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ABSTRACT 

 

Title:  A New Multiple Image Encryption Scheme Based on Chaotic Systems 

 

Due to rapid developments in communication networks, the transferring of data through these 

networks has increased the risk. To protect this information, data encryption plays a significant 

role. This work extends a single chaotic map (SC3) to encrypt batches of images concurrently 

while maintaining high security standards. A new multiple-image encryption scheme based on 

the chaotic systems is designed to encrypt batches of images more efficiently and securely. By 

leveraging the complex dynamics and sensitivity to initial conditions inherent in chaotic maps, 

the scheme achieves a high level of confusion and diffusion across multiple images. The 

proposed multiple-image encryption scheme provides an effective and scalable solution for 

secure multimedia transmission. 
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                                                  CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

The main purpose of this introductory chapter is to review some background literature that will be 

discussed in the succeeding chapters. The chapter outline is as follows: The first section explains 

some cryptographic concepts. Section 1.2 covers the principles of cryptography. Sections 1.3 and 1.4 

discuss the different types of cryptography and their purposes. Section 1.5 introduces modern cryptography 

tools. Section 1.6 is about cryptography and chaos. A review work is presented in the section 1.7. Section 

1.8 is about the role of Random numbers in cryptography. Section 1.9 is presents thesis layout and 

structure. 

1.1   Introduction 

        With rapid innovations in the development of data transmission, it has become a demanding 

challenge to secure confidential information from attackers or prohibitive actions [1]. Through 

modern multimedia technologies and telecommunications, a large amount of important information 

cruises in daily life by means of sharing and open networking. To transmit data across any ambiguous 

channel, some cryptographic techniques (encryption) are needed, which change consistent 

information to impenetrable form. Cryptography is a modern and valuable approaches for textual 

information. However, because of the high-level redundancy and capacity of bulk information, they 

failed to provide computational- based security [2]. More than ever, researchers are worried about 

how to protect multimedia data using cutting edge and practical content preservation techniques to 

meet this problem [3]. Digital image security encompasses a wide range of features, such as secrecy, 

access control, authentication, and copyright protection. Encryption, which only allows parties with 

the necessary decryption keys to see the sent content (plain-image), often focuses on content secrecy 

and access control [4]. However, a few fundamental features of images (such as high redundancy 

values and a huge data capacity) render such encryption techniques unsuitable for image applications. 

Furthermore, many encryption algorithms necessitate numerous operations on compressed data, which 

raises the time demand. Their low ciphering (encryption) and deciphering (decryption) times can 

present tremendous potential in real-time communications.  

       The use of image encryption is the main topic of this dissertation. The majority of encryption 

techniques rely heavily on chaos theory due to its great sensitivity, randomness, complexity, and 
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computational capacity. Compared to text data, digital images have substantial correlations between 

neighboring pixels, and high redundancy. The concept of employing chaos in encryption was 

introduced by Shannon [5]. The use of chaos in cryptography has improved security the most due to 

its great qualities, such as its dependence on initial conditions and sensitive behavior. The nonlinear 

dynamical complex systems that underpin chaos-based cryptography are straightforward but 

deterministic. Therefore, chaos offers quick and safe communication for data protection, which is 

crucial when sending multimedia data via channels with quick communication systems, such internet 

broadband communication. 

     The goal of this thesis is to create cryptosystems that employ random numbers and chaotic map to 

create robust encryption methods that produce ciphered images with superior qualities. From this 

angle, chaos-based methods and random numbers work very well. The statistical confusion diffusion 

qualities of the suggested ciphered images are good. Pixels in encrypted images have almost little link 

with one another. In summary, the encryption algorithms that are given perform well in terms of 

multimedia security. 

1.2   Fundamentals of Cryptography 

        Currently, our society is strongly bounded by the domain of the information epoch, which is 

classified by scholar and researcher assets and is functional inside data being deliberated priceless. 

Enlightening data exists which is used in various forms such as economic, military, and political. The 

protection and security of this data during transmission, saving, and in routine practice is of prime 

importance because the transfer of data may result in the revelation of various marketing, financial 

loss, or armed forces top secrets. Credit card information, bank transactions, and social security 

numbers must be kept secure during transmission. For the protection and security of the data or 

information, cryptography plays a vivacious role [6]. Cryptography is a Greek word that means 

“Secret writing”. The art of personating message cryptography plays a vital role so that only its legal 

successor can recognize it. There are two thresholds to this course. Firstly, the plaintext, or original data, 

is veiled. This is recognized as encryption. The reverse procedure in which the cipher text is decoded 

backward into the original message must be known to the authentic recipient. This process is known 

as decryption. Figure 1.1 illustrates that cryptographic keys are required for both encryption and 

decryption. 
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Figure 1.1: Illustration of encryption and decryption 

                1.3   Categories of Cryptography 

 

       Cryptography has been categorized into two forms: 

 

1.3.1   Symmetric Key Cryptography 

           This category involves a person to whom the secret key should be known. Both the receiver 

and sender of the message may also be kept it. In private key cryptography, both the receiver and the 

sender each have a copy of the secret key. During this passage approach to the key is vouchsafe. 

There are two set-ups to ponder, in first both the interactive parties are acquainted with each other. In 

this situation, without any encrypting scheme, the key is shared. In the second case, familiarity is 

limited. For example, when seeing a secure website, keys should be swapped in a secure way [7]. 

Figure 1.2 classifies symmetric key cryptography into two types: block ciphers and stream ciphers. 

 

 

 

 

 

 

 

 

 

 

 

                                                              

Figure 1.2: Symmetric Key Cryptography 

 

1.3.2   Asymmetric Key Cryptography 

           An asymmetric key cryptography is sometimes known as 'cryptographic public key'. 

Asymmetric key cryptography uses two keys.  One is known as the 'Public key', which may be freely 

transmitted over insecure channels; the other key, which can be kept hidden and not easily 

disseminated, is known as the 'Private key' [8]. 

Symmetric Key Cryptography

Block Cipher

DES AES

Stream Cipher
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1.4   Purposes of Cryptography 

        Cryptography not only plays a role in encrypting and decrypting messages, but it also used 

to hoist real-world complications that need safety for information or data [9]. In current 

cryptography, that four main purposes that arise are as follows in Figure 1.3.        

 

 

 

 

 

 

                                                   Figure 1.3: Purposes of Cryptography 

1.5   Modern Cryptographic Tools 

        Before 1950, like an art cryptography was known, but current cryptography depends on discipline 

which requires provision from various fields which includes electronics, mathematics and computer 

science. After World War II, cryptographic research area had found the great importance by military 

intelligence forces. After 2 years, in 1970’s the first symmetric cryptosystems i.e., public key 

ciphers and DES were invented. At that time, the algorithms were established with the help of 

computers. Then researchers recognized that worthy ciphers were established by joining small tools. 

These tools are substitution, permutation, diffusion and confusion [10]. 

1.6   Cryptography and Chaos 

        This section provides a very quick overview of chaotic systems. Also described are the 

characteristics of chaotic systems that have some bearing on cryptosystem design. This section will 

thus focus on the connection between encryption and chaos. 

1.6.1   Chaotic System 

           Generally speaking, a chaotic system is any physical system that is controlled by mathematical 

formulas and produces behaviors that are unpredictable over time. Another name for chaos is 

disorder or confusion. Certain systems that undergo changes over time might occasionally exhibit 

chaotic motion. Thus, the two pillars of chaos theory are time and change. The graphical evaluation of 

that system's time series identifies the chaotic behavior. These systems are unpredictable since they 

Purposes of Cryptography

Confidentially Authenticity Availability Integrity
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don't follow patterns. All of factors make it challenging to spot chaos in real-world issues. 

Nonetheless, they are seen in computer science and mathematics through the visual representation of 

the governing issues. Scientists are primarily drawn to chaos theory because it visualizes the 

complicated and disorganized behavior of a system that arises from a straightforward deterministic 

equation. Second, while the system in question is understandable, it is also impossible to decipher and 

identify from the solution trajectory. 

      The third pillar is the minimal prerequisite knowledge of advancing mathematics; algebra, 

geometry, and calculus are sufficient to comprehend the chaos. Finally, chaos can be analyzed without 

delving into underlying mathematical equations. These revelations surprise cryptographers and force 

them to use such systems to design strong cryptosystems that are harder to decipher [11, 12, 13]. 

Temporal chaos and spatial chaos occur when time is substituted with space and distance, 

respectively. The nonlinear equations that arise in differential equations or algebra are more 

challenging to study than linear systems. These systems also have complicated dynamics. Moreover, 

not all nonlinear systems have to be chaotic. Many experts believe that chaotic dynamical systems are 

the area of nonlinear dynamics or dynamical systems theory. Depending on energy conservation, 

dynamical systems fall into one of two groups. A conservative dynamical system, or friction-free 

system, does not lose energy. On the other hand, a dissipative system loses energy because it must 

endure frictional forces. When a dissipative dynamical system reaches a limiting state due to energy 

loss, a chaotic solution can emerge under the effect of specific constraints [14]. For continuous time 

intervals, a dynamical systems variations are also seen. In contrast to discrete time intervals, the 

measurement of such phenomena is continuous. A dynamical system's continuous change is measured 

using differential equations. River water movement, heat conduction, and air temperature are a few 

examples of such systems [14]. Differential equations are intended to be used in cyber-security to 

create reliable and secure systems. Nonlinear differential equation systems are used to develop the 

block cipher's sole nonlinear component, which can make cryptanalysis more difficult. 

1.7   A Review Work 

         In many daily life applications such as video call conferencing, military branches, medical, 

communication of wireless networks images have significant role. When an image is transmitted two 

major issues need to be resolved, firstly check the transmitted image has assigned bandwidth and then 

must ensure that the images are transmitted through secure channel. So, for this purpose algorithms 

for encrypting images play a key role. Encryption algorithms encode the data which make it 

unreadable to viewer and it can be achieved by relocating or scrambling the pixel positions of image. 
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To secure the digital images, now a day’s researchers paid attention on creating such encrypted 

techniques that satisfies the following properties [15]. The pixels of original and ciphered images need 

to be less correlated. The best encryption schemes have correlation values are near zero. The value of 

key space must be enormous because a larger key space number makes it more difficult for an attacker 

to locate the specific key. Sensitivity of key is also obligatory. In other terms, slight change of key 

will not decrypt the ciphered image. 

    Liu et al. [16], developed an encryption technique based on random numbers. Novelty of his work 

lies on one-time pad key generation utilizing the hash value of random noise like a digital voice 

recording devices. Also, the already attained chaotic system is enhanced by using this system. 

Because of varying input in every iteration this technique is resistant against the attacks. For key 

enhancement, this methodology is used, and this scheme is presented by W. Haifaa et al. [17]. The 

suggested scheme's keys are created by a logistic chaotic map. XOR operation is used between them 

and in last again XOR operation is applied between resultant and plain-image values. 

    With the use of density information concepts, the computing technique of DNA has high 

complexity. Image pixels are scrambled by permutations while the redundancy information of image 

is obtained by diffusion. K. Radihka et al. [18], combine sequences of DNA with chaotic maps. Image 

is divided in blocks then convert the decimal pixel values to binary matrices then encode them with 

DNA rules. After block scrambling, the sub-block division is done. In addition, DNA is added to 

blocks to compile the blocks again. 

