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ABSTRACT

Title: Impact of Elastic Passage on the Peristaltic Transport of Williamson Fluid with Slip

Effects

The main focus of this thesis is to investigates the impact of elastic wall properties on the peristaltic
transport of Williamson fluid through a symmetric passage, incorporating the effects of slip
boundary conditions. The mathematical model is developed under the assumptions of long
wavelength and low Reynolds number, enabling the use of the lubrication approach. To address
the nonlinear nature of the governing momentum and energy equations, a perturbation technique
is applied to obtain approximate analytical solutions. The analysis explores variations in velocity
distribution, pressure rise, and streamline patterns under the combined influence of wall elasticity
and slip effects. Special emphasis is placed on extending the work where the peristaltic motion of
Williamson fluid between concentric cylinders with an elastic outer wall was considered. In this
framework, additional factors such as velocity slip at the boundaries, porosity, and
magnetohydrodynamic (MHD) effects are incorporated into the model formulated in cylindrical
coordinates. Solutions are derived using a regular perturbation method, while Mathematica
software is employed for graphical representation of the results. The findings reveal that wall
elasticity and slip conditions significantly modify the velocity profiles, shear stress, and trapping
phenomena of the Williamson fluid. These results contribute to a deeper understanding of
peristaltic transport mechanisms, with potential applications in physiological processes and

industrial fluid systems.
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

Fluid mechanics explores how liquids and gases behave, whether they are stationary (fluid
statics) or in motion (fluid dynamics), and how they interact with surrounding surfaces or other
fluids. This area of study is crucial in explaining every-day and industrial phenomena from how
blood moves through the human body and air is exchanged during breathing, to how fish swim
and how machines like pumps, turbines, and aircraft function. It also helps us understand natural
events like river currents, wind behavior, and the movement of water through pipelines. The
way that fluids and solids react to shear stresses is one of their main differences while solids
can resist shape changes under stress, fluids do not even a slight shear force will cause a fluid
to continuously deform and flow. This behavior stems from the way fluid molecules are
arranged, allowing them to move freely and adapt their shape over time. Fluid mechanics brings
together physical theories and real-world experiments to analyze and forecast how fluids will
act under different conditions. Because fluid behavior is affected by various factors such as
pressure, temperature and material properties, engineers and scientists rely on both
mathematical models and laboratory testing to gain accurate insights (Farank, 1996).

1.2 Peristalsis

Peristaltic flow refers to the movement of fluid driven by wave-like contractions along a
flexible tube or wall, typically following a sinusoidal pattern. This mechanism plays a key role
in many natural and engineered systems, where it generates pressure changes that propel fluid
forward often from regions of lower pressure to higher pressure. Peristalsis is particularly
effective in handling complex, non-Newtonian fluids, making it suitable for a range of
applications. In biological systems, it is essential for transporting fluids and particles through
narrow channels or vessels. Peristaltic pumping transports a number of complex rheological

fluids. In particular, peristaltic motion appears in urine transport from kidney to bladder

1



(Roshani et al., 1999), dialysis devices (Fig. 1.1), ovum movement in the fallopian tube, the
digestive, system male reproductive tract, bile duct, gastrointestinal tract, fallopian tube, worm
locomotion, chyme motion in the small intestinal tract (Macagno & Christensen, 1980),
(Nadeem et al., 2012), roller and finger pumps cardiovascular flows the mechanical and
neurological features of reflux, lymphatic vessel transfer. Peristaltic flow is also used for
embryo movement in the uterus and early embryonic heart development, uterine cavities ,heart
tubes(Taber et al., 2007), in swallowing food through the oesophagus (Paterson, 2006) (Fig.
1.2), and pharmaceutical delivery systems (Tripathi & Bég, 2014). Aggressive chemicals and
sanitary fluids are also transported using the peristaltic transport mechanism. Peristalsis, which
offers significantly higher efficiency and safety than traditional methods. The peristalsis
principle is also used in the engineering of hose pumps, tube pumps, roller pumps (Fig. 1.3),
and finger pumps. To put it briefly, peristaltic motion is how fluid moves naturally in living
systems and is used by humans to their benefit when creating a variety of industrial and medical

engineering instruments.

Hemodialysis

and cleaned

. = |
Blood filtered . —] ” l“ ‘
in the dialyzer — ]

machine

Fig. 1.1 Image of blood dialysis devices

Peristalsis in Esophagus

. Nuooies conract
551 Moasclen
- cootract, - < hors sahan

conatncting

Fig. 1.2 Movement of food through esophagus.



Peristaltic Pump

Operational Mechanism

Fig. 1.3 Image of Peristaltic Pump

(Latham, 1966) researched into the mechanism behind peristaltic transfer. After then, there is a

substantial body of research on Newtonian and non-Newtonian fluids' peristaltic mechanism.

Initial studies on peristaltic motion primarily revolved around understanding urine transport
through the ureters, with foundational contributions from, (Weinberg, 1970), (Lykoudis, 1971),
(Burns & Parkes, 1967), (Hanin, 1968) and (Jaffrin & Shapiro, 1971). These early efforts were
largely theoretical, establishing essential frameworks to comprehend the mechanics of

peristaltic flow without delving deeply into the underlying physiological processes.

In a notable advancement, (Jaffrin, 1973) applied regular perturbation methods to analyze
peristaltic flow in a planar channel within the wave frame, particularly under conditions
involving small wave numbers. This provided a more refined understanding of the wave-
induced fluid motion. Building upon this, (Srivastava & Srivastava, 1985) investigated pulsatile
flow in a cylindrical tube, demonstrating how varying flow patterns influence peristaltic
transport in confined geometries. Meanwhile, (Gupta & Seshadri, 1976) addressed peristaltic
movement in non-uniform tubes and channels, highlighting the complexities introduced by
irregular geometries an issue frequently encountered in both biological tissues and industrial

systems.

Additional numerical approaches to planar geometries were developed by (Gupta & Seshadri,
1976) and (Brown & Hung, 1977), while (Takabatake et al., 1988) expanded the scope by



considering axisymmetric configurations. Later,(Afifi & Gad, 2001) explored peristaltic flow
of magneto-fluids in porous media, building on the findings of Srivastava and Srivastava. (El
Misery & EI Shamy, 2004), using low Reynolds number approximations, analyzed peristaltic
transport affected by endoscopic tools and variable-viscosity fluids. Their analytical
formulation, based on the Weissenberg number, offered a new perspective on viscoelastic

behaviors under medical conditions.

Research also began focusing on boundary slip and its influence on peristaltic behavior.
(Kwang-Hua Chu & Fang, 2000) examined how slip at the tube walls affected the motion of
viscous fluids, revealing implications for both physiological flows and engineered systems.
(Mekheimer, 2005), employing the long wavelength and zero Reynolds number
approximations, studied peristaltic motion in liquid confined between coaxial tubes both
uniform and non-uniform. His findings highlighted how geometric irregularities significantly
reduce pressure rise. Similarly, investigated the effect of suction on (El-Shehawey & Husseny,
2002) viscous flow in channels and presented analytical insights for low-amplitude waves using

perturbation techniques.

