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ABSTRACT

Title: An Efficient Encryption Technique Based on Coupled Map Lattices

This study introduces a highly secure image encryption technique based on coupled map lat-
tices (CMLs), a class of chaotic systems known for their sensitivity to initial conditions and
spatiotemporal complexity. The CMLs offer an ideal foundation for encryption due to its ability
to generate unpredictable and nonlinear transformations.

Although several chaos-based encryption methods have been explored in the past, many suffer
from narrow parameter ranges, limited key spaces, or insufficient resistance to modern crypto-
graphic attacks. To address these issues, we propose a novel two-parameter wide-range CMLs
model that enhances key generation and improves chaotic behavior across a broader parameter
space. The encryption process employs a dynamic key schedule, pixel permutation, and modular
diffusion using CMLs-generated sequences.

Comprehensive experimental evaluations demonstrate that the proposed method ensures high
entropy, minimal pixel correlation, and strong resistance to brute-force, occlusion, noise, and
differential attacks. It also outperforms existing techniques in both computational efficiency and

encryption strength.
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

This chapter explores chaotic systems in contemporary cryptography, comparing them with
established techniques like AES and RSA. Deterministic chaos offers advantages like erratic
key streams and effective diffusion-confusion processes. Early 1D systems had limitations like
limited parameter spaces and brute-force attacks. Modern systems like coupled map lattices
and 3D Lorenz attractors address these shortcomings may be instead. The chapter emphasizes
advancements in security claims, key lengths, formal security proofs, benchmarks, and efficient

implementations for limited resources.

1.1 Cryptography and Data Security

Information shared in electronic media has increased significantly in recent years. There are
threats to data transmitted through insecure channels due to technological advances. Information
must be protected from unauthorized access and changes and made available to an authorized
person when necessary. Secret writing hides information within ordinary files or communication
channels to prevent detection [1]. The primary goal of cryptography is secret writing, or crafting
the message so that only the intended person can decode it. It is essential to protect the security
and confidentiality of transmitted data.
Cryptography and data security are among the most significant scientific advances of the last
century. Cryptographers have proposed numerous techniques for data security. The three basic
categories of these techniques are cryptography, steganography, and watermarking. In cryptogra-
phy, the original information is transformed into an unreadable form before communicating on a
public network [2]. We can send or store private information over unsecured networks like the

Internet. It guarantees that only the intended recipient can access it [3]. The science of studying



and cracking encrypted communication is known as cryptanalysis. Cryptography, a key-based
encryption process, protects information from unauthorized access. It is divided into two main
categories: symmetric and asymmetric. In symmetric cryptography, the sender and recipient
share the same key for encryption and decryption. In contrast, asymmetric-key cryptography
uses a public key that is accessible to everyone and a key that is only known by authorized
users. Traditional cryptographic techniques are successful but have drawbacks, including high
computing cost, susceptibility to side channel attacks, and limited flexibility in low-resource

settings such as the Internet of Things [4].

1.1.1 Purpose and Need for Cryptography
In addition to protecting messages, cryptography also solves real-world problems that require

data security. Its primary goals in the modern era are [5]:
e Confidentiality: Two basic features of confidentiality are privacy and data confidentiality.

a. Privacy: Authorization assures one’s personal information won’t be violated.
b. Data Confidentiality: It is assured that attackers will either learn about or not be
able to access confidential or personal information.
o Integrity: Integrity includes the following:
a. System Integrity: A system aware of fulfilling the suggested concepts without
interference and unauthorized exploitation.
b. Data Integrity: There is a guarantee that the data are only legally recreated.

e Authenticity: The skill involves recognizing the individuals communicating and the source of

the data.

e Availability: The scheme’s accessibility to certified owners is modified to their specific needs.

1.2 Chaos Theory

Chaos theory studies deterministic systems that behave in seemingly random and unpre-
dictable ways [6]. A characteristic of these systems is their extreme sensitivity to initial conditions
and the "butterfly effect." This property, together with pseudo-randomness and ergodicity (uni-
form distribution of states), makes chaotic systems ideal for cryptography applications. Chaos

theory in cryptography began in the last decades of the twentieth century when researchers



demonstrated how chaotic maps may offer secure encryption keys and diffusion processes [7].
Chaos-based encryption is a viable substitute for conventional cryptographic techniques because

it provides dynamic key creation, faster computing, and resilience to statistical attacks [8].

1.2.1 Advantages of Chaotic Systems

Although chaotic systems have several benefits for encryption:
1. High Sensitivity to Initial Conditions: Chaotic sequences are extremely unpredictable
because even small changes in starting values or parameters can produce distinct results.
2. Ergodicity: The uniform coverage of the phase space by chaotic systems guarantees that the
sequences produced are evenly dispersed, which is essential for encryption diffusion.
3. Computational Efficiency: One-dimensional chaotic maps, such as the logistic map, are

appropriate for real-time encryption since they need less processing power.

1.2.2 Drawbacks of Chaotic System

In addition, they have several drawbacks that reduce their efficacy as independent cryptogra-
phy. The main disadvantages are listed below:
1. Restricted Chaotic Range: The chaotic behavior of many chaotic maps, such as the logistic
map, is limited to a small parameter range (e.g., i € [3.57,4]), which limits the key space.
2. Periodic Windows: Non-chaotic areas are frequently included in bifurcation diagrams of
chaotic maps, which lowers security and unpredictability.
3. Low-Dimensional Vulnerability: The power of standalone cryptography is limited by the

vulnerability of simple 1D chaotic maps to phase space reconstruction attacks.

1.3 Need for New Chaotic Maps in Modern Cryptography

Chaotic maps, such as Tent and Logistic maps, are commonly used in encryption but have
limitations [9]. They are vulnerable to brute-force attacks due to their small key spaces and
non-uniform results, exploited through frequency analysis [10]. Low-dimensional chaotic maps,
like 1D systems, have computing efficiency, but lack the complexity needed for strong security
[11]. High-dimensional chaotic systems, such as 3D Lorenz, require substantial computing
costs for real-time implementation on limited resources, making them unsuitable for modern
cryptographic applications [12].
Coupled Map Lattices (CMLs) have been explored as a better option for addressing security
issues [13]. CMLs offer a broader key space, improved resistance against brute-force attacks,

and better chaotic behavior. They also preserve computational efficiency, making them suitable



for real-time encryption. By combining spatial coupling with nonlinear interactions, CMLs offer

a balance between security, complexity, and performance.

1.4 Role of Chaotic Maps

Chaotic maps, mathematical functions with dense periodic orbits and topological mixing,
have become a revolutionary tool in contemporary cryptography due to their dynamical charac-
teristics [14]. These maps produce predictable pseudorandom sequences, providing a significant
advantage over conventional techniques for encryption, ensuring secure communication systems.
Chaotic maps are effective for image and video encryption because they break spatial correla-
tions through permutation and diffusion [15]. They increase complexity, making spatiotemporal
systems like coupled map lattices impervious to statistical techniques. Chaotic maps also play
a role in dynamic S-box design, improving block ciphers’ confusion features and enhancing
resistance to differential cryptanalysis [16].

Despite their advantages, chaotic maps face challenges in formal security proofs and standard-
ization. Unlike AES or RSA, which have strong mathematical foundations, they often require
empirical validation through statistical testing [17]. Future research should focus on developing
theoretical frameworks and refining hardware implementations for practical use, thereby pushing

the boundaries of secure communication and post-quantum cryptography.

1.5 Chaotic Maps in Image Encryption

Because of their ergodicity, pseudo-random behaviour, and sensitivity to initial conditions,
chaotic maps are very useful for image encryption. They meet cryptography requirements, offer
computational efficiency, and can produce intricate sequences, making them resistant to attacks
[18]. Chaotic maps also provide inherent confusion and diffusion, ensuring that even minor
changes to the input image yield distinct encrypted outputs. Chaotic maps have potential security
issues due to weak keys, predictable behavior, periodic sequences, lack of universal certification,
and difficulty in key management due to high-precision floating-point parameters [19]. If not
properly built, they are also susceptible to chosen-plaintext and known-plaintext attacks, making
their use in high-security sectors less secure than established algorithms like AES.
Chaotic maps effectively encrypt images, especially in situations requiring speed and dynamic
security [20]. However, their success depends on their implementation, integration with other
cryptographic methods, and resolution of accuracy issues. Traditional techniques may be better
for strict standards, but hybrid strategies combining chaos theory with algorithms can offer a

strong security-performance balance [21].



Complex mathematical structures with complicated, unpredictable dynamics are known as
chaotic systems. Creating encryption keys in cryptography is one of many uses for this char-
acteristic. From their chaotic trajectories, chaotic systems may also be used to derive genuine
randomness [22]. It is possible to generate samples and modify high-quality random numbers
appropriate for a range of cryptographic applications. Using chaotic trajectories and their sensi-
tivity to initial conditions, we can develop security techniques resistant to specific attacks, thus
improving the strength of encryption [23]. Chaotic maps require careful implementation and
analysis, even if they might be a valuable source of unpredictability for key creation [24]. The
efficacy of the key generation process depends on several factors, including parameter selection,
map choice, and security concerns [25]. Furthermore, preventing prospective attackers from
knowing the beginning state and other characteristics is essential to the system’s security [26].
Generating a chaotic map key is crucial to improving data protection and advancing cryptography
in the communication sector. Like mathematical riddles, chaotic systems demonstrate how even
little adjustments may have unexpected and startling effects [27]. There are practical applica-
tions for this unpredictability, such as creating secure messaging secret codes and assisting in
comprehending weather patterns [28]. Chaos serves as a reminder that, despite the complexity,
there may be a hidden order that has applications in everything from science to protecting our
digital world [29].

Because of its unpredictable pseudo-randomness and sensitivity to initial values, a chaotic
system is frequently utilized in digital image encryption. Examples of chaotic systems are
one-dimensional, multidimensional, spatiotemporal, and other types of chaotic maps. Spatial-
temporal chaotic systems exhibit more complicated chaotic behaviours, a broader chaotic area,
and lower computer overhead when compared to other chaotic systems. Applications for chaos
include secure communication, cryptography, and random number generation, where the capacity
to generate highly complicated and unpredictable pseudo-random sequences is essential [30].
Researchers can investigate and utilize the rich dynamics of chaotic systems for functional goals
while guaranteeing robustness and security in digital systems by carefully managing the digital

perturbations.

1.5.1 Chaotic Image Encryption Using Block Cipher
Block ciphers divide plaintext into equal-sized blocks, encrypting each separately [31].
Chaotic image encryption ensures high security using a chaotic map. Scharinger proposed a

technique based on Kolmogorov flows, processing full images as complete blocks.



The image-encryption approach uses logistic mapping and a discrete 3D Cat map to distribute
XOR and shuffle cubes, obtaining an encrypted image after reorganization and restoration to two

dimensions, as shown in Figure 1.1. Because of the association between the red (R), green (G),

n rounds

Degraded to 2D

Permutation&
Diffusion Operation

Convert to 3D

Original image Encrypted image

_—> Key Generator

Secret key

Figure 1.1: The Algorithm of the Image-Encryption Process

and blue (B) channels, color image encryption has to be improved in a few areas. Controlling
these channels throughout the encryption process is essential to guaranteeing data integrity and
confidentiality. More studies are required to create practical encryption algorithms for color
image. Using a 2D standard map and a 1D logistic map, Vinod Patidar and N. K. Pareek [32]
presented a symmetric image-encryption scheme that recovers the blue, red, and green channels

for XOR confusion and diffusion operations.

1.5.2 Chaos-Based Image Encryption Using Stream Ciphers

Because of their speed and security, stream ciphers are frequently utilized in cryptographic
fields. The method’s security is directly affected by the keystream generator’s performance.
Combining chaotic systems with stream ciphers requires the integration of chaotic maps and
keystream generators, with the primary technique being the construction of keystream generators
with chaotic systems [33].
Stream ciphers are used in traditional chaotic image encryption systems, although they have
limitations such as limited key spaces and low security. The coupling of low-dimensional chaotic
maps provides a novel method for image encryption based on stream ciphers. Shubo Liu and Jing
Sun [34] introduced a linked logistic map as a keystream generator, while Sahar Mazloom and
Amir Masud Eftekhari-Moghadam [35] suggested a chaos-based symmetric streaming method
for encrypting color images.