     Eltous et al. [19], offered a color image encryption technique in which random noise is selected 

and then add noise signal to image after this step the image pixels are rearranged. The primary goal of 

this strategy is to improve efficiency and provide a high level of protection. Block-wise encryption 

and reordering-based encryption techniques were suggested by Khrisat et al. [20], two secret keys are 

used. Firstly, the image pixels are reshaped to a single-row matrix. The number of blocks is then 

determined, and the size of the blocks is calculated by dividing the total size of the matrix. Finally, 

the matrix is reordered to produce an encrypted image. For the testation of the scheme, different 

experimental analyses are done. 

    Jian et al. [21], presented an encryption system using DNA coding, quantum chaos, and the Lorenz 

map. To improve security, a new encryption system uses DNA four base pairs to dynamically pick 

eight DNA encoding rules as well as eight various forms of addition and XOR rules. The proposed 

scheme is tested via different statistical and experimental analyses. An innovative encryption scheme 

using quantum chaos is presented by Liu et al. [22], in this scheme, pixels are permuted by the Arnold 
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scrambling technique. For diffusion, a folding technique is utilized which modifies the diffused 

pixels. For high complexity and randomness, logistic and quantum chaotic maps are paired with 

closest-neighbor-paired lattices. 

1.8     Random Number Generation (RNG) 

           An unpredictable sequence is known as sequence of random number. If the numbers have no 

correlation between them then that sequence is considered as truly random. In this way the prediction 

of succeeding number by using preceding is totally impossible. Distribution is the main part of any 

number sequence i.e., check how much the number sequences are uniformly distributed by generator. 

Also, the important feature of any sequence is its range [23]. 

1.8.1   Random Numbers Role in Cryptography 

           The random number sequences are used for different objectives, for example in generating 

keys for encryption, simulations and for modeling complexity. There are two main approaches to 

random number generation: true random number generators (TRNGs) and pseudo-random number 

generators (PRNGs). RNG is a technique/algorithm in which bits of binary sequences are generated 

which are independent statistically.  PRNG is a deterministic technique which produce nearly random 

sequences of binary bits. The PRNG have input value known as seed and the output of it is known as 

binary sequences. RNG are commonly used in applications and cryptographic techniques. In 

cryptographic schemes like secret key of DES, RSA technique prime number are used for providing 

security. The output having length 𝑙 of PRNG is not so random but it takes a small bit which is truly 

random and then expanded it to greater sequence. Like this, PRNG sequences could not be 

differentiated from truly random sequences. For the confirmation of output PRNG randomness some 

tests (statistical) and other analysis must be implemented. As a result, numerous statistical techniques 

are used to verify random and pseudorandom number generators. A comparison between among 

PRNG and TRNG is shown in Table 1.4, which depicts TRNG is the most suitable choice for 

cryptographic designs. 

                              Table 1.4 Comparison between PRNG and TRNG 

 

 

 

 

 

Traits PRNG TRNG 

Effectiveness Outstanding Weak 

Deterministic Yes NO 

Periodicity Yes NO 
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1.9   Structure of the Thesis 

       There are five chapters in the dissertation. 

Chapter 1. The introduction and justifications for the planned work are given in this chapter. This 

chapter also provides a thorough overview of chaos theory and image encryptions. Additionally, the 

latest developments in image encryption are also discussed.  

In Chapter 2, basic background definitions and core concepts are provided in this chapter. 

In Chapter 3, the mathematical laws, equations, and theorems that underpin that critical analysis are 

included. The methods employed to achieve the necessary issue outcomes are also included. Every 

figure, table, and graph has the appropriate number and placement together with the necessary caption. 

It explains and analyzes the results' ramifications. A brief overview of an image encryption system 

based on a novel 2D sine-cosine cross-chaotic (SC3) map is provided, along with the main result. 

In Chapter 4, discuss the mathematical ideas, equations, and theorems that support that critical 

analysis as well. This chapter introduces a new multiple-image encryption scheme based on a chaotic 

system. The techniques used to obtain the required issue results are also covered. In addition to the 

required title, each figure, table, and graph has the right number and location.  

Chapter 5, Conclusions and Suggestions for the Future work. 
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CHAPTER 2 

BASIC DEFINITIONS AND CONCEPTS 

 

This chapter presents the core concepts, definition and mathematical foundation of cryptography and 

chaos focusing particularly on chaotic maps and their essential properties.  

2.1   Cryptography 

        Cryptography is the study of transforming data into secret codes or encrypting information that 

should be kept private from others. From age time to the current era, during the time of war, the 

facility to interconnect secretly has been significant. 

2.2   Plaintext and Cipher text 

       Any conversation within the language that we say the mortal language, which took the shape of 

plain text. It is implicit by the sender, receiver, and those who have approached to that message. A 

cipher signifies a secret or unreadable message. While any appropriate scheme is applied over the 

plain text to codify it, then the resulting codified message is known as cipher text. 

2.3   Encryption and Decryption 

       The conversion of plain text transmissions into encrypted text is referred to as encryption. An 

inversion procedure for converting messages of cipher text behind the plain text is known as 

decryption. 

2.4   Diffusion   

        To create disorder in data to make it more secure, Shannon presented two concepts confusion 

and diffusion for a good cryptosystem [10]. Diffusion is a technique in which if we alter a single 

plaintext bit it creates alternation in several cipher text bits. Similarly, alter of single bit of cipher text 

creates alternation in many plaintext bits. In case of block ciphers, bit alternation is communicated with 

the assistance of diffusion, from unique part of the block to other parts. 

2.5   Confusion 

        Confusion produces a relationship between secret key and plain text. In confusion key is not 

directly related to cipher text. In general, every cipher text character should depend on many chunks 

of keys. 

2.6   Logic Operation 

        AND Operation 

        In this operation consider 𝑇 =  {0,1}, by applying AND operation on 𝑇 the input 𝑎, 𝑏 should be 

taken from 𝑇 and the output column is represented as 𝑎˄𝑏 and its resulting value will be 1 if it has both 
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inputs values 1, else it will be 0. Truth table for AND operation should be given as Table 2.1. 

                                                               Table 2.1: Truth Table for AND Operation.            

 

 

 

                                          

         OR Operation 

         In this operation for both input 𝑎, 𝑏 ∈ 𝑇, the output represented as 𝑎˅𝑏 has values equal to 0 for   

both input arguments having 0 value, otherwise it would be 1. The OR Table 2.2 is given below. 

                                        Table 2.2: Truth Table for OR Operation 

a b a v b 

1 1 1 

1 0 1 

0 1 1 

0 0 0 

 

   XOR Operation  

   For both inputs 𝑎, 𝑏 taken from 𝑇 in XOR operation, the output values represented as 𝑎⨁𝑏 have 

zero value if both input values are identical, in other case they will be 1. XOR Table 2.3 should be 

given below. 

                                                 Table2.3: Truth Table for XOR Operation 

a b a ⊕ b 

1 1 0 

1 0 1 

0 1 1 

0 0 0 

  

2.7   Chaos 

        In a deterministic system, a chaotic map indicates a state of unpredictability, unpredictable 

behavior, and sensitivity to initial conditions. Within the context of chaos theory, it describes the long-

term behavior of dynamic systems that are highly sensitive to changes in their initial conditions, 

resulting in complex, seemingly random single patterns. Although chaotic systems are expectable, 

a b a ^ b 

1 1 1 

1 0 0 

0 1 0 

0 0 0 
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successfully predicting chaotic systems is tough because they lack long-term predictability. 

Understanding and relating these complex and irregular performances is the goal of chaos research, 

which delivers vision into the important subtleties of complex systems in a ground of academic fields 

[24]. 

                2.8   Different Properties of Chaotic Maps 

       The chaotic map has the following properties: 

2.8.1   Sensitivity to Initial Conditions 

.           Chaotic maps are extremely sensitive to initial conditions, even modest changes to the starting 

environment. Subtle changes in initial values can cause dynamics to diverge considerably over time. 

They work like a butterfly effect in some cases where small changes in one place can make a big 

change for the other place. This butterfly effect is very essential in chaotic maps for encryption and 

decryption especially in cryptographic systems and as well as in cyber security and many other 

purposes also. Demonstration of sensitivity of initial condition is shown in Figure 2.1. 

                          Figure 2.1: Demonstration of Sensitivity to Initial Condition of Chaotic map 

2.8.2   Bifurcation 

           Bifurcation is a simple example of chaotic maps where a minor change in a parameter can 

result in a big change in the system's response. This can result in the development of chaotic regions 

and several coexisting attractors. Figure 2.2 illustrates the bifurcation of a logistic map. 

 

 

 

 

 

 

 

 

 

 

                                                        Figure2.2: Bifurcation Diagram of Logistic Map                                
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                2.8.3   Deterministic Dynamics: 

           Chaotic maps behave in a visionary random way, but in real, they are deterministic, which 

means that the governing mathematical function and their current state show both their upcoming 

predictions [24, 25]. The demonstration of deterministic behavior of chaotic maps is shown in Figure 

2.3 below. 

 

 

 

 

 

 

 

 

 

 

 

 

                                                        

                                                     Figure 2.3: Deterministic Behavior of Chaotic maps                           

2.9   Type of Chaotic Maps   

         Here are brief details of types of chaotic maps below. 

                2.9.1   Logistic Map 

           A unit-dimensional map that shows chaotic behavior is known as logistic map. It is defined by 

the relation, where r is a control parameter and 𝒙𝒏 is the current value. Equation 2.1 describes the 

logistic map. 

                                      𝐱𝐧+𝟏 = 𝐫𝐱𝐧 (𝟏 − 𝐱𝐧)                                                              2.1) 

Where 𝑟 ranges from 0 to 4 and 𝑥 is 0 to 1 [26]. Figure 2.4 is a demonstration of a logistic map. 

 
 

 

 

 

 

 

 

 

          

                                                                         

                                                                       

                                                           Figure 2.4: Bifurcation Diagram of Logistic Map                                         
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                2.9.2   Sine Map 

            The sine function defines the sin map, which is a chaotic one-dimensional map.  It generates a 

chaotic series of values, which is useful for cryptography, pseudo-random number generation, and 

secure communication. Mathematical it is defined in equation 2.2, and its bifurcation figure show in 

Figure 2.5. 

                                    𝑥𝑛+1=𝑟. 𝑠𝑖𝑛(𝜋𝑥𝑛)                   0 < 𝑟 ≤ 1                                                  2.2)  
  

 

 
  

  

 

 

 

 

 

 

 

 

 

                                                                 Figure 2.5: Bifurcation Diagram of Sin Map 

2.9.3 Cosine Map 

             The Cos map is a chaotic one-dimensional map that uses the cosine function. This method is 

used in chaos theory and cryptography to produce pseudo-random sequences that are highly sensitive 

to initial conditions and control variables. Mathematical it is defined in equation 2.3, and bifurcation 

figure show in figure 2.6 

                        𝑥𝑛+1=𝑟. 𝑐𝑜𝑠(𝜋𝑥𝑛)              0 < 𝑟 ≤ 1                                                   2.3) 

 

 

 

 

 

 

 

 

 

 

 

                                                               Figure 2.6: Bifurcation Diagram of Cosine Map 

                2.9.4   Tangent Map  

             The tangent map is a one-dimensional chaotic map defined by a tan function. It provides 

values with chaotic behavior, making it helpful for cryptography, pseudo-random number creation, 

and secure communication. Mathematical it is defined in equation 2.4, and its bifurcation figure show 
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in Figure 2.7. 

