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ABSTRACT
Title: A New Multiple Image Encryption Scheme Based on Chaotic Systems

Due to rapid developments in communication networks, the transferring of data through these
networks has increased the risk. To protect this information, data encryption plays a significant
role. This work extends a single chaotic map (SC3) to encrypt batches of images concurrently
while maintaining high security standards. A new multiple-image encryption scheme based on
the chaotic systems is designed to encrypt batches of images more efficiently and securely. By
leveraging the complex dynamics and sensitivity to initial conditions inherent in chaotic maps,
the scheme achieves a high level of confusion and diffusion across multiple images. The
proposed multiple-image encryption scheme provides an effective and scalable solution for

secure multimedia transmission.
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

The main purpose of this introductory chapter is to review some background literature that will be
discussed in the succeeding chapters. The chapter outline is as follows: The first section explains
some cryptographic concepts. Section 1.2 covers the principles of cryptography. Sections 1.3 and 1.4
discuss the different types of cryptography and their purposes. Section 1.5 introduces modern cryptography
tools. Section 1.6 is about cryptography and chaos. A review work is presented in the section 1.7. Section
1.8 is about the role of Random numbers in cryptography. Section 1.9 is presents thesis layout and

structure.
1.1 Introduction

With rapid innovations in the development of data transmission, it has become a demanding
challenge to secure confidential information from attackers or prohibitive actions [1]. Through
modern multimedia technologies and telecommunications, a large amount of important information
cruises in daily life by means of sharing and open networking. To transmit data across any ambiguous
channel, some cryptographic techniques (encryption) are needed, which change consistent
information to impenetrable form. Cryptography is a modern and valuable approaches for textual
information. However, because of the high-level redundancy and capacity of bulk information, they
failed to provide computational- based security [2]. More than ever, researchers are worried about
how to protect multimedia data using cutting edge and practical content preservation techniques to
meet this problem [3]. Digital image security encompasses a wide range of features, such as secrecy,
access control, authentication, and copyright protection. Encryption, which only allows parties with
the necessary decryption keys to see the sent content (plain-image), often focuses on content secrecy
and access control [4]. However, a few fundamental features of images (such as high redundancy
values and a huge data capacity) render such encryption techniques unsuitable for image applications.
Furthermore, many encryption algorithms necessitate numerous operations on compressed data, which
raises the time demand. Their low ciphering (encryption) and deciphering (decryption) times can
present tremendous potential in real-time communications.

The use of image encryption is the main topic of this dissertation. The majority of encryption
techniques rely heavily on chaos theory due to its great sensitivity, randomness, complexity, and

1



computational capacity. Compared to text data, digital images have substantial correlations between
neighboring pixels, and high redundancy. The concept of employing chaos in encryption was
introduced by Shannon [5]. The use of chaos in cryptography has improved security the most due to
its great qualities, such as its dependence on initial conditions and sensitive behavior. The nonlinear
dynamical complex systems that underpin chaos-based cryptography are straightforward but
deterministic. Therefore, chaos offers quick and safe communication for data protection, which is
crucial when sending multimedia data via channels with quick communication systems, such internet

broadband communication.

The goal of this thesis is to create cryptosystems that employ random numbers and chaotic map to
create robust encryption methods that produce ciphered images with superior qualities. From this
angle, chaos-based methods and random numbers work very well. The statistical confusion diffusion
qualities of the suggested ciphered images are good. Pixels in encrypted images have almost little link
with one another. In summary, the encryption algorithms that are given perform well in terms of

multimedia security.
1.2 Fundamentals of Cryptography

Currently, our society is strongly bounded by the domain of the information epoch, which is
classified by scholar and researcher assets and is functional inside data being deliberated priceless.
Enlightening data exists which is used in various forms such as economic, military, and political. The
protection and security of this data during transmission, saving, and in routine practice is of prime
importance because the transfer of data may result in the revelation of various marketing, financial
loss, or armed forces top secrets. Credit card information, bank transactions, and social security
numbers must be kept secure during transmission. For the protection and security of the data or
information, cryptography plays a vivacious role [6]. Cryptography is a Greek word that means
“Secret writing”. The art of personating message cryptography plays a vital role so that only its legal
successor can recognize it. There are two thresholds to this course. Firstly, the plaintext, or original data,
is veiled. This is recognized as encryption. The reverse procedure in which the cipher text is decoded
backward into the original message must be known to the authentic recipient. This process is known
as decryption. Figure 1.1 illustrates that cryptographic keys are required for both encryption and

decryption.
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Figure 1.1: Illustration of encryption and decryption

1.3 Categories of Cryptography
Cryptography has been categorized into two forms:

1.3.1 Symmetric Key Cryptography

This category involves a person to whom the secret key should be known. Both the receiver
and sender of the message may also be kept it. In private key cryptography, both the receiver and the
sender each have a copy of the secret key. During this passage approach to the key is vouchsafe.
There are two set-ups to ponder, in first both the interactive parties are acquainted with each other. In
this situation, without any encrypting scheme, the key is shared. In the second case, familiarity is
limited. For example, when seeing a secure website, keys should be swapped in a secure way [7].

Figure 1.2 classifies symmetric key cryptography into two types: block ciphers and stream ciphers.

I Symmetric Key Cryptography I

I Block Cipher I I Stream Cipher I

DES AES

Figure 1.2: Symmetric Key Cryptography

1.3.2 Asymmetric Key Cryptography

An asymmetric key cryptography is sometimes known as ‘cryptographic public key'.
Asymmetric key cryptography uses two keys. One is known as the 'Public key', which may be freely
transmitted over insecure channels; the other key, which can be kept hidden and not easily

disseminated, is known as the 'Private key' [8].



1.4 Purposes of Cryptography
Cryptography not only plays a role in encrypting and decrypting messages, but it also used
to hoist real-world complications that need safety for information or data [9]. In current

cryptography, that four main purposes that arise are as follows in Figure 1.3.

Purposes of Cryptography

1 1 — 1
Confidentially Authenticity Availability Integrity

Figure 1.3: Purposes of Cryptography

1.5 Modern Cryptographic Tools

Before 1950, like an art cryptography was known, but current cryptography depends on discipline
which requires provision from various fields which includes electronics, mathematics and computer
science. After World War 11, cryptographic research area had found the great importance by military
intelligence forces. After 2 years, in 1970’s the first symmetric cryptosystems i.e., public key
ciphers and DES were invented. At that time, the algorithms were established with the help of
computers. Then researchers recognized that worthy ciphers were established by joining small tools.

These tools are substitution, permutation, diffusion and confusion [10].

1.6 Cryptography and Chaos

This section provides a very quick overview of chaotic systems. Also described are the
characteristics of chaotic systems that have some bearing on cryptosystem design. This section will
thus focus on the connection between encryption and chaos.
1.6.1 Chaotic System

Generally speaking, a chaotic system is any physical system that is controlled by mathematical
formulas and produces behaviors that are unpredictable over time. Another name for chaos is
disorder or confusion. Certain systems that undergo changes over time might occasionally exhibit
chaotic motion. Thus, the two pillars of chaos theory are time and change. The graphical evaluation of

that system's time series identifies the chaotic behavior. These systems are unpredictable since they
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don't follow patterns. All of factors make it challenging to spot chaos in real-world issues.
Nonetheless, they are seen in computer science and mathematics through the visual representation of
the governing issues. Scientists are primarily drawn to chaos theory because it visualizes the
complicated and disorganized behavior of a system that arises from a straightforward deterministic
equation. Second, while the system in question is understandable, it is also impossible to decipher and

identify from the solution trajectory.

The third pillar is the minimal prerequisite knowledge of advancing mathematics; algebra,
geometry, and calculus are sufficient to comprehend the chaos. Finally, chaos can be analyzed without
delving into underlying mathematical equations. These revelations surprise cryptographers and force
them to use such systems to design strong cryptosystems that are harder to decipher [11, 12, 13].
Temporal chaos and spatial chaos occur when time is substituted with space and distance,
respectively. The nonlinear equations that arise in differential equations or algebra are more
challenging to study than linear systems. These systems also have complicated dynamics. Moreover,
not all nonlinear systems have to be chaotic. Many experts believe that chaotic dynamical systems are
the area of nonlinear dynamics or dynamical systems theory. Depending on energy conservation,
dynamical systems fall into one of two groups. A conservative dynamical system, or friction-free
system, does not lose energy. On the other hand, a dissipative system loses energy because it must
endure frictional forces. When a dissipative dynamical system reaches a limiting state due to energy
loss, a chaotic solution can emerge under the effect of specific constraints [14]. For continuous time
intervals, a dynamical systems variations are also seen. In contrast to discrete time intervals, the
measurement of such phenomena is continuous. A dynamical system's continuous change is measured
using differential equations. River water movement, heat conduction, and air temperature are a few
examples of such systems [14]. Differential equations are intended to be used in cyber-security to
create reliable and secure systems. Nonlinear differential equation systems are used to develop the
block cipher's sole nonlinear component, which can make cryptanalysis more difficult.