Researchers are developing new image-encryption methods by combining chaotic and frequency-



domain encryption. Preprocessing is required, as seen in Figure 1.2.

DWT or DCT

Encryption algorithm

Quantization operation

Coding operation

Coded image

Figure 1.2: Frequency-Domain Image Encryption Process

1.6 CML-Based Image Encryption

The early chaotic systems, such as low-dimensional systems, suffered from the drawback
of small key spaces. They were easily resistant to brute-force attacks, leading to the use of
high-dimensional systems such as Coupled Map Lattices (CMLs), which offered a much larger
key space and higher complexity, hence making them better suited to resist cryptanalytic methods
than the low-dimensional systems. In [36], the author introduced the first coupled map lattices
(CMLs) in 1982, a high-dimensional chaotic system. CML and other coupled map lattices
have very complex spatiotemporal behaviour and are also good candidates for image encryption

because of their chaotic behaviour. Researchers are still enhancing the chaotic properties of



CMLs [37] to improve the encryption process. In [38], the authors proposed the two-way coupled
logistic map lattices (TCMLs) that increases the chaotic range, which leads to an increase in the
security of the encryption process. The authors in [39] proposed another system, the nonlinear
coupled map lattices model, that combines the system’s linear dynamics and nonlinear dynamics,
increasing the unpredictability of the chaotic system.

Kapral modelled [40] chemical spatial phenomena using CMLs, by creating a renormalisation
group technique. In [41], the author attempted to apply CMLs to electrical circuits. Although
Kaneko’s concentration was broader, he remains the most active researcher in this field. The
study in [42] proposed a novel dynamical chaotic system to produce random numbers. In [43],
the authors proposed cryptosystems based on S-boxes generated by chaotic maps. Researchers
in [44] used a new approach that differed from standard chaotic maps to create chaos-based
S-boxes.

According to [45], the system has a large parameter space compared to traditional CMLs, and
each lattice phase is more efficient. The approach is appropriate for both secured communications
and chaotic encryption. In [46], the author suggests an alternative image encryption method that

uses CMLs spatially.

1.7 Applications of Image Encryption Based on Chaos Theory

The worldwide Internet of Things, satellites, and medical devices extensively use chaos-
based image encryption technologies. Techniques like bifurcation, open loop, and delayed
feedback control manage chaotic systems such as robotics, cryptography, mechanical engineering,
electrical engineering, and aeronautical engineering. These methods are crucial for stabilizing

the inputs and parameters of the system, which makes them applicable in various fields [47].

1.7.1 Chaos-Based Medical Image Encryption

In [48], mammography image encryption uses the Hill cypher and a chaotic system. An
FPGA-based encryption processor may be designed using the suggested method’s symmetric
algorithm. In [49], a logistic-map-based technique was presented for the safe online transfer
of medical images over public networks. Akram Belazi and Muhammad Talha [50] used DNA
technology, a hash function, and chaotic systems to create a medical image encryption method.
To safeguard the confidentiality of patients and medical data, the paper’s authors proposed a
medical image encryption system [51] that uses chaotic maps and dynamic replacement boxes.
Behrouz and Saleh [52] have presented a dynamic terminal mode sliding tracking technique for

sender-receiver synchronisation. Medical image encryption uses synchronized chaotic systems



to increase storage or transmission protection. The study demonstrates chaos theory’s security
in medical image encryption, outperforming traditional algorithms due to its robustness and

effectiveness through various analysis methods.

1.7.2 Chaos Image Encryption for Internet of Things Devices

The IoT expands the network of Internet-based devices, enabling the interconnectedness of
people, machines, and objects anytime and anywhere. Despite steady development in the past
decade, technology, administration, and security issues remain. To enhance security, academics
have attempted to implement chaotic encryption techniques, addressing the need for improved
security measures in the [oT. Chaotic systems like Cat and logistic maps are used to improve
multimedia data encryption [53, 54]. Jaishree and Arpit emphasize the importance of 6G
technological advances in securing multimedia data transfer across 6G networks in the IoT. They
introduce a hybrid image encryption method.
In [55], a safe technique was presented to improve the dynamics of chaotic maps generated on
microcontrollers, enabling secure wireless transmission on M2M systems and demonstrating

that chaotic maps offer adequate security performance.

1.7.3 Satellite Image Encryption Using Chaos

M. Usama [56] presented chaotic images from a satellite cryptosystem in that combines
several chaotic systems to enhance key space and security. Bentoutou and Bensikaddour [57]
presented a method for encrypting satellite images resistant to transmission errors and SEU.
Behrouz and Seyedeh [58] presented a finite-time synchronizing of chaos satellite image encryp-
tion technique that employs chaotic oscillators at the transmitter and receiving ends by fusing

the idea of finite-time synchronizing with Lyapunov stability theory.

1.8 Defence Against Cryptanalysis and Attacks

Chaos-based image encryption technology rapidly evolves, with various schemes enhancing
security, resilience, efficiency, and key space [59]. Researchers are exploring ways to undermine
and enhance these methods. Safeguarding image-encryption algorithms from attacks is a signifi-
cant challenge in image encryption. There is no completely safe encryption method [60].
Nonlinear functions for system parameters, along with time and state variables, can safeguard
chaos-based image encryption systems from attacks that utilize constant keys [61]. The authors
in [62, 63] provide guidelines for the security evaluation of chaotic encryption.

Rhouma and Safya’s [64] study on image-encryption techniques in hyperchaos revealed that
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encryption in CPA and CCA can be broken with just three plaintext/ciphertext pairs. By disclos-
ing the secret permutation mechanism, the algorithm in [65], among the earliest chaos-based
image-encryption methods, also demonstrated its insecurity against CCA in [66]. Later on, the
plan was refined in [67].

Yushu Zhang and Di Xiao [68] proposed the CPA method for chaotic image encryption that
focuses on S-Boxes, noting that the computational complexity is only O(128L), where L repre-
sents the total number of pixels in the image. A chaotic image-encryption technique based on
information entropy was also analyzed in [69], revealing its vulnerability to differential attacks
[70]. Zhen Li’s plaintext-related hyperchaotic encryption technique [71] has two significant
shortcomings. Lidong Liu and Zhaolun Zhang [72] pointed out that this method is reversible in

its structure and fails to change the grey value of a specific pixel during the diffusion process.

1.9 Literature Review

This section reviews several works that addressed the creation of random cryptographic
keys using chaotic maps. The study will comprehensively understand the applicability and
effectiveness of chaotic maps as a significant generating technique.
Researchers have been increasingly interested in dynamical systems in recent decades, especially
in chaotic maps, a kind of classical dynamical system [73]. We can generate new chaos sequences
by changing the parameters or initial values. These distinguishing features make chaotic maps
excellent tools in computer science and engineering. The high performance of chaotic maps
is particularly beneficial for pseudo-random number generators (PRNGs), image encryption,
and security applications. In [73], the authors use chaotic systems in cryptography, being the
first to encrypt digital information using chaotic maps. This work brought the use of central
properties of chaotic systems to the forefront as essential factors in securing an encryption sys-
tem. Encryption algorithms utilize one-dimensional and multidimensional chaotic systems [74].
Due to their complex structure and various features, MD chaotic maps are increasingly used in
image security. However, the computational complexity and difficulty of their software/hardware
implementations increase with the number of parameters. In contrast, one-dimensional chaotic
systems are simple to design and have a clear structure. However, they face three issues: (1)
The limited or discontinuous variation in chaotic behaviours; (2) The sensitivity to low-priced
evaluation using correlation and iteration functions; (3) The non-uniform distribution of data
about the chaotic sequences that are produced. Therefore, it is necessary to build new chaotic

systems with improved chaotic performance.
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As shown in Table 1.1, recent research shows that different chaotic encryption algorithms have
different key strengths. A novel chaotic map cryptography technique is presented in [75]. This
method focuses on the discrete cosine transform coefficients to achieve rapid encryption through
confusion and diffusion processes in the spectral domain. It utilises a random number generator
and Baker’s map to generate a Gaussian distribution diffusion pattern, allowing for key encryp-
tion up to 128 bits.

The authors of [76] present a novel approach to image encryption that utilizes affine transforma-
tions and chaotic maps. This method eliminates pixel correlations, producing the final encoded
image through an affine transformation. The security of this approach is validated by various
factors, including histogram analysis, contrast, PSNR (Peak Signal-to-Noise Ratio), entropy,
correlations, key space, key sensitivity, and resistance to differential attacks. It offers a robust,
practical, and reliable solution for secure communication applications.

The study in [77] uses a chaotic map to implement a system based on a digital speech signal. The
map’s discrete-time parameterization allows for adaptability and multiple dimensions, providing
powerful encryption capabilities.

A new technique for creating keystreams by combining the 3D Hénon and Cat maps is given
in [78]. The fundamental idea behind this approach is to generate random numbers using the
3D Hénon map, which is subsequently converted into a binary sequence. Security analysis also
highlights its high initial condition sensitivity and vast key space.

This study [79] proposes a chaotic framework that is extremely sensitive to initial values and
system variables by combining the image encryption method with a secret key. Chaos adds to
the durability of this system due to its intrinsic unpredictability. They used the inherent unpre-
dictability of chaotic approaches, particularly the Hénon and Arnold cat maps. The Hénon map
generates the encryption key, while the Arnold cat map shuffles pixels, ensuring data protection
by limiting unauthorized access.

This work uses initial key and chaos theory to create a secure key generation mechanism [80].
The first stage involves a 2048-bit sequence using chaotic equations. The second stage involves
a multi-phase procedure, creating 64 symbols or 512 bits for the key. The output is then passed
through a crude table and an XOR operation, resulting in a 3584-bit key. The chaotic key number
generator (CKNG), a pseudorandom number generator [81], is created using a two-dimensional
rational map and a two-dimensional Hénon map. CKNG has a long key length, sensitivity to

input values, and robust resistance against brute-force and differential attacks. It has passed strin-
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gent NIST testing and is suitable for various encryption applications due to its unpredictability.
The paper cited in [82] introduces a chaotic key generation technique that uses the 2D Hénon map
and the 3D Lorenz system. This method might generate numerous key sequences appropriate
for cryptographic applications by using floating-point integers and emphasizing the first two
digits to increase unpredictability. A two-dimensional improved hyperchaotic Hénon sine map
(2D-EHSHM) was developed using the remainder-after-division function to improve uniformity
and unpredictability in a two-dimensional hyperchaotic map [83]. The enhanced map has better
pseudorandom properties than the original version. The study also introduced a unique pseudo-
random number generator (PRNG) technique for generating highly random 8-bit pseudorandom
numbers. Positive results suggest PRNG may be helpful in cryptography, especially in low-cost
processor-based embedded security systems.

The study [84] presents an optical cryptosystem that enhances the Hénon chaotic map and the
gyrator transformation for color images. It offers three layers of protection: content, analysis,
and appearance security. The cryptosystem uses electro-optical techniques that help with po-
larisation to work well. It is resistant to statistical and traditional attacks and is sensitive to
minor modifications in the secret key. The cryptosystem outperforms other recently created

cryptosystems in durability and visual security [85].



Table 1.1: A Comparative Analysis of Recent Studies.