                                                 𝑥𝑛+1=𝑟. 𝑡𝑎𝑛(𝜋𝑥𝑛)             0 < 𝑟 ≤ 4                              2.4) 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                  Figure 2.7: Bifurcation Diagram of Tan Map 

 

2.9.5 Piecewise Map 

           A piecewise map is a function that is defined by different formulas or expressions on different 

Intervals of its input domain. A general piecewise map can be written as in equation 2.5. 

                                      𝑓(𝑥) =

{
 
 

 
 
𝑓1(𝑥),        𝑖𝑓 𝑥 ∈ 𝐼1
𝑓2(𝑥),        𝑖𝑓 𝑥 ∈ 𝐼2

.

.

.
𝑓𝑛(𝑥),        𝑖𝑓 𝑥 ∈ 𝐼𝑛

                                                          2.5)    

𝑓1, 𝑓2, … , 𝑓𝑛   are different functions and 𝐼1, 𝐼2, … 𝐼𝑛 are disjoint intervals that partition the domain.   

Tent map is the example of Piecewise Map. 

2.9.6   Tent Map 

              A directed piecewise linear map, commonly referred to as the tent map as shown in 

equation 2.6 and 2.7. Its sensitivity to starting conditions is well known [24, 25]. Demonstration 

of bifurcation of tent map is shown in Figure 2.8 below. 

                                                Figure2.8: Bifurcation Diagram of Tent Map 
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xn+1 = rxn      0 ≤ xn < 0.5                                                                                              2.6) 

xn+1 = rxn (1 − xn)     0.5 ≤ xn < 1                                                                               2.7)                                

2.10   Tests for Chaotic Maps 

          Chaotic maps refer to mathematical systems that exhibit chaotic behavior, including 

aperiodicity, unpredictability, and sensitivity to initial conditions. Understanding a chaotic map's 

properties means that it is chaotic, which is the testing. These are some typical examinations and tests 

that are used for chaotic maps. 

                2.10.1   Lyapunov Exponent 

             The exponential divergence or convergence of adjacent illustration in the given function is 

measured by Lyapunov exponents. An elevated Lyapunov exponent denotes random conduct. 

Demonstration of Lyapunov exponent for logistic map is shown in Figure 2.9. Lyapunov exponent 

for logistic map will be in equation 2.8. 

                         lim
n→∞

1

n
∑ ln |

 d{𝑥𝑛+1 =𝑟𝑥𝑛 (1−𝑥𝑛)}

dxn
|n

i=1                                                           2.8) 

 

 

 

 

 

 

 

 

 

                                                                     

                                                                 Figure 2.9: Lyapunov Exponent for Logistic Map 

                   2.10.2   Entropy Measures 

             The disorder and unpredictability of the functions are determined by entropy. Chaotic 

behavior is shows high entropy behavior. The following formula 2.9 is applied to determine an 

image's entropy. 

       𝐻(𝑚) = −∑ 𝑃(𝑚𝑢)𝑙𝑜𝑔2[𝑃(𝑚𝑢)],
𝑛−1
𝑢=0                                                               2.9) 

Where grey-level 𝑢 occurrence probability is denoted by (𝑚𝑢), 𝑢 = {0, 1, 2… 2𝑛} and 2𝑛 is greyscale image 
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level number. If all of the 𝑚𝑢 in the image have the same occurrence probability, then probability𝑃(𝑚𝑢) =

1/2𝑛. Thus, the image displays utterly arbitrary behavior by ℋ(𝑚 = 𝑛). The demonstration of 

entropy analysis is shown in Figure 2.10. 

                                                          Figure 2.10: Entropy Analysis                            

2.10.3   Correlation 

             Correlation offers a relationship between nearby pixels in the image, and this relationship is 

divided into three different categories: horizontal, diagonal, and vertical formats. The entire texture 

of the image was taken into consideration during this analysis, and the equation 2.10 represents this 

analysis, and adjacent pixel correlation are given in equation 2.11. 

                                      K = ∑
(x−μx)(y−μy)p(x,y)

ρuρv
x,y                                                               2.10) 

{
  
 

  
 𝑅𝑥𝑦 =

𝑐𝑜𝑣(𝑥,𝑦)

√𝐷(𝑥)𝐷(𝑦)
                                           

𝑐𝑜𝑣(𝑥, 𝑦) =
1

𝑁
∑ (𝑥𝑖 − 𝐸(𝑥))(𝑥𝑖 − 𝐸(𝑦))
𝑁
𝑖=1  

𝐸(𝑥) =
1

𝑁
∑ 𝑥𝑖
𝑁
𝑖=1                                                  

𝐷(𝑥) =
1

𝑁
∑ (𝑥𝑖 − 𝐸(𝑥))

2𝑁
𝑖=1                               

                                                               2.11) 

 

                2.10.4   The Analysis of Differential Attacks 

              Most attackers use a technique in which they slightly alter the original plain image before 

using the proposed scheme to encrypt both the plain and previously encrypted image (which they 

want to break) in order to extract vital information from it. Two encrypted images are thus acquired. 

By comparing the rates of the two ciphered images, the attackers are able to break the cryptosystem 

in this way. Differential analysis is the name given to this entire procedure. This means that even a 

little change to either would result in a full change to the ciphered text. There are two ways for 

evaluating an encrypted image’s resistance against differential attacks: number of pixels change rate 
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(NPCR) and unified average changing (UACI). When NPCR [27], considers two ciphered pictures 

with just one pixel changed, it is assessed as follows: if 𝐶1(𝑢, 𝑣) represents the first image and 

𝐶2(𝑢, 𝑣) represents the second as shown the formula 2.12. 

                               𝑁𝑃𝐶𝑅(𝑐1, 𝑐2) =
∑ ∑ 𝐷(𝑢,𝑣)𝑁−1

𝑣=0
𝑀−1
𝑢=0

M×N
× 100%                                         2.12) 

Equation 2.13, defines 𝒟 (𝑢, 𝑣), and 𝑀 ×𝑁 represents the total number of pixels.                   

                                                  D(u, v) = {
0      if c1(u, v) = c2(u, v)

1     if c1(u, v) ≠ c2(u, v)
                                  2.13) 

To test the pixel change number, the UACI (Unified Average Changed Intensity) [27], calculates the 

average change in intensity across the cipher image. This analysis is expressed mathematically by the 

formula 2.14. 

                𝑈𝐴𝐶𝐼(𝑐1, 𝑐2) =
1

𝑀×𝑁
∑ ∑

|𝐷(𝑢,𝑣)−𝑃(𝑢,𝑣)|

𝐹
𝑁−1
𝑣=0

𝑀−1
𝑢=0  × 100%                               2.14) 

Where 𝐷 (𝑢, 𝑣) is defined in equation 2.15 and F is the maximum approved pixel value compatible 

with the encryption image format.                               

                                   D(u, v) = {
0      if c1(u, v) = c2(u, v)

1     if c1(u, v) ≠ c2(u, v)
                                                 2.15)      

 

2.10.5   Mean Squared Error 

             MSE refers to the squared average difference between the original and distorted images. The 

mathematical formulation of MSE is given in equation 2.16. 

                                      𝑀𝑆𝐸 =
1

𝑚×𝑛
∑ ∑ (𝑃(𝑖, 𝑗) − 𝐶(𝑖, 𝑗))

2𝑛
𝑗=1

𝑚
𝑖=1                                2.16) 

Image size is 𝒎 ×  𝒏.  𝑷(𝒊, 𝒋) and 𝑪(𝒊, 𝒋) parameters represent pixel placement in the 𝒊𝒕𝒉 and 𝒋𝒕𝒉 rows 

and columns of the original and ciphered images. A higher MSE value is required for encryption 

methods to have strong security [28]. 

2.10.6   Peak Signal to Noise Ratio. 

              Noise has an impact on the signal's representation. PSNR is defined as the ratio of noise to 

single power, as given in equation 2.17.                                  

                                        𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔2(𝐼𝑚𝑎𝑥
2 )                                                               2.17) 

𝐼𝑚𝑎𝑥, represents the image pixel maximum value [29]. 

2.10.7   Classical Types of Attacks 

             Generally speaking, when a cryptosystem is being cryptanalyzed, it is considered that 
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the cryptanalyst is fully aware of the design and operation of the target cryptosystem, with the 

exception of the secret key. To penetrate any cryptosystem, attackers use four well-known 

approaches: known-plain-text attack, selected plain-text assault, cipher text only attack, and chosen 

cipher-text attack [29]. 

2.10.8   Statistical Tests: 

               To verify the produced time series randomness and absence of structure, run statistical tests 

to check on them. For instance, auto-correlation analysis and histograms may be helpful. When 

working with chaotic maps, several tests and studies must be conducted simultaneously in order to 

completely characterize the system's behavior and validate its chaotic nature [24, 25].
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CHAPTER 3 

A SECURE IMAGE ENCRYPTION SCHEME BASED 

         ON A NOVEL 2D SINE-COSINE CROSS-CHAOTIC                  

(SC3) MAP 
 

                3.1   Overview        

        The rapid expansion of digital image transmission across a range of industries, including cloud 

storage, medical imaging, communication, and military applications, has made providing secure 

image encryption a crucial issue [30, 31]. The increasing danger of cyber threats, illegal access, and 

data breaches necessitates the development of new encryption techniques that could effectively 

protect image data from possible attacks [32, 33]. The study [41], introduced a novel two-dimensional 

sine-cosine cross-chaotic (SC3) map that improved the encryption process's security and 

unpredictability. Because of their complex behavior and ability to generate pseudo-random 

sequences, chaotic maps are ideal for use in encryption methods. Two chaotic sequences produced 

by the SC3 map are present in the confusion and diffusion stages of the encryption. The great 

sensitivity of the proposed SC3-based encryption system is one of its main advantages. By rendering 

brute-force attacks extremely impracticable, this feature improves security. Additionally, statistical 

analysis, such as entropy measurement, correlation coefficient analysis, histogram uniformity 

evaluation, and resistance testing against differential assaults, is used to rigorously validate the 

encryption method. These assessments attest to the suggested method's ability to achieve high security 

while preserving computing efficiency. The architecture and functioning of the SC3-based image 

encryption system are thoroughly examined in this paper [40]. The efficacy of the suggested approach 

is assessed by evaluating its computational complexity, security performance, structural design, and 

practical application. This evaluation examines the encryption scheme's shortcomings, such as the 

lack of cryptanalysis against sophisticated attack models, possible processing complexity for large-

scale images, and the viability of hardware implementation, even if it exhibits good security features. 

3.2   Formulation of the Map 

        The proposed image encryption system is built using a two-phase process confusion and 

diffusion that exploits the unique properties of the sine–cosine cross-chaotic (SC3) map, as given in 

equation 3.1. 
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                                                      { xi+1 = sin (
α

yi
)

3

2
  

 yi+1 = cos (β𝐶𝑜𝑠
−1𝑥𝑖)

                                                           3.1) 

Where 𝛼, 𝛽 are the control parameter, (𝛼, 𝛽) ∈ [0,1] and 𝑥0, 𝑦0, are two initial parameter, (𝑥0, 𝑦0) ∈

[0,1]. To create an encrypted image, extremely resistant to cryptanalysis, the goal is to maximize 

unpredictability and sensitivity to beginning conditions in order to assure secure image encryption. 

The review thoroughly examines the encryption method's procedure, focusing on its effectiveness, 

security, and potential areas for improvement. The confusion phase, which involves rearranging the 

source image using pixels to eliminate identifiable patterns and correlations, is a crucial step in 

image encryption. This step is crucial because images are high redundancy the fact that nearby pixels 

often have similar values makes them susceptible to statistical attacks. Bifurcation analysis and the 

Maximum Lyapunov Exponent (MLE) are employed to confirm the SC3 chaotic map's usefulness. 