A more intricate perspective on peristaltic transport in porous and asymmetric channels was
introduced by (Elshehawey et al., 2006), who applied the Adomian decomposition method to
derive explicit stream functions for incompressible viscous fluids. Their findings were
particularly relevant for biological and industrial settings involving porous media.(Hayat et al.,
2008) built upon this by incorporating partial slip effects especially important in micro-scale
systems and non-ideal boundary conditions adding another layer of realism to the modelling of
peristaltic systems.

These efforts collectively underline how channel geometry, porous structures, wall motion, and
slip conditions substantially influence fluid behavior. While most of these models assumed
Newtonian behavior, real-world applications often involve fluids that deviate from this
assumption. Newton’s law of viscosity, which formed the basis for many classical models, does

not accurately describe the rheology of many biological and industrial fluids.

This realization prompted several researchers to investigate the peristaltic motion of non-

Newtonian fluids using both analytical and computational approaches. (Raju & Devanathan,



1972) were among the first to address this, employing a fading memory model to study
viscoelastic fluid transport. They derived solutions for peristaltic motion under small-amplitude
oscillations using power-law assumptions. (Béhme & Friedrich, 1983) further explored
peristaltic behavior in linear viscoelastic fluids, emphasizing the performance characteristics of

peristaltic pumps a technology commonly used in medical applications.

(Siddiqui & Schwarz, 1994) examined the motion of a second-order fluid within an
axisymmetric duct, deriving perturbation-based expressions to relate pressure gradients and
flow rates. Their study accounted for parameters such as occlusion and fluid elasticity. (Misra
& Pandey, 2001) developed a model of esophageal swallowing involving power-law fluids in
finite-length circular channels. Later contributions by (Ali & Hayat, 2007) and (Hariharan et
al., 2008) analyzed peristaltic transport in diverging channels, discussing key behaviors like
trapping, axial pressure distribution, and efficiency of pumping under non-Newtonian

assumptions.

Additional studies considered yield-stress fluids, such as Casson models, within low Reynolds
number and long wavelength long regimes, particularly in wave frames where fluid velocity
matches wave propagations. Futhermore examined the effects of heat and mass transfer in an
endoscope's peristaltic Eyring-Powell fluid flow by (Akbar & Nadeem, 2012).In another
research in which the Weissenberg number includes the non-Newtonian coefficients relevant
to shear thinning investigated by (Srinivas et al., 2017).

The literature currently in publication provides an overview of numerous intriguing theoretical
and experimental investigations on peristaltic flow mechanisms involving different fluids.
These studies frequently make the assumption of long wavelengths and low Reynolds numbers.
A few studies relevant to this mechanism are presented by (Rafiq et al., 2023), (Yasmin &
Nisar, 2023) and (Hafez, 2024). To gain a better understanding of peristalsis, we are

investigating the mathematical models and mechanisms underlying it in our research.

1.3  Williamson Fluid

Williamson fluids are classified as non-Newtonian fluids with shear thinning characteristics,

this means that their viscosity reduces as the rate of shear stress increases. The Williamson fluid
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model was first presented experimentally by (Williamson, 1929). It is widely applied to the
flow characterization of polymer solutions, biological fluids such as blood, and a wide range of
industrial products, including dough and sauces, pharmaceutical gels, and cosmetic creams. By
considering how these complex fluids flow during processes like food processing, product
formulation, and medical diagnostics, the model helps predict and manage the flow behaviour
of these fluids. A study by (Akbar et al., 2012) investigated a Williamson fluid's peristaltic
flow in an inclined asymmetric channel under conditions of velocity and thermal slip. Likewise
analysis of Williamson fluids of three-dimensional peristaltic flow of rectangular channel with

compliant walls by (Ellahi et al., 2014).

Williamson fluids have been the subject of recent research on peristaltic transport in asymmetric
channels and ducts. Heat transfer and magnetic fields are taken into consideration to study
velocity, pressure gradient, and trapped bolus formation. Studies also look into the effects of
heat and mass transfer that are relevant to industrial cooling and biological applications, such
as heat generation, slip conditions, and buoyancy forces. The impact of slanted magnetic fields
on temperature and velocity profiles in magneto hydrodynamics (MHD) and porous media flow
has been investigated, with relevance to geophysical dynamics and filtration. The Williamson
model is also applied in industrial processes involving polymeric solutions and food products,
as well as in biomedical investigations of blood flow and drug delivery. A few recent studies

are by (Tanveer et al., 2024), (Abbas et al., 2023) and (Alharbi et al., 2023). According to (El-

Hamid et al., 2025) the Williamson model, the carrier fluid, urine, is modelled as a non-
Newtonian fluid. A stable magnetohydrodynamic non-Newtonian fluid is investigated

theoretically and computationally in this work.

1.4 Wall Properties

Roughness and material selection are two factors that can regulate fluid movement in peristaltic
flow. These factors have an impact on friction, wall deformation, and wall-fluid interaction.
Walls must be waterproof for durability, and surface treatments can reduce friction and improve
biological system compatibility. These wall characteristics also affect how well heat is

transmitted in peristaltic systems. An important researched has been done on the peristaltic



transport of a Williamson nano fluid with compliant walls in a curved channel (Nadeem et al.,

2014). In this model includes the combined effects of thermal dissipation and channel curvature.

Williamson nano fluid’s peristaltic flow in a flexible-walled, curved conduit has been examined
by (Eldesoky et al., 2019). An elastic passage is a stretchable, flexible tube or channel which
enable fluid to flow through it. Microvasculature flow rates vary between normal and

pathological conditions, the effects of blood flow through small arteries with elastic properties.

Deformable Contract

( ) / \ 4 N\
—| Stretchable Characteristics | Flexibility

, \ Elastic Passage , ~
—| Durability | Adaptability

L J - 4 L )

Fig. 1.4 Characteristics Elastic Passage

The fluid flow via flexible tubes is of importance because it dynamically resembles the fluid
flow in veins, arteries, the urethra, and other comparable structures. Peristaltically transporting
an incompressible non-Newtonian fluid in an elastic tube investigated by (Vajravelu et al.,
2016).

Similar to the effects of an elastic wall on the peristaltic flow of a Carreau fluid between two
concentric cylinders, the outside wall of the inner tube has a regular elastic sine wave, while

the inner tube has an inelastic wall that is cylindrical (Al-Khafajy & Majeed Mashhadi, 2023).



1.5 Cylindrical Coordinates

Cylindrical coordinates describe the motion and characteristics of fluids in systems with
rotational symmetry around an axis. By superimposing a height (z) axis, two-dimensional polar
coordinates can be generalized to three dimensions using cylindrical coordinates. Regretfully,
the other two coordinates are represented by a variety of different notations. The radial
coordinate is denoted by either r or p, and the azimuthal coordinates by either phi or theta. For
example, Beyer (1987) uses (r, 6, z), whereas Arfken (1985) uses (p,®,z). The notation (r,0,z)
is utilized in this work (Weisstein, 2005). The non-Newtonian fluid's peristaltic flow in a
circular cylindrical tube is the subject by (Ali et al., 2009). Low Reynolds number and long
wavelength approximations are used in the problem definition. Using an iterative scheme and
an appropriate finite-difference method, the governing nonlinear equation and boundary

conditions are numerically solved. This coordinate system is especially effective for situations

involving.
e Pipes
e Ducts

e Geometries in which the flow is naturally aligned with a cylindrical shape.

1.6 Porosity

A porous medium filled with fluid (liquid or gas) is defined as a material that contains pores
(voids).