1.7 A Review Work

In many daily life applications such as video call conferencing, military branches, medical,
communication of wireless networks images have significant role. When an image is transmitted two
major issues need to be resolved, firstly check the transmitted image has assigned bandwidth and then
must ensure that the images are transmitted through secure channel. So, for this purpose algorithms
for encrypting images play a key role. Encryption algorithms encode the data which make it
unreadable to viewer and it can be achieved by relocating or scrambling the pixel positions of image.
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To secure the digital images, now a day’s researchers paid attention on creating such encrypted
techniques that satisfies the following properties [15]. The pixels of original and ciphered images need
to be less correlated. The best encryption schemes have correlation values are near zero. The value of
key space must be enormous because a larger key space number makes it more difficult for an attacker
to locate the specific key. Sensitivity of key is also obligatory. In other terms, slight change of key
will not decrypt the ciphered image.

Liu et al. [16], developed an encryption technique based on random numbers. Novelty of his work
lies on one-time pad key generation utilizing the hash value of random noise like a digital voice
recording devices. Also, the already attained chaotic system is enhanced by using this system.
Because of varying input in every iteration this technique is resistant against the attacks. For key
enhancement, this methodology is used, and this scheme is presented by W. Haifaa et al. [17]. The
suggested scheme's keys are created by a logistic chaotic map. XOR operation is used between them
and in last again XOR operation is applied between resultant and plain-image values.

With the use of density information concepts, the computing technique of DNA has high
complexity. Image pixels are scrambled by permutations while the redundancy information of image
is obtained by diffusion. K. Radihka et al. [18], combine sequences of DNA with chaotic maps. Image
is divided in blocks then convert the decimal pixel values to binary matrices then encode them with
DNA rules. After block scrambling, the sub-block division is done. In addition, DNA is added to
blocks to compile the blocks again.

Eltous et al. [19], offered a color image encryption technique in which random noise is selected
and then add noise signal to image after this step the image pixels are rearranged. The primary goal of
this strategy is to improve efficiency and provide a high level of protection. Block-wise encryption
and reordering-based encryption techniques were suggested by Khrisat et al. [20], two secret keys are
used. Firstly, the image pixels are reshaped to a single-row matrix. The number of blocks is then
determined, and the size of the blocks is calculated by dividing the total size of the matrix. Finally,
the matrix is reordered to produce an encrypted image. For the testation of the scheme, different
experimental analyses are done.

Jian et al. [21], presented an encryption system using DNA coding, quantum chaos, and the Lorenz
map. To improve security, a new encryption system uses DNA four base pairs to dynamically pick
eight DNA encoding rules as well as eight various forms of addition and XOR rules. The proposed
scheme is tested via different statistical and experimental analyses. An innovative encryption scheme

using quantum chaos is presented by Liu et al. [22], in this scheme, pixels are permuted by the Arnold



scrambling technique. For diffusion, a folding technique is utilized which modifies the diffused
pixels. For high complexity and randomness, logistic and quantum chaotic maps are paired with

closest-neighbor-paired lattices.

1.8 Random Number Generation (RNG)

An unpredictable sequence is known as sequence of random number. If the numbers have no
correlation between them then that sequence is considered as truly random. In this way the prediction
of succeeding number by using preceding is totally impossible. Distribution is the main part of any
number sequence i.e., check how much the number sequences are uniformly distributed by generator.
Also, the important feature of any sequence is its range [23].

1.8.1 Random Numbers Role in Cryptography

The random number sequences are used for different objectives, for example in generating
keys for encryption, simulations and for modeling complexity. There are two main approaches to
random number generation: true random number generators (TRNGs) and pseudo-random number
generators (PRNGs). RNG is a technique/algorithm in which bits of binary sequences are generated
which are independent statistically. PRNG is a deterministic technique which produce nearly random
sequences of binary bits. The PRNG have input value known as seed and the output of it is known as
binary sequences. RNG are commonly used in applications and cryptographic techniques. In
cryptographic schemes like secret key of DES, RSA technique prime number are used for providing
security. The output having length [ of PRNG is not so random but it takes a small bit which is truly
random and then expanded it to greater sequence. Like this, PRNG sequences could not be
differentiated from truly random sequences. For the confirmation of output PRNG randomness some
tests (statistical) and other analysis must be implemented. As a result, numerous statistical techniques
are used to verify random and pseudorandom number generators. A comparison between among
PRNG and TRNG is shown in Table 1.4, which depicts TRNG is the most suitable choice for
cryptographic designs.

Table 1.4 Comparison between PRNG and TRNG

Traits PRNG TRNG
Effectiveness Outstanding Weak
Deterministic Yes NO

Periodicity Yes NO




1.9 Structure of the Thesis

There are five chapters in the dissertation.
Chapter 1. The introduction and justifications for the planned work are given in this chapter. This
chapter also provides a thorough overview of chaos theory and image encryptions. Additionally, the
latest developments in image encryption are also discussed.
In Chapter 2, basic background definitions and core concepts are provided in this chapter.
In Chapter 3, the mathematical laws, equations, and theorems that underpin that critical analysis are
included. The methods employed to achieve the necessary issue outcomes are also included. Every
figure, table, and graph has the appropriate number and placement together with the necessary caption.
It explains and analyzes the results' ramifications. A brief overview of an image encryption system
based on a novel 2D sine-cosine cross-chaotic (SC3) map is provided, along with the main result.
In Chapter 4, discuss the mathematical ideas, equations, and theorems that support that critical
analysis as well. This chapter introduces a new multiple-image encryption scheme based on a chaotic
system. The techniques used to obtain the required issue results are also covered. In addition to the

required title, each figure, table, and graph has the right number and location.

Chapter 5, Conclusions and Suggestions for the Future work.



CHAPTER 2
BASIC DEFINITIONS AND CONCEPTS

This chapter presents the core concepts, definition and mathematical foundation of cryptography and
chaos focusing particularly on chaotic maps and their essential properties.
2.1 Cryptography

Cryptography is the study of transforming data into secret codes or encrypting information that
should be kept private from others. From age time to the current era, during the time of war, the
facility to interconnect secretly has been significant.
2.2 Plaintext and Cipher text

Any conversation within the language that we say the mortal language, which took the shape of
plain text. It is implicit by the sender, receiver, and those who have approached to that message. A
cipher signifies a secret or unreadable message. While any appropriate scheme is applied over the
plain text to codify it, then the resulting codified message is known as cipher text.
2.3 Encryption and Decryption

The conversion of plain text transmissions into encrypted text is referred to as encryption. An
inversion procedure for converting messages of cipher text behind the plain text is known as
decryption.
2.4 Diffusion

To create disorder in data to make it more secure, Shannon presented two concepts confusion
and diffusion for a good cryptosystem [10]. Diffusion is a technique in which if we alter a single
plaintext bit it creates alternation in several cipher text bits. Similarly, alter of single bit of cipher text
creates alternation in many plaintext bits. In case of block ciphers, bitalternation iscommunicated with
the assistance of diffusion, from unique part of the block to other parts.
2.5 Confusion

Confusion produces a relationship between secret key and plain text. In confusion key is not
directly related to cipher text. In general, every cipher text character should depend on many chunks
of keys.
2.6 Logic Operation

AND Operation

In this operation consider T = {0,1}, by applying AND operation on T the input a, b should be

taken from T and the output column is represented as aab and its resulting value will be 1 if it has both
9



inputs values 1, else it will be 0. Truth table for AND operation should be given as Table 2.1.