Encryption requires a very chaotic system since it ensures that the sequences that are created are 

unpredictable. The SC3 map demonstrates the required chaotic features to be the basis for a strong 

encryption system, as confirmed by its significantly positive Maximum Lyapunov Exponent.  

3.3    Validation of the SC3 Map’s Effectiveness 

          The effectiveness and security strength of the SC3 map are validated through two critical 

analytical techniques. 

3.3.1   Phase Diagram and Bifurcation Analysis.          

            Because the pseudo-random sequence is not restricted to a single region to achieve high 

diffusion capacity, it exhibits both uniform dispersion and unpredictability. According to phase diagram 

3.1, it is more chaotic with a high ergodicity. Bifurcation occurs when the topological structure of the output 

value distribution in relation to the control parameters changes as the control or bifurcation parameter (0, 1) 

changes.                

                                             Fig. 3.1: Phase Diagram of Chaotic Map 
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The Bifurcation Diagrams show the variations of 𝛼 and 𝛽. Figure 3.2 (a) and (b) depicts the 𝑋 and 𝑌 

sequence are bifurcation diagram with a step value of 0.001 when α ranges from 0 to 1 and 𝛽 = 0.85. 

The fixed point and periodic window are shown by solid lines, while the chaotic zone is represented 

by dots. The proposed map exhibits chaotic behavior when the control parameter α is between 0.49 

and 1. Figures 3.3 (a) and (b) depict the bifurcation diagrams for the X and Y sequences, with β 

ranging from 0 to 1 and α = 0.90. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                         (a) X sequence                                                     (b) Y sequence 

 Figure 3.2: (a) and (b) Bifurcation Diagram when α varies 

(a) X sequence                                                   (b) Y sequence 

Figure 3.3: (a) and (b) Bifurcation Diagram when β varies 

3.3.2   Maximum Lyapunov Exponent (MLE) 

           A dynamical system's sensitivity to beginning conditions and unpredictable nature define its 

chaotic behavior. The Lyapunov exponent is a quantitative measure that determines a dynamic 

system's chaotic behavior [34]. It is defined in equation 3.2 

                                   𝜆(𝑥0) = lim
𝑛→∞

1

𝑛
∑ 𝑙𝑛|𝑓′(𝑥𝑖)|
𝑛−1
𝑖=0                                                                  3.2)    
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𝜆 is the control parameter α varies from 0 to 1 and β = 0.85 as illustrated in Figure 3.4 and 3.5, 

respectively, the Lyapunov exponent in this work by maintaining 𝛼= vary, 𝛽=fixed, and 𝛽 vary, 𝛼 

fixed. The higher LE number indicates that the system is more unpredictable. Also show in Table 3.1 

and Table 3.2.      

                                        

                                                            Figure 3.4: Lyapunov Exponent (α = vary β = 0.85) 
 

                                                               Figure 3.5: Lyapunov Exponent (β = vary α = 0.90) 
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                     Table 3.1: Lyapunov Exponent Value for the Suggested Map 

(𝛼,𝛽) LE ( 𝜆1) LE ( 𝜆2) 

(0.85, 0.90) 1.9577 2.1899 

(0.88, 0.95) 2.2718 2.3670 

(0.70, 0.90) 2.7632 2.4306 

(0.75, 0.85) 1.8427 1.6771 

                                                   
                         Table 3. 2: Lyapunov Exponent Value of the Present Chaotic Map [34] 

(IC, PC) LE 

(0.3, 8) 1.38632 

(0.4, 7.6) 1.09744 

(0.5, 6) 0.968348 

 

3.4   A Proposed Cryptosystem based on the SC3 Map 

         The cryptosystem for image encryption is designed in this part using the 2D DC3 Map to withstand 

differential, statistical, and brute force attacks. To withstand all kinds of attacks, the encryption 

technique shuffles and replaces the image pixels with other values. The first step is to converts the 

input plain image into a cipher image via bitwise XOR and pixel shuffling. 𝑅1 and 𝑅2 are pseudo-

random sequences, respectively. Using the specified 2D SC3 map, the pseudo-random sequences 𝑅1 

and 𝑅2 were generated based on the shared secret key. The initial parameter (𝑥0, 𝑦0)and control 

parameter (𝛼, 𝛽) combined together (𝑥0 , 𝑦0, 𝛼, 𝛽) and (𝑥0
′  , 𝑦0

′ , 𝛼′, 𝛽′) to create the secret key 𝐾1 

and 𝐾2, for the confusion and diffusion layers. Algorithms 1 and 2 explain the encryption and 

decryption procedure.              

3.5   Pixel Scrambling leads to Confusion 

        According to the confusion principle, the relationship between the cipher image and the secret 

key should be as subtle and difficult as feasible. A single modification to the secret key must have an 

impact on the cipher image. The pixel shuffling phase permutes the basic image using the pseudo-

random sequence𝑅1, reducing the correlation between adjacent pixels. 

3.6   Diffusion using bit Manipulation 

        By creating it as complicated as much as feasible to fend off the differential attack, the diffusion  

concept conceals the connection between the plaintext and ciphered images. The diffusion phase conceals 
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the relationship between plain and cipher images while maintaining the cipher image's consistent pixel 

value distribution. Statistical attacks are made more difficult by converting the plain image into a 

cipher image with a consistent distribution of pixel values. 

3.7   Image Encryption Algorithm          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

              

                                     
 
 
 
 
 

Algorithm 1. Key setup and Encryption process 

1. Read the 2𝐷 plain image 𝑃 of size 𝑊 ×𝐻 and convert into 1D vector 𝑃 =

 {𝑝1,  𝑝2…𝑝𝑁}, 𝑤ℎ𝑒𝑟𝑒 𝑁 =  𝑊 × 𝐻 

2. Generate the control parameters 𝛼, 𝛽 𝜀 [0,1] and obtain initial parameters 𝑥0, 𝑦0 

𝜀 [0,1] 

3. Secret Key 𝐾1 = (𝑥0, 𝑦0, 𝛼, 𝛽) and 𝐾2 = (𝑥0
′ , 𝑦0

′ , 𝛼’, 𝛽’) 

4.  𝐹𝑜𝑟 𝑖 ← 1 to N do 

5. 𝑥𝑖+1 = sin (
𝛼

𝑦𝑖
)

3

2
           

6.  𝑡1 = (𝑥𝑖+1 × 10)
15𝑎𝑛𝑑 W × H   

7. 𝐼𝑛𝑠𝑒𝑟𝑡 𝑡1 𝑖𝑛𝑡𝑜 𝑅1 

8. 𝑦𝑖+1 = cos (𝛽𝑎𝑐𝑜𝑠𝑥𝑖); 

9. 𝑡2 = (𝑦𝑖+1 × 10
15)𝑎𝑛𝑑256; 

10.  Insert 𝑡2 𝑖𝑛𝑡𝑜 𝑅2; 

11.  end 

12.  For 𝑗 ← 1 𝑡𝑜 𝑁 𝑑𝑜 

13.  1 ← 𝑠𝑤𝑎𝑝(𝑝[𝑗], 𝑝[𝑅1[𝑗]]) 

14.  𝒆𝒏𝒅 

15.  𝐹𝑜𝑟 𝑖 ← 1 𝑡𝑜 𝑁 𝑑𝑜 

16.  𝐶[𝑘] ← 𝑋𝑂𝑅(𝐼[𝑘], 𝑅2[𝑘]); 

17.  𝒆𝒏𝒅 

18. Reshape the sequence C into size of 𝑊 ×𝐻 cipher image 
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              3.8    Image Decryption Algorithm 

 
 

 

 

 

 

 

 

 

 

                   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.9   Experimental Details 

         The purpose of this study is to evaluate the security and performance of the encryption system 

by running a MATLAB experiment on a standard image, "Lena 512", "Baboon", "Peppers", "Nike 

logo", and "Airplane". The confusion and diffusion layer's pseudo-random sequences 𝑅1and 𝑅2 are 

constructed using the two secret keys (𝐾1, 𝐾2). The starting parameters (𝑥0, 𝑦0) and the parameters 

for control is(𝛼, 𝛽). Consider as secret key 𝐾1, where 𝑥0 , 𝑦0, 𝑥′0 , 𝑦0
′ ∈ [0,1] and 𝐾2 = 𝑥′0 , 𝑦0

′ , 𝛼’, 𝛽’, 

where  

𝑥0 = 0.5217649304251095,  𝑦0 = 6392750215680951, 

                𝛼 = 0.5672104389217190,  𝛽 = 0.8502175864356750, 

Algorithm 2. Key setup and Decryption process 

1.  Obtain the secret key 𝐾1 = (𝑥0, 𝑦0, 𝛼, 𝛽) and 𝐾2 = (𝑥0
′ , 𝑦0

′ , 𝛼’, 𝛽’) 

2. Read the cipher image 𝐶 of size 𝑊 ×𝐻 and decompose 1𝐷 vector of size 

𝑁 (𝑊 × 𝐻); 

3.  𝑭𝒐𝒓 𝑖 ← 1 to N 𝐝𝐨 

4. 𝑥𝑖+1 = sin (
𝛼

𝑦𝑖
)
3

2            

5.  𝑡1 = (𝑥𝑖+1 × 10)
15𝑎𝑛𝑑 W × H   

6. 𝐼𝑛𝑠𝑒𝑟𝑡 𝑡1 𝑖𝑛𝑡𝑜 𝑅1 

7. 𝑦𝑖+1 = cos (𝛽𝑎𝑐𝑜𝑠𝑥𝑖); 

8. 𝑡2 = (𝑦𝑖+1 × 10
15)𝑎𝑛𝑑256; 

9. 𝐼𝑛𝑠𝑒𝑟𝑡 𝑡2 𝑖𝑛𝑡𝑜 𝑅2; 

10.  𝒆𝒏𝒅 

11.  For 𝑗 ← 1 𝑡𝑜 𝑁 𝑑𝑜 

12.  1[𝑗] ← 𝑋𝑂𝑅(𝐶[𝑗], 𝑝[𝑅2[𝑗]]) 

13.  𝒆𝒏𝒅 

14.  𝐹𝑜𝑟 𝑘 ← 1 𝑡𝑜 𝑁 𝑑𝑜 

15.  𝑃 ← 𝑠𝑤𝑎𝑝(𝐼[𝑘], 𝑅2[𝑘]); 

16.  𝒆𝒏𝒅 

17. Reshape the sequence C into size of 𝑊 ×𝐻 plain image 
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                𝑥′0 = 0.7356439802176543,   𝑦0
′ = 0.8530267952419067, 

𝛼’ = 0.5678093425186743      𝛽’ = 0.9256810743901653. 

In comparison to the current image encryption system, the scheme's encryption computation quality 

is lower, but the encryption or decryption time is significantly faster. Figure 3.6 (a) to (i) display the 

decrypted Lena, Pepper, and Baboon as well as the encrypted and standard test images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: (a) Lena original Image, (b) Encrypted, (c) Decrypted, (d) Original image Peppers, (e) 

Encrypted, (f) Decrypted, (g) Original Image Baboon, (h) Encrypted (i) Decrypted 

3.10   Security and Performance Analysis 

           This section presents five grayscale images of key space analysis, statistical analysis, 

differential cryptanalysis, and encryption quality of an image encryption system.            
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3.11    Analyzing Key Spaces 

            Figures 3.6 (a) through (i) depict conventional test images, encrypted images, and decrypted 

images of "Baboon", "Peppers," and "Lena". The encrypted images are both unidentified and noisy.  