V= -—Vp

K; is the permeability of the porous medium with dimensions (length),V is the Darcy velocity,
VP represents pressure gradient and p indicates the dynamic viscosity of the fluid and negative

sign reflects the flow occurs from high to low pressure.

Porous media play a pivotal role in numerous engineering systems, where they serve as the

foundation for various fluid and transport-related phenomena. These processes are inherently



complex due to the irregular geometry of the pore structure, the narrow spatial constraints, and
the multifaceted interactions among the fluid, the solid matrix, and suspended particles. The
study of transport phenomena in porous media provides a robust theoretical and computational
framework for understanding how mass, momentum, energy, and species are transferred within
these heterogeneous environments (Civan, 2011). This multidisciplinary approach integrates
physical principles with mathematical modelling to address the challenges posed by the intricate

microstructure and dynamic interactions present in porous systems.

Recent investigations that are related to engineering and biomedical as well as industrial and
filtration chemical reactors by (Rafiq et al., 2023), (Ajithkumar et al., 2024) and (Abd-Alla et
al., 2025).

1.7 Magnetohydrodynamics

The study of magnetohydrody or MHD, examines the combination of fluid dynamics and
electromagnetic dynamics. A fluid creates an electric current when it flows through a field of

magnets.

This electric current may affect both the fluid's temperature and flow characteristics. MHD
examines the dynamics of electrically conducting fluids, ionized gases, and liquid metals in the
context of fluid mechanics when magnetic fields are present. The peristaltic MHD flow of an
electrically conducting, Williamson fluid that is not compressible in a symmetric planar
channel with mass and heat transfer when an angled magnetic field is present was covered by
(Veera Krishna & Swarnalathamma, 2016). The interplay between electrically conducting
fluids and magnetic fields opens up a wide range of research and creative possibilities.
Applications of MHD range from space exploration to biomedical applications, allowing
researchers to study a wide range of phenomena. Magnetohydrodynamic flows have a wide
range of applications, such as separation devices, MHD energy generators, MHD drug targeting
(Eldabe et al., 2020), endoscope (Hayat et al., 2017), materials processing, biomedical flow
control (Nuwairan & Souayeh, 2022) , cancer treatment (Algarni et al., 2023), indusrial
processes (Shaheen et al., 2024), microfludic devices (Ridha & Solagh, 2025).



1.8 Slip Boundary Condition

The surface and fluid layer velocities are not equal in the slip boundary condition. Best example
to understand slip flow is Mercury. A fluid flow known as "slip flow" occurs when a thin layer
of fluid near a barrier moves in relation to the boundary or slips in that path. In contrast to the
no slip scenrio, which occurs when fluid molecules adhere to the barrier and move at the same

speed as the border, slip occurs when the fluid close to the boundary has a velocity differential.

The flow of a Newtonian and non-Newtonian Maxwellian fluid in an axisymmetric cylindrical
tube (pore), where the movement is caused by propagating transversal oscillations along the
tube wall, how slip boundaries affect fluid motion in media with pores investigated by (El-
Shehawy et al., 2006). Another worked by (Akram et al., 2020) Impact of generated
electromagnetic field and velocity second slip model on non- Newtonian transportation in tiny

fluids with double-diffusivity convection.

1.9 Thesis Contribution

This thesis includes a thorough analysis of (Al-Khafajy & Al-Delfi, 2023) has been presented
and then a flow analysis has been extended with impact of elastic passage on the peristaltic
transport of Williamson fluid with slip effects. Williamson fluid trapped between two
concentric cylinder. The main focus on effect of slip at the boundaries, porosity and MHD. The
number of dependent variables has been reduced using an appropriate transformation technique,
and solutions have been obtained using a perturbation technique. Mathematica software was
used to evaluate the findings. At the end graphic results are provided for several important

components, including wave frame streamlines, stress, and velocity distribution.

1.10 Thesis Organization

This thesis comprises the following chapters:

Chapter 1 covers a comprehensive and detailed analysis of the literature in accordance with

recent published articles.
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Chapter 2 examines the basic ideas, guidelines, and principles required to comprehend the
upcoming work. An overview of the perturbation method and numerous terms that we are use

in our research are provided in this chapter.

Chapter 3 provides a review of the work by (Al-Khafajy & Al-Delfi, 2023). The authors
studied how an elastic wall affects the peristaltic flow of a non-Newtonian Williamson fluid
between two concentric cylinders. The lubrication approach has been utilized to study the
problem. Perturbation technique has been employed to obtain the analytical solution of the

problem.

Chapter 4 is the extension work on research done by (Al-Khafajy & Al-Delfi, 2023). The
effects of elastic wall properties on the Williamson fluid flowing past a symmetric passage with
the slip boundary condition will are considered and by incorporating the effects of

magnetohydrodynamics (MHD) and porous media.

Chapter 5 contains the conclusion drawn in chapter 4. Future recommendations are also
included for the future researches.

In the end, the reference list is also incorporated.
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CHAPTER 2

BASIC DEFINITIONS AND CONCEPTS

2.1 Mechanics

The oldest branch of physics that studies moving and stationary objects under the influence of
forces is called mechanics. Statics and dynamics are the names of the branches of mechanics
that deal with bodies at rest and in motion (Janna, 2009).

2.1.1 Statics

The study of fluid dynamics, also referred to as hydrostatics, examines how a fluid behaves at

rest or very close to it (Rajput, 2010).

2.1.2 Dynamics

It examines the connections between fluid velocities and accelerations and the forces or energy

that gives rise to them (Rajput, 2010).

2.2 Fluid

A fluid is defined as any substance with the ability to flow, that includes gases as well as liquids
(Rajput, 2010).

According to density two categories of fluids are recognized.

221 Gas

Substances like hydrogen and nitrogen belong to a class of fluids that possess neither a fixed

shape nor a constant volume; such fluids are known as gases (Rajput, 2010).
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2.2.2 Liquids

Fluids that maintain a constant volume but do not retain a fixed shape are categorized as liquids.

Examples include oil and water (Rajput, 2010).
2.3 Fluid Mechanics

One area of physics called fluid mechanics is focused on the characteristics and behavior of
liquids and gases, whether they are moving or stationary. It helps understand how fluids interact
with forces under varying conditions and is fundamental in several engineering and scientific
areas like aerodynamics, hydrodynamics, and the development of devices such as turbines,
pumps, and aircraft. This discipline also aids in understanding natural processes such as climate
behavior, oceanic circulation, and blood circulation in the human body. It integrates principles
from classical mechanics and thermodynamics to analyze how fluids behave across varying
settings. The insights gained are highly valuable across diverse domains such as civil

engineering, meteorology, biophysics, and aerospace research.

Fluid Mechanics

AN

Gas Liquids Statics | | Dynamics
[/ _ZF=0 pE>0.me
Al He A Water, Oils, Stability -
N, efe. Alcohols, ¢tz. Pressure b Compressible/
Incompressible
Laminar/
Suvtici Turbulent

Compressibility ~ Density  Viscosity - Steady/Unsteady
' ' ¥ Tension

Viscous/Inviscid

Fig. 2.1: Classification of Fluid Mechanics
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Applications include analyzing bodily fluids, designing transport systems, forecasting weather
patterns, and enhancing efficiency in industrial processes. Fluid mechanics research can be
approached both macroscopically, focusing on average fluid behaviour, and microscopically,

examining molecular-level interactions (Granger, 2012).
2.4 Properties of Fluid

2.4.1 Compressibility

A compressibility is a measure of how much its density changes in response to a change in
pressure. It quantifies the fluid's ability to decrease in volume when subjected to an increase in
pressure, reflecting how easily the fluid can be compressed (Bradford & Gupta, 1986).