Table 2.1: Truth Table for AND Operation.
a b a”b

1 1 1
1 0 0
0 1 0
0 0 0

OR Operation
In this operation for both input a, b € T, the output represented as aVb has values equal to 0 for
both input arguments having 0 value, otherwise it would be 1. The OR Table 2.2 is given below.
Table 2.2: Truth Table for OR Operation

a b avb
1 1 1
1 0 1
0 1 1
0 0 0

XOR Operation
For both inputs a, b taken from T in XOR operation, the output values represented as a@®b have

zero value if both input values are identical, in other case they will be 1. XOR Table 2.3 should be

given below.
Table2.3: Truth Table for XOR Operation
a b adb
1 1 0
1 0 1
0 1 1
0 0 0
2.7 Chaos

In a deterministic system, a chaotic map indicates a state of unpredictability, unpredictable
behavior, and sensitivity to initial conditions. Within the context of chaos theory, it describes the long-
term behavior of dynamic systems that are highly sensitive to changes in their initial conditions,

resulting in complex, seemingly random single patterns. Although chaotic systems are expectable,
10



successfully predicting chaotic systems is tough because they lack long-term predictability.
Understanding and relating these complex and irregular performances is the goal of chaos research,
which delivers vision into the important subtleties of complex systems in a ground of academic fields
[24].
2.8 Different Properties of Chaotic Maps
The chaotic map has the following properties:

2.8.1 Sensitivity to Initial Conditions

Chaotic maps are extremely sensitive to initial conditions, even modest changes to the starting
environment. Subtle changes in initial values can cause dynamics to diverge considerably over time.
They work like a butterfly effect in some cases where small changes in one place can make a big
change for the other place. This butterfly effect is very essential in chaotic maps for encryption and
decryption especially in cryptographic systems and as well as in cyber security and many other
purposes also. Demonstration of sensitivity of initial condition is shown in Figure 2.1.
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Figure 2.1: Demonstration of Sensitivity to Initial Condition of Chaotic map
2.8.2 Bifurcation

Bifurcation is a simple example of chaotic maps where a minor change in a parameter can
result in a big change in the system's response. This can result in the development of chaotic regions

and several coexisting attractors. Figure 2.2 illustrates the bifurcation of a logistic map.

0
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Figure2.2: Bifurcation biagram of Logistic Map
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2.8.3 Deterministic Dynamics:

Chaotic maps behave in a visionary random way, but in real, they are deterministic, which
means that the governing mathematical function and their current state show both their upcoming
predictions [24, 25]. The demonstration of deterministic behavior of chaotic maps is shown in Figure
2.3 below.
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Figure 2.3: Deterministic Behavior of Chaotic maps
2.9 Type of Chaotic Maps
Here are brief details of types of chaotic maps below.
2.9.1 Logistic Map
A unit-dimensional map that shows chaotic behavior is known as logistic map. It is defined by
the relation, where r is a control parameter and x,, is the current value. Equation 2.1 describes the
logistic map.

Xpe1 = Xy (1 —Xp) 2.1)

Where r ranges from 0 to 4 and x is 0 to 1 [26]. Figure 2.4 is a demonstration of a logistic map.
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Figure 2.4: Bifurcation Diagram of Logistic Map
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2.9.2 Sine Map

The sine function defines the sin map, which is a chaotic one-dimensional map. It generates a
chaotic series of values, which is useful for cryptography, pseudo-random number generation, and
secure communication. Mathematical it is defined in equation 2.2, and its bifurcation figure show in
Figure 2.5.

Xpy1=T-Sin(mxy) 0<r<i 2.2)
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Figure 2.5: Bifurcation Diagram of Sin Map
2.9.3 Cosine Map

The Cos map is a chaotic one-dimensional map that uses the cosine function. This method is
used in chaos theory and cryptography to produce pseudo-random sequences that are highly sensitive
to initial conditions and control variables. Mathematical it is defined in equation 2.3, and bifurcation
figure show in figure 2.6

Xp41=T-C0S(TxXy) 0<r<1 2.3)

1.00
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Figure 2.6: Bifurcation Diagram of Cosine Map
2.9.4 Tangent Map

The tangent map is a one-dimensional chaotic map defined by a tan function. It provides
values with chaotic behavior, making it helpful for cryptography, pseudo-random number creation,
and secure communication. Mathematical it is defined in equation 2.4, and its bifurcation figure show
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in Figure 2.7.

Xps1=T-tan(mxy,) 2.4)
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Figure 2.7: Bifurcation Diagram of Tan Map
2.9.5 Piecewise Map
A piecewise map is a function that is defined by different formulas or expressions on different

Intervals of its input domain. A general piecewise map can be written as in equation 2.5.

(fi(x), ifxel
00, ifxel

@, ifxel,
fi, f2, -, fn are different functions and I, I, ... I,, are disjoint intervals that partition the domain.
Tent map is the example of Piecewise Map.
29.6 Tent Map

A directed piecewise linear map, commonly referred to as the tent map as shown in
equation 2.6 and 2.7. Its sensitivity to starting conditions is well known [24, 25]. Demonstration

of bifurcation of tent map is shown in Figure 2.8 below.
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Figure2.8: Bifurcation Diagram of Tent Map
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Xpp1 =TX, 0<x,<05 2.6)
Xp41 =X, (1—x,) 05<x,<1 2.7)

2.10 Tests for Chaotic Maps

Chaotic maps refer to mathematical systems that exhibit chaotic behavior, including
aperiodicity, unpredictability, and sensitivity to initial conditions. Understanding a chaotic map's
properties means that it is chaotic, which is the testing. These are some typical examinations and tests

that are used for chaotic maps.

2.10.1 Lyapunov Exponent

The exponential divergence or convergence of adjacent illustration in the given function is
measured by Lyapunov exponents. An elevated Lyapunov exponent denotes random conduct.
Demonstration of Lyapunov exponent for logistic map is shown in Figure 2.9. Lyapunov exponent
for logistic map will be in equation 2.8.

dfxnt1 =1rxn (1-xn)}
o 2.8)

. 1qan
lim =)L, In
n—oon

0 |

o L
. ;
1 1

Lyapunov exponent

'
]
1

o o5 1 15 2 25 3 35 4
Figure 2.9: Lyapunov E;<ponent for Logistic Map

2.10.2 Entropy Measures

The disorder and unpredictability of the functions are determined by entropy. Chaotic
behavior is shows high entropy behavior. The following formula 2.9 is applied to determine an
image's entropy.

H(m) = —¥3=5 P(my)log,[P(m,)], 2.9)

Where grey-level u occurrence probability is denoted by (mu), u = {0, 1, 2... 2n} and 2~ is greyscale image
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level number. If all of the mu in the image have the same occurrence probability, then probabilityP (mu) =
1/2™. Thus, the image displays utterly arbitrary behavior by H (m = n). The demonstration of

entropy analysis is shown in Figure 2.10.
1

—&— Logistic map
0.8} —E— Tent map

Tent-Logistic map | ¢
0.6+ ;AT

0.44

Approximate Entropy

3j6 3?7 3j8 3?9 4
Figure 2.10: En'élropy Analysis
2.10.3 Correlation
Correlation offers a relationship between nearby pixels in the image, and this relationship is
divided into three different categories: horizontal, diagonal, and vertical formats. The entire texture
of the image was taken into consideration during this analysis, and the equation 2.10 represents this

analysis, and adjacent pixel correlation are given in equation 2.11.

K = Zx‘y (x—px) (;’u_pl‘:,}’)p(XrY) 2. 10)

__ cov(xy)

Rey = Tocon o
) cov(x,y) = %Z?Ll(xi —E@)(x; - E())

1
E(x) = XLy x;

(D) = 33 (% — E(x))?

2.11)

2.10.4 The Analysis of Differential Attacks

Most attackers use a technique in which they slightly alter the original plain image before
using the proposed scheme to encrypt both the plain and previously encrypted image (which they
want to break) in order to extract vital information from it. Two encrypted images are thus acquired.
By comparing the rates of the two ciphered images, the attackers are able to break the cryptosystem
in this way. Differential analysis is the name given to this entire procedure. This means that even a
little change to either would result in a full change to the ciphered text. There are two ways for

evaluating an encrypted image’s resistance against differential attacks: number of pixels change rate
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(NPCR) and unified average changing (UACI). When NPCR [27], considers two ciphered pictures
with just one pixel changed, it is assessed as follows: if C;(u,v) represents the first image and

C,(u, v) represents the second as shown the formula 2.12.

o Y=g D(wv)

_ &u=0
NPCR(cy,cy) = N

x 100% 2.12)

Equation 2.13, defines D (u, v), and M x N represents the total number of pixels.

0 ifc;(u,v) =cy(u,v)

1 ifcy(u,v) # c,(u,v) 2.13)

D(u,v) = {

To test the pixel change number, the UACI (Unified Average Changed Intensity) [27], calculates the
average change in intensity across the cipher image. This analysis is expressed mathematically by the
formula 2.14.

UACI(ey, ) = oy B A P00l s 1003 2.14)

Where D (u,v) is defined in equation 2.15 and F is the maximum approved pixel value compatible
with the encryption image format.

0 ifc;(u,v) =cy(u,v)

1 ifc(u,v) #c,(u,v) 2.15)

D(u,v) = {

2.10.5 Mean Squared Error
MSE refers to the squared average difference between the original and distorted images. The
mathematical formulation of MSE is given in equation 2.16.

MSE = -~
mxn

moyn (PG~ CGP) 2.16)

Image sizeism x n. P(i,j) and C(i, j) parameters represent pixel placement in the i*" and jt* rows
and columns of the original and ciphered images. A higher MSE value is required for encryption

methods to have strong security [28].