Reference Number of
Technique Performance
No. key in bits
The secret key provides a ro-
Affine transformation bust level of security, further
[75] 128 bits
and Chaotic maps bolstered by its powerful secu-
rity mechanisms.
The findings indicate a con-
Affine transformation sistent level of security, sup-
[76] 128 bits
and Chaotic maps ported by the strong attributes
of the secret key.
The system guarantees secu-
[77] Hénon map 256 bits rity integrity by protecting
against various attacks.
The system maintains its secu-
3D Hénon map and Cat
[78] 128 bits rity integrity despite various
map
attacks.
The positive evaluations sug-
The Arnold Cat map
[79] 2320 bits gest that this PRNG could ben-
and Hénon map
efit cryptography.
The study demonstrates a high
level of security, which is fur-
Initial key and Chaos
[80] 3584 bits ther strengthened by the se-
theory
cret key’s dependable security
characteristics.
The tool is helpful for various
Two-dimensional ratio- encryption applications since
[81] 2213 bits

nal map and Hénon map

it generates an infinite number

of pseudo-random sequences.

13
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CHAPTER 2

PERLIMINARIES

A thorough overview of the main concepts behind this study is given in this chapter. It starts
with cryptography before moving on to crucial processing techniques like representation and
improvement. With a focus on cryptographic keys, the chapter looks at cryptanalysis and attacks.
Furthermore, chaotic systems are used in multimedia encryption and pseudo-random number
generation, discussing their basic characteristics and behavior tests, emphasizing the need for a

comprehensive review of image encryption techniques based on chaos theory.
2.1 Cryptology
Cryptology is a concept that encompasses both cryptography and cryptanalysis [86]. The
classification of cryptology is summarized in Figure 2.1.
2.2 Cryptography
The study of secure communication between two parties via a public channel that keeps

private messages safe from hackers is known as cryptography. The five components of a

Cryptology
—_

|

Cryptographyl Cryptanalysis I

Figure 2.1: Classificaion of Cryptology
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cryptosystem—plaintext, encryption, ciphertext, decryption, and key, are used to create and

analyze techniques [87] shown in Figure 2.2.

Ciphertext HDecwption)—{ Plaintext J

Figure 2.2: Component of Cryptography

1. Plaintext: Plaintext refers to the original message.

2. Encryption: Encryption converts a readable message into an unreadable form, preventing

unauthorized parties from accessing it.
3. Ciphertext: Ciphertext is the term used to describe encrypted communication.

4. Decryption: Decryption is converting an encrypted message back to its plaintext format,

which is the original message.

5. Key: The private key is used secretly by authorized users, and the public key is disclosed

to everyone. Both keys are used for encryption and decryption.

2.2.1 Types of Cryptography
The flow diagram in Figure 2.3 demonstrates that cryptography can be categorized into three

categories based on key distribution.

Cryptography

| | |

Symmetric key Asymmetric key Hash Function

Figure 2.3: Types of Crpytography

1. Symmetric Key Cryptography
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2. Asymmetric Key Cryptography

3. Hash Function

1. Symmetric Key Cryptography

Symmetric key cryptography [88], also known as secret key cryptography, has been used in
public networks since 1976 for transmitting confidential messages. This method relies on a single
key for encryption and decryption, as Figure 2.4 illustrates. Notable examples of symmetric
key algorithms include the Advanced Encryption Standard (AES) [89], the Data Encryption
Standard (DES) [90], and Blowfish [91]. Block and stream ciphers are the two main categories
of symmetric encryption techniques. While stream ciphers handle encryption and decryption,
one byte of plaintext is decrypted at a time, and block ciphers encode and decode fixed-length
blocks of data.

Depending on the transform domain used during the encryption process, symmetric encryption

encryption decryption
plaintext ciphertext plaintext

Figure 2.4: Symmetric Key Cryptography

methods can be categorized into spatial-domain chaotic image encryption and frequency-domain
chaotic image encryption. Image encryption involves altering the position, value, or location
of pixels in digital images. The permutation-diffusion architecture uses two iterative stages:
permutation and diffusion. During permutation, pixels are rearranged, while diffusion gradually

changes pixels, as shown in Figure 2.5.
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Plain image
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(Pixel Permutation)

Key

Generator
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(Value Modification)

n rounds

Cipher image

Figure 2.5: The Design of Permutation-Diffusion Chaotic Image Encryption

2. Asymmetric Key Cryptography

Whitfield Diffie and Martin Hellman [92] proposed asymmetric key cryptography in 1976
to solve crucial security issues. Two keys are used in asymmetric cryptosystems, commonly
called public key algorithms: a private key for decryption and a public key for encryption.
While the private key is used to transmit sensitive data, the public key is used for sender
authentication. This technique, which is based on a mathematical function similar to substitution
and permutation, employs a one-way trapdoor function for key transmission between parties.
Figure 2.6 demonstrates using private and public keys for data encryption and decryption. The
primary elements of public key encryption are ciphertext (C), decryption using the recipient’s
private key and plaintext (M), encryption using an encryption algorithm (&), and the public key

of the beneficiary (PU) [93]. The structure provided is as follows:

C=&(PU,M), 2.1
M= 2(PR,C) (2.2)

The RSA cryptosystem [94], the EIGamal cryptosystem [95], and the elliptic curve cryptosystem
[96] are examples of asymmetric key cryptography [97].
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By combining the unpredictability of chaotic systems with the security of public-key cryp-

public key private key

W
Combdarial

W
carkeerkal
R
&
"
n

decryption

encryption
plaintext ciphertext plaintext

Figure 2.6: Asymmetric Key Cryptography

tography, asymmetric chaos-based encryption improves attack resistance and eliminates key
distribution problems. Future research should concentrate on speed optimization and protocol
standardization for practical implementation. Figure 2.7 depicts the typical flow of image en-
cryption based on a public key.

In 2013, Cheng and Cheng [98] introduced an asymmetric cryptosystem for chaos-based image

Sender A B’s public key B’s private key Receiver B

Original image Cipher image Decrypted image

Figure 2.7: Public-Key Transfer of Image Encryption

encryption using a cellular neural network and adaptive synchronization of two chaotic systems.

During the process, they generated a pair of asymmetric keys for encryption and decryption.
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3. Hash Function

A hash function, as illustrated in Figure 2.8, is a cryptographic method that generates a
fixed-length output from an input of any length. It is a one-way device that produces a hash code
with two binary data streams of fixed-length blocks [99]. Common hash functions include MDS5,
SHA, RIPEMD, and Whirlpool. MDS5 is the most widely used hashing algorithm for encrypting

passwords and other sensitive information, making it a crucial tool in cryptographic systems.

Hashing

f7ff9eBb7b
b2e09b709

35a5d785e
Occ5d9d0a

Plaintext Hash Function Hashed Text

Figure 2.8: Hash Function

2.3 Cryptanalysis

Cryptanalysis studies ciphertext, ciphers, and cryptosystems to understand their workings
and develop strategies to tackle them. Cryptanalysts decode ciphertexts without knowing the
source, encryption key, or algorithm [100]. They also target secure hashing and digital signatures.
Cryptographers use the results of the cryptanalysis to improve, reinforce, or replace flawed
algorithms [101].
There are a variety of cryptanalysis attacks, which differ depending on how much knowledge the

researcher has about the ciphertext being analyzed.

2.3.1 Ciphertext Only Attacks
Ciphertext-only attacks (COA) involve attackers accessing encrypted messages without
knowledge of plaintext data, encryption algorithms, or cryptographic keys, which poses a

challenge for intelligence agencies intercepting encrypted messages [102].

2.3.2 Known Plaintext Attack
A known plaintext attack (KPA) involves obtaining access to the ciphertext of a plaintext to

discover a key to encrypt a file [103]. If found, an intruder can decrypt all encrypted messages,
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such as a message addressed to a specific person [104].

2.3.3 Chosen Plaintext Attack
In a chosen plaintext attack (CPA), the analyst knows how the data were encrypted or has
access to the computer that did it [105]. The analyst will encrypt the CPA with the attacked

algorithm to learn more about the key.

2.4 Chaotic Map

A secret key cryptosystem uses a one-dimensional chaotic map, demonstrating how chaos

affects cryptography. The sensitivity of the system to parameters and the unpredictability of
the sequence form its basis [106]. Chaos-generating mechanisms, such as one-dimensional
difference equations, have been studied in various disciplines [107].
Definition: Dynamic systems generate a state of randomness that is entirely disorganized and
seems irregular. In the mathematical study of chaotic maps, the initial seed conditions govern
this state. Chaos theory explains the connection between entirely random chaotic outcomes and
the basic patterns that generate them [108]. Understanding how a generator is linked makes a
detailed examination of these patterns possible. These generators often rely on feedback loops,
self-similarity, repeatability, and the chaotic nature of the system [109].

The features of chaotic solutions consist of the following:

1. Sensitivity of parameters: Due to parameter sensitivity, a slight change in one parameter,
like the shape of F, might result in a considerable difference between two sequences from

multiple computations on a chaotic map.

2. Sensitivity of initial points: The sensitivity of initial points in a chaotic map can cause two

sequences to differ significantly if the initial point X slightly changes.

2.4.1 Types of Chaotic Map

There are two types of chaotic map, i.e. continuous and discrete, can use actual values or
be complex, with some having up to four dimensions. Most are three measurements with seed
points ranging from 0 to 18 parameters, with the type C polynomial fractal map being the most

complex [110].

1. Continuous Chaotic Map:
Continuous chaotic systems exhibit intricate, erratic behavior over time, characterized by

differential equations controlling state variables [111]. These systems represent specific
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Figure 2.9: Types of Chaotic Map

physical parameters like pressure, temperature, location, or velocity, and they are often

studied using three-dimensional chaotic systems like Lorenz and Chen systems.

. Discrete Chaotic Map:
Due to its sensitivity to initial conditions and changes in system state parameters over
time, a discrete chaotic map is a nonlinear equation that exhibits period multiplication and
nonlinearity, generating random patterns [112]. Based on their applications, structure, and
dimensionality, discrete maps may be broadly classified into one-dimensional (1D) and
two-dimensional (2D) categories.
One-dimensional (1D) maps, such as the logistic and tent maps, are defined by a single
variable and exhibit fundamental chaotic properties, including sensitivity to initial condi-
tions and period-doubling bifurcations. Due to their simplicity and well-studied behavior,
they are widely used in population dynamics and cryptography.
Logistic map: A chaotic function that produces pseudo-random sequences is called a
logistic map [113].

X1 = X (1 —2xp) (2.3)

The control parameter, denoted by r, is usually in the range 3.57 < r < 4 for chaotic
behavior. At iteration n, the sequence value is indicated by x,,. The logistic map is
particularly well-suited for use in cryptography due to its extreme sensitivity to initial

conditions.
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Coupled Logistic Map

It connects many logistics systems to extend the logistics map and increases complexity,
strengthening its resistance against cryptographic attacks [114].

Sine Map

A sine map is a deformation of the sine function, which transforms its inputs from [0, 7|

into [0, 1] and retains the range of the original outputs is [0, 1] [115].
Xpt1 = S(xn) = Wsin(mx,) (2.4)

where, [ is the control parameter. The bifurcation and Lyapunov exponent diagram of sine

map are shown in Figure 2.10.
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Figure 2.10: Sine Map

Logistic Sine Map (2D-LSCM)
The 2D-LSCM combines the logistic and sine map in a coupled manner [116]. We employ

modulation and coupling approaches to construct a new chaotic system using the logistic
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map and a sine map, as shown in Eq. (2.4).

X1 = sin(m(4px(n) (1 —x(n)) + (1 = p)sin(zy(n)))) 2.5)

Ynt1 = sin(w(4uy(n)(1—y(n)) + (1 — u)sin(zx(n+1))))
U is the control parameter, and x(n) and y(n) are the state variables.This coupling creates
a more complex and robust chaotic system.
As can be observed from Eq . (2.4), we first use the Logistic map to modulate the Sine map.
Then, we couple the Logistic map and the Sine map together and use control parameters
to restrict the outputs of LSMCL. Finally, we extend the dimension from 1D to 2D to
improve the chaotic behaviors. The bifurcation and Lyapunov exponent diagram of sine

map are shown in Figure 2.11.
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Figure 2.11: Logistic Sine Map

A two-dimensional (2D) discrete map, such as the Baker, Henon, and Arnold Cat Map, is
a dynamic system defined by a pair of recurrence relations describing the evolution of two
variables, x, and y,, over discrete time steps. These maps exhibit rich nonlinear behavior,

including chaos, bifurcations, and the emergence of fractal attractors.