2.4.2 Density

Density is the measure of mass per unit volume of a substance. Mathematically, it is expressed

as the ratio of mass to volume, where p represents density, m is mass, and v is volume (Janna,
2009).

p= (2.1)

;.
The dimensions are [ML~3] and the Sl units of density are % .

2.4.3 Pressure

Pressure is defined as the force exerted per unit area on a surface. It refers to the physical force
applied to an object, and as a result of this force, stress is generated within the material (Raju,
2011).

(2.2)

|
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2.4.4 Temperature

A physical characteristic of matter that measures how hot or cold a body is a temperature. An
object's temperature, typically expressed in degrees Celsius, Fahrenheit, or Kelvin. The kinetic
energy of a substance's molecules or atoms is measured by its thermodynamic temperature
(Raju, 2011).

2.4.5 Viscosity

A fluid's viscosity is a measurement of its internal friction. When two fluid layers move in
relation to each other, the internal frictional force between them is related to viscosity. A fluid's
state, which includes its temperature, pressure, and rate of deformation, typically affects its
viscosity (Pritchard & Leylegian, 2011).

2.4.6 Dynamic Viscosity

Absolute or dynamic viscosity is the measure of a fluid's resistance to flow between two layers
of fluid in motion. It is defined as the ratio of shear stress to the velocity gradient within the
fluid, indicating how easily a fluid flows under an applied force (Pritchard & Leylegian, 2011).

Shear stress

Viscosity = velocity gradient ’
T
= ——. 2.3
L= & 23)
dy

. N k; . . . . . . M
The Sl units of m—z or ;g are used to measure dynamic viscosity, and its dimensions are [ﬁ]

2.4.7 Kinematic Viscosity

Kinematic viscosity is determined by the ratio of fluid density to dynamic viscosity. This idea

can be further developed mathematically as

15



(2.4)

oIF

2 2
The units used to measure kinematic viscosity are mT and dimensions are [LF] (Pritchard &

Leylegian, 2011).
2.4.8 Specific Heat

The amount of heat energy needed to increase a substance's temperature by one degree per unit
mass is known as specific heat. It can be measured under different conditions, such as constant

pressure (specific heat at constant pressure, c,) or constant volume (specific heat at constant
volume, c,), depending on the temperature and pressure constraints (Raju, 2011).

2.4.9 Heat Flux

The heat flux is a measurement of the quantity of heat that moves across a surface in a specific

amount of time. It is the rate of heat transfer per unit area across a surface. The unit of

measurement is watts per square meter % (Raju, 2011).

2.4.10  Heat generation and Absorption

Heat generation or absorption, is determined by the amount of heat generated or absorbed per
unit volume (Raju, 2011).

2.4.11  Thermal Conductivity

The study of a material's ability to transfer heat is known as thermal conductivity. Heat can
move in three different ways: conduction, convection, and radiation. In particular, we can

demonstrate this mathematically as

heat xdistance

Thermal Conductivity =

area xtemperature gradient ’
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QL
= — 2.

AAT’ (2:5)
In this case, AT is the temperature difference, the cross-sectional area is signified by A, k the

kg.m
s3K

thermal conductivity, Q the heat flow per unit time and SI unit is (Raju, 2011).

2.4.12  Thermal Diffusivity

It is defined as the ratio of specific heat to thermal diffusivity per unit density. In terms of math,

it is expressed as

a= —, (2.6)

where c;, stands for heat capacity, p for density, and K for thermal conductivity (Raju, 2011).

2.4.13  Viscous Dissipation

Viscous dissipation refers to the irreversible conversion of kinetic energy from fluid flow into
internal energy due to the effects of viscosity. This process results in the generation of heat

within the fluid, reducing the overall mechanical energy of the system (Rajput, 2010).

2.5 Rheology

The study of matter flow and modify in form, including elasticity, viscosity and plasticity is

known as rheology (Raju, 2011).

2.6 Flow

The volume of fluid that moves through an area in a given amount of time is called flow
(Pritchard & Leylegian, 2011).
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Fluids are classified into based on their flow, which are

Compressible or incompressible flows.
Uniform and non-uniform flows.
Rotational / Irrotational flows.

Steady and unsteady flows.

o~ w D P

Laminar and turbulent flows.

2.6.1 Steady and Unsteady Flows

A steady flow is one in which the fluid properties like pressure and velocity, remain persistent
over time at a definite point. When these properties change with time at a given location, the
flow is considered unsteady (Pritchard & Leylegian, 2011).

2.6.2 Uniform and Non uniform

When the velocity is the same in both direction and magnitude everywhere, the flow is
considered uniform; when it is not, the flow is said to be non-uniform at any given time
(Pritchard & Leylegian, 2011).

2.6.3 Compressible and Incompressible Flows

Compressible flow occurs when the fluid's density (p) fluctuates from one point to another in
other words, the density is not constant for this flow. For example, gas flow via nozzles, gas
turbines, orifices, etc. Incompressible flow where the fluid's density remains constant. In terms
of mathematics, p = constant. For example, aerodynamics at subsonic speed (Pritchard &

Leylegian, 2011).

2.6.4 Rotational and Irrotational Flows

Rotational flow refers to a type of flow in which fluid particles rotate around their own mass

centres while moving in the direction of the flow. This typically occurs near solid boundaries.
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An example of rotational flow is the movement of liquid in a rotating tank, where the fluid

experiences both translational and rotational motion.

Irrotational flow occurs when fluid particles do not rotate around their mass centres while
moving in the direction of the flow. Generally, the flow outside the boundary layer is considered
irrotational, where the fluid particles follow a smooth path without any spin. For instance, Flow
over a wash basin or stationary tank's drain hole (Pritchard & Leylegian, 2011).

2.6.5 Laminar and Turbulent Flows

Laminar flows are those in which fluid particles move in smooth layers, whereas turbulent flows
are those in which random 3D velocity differences cause fluid particles to mix quickly as they
move (Pritchard & Leylegian, 2011).

2.7 Newton’s Law of Viscosity

As per this law, the rate of shear strain in a fluid element layer is directly related to the shear
stress (1), with the coefficient of viscosity serving as the constant of proportionality. This
relationship describes how the fluid's viscosity resists deformation due to shear forces. The term
Newtonian fluids refers to fluids that obey this law (Pritchard & Leylegian, 2011).

T=u—. (2.7)

2.8 Types of Fluid

Fluids are classified to according viscosity:

Ideal Fluid.
Real Fluid.
Newtonian Fluid.

A w0

Non-Newtonian fluid.
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2.8.1 Ideal Fluid

These are hypothetical fluids with zero viscosity and no frictional forces. This implies
they can flow without resistance and do not waste energy to friction. Ideal fluids are
valuable for mathematical modelling, but they do not exist in reality. Ideal fluids include

incompressible fluids, non-viscous fluids, perfect gas (Pritchard & Leylegian, 2011).

2.8.2 Real Fluid

These fluids experience frictional forces and have a viscosity that is not zero. Friction
causes them to lose energy, and they can exhibit turbulence and other complicated
behaviors. Real fluids include things like blood, oxygen, and water (Pritchard &
Leylegian, 2011).