As a result, the attacker has a difficult time discovering any hidden information and recovering the 

plain image or secret key. To withstand exhaustive searches or brute force attacks, the entire key 

search space should be fairly large. This work suggests a method for encrypting images using 2D SC3 

maps. The secret key is obtained using four parameters (𝑥0, 𝑦0, 𝛼, 𝛽). Since the computational 

precision in our experiment is limited to 10−16, the entire key space is 1064 ≈ 2213. The comparison 

results of the secret's whole search space are shown in Table 3.3. 

Table 3.3: Secret Key Comparison Results. 

          

 

              

 

 

 

  

                3.12   Resistant to Statistical Attack 

                  3.12.1   Analyzing Histograms 

               The histogram depicts the distribution of pixel values in the image 0 to 255. Figures 3.7 (a) 

to (d), 3.8 (a) to (d), and 3.9 (a) to (d) demonstrate how a secure image cryptosystem should create a 

consistent distribution of encrypted image pixel values, making it extremely difficult for an attacker 

to breach.  

 

(a)                                                                 (b)

Algorithm                                         Key space 

Proposed                                       1064 ≈ 2213 

Ref. [36] 1060 

Ref. [35] 2256 

Ref. [37] 2232 

Ref. [38] 2100 

Ref. [39] 2624 
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                                 (c)                                                                           (d)        

Figure 3.7:  (a) Original image Lena, (b) Histogram, (c) Encrypted Image Lena, (d) Histogram 

 

 

 

 

  

 

 

 

 

 

                                 (a) (b) 

                                 (c)  (d) 

Figure 3.8: (a) Original Image of the Airplane, (b) Histogram of the Original image, (c) Encrypted 

Image of the Airplane, (d) Histogram of the Encrypted Image 
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     (a)                                                                                      (b)  

 

 

 

 

  

 

 

 

 

 

                                 (c)                                                                    (d) 

Figure 3.9: (a) Original image Nike, (b) Histogram of the original image Nike, (c) Encrypted image 

Nike, and (d) Histogram of the encrypted image Nike 

3.12.2   Correlation Analysis among Adjacent Pixels 

             To calculate the correlation coefficient between the plain and cipher images, we randomly 

choose 3000 pairs of surrounding pixels in the horizontal, vertical, and diagonal axes. Figures 3.10 

(a), (b), (c), and 3.11 (a), (b), and (c) show the correlations between the original Airplane image and 

the cipher image on the diagonal, horizontally, and vertically, respectively. Figures 3.12 (a), (b), (c), 

and 3.13 (a), (b) and (c) depict the correlations between the plain Nike image and the encrypted image 

on the diagonal, horizontally, and vertically. Table 3.4 displays the correlation coefficient between 

the adjacent pixels of the original and encrypted images, whereas Table 3.5 compares the Lena 

images. 
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Figure 3.10: (a) Diagonal Correlation Coefficient of Original Airplane Image, (b) Horizontal 

Correlation Coefficient, (c) Vertical Correlation Coefficient 

 
 
 
 
 
 

Figure 3.11: (a) Diagonal Correlation Coefficient of the Cipher Airplane image, (b) Horizontal 

Correlation Coefficient, (c) Vertical correlation coefficient 

 

  

 
 
 
 

 

 

 

 

 

 

Figure 3.12: (a) Diagonal Correlation Coefficient of Original Nike Image, (b) Horizontal 

Correlation Coefficient of Image, (c) Vertical Correlation Coefficient of Image 
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Figure 3.13: (a) Diagonal Correlation Coefficient of Cipher Nike image, (b) Horizontal Correlation 

Coefficient of Cipher Image, (c) vertical correlation coefficient of cipher image 

      Table 3.4: Correlation Coefficient between Original and Encrypted Images 

  

      

 

 

 

 

 

                               Table 3.5 Lena Image Comparison 

 

                    

 

 

  

 

 

3.13   Information entropy analysis 

          Pixel values in any grayscale image range from 0 to 255, and the whole image requires 8 bits 

to represent. If the cipher image's information entropy is 8 bits or near to it, the cryptosystem is more 

resilient against statistical attacks. Table 3.6 is about information entropy. Table 3.7 i s  about 

comparison of information entropy of Lena image. 

Image 
 

Lena Pepper Baboon Nike Airplane 

 Plain  Cipher Plain Cipher Plain Cipher Plain Cipher Plain Cipher 

Horizontal 0.9669 0.0008 0.9822 0.0046 0.9717 0.0047 0.9833 0.0090 0.9669 0.0016 

Vertical  0.9818 0.0004 0.9856 0.0039 0.8943 -0.0001 0.9836 0.0013 0.9666 -0.0015 

Diagonal 0.9521 0.0020 0.9697 -0.0018 0.9275 -0.0011 0.9596 -0.0006 -0.9395 -0.0003 

Method  Horizontal Vertical  Diagonal 

Proposed  0.0008 0.0004 0.0020 

Ref. [40] -0.0007 -0.0003 -0.0007 

Ref. [39] -0.0048 -0.0112 -0.0045 

Ref. [37] 0.0015 0.0043 0.0023 

Ref. [38] -0.0008 -0.0025 0.0010 
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                  Table 3.6: The Results of Information Entropy 

 

                                                                 

 

                      Table 3.7:  Comparing the Information Entropy of Lena Image 

 
 

 

3.14   Resistance of Differential attack 

           Our experiment creates a new image by randomly selecting 200 pixels from the basic image 

and altering their values. The cipher images 𝐶1and 𝐶2 are created by encrypting the images were 

created using the same secret key. Table 3.8 shows the average maximum and minimum values of 

NPCR 99.21 and UACI 33.59, whereas Table 3.9 compares NPCR and UACI values.             

                         Table 3.8: Average NPCR and UACI values for different plain images. 

                            
 

 

 

 

             

                    Table 3.9: Comparison of NPCR and UACI Results for Lena Image 

 

 
                                              

             

  

                3.15   Encryption quality 

           Peak signal to noise ratio (PSNR) values increase as mean square error (MSE) values decrease, showing 

that the plain and decrypted images are more similar. Lossless encryption is accomplished by the suggested 

image encryption method.             

                 3.16   Speed and Computational complexity  

          It is critical to evaluate the encryption or decryption time and complexity of the algorithm.   

Table 3.10 displays the encryption time used by the algorithm.           

                       Table 3.10: Suggested Algorithm's Encryption/Decryption Time (in seconds) 

 
 

                                        

Image Lena Peppers Baboon Airplane Nike 

Entropy(original Image)  7.6112 7.1842 7.7319 6.7631 1.0027 

Entropy(Encrypted Image) 7.9995 7.9889 7.9974 7.9989 7.4856 

Image Proposed Ref. [40] Ref. [39] 

Lena 7.9995 7.9997 7.9963 

Image Lena Pepper Baboon Airplane Nike 

NPCR (%) 99.2157 99.2130 99.2252 99.6128 99.2272 

UACI (%) 33.590 32.6708 32.8760 32.5345 33.5607 

Algorithm Proposed Ref. [40] Ref. [39] Ref. [37] Ref. [38] 

NPCR (%) 99.21 99.6193 99.6228 99.60 99.60 

UACI (%) 33.59 33.4286 37.7041 33.46 33.50 

Image Lena Peppers Baboon Airplane Nike 

speed 0.139008 0.139435 0.139999 0.137665 0.196549 
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                                                     Chapter 4 

A NEW MULTIPLE IMAGE ENCRYPTION SCHEME 

BASED ON CHAOTIC SYSTEMS 

 

The chaotic behavior of the map has shown great promise in a variety of chaos-based encryption 

schemes. However, its narrow parameter space and non-uniform probability density distribution make 

it less useful for cryptography applications. The modified map, a novel method that combines sine, 

cosine and tangent functions, is proposed in this research to improve chaotic performance and 

provide a more uniform distribution. A more resilient and adaptable chaotic system that is appropriate 

for uses like encryption that demand a high degree of randomness is the primary result. 

4.1   Formulation of New Map 

         The Sin map is a classic one-dimensional chaotic system with high speed that has been used in 

a variety of chaos-based encryption techniques. Equation 4.1 defines the control parameter µ, which 

ranges from 0 to 1, and the iteration state 𝑥𝑖.                                    

                                             𝑥𝑖+1 = µsin (𝜋𝑥𝑖)                    0 < 𝜇 ≤ 1                                        4.1) 

When the Lyapunov exponent is not always positive, the system becomes insufficiently complicated. 

Figures 4.1(a) and (b) show that the sine map becomes chaotic only when the parameter μ is between 

[0.87, 1]. Figures 4.1 (c) and (d) show the density probability distribution of a sine map at μ = 0.9 and 

μ = 1. The sine map is clearly distributed unevenly. Despite being commonly utilized, the sine map 

is less appropriate for secure cryptography applications due to its uneven density distribution and lack 

of complexity. Improving the chaotic performance and attaining a consistent distribution to improve 

security are the challenges. 

 

 

  

 

 

 

 

 

 

 

 

 

(a)                                                                                (b) 
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                                                    (c)                                                                             (d) 

Figure 4.1: (a) Bifurcation, (b) Lyapunov exponent, 

(c) and (d)Probability Distribution of Sin map (µ=0.9, µ=1)  

We suggest a piecewise chaotic map to enhance the chaotic performance of the sine map. We changed 

the sine map to use the sin, cos, and tan functions to enhance more chaotic performance. The segment 

intervals are calculated using the parameter μ ∈ (0, 0.5). Figures 4.2 (a) and (b) show the Lyapunov 

exponent and the bifurcation diagram. The bifurcation diagram is more complicated than the sine 

map, and the Lyapunov exponents are always positive. As a result, the new chaotic map improves 

chaotic performance and shows more sophisticated dynamic behavior. Figures 4.2 (c) and (d) show 

the map's density probability distribution for different parameter values. The new map's density 

probability distribution is relatively uniform for μ ∈ (0, 0.1), with less than 0.3% difference between 

the highest and lowest values. To achieve good ergodicity and unpredictability, set the value of μ in 

the interval (0, 0.1), as given in equation 4.2. 

𝑥𝑖+1 = 𝑀𝑃𝐶𝑀(𝑥𝑖) 

𝑥𝑖+1 =

{
 
 

 
 

 

𝑠𝑖𝑛(𝜋𝑥𝑖)                                      𝑖𝑓 𝑥𝑖 ≤ 𝜇 𝑜𝑟 𝑥𝑖 > 1 − 𝜇

𝑐𝑜𝑠 (
2µ(𝑥𝑖 − µ)

1 − 2µ
𝜋)                                     𝑖𝑓 𝜇 < 𝑥𝑖 ≤ 0.5

𝑡𝑎𝑛 [(1 − µ +
(2𝑥𝑖 − 1)µ

1 − 2µ
)𝜋]        𝑖𝑓 0.5 < 𝑥𝑖 ≤ 1 − 𝜇

                                      4.2) 

 
 

 

 

 

 

 

 

 

 

 

                                          

(a)                                                                                  (b) 



 

 

35 
 

 

 

 

 

 

 

                                                            (c)                                                           (d) 

Figure 4.2 (a) Bifurcation and (b) lyapunov exponent 

(c) and (d) Probability Distribution of MPCM 

4.2   Lyapunov Exponent Equation 

         It is computed as follows equation 4.3. 