2.5 Coupled Map Lattices: Theory and Applications

2.5.1 Mathematical Representation
A discrete-time dynamical system described on a spatial lattices is called a coupled map

lattices (CMLs) [117]. The state of a 1D lattice of size L fluctuates as follows:

X1 (i) = (1= &) f (xa (i) + g [f Gen(i = 1)) + f (en(i 4 1))] (2.6)
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Components:

1. Lattices Site (i =1,2,...,L)
A one-dimensional lattices of L identical spots represents the discretization of the system.
A state variable x(i) € R, representing local dynamics (such as temperature in a thermal
rod or neuron activity in neural tissue), is present at each site i [118]. The spatial backbone

of interactions is the lattices.

2. Local Map (f : R — R)
The logistic map f(x) = rx(1 —x) is a nonlinear chaotic map that controls the uncoupled
dynamics at each site. By applying this Map at each time step, the state space becomes
enlarged and folded to produce complicated behaviour [119]. Initial conditions impact

chaotic maps (Lyapunov exponent lambda > 0).

3. Coupling Strength (€ € [0,1])
Determines the influence of neighbouring sites. The evolution combines local dynamics

and neighbour contributions:

X1 (8) = (1= &) f (xa (i) + g [f Gan(i = 1)) + f (en(i 4 1))]

€ = 0: Sites evolve independently (decoupled)

€ = 1: Dominant neighbour influence (maximal coupling)

4. Boundary Conditions (Periodic)

The spatial closure is enforced via:

This framework has infinite/extended systems and eliminates edge effects, preserving

translational symmetry.
Important Features

1. Phase Space ([0, 1]%)
The collective state can be found in a hypercube of L dimensions. According to standard
chaotic maps (such as logistic map outputs C [0, 1]), each dimension corresponds to a site’s
state x(i) € [0,1] . Under the coupled equations, trajectories change, creating complex

manifolds controlled by the bifurcation parameters (r, €).
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2. Lyapunov Spectrum
The stability is described by the L exponents A} > A, > --- > Ay :
A1 > 0: Chaos in space and time
Ar = 0: Neutral modes (such as pattern drift)
Ax < 0 : Stable Directions

The greatest exponent for diffusive coupling is as follows:
Amax = As+1In|1 — €|
where A/ is the Lyapunov exponent of the local map f.

3. Measure Invariance
Examines the statistical distribution of states over a lengthy period [120]. For CMLs that
are chaotic:
Uncoupled scenario(& = 0): Measure of the product y = [T, it; (independent sites)
Coupled scenario(g > 0): Factorizability is broken by emergent spatial correlations. The

measurement [g satisfies
Ue oD = U

where @ is the CMLs evolution operator [121]. For weak coupling, ¢ is singular with

fractal support.

2.6 Chaotic Behaviour Tests

* Definition 1 (Bifurcation Diagram): A bifurcation diagram graphically represents the
chaotic behaviour of a dynamical system, displaying values obtained or entered in terms of
its bifurcated parameters [122]. This diagram connects chaotic features to control settings,
allowing for analysis of how system performance varies with specific factors, especially

when values suddenly change. The bifurcation map is seen in Figure 2.12.

* Definition 2 (Lyapunov Exponent): The Lyapunov exponent (LE) measures the di-
vergence rate of infinitely proximal trajectories starting from close beginning states in
a dynamical system. It measures the exponential divergence between orbits with near
beginning states after a finite number of repetitions [123]. LE may be expressed as follows,

considering that Xy = G(Xy) is a one dimensional map:

. 1 N—1
LE = lim ;) In|G'(X))] (2.7)
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Figure 2.12: Bifurcation Diagram of logistic map

When LE < 0, neighbouring points are more stable, indicating periodic motion or stable
fixed points. When LE > 0, an exponential divergence occurs. Chaotic systems have at
least one positive LE, determining their chaotic nature. Chaotic features become more
apparent as LE value increases. Hyperchaotic systems have two or more positive Lyapunov

exponents. Figure 2.13 displays the Lyapunov exponent of a logistic map.
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Figure 2.13: Lyapunov exponent of logistic map

* Definition 3 (Correlation Dimension):The correlation coefficients are computed and



27

quantified to show how the correlation of neighboring pixels changes after encryption
[124]. As correlation increases, the coefficient approaches 1, while as correlation decreases,

it approaches 0. One way to explain the calculation equation would be

My
Y (xi—%)(yi—J)
y=——= (2.8)

My My
X (5—92 X (=)’

i=1

* Definition 4 (Information Entropy): Information entropy is a key performance indica-
tor in sequence randomization, determining each grey-level pixel’s diffusion level and
quantifying the image’s unpredictability [125]. The optimal entropy value for encrypted
messages 1s 8, and better encryption algorithm security performance is linked to greater
resilience to statistical attacks [126]. The following is the calculating formula:

M
H(x)=— Z‘ip(xl-) log, P(x;) (2.9)
i=
in which P(x;) is the likelihood that a point in the sequence with the value of pixels of x;

will occur.

* Definition 5 (Approximate Entropy): Approximate Entropy (ApEn) is a metric for
measuring the complexity of time series [127]. It indicates the series’s irregularity and
intricacy. The likelihood of a variation pattern being preceded by comparable ones is
inversely linked to ApEn. Positive ApEn levels suggest a lack of redundancy patterns, but

higher ApEn values indicate more complex and surprising systems.

* Definition 6 (The Trajectory): The trajectory diagram shows the existence of cycles and
the ergodic characteristics of a chaotic system. The trajectory of a perfect one-dimensional

discontinuous chaotic map system should be free of periodic cycles and structure.

2.6.1 Occulusion Attack
The mean squared error (MSE) is used to determine the PSNR for grayscale images in the

following way:

* The average squared difference between matching pixels in the original and decrypted

images is measured by MSE, which is determined by:

L NN (g
MSE = 3oy & 1 (1 (6) = (i)’ (2.10)
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The numbers M and N in the images represent the number of rows and columns. The pixel
value at a particular point in the original image is represented by /; (i, j). The pixel value

in the encoded or encrypted image is denoted by (i, j).
* The PSNR is computed as follows:

2552

Higher PSNR values suggest greater resemblance between the original and decrypted

images, even after occlusion.

2.6.2 Histogram Analysis
The variability of the tonal value of the encrypted image histogram is quantitatively assessed

using variance and chi-square tests > [128]. The definition of a grey-level image is as follows:

255 .
n/256) 2.12)
= n/256
[y
var(Y :7225 (2.13)

Where n is the total number of pixels, n; is the recurrence density of pixel value i, and n/256
is the projected recurrence density of each pixel value. Its vector is Y = {y1,y2,---,y256}. The

corresponding pixel values for 1 and j are denoted by Y; and Y;, respectively [129].

2.6.3 Robustness Analysis

During image transmission, digital images are frequently impacted by noise or partial
data loss. A robust encryption method should retain its decoding capabilities even in such
unfavorable circumstances. The suggested approach was examined in terms of data loss and
noise interference attacks to assess its effectiveness. Image encryption techniques undergo
robustness tests to evaluate their resilience against various attacks. Table 2.1 illustrates the

robustness behavior under attack scenarios.

2.6.4 Statistical Tests by NIST

An encrypted image’s pixels should be evenly distributed to withstand statistical attacks.
Applying the statistical test suite created by NIST, the suggested encryption scheme’s resilience to
such attacks is further examined. It consists of 15 tests that discuss various aspects of randomness
in large binary sequences. The purpose of this test set is to find any patterns of non-randomness

in these sequences.
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Table 2.1: Robustness Metrics and Their Desired Behaviour Under Attack Scenarios

Metric Robustness Role Desired Behavior Under Attack

Correlation | Shows encryption effective- | Should remain close to 0
ness in randomizing spatial

data

Entropy Indicates resistance to statisti- | Should stay close to 8

cal/predictive attacks

MSE Measures decryption accuracy | Should be low after decryption

under noisy/partial input

PSNR Reflects image recovery qual- | Should be high (>30 dB if robust)

ity from attack/occlusion

With a significance threshold of 0.01 and 16 statistical verification processes, the NIST Statistical
Suite verifies the randomness of binary sequences. A sequence is considered valid when its

p-value is > 0.01, and current random testing standards are NIST statistical tests.
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CHAPTER 3

A NOVEL IMAGE ENCRYPTION ALGORITHM BASED ON
COMPOUND-COUPLED LOGISTIC CHAOTIC MAP

This chapter introduces a compounding coupling approach to enhance the complexity of
chaotic systems, addressing the lack of safety and complexity in original chaotic systems. The
approach is universal and demonstrated through numerical tests on the 1D logistic map. The
enhanced map has more dynamic complexity than the original one. The enhanced chaotic map is
used in an image encryption technique, outperforming current security, attack resistance, and

computing efficiency techniques.

3.1 Formulation

For real-world cryptography applications, this research attempts to increase the complexity
and security of low-dimensional chaotic systems, such as logistic maps. It aims to create a modi-
fied chaotic model that enhances their cryptographic performance, security, and unpredictability,

making them suitable for image encryption while maintaining efficiency and universality.



31

3.2 Exploring the Dynamics and Characteristics of the Compound-Coupled
Logistic Chaotic Map
3.2.1 The Compound-Coupled Logistic Chaotic Map

The paper suggests a universal N-dimensional compound-linked chaotic model, which is

described mathematically, to increase the complexity of chaotic maps.

;

X§i+1) = f2<fl (x(li);pbPZ))

Xg_‘—l) = f3(f2(xg);1927p3))

3.1
(i+1) (i) (3.1
x; =i (filxpjs i)

xI(ViH) =fi (fN(xl(\l%pN,Pl))

\
The CCCM is linked with state variables of each dimension being governed by the compounding
of two chaotic maps, as shown in Eq. (3.1), where x(N) represents the N-dimensional state
variable.

The CCCM restricts Eq.(3.1) to the chaos zone, requiring its magnitude to be in the chaotic
region of f;;1, which can be removed if the maps are equivalent.

The technique is further implemented using a two-dimensional CC logistic map, with its mathe-

matical model expressed as follows.

xiv1 = f(f(vi,p1),a)

(3.2)
yir1 = f(f(xi, p2),b)
The logistic map, denoted by f, is defined as
fx,p) =p(1—x) (3.3)

The control coefficient, denoted by p, causes the region map f to become chaotic. The parameters
p1 and p,, associated with variables x; and y;, increase the complexity of the CC logistic map. In

this study, simple linear functions are used.
p1(xi) =3.6+0.4x; 3.4)

p2(yi) =4—0.4y; (3.5)
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It should be mentioned that in order to guarantee that the map is chaotic, the values of parametric
functions p; p, must fall within [3.6, 4]. The compound-coupled logistic chaotic map can be

expressed as follows:

Xip1 = af (i, p1)(1 = f(i, p1)) = a(3.6 +0.4x;)y; (1 — y;) (1 — (3.6 + 0.4x;)y; (1 — yi))
Yir1 = bf(xi, p2) (1 — f(xi, p2)) = b(4 —0.4y;)x;(1 —x;) (1 — (4 = 0.4y;) )x; (1 — x;)
(3.6)

Flowchart of the model (6) can be described in Figure 3.1.

Xi K S i
ER | Log{_&'m' map with parameter a Xi+l

\_> Logistic
P map i

/ P2 1 Y Logistic map with parameter b — Virl

Figure 3.1: The Compound-Coupled Logistic Chaotic Model’s Flowchart

3.2.2 Performance Dynamics of the CC Logistic Chaotic Model
This section presents a number of simulation tests that assess the dynamic performances
of the CC Logistic map that CCCM enhanced. If no further instructions are provided, the

parameters for these tests are chosen as follows: xg = 0.25489,y9 = 0.36987 and a=b =4.