2.10.6 Peak Signal to Noise Ratio.
Noise has an impact on the signal's representation. PSNR is defined as the ratio of noise to
single power, as given in equation 2.17.
PSNR = 10log,(I%4x) 2.17)
Lmaxr TEpresents the image pixel maximum value [29].
2.10.7 Classical Types of Attacks

Generally speaking, when a cryptosystem is being cryptanalyzed, it is considered that
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the cryptanalyst is fully aware of the design and operation of the target cryptosystem, with the
exception of the secret key. To penetrate any cryptosystem, attackers use four well-known
approaches: known-plain-text attack, selected plain-text assault, cipher text only attack, and chosen
cipher-text attack [29].

2.10.8 Statistical Tests:

To verify the produced time series randomness and absence of structure, run statistical tests
to check on them. For instance, auto-correlation analysis and histograms may be helpful. When
working with chaotic maps, several tests and studies must be conducted simultaneously in order to

completely characterize the system's behavior and validate its chaotic nature [24, 25].
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CHAPTER 3
A SECURE IMAGE ENCRYPTION SCHEME BASED

ON A NOVEL 2D SINE-COSINE CROSS-CHAOTIC
(SC3) MAP

3.1 Overview

The rapid expansion of digital image transmission across a range of industries, including cloud
storage, medical imaging, communication, and military applications, has made providing secure
image encryption a crucial issue [30, 31]. The increasing danger of cyber threats, illegal access, and
data breaches necessitates the development of new encryption techniques that could effectively
protect image data from possible attacks [32, 33]. The study [41], introduced a novel two-dimensional
sine-cosine cross-chaotic (SC3) map that improved the encryption process's security and
unpredictability. Because of their complex behavior and ability to generate pseudo-random
sequences, chaotic maps are ideal for use in encryption methods. Two chaotic sequences produced
by the SC3 map are present in the confusion and diffusion stages of the encryption. The great
sensitivity of the proposed SC3-based encryption system is one of its main advantages. By rendering
brute-force attacks extremely impracticable, this feature improves security. Additionally, statistical
analysis, such as entropy measurement, correlation coefficient analysis, histogram uniformity
evaluation, and resistance testing against differential assaults, is used to rigorously validate the
encryption method. These assessments attest to the suggested method's ability to achieve high security
while preserving computing efficiency. The architecture and functioning of the SC3-based image
encryption system are thoroughly examined in this paper [40]. The efficacy of the suggested approach
is assessed by evaluating its computational complexity, security performance, structural design, and
practical application. This evaluation examines the encryption scheme's shortcomings, such as the
lack of cryptanalysis against sophisticated attack models, possible processing complexity for large-
scale images, and the viability of hardware implementation, even if it exhibits good security features.
3.2 Formulation of the Map

The proposed image encryption system is built using a two-phase process confusion and
diffusion that exploits the unique properties of the sine—cosine cross-chaotic (SC3) map, as given in

equation 3.1.
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3
Xj+1 = Sin (%)2 3.1)
Yit1 = cos(BCos™'x;)

Where a, 8 are the control parameter, (a, 8) € [0,1] and x,, y,, are two initial parameter, (x,, v,) €
[0,1]. To create an encrypted image, extremely resistant to cryptanalysis, the goal is to maximize
unpredictability and sensitivity to beginning conditions in order to assure secure image encryption.
The review thoroughly examines the encryption method's procedure, focusing on its effectiveness,
security, and potential areas for improvement. The confusion phase, which involves rearranging the
source image using pixels to eliminate identifiable patterns and correlations, is a crucial step in
image encryption. This step is crucial because images are high redundancy the fact that nearby pixels
often have similar values makes them susceptible to statistical attacks. Bifurcation analysis and the
Maximum Lyapunov Exponent (MLE) are employed to confirm the SC3 chaotic map's usefulness.
Encryption requires a very chaotic system since it ensures that the sequences that are created are
unpredictable. The SC3 map demonstrates the required chaotic features to be the basis for a strong
encryption system, as confirmed by its significantly positive Maximum Lyapunov Exponent.
3.3 Validation of the SC3 Map’s Effectiveness

The effectiveness and security strength of the SC3 map are validated through two critical
analytical techniques.
3.3.1 Phase Diagram and Bifurcation Analysis.

Because the pseudo-random sequence is not restricted to a single region to achieve high
diffusion capacity, it exhibits both uniform dispersion and unpredictability. According to phase diagram
3.1, it is more chaotic with a high ergodicity. Bifurcation occurs when the topological structure of the output

value distribution in relation to the control parameters changes as the control or bifurcation parameter (0, 1)

changes.

-1 -08 -06 04 -02 0 02 04 06 [ X-) 1

Fig. 3.1: Phase Diagram of Chaotic Map
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The Bifurcation Diagrams show the variations of a and . Figure 3.2 (a) and (b) depicts the X and Y
sequence are bifurcation diagram with a step value of 0.001 when o ranges from 0 to 1 and 8 = 0.85.
The fixed point and periodic window are shown by solid lines, while the chaotic zone is represented
by dots. The proposed map exhibits chaotic behavior when the control parameter o is between 0.49
and 1. Figures 3.3 (a) and (b) depict the bifurcation diagrams for the X and Y sequences, with 3
ranging from 0 to 1 and a = 0.90.
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Figure 3.2: (a) and (b) Bifurcation Diagram when o varies
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Figure 3.3: (a) and (b) Bifurcation Diagram when (3 varies
3.3.2 Maximum Lyapunov Exponent (MLE)
A dynamical system's sensitivity to beginning conditions and unpredictable nature define its
chaotic behavior. The Lyapunov exponent is a quantitative measure that determines a dynamic

system's chaotic behavior [34]. It is defined in equation 3.2
Alxo) = lim ~ 57 Inlf' (x| 3.2)

21



Ais the control parameter o varies from 0 to 1 and 3 = 0.85 as illustrated in Figure 3.4 and 3.5,

respectively, the Lyapunov exponent in this work by maintaining a= vary, f=fixed, and g vary, a
fixed. The higher LE number indicates that the system is more unpredictable. Also show in Table 3.1
and Table 3.2.
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Figure 3.4: Lyapunov Exponent (a.= vary = 0.85)

A6 1 1 ! L ! L 1 1 1
0.1 n.2 03 0.4 05 0.6 07 n.a [iR] 1

B
Figure 3.5: Lyapunov Exponent (f= vary a.=0.90)
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Table 3.1: Lyapunov Exponent Value for the Suggested Map

(a,B) LE (A1) LE ( 1)
(0.85, 0.90) 1.9577 2.1899
(0.88, 0.95) 2.2718 2.3670
(0.70, 0.90) 2.7632 2.4306
(0.75, 0.85) 1.8427 1.6771

Table 3. 2: Lyapunov Exponent Value of the Present Chaotic Map [34]

(IC, PC) LE
(0.3, 8) 1.38632
(0.4, 7.6) 1.09744
(0.5, 6) 0.968348

3.4 A Proposed Cryptosystem based on the SC3 Map

The cryptosystem for image encryption is designed in this part using the 2D DC3 Map to withstand
differential, statistical, and brute force attacks. To withstand all kinds of attacks, the encryption
technique shuffles and replaces the image pixels with other values. The first step is to converts the
input plain image into a cipher image via bitwise XOR and pixel shuffling. R1 and R2 are pseudo-
random sequences, respectively. Using the specified 2D SC3 map, the pseudo-random sequences R,
and R, were generated based on the shared secret key. The initial parameter (x,, y,)and control
parameter (a, ) combined together (x,,yo, @, ) and (xg,y, @', B') to create the secret key K;
and K,, for the confusion and diffusion layers. Algorithms 1 and 2 explain the encryption and
decryption procedure.
3.5 Pixel Scrambling leads to Confusion

According to the confusion principle, the relationship between the cipher image and the secret
key should be as subtle and difficult as feasible. A single modification to the secret key must have an
impact on the cipher image. The pixel shuffling phase permutes the basic image using the pseudo-
random sequenceR;, reducing the correlation between adjacent pixels.
3.6 Diffusion using bit Manipulation

By creating it as complicated as much as feasible to fend off the differential attack, the diffusion

concept conceals the connection between the plaintext and ciphered images. The diffusion phase conceals
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the relationship between plain and cipher images while maintaining the cipher image's consistent pixel

value distribution. Statistical attacks are made more difficult by converting the plain image into a

cipher image with a consistent distribution of pixel values.

3.7 Image Encryption Algorithm

Algorithm 1. Key setup and Encryption process

1.