2.8.3 Newtonian Fluid

Fluid which follows the Newton's law of viscosity. For these fluids, the rate of deformation has
no effect on Y. The viscosity of these fluids remains constant irrespective of the shear forces

exerted on the fluid layers.

Newtonian fluids are defined as those whose shear stress versus shear rate plot at a specific
temperature is a straight line with a constant slope, regardless of the shear rate. Examples. Air,

kerosene, and water (Pritchard & Leylegian, 2011).

2.8.4 Non-Newtonian Fluid

Non-Newtonian fluids are fluids that do not exhibit a linear relationship between shear stress
and the rate of deformation. These fluids are relatively rare and often consist of complex
mixtures. Examples include suspensions or solutions (such as slurries), mud flows, polymer
solutions, and blood. Non-Newtonian fluids are typically studied in the field of rheology, which

focuses on the science of deformation and flow of materials (Pritchard & Leylegian, 2011).
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Classifications for non-Newtonian fluid include
Fluids with Time Dependence

» Rheopectic or Anti-Thixotropic Fluids.
» Thixotropic Fluids.

Fluids that are Time Independent

» Dilatant Fluids
» Pseudo-plastic Fluids

2.8.4.1 Rheopectic or Anti-Thixotropic Fluids

As shear stress increases, the fluid's viscosity increases as well, and this relationship changes
over time. One example of such a fluid would be gypsum paste (Pritchard & Leylegian, 2011).

2.8.4.2 Thixotropic Fluid

The fluid's viscosity decreases as shear stress increases, and the two variables' relationship
varies over time. Paint and glue are two examples of thixotropic fluids (Pritchard & Leylegian,
2011).

2.8.4.3 Dilatant Fluid

A non-Newtonian fluid that experiences an increase in shear viscosity when shear stress is

applied is called a dilatant. For example, mud slur and quicksand (Pritchard & Leylegian, 2011).

2.8.4.4 Pseudo-Plastic Fluid

Fluids Shear thinning fluids, such as paint and ketchup, are pseudo-plastic substances whose
viscosity decreases with an increase in the rate of applied shear stress (Pritchard & Leylegian,
2011).
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2.8.4.5 Bingham- Plastic Fluid

Bingham plastics are viscoelastic materials that behave like a rigid body under low stress and

like a viscous fluid under high stress (Pritchard & Leylegian, 2011).

2.9 Scalar Field

A scalar field assigns a single numerical value to each point in a space, thereby characterizing
the distribution of a scalar quantity. The only thing that a scalar quantity has is magnitude. The
representation of scalar properties in fluid mechanics, like temperature and pressure, depends
on scalar fields, mainly because they give a comprehensive picture of how these variables are
distributed in a fluid. They aid in the analysis of fluid flow and support forecasts and

optimizations in a range of engineering applications (Pritchard & Leylegian, 2011).

29.1 Tensor Field

A mathematical framework that allocates a tensor to every point in a space to analyze how
physical properties vary across dimensions is termed as tensor field. In fluid mechanics, such
fields are indispensable for understanding advanced concepts like stress, strain, and flow. They
enable precise mapping of spatial changes and interactions between variables, offering deep
insight into fluid behavior (Pritchard & Leylegian, 2011).

2.9.2 Vector Field

A vector field is a mathematical structure that allocates a vector to every point in a region to
depict the direction and intensity of a physical quantity, such as velocity or force. These fields
display both magnitude and direction. In fluid mechanics, vector fields play a central role in
analyzing fluid motion, forces, and flow configurations. They simplify fluid behaviour, which
aids in the design and advancement of technical applications such as aerodynamics and fluid

flow in pipes (Pritchard & Leylegian, 2011).
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2.9.3  Velocity Field

A velocity field describes the distribution of particle or fluid element velocities in a given space.
A vector indicating the direction and speed of motion is used to represent each point in the field.
Fields are essential to many areas of physics, such as electromagnetic, quantum, and general
relativity. These mathematical fields can be used to represent and analyse physical phenomena
in a variety of engineering and research fields. Three categories of fields exist: vector, tensor,
and scalar fields (Pritchard & Leylegian, 2011).

2.10 Dimensionless Numbers

The inertia force, which is always present when any mass is in motion, is divided by the viscous,
gravity, pressure, surface tension, or elastic forces to get the dimensionless numbers, also

known as non-dimensional parameters (Raju, 2011).

2.10.1 Prandtl Number

The viscous-to-thermal diffusivity ratio is known as the Prandtl number.

Viscous diffusivity

Pr=

thermal diffusivity ’

Ll/ c
pr= L= 2=t 2.8

where c,, is for specific heat at constant pressure, v is for kinematic viscosity (momentum

diusivity), k is for thermal conductivity, and o*is for thermal diusivity. Pr << 1 is dominated

by thermal diffusivity, while Pr >> 1 is dominated by momentum diffusivity (Raju, 2011).
2.10.2 Eckert Number
The Eckert number (Ec) is a dimensionless parameter expressing the proportion between a

fluid's kinetic energy and the variation in its enthalpy. It reflects how significantly kinetic
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energy contributes to the thermal behavior of a flow and establishes a link between convective
heat transfer and motion energy. It is particularly valuable in the study of high-velocity flows

where heat transfer is influenced by dynamic forces (Raju, 2011).

Ec = —. (2.10)

2.10.3 Reynolds Number

The Reynolds number is widely regarded as the most important dimensionless quantity in fluid
flow, as it helps predict the flow regime, indicating whether the flow is laminar or turbulent.

The inertial to effective viscous force ratio is how it is defined.

Inertial force
Re = ——

) ]
Viscous force

Re = —. (2.9)

The symbols as p, v, represent dynamic viscosity, and kinematic viscosity and v*, L represent
velocity, and characteristic length, respectively. A high Reynolds number indicates that viscous
forces are negligible in the flow, leading to inviscid flow behavior. In contrast, low Reynolds
numbers signify dominant viscous forces, resulting in laminar flow. For intermediate to high
Reynolds numbers, inertial forces become more significant, often leading to turbulent flow

where chaotic fluid motion prevails (Raju, 2011).

2.10.4 Weissenberg Number

The Weissenberg number is a dimensionless measure.In the study of rheology, We is used to
quantify the relative importance of elastic vs viscous effects in a viscoelastic fluid or material.

It can be represented mathematically as follows:

We = 1y, (2.11)
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where y is the shear rate, A is the material's characteristic relaxation time, and We is the
Weissenberg (Raju, 2011).

2.10.5 Grashof Number

It depicts how the buoyancy forces behave in a fluid that is flowing in opposition to the viscous

forces. It is used to determine the laminar system's fluid boundary layer flow regime.

3

L
Gr= —gB(T~ To), (2.12)

where T and T, stand for fluid and ambient temperature, respectively, and  for volumetric
thermal expansion coefficient, g for acceleration due to gravity, v for kinematic viscosity, and
L for characteristic length (Raju, 2011).

2.10.6 Biot Number

Biot number is a dimensionless parameter that relates a solid’s interior thermal resistance to its
exterior convective resistance at the surface. It represents how quickly heat can travel within a
substance in comparison to how easily it can be transferred to the surrounding fluid (Raju,
2011).