The Trajectory

Chaotic maps produce value changes that are reflected in trajectory diagrams, indicating
unpredictability, as shown in Figure 3.2. The 2D CC logistic map’s orbits show good randomness
and no discernible structure. The enhanced map has strong ergodicity, as its points are dispersed

throughout the [0,1] x [0, 1] area.

Bifurcation Diagram

Chaotic maps visit bifurcation diagrams, revealing the parameter ranges causing the map’s
chaotic behavior and the periodic window. When b = 4, the value of a shifts from O to 4. The
bifurcation diagram in Figure 3.3 of the chaotic sequence produced by the dimension x of the
2D CC logistic map shows that the range of parameters causing chaos has been expanded after

improvement.
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Figure 3.2: 2D CC Logistic Map’s (a) x-dimensional and (b) y-dimensional Trajectory Diagrams

Figure 3.3: Bifurcation Diagram of x-dimensional of 2D CC Logistic Map

Lyapunov Exponent

The Lyapunov exponent is a measure for describing a system’s dynamic properties, with a
chaotic system requiring a positive one [130]. It can be determined if a system is chaotic by
its maximum Lyapunov exponent values, which are higher than 0. The diagram of maximum
Lyapunov exponent values shows that as variables improve, the range of variables allowing the

map to display chaos increases, is shown in Figure 3.4.

Dimension of Correlation
Chaotic systems in integer dimensions are often described using the fractal and correlation

dimensions [131]. This section calculates the correlation dimension to assess the performance of
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Figure 3.4: Lyapunov Exponent Diagram

the 2D CC Logistic map. The enhanced map’s correlation dimensional value is primarily greater
than the original map’s, indicating improved performance following CCCM’s enhancement; it is
simple to see from Figure 3.5. The blue line shows the enhanced map’s correlation dimensional

value for all values, demonstrating the effectiveness of the CCCM.
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Figure 3.5: Correlation Dimension Analysis Diagram
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3.3 A Complexity Image Encryption Technique Using the CC Logistic Chaotic
Map

3.3.1 Algorithmic Framework for Encryption

The model’s validity is demonstrated through numerical experiments and a simple image
encryption technique using the chaotic logistic map of CC. The CCCM has enhanced the security
of the algorithm by focusing on its simple map structure. The technique is highly secure and
resistant to various attacks.
This study uses a disruption and diffusion approach for image encryption, employing three
chaotic sequences from the logistic CC map. Two sequences are used in the disruption stage and
one in the diffusion stage. The inverse process is used to decrypt a received cipher image. Figure

3.6 shows the flowchart of the encryption and decryption process.

3.4 Performance Evaluation of the Encryption-Decryption Process

In this part, we utilize grey 256 X256 images as an example. While x;g = 0.2148, y19 =
0.4789, xp9 = 0.6574, yr,9 = 0.3657 ,x39 = 0.2048, y30 = 0.9843 are the initial values in that
order. Figure 3.7 show the outcomes of various chaotic encryption algorithms with the system
parameters set to a = b = 4. The success of the encryption approach is demonstrated by the
fact that the decrypted image is identical to the encrypted image, which lacks any important

information.

3.5 Security Analysis and Experiment Testing
Simulation tests are conducted to validate and secure the encryption algorithm, focusing
on ensuring accuracy of chaotic sequences using a generic algorithm performance of 105 and

replicating every experiment using PyCharm 2021.1.

3.5.1 Analysis of Key Spaces

An encryption technique’s key space should be sufficiently large to resist intensive attacks.
This techniques uses six starting values and Table 3.1 to display key-space computation results
for various encryption techniques. The key space is significantly greater than 2'?® and wider than
some other chaos-based encryption algorithms, indicating the algorithm’s ability to withstand

various brute-force attacks.
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(a) Original image (b) Encrypted image (c) Decrypted image
Figure 3.7: Visual Demonstration of Chaotic Encryption Process (a) Original Image (b) En-

crypted Image (c) Decrypted Image

3.5.2 Analysis of Key Sensitivities

A good cypher algorithm should be susceptible to key changes to provide different represen-
tations of the ciphertext and decoding results for the same cypher image. Different decoding
results should also be obtained with two slightly different encryption keys. Figure 3.8 indicates
that, although there is a slight difference between the correct and decrypted keys, the decrypted
image is entirely different from the original. The recommended method for image encryption
is susceptible to changes in secret keys, since even a slight alteration can prevent decryption.
Calculating the mean square error (MSE), or the difference between two encrypted images using

various keys, may help one better understand the algorithm’s primary sensitivity. The supplied
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Table 3.1: Keyspace Evaluation in Testing Outcomes

Algorithms Keyspace
Ref. [132] 1034
Ref. [133] 1036
Ref. [134] 1036
Ref. [135] 1036
Ref. [136] 108

(a) correct decrypted image  (b) error decrypted image
Figure 3.8: Key Sensitivity Evaluation (a) Correct Decrypted Image. (b) Error-Decrypted Image

data may be used to calculate the pixel values at position (i, j), which are denoted as P(i, j).
1 M N 2
i=1j=
The MSE score of two images varies with different factors, indicating that the encryption method

is highly sensitive to secret keys, as shown in Figure 3.9.

3.5.3 Analysis of Correlation

Digital images have strong correlations between neighbouring pixels, making it easier to
obtain original image information. Reducing this correlation in all directions is crucial to ensuring
security in image encryption. The relationship between the encrypted and original Lena images
can be graphically shown in Figure 3.10. The encryption method’s ciphertext’s correlation
coefficient is close to zero, lower than that of previous studies, indicating its competitiveness in

this area, as shown in Table 3.2, which shows results in three different orientations.
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Figure 3.9: Key sensitivity Analysis in Decryption

3.5.4 Analysis of Histograms

One method for showing the distribution of pixels in an image is a histogram. In an ideal
encrypted image, attackers cannot uncover any information. The histogram should be uniform,
and the ciphertext image’s values are pseudorandom, while the original image’s values are widely
dispersed. This technique effectively prevents attacks based on statistical analysis on encrypted

images as shown in Figure 3.11.
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Figure 3.10: Two-Dimensional Pixel Correlation Mapping

3.5.5 Information Entropy

Information entropy is a key performance indicator in sequence randomization, determining
the diffusion level of each grey-level pixel and quantifying the unpredictability of the image. The
image. The optimal entropy value for encrypted messages is 8, and better encryption algorithm
security performance is linked to greater resilience to statistical attacks. The following is the

calculating formula:
M

H(x) = — Z P(xi) 10g2 P(x,-) (3.8)
i=1
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Table 3.2: Adjacent Pixel Correlation Analysis

Direction Images Horizontal | Vertical Diagonal
Original Image Lena 0.96896 0.93654 0.91390
Boat 0.94761 0.93374 0.88732
Camera 0.97309 0.96133 0.93481
Encrypted Image | Lena -0.00199 -0.00189 0.00616
Boat 0.00162 -0.00063 0.00055
Camera 0.00116 0.00514 -0.00872
Ref. [137] Lena -0.01589 -0.06538 -0.03231
Ref.[133] Lena -0.09742 0.04844 -0.07068
Ref. [138] Lena 0.0024 -0.0017 0.0011
Ref. [135] Lena 0.000488 -0.000549 | 0.004539
Ref. [139] Lena -0.0005 0.0057 0.0032
Ref. [136] Lena -0.0084 -0.0018 0.0002
Boat -0.00067 -0.03736 -0.00075
Camera 0.00466 0.00868 -0.0084

in which P(x;) is the likelihood that a point in the sequence with the value of pixels of x; will
occur. Table 3.3 displays the computed outcomes. The results indicate that the encrypted picture
is chaotic and random-like, as the information entropy of this approach is bigger than the results

of some other research and is quite near to the optimal value of 8.

3.5.6 Defending Against Distinct Attacks

Algorithms for image encryption need to be resilient to several kinds of attacks. Resistance
to differential attack is measured using two indices: the unified average change intensity (UACI)
and the number of pixels change rate (NPCR). Ideal values for NPCR and UACI are 0.9991
and 0.3346, respectively. Table 3.4 show that NPCR and UACI are around the optimal values,

indicating the algorithm’s ability to withstand differential attacks.

3.5.7 Robust Analysis
Digital images will unavoidably be impacted by various disruptions or data loss during the
transfer process. An effective cryptographic system should be resilient to attacks that result

in data loss and noise. The test shows how effectively the proposed method handles attacks,
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Figure 3.11: Histogram Evaluation (a) Plain image (b) Encrypted image

including data loss and noise interference. The Figure 3.12 illustrates the strong robustness of
our encryption system by showing that the decrypted images can still be correctly identified even

in the face of noise and data loss attacks.

Figure 3.12: Robustness Analysis
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Table 3.3: Information Entropy Measurements Across Test Datasets

Algorithms Images Information Entropy
Ref. [132] Lena 7.9982
Boat 7.9938
Camera 7.9957
Ref.[140] Lena 7.9977
Ref.[134] Lena 7.9970
Ref.[139] Lena 7.9975

Table 3.4: Differential Attack Resistance Metrics

Algorithms Images NPCR UACI
Ref.[132] Lena 0.995971 0.332476
Boat 0.996185 0.332210
Camera 0.996154 0.333230
Ref.[133] Lena 0.996840 0.334390
Ref. [140] Lena 0.996692 0.335051
Ref.[138] Lena 0.996094 0.334653
Ref.[135] Lena 0.996094 0.334215
Ref.[136] Lena 0.996418 0.335581
Boat 0.996278 0.336004
Camera 0.996015 0.335737

3.5.8 Analysis of Speed

Another crucial metric for image encryption techniques is computational speed. In this test,
a 3.2 GHz CPU and 8.00 GB of RAM replicate the encryption process using VC++. After
hundreds of tests, the average time for the suggested image encryption algorithm for a 256 x 256

image is around 0.6933 s, making it very effective for real-world uses.

3.6 Transition to the Next Chapter
The findings of this study demonstrate how researchers have difficulties utilizing chaotic
maps because of their limited parameter set, which leaves them open to attack by outside parties.

New maps with additional parameters and wide ranges are required to address this. Balancing
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computing effectiveness with cryptographic strength can be difficult when creating high-entropy
random numbers. Another difficulty is creating new encryption methods that are both highly
secure and computationally inexpensive. Using highly non-linear strings of random integers

produced by chaotic maps may be helpful.
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CHAPTER 4

AN EFFICIENT ENCRYPTION TECHNIQUE BASED ON A
COUPLED MAP LATTICES

4.1 Introduction

This research aims to fill gaps in the field of efficient encryption techniques based on coupled
map lattices despite significant progress made. However, CMLs-based encryption methods lack
practical efficacy, necessitating future research on their application in real-world scenarios like
healthcare or financial industries. Current research may not fully cover the scalability of CMLs-
based encryption algorithms, so further studies could explore their effectiveness and safety under
various data and user loads. The study aims to improve the effectiveness of chaotic map models,
improve randomness, and develop secure encryption methods for digital applications. There
are four phases in the research methodology. The first is the construction of a novel coupled
map lattices. The second step analyzes the efficacy of the coupled map lattice (CMLs), in which
we calculate the Lyapunov exponent, approximation entropy, etc. The third step describes the
construction of an encryption algorithm based on the new CMLs system. The last step describes

the implementation of the algorithm in MATLAB and tests its validity and functionality.

4.2 Contribution of the Research

This chapter introduces a new encryption method using coupled map lattices (CMLs), which
improves chaotic behavior and security properties. This technology overcomes the limitations of
previous chaos-based systems and conventional cryptographic techniques, generating dynamic
and unpredictable keys suitable for digital communications and multimedia protection. The

proposed encryption strategy, which features advanced features such as non-linear and two-way
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coupled logistic map lattices, is validated through performance assessments and simulation
findings. This study advances chaos-based cryptography, paving the way for further research in

machine learning and quantum cryptography.