© © N o

Read the 2D plain image P of size W x H and convert into 1D vector P =
{p1, D2 ...Dn},Wwhere N = W X H

Generate the control parameters «, 8 € [0,1] and obtain initial parameters x, y,
€[0,1]

Secret Key K; = (xq,yo, @, B) and K, = (x4, Yo, @, 8)

Fori < 1toNdo

3
Xiy1 = Sin (E)E
i+1 i
t; = (x;41 X 10)°and W x H
Insert t; into R,

Yir1 = cos(Bacosx;);

t, = (y;41 X 10¥°)and256;

. Insert t, into R,;
11.
12.
13.
14,
15.
16.
17.
18.

end

Forj < 1toN do

1 < swap(pljl, p[R1[j]])
end

Fori < 1toN do

C[k] « XOR(I[k], R, [K]);
end

Reshape the sequence C into size of W x H cipher image
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3.8 Image Decryption Algorithm

Algorithm 2. Key setup and Decryption process
1. Obtain the secret key K; = (xq, Yo, @, f) and K, = (xg, y5, &, 8)

2. Read the cipher image C of size W x H and decompose 1D vector of size
N (W x H);

3. Fori<1toNdo

4. Xip1 = sin()%_)%

t; = (x;41 X 10)°and W x H

Insert t; into Ry

Yi+1 = cos(Bacosx;);

t, = (y;41 X 10¥®)and256;

© © N o O

Insert t, into R,;

10. end

11. Forj < 1to N do

12. 1[j] « XOR(C[j], p[R2[/1])
13. end

14. Fork «< 1to N do

15. P « swap(I[k], R,[k]);
16. end

17. Reshape the sequence C into size of W x H plain image

3.9 Experimental Details

The purpose of this study is to evaluate the security and performance of the encryption system
by running a MATLAB experiment on a standard image, "Lena 512", "Baboon", "Peppers", "Nike
logo"”, and "Airplane”. The confusion and diffusion layer's pseudo-random sequences R;and R, are
constructed using the two secret keys (K;, K,). The starting parameters (x,, y,) and the parameters
for control is(a, B). Consider as secret key K;, where xq , v, X', y6 € [0,1] and K, = X'y, y5, &, B,
where
xo = 0.5217649304251095, y, = 6392750215680951,
a = 0.5672104389217190, B = 0.8502175864356750,
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x'y = 0.7356439802176543, y; = 0.8530267952419067,
@’ = 0.5678093425186743 B’ =0.9256810743901653.
In comparison to the current image encryption system, the scheme's encryption computation quality
is lower, but the encryption or decryption time is significantly faster. Figure 3.6 (a) to (i) display the

decrypted Lena, Pepper, and Baboon as well as the encrypted and standard test images.

(a) (b) )

(d)

(h)

Figure 3.6: (a) Lena original Image, (b) Encrypted, (c) Decrypted, (d) Originai image Peppers, (e)
Encrypted, (f) Decrypted, (g) Original Image Baboon, (h) Encrypted (i) Decrypted
3.10 Security and Performance Analysis
This section presents five grayscale images of key space analysis, statistical analysis,

differential cryptanalysis, and encryption quality of an image encryption system.
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3.11 Analyzing Key Spaces

Figures 3.6 (a) through (i) depict conventional test images, encrypted images, and decrypted
images of "Baboon", "Peppers,” and "Lena". The encrypted images are both unidentified and noisy.
As a result, the attacker has a difficult time discovering any hidden information and recovering the
plain image or secret key. To withstand exhaustive searches or brute force attacks, the entire key
search space should be fairly large. This work suggests a method for encrypting images using 2D SC3
maps. The secret key is obtained using four parameters (x,, y,, @, ). Since the computational
precision in our experiment is limited to 10~1¢, the entire key space is 1064 ~ 2213, The comparison
results of the secret's whole search space are shown in Table 3.3.

Table 3.3: Secret Key Comparison Results.

Algorithm Key space
Proposed 1064 ~ 2213
Ref. [36] 1060

Ref. [35] 2256

Ref. [37] 2232

Ref. [38] 2100

Ref. [39] 2624

3.12 Resistant to Statistical Attack
3.12.1 Analyzing Histograms

The histogram depicts the distribution of pixel values in the image 0 to 255. Figures 3.7 (a)
to (d), 3.8 (a) to (d), and 3.9 (a) to (d) demonstrate how a secure image cryptosystem should create a
consistent distribution of encrypted image pixel values, making it extremely difficult for an attacker

to breach.
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Figure 3.7: (a) Original image Lena, (b) Histogram, (c) Encrypted Image Lena, (d) Histogram

7000

6000

5000

4000

3000

2000

1000

e

[I500 [

S000

2500 [

2000 [

1500

1000

(© (d)
Figure 3.8: (a) Original Image of the Airplane, (b) Histogram of the Original image, (c) Encrypted
Image of the Airplane, (d) Histogram of the Encrypted Image
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Figure 3.9: (a) Original image Nike, (b) Histogram of the original image Nike, (c) Encrypted image
Nike, and (d) Histogram of the encrypted image Nike

3.12.2 Correlation Analysis among Adjacent Pixels

To calculate the correlation coefficient between the plain and cipher images, we randomly
choose 3000 pairs of surrounding pixels in the horizontal, vertical, and diagonal axes. Figures 3.10
(@), (b), (c), and 3.11 (a), (b), and (c) show the correlations between the original Airplane image and
the cipher image on the diagonal, horizontally, and vertically, respectively. Figures 3.12 (a), (b), (),
and 3.13 (a), (b) and (c) depict the correlations between the plain Nike image and the encrypted image
on the diagonal, horizontally, and vertically. Table 3.4 displays the correlation coefficient between
the adjacent pixels of the original and encrypted images, whereas Table 3.5 compares the Lena

images.
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Figure 3.10: (a) Diagonal Correlation Coefficient of Original Airplane Image, (b) Horizontal
Correlation Coefficient, (c) Vertical Correlation Coefficient
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Figure 3.11: (a) Diagonal Correlation Coefficient of the Cipher Airplane image, (b) Horizontal

Correlation Coefficient, (c) Vertical correlation coefficient
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Figure 3.12: (a) Diagonal Correlation Coefficient of Original Nike Image, (b) Horizontal

Correlation Coefficient of Image, (c) Vertical Correlation Coefficient of Image
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Figure 3.13: (a) Diagonal Correlation Coefficient of Cipher Nike image, (b) Horizontal Correlation
Coefficient of Cipher Image, (c) vertical correlation coefficient of cipher image

Table 3.4: Correlation Coefficient between Original and Encrypted Images
Image Lena Pepper Baboon Nike Airplane

Plain (Cipher |Plain [Cipher |Plain |Cipher Plain |Cipher [Plain  Cipher

Horizontal |0.9669 [0.0008 [0.9822 [0.0046 [0.9717 [0.0047 |0.9833(0.0090 [0.9669 (0.0016

Vertical |0.9818 [0.0004 |0.9856 |0.0039 [0.8943 |-0.0001 |0.9836 |0.0013 |0.9666 |-0.0015

Diagonal |0.9521 0.0020 [0.9697 |-0.0018 [0.9275 |-0.0011 |0.9596]-0.0006 [-0.9395 |-0.0003

Table 3.5 Lena Image Comparison

Method Horizontal Vertical Diagonal
Proposed 0.0008 0.0004 0.0020
Ref. [40] -0.0007 -0.0003 -0.0007
Ref. [39] -0.0048 -0.0112 -0.0045
Ref. [37] 0.0015 0.0043 0.0023
Ref. [38] -0.0008 -0.0025 0.0010

3.13 Information entropy analysis

Pixel values in any grayscale image range from 0 to 255, and the whole image requires 8 bits
to represent. If the cipher image's information entropy is 8 bits or near to it, the cryptosystem is more
resilient against statistical attacks. Table 3.6 is about information entropy. Table 3.7 is about

comparison of information entropy of Lena image.
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Table 3.6: The Results of Information Entropy
Image Lena Peppers Baboon Airplane Nike

Entropy(original Image) 7.6112 7.1842 7.7319 6.7631  1.0027
Entropy(Encrypted Image) 7.9995 7.9889 7.9974 7.9989  7.4856

Table 3.7: Comparing the Information Entropy of Lena Image

Image Proposed Ref. [40] Ref. [39]
Lena 7.9995 7.9997 7.9963

3.14 Resistance of Differential attack
Our experiment creates a new image by randomly selecting 200 pixels from the basic image
and altering their values. The cipher images C;and C, are created by encrypting the images were
created using the same secret key. Table 3.8 shows the average maximum and minimum values of
NPCR 99.21 and UACI 33.59, whereas Table 3.9 compares NPCR and UACI values.
Table 3.8: Average NPCR and UACI values for different plain images.