µ = lim
𝑛→∞

1

𝑛
∑ 𝑙𝑜𝑔𝑛
𝑖=1 |

𝑑𝑓𝑖(𝑥)

𝑑𝑥
|                                                                                        4.3) 

Where µ is the lyapunov exponent, n is the number of iterations and  𝑓𝑖(𝑥)  is the 𝑖𝑡ℎ rate of map. 

𝟏. 𝑭𝒐𝒓 𝒙𝒊 ≤ 𝝁 𝒐𝒓 𝒙𝒊 ≥ 𝟏 − 𝝁 

𝑓(𝑥𝑖) = sin(𝜋𝑥𝑖) 

𝑑

𝑑𝑥𝑖
(sin(𝜋𝑥𝑖)) = 𝜋𝑐𝑜𝑠𝜋𝑥𝑖 

2. For 𝝁 < 𝒙𝒊 ≤ 𝟎. 𝟓 

𝑓(𝑥𝑖) = 𝑐𝑜𝑠(
2µ(𝑥𝑖−µ)
1−2µ

𝜋) 

Let 𝑡 =
2µ(𝑥𝑖−µ)
1−2µ

𝜋 

𝑓(𝑥𝑖) = 𝑐𝑜𝑠𝑡 

𝑑

𝑑𝑥𝑖
(𝑐𝑜𝑠𝑡) = −sint

𝑑𝑡

𝑑𝑥
 

                                                                                               
𝑑𝑡

𝑑𝑥
=

2µ 𝜋

1−2µ
 

                                                         𝑓′(𝑥𝑖) = −sin (
2µ(𝑥𝑖−µ)
1−2µ

𝜋) 2µ 𝜋
1−2µ

 

3. 𝑭𝒐𝒓 𝟎. 𝟓 < 𝒙𝒊 ≤ 𝟏 − 𝝁 

𝑓(𝑥𝑖) = tan (1−µ+
(2𝑥𝑖−1)µ
1−2µ

𝜋) 

Let 𝑣 = 1−µ+ (2𝑥𝑖−1)µ
1−2µ

𝜋                                

𝑑

𝑑𝑥𝑖
(𝑡𝑎𝑛𝑣) = 𝑠𝑒𝑐2(𝑣)

𝑑𝑣

𝑑𝑥𝑖
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𝑑𝑣

𝑑𝑥𝑖
=

2µ 𝜋
1−2µ

 

𝑓′(𝑥𝑖) = 𝑠𝑒𝑐
2 (1− µ+

(2𝑥𝑖−1)µ
1−2µ

𝜋)
2µ 𝜋
1−2µ

 

4.3  The Chaotic System that is Being Shown 

      This method reduces the μ parameter space, but when μ is fixed in the interval (0, 0.1) distribution, 

the chaotic map can produce chaotic sequences with uniform probability density. The security of the 

encryption approach is compromised when the value of parameter 𝜇 is limited because parameters 

are typically utilized as secret keys in chaos-based encryption systems. The Coupled Chaotic Map is 

intended to solve this issue and further complicate chaotic systems. By linking parameters, the one-

dimensional chaotic map can become multi-dimensional. Examine the definition of "four-

dimensional" in equation 4.4 below. 

                                           

{
 

 
𝑥 = 𝑀𝑃𝐶𝑀(𝜆𝑥 + (1 − 𝜆)𝑦),

𝑦 = 𝑀𝑃𝐶𝑀(𝜆𝑦 + (1 − 𝜆)𝑧),

𝑧 = 𝑀𝑃𝐶𝑀(𝜆𝑧 + (1 − 𝜆)𝑤),
𝑤 = 𝑀𝑃𝐶𝑀(𝜆𝑤 + (1 − 𝜆)𝑥),

                                                 4.4) 

The coupling parameter in this equation is λ, and its value ranges from 0 to 1. The MPCM total 

parameter space is expanded with more distinct dimensional variables and control parameters for each 

dimensional variable. The experiment shows that the MPCM can generate chaotic sequences with a 

uniform probability density distribution for 𝜆 ∈  [0, 1] and 𝜇 ∈  (0,0.1]. Figures 4.3 (a) to (d)) 

illustrate the density probability distributions of each MPCM dimension variable at 𝜇 =  0.05 and 

𝜆 =  0.995. The density probability's maximum and minimum values are calculated to be less than 

0.3%. Because of its high-dimensional chaotic nature and uniform probability density distribution, 

the MPCM exhibits complex dynamic behavior and elaborate structures, providing a solid foundation 

for the development of encryption methods. 

 

  

 

                                                                 

 

  

 

 

 

 

 

 

(a)                                                                (b) 
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                (c)                                                              (d) 

                   Figure 4.3:  Displays the density probability distribution µ=1 and 𝜆=0.995 

                                            (a) vary =w, (b) vary=x, (c) vary=y and (d) vary=z 

4.4   Time Series and Phase Diagrams 

        The chaotic map's performance is assessed using time series and a phase diagram.The 

proposed map spans the entire region indicated by the Figure 4.4 (a) and (b), which shows that 

the data distribution covers considerably greater territory. The lack of localization implies that 

the pseudo random sequence is uniformly distributed and random in order to attain a high 

diffusion capacity. The phase diagram shows that at µ=0.9, the system is chaotic and ergodic. 

 

 

 

 

 

 

 

 

 

 

 

 

                           

                                                                                                                                                                       

                (a)                                                                      (b)                                    

                                     Figure 4.4: (a) Time series and (b) Phase Space diagram. 

   

4.5   Image Encryption Scheme Using MPCM 

        In the modern digital era, image encryption is crucial for securing multimedia content 

during storage and transmission. Traditional cryptographic methods may not offer the 

computational efficiency or complexity needed for high-dimensional image data. This work 

presents a robust image encryption algorithm based on chaotic sequences generated using the 

Modified Piecewise Chaotic Map (MPCM). The system utilizes multi-dimensional coupling 
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of chaotic maps to maximize unpredictability, and it divides the encryption process into two 

core stages: confusion (permutation of pixels) and diffusion (modification of pixel values). 

 4.5.1   Parameters 

            Upload the image. If the image I is in RGB, I convert it to grayscale.  Choose 𝜇 ∈

[0,0.5] is the control parameter of Modified Chaotic Map and λ∈ [0.99,1] is the coupling 

strength of map. Initial values of Modified Chaotic Map are 𝑥0, 𝑦0, 𝑧0, 𝑤0 ∈ [0, 1]. 

4.5.2 Chaotic Sequence Generation MPCM  

4.5.2.1   MPCM Function   

𝑥𝑖+1 =

{
 
 

 
 

 

𝑠𝑖𝑛(𝜋𝑥𝑖)                                      𝑖𝑓 𝑥𝑖 ≤ 𝜇 𝑜𝑟 𝑥𝑖 > 1 − 𝜇

𝑐𝑜𝑠 (
2µ(𝑥𝑖 − µ)

1 − 2µ
𝜋)                                     𝑖𝑓 𝜇 < 𝑥𝑖 < 0.5

𝑡𝑎𝑛 [(1 − µ +
(2𝑥𝑖 − 1)µ

1 − 2µ
)𝜋]        𝑖𝑓 0.5 < 𝑥𝑖 ≤ 1 − 𝜇

                                             

 

4.5.2.2   Coupled MPCM 

𝑥 ← 𝑀𝑃𝐶𝑀(𝜆𝑥 + (1 − 𝜆)𝑦),

𝑦 ← 𝑀𝑃𝐶𝑀(𝜆𝑦 + (1 − 𝜆)𝑧),

𝑧 ← 𝑀𝑃𝐶𝑀(𝜆𝑧 + (1 − 𝜆)𝑤),
𝑤 ← 𝑀𝑃𝐶𝑀(𝜆𝑤 + (1 − 𝜆)𝑥),

 

                The system evolves for a total of 2 × (𝑀 ×  𝑁) iterations, where 𝑀 and 𝑁 are the 

dimensions of the image. The first half of the generated chaotic values are utilized for 

permutation, while the second half is used for diffusion. 

4.5.3   Confusion Phase (Permutation)           

            Flatten image I to 1D vector V of length and generate chaotic sequence of 

length 𝐿 = 𝑀 × 𝑁 . Convert each chaotic value to an Integer index 𝑃 =

𝑚𝑜𝑑(𝑓𝑙𝑜𝑜𝑟(𝑆. 𝐿), 𝐿) + 1, sort the sequence to get the permutation order. Rearrange vector V 

using permutation indices and reshape back to matrix form to get permuted image 𝐼𝑝. 

4.5.4   Diffusion Phase (Pixel Modification) 

             Use the second half of the chaotic sequence and convert values to the integer. D is the 

diffusion key 𝐷𝑖 = 𝑚𝑜𝑑 (𝑓𝑙𝑜𝑜𝑟⌊(𝑆𝑖 . 10
10), 256⌋). For each pixel 𝐼𝑝(𝑖, 𝑗) compute that is  

𝐼𝑒𝑛𝑐(𝑖, 𝑗) = 𝑚𝑜𝑑(𝐼𝑝(𝑖, 𝑗) + 𝐷(𝑖, 𝑗), 256) or use XOR: 𝐼𝑒𝑛𝑐(𝑖, 𝑗) = 𝑏𝑖𝑡𝑥𝑜𝑟 (𝐼𝑝(𝑖, 𝑗), 𝐷(𝑖, 𝑗)) 

4.5.5     Out Put Encrypted Image 

               Output the final encrypted image 𝐼𝑒𝑛𝑐 and Optionally compute. 
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4.5.6  Encryption Algorithm 

        

               
 
 
 
 
 
 
 
 
 
 
 
 
 
    
  
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Algorithm 4 Image Encryption using MPCM 
1:  Input: Grayscale image 𝐼 of size 𝑀 × 𝑁             
2: Initialize Parameters  
3: Set MPCM control parameter µ ∈ [0,0.5] 
4: Set MPCM coupling strength 𝜆 ∈ [0, 1] 
5: Initial chaotic values 𝑥0,𝑦0, 𝑧0, 𝑤0 ∈ [0,1] 

6: Read Input image 𝐼 and convert to grayscale if necessary 
7: 𝐿 = 𝑀 ×𝑁 represents the total number of pixels. 
8: Flatten the image 𝐼 into a one-dimensional vector 𝑉 of length 𝐿 
9: Chaotic sequence generation 
10: Initialize the chaotic variables  𝑥0, 𝑦0, 𝑧0, 𝑤0 
11: 𝐹𝑜𝑟 𝑖 = 1 𝑡𝑜 2𝐿 
12: 𝑥′ = 𝑀𝑃𝐶𝑀(𝑥),  𝑦′ = 𝑀𝑃𝐶𝑀(𝑦),   𝑧′ = 𝑀𝑃𝐶𝑀(𝑧),

𝑤′ = 𝑀𝑃𝐶𝑀(𝑤)   
13: Apply Couple Map system: 

𝑥 ← 𝑀𝑃𝐶𝑀( 𝜆𝑥′ + (1 − 𝜆)𝑦) 

𝑦 ← 𝑀𝑃𝐶𝑀( 𝜆𝑦′ + (1 − 𝜆)𝑧) 

𝑧 ← 𝑀𝑃𝐶𝑀( 𝜆𝑧′ + (1 − 𝜆)𝑤) 