4.3 Proposed CMLs Map

The CMLs system has been widely used in encryption methods due to its good chaotic
features [13]. The CMLs system may be defined using Eq. (4.1):

fam0-or() S o] w

i is the lattices number, n is the time component, and € € (0, 1) is the coupling coefficient. f(x,)
is any chaotic map.

To tackle the shortcomings in classical CMLs, we try to construct a new CMLs with a wide
range and more initial parameters. In the new CMLs, we used logistic map x,,+1 = r- (1 —x,)

and a unique sine map. The new map is given in Eq.(4.3).

f(x) = mod (uxn(i)(1—xn)+ef(10—u) sin(ml”o(i)) ,1) 4.2)

Xup1 =(1—¢€)- mod <uxn(i)(l —x,) + (10— u)sin (”’Cl”()(i)> ,1)
+§( mod (uxn_l(i)(l—xn_l)—i—et(lO—u)sin (7”"1;01(’)) ,1) 4.3)
+ mod <ux,,+1(i)(1—x,,+1)+ef(10—u)sin <”x%01(’>> 1))

4.4 Analysis of New Map

4.4.1 Bifurcation Diagram

After setting ranges for € and u, a grid of every possible combination is generated. The
system iterates from an initial condition (x = 0.5) for every pair (&, u). First, temporary iterations
are eliminated to give the system time to settle. After reaching a steady state, the values of
(g,u,x) are stored. A three-dimensional scatter plot is produced, with the z — axis showing the
appropriate steady-state x values and the x and y axes representing € and u, respectively.
The resulting graph in Figure 4.1 provides a bifurcation diagram of the new map. It displays the
effects of changing € and u, raising € can cause bifurcation thresholds to change or generate new

stable states.
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3D Bifurcation Diagram

Figure 4.1: Bifurcation Diagram

4.4.2 Lyapunov Exponent
To calculate the Lyapunov exponent (A4 ) for the given coupled map lattice system, we follow

these steps: The system is defined by:

X1 (8) = (1 =€) - f(xa(0)) + g [f (en—1(0) + f (en41(0))]

where,

f(x) =mod (ux(l —x)+¢€' (10 —u)sin (T—é) : 1)

For a 1D coupled map lattice, we approximate it using the Jacobian matrix of the system.

Compute the Derivative of the Local Map The derivative of f(x) (ignoring the mod discontinu-

ity) is:
F1(x) = u(1—2x) +¢ (10— u) (%) cos (’f—(’;)
For a 3-node system, the Jacobian matrix J at each iteration is:
(1-o)f (1) 57 ) o ]
I=] SfM) 1=afm@) S G)
0 (@) (-8 (i)
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For coupled systems, we compute the Jacobian matrix and use QR decomposition.
The Lyapunov exponent A is computed through the following iterative process:

Initialization:
¢ Random initial state xq
* Identity matrix Q =1
* Lyapunov sum Agy, =0
Iterative calculation (for n = 1 to N):
1. Update the state x, using the map function
2. Compute Jacobian J at x,,
3. Perform QR decomposition: JQ = Q'R
4. Update Agym < Asum + log | diag(R)|

Final calculation:

A
A== (4.4)
le — sum = 5.7159¢ + 03

For computing a modified logistic map’s 2D Lyapunov exponent map, which is shown in Figure
4.2, which incorporates an external coupling parameter (€). One important indication of chaos
(A > 0), stability (A < 0), or periodicity (A ~0) in a dynamical system is the Lyapunov exponent

(1), which calculates the average rate of divergence or convergence of neighboring trajectories.

4.4.3 KS Entropy

The KS entropy (hgs) measures the rate of information production in a system. For a 1D

map, it equals the sum of positive Lyapunov exponents:

hgs= Y Ai
l,'>0

where A; are the Lyapunov exponents.

Compute Lyapunov Exponents For a system defined by x,1 = f(x,):

¢ Derivative: Calculate f’(x)
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Lyapunov Exponent Map
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Figure 4.2: Lyapunov Exponent
* Iterate: Track the logarithmic derivative along a trajectory:
| AR
A=1lim — ) 1
Sum Positive Exponents
A ifA>0
hks =
0 otherwise
For coupled maps (e.g., 3 nodes), sum all positive A;:
hgs = Z Ai 4.5)

250
A computational method used to generate a 3D Kolmogorov-Sinai (KS) entropy map for a
coupled logistic map system, as shown in Figure 4.3, that helps to visualize the formation of
chaos under different logistic parameters () and coupling strengths (€). The method calculates
the logistic map for each pair (€, u) iteratively, starting at x = 0.5, while monitoring its derivative
to show local sensitivity to initial conditions, and averaging the logarithm across repetitions to
estimate the LE. The LE is kept as the KS entropy if it is positive hgs > 0 (Chaotic (higher =

more unpredictable)); if not, it is set to zero hgs = 0 (Predictable (periodic/stable) dynamics).
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KS Entropy Map

Figure 4.3: KS Entropy

4.4.4 Acceleration Coefficient

A 3D acceleration map in Figure 4.4 provides a detailed analysis of the acceleration coefficient
of chaotic systems. Through various coupling strengths (€) and values of logistic parameters (u)
to analyze the dynamics of a coupled logistic map system. Acceleration is computed using the
second-order difference of the system’s state.
Simulate the System First, iterate the map to obtain the time series x,(i) for each node i,
discarding transients to focus on steady-state behavior.

Compute Acceleration For each node i (e.g., the center node i = 2 in a 3-node system):

1. Finite Difference: Calculate the second-order difference for all valid time steps n:
an(i) = Xp41(0) = 22 (i) + X1 (i)
2. Magnitude: Take the absolute value |a,(i)| to focus on the magnitude of acceleration:
|an(D)] = g1 (8) = 220 (i) + 201 (0)]
3. Average: Compute the mean acceleration over time to summarize the system’s dynamics:

1 N—-1
n=2
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The 3D Acceleration Map demonstrates how the acceleration coefficient varies with logistic
parameters and coupling strength. High acceleration indicates rapid state changes, typically near
bifurcations or in chaotic regimes. Low acceleration suggests smooth, predictable dynamics (e.g.,
periodic or fixed-point behavior). Node-specific insights compare acceleration across nodes to

study synchronization or localized chaos.

Acceleration Map
0.6

0.6 ~

Acceleration

1045

0.4

0.35

Figure 4.4: Acceleration Coefficient

4.4.5 Correlation Coefficient
To compute the correlation coefficient for the system, we need to analyze how the states x;,
or x,(i) correlate over time or space. The Eq 4.3. describes a coupled logistic map with the

following components:

¢ A nonlinear term:
ux, (1) (1 —xy),

where u controls the nonlinearity and x, (i) represents the state at time n and position i.

* A sinusoidal perturbation:

e:(10 — u) sin (”xl—o(’)) :

where ¢; modulates the strength of the external forcing.
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* Coupling between nearest neighbors x,,_; (i) and x, (i) with strength £/2, introducing
spatial interactions:

E
3 (mod(...)+mod(...)).
* A modulo operation mod(-, 1) to ensure the state x, remains bounded in the interval [0, 1].

The correlation coefficient » measures the linear relationship between consecutive states x, and

Xn+1+
T—1
)y (xn _x)<xn+1 —f)
P — (4.7)
T-1 T-—1
\/ ;1 (xn—)f)z ; (xn+1 _x>2

where X is the mean of the time series.
The correlation coefficient r provides insight into the dynamical behavior of the system: When
r =~ 1, the system exhibits strong positive correlation, indicating predictable, periodic behavior
where consecutive states are nearly identical. A value of r ~ 0 suggests no correlation, character-
istic of chaotic systems where states become effectively uncorrelated over time. Finally, r ~ —1
reflects strong negative correlation, typically observed in systems with period-2 oscillations
where states alternate between high and low values. These correlations help characterize the
system’s stability and predictability. The 3D Correlation Map in Figure 4.5 shows how the corre-
lation coefficient changes in connection to coupling strength, logistic parameter, and correlation

coefficient.

4.4.6 Trajectory Map

The 3D trajectory map in Figure 4.6 shows how a state variable (x) changes in iterations,
considering the coupling strength parameter €. The state variable x indicates the numerical
value of the system’s state variable, while the coupling strength (&) represents the degree to
which the chaotic system alters its components’ interaction. The trajectory shows non-repetitive,
erratic patterns with unpredictable fluctuations throughout time. Chaotic systems are susceptible
to initial conditions, as indicated by the dispersion of trajectory points. The structure never
settles into a periodic orbit or fixed point, making long-term prediction impossible. The system’s
trajectory remains chaotic during iterations due to the supposedly random distribution of paths.
The 3D trajectory map effectively displays a system’s chaotic dynamics, highlighting the in-
fluence of coupling strength on the evolution of state variables and the system’s non-periodic,

unpredictable nature.
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Correlation Map
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Figure 4.5: Correlation Coefficient
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Figure 4.6: Trajectory Map

4.5 Enhanced Image Encryption Through Coupled Map Lattices Dynamics
4.5.1 Encryption Algorithm

This procedure outlines the complex image encryption process using a Coupled Map Lattices

(CMLs) framework in Figure 4.7. Encryption components include random number generation,
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modular arithmetic scrambling, and sorted pixel diffusion. Encryption leverages principles from
chaos theory as its source of unpredictability. We have developed a new encryption scheme
utilizing the updated CMLs map. Following are the key steps of the encryption scheme, as seen
in Figure 4.8.

Step 1: Parameters Initialization Read the input grayscale image I. Convert the image /
to a double-precision matrix if necessary. Define the parameters of the logistic map: u =
3.5709 (chaotic control parameter), € = 0.00075 (coupling strength). Set the transient iterations
num;ransient = 100. Set the key iterations, kp = 8192. Initialize the chaotic sequence: Set the
initial condition, x(1) = 0.1. Define the size of the lattice L = 8. Assign random initial values
x(1: L) using the normal seed values provided.

Step 2: Generate a chaotic key using the coupled map lattices Use the CMLs to generate a
chaotic key for n =1 to kp:

Regarding m =1 to L:

Determine the nearest indices: j =m+ 1,k = m — 1. Set recurring boundary conditions:
ifj=L+1,j=1,

ifk=0,k=L

Calculate the update for the chaotic map using the following:

y(m) = (1 —€)-mod (ux(m)(l —x(m)) +¢' (10 — u)sin <”x(’")) , 1)

+§ (mod (ux(k)(l — x(k)) + €' (10 — u) sin (”’;—g‘)) , 1)
+mod (ux(j)(l —x(j)) +¢' (10 — u)sin <m;_g)) 1))

End the inner loop. The updated values should be kept in the chaotic key matrix K. Close the
outer loop. It can be processed as in Algorithm 1.

Step 3: Create an encryption matrix from a chaotic key. Create an 8-bit integer key matrix
from chaotic values:

AAl = mod (round (B X 1010) , 256)

Transform the key into a matrix
AA = reshape(AA1(1: M x N),M,N)
Step 4: Encrypt the image using modular addition Calculate the encrypted pixel values:

ENc(i,j)= mod (I(i, j) +AAl, 256)
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By doing this, it is guaranteed that the pixel values remain within the acceptable intensity range
of 0 to 255.

Step S: Pixel Diffusion Based on Sorting Create indices for pixel sorting:
Idx=1:(M xN)

The encryption matrix K is sorted according to chaotic values:

Pr = sortrows <[K() Idx] , 1)
Put the encrypted image through a sorted transformation:

ENc1 = sortrows <[E() Pr(:,Z)} , 2)

Convert back to an image format:

FENc = reshape(Egopeq, M, N)

Step 6: Show and Store the Outcomes Display the original and encrypted images. To analyze
the pixel distribution, provide the histograms for the original and encrypted images. Additionally,
include the chaotic key matrix AA1 and the final encrypted image FENc. The recommended

encryption algorithm is outlined in Algorithm 2.