Image Lena Pepper Baboon Airplane Nike
NPCR (%) 99.2157 99.2130 99.2252 99.6128 99.2272
UACI (%)  33.590 32.6708 32.8760 32.5345 33.5607

Table 3.9: Comparison of NPCR and UACI Results for Lena Image

Algorithm Proposed Ref. [40] Ref. [39] Ref. [37] Ref. [38]
NPCR (%) 99.21 99.6193 99.6228 99.60 99.60
UACI (%) 33.59 33.4286 37.7041 33.46 33.50

3.15 Encryption quality

Peak signal to noise ratio (PSNR) values increase as mean square error (MSE) values decrease, showing
that the plain and decrypted images are more similar. Lossless encryption is accomplished by the suggested
image encryption method.
3.16 Speed and Computational complexity

It is critical to evaluate the encryption or decryption time and complexity of the algorithm.
Table 3.10 displays the encryption time used by the algorithm.

Table 3.10: Suggested Algorithm's Encryption/Decryption Time (in seconds)
Image Lena Peppers Baboon Airplane Nike
speed 0.139008 0.139435  0.139999  0.137665 0.196549
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Chapter 4

A NEW MULTIPLE IMAGE ENCRYPTION SCHEME
BASED ON CHAOTIC SYSTEMS

The chaotic behavior of the map has shown great promise in a variety of chaos-based encryption
schemes. However, its narrow parameter space and non-uniform probability density distribution make
it less useful for cryptography applications. The modified map, a novel method that combines sine,
cosine and tangent functions, is proposed in this research to improve chaotic performance and
provide a more uniform distribution. A more resilient and adaptable chaotic system that is appropriate
for uses like encryption that demand a high degree of randomness is the primary result.
4.1 Formulation of New Map

The Sin map is a classic one-dimensional chaotic system with high speed that has been used in
a variety of chaos-based encryption techniques. Equation 4.1 defines the control parameter u, which
ranges from 0 to 1, and the iteration state x;.

Xi+1 = psin (mx;) O<u<i 4.1)

When the Lyapunov exponent is not always positive, the system becomes insufficiently complicated.
Figures 4.1(a) and (b) show that the sine map becomes chaotic only when the parameter p is between
[0.87, 1]. Figures 4.1 (c) and (d) show the density probability distribution of a sine map at p=0.9 and
u = 1. The sine map is clearly distributed unevenly. Despite being commonly utilized, the sine map
is less appropriate for secure cryptography applications due to its uneven density distribution and lack
of complexity. Improving the chaotic performance and attaining a consistent distribution to improve
security are the challenges.
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Figure 4.1: (a) Bifurcation, (b) Lyapunov exponent,
(c) and (d)Probability Distribution of Sin map (u=0.9, p=1)
We suggest a piecewise chaotic map to enhance the chaotic performance of the sine map. We changed
the sine map to use the sin, cos, and tan functions to enhance more chaotic performance. The segment
intervals are calculated using the parameter p € (0, 0.5). Figures 4.2 (a) and (b) show the Lyapunov
exponent and the bifurcation diagram. The bifurcation diagram is more complicated than the sine
map, and the Lyapunov exponents are always positive. As a result, the new chaotic map improves
chaotic performance and shows more sophisticated dynamic behavior. Figures 4.2 (c) and (d) show
the map's density probability distribution for different parameter values. The new map's density
probability distribution is relatively uniform for p € (0, 0.1), with less than 0.3% difference between
the highest and lowest values. To achieve good ergodicity and unpredictability, set the value of p in
the interval (0, 0.1), as given in equation 4.2.

Xiy1 = MPCM (x;)

( sin(mx;) if x; <porx;>1-—u
2ulx; —
cos (un) ifu<x <05
(2x; — Du .
tan 1—|.l+1_—2u 1A if05<x;<1-—u
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=¥ Lyapunov Exponent
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Figure 4.2 (a) Bifurcation and (b) lyapunov exponent
(c) and (d) Probability Distribution of MPCM

4.2 Lyapunov Exponent Equation
It is computed as follows equation 4.3.

— lim 1y7 art)
u_rllg?onzi=1log| dx

Where p is the lyapunov exponent, n is the number of iterations and f%(x)

1.Forx;<porx;=1—pu
f(x;) = sin(mx;)
% (sin(mx)) =
x, (sin(mtx;)) = mcosmx;
2.Foru<x; <0.5

_ 2p(x; — )
f(xi) = C0S (1_—2117'[)

Lett = %iz_u”)n
f(x;) = cost
d dt
d—xi(cost) = —sinta

dt _ 2um
dx  1-2p

e N — i (CHOG—H) Y 2pT
fla) = Sm( 1-2n ”) -2

3. For0.5<x;<1—pu
_ _ (2x; —Dp
f(xi) —tan(l H+1_—2|J7T>
Letv = 1—u+%n

d dv
- = 2 -
ax, (tanv) = sec*(v) ax;
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dv _ 2Um
dxi_1—2|J_

(2x;—Dp_\ 2pm
1Y — cor2 [ 1 —
f'(x;) = sec (1 u+ T—2n 7'L')1_2l.1

4.3 The Chaotic System that is Being Shown

This method reduces the p parameter space, but when p is fixed in the interval (0, 0.1) distribution,
the chaotic map can produce chaotic sequences with uniform probability density. The security of the
encryption approach is compromised when the value of parameter u is limited because parameters
are typically utilized as secret keys in chaos-based encryption systems. The Coupled Chaotic Map is
intended to solve this issue and further complicate chaotic systems. By linking parameters, the one-
dimensional chaotic map can become multi-dimensional. Examine the definition of "four-
dimensional™ in equation 4.4 below.

x = MPCM(Ax + (1 — 1)y),
y=MPCM(Ay + (1 — 1)z),
z=MPCM(Az + (1 — D)w),
w = MPCM(Aw + (1 — Dx),

4.4)

The coupling parameter in this equation is A, and its value ranges from 0 to 1. The MPCM total
parameter space is expanded with more distinct dimensional variables and control parameters for each
dimensional variable. The experiment shows that the MPCM can generate chaotic sequences with a
uniform probability density distribution for A € [0,1] and ¢ € (0,0.1]. Figures 4.3 (a) to (d))
illustrate the density probability distributions of each MPCM dimension variable at ¢ = 0.05 and
A = 0.995. The density probability's maximum and minimum values are calculated to be less than
0.3%. Because of its high-dimensional chaotic nature and uniform probability density distribution,
the MPCM exhibits complex dynamic behavior and elaborate structures, providing a solid foundation

for the development of encryption methods.
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Figure 4.3: Displays the density probability distribution p=1 and 1=0.995
(a) vary =w, (b) vary=x, (c) vary=y and (d) vary=z
4.4 Time Series and Phase Diagrams

The chaotic map's performance is assessed using time series and a phase diagram.The
proposed map spans the entire region indicated by the Figure 4.4 (a) and (b), which shows that
the data distribution covers considerably greater territory. The lack of localization implies that
the pseudo random sequence is uniformly distributed and random in order to attain a high

diffusion capacity. The phase diagram shows that at u=0.9, the system is chaotic and ergodic.
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Figure 4.4: (a) Time series and (b) Phase Space diagram.

4.5 Image Encryption Scheme Using MPCM

In the modern digital era, image encryption is crucial for securing multimedia content
during storage and transmission. Traditional cryptographic methods may not offer the
computational efficiency or complexity needed for high-dimensional image data. This work
presents a robust image encryption algorithm based on chaotic sequences generated using the

Modified Piecewise Chaotic Map (MPCM). The system utilizes multi-dimensional coupling
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of chaotic maps to maximize unpredictability, and it divides the encryption process into two
core stages: confusion (permutation of pixels) and diffusion (modification of pixel values).
45.1 Parameters

Upload the image. If the image | is in RGB, | convert it to grayscale. Choose u €
[0,0.5] is the control parameter of Modified Chaotic Map and A€ [0.99,1] is the coupling
strength of map. Initial values of Modified Chaotic Map are x,, o, Zo, Wy € [0, 1].
4.5.2 Chaotic Sequence Generation MPCM
45.2.1 MPCM Function

( sin(mx;) if x;, Sporx;>1—pu

Xi+1 = 1-2u

tan|{1— +wn if05<x;<1-
R : i S1—u

if u<x; <05

4.5.2.2 Coupled MPCM

X <« MPCM(Ax + (1 — AD)y),
y <« MPCM(Ay + (1 — 1)z),
z < MPCM(Az + (1 — D)w),
w e« MPCM(Aw + (1 — Dx),

The system evolves for a total of 2 x (M X N) iterations, where M and N are the
dimensions of the image. The first half of the generated chaotic values are utilized for
permutation, while the second half is used for diffusion.