𝑤 ← 𝑀𝑃𝐶𝑀( 𝜆𝑤′ + (1 − 𝜆)𝑥) 

𝑆𝑖 = 𝑚𝑜𝑑 (𝑥, 1) 𝑎𝑠 𝑡ℎ𝑒 i-th element of the chaotic sequence S  
14:  CONFUSE(image, chaotic Sequence) 𝑆𝑝𝑒𝑟𝑚 = 𝑆(1: 𝐿) 

15: L ← length(image) 

16: for 𝑖 =  1 to 𝐿 do 

17: 𝑃 (𝑖) ← 𝑚𝑜𝑑(⌊𝑆(𝑖). 𝐿 ⌋, 𝐿) + 1 

18: end for 

19: permuted ← image(𝑃 ) 

20: Return       Permuted 

21: DIFFUSE (image, chaotic Sequence) 𝑆𝑑𝑖𝑓𝑓 = 𝑆(𝐿 + 1:2𝐿) 

22: Convert each value to an 8bit diffusion key: 

𝐷𝑖 = 𝑚𝑜𝑑 (⌊(𝑆𝑑𝑖𝑓𝑓(𝑖). 10
10)⌋, 256) 

23:   𝐼𝑒𝑛𝑐(𝑖, 𝑗) = 𝑚𝑜𝑑(𝐼𝑝(𝑖, 𝑗) + 𝐷(𝑖, 𝑗), 256) 

24: Reshape: 𝑉𝑒𝑛𝑐 →  𝑀 × 𝑁 𝑚𝑎𝑡𝑟𝑖𝑥 

25: Out Put → 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝐼𝑚𝑎𝑔𝑒 

26: end 
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4.5.7   General Example of Encryption 

              Let’s assume we have a small 4 × 4 grayscale image: 

Original image=[

12 45 78 34
56 89 23 67
90 123 150 200
34 66 99 111

] 

Step 1:   Permutation  

    Original image (flattened to 1D): 

𝐹𝑙𝑎𝑡 𝑖𝑚𝑎𝑔𝑒 = [12, 45, 78, 34, 56, 89, 23, 67, 90,123,150,200,34,66,99,111] 

Generated permutation vector: 

𝑃 =  [5, 1, 16,9,12,3,7,2,10,4,6,11,13,14,8,15] 

Apply Permutation: 

𝑃𝑒𝑟𝑚𝑢𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 = [56, 12, 111, 90, 200, 78, 23, 45, 123,34,89,150,34,66,67,99] 

  Step 2:   Diffusion 

                                     𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝐾𝑒𝑦 = [13,21,15,77,101,33,9,60,1,14,42,55,3,10,7,6] 

                                    Apply diffusion using XOR 

                                              𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑣𝑒𝑐𝑡𝑜𝑟 =  𝑏𝑖𝑡𝑥𝑜𝑟 (𝑃𝑒𝑟𝑚𝑢𝑡𝑒𝑑 𝑉𝑒𝑐𝑡𝑜𝑟, 𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝐾𝑒𝑦) 

                                For example: 

                                                                                     𝐵𝑖𝑡𝑥𝑜𝑟 (56, 13) = 53 

                                                                                     𝐵𝑖𝑡𝑥𝑜𝑟 (12, 21) = 25 

                                                                                     𝐵𝑖𝑡𝑥𝑜𝑟( 111, 5) = 106 𝑎𝑛𝑑 𝑠𝑜 𝑜𝑛 

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑣𝑒𝑐𝑡𝑜𝑟 = [53, 25, 106, 23, 173, 111, 30, 17, 122, 44, 115, 173, 33, 72, 68, 101] 

                           Reshape into 4×4: 

                                                           𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 = [

53 25 106 23
173 111 30 17
122 44 115 173
33 72 68 101

] 
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4.6   Flowchart of the Encryption Process                     

   

Figure 4.5: Flowchart of the Encryption Process 

 

4.7   Image Decryption Scheme 

          Flatten the encrypted image 𝐼𝑒𝑛𝑐 in to 1D vector 𝑉𝑒𝑛𝑐 of length L. For decryption 

regenerate the chaotic sequence using same parameters.  Initialize the chaotic variables 

𝑥, 𝑦, 𝑧, 𝑤 using the same values 𝑥0, 𝑦0, 𝑧0, 𝑤0 as used in encryption. Generate chaotic sequence 

length 𝑆 of length 2𝐿 using the MPCM and same coupling parameter. 

4.7.1   Inverse the Diffusion Process 

              For each 𝑖 ∈ [1, 𝐿] compute the diffusion key: 

                                                                   𝐷𝑖 = 𝑚𝑜𝑑(⌊𝑆𝑑𝑖𝑓𝑓(𝑖). 10
10⌋  × 256   

For each pixel 𝑖 ∈ [1, 𝐿] reverse the diffusion operation. 

 
 

 

 

Split chaotic sequence 

 

 

Confusion Diffusion 

 

𝑃 = 𝑚𝑜𝑑(𝑓𝑙𝑜𝑜𝑟(𝑆. 𝐿), 𝐿) + 1 

 

 

XOR: 𝐼𝑒𝑛𝑐(𝑖, 𝑗) = 𝑏𝑖𝑡𝑥𝑜𝑟 (𝐼𝑝(𝑖, 𝑗), 𝐷(𝑖, 𝑗)) 
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𝑉𝑝(𝑖) = 𝑚𝑜𝑑(𝑣𝑒𝑛𝑐(𝑖) − 𝐷(𝑖) + 256,256) Or 

XOR: 𝐼𝑝(𝑖, 𝑗) = 𝑏𝑖𝑡𝑥𝑜𝑟 (𝐼𝑒𝑛𝑐(𝑖, 𝑗), 𝐷(𝑖, 𝑗)) 

The result is permuted image vector. 

4.7.2   Inverse Permutation 

             For each 𝑖 ∈ [1, 𝐿] calculate permutation index 𝑃𝑖 = 𝑚𝑜𝑑(⌊𝑆𝑝𝑒𝑟𝑚(𝑖. 𝐿)⌋, 𝐿 + 1) 

Determine the inverse permutation by finding the original position of each pixel: 

               𝜋−1(𝑃) = 𝑎𝑟𝑔𝑠𝑜𝑟𝑡(𝑃) 

Apply the inverse permutation to 𝑉𝑝 to obtain the original pixel order vector 𝑉 Reshape the 

vector into matrix form and get the decrypted image. 

4.7.3   Image Decryption Algorithm 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.7.4   Example of Decryption Process 

                                                           𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 = [

53 25 106 23
173 111 30 17
122 44 115 173
33 72 68 101

] 

Algorithm 4 Image Decryption Using MPCM 

1: Input Encrypted Image 𝐼𝑒𝑛𝑐 , same chaotic parameter used in 

encryption 

2: Flatten 𝐼𝑒𝑛𝑐into 1D vector 𝑉𝑒𝑛𝑐 

2: Generate chaotic sequence 𝑆 of length 2𝐿 using MPCM 

3: Split sequence: 

                   𝑆𝑑𝑖𝑓𝑓 = 𝑆[𝐿: 2𝐿 − 1] 

                   𝑆𝑝𝑒𝑟𝑚 = 𝑆[∅: 𝐿 − 1] 

4: For 𝒊 =  𝟏 to 𝑳 do 

5: Reverse diffusion: 

                                        𝐷𝑖 ← 𝑚𝑜𝑑(⌊𝑆𝑑𝑖𝑓𝑓(𝑖). 10
10⌋  × 256   

                                      𝑉𝑝(𝑖) ← 𝑚𝑜𝑑(𝑣𝑒𝑛𝑐(𝑖) − 𝐷(𝑖) + 256,256) 

 

6: End for 

7: For 𝒊 = 𝟏 to 𝑳  do 

8: 𝑃𝑖 ← 𝑚𝑜𝑑(⌊𝑆𝑝𝑒𝑟𝑚(𝑖. 𝐿)⌋, 𝐿 + 1) 

9: End for 

10: 𝜋−1(𝑃) = 𝑎𝑟𝑔𝑠𝑜𝑟𝑡(𝑃) inverse Purmutaion 

11 For 𝒊 = 𝟏 to 𝑳 do 

12: 𝑽[𝒊] ← 𝒗𝒑[𝝅
−𝟏(𝒊)] 

13: End for 

14: Reshape V into 𝑀 ×𝑁 → 𝐼𝑑𝑒𝑐 

15:    Return 𝑰𝒅𝒆𝒄 
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Flatten it: 

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑣𝑒𝑐𝑡𝑜𝑟 = [53, 25, 106, 23, 173, 111, 30, 17, 122, 44, 115, 173, 33, 72, 68, 101] 

  

Step 1:   Reverse Diffusion (XOR with same key) 

                                               𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝐾𝑒𝑦 = [13, 21, 15, 77, 101, 33, 9, 60, 1,14, 42, 55, 3, 10, 7, 6] 

  

Apply XOR again: 

Permuted vector =  bitxor (Encrypted Vector, Diffusion Key) 

                                                       = [56, 12, 111, 90, 200, 78, 23, 45, 123, 34, 89, 150, 34, 66, 67, 99] 

Reshape into Matrix: 

                                        𝑃𝑒𝑟𝑚𝑢𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 = [

56 12 111 90
200 78 23 45
123 34 89 150
34 66 67 99

] 

Step 2:   Reverse Permutation 

 𝑷𝒆𝒓𝒎𝒖𝒕𝒂𝒕𝒊𝒐𝒏 𝒊𝒏𝒅𝒆𝒙 = [𝟓, 𝟏, 𝟏𝟔, 𝟗, 𝟏𝟐, 𝟑, 𝟕, 𝟐, 𝟏𝟎, 𝟒, 𝟒𝟔, 𝟏𝟏, 𝟏𝟑, 𝟏𝟒, 𝟖, 𝟏𝟓] 

𝑹𝒆𝒗𝒆𝒓𝒔𝒆 𝑰𝒏𝒅𝒆𝒙 = [𝟐, 𝟖, 𝟔, 𝟏𝟎, 𝟏, 𝟏𝟏, 𝟕, 𝟏𝟓, 𝟒, 𝟗, 𝟏𝟐, 𝟓, 𝟏𝟑, 𝟏𝟒, 𝟏𝟔, 𝟑] 

Now apply it: 

                             Original vector = Permuted Vector (Reverse Index) 

                                                     = [12, 45, 78, 34, 56, 89, 23, 67, 90, 123, 150, 200, 34, 66, 99, 111] 

Reshape into original 4×4 matrix: 

                                              𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐼𝑚𝑎𝑔𝑒 = [

12 45 78 34
56 89 23 67
90 123 150 200
34 66 99 111

] 

4.8   Experiment Results and Security Analysis 

        The experiment uses following keys: 

 𝑥 = 0.226598532502152, 𝑦 = 0.715260198702623, 

 𝑧 = 0.0.271238570940165, 𝑤 = 0.619035721685213, 

𝜆 = 0.434214444, µ = 0.9819349999. We test the suggested encryption scheme's 

performance and security features using MATLAB (R2018b) on a standard images 

“Cameramen”, “Airplane”, “Nik logo”, “Peppers” and “Baboon” are used to test the result. 

The encryption and decryption result shown in Figure 4.6 (a), (b) and (c). All of the 

information in the plaintext images is effectively hidden by the ciphertext images, which 

resemble random noise and lack any visual cues. Furthermore, the cipher and plaintext images 

are identical. Consequently, the experimental findings confirm that the method is accurate. 
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                  (a)                                                   (b)                                         (c)   
 

               Figure 4.6: (a) Plaintext of Cameraman Image (b) Encrypted Image (c) Decrypted image                                                                                                      

4.9   Statistical Analysis 

4.9.1   Analyzing the Histogram 

           The histogram depicts the distribution of the image's pixel values from 0 to 255. 