B = —< (2.13)

Where L. denote characteristic length of the solid, h for convective heat transfer coefficient and

k represents thermal conductivity of the solid.
2.10.7 Hartmann Number

Hartmann number is a dimensionless magnetohydrodynamic quantity that compares the

strength of the magnetic for (Lorentz force) to the viscous force in an electrically conducting
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fluid. Its reflects how strongly a magnetic field may inhibit or influence fluid mobility (Raju,
2011).

M= BOL\E (2.14)

Where L denotes characteristic of length, B, for applied magnetic field, o for electric

conductivity of the fluid and i represents dynamic viscosity of the fluid.
2.11 Heat Transfer

It is the transfer of energy between two surfaces as a result of temperature differences.
Typically, heat moves from an area with a high temperature to one with a low temperature. Heat

is transferred, for instance, from the stove to the cooking pan (Raju, 2011).
2.11.1 Conduction

When two objects come into physical contact, heat is transferred through the material through
a process known as conduction. For instance, cooking vegetables in a pan, grabbing a steaming
cup of tea, or a car's engine heating up after starting and using an automatic radiator (Raju,
2011).

2.11.2 Convection

The movement of heat-carrying fluid particles is known as convection, and it can occur
spontaneously due to floatability caused by temperature changes or be induced by outside

sources such as fans or pumps (Raju, 2011).
2.11.3 Radiation

Thermal radiation is the process through which heat is transferred from a body to its

surroundings due to its temperature, without requiring a medium. Examples include the warmth
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felt from the sun, the heat emitted by a lightbulb, or the thermal radiation from a toaster's heating
element that toasts bread (Raju, 2011).

2.12  Stress

Stress is defined as the average force applied per unit area of a body’s surface that is subjected
to external forces or pressure. It quantifies the intensity of internal forces within a material in

response to external loads (Pritchard & Leylegian, 2011).

o = oree (2.15)

Area

2.12.1 Shear Stress

Shear stress is a type of stress where the applied force acts parallel to the surface or cross-
sectional area of a material, causing layers of the material to slide past each other (Pritchard &
Leylegian, 2011).

2.12.2 Normal Stress

Normal stress is a type of stress that occurs when a force is applied perpendicular to the cross-
sectional area of a material, causing compression or tension within the material (Pritchard &
Leylegian, 2011).

2.12.3 Cauchy Stress Tensor

The stress within a material at a particular position is described by the Cauchy stress tensor. It
is essential for assessing and forecasting the mechanical behavior of materials under diverse
circumstances and pertains to the force per unit area operating on numerous planes at that
moment. The components of Cauchy stress tensor represents normal and shear stresses
(Pritchard & Leylegian, 2011).
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2.12.4 Extra Stress Tensor

The extra stress tensor is used to take into consideration extra stress contributions brought on
by fluid motion. A common constitutive equation that governs the relationship between stress

and strain in a fluid is the additional strain tensor (Pritchard & Leylegian, 2011).

2.125 Strain

Strain is the measure of the relative deformation or change in shape of a material when a force
is applied. It is a dimensionless quantity, representing the ratio of the material's deformation to

its original dimensions (Pritchard & Leylegian, 2011).

2.13 Streamline

A track that is always tangent to the velocity field at every point, representing the direction of
fluid flow is termed as streamline. In two-dimensional flows, the slope of the streamline must

be equal to the tangent of the angle between the velocity vector and the x-axis (Rajput, 2010).

2.13.1 Stream Function

A helpful tool for researching fluid dynamics is the stream function. Usually, the streamlines
created by the stream function are used to realize the flow pattern surrounding an object. A

function that solves the given equation is called a stream function (Rajput, 2010).

2.14 Darcy’s Law

For water flowing through a saturated porous medium, Darcy's law provides a linear flow
model. The renowned equation put forth by French engineer Henry P.G. Darcy in 1856 states
that the hydraulic conductivity (k) and the pressure gradient (VH) determine the flow rate (q)
(Tanveer et al., 2017).

q = kVH. (2.16)
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2.15 Basic Equations and Conservation Laws

2.15.1 Continuity Equation

The equation presents the rate of mass flow into and out of a given region, along with any
accumulation within that region, must be balanced, ensuring the conservation of mass (Rajput,
2010).

Mathematically % +V.(pV) =0, (2.17)

where p is the fluid's density, t is time, and V is its velocity.

When incompressible flow occurs, then
V .V=0. (2.18)

2.15.2  Momentum Equation

The sum of the mass and velocity of a body is referred to as "linear momentum.” Newton's
second law states that a body's acceleration is proportional to the net force acting on it and
inversely related to its mass. This is because the acceleration of a body is equal to the net force
acting on it. The momentum of such systems is therefore conserved when there is no net force
acting on them. This equation shows that the system's total momentum will always be conserved
because it is physically related to the law of conservation of momentum. The equation is

expressed as follows if incompressible fluid is considered.

*

p = divr + pb*, (2.19)

where V* stands for velocity, p for density, b* for body forces % material time derivative ,

divt for surface forces, and T characterizes the Cauchy stress tensor indicates the presence of

inertial forces (Rajput, 2010).
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2.15.3 Energy Equation

The concept of energy conservation, also referred to as the first law of thermodynamics, is a
natural rule. It states that energy can only change form during a process; it cannot be created or
destroyed. The energy equation for the base fluid in a two-dimensional system can be written

as T temperature.

dT o,
(pcp)a = divq’, (2.20)
qQ* = —kVT, (2.21)

k is thermal conductivity, c, is specific heat, q* denotes heat flux, and p represents density

(pcp) i—: for total internal energy, total heat flux div q* (Rajput, 2010).

2.16 Perturbation Method

Mathematical techniques known as perturbation methods are used to approximate solutions to
challenging mathematical equations, particularly those involving large or small parameters.

The nonlinear differential equation’'s small parameters should be identified.

e Explain the answer using the perturbation expansion power series.
e Add the perturbation expansion to the equation system.
e Resolve the equation systems in various orders with small parameters.

¢ Integrate the solutions acquired at various orders to create the ultimate perturbation.
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CHAPTER 3

THE PERISTALTIC FLOW OF WILLIAMSON FLUID
THROUGH A FLEXIBLE CHANNEL

(Al-Khafajy & Al-Delfi, 2023)

3.1 Introduction

The research conducted by (Al-Khafajy & Al-Delfi, 2023) is thoroughly reviewed in this
chapter. The main objective of research is to investigate the influence of flexible wall occur on
the peristaltic transport of Williamson fluid. The suggested model is mathematically formulated
using the continuity and momentum equation in cylindrical coordinates under the assumptions
of a long wavelength and a low Reynolds number. Because the produced differential systems
are non-linear, the series solutions are obtained using a regular perturbation method. The
governing equations are solved using Mathematica software, which also examines the influence
of critical parameters including wave amplitude, wall elasticity, and fluid rheology. The results
demonstrate that significant variations in shear stress and velocity profiles are caused by the

outer wall's elastic behavior.
3.2 Physical Model

The Williamson fluid's peristaltic flow travels through two concentric cylinders. There is a
cylindrical inner tube and a regular elastic wall with a sinusoidal wave on the outside. As
illustrated in Fig. 3.1. The cylindrical coordinates are represented as Z in synchrony with the
tube's axis and R with the tube's radius. The wall surface's geometry is as follows:

Innerwall T = t; =a, (3.1)