4.5.3 Confusion Phase (Permutation)

Flatten image | to 1D vector V of length and generate chaotic sequence of
lengthL =M XN . Convert each chaotic value to an Integer index P =
mod(floor(S.L),L) + 1, sort the sequence to get the permutation order. Rearrange vector V
using permutation indices and reshape back to matrix form to get permuted image 1,,.

4.5.4 Diffusion Phase (Pixel Modification)

Use the second half of the chaotic sequence and convert values to the integer. D is the
diffusion key D; = mod (floor|[(S;.10"%),256]). For each pixel I,(i,j) compute that is
Ienc (i, j) = mod (1, (i, j) + D(i, ), 256) or use XOR: Ip,.(i,j) = bitxor (I,(i, j), D(i, )
455 Out Put Encrypted Image

Output the final encrypted image 1., and Optionally compute.
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45.6 Encryption Algorithm

Algorithm 4 Image Encryption using MPCM

1: Input: Grayscale image I of size M X N
2: Initialize Parameters
3: Set MPCM control parameter p € [0,0.5]
4. Set MPCM coupling strength 1 € [0, 1]
5: Initial chaotic values x, yo, zg, wo € [0,1]
6: Read Input image I and convert to grayscale if necessary
7: L =M X N represents the total number of pixels.
8: Flatten the image I into a one-dimensional vector V of length L
9: Chaotic sequence generation
10: [Initialize the chaotic variables x,, yo, Zo, Wo
11: Fori=1to2L
12: x' = MPCM(x), y' = MPCM(y), z' = MPCM (z),
w' = MPCM(w)
13:  Apply Couple Map system:

x « MPCM(2x + (1 - A)y)

y « MPCM( 1y + (1 —21)z)

zZ — MPCM(1z + (1 — D)w)

w « MPCM(Aw' + (1 — )x)

S; = mod (x, 1) as the i-th element of the chaotic sequence S
14:  CoNruskE(image, chaotic Sequence) Sperm = S(1: L)
15: L « length(image)
16: fori = 1toL do
17: P (i) «mod(|S().L |, L) +1
18: end for
19:  permuted < image(P)
20:  Return  Permuted
21: DIFFUSE (image, chaotic Sequence) Sg;rr = S(L + 1: 2L)
22 Convert each value to an 8bit diffusion key:
D; = mod (|(Sairs(©)- 1019)],256)

231 Ipe(i,)) = mod(I,(i,j) + D(i, ), 256)
24:  Reshape:V,,. » M x N matrix
25:  Qut Put » Encrypted Image
26: end
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4.5.7 General Example of Encryption

Let’s assume we have a small 4 X 4 grayscale image:

12 45 78 34
56 89 23 67
90 123 150 200
34 66 99 111

Original image=

Step 1: Permutation
Original image (flattened to 1D):

Flat image = [12,45,78,34,56,89,23,67,90,123,150,200,34,66,99,111]

Generated permutation vector:

P = [5,1,169,12,3,7,2,10,4,6,11,13,14,8,15]
Apply Permutation:
Permuted image vector = [56,12,111,90, 200, 78, 23, 45,123,34,89,150,34,66,67,99]
Step 2: Diffusion
Dif fusion Key = [13,21,15,77,101,33,9,60,1,14,42,55,3,10,7,6]
Apply diffusion using XOR
Encrypted vector = bitxor (Permuted Vector, Dif fusion Key)
For example:
Bitxor (56,13) = 53
Bitxor (12,21) = 25
Bitxor(111,5) = 106 and so on
Encrypted vector = [53,25,106,23,173,111,30,17,122,44,115,173,33,72,68,101]
Reshape into 4x4:

53 25 106 23
173 111 30 17
122 44 115 173
33 72 68 101

Encrypted image =
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4.6 Flowchart of the Encryption Process

Figure 4.5: Flowchart of the Encryption Process

4.7 Image Decryption Scheme

Flatten the encrypted image I,,.in to 1D vector V,,. of length L. For decryption
regenerate the chaotic sequence using same parameters. Initialize the chaotic variables
x,y,z,w using the same values x,, y,, Zo, W, as used in encryption. Generate chaotic sequence

length S of length 2L using the MPCM and same coupling parameter.

4.7.1 Inverse the Diffusion Process
For each i € [1, L] compute the diffusion key:
D; = mod(|Saisr(i).10'°| x 256
For each pixel i € [1, L] reverse the diffusion operation.
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V, (i) = mod (Ven (i) — D(i) + 256,256) Or
XOR: L, (i, j) = bitxor (Inc(i,/), D@, )))
The result is permuted image vector.
4.7.2 Inverse Permutation
For each i € [1, L] calculate permutation index P; = mod(|Sperm (i-L)|, L + 1)
Determine the inverse permutation by finding the original position of each pixel:
n~Y(P) = argsort(P)
Apply the inverse permutation to V;, to obtain the original pixel order vector V' Reshape the

vector into matrix form and get the decrypted image.

4.7.3 Image Decryption Algorithm

Algorithm 4 Image Decryption Using MPCM

1: Input Encrypted Image I,,,. , Same chaotic parameter used in
encryption
2: Flatten I,,,.into 1D vector 1,

2: Generate chaotic sequence S of length 2L using MPCM
3: Split sequence:

Sperm = S[@: L — 1]
4: Fori= 1toLdo

5: Reverse diffusion:
Di — mOd(lSdlff(l) 1010J X 256
V, (1) « mod(Ven (i) — D(i) + 256,256)

6 End for

7 Fori=1toL do

8: P; « mod(|Sperm(i-L)|,L + 1)

9: End for

10: n~1(P) = argsort(P) inverse Purmutaion

11 Fori=1toLdo

12: V[i] « vp[m~1(D)]

13: End for

14: Reshape Vinto M X N = I,
15: Return I 4,

4.7.4 Example of Decryption Process

53 25 106 23
173 111 30 17
122 44 115 173
33 72 68 101

Encrypted image =
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Flatten it:
Encrypted vector = [53,25,106,23,173,111,30,17,122,44,115,173,33,72,68,101]

Step 1: Reverse Diffusion (XOR with same key)
Dif fusion Key = [13,21,15,77,101, 33,9,60, 1,14, 42,55, 3,10, 7, 6]

Apply XOR again:
Permuted vector = bitxor (Encrypted Vector, Diffusion Key)

= [56,12,111,90, 200, 78, 23, 45,123, 34,89, 150, 34, 66, 67,99]

Reshape into Matrix:

56 12 111 90
200 78 23 45
123 34 89 150
34 66 67 99

Permuted image =

Step 2: Reverse Permutation
Permutation index = [5,1,16,9,12,3,7,2,10,4,46,11,13,14,8,15]
Reverse Index = [2,8,6,10,1,11,7,15,4,9,12,5,13,14,16, 3]

Now apply it:
Original vector = Permuted Vector (Reverse Index)

= [12,45,78,34,56,89,23,67,90,123,150, 200, 34,66,99,111]
Reshape into original 4x4 matrix:

12 45 78 34
56 89 23 67
90 123 150 200
34 66 99 111

Recovered Original Image =

4.8 Experiment Results and Security Analysis

The experiment uses following keys:
x = 0.226598532502152, y = 0.715260198702623,
z =0.0.271238570940165, w = 0.619035721685213,
A =0.434214444, n=0.9819349999. We test the suggested encryption scheme's
performance and security features using MATLAB (R2018b) on a standard images
“Cameramen”, “Airplane”, “Nik logo”, “Peppers” and “Baboon” are used to test the result.
The encryption and decryption result shown in Figure 4.6 (a), (b) and (c). All of the
information in the plaintext images is effectively hidden by the ciphertext images, which
resemble random noise and lack any visual cues. Furthermore, the cipher and plaintext images

are identical. Consequently, the experimental findings confirm that the method is accurate.

43



(b)
Figure 4.6: (a) Plaintext of Cameraman Image (b) Encrypted Image (c) Decrypted image

4.9 Statistical Analysis
4.9.1 Analyzing the Histogram

The histogram depicts the distribution of the image's pixel values from 0 to 255.
Because the pixel values are not evenly distributed and clustered within a preset interval, a
high diffusion capacity image encryption system encrypts the plain image by changing the
pixel values to achieve a uniform distribution. If the encryption is not uniform, an attacker can
use statistical analysis to recover the original image. Figures 4.7 (a), (b), 4.8 (a), (b), 4.9 (a),
(b) 4.10 (a), (b), 4.11 (a), (b), 4.12 (a), (b), 4.13(a), (b), 4.14 (a), (b), 4.15 (a), (b) 4.16 (a), (b)
show plaintext images coupled with encrypted images and aslo illustrate histograms for both
plain and cipher images. The findings indicate that the pixel values in each encryption image's

histogram have a uniform distribution.