Because the pixel values are not evenly distributed and clustered within a preset interval, a 

high diffusion capacity image encryption system encrypts the plain image by changing the 

pixel values to achieve a uniform distribution. If the encryption is not uniform, an attacker can 

use statistical analysis to recover the original image. Figures 4.7 (a), (b), 4.8 (a), (b), 4.9 (a), 

(b) 4.10 (a), (b), 4.11 (a), (b), 4.12 (a), (b), 4.13(a), (b), 4.14 (a), (b), 4.15 (a), (b) 4.16 (a), (b) 

show plaintext images coupled with encrypted images and aslo illustrate histograms for both 

plain and cipher images. The findings indicate that the pixel values in each encryption image's 

histogram have a uniform distribution. 

 
 

 

 

 

   

 

 

 

 

 

 

                                             (a)                                                   (b) 

                                     

                                   Figure 4.7: (a) Cameraman (b) Encrypted Image 
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 (a)                                                                 (b) 

                       

                      Figure 4.8: Histogram (a) Plaintext Cameraman Image (b) Encrypted Image 
 

 

 

 

 

 

 

 

 

 

 

 

 

                            

                                               (a)                                                            (b) 
 

                              Figure 4.9: (a) Plaintext Image of Airplane (b) Encrypted Image  
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                          

(a)                                                        (b) 

                         

                        Figure 4.10: Histogram (a) Plaintext Airplane Image (b) Encrypted Image  
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                                            (a)                                                          (b) 

                     

                    Figure 4.11: (a) Plaintext Nike logo (b) Encrypted Image of Nike logo      

             
 

 

 

 

 

 

 

 

 

 

                      

                          (a)                                                  (b)      
                          Figure 4.12: Histogram (a) Plaintext Nike logo (b) Encrypted Image 
   

  

 

 

 

 

 

 

 

 

 

 

(a)                                                     (b) 
                                 

                               Figure 4.13: (a) Plaintext Peppers Image (b) Encrypted Image 
 

 

 

 

 

 

 

 

 

 

 

                                         

(a)                                                 (b) 

                       Figure 4.14: Histogram Peppers Image (a) Plaintext (b) Encrypted Image 



 

 

47  

 

 

  

 

 

 

 

 

 

 

 

                                                 

                                                 (a)                                                   (b) 

                                    Figure 4.15: (a) Baboon image (b) Encrypted Image of Baboon 
 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                (b) 

Figure 4.16: Histogram of Baboon Image (a) Plaintext (b) Encrypted image 

4.9.2    Adjacent Pixel Correlation and Information Entropy  

            The computation equation of information entropy is given in equation 2.9 and adjacent 

pixel correlation are given in equation 2.10. Table 4.3 displays the information entropy for 

both plaintext and encrypted images. Table 4.4 compares the entropy of the "Airplane image". 

The correlation test method computes the plain image's distribution and coefficient of 

correlation in the horizontal, vertical, and diagonal directions by randomly selecting 4,000 

nearby pixels from images and their corresponding cipher images. Table 4.1 displays the 

findings of the correlation coefficient computation, and Table 4.2 displays the comparison of 

the Airplane image. 

4.10   Ability of Defending Differential Attack 

          Our experiment creates a new image by randomly selecting 200 pixels from the basic 

image and altering their values. A variety of image types are calculated with expected values 

using the encrypted NPCR and UACI. The UACI and NPCR for "Airplane image 512" are 

34.7622% and 99.6221 percent, respectively. Table 4.5 contains NPCR and UACI results for 

all images. Table 4.6 compares the "Airplane Image" results by UACI and NPCR. The average 

NPCR and 𝑈𝐴𝐶𝐼 values for encrypted images are extremely close to the expected values.      
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Table 4.1: Correlation for all Three Directions for an Encrypted Images 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Table 4.2: Comparison of Airplane Image 

  

 

 

 

 

 

 

 

 

 

Table 4.3:  Entropy Information for Original and Encrypted Images 

 

 

 

 

 

 

 

 

 

 

 

Table 4.4: Comparison of Information of Entropy for Airplane Image                    
 

 

 

  

Table 4.5: Average NPCR and UACI values for Different Plain Image

Image 

 

Horizontal Vertical Diagonal 

 Plain image Cipher image Plain image Cipher image Plain image Cipher image 

Camera man 0.9339 0.0074 0.9646 -0.0058 0.9089 0.0011 

Airplane 0.9721 -0.0039 0.9819 -0.0023 0.9561 -0.0015 

Nike 0.9754 -0.0020 0.9772 0.0077 0.9422 0.0020 

Peppers 0.9901 -0.0004 0.9781 0.0003 0.9686 0.0006 

Baboon 0.9556 -0.0028 0.9249 0.0002 0.8881 0.0003 

Image Entropy(Original image) Entropy(Encrypted image) 

Lena 7.4939 7.9995 

Cameraman 7.1078 7.9958 

Airplane 6.8092 7.9996 

Nike 2.1719 7.9964 

Peppers 7.6557 7.9995 

Baboon 7.2890 7.9993 

Method Proposed Ref.[41] Ref. [39] Ref. [37] Ref. [38] 

Horizontal -0.0039 0.0008 − 0.0048 0.0015 − 0.0008 

Vertical -0.0023 0.0004 − 0.0112 0.0043 − 0.0025 

Diagonal -0.0015 0.0020 − 0.0045 0.0023 0.0010 

Image New Map Ref.[41] Ref. [39] Ref. [38] 

Airplane 7.9996 7.9995 7.9963 7.9992 

Image NPCR (%) UACI (%) 

Cameraman 99.5995 31.0926 

Airplane 99.6221 34.7622 

Nike 99.5876 48.7516 

Peppers  99.6037 32.0029 

Baboon 99.6075 27.6983 
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                                Table 4.6: Comparison of NPCR and UACI Results for Airplane Image 

Algorithm NPCR% UACI% 

New Map 99.6221 34.7622 

Ref.[41] 99.2100 33.5900 

Ref. [40] 99.6193 33.4286 

 

4.11   High Quality Encryption 

          Lossless encryption is achieved by the proposed image encryption method when the 

plain and decrypted images are identical. When the root mean square error (RMSE) becomes 

zero, the images are identical. It is impossible to differentiate the image when the peak signal 

noise ratio (PSNR) is higher than 30 db. Table 4.7 shows the irregular mean squared error 

(RMSE) and peak signal noise ratio (PSNR) values for each image.                                 

              Table 4.7: RMSE and PSNR values 

 

 

 

                                                                            
 

 

 

 

4.12   Multiple Image Encryption 

          This study proposes a novel multiple-image encryption (MIE) approach based on 

modified piecewise chaotic mappings (MPCM) to improve encryption efficiency and allow for 

the secure transmission of large amounts of images. Alice (the sender) first merges original 

images into a single, huge image, then splits into several pure image parts to generate mixed 

image elements. The mixed images parts are then combined to create a big-scrambled image, 

which is then divided into smaller images of the same size as the originals. Finally, uses 

filenames generated by a different MPCM system to name these tiny, encrypted images as 

shown in Figure 4.17 (a) and (b). In the meantime, a comparative analysis is conducted with 

an existing algorithm that is similar.           

       The new algorithm is highly secure and efficient, according to algorithm analysis and 

experimental results. Figure 4.18 (a) and (b) is about histogram analysis of multiple images and 

Table 4.6 is correlation of all three direction of encrypted images. Comparison for Information 

of entropy image is shown in Table 4.7 and Table 4.8 is about NPCR and UACI comparison. 

RMSE and PSNR value are shown in Table 4.9. 

Image RMSE PSNR 

Cameraman 97.1562 8.3814 

Airplane 108.5322 7.4196 

Nike 144.8709 4.9112 

Peppers 99.7535 8.1522 

Baboon 84.6889 9.5743 
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                                            Figure 4.17 (a) Multiple Images (b) Encrypted Images 
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                                  Fig 4.18 (a) Histogram of original image and (b) Encrypted multiple images   
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                  Table 4.6: Correlation Comparison for all Three Directions of an Encrypted Image 

Multiple Image Plain Image   Cipher Image   Ref.[41] 

Horizontal  0.9669 0.0015 -0.0014 

Vertical  0.9818 -0.0001 -0.0013 

Diagonal 0.9521 0.0014 0.0184 

 
                    Table 4.7: Comparison of Information Entropy for Multiple Image 

Image New Map Ref.[42] Ref.[39] 

Multiple image 7.9955 7.9952 7.9963 

 
 
                          Table 4.8: Comparison between Multiple Image NPCR and UACI 

 

 

 

 

 
                          

                     Table 4.9: RMSE and PSNR values of Multiple Images 

Image RMSE PSNR 

Multiple images 90.2239 90.0223 

 

                                                                  
                        

 

Multiple Image NPCR% UACI% 

New Map 99.6168 36.3132 

Ref.[41] 99.2100 33.5900 

Ref. [40] 99.6193 33.4286 

                Ref.[42] 99.6078 33.4741 



 

 

52  

CHAPTER 5 

CONCLUSION AND FUTURE WORK 
 

5.1   Conclusion 

         The proposed image encryption scheme leveraging the modified piecewise 

chaotic map (MPCM) and the Coupled MPCM (CMPCM) demonstrates strong 

potential in providing robust and sensitive image encryption. The proposed scheme 

offers a promising foundation for secure image encryption using chaotic systems. 

With the aforementioned extensions, the system can evolve into a comprehensive 

solution capable of addressing modern data security challenges in multimedia and 

communication technologies. 

5.2   Future direction 

        There are several important directions in which this research can be extended 

to further enhance its performance, applicability and security.  

5.2.1   Full-Color Image Encryption 

             At present, the encryption scheme converts RGB images into grayscale 

before processing. To maintain color fidelity and increase the complexity of the 

cipher, future extensions can involve the separate or joint encryption of the red, 

green, and blue channels. This would not only preserve image quality but also 

enhance security due to the higher dimensionality of the input data. 

5.2.2   Adaptive Chaos Control Parameters 

             Currently, the control parameters µ and λ used in the chaotic map are static. 

A more dynamic approach could involve making these parameters adaptive or 

image-dependent. For example, control parameters can be generated based on a 

cryptographic hash of the image content or an external secure key. This would 

improve key sensitivity and bolster resistance against known-plaintext and chosen-

plaintext attacks. 

5.2.3   Extension to Video and Volumetric Data Encryption 

            The methodology can be extended to encrypt video sequences or three- 

dimensional data such as medical imaging (e.g., MRI, CT scans). This would 
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involve the use of temporal and spatial chaos synchronization to preserve frame-

to-frame consistency while maintaining security. 

5.2.4   Hybrid Cryptographic Models 

             Combining chaos-based encryption with other cryptographic paradigms 

such as DNA computing, elliptic curve cryptography, or lattice-based encryption 

could lead to the development of hybrid models. These models can exploit the 

advantages of both approaches to create systems that are highly secure, 

computationally efficient, and adaptable to various data types.  

           The proposed scheme offers a promising foundation for secure image 

encryption using chaotic systems. With the aforementioned extensions, the system 

can evolve into a comprehensive solution capable of addressing modern data 

security challenges in multimedia and communication technologies.
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