Outer wall ¢ =#,(Z,t) =a, +bsin (27“ (Z- sf)>, (3.2)
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where a, is the radius of the inner core region, a, is the average radius of the undisturbed tube,

lis a wavelength, s is the wave propagation speed, tis time, and b is the amplitude of a
peristaltic wave.
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Fig. 3.1 The Geometry of the Problem

The basis for this system is the cylindrical coordinates system (R, Z), where the velocity field

in an unstable two-dimensional flow is described as :
V=[0,(R%1),0,(RZ,9)]. (3.3)

The incompressible Williamson fluid, the basic governing continuity along momentum
equations are

divV =0, (3.4)

dv _
p el divS + pf, (3.5)

where, the velocity field is denoted by V, the density by p, specific body force is denoted by f,

and the material time derivative by% .
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For an incompressible fluid, the Cauchy stress tensor S can be written as follows:

S=[-PI+ 7], (3.6)

here the Cauchy stress tensor by S, pressure by P, the identity tensor by I, © extra stress

tensor.The Williamson fluid constitutive equation is given as:

T = [Heo + (Mo + M) (1 = Tl@D ] (3.7)
We examine the constitutive equation (3.7), where p, = 0 and T'|a| < 1.
The extra stress tensor component can be expressed as:
Tt = [(1-Tlah & (3.8)
(3.9)

in which I is the time constant, p,, is a zero-shear rate viscosity, u. is an infinite shear viscosity,
« is shear strain which is define as:

The second invariant strain tensor is represented by I1 and is given as:

M= ((gradv + (gradV)T)z. (3.11)

The components of tensor and magnitude are

A ~1700

TRR = 2 Wo [1 + FlO(l] a_ﬁl’ (3.12)
~ ~17 (90 a0
trz = o [1+ Tl (53 + 52). (313)
A 100
Tz= 2uo[1+ Tlal]l—2, (3.14)
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a= [2(20) + (L ) 4 2 () (3.15)

An elastic wall's motion can be described by the following equation:
L' = P -P,. (3.16)

Viscosity damping forces and the motion of a stretched membrane are represented by the
operator L’

o _ o 0* a2 a2 a2

L' =E—F—+Gm+H -+ 1, (3.17)
where I, is the spring stiffness, longitudinal tension per unit width is F, viscous damping

coefficient is H, G is the mass per unit area and E is the flexural rigidity of a wall. For the

properties of a flexible wall canal the governing equation at ¥ = t, is

opP a o+ 02 92
2 ( L

02 ~
S —F 4+ G+ H S+ 1) (). (3.18)

The governing equations for fluid motion are obtained by replacing Williamson's fluid with
the velocity components in the shear stress equations.

o0 U, | 903 _
L4 24—, (3.19)
CLUNR, TR L% S I TS G e
( ot TUir TUs 53 ) TR aﬁ( tae) + 2z (tr2), (3.20)
o0s g, sy, 20 o 10 pa 0
(G+0 5 +037) = - Gram ) + 7 G2D)

Using equation (3.18) in (3.21), we get

d o* 0? 0* 92 ay_ 10 50 N, 8 o
5 (Egz—F o+ Gop +H 5t 1) () = g (Rerg) + 5 (222)
au =~ 0 =~ 0U
(G FGE). G
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along with boundary conditions

63 = 61 = 0, at r= fl dq, (323)

<)
w
I
)
[y
I
(e}
Q
—+
=

= £,(Zt) = a, + bsin (ZTH (Z - sf)). (3.24)

The following are the general and particular two-frame coordinate transformations:

T = R, 7= Z—St, ﬁ1=61;
i; = U; —s, p = P(Z-st,R1). (3.25)

08y L Gy 00 _
x V7 T =0, (3.26)
~ Ol ~ 01l op 1 90 .~ d A
P (u1 %-l‘ Us auil) = - O_If') + ; %(r’[f-f) +%(Tﬁ), (327)
~ a ~ 0l ap An ~
p(0y S2+0,52) = = 24 22 () + o (R22), (3.28)
a2 O\ oy 10 on PP
(Ba = F o+ G+ H e + ) () = 3 () + 3 ()
—p (0, 32+ 8;52), (3.29)
where

. 11004

T = 2u0 [1+ TlAl] (3.30)
N ~ 3] 3]

Trz = Mo [1+ Tlal] (ﬁ+ﬁ) (3.31)

~ ~17 903
Ty = 2 Ho [1 + Flal]g, (332)
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and

am @Y+ (@) 22 @3

Following are non-dimensional quantities to be used in the above system of equations

0, £ 2 a,t I's st a?,P
= =—, '=—, Z= - == We=— t= =
! aps’ 3 a,’ 1’ T shg a’ » P slpg
0a sa Iy b r . ~
=2 Re= %2, = ¢ <l,@= —,r, =2 =1+ @sin(2n2), (3.34)
S Ho az az az

where, Re is Reynolds number, We is the Weissenberg number, & the dimensionless wave
number, and ¢ the amplitude ratio.

The dimensionless form of the ruling equations are

Ty o, (3.35)
0 0 ad 1 0 3]
Re&3 (u1 % + ug %) =— a_l: += (It + 85~ (T22), (3.36)
ad 0 0 10 0
Red (u 22 +u;22) = — 2422 (r1,,) + 5 (1y,). (3.37)

The equation of motion governing the elastic wall

Ea3 \ 0°r Fa3 \ 03r Gsa3\ d3r Hsa3\ 02%r I.a3\ ar 10
(o) 5~ o) 5+ o) amae + Gat)mat () 3) =1 m e +
Wosls/ az° Wosl3/ az3 wol3/ 0z at? Wol? / 9z at uosl/ dz r or

i) d d
(‘Sa (t4z) — Red (u1 % + us %), (3.38)
where
T = 21 8[1+ Welol] 22, (3.39)
) )
Ty = Wo [1+ Welal] (%+ %), (3.40)

36



T, = 24181+ Wela] 22, (3.41)

and

a= 257 (2) 4 (Bge 4 200)° oy g (2)’, (342)

and the dimensionless boundary conditions are

u; = =1, at r=r, =14 @sin(2nz). (3.43)

We assume an extremely small wavenumber, as solving the problem in its original form is

exceedingly difficult (6§ « 1), hence equations (3.36-3.39) become

2_1: =0, (3.44)
=15 ), (345)
(hg5- 152+ L L5 15 = 12aw), G40
where
lefsil%, zz—jsii ,L3=i—f,L4=ﬁ—f ,Lszt—f. (3.47)

L, is flexural stiffness of the wall, L, is a longitudinal tension unit, L iS mass per unit area, L,
is a coefficient of viscid damping and Lg is spring stiffness and the components of extra stress

are

2

Tr=T,=0 and T, = (% + We(%) >, (3.48)
02u3 0u3 0u3 2 aug 62u3 _ 74

riiy 2oy We(g) + 2rWe (g) (67) = IR, (3.49)
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where

=4 05r2 631'2 631'2 621'2
K=1 o L, s + L

97 92 4 9z at

+oLg (3.50)

+ L 52
3.3 Solution Methodology

Equation (3.48) is nonlinear and may not have an exact solution, we apply the regular
perturbation method in terms of a variant of the Weissenberg number for the second order to

find the solution. Using the We, we extend

Uz = Up3 + We Ui3 +We2uZ3 + O(We3) (351)

3.3.1 Zero order system

62u03 % _ (>4
r— + = =rk, (3.52)

with boundary conditions as
Ups=—-1atr; =egand =1+ (psin(Zn(z—t)). (3.53)

3.3.2 First order system

Th g B g (e () - (Be)’
r or? + ar 2r or2 ar or ! (3'54)

with boundary conditions

U;3=0 atr; =¢€ and rp, =1+ @sin(2nz). (3.55)
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3.3.3 Second order system

621.123

6u23 _ (02u03) (aulg) (azulg) (auOg)
r or? + or 2r or? or 2r or? or

2(%2)(52),  356)

with boundary conditions:

U;3=0 at r,=¢ and r, =1+ @sin(2nz). (3.57)
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3.5 Result and Discussion

This part shows results we obtained by using perturbation approach to solve the problem

equations then drawing these results using a MATHEMATICA program.