(b)

Figure 4.7: (a) Cameraman (b) Encrypted Image
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Figure 4.8: Histogram (a) Plaintext Cameraman Image (b) Encrypted Image
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Figure 4.10: Histogram (a) Plaintext Airplane Image (b) Encrypted Image
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Figure 4.11: (a) Plaintext Nike logo (b) Encrypted Image of Nike logo
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Figure 4.12: Histogram (a) Plaintext Nike logo (b) Encrypted Image

(b)

Figure 4.13: (a) Plaintext Peppers Image (b) Encrypted Image
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Figure 4.14: Histogram Peppers Image (a) Plaintext (b) Encrypted Image
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(@) (b)
Figure 4.15: (a) Baboon image (b) Encrypted Image of Baboon
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Figure 4.16: Histogram of Baboon Image (a) Plaintext (b) Encrypted image

4.9.2 Adjacent Pixel Correlation and Information Entropy
The computation equation of information entropy is given in equation 2.9 and adjacent

pixel correlation are given in equation 2.10. Table 4.3 displays the information entropy for
both plaintext and encrypted images. Table 4.4 compares the entropy of the "Airplane image".
The correlation test method computes the plain image's distribution and coefficient of
correlation in the horizontal, vertical, and diagonal directions by randomly selecting 4,000
nearby pixels from images and their corresponding cipher images. Table 4.1 displays the
findings of the correlation coefficient computation, and Table 4.2 displays the comparison of
the Airplane image.
4.10 Ability of Defending Differential Attack

Our experiment creates a new image by randomly selecting 200 pixels from the basic
image and altering their values. A variety of image types are calculated with expected values
using the encrypted NPCR and UACI. The UACI and NPCR for "Airplane image 512" are
34.7622% and 99.6221 percent, respectively. Table 4.5 contains NPCR and UACI results for
all images. Table 4.6 compares the "Airplane Image" results by UACI and NPCR. The average

NPCR and UACI values for encrypted images are extremely close to the expected values.
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Table 4.1: Correlation for all Three Directions for an Encrypted Images

Image Horizontal Vertical Diagonal

Plain image Cipher image Plain image Cipherimage Plainimage Cipherimage

Cameraman  0.9339 0.0074 0.9646 -0.0058 0.9089 0.0011
Airplane 0.9721 -0.0039 0.9819 -0.0023 0.9561 -0.0015
Nike 0.9754 -0.0020 0.9772 0.0077 0.9422 0.0020
Peppers 0.9901 -0.0004 0.9781 0.0003 0.9686 0.0006
Baboon 0.9556 -0.0028 0.9249 0.0002 0.8881 0.0003

Table 4.2: Comparison of Airplane Image

Method Proposed Ref.[41] Ref. [39] Ref. [37] Ref. [38]
Horizontal -0.0039 0.0008 —0.0048 0.0015 —0.0008
Vertical -0.0023 0.0004 —0.0112 0.0043 —0.0025
Diagonal -0.0015 0.0020 —0.0045 0.0023 0.0010

Table 4.3: Entropy Information for Original and Encrypted Images

Image Entropy(Original image)  Entropy(Encrypted image)
Lena 7.4939 7.9995
Cameraman 7.1078 7.9958
Airplane 6.8092 7.9996
Nike 2.1719 7.9964
Peppers 7.6557 7.9995
Baboon 7.2890 7.9993

Table 4.4: Comparison of Information of Entropy for Airplane Image
Image New Map Ref.[41] Ref. [39] Ref. [38]
Airplane 7.9996 7.9995 7.9963 7.9992

Table 4.5: Average NPCR and UACI values for Different Plain Image

Image NPCR (%) UACI (%)
Cameraman 99.5995 31.0926
Airplane 99.6221 34.7622
Nike 99.5876 48.7516
Peppers 99.6037 32.0029
Baboon 99.6075 27.6983
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Table 4.6: Comparison of NPCR and UACI Results for Airplane Image

Algorithm NPCR% UACI%
New Map 99.6221 34.7622
Ref.[41] 99.2100 33.5900
Ref. [40] 99.6193 33.4286

4.11 High Quality Encryption
Lossless encryption is achieved by the proposed image encryption method when the
plain and decrypted images are identical. When the root mean square error (RMSE) becomes
zero, the images are identical. It is impossible to differentiate the image when the peak signal
noise ratio (PSNR) is higher than 30 db. Table 4.7 shows the irregular mean squared error
(RMSE) and peak signal noise ratio (PSNR) values for each image.
Table 4.7: RMSE and PSNR values

Image RMSE PSNR
Cameraman 97.1562 8.3814
Airplane 108.5322 7.4196
Nike 144.8709 49112
Peppers 99.7535 8.1522
Baboon 84.6889 9.5743

4.12 Multiple Image Encryption

This study proposes a novel multiple-image encryption (MIE) approach based on
modified piecewise chaotic mappings (MPCM) to improve encryption efficiency and allow for
the secure transmission of large amounts of images. Alice (the sender) first merges original
images into a single, huge image, then splits into several pure image parts to generate mixed
image elements. The mixed images parts are then combined to create a big-scrambled image,
which is then divided into smaller images of the same size as the originals. Finally, uses
filenames generated by a different MPCM system to name these tiny, encrypted images as
shown in Figure 4.17 (a) and (b). In the meantime, a comparative analysis is conducted with
an existing algorithm that is similar.

The new algorithm is highly secure and efficient, according to algorithm analysis and
experimental results. Figure 4.18 (a) and (b) is about histogram analysis of multiple images and
Table 4.6 is correlation of all three direction of encrypted images. Comparison for Information
of entropy image is shown in Table 4.7 and Table 4.8 is about NPCR and UACI comparison.
RMSE and PSNR value are shown in Table 4.9.
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Table 4.6: Correlation Comparison for all Three Directions of an Encrypted Image

Multiple Image  Plain Image Cipher Image Ref.[41]
Horizontal 0.9669 0.0015 -0.0014
Vertical 0.9818 -0.0001 -0.0013
Diagonal 0.9521 0.0014 0.0184

Table 4.7: Comparison of Information Entropy for Multiple Image

Image New Map Ref.[42] Ref.[39]

Multiple image 7.9955 7.9952 7.9963

Table 4.8: Comparison between Multiple Image NPCR and UACI

Multiple Image NPCR% UACI%
New Map 99.6168 36.3132
Ref.[41] 99.2100 33.5900
Ref. [40] 99.6193 33.4286
Ref.[42] 99.6078 33.4741
Table 4.9: RMSE and PSNR values of Multiple Images
Image RMSE PSNR
Multiple images 90.2239 90.0223
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CHAPTER 5
CONCLUSION AND FUTURE WORK

5.1 Conclusion
The proposed image encryption scheme leveraging the modified piecewise
chaotic map (MPCM) and the Coupled MPCM (CMPCM) demonstrates strong
potential in providing robust and sensitive image encryption. The proposed scheme
offers a promising foundation for secure image encryption using chaotic systems.
With the aforementioned extensions, the system can evolve into a comprehensive
solution capable of addressing modern data security challenges in multimedia and
communication technologies.
5.2 Future direction
There are several important directions in which this research can be extended

to further enhance its performance, applicability and security.
5.2.1 Full-Color Image Encryption

At present, the encryption scheme converts RGB images into grayscale
before processing. To maintain color fidelity and increase the complexity of the
cipher, future extensions can involve the separate or joint encryption of the red,
green, and blue channels. This would not only preserve image quality but also
enhance security due to the higher dimensionality of the input data.
5.2.2 Adaptive Chaos Control Parameters

Currently, the control parameters p and A used in the chaotic map are static.
A more dynamic approach could involve making these parameters adaptive or
image-dependent. For example, control parameters can be generated based on a
cryptographic hash of the image content or an external secure key. This would
improve key sensitivity and bolster resistance against known-plaintext and chosen-
plaintext attacks.
5.2.3 Extension to Video and VVolumetric Data Encryption

The methodology can be extended to encrypt video sequences or three-

dimensional data such as medical imaging (e.g., MRI, CT scans). This would
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involve the use of temporal and spatial chaos synchronization to preserve frame-
to-frame consistency while maintaining security.
5.2.4 Hybrid Cryptographic Models
Combining chaos-based encryption with other cryptographic paradigms

such as DNA computing, elliptic curve cryptography, or lattice-based encryption
could lead to the development of hybrid models. These models can exploit the
advantages of both approaches to create systems that are highly secure,
computationally efficient, and adaptable to various data types.

The proposed scheme offers a promising foundation for secure image
encryption using chaotic systems. With the aforementioned extensions, the system
can evolve into a comprehensive solution capable of addressing modern data

security challenges in multimedia and communication technologies.
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