3 +96cx2

+18c5x2 −96c3x2 +16c3x2 −64cx2 −64x2 +5c4x2 −32c2x−64x−5c4x

+24c2x−64x4 −5c4x4 +24c2x4 +64x3 +5c4x3 −24c2x3
]

− 1
8(1+2q̌+ q̌2)(1+ q̌+ q̌2 + q̌3 + q̌4)

[
6c5 +16c3x3 −6c5x2 −48c3x+18c5x

+48c3x−6c5x+32cx−16c3x2 −12c2x+5c4x+12c2x3

−5c4x3 +12c2 −5c4 −12c2x2 +5c4x
]

+
1

4(1+2q̌+2q̌2 + q̌3)(1+ q̌+ q̌2 + q̌3)

[
6c5 +32c3x−12c5x+64cx2 +12c5x2 −64c3x2

−16c3x2 +6c5x2 −32cx3 −6c5x3 +32c3x3 +24c2 +24c2x2 −48c2x−10c4 −10c4x2
]

− 1
4(1+ q̌+ q̌2)3

[
6c5 +48c3x−18c5x+64c3x2 +6c5x2 −48c5x2 +6c5x3

−96cx3 −48c3x3
]
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− 1
16(1+ q̌+ q̌2 + q̌3)2

[
6c5 +128cx2 +24c5x2 −128c3x2 −32cx4

−6c5x4 +32c3x4
]
, (4.37)

and

∂g
∂x

=
3
[
c4(4− c2)

]
2(1+2q̌+ q̌2)2(1+ q̌+ q̌2)

+
3
[
2c2x(4− c2)2 +2c4(4− c2)

]
(1+2q̌+ q̌2)(1+ q̌+ q̌2)2

+
1

16(1+ q̌+ q̌2)(1+ q̌+ q̌2 + q̌3 + q̌4)

[
12c4x2 −24c4x+12c4 +32c2x−3c6x2

+6c6x+3c6 −8c4x+16c4x−32c4x3 +16c2 +4c4 +48c2x2 −12c4x2 −32c3x

+8c5x−32c2x+8c4x+64c2x3 −144c2x2 +96c2x+19x2 +4c6x2 −9c6x3 +6c6x

+12c4x2 −16c4x+72c4x2 −48c3x−96+128cx+8c5x−64c3x−64c+4c5

+32c3 +192x2 +12c4x2 −96c2x2 −256cx3 −16c5x3 +128c3x3 +192cx2
]

− 1
8(1+ q̌)2(1+ q̌+ q̌2 + q̌3 + q̌4)

[
12c4x2 −24c4x+32c2x−3c6x2 + c6−4c4

−4c3 −8c2x+ c5+2c4x+12c5x2 −8c3x+16c2x3 −3c5x2 +2c5x−4c5x3
]

+
1

4(1+ q̌+ q̌2)(1+ q̌)(1+ q̌+ q̌2 + q̌3)

[
3c4(4− c2)+4xc2(4− c2)2 −2c4x(4− c2)

−3c2x2(4− c2)2 +32c2 +2c6 −16c5 −96c2x2 −6c6x2 +48c4x2
]

− 1
4(1+ q̌+ q̌2)3

[
3c4(4− c2)+6c2x(4− c2)2 +3x2(4− c2)3

]
− 1

16(1+ q̌+ q̌2 + q̌3)2

[
8c2(4− c2)2x−+4c2(4− c2)2x3 +128x+8c4x

−64c2x−128+8c4 +64c2 −4c4(4− c2)−32c3x+8c5x−24c2x(4− c2)2
]
. (4.38)

The system’s solution ∂g
∂c = 0 and ∂g

∂x = 0 belongs to the region (0,2)∗ (0,1),

is (c1,x1)≈ (0.248233,0.445259). Butt at (c1,x1) we observe that

(
∂ 2g
∂c2 )(

∂ 2g
∂x2 )− (

∂ 2g
∂x∂c

)2 < 0.

As a result, y = 1 has no critical point.