Division-shuffling Image permutation Image diffusion _—
process process process | Cipher image

|

Chaotic key streams Chaotic matrix generated
generated by using CMVIL by using Chaotic key

Secret keys Generate initial conditions and
parameters

Key streams generation process

Figure 4.7: Schematic Diagram of the Proposed Encryption Scheme
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Initialize Parameters: Generate Chaotic Sequence
—
u, e, X, kp, lattice, etc. using Modified CML

|

Generate AA1: Scale chaotic
sequence, Modulo 256

Modular Addition: ENc = mod
{11+ AA, 256)

Generate Sorting Index: Sort
+— AA1 and get permutation index
(pri

Apply Pixel permutation:
Sort ENc based on Pr (:,2)

Reshape to form Final
Encrypted Image (FENC)

Figure 4.8: Schematic Diagram of the Encryption Process of the Proposed Scheme

4.5.2 Decryption Algorithm

The decryption algorithm reverses the encryption algorithm, as shown in Algorithm 3.
Step 1: Flatten the Encrypted Image Convert the 2D encrypted image matrix FENc into a 1D
vector FENc 4. Linear indexing simplifies the reversal of pixel permutations applied during
encryption.
Step 2: Reverse Pixel Permutation Use the permutation matrix Pr (stored during encryption)
to restore the original pixel positions.
Pr(:,2) contains the original indices of scrambled pixels.
Sort FENc i (Pr(:,2)) to undo the permutation.

Step 3: Reshape to 2D Image Convert the 1D vector ENc — flat back to the original 2D format
Enc.

Restore the spatial structure of the image.

Step 4: Remove Key Matrix

Subtract the key matrix AA (used in encryption) and apply modulo 256.
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Ensures pixel values wrap to the 8-bit range (0-255).
Liecrypted(%,y) = (ENc(x,y) — AA(x,y))mod256

Step S: Display image After that, the final encrypted image Ijecryprea 18 transformed into an
8-bit unsigned integer format that can be used to display images. The decryption procedure for

our suggested system is shown in Fig. 4.9.

Encrypted Image (FENC), Flatten Encrypted
Permutation Index (Pr], Image (FENc = 1D
Key [AA) vector ENc2)

l

Inverse Permutation:
Rearrange ENc2 using
Pr(:,2) to unsorted ENc

|

Reverse Modular Addition: Reshape unsorted_ENc
Decrypted = mod (unsorted_ENc - to original size [MxN]
AA + 256, 256)

|

Figure 4.9: Schematic Diagram of the Decryption Process of the Proposed Scheme.

4.6 Statistical Analysis
4.6.1 Key Space

The proposed encryption technique utilizes a large key space, typically exceeding 2!28, to
safeguard against brute-force attacks. It uses six starting values, each up to 14 digits long,
exceeding the 2'%8 barrier, demonstrating strong cryptographic security.

Key components contribute to the key space in Table 4.1, which is determined by the suggested

technique using a initial conditions and control parameters in a chaotic map.
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Algorithm 1 Chaotic Image Encryption using Coupled Map Lattices (CMLs)

1: Input: Grayscale image [ of size M x N

2: Output: Chaotic key

3: Initialize Parameters

4. Read input image I and convert to grayscale if necessary.
5: Set logistic map parameter u = 3.5709

6: Set coupling strength € = 0.00075

7. Set iteration limits kp = 8192, transient iterations num_transient = 100
8: Set initial condition x(1) = 0.1

9: Define lattice size L = 8
10: Initialize chaotic sequence x(1 : L) using predefined values
11: Generate Chaotic Key using CMLs
12: forn=1tokp do

13: for m=1toL do

14: Set neighbouring indicesj =m+ 1,k =m—1
15: if j=L+1 then

16: j=1

17: end if

18: if kK = 0 then

19: k=L

20: end if

21: compute a chaotic update:

7x(m)
10

y(m) = (1—¢)-mod (ux(m)(l—x(m))—l—e’(lO—u) (

sin
+§ (mod <ux(k)(1 —x(k)) +¢' (10 — u) sin (”’;g()) , 1>

+mod (ux(j)(l —x(j)) +¢' (10 — u) sin (%) 1))

) )

22:  end for
23:  Store chaotic sequence in matrix B(n,1: L) =y(1: L)

24: end for
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Algorithm 2 Chaotic Key to Encryption Matrix

—

[\

10:

11:

12:

13:

: Input: Chaotic key
: Output: Encrypted image FENc
Convert Chaotic Key to Encryption Matrix

Convert chaotic values to 8-bit key:

AA1 = mod(round(B x 10'°),256)

: Reshape key into matrix
AA = reshape(AA1(1: M x N),M,N)

Encrypt Image Using Modular Addition

: Compute encrypted pixel values:
ENc(i,j) =mod(I(i, j) +AA1,256)

: Sorting-Based Pixel Diffusion
: Generate pixel sorting indices Idx=1: (M x N)

Sort the encryption matrix K based on chaotic values:

P, = sortrows([K(:),ldx], 1)

Apply sorted transformation:

ENcl = sortrows([ENc(:),P.(:,2)],2)

Reshape into a final encrypted image:

FENc = reshape(ENc1(:,1),M,N)

Save the encrypted image FENc
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Algorithm 3 Image Decryption

1:

2:

3:

Input: Encrypted image FENc, key matrix AA, permutation table Pr

Output: Decrypted image I_decrypted

Flatten FENc into vector FENC_flat

. indices < Pr(:,2)

: ENc_flat < FENC_flat(indices)

ENc < reshape(ENc_flat,size of original image)

: I_decrypted < mod(ENc — AA,256)

Display decrypted images.

: Convert I_decrypted to uint8 format.

Table 4.1: Key Components and Their Contribution to Key Space

Parameter | Description Range / Values Precision Contribu-
tion
X1,X2,...,Xg | Initial conditions for | Real ~ numbers  in | (10'9)3 =108
lattice points [0.01,0.20]
e Coupling strength Real, e.g., 0.00075 1010
u Logistic map param- | Tunable (optional) 1010

eter (e.g., 3.5709)

Total key space calculation:

Key Space = 1030 x 10'% x 10! = 10'%0 ~ 2332

Key space conversion to binary scale:

log,(10'%) =100 - log, (10) ~ 100-3.32 ~ 332

Key Space ~

2332

Table 4.2 illustrates the key space of a proposed encryption method, which is determined by

averaging eight starting values, coupling coefficients, and control parameters with a precision of

10710 for each parameter. The key space increases to 10'%0 or 2332,

4.6.2 NIST Analysis

The NIST SP 800-22 test suite evaluates cryptographic randomness, with most tests passing,

as shown in Table 4.3. However, the random excursion variation test revealed nonrandom
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Table 4.2: Value of Keyspace in All Test Results

Algorithms Keyspace
Our Algorithm 10190
Existing map [132] 1034
Ref.[133] 1036
Ref.[134] 106
Ref.[135] 106
Ref.[136] 106

behavior in states -4.0 to -2.0 (p<0.01), despite essential tests such as the frequency test (p =
0.78), the run test (p = 0.32) and the spectral test (p = 0.69), indicating small correlations in the
output sequence. Most tests passed, including unpredictability (linear complexity, p=0.19) and
bit independence (Serial Test, p=0.06/0.21). The findings suggest a strong generator with fixable
flaws that require enhancement for high-security requirements without compromising overall
quality.
4.7 Security Analysis

The performance and security of the encryption algorithm were evaluated by simulation tests
using 10! repetitions, with the first 500 numbers excluded to minimize volatile results. The
development tool used is MATLAB R2023a on a Windows 10 Pro system with 8.00 GB of RAM
and an Intel(R) Core(TM) 15-5200U CPU running at 2.20 GHz. The experiment’s results are
presented in Fig. 4.10.

4.7.1 Key Sensitivity Analysis

This experiment demonstrates that the approach is sensitive to keys, as seen in Figure 4.11. A
modified key is used to encrypt the cipher image, while the original keys are used to encrypt the
cameraman grayscale image. It highlights the need to examine chaotic systems for characteristics
sensitive to initial conditions before using them for image encryption, as even slight changes can

significantly deviate from the intended outcome.

4.7.2 Occlusion Attack
To simulate partial damage or data loss, an occlusion attack purposefully turns specific pixels
in the cipher image to zero. Following this alteration, the appropriate keys are used to decode

the image. The peak signal-to-noise ratio (PSNR) between the original and decrypted image is



(a) Original Image (b) Encrypted Image (c) Decrypted Image

Figure 4.10: Comparison of Original, Encrypted, and Decrypted Images
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Table 4.3: NIST SP 800-22 Randomness Test Results

Test Name P-Value Conclusion
01. Frequency Test (Monobit) 0.78255 Random
02. Frequency Test within a Block 0.02365 Random
03. Run Test 0.32417 Random
04. Longest Run of Ones in a Block 0.33693 Random
05. Binary Matrix Rank Test 0.61028 Random

06. Discrete Fourier Transform (Spectral) Test 0.68638 Random
07. Non-Overlapping Template Matching Test 0.64597 Random

08. Overlapping Template Matching Test 0.11361 Random
09. Maurer’s Universal Statistical Test 0.10256 Random
10. Linear Complexity Test 0.19275 Random
11. Serial Test 0.06406 Random

0.21004 Random

12. Approximate Entropy Test 0.27529 Random
13. Cumulative Sums (Forward) Test 0.49674 Random
14. Cumulative Sums (Reverse) Test 0.74397 Random
15. Random Excursions Test 0.89515 Random
16. Random Excursions Variant Test 0.55997 Random

computed to assess the system’s robustness. Table 4.4 illustrates the relevant MSE and PSNR
values for different occlusion zones. The results indicate that the proposed encryption technique

effectively resists occlusion attacks.

4.7.3 Analysis of Histogram

The histogram statistically represents the frequency of each tonal value in an image. A
resilient IE method should have a uniform ciphertext image histogram, which makes it immune
to statistical attacks and prevents the observation of plaintext image information. The histogram
of encrypted images is notably different from those of plaintext images, as shown in Fig. 4.12
In addition, the variability of the tonal value in the encrypted image histogram is quantitatively
assessed using variance and the chi-square % test. To pass the x test for encrypted images,
which has 255 degrees of flexibility and a significance threshold of o = 0.05, the value must

be less than 293.25. The variance findings and y? tests for the various images are presented in
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(a) Correct decrypted image (b) Error decrypted image

Figure 4.11: Key Sensitivity Analysis. (a) Error-Decrypted Image. (b) Correct Decrypted Image

Table 4.4: MSE and PSNR Values

Image MSE PSNR

Cameraman 61.7026 12.3247
Lena 60.0132 12.5659
Boat 61.5905 12.3405

Tables 4.5 and 4.6. Furthermore, more regularity in encrypted images is indicated by a smaller

variance value.

Table 4.5: The Test Results of x?2

Images Cameraman Lena Boat

Plain image 98781.4531 29629.5625 80889.4531
Encrypted image | 278.2500 258.1719 261.9531
Result Pass Pass Pass

4.7.4 Correlation Analysis
The secure connection between neighboring pixels in the plaintext image may be broken

during encryption. The correlation value, which can partially represent the algorithm’s effect on
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Figure 4.12: Histogram Analysis Diagram. (a) Plain Image of the Cameraman, Mandrill and

Boat. (b) Encrypted Image of Cameraman, Mandrill and Boat.
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Table 4.6: The Test Results of Variance

Images Cameraman Lena Boat
Plain image 3886.9203 2733.9034 2564.3114
Encrypted image | 5424.4849 5421.7051 5454.4359

encryption, can be determined using Equation (4.8).

E() = Xiw D)= Th (i ()

E(x—EW)-E®Y)))
D(x)/D(y)

(4.8)

corr(x,y) =

Let N represent the total number of pixels selected from the image. The variables E(x) and E(y)
denote the mean values of the grey level values x; and y; for two neighboring pixels in the image,
where x and y indicate the grey level values of those pixels.

The study compares 3000 pairs of neighboring pixels from original images with encrypted
equivalents using a proposed method. Results in Table 4.7 shows no association between pixels,
with correlation coefficients near one for original images and around zero for encrypted images.
The same findings are observed for the cameraman, Mandrill, and boat images in Figures 4.13,

4.14,4.15

4.7.5 Information Entropy
Information entropy (IE) [142] is a mathematical method for analyzing randomness in image
pixel conflict. A desirable ciphertext image with 256 greyscales should have an entropy of 8,

making it resistant to cyberattacks [143]. H(x) is computed as follows:

2V 1
H(x) = Z p(x;)log, (ﬁ) (4.9)

0
When x is the information source, p(x;) is the probability, and N is the total number of bits
required to encode the symbol x;. The entropy of a real probabilistic source with 2V tone values
is N.
Table 4.8 presents the entropy values for the CML-based IE method, which indicates that
ciphertext images are almost random, given a close-to-maximum value of 8, suggesting the

cryptosystem’s ability to withstand statistical attacks.
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Figure 4.13: Scatter Plot of Correlations Between Neighbouring Pixels Pointing in Various

Directions of Cameraman Image
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Figure 4.14: Scatter Plot of Correlations Between Neighbouring Pixels Pointing in Various

Directions of Mandrill Image
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Table 4.7: Correlation Coefficients

Direction Images Horizontal | Vertical | Diagonal
Original Image Cameraman 0.97309 0.96133 | 0.93481
Lena 0.96896 0.93654 | 0.91390
Boat 0.94761 0.93374 | 0.88732
Encrypted Image Cameraman 0.0001 0.002 -0.0015
Lena -8.6008e-05 | 0.0035 0.0015
Boat -0.0013 0.0024 -0.0020
Existing map [132] | Cameraman 0.00116 0.00514 | -0.00872
Lena -0.00199 | -0.00189 | 0.00616
Boat 0.00162 -0.00063 | -0.00055
Ref.[136] Lena -0.0084 -0.0018 0.0002
Boat -0.00067 | -0.03736 | -0.00075
Cameraman 0.00466 0.00868 | -0.0084
Ref.[141] Lena 0.0013 -0.0009 0.0012
Cameraman 0.0020 0.0081 0.0073

4.7.6 Differential Attack Analysis
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Selective attacks, known as differential attacks, occur when a cryptoanalyst examines modifi-
cations to an encrypted image, negating the need for the secret key to recover the original image.
High NPCR and UACI scores show better resistance to specific attacks [144]. Equations (4.10)
and (4.11) are used to get the NPCR and UACI scores for two encrypted images, E1 and E2,

which differ from the source images by one pixel, respectively.

1 M N
NPCR = —— DG, ) (4.10)
e
1 M N
UACI = ml;]; E1(i, ) — E2(i, )| (4.11)

The NPCR and UACI findings, 0.996094 and 0.334635, are the optimal values, respectively.
Table 4.9 shows that every test result is relatively close to the optimal values. Therefore, the

suggested encryption image approach can withstand differential attacks successfully.
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Table 4.8: Information Entropy Values for All Test Results

Algorithms Images Information Entropy
Our Algorithm Cameraman 7.9975
Mandrill 7.9968
Lena 7.9975
Boat 7.9973
Existing map [132] Cameraman 7.9957
Lena 7.9982
Boat 7.9938
Ref.[141] Lena 7.9974
Cameraman 7.9967
Ref.[134] Lena 7.9970

4.7.7 Analysis of Robustness

Image encryption techniques undergo robustness tests to assess their resilience against attacks,
with the first test involving random blacking out 10% of image pixels to simulate partial data
loss. The second test simulates real-world transmission noise distortions by subjecting encrypted
images to Gaussian noise with a standard deviation of 25. The algorithm’s resilience to random
impulsive noise is evaluated in the third test, which adds salt-and-pepper noise with a density
of 5%. The final test provides an optional cropping attack that eliminates 20% of encrypted
image content, providing a framework for investigating encryption when significant data loss
occurs. These tests comprehensively evaluate the encryption algorithm’s resistance to data loss,
occlusion, and noise. The results show that the encrypted image is still identifiable despite these
disturbances, as shown in Figures 4.16,4.17, and 4.18. It suggests that the encryption technique
is reliable and resilient in real-world situations.
The impacts of occlusion, salt and pepper, and Gaussian noise are quantitatively compared in

terms of mean PSNR and RMSE between the original and decrypted images in Table 4.10.

4.7.8 Time Analysis
The study focuses on optimizing encryption algorithms for computational efficiency and
security. The Intel Core 15-5200u CPU was used with MATLAB R2023a and Windows 10 Pro

with 8.00 GB of RAM. Experiments were conducted on 256 x 256 images, with an encryption
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Image with Occlusion Attack

Encrypted Image with Occlusion Attack

eage with aimslan Nolys Attack Encrypted Image with Gaussian Noise Attack

Imags with Salt-and-Pappec Holse Attack Encrypted Image with Salt-and-Pepper Noise Attack

(a) Plain Image (b) Encrypted Image

Figure 4.16: Robustness Analysis of Mandrill: (a) Plain image with occlusion attack (10% pixels
blacked out), Gaussian noise attack (standard deviation = 25), and salt-and-pepper noise attack
(5% noise density); (b) Encrypted image with occlusion attack (10%), Gaussian noise attack

(0 =25), and salt-and-pepper noise attack (5%).
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Encrypted Image with Salt-and-Pepper Noise Attack
i

(a) Plain Image (b) Encrypted Image

Figure 4.17: Robustness Analysis of Cameraman: (a) Plain image with occlusion attack (10%
pixels blacked out), Gaussian noise attack (standard deviation = 25), and salt-and-pepper noise
attack (5% noise density); (b) Encrypted image with occlusion attack (10%), Gaussian noise

attack (o = 25), and salt-and-pepper noise attack (5%).
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(a) Plain Image (b) Encrypted Image

Figure 4.18: Robustness Analysis of Boat: (a) Plain image with occlusion attack (10% pixels
blacked out), Gaussian noise attack (standard deviation = 25), and salt-and-pepper noise attack
(5% noise density); (b) Encrypted image with occlusion attack (10%), Gaussian noise attack

(o = 25), and salt-and-pepper noise attack (5%).
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Table 4.9: NPCR and UACI Average Values for All Test Results

Algorithms Images NPCR UACI
Our Algorithm Lena 0.9962 0.3343
Boat 0.9963 0.3341
Cameraman 0.9962 0.3338
Mandrill 0.9963 0.3360
Existing map [132] | Lena 0.9959 0.3324
Boat 0.9961 0.3322
Cameraman 0.9961 0.3332
Ref.[141] Lena 0.9955 0.3336
Cameraman 0.9964 0.3341
Ref.[138] Lena 0.9960 0.3346
Ref.[135] Lena 0.9960 0.3342
Ref.[136] Lena 0.9964 0.3355
Boat 0.9962 0.3360
Cameraman 0.9960 0.3357

time of 0.465 seconds. Comparative techniques were compared, and the method showed minimal

time spent on encryption, as shown in Table 4.11.

4.8 Results Discussion

In this section, our proposed image cryptosystems are compared with other works in recent
years. The comparative analysis of encryption performance for the Cameraman image 256 x 256
demonstrates that our proposed image cryptosystem exhibits better security. Table 4.12 presents
the test results of some recent papers, including the entropy values of [132] and [141], which
are smaller than our work. Our approach is further validated by the differential attack resistance
measures, which provide outstanding NPCR (99.62%) and UACI (33.38%) scores that satisfy
security requirements. On the other hand, existing methods have significant drawbacks. Whereas
[132] exhibits somewhat lower entropy (7.9957) and weaker correlation performance, [141]
reveals alarming correlation values (up to 0.0081 vertically) that might compromise security

even though its NPCR/UACIT scores are comparable.



Table 4.10: RMSE and PSNR Values of Robustness Test

Image RMSE PSNR
Cameraman Occluded Image 71.9231 10.99 dB
Cameraman Noisy Image (Gaussian | 62.3461 12.23 dB
Noise)

Cameraman Noisy Image (Salt-and-| 63.2218 12.11 dB
Pepper Noise)

Lena Occluded Image 70.6550 11.15dB
Lena Noisy Image (Gaussian Noise) 61.0618 12.42 dB
Lena Noisy Image (Salt-and-Pepper | 61.9886 12.28 dB
Noise)

Boat Occluded Image 72.4752 10.93 dB
Boat Noisy Image (Gaussian Noise) 62.3468 12.23 dB
Boat Noisy Image (Salt-and-Pepper | 63.5828 12.06 dB
Noise)

76

Table 4.11: The Encryption Time Analysis Results and Comparison with Related Algorithms

Algorithms Image size Encryption time
Proposed work 256 x 256 0.465 s

Existing map [132] | 256 x 256 0.6933 s
Ref.[145] 256 x 256 0.4781 s
Ref.[146] 256 x 256 0.668939 s
Ref.[147] 256 x 256 0.44 s

Table 4.12: Comparison of Cameraman Encryption Performance

Image Correlation Coefficients Entropy Differential Attack
Horizontal Vertical Diagonal NPCR UACI

Our work 0.0001 0.002 -0.0015  7.9975  0.9962 0.3338

Existing map [132] 0.00116 0.00514 -0.00872 7.9957  0.9961 0.3332

Ref.[141] 0.0020 0.0081  0.0073 7.9967  0.9964 0.3341
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CHAPTER 5

CONCLUSION AND FUTURE WORK

This chapter compiles the research and offers suggestions for further study. The study
evaluates the performance of a proposed encryption technique using the CMLs model and its
influence on the effectiveness of image encryption. It also addresses the limitations and identifies

possible directions for further research.

5.1 Conclusion

In this study, an effective image encryption method based on coupled map lattices (CMLs)
has been introduced. The suggested technique improves security by using the randomness or
predictability of chaotic systems. Using a secret key, encryption starts by determining the initial
conditions and control parameters of the CMLs system. This method makes the encryption
process extremely reliant on the input image. It makes it resilient to known-plaintext and chosen-
plaintext attacks by ensuring that the encryption parameters are dynamically tied to the particular
content of the plaintext image.
After the parameters have been defined, the original image is encoded and permuted (scrambled)
to remove visual patterns by rearranging the spatial connections between neighboring pixels.
The final cypher image is then created by diffusing the jumbled image using modular arithmetic
operations and the resulting chaotic CMLs sequence, effectively modifying the pixel intensity
values. A secure cryptographic system requires a high degree of confusion and diffusion, which
is ensured by this two-stage process of permutation and diffusion.
Even when the same key is used, each encryption is distinct due to the encryption process’s
reliance on the plaintext image, significantly enhancing resistance to cryptanalytic attacks. The

suggested approach works very well, according to a security study that includes statistical tests
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like histogram uniformity, correlation analysis, entropy measurement, and differential attack
resistance (NPCR and UACI). The encryption technique is appropriate for real-world uses in
secure image transmission and storage as it maintains computational economy and provides
high security. Considering all factors, the suggested CMLs-based image encryption technique
provides a very reliable, secure, and computationally effective approach to contemporary image

security requirements.

5.2 Future Work

Future research will focus on several avenues to improve the usefulness and resilience of the
encryption scheme. Real-time applications can be made possible if the technique is optimized
for speed and computation efficiency using hardware implementations like GPUs or FPGAs.
When the technique is extended to handle color images or higher-dimensional data formats, the
method might become more versatile in various domains, including surveillance and telemedicine.
Hybrid cryptographic techniques, such as post-quantum encryption or DNA computing, improve
the system’s security and enable safe key sharing. Another possible approach is to use error-
tolerant decryption or error correction coding to increase resilience against extreme noise and
data corruption. Additionally, the algorithm’s resistance to known attacks would be theoretically
supported by establishing formal security proofs or using model-based verification tools. Lastly,
adding capabilities like digital watermarking and user identification might expand the encryption

scheme’s scope for secure image transmission and copyright defence.
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