D. Now, we look at the interior of the parallelepiped: (0,2)× (0,1)× (0,1).
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We possess ∂φ

∂y if and only if

y0(c,x) =
1
[
−4c2(4− c2)(x−1+2xy)−4(4− c2)2x(1− x2)(c(x−1)+2xy+2y)

]
16(1+ q̌+ q̌2 + q̌3 + q̌4)(1+ q̌+ q̌2)

−
1
[
−4c2(4− c2)(1− x2)(c(x−1)+2xy+2y)

]
8(1+2q̌+ q̌2)(1+ q̌+ q̌2 + q̌3)

+
1
[
3c3(4− c2)(1− x2)+2c(4− c2)(1− x2)x

]
4(1+ q̌+ q̌2)2

− 1
16(1+ q̌+ q̌2 + q̌3)2

[
8(4− c2)2(1− x2)2y

+4c3(4− c2)(1− x2)+4c(4− c2)2x2(1− x2)−4c(4− c2)2x2(1− x2)
]
. (4.39)

Therefore φ(c,x,y) does not possess a critical point within the parallelepiped interior.

Based on A,B,C and D, we find

max{φ(c,x,y);c ∈ (0,2), x ∈ (0,1), y ∈ (0,1)}= 4
(1+ q̌+ q̌2)(1+q+ q̌2 + q̌3 + q̌4)

− 16
(1+ q̌+ q̌2)3 , (4.40)

hence from (4.20) and (4.40), we get

|H3,1(h−1)| ≤ 4
(1+ q̌+ q̌2)(1+ q̌+ q̌2 + q̌3 + q̌4)

− 16
(1+ q̌+ q̌2)3 . (4.41)

This completes the proof.

The qualitative results align with the classical results.

Figure 4.1: Variation of the Hankel determinant bounds |H3,1| with respect to parameter q̌, for

inverse q̌ bounded turning functions.
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4.3 Remark

Taking q̌ → 1−, then (4.41) will be reduced to results proved by Sanjay Kumar et al.

[59].

4.4 Conclusion

We investigated the behavior of the Hankel determinant of order three (H3,1), corre-

sponding to the inverse function within the q̌-bounded turning function class, which is a q̌-

analogue of classical bounded turning functions. Using the class Rq̌ we derived new estimates

in the quantities of the magnitude of
∣∣H3,1(h−1)

∣∣, where h is a member of the q̌-bounded turning

class. These findings demonstrate that the theory of the classical geometrical functions can be

continued by the use of the q̌-calculus and that the past results of classical functions of bounded

turning can be generalized.
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CHAPTER 5

CONCLUSION AND FUTURE DIRECTIONS

5.1 Conclusion

This thesis presents noval theoretical results and estimates for the Hankel determinant of

inverse q̌-bounded turning functions, contributing to mathematical aspects in the theory of in-

verse functions. While GFT addresses analytic and coefficient properties of univalent functions,

this work extends the Hankel determinant of third order to inverse functions. The significance

of q̌-bounded turning functions lies in their structural richness and their connection to convex-

ity and starlikeness. The Hankel determinant H3,1(h) effectively captures nonlinear relations

among Taylor coefficients and reveals key geometric features of analytic functions, yet its study

for inverse functions within the class of q̌-bounded turning functions are unexplored.

In this research, we investigated coefficient bounds for inverse functions in the q̌-bounded turn-

ing class using inverse series and subordination, obtaining sharp upper bounds for the third-

order Hankel determinant of inverse functions in class Rq̌ with Re(Dq̌h(k)) > 0. We analyzed

that these bounds depend on q̌ and converge to the classical bounded-turning results as q̌ → 1−.

We also investigated the equality conditions for sharp bounds and examined that the extremal

functions attain maximum values less than 1. Class Rq̌ was used to handle complex coefficient

expressions to ensure accurate, sharp bounds. These results advance the theory of inverse-

function coefficient problems for q̌-bounded classes and offer systematic analytical framework

for analytic function classes.



5.2 Future Directions

Future research might focus on the higher-order Hankel determinants and inverse func-

tions to relate the functions of q̌-convex, q̌-starlike, and bi-univalent functions. The Hankel

determinants for the inverse of q̌-bounded turning functions may be extended to functions as-

sociated with various integral transforms and convolution operators. The theory can also be

applied to the classical coefficient problems and the framework of the q̌-calculus and fractional

q̌-operator. Additionally, this study can be connected with numerical and computational meth-

ods, which is future potential work.

5.3 Applications

The Hankel determinant and inverse functions are applied in control theory and signal

processing, as Hankel matrices and their determinants helps in understanding the stability and

identification in control systems. Together, they help understand how structure, stability, and

connectivity behave in mathematical and physical systems, for detail see [60].
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