Two section make up this part: The first part covers how parameters affect the fluid’s through
the flow channel, the second part covers how they affect shear stress.

3.5.1 Velocity Profile

Figures 3.2-3.9 shows the effect of parameters We, ¢, Ly, Ly, L3, Ly , Lg and € on the velocity
vs. r distribution. In the (Fig. 3.2) illustrates the axial velocity distribution u; versus radial
position r for three different values of the amplitude ratio ¢ = 0.1, 0.125, and 0.15, under fixed
values of other parameters (We =0.01, € =0.15,L, =0.1,L, =0.5,L; =0.1,L, =0.1, L; = 0.1,
z = 0.4, t = 0.1). As shown, the velocity profile is parabolic in shape, typical of peristaltic
transport, peaking at the center of the channel and diminishing toward both the inner (rigid) and
outer (elastic) walls. A key observation is that increasing the amplitude ratio ¢ that represents
the strength of the peristaltic wave undulations on the elastic outer wall leads to a progressive
rise in maximum velocity. This is evident from the upward shift in the curves from solid (¢ =
0.1) to dotted (¢ = 0.15). Physically, a larger ¢ increases the deformation of the elastic wall,
effectively widening the flow path and intensifying the fluid pumping action. This greater wall
motion amplifies the peristaltic driving force, especially near the central axis of the tube,
causing higher axial velocities. where the increase in velocity to stronger peristaltic motion
induced by a more undulating outer wall. Thus, the figure effectively demonstrates how elastic
wall behavior, via the amplitude ratio, significantly influences fluid transport in peristaltic

motion of Williamson fluid.

The (Fig. 3.3) illustrates the axial velocity component plotted against the radial coordinate r for
varying values of the Weissenberg number We, that quantifies the degree of fluid elasticity in
non-Newtonian flow, specifically during Williamson fluid. The three curves correspond to We
=0, (solid), We =0.01 (dashed), and We = 0.02 (dotted). From the figure, it is evident that as
the Weissenberg number increases, the velocity profile shifts upward, especially near the center
of the channel, indicating that higher fluid elasticity enhances axial flow velocity. Physically,
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this can be explained by the nature of elastic fluids higher We means that the fluid retains more
of its deformation energy, that supports faster movement along the axis. This energy storage
and release mechanism enhances the fluid's ability to accelerate during wave propagation. The
parabolic shape of the velocity profile remains, but with a broader and taller peak as We
increases. Thus, we conclude that elastic effects introduced by a higher Weissenberg number
promote faster transport in peristaltic systems, that is crucial in engineering and biomedical
applications where non-Newtonian behavior dominates, such as in blood flow, mucus transport,

or industrial polymer pumping.

The (Fig. 3.4) illustrates the axial velocity distribution versus the radial coordinate r for three
different values of the flexural rigidity L, parameter of the elastic outer wall during peristaltic
flow of a Williamson fluid. As shown, increasing significantly enhances the peak velocity in
the central region of the channel. Specifically, when increases from 0.05 to 0.15, the velocity
profile becomes more pronouncedly parabolic and reaches higher maximum values at the
center-line = 0.6, suggesting a more vigorous axial flow. This behavior aligns with the physical
interpretation that greater wall flexural stiffness allows the elastic outer wall to store and release
more mechanical energy, amplifying the peristaltic wave-induced pumping effect. From a
mechanical standpoint, the flexible wall behaves like a spring as increases, the wall's response
to peristaltic undulation becomes stronger, generating greater forward momentum in the fluid.
The amplification effect is especially relevant in biomedical applications (e.g., blood transport),
where wall elasticity can be tuned to control flow rates. Therefore, this figure demonstrates how
increasing flexural rigidity enhances the propane strength of peristaltic pumping in non-

Newtonian fluids within deformable geometries.

In the (Fig. 3.5) depicts the axial velocity component as a function of the radial coordinate r,
under different values of the longitudinal tension L, parameter ,that represents the axial tension
per unit width in the flexible outer wall of the cylindrical channel. The profiles demonstrate a
clear decrease in peak velocity as increases from 0.2 (solid line) to 0.6 (dotted line). The
parabolic shape of the velocity remains, with symmetry about the center, but the amplitude of
the velocity diminishes progressively. This indicates that higher longitudinal tension restricts
the dynamic deformation of the elastic wall, thereby limiting the transmission of peristaltic
wave energy into forward fluid motion. Physically, a larger means a stiffer axial stretch of the

wall, resisting the sinusoidal wave's ability to expand and contract the channel effectively. As
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aresult, the peristaltic pumping weakens, leading to a lower induced axial velocity. This insight
is particularly important in bio fluid dynamics, where tunable wall stiffness can modulate flow
characteristics in artificial or physiological conduits, such as arteries or ureters. The figure
highlights a dampening effect of axial wall tension on the efficiency of peristaltic transport, a

crucial design consideration in fluidic systems employing elastic conduits.

The (Fig. 3.6) illustrates the velocity distribution versus the radial position r for different values
of the parameter, that represents the mass per unit area L5 of the elastic wall in the peristaltic
flow of Williamson fluid. The three curves (solid, dashed, and dotted) correspond to L; = 0.1,
0.3 and 0.5. From the fig, seen that as increases, the peak velocity in the centre of the channel
decreases noticeably. This implies that a heavier elastic wall (higher) resists the deformation
caused by the peristaltic wave, resulting in lower fluid transport efficiency through the channel.
Physically, this makes sense because a heavier wall has greater inertia and requires more force
to achieve the same level of deformation thus, it transmits less energy to the fluid. As a result,
the parabolic velocity profile flattens, and the maximum velocity achieved at the centreline
reduces. Therefore, it can be concluded that increasing the wall's mass per unit area leads to a
suppression of peristaltic pumping strength and a reduction in fluid flow velocity throughout

the channel.

The (Fig. 3.7) illustrates how the axial velocity component varies along the radial direction r
within a flexible cylindrical channel, under the influence of different values of the viscous
damping coefficient L,. The solid, dashed, and dotted lines represent L, = 0.1, 0.2, and 0.4. The
velocity profile is parabolic in nature peaking at the center of the channel and reducing

symmetrically toward the walls. The maximum velocity decreases progressively as increases.

Physically, this reflects the damping effect a higher viscous damping coefficient introduces
more resistance to motion from the flexible wall, thereby suppressing the velocity. This trend
is consistent with the theoretical modelling presented in the study, that shows that damping
resists the amplitude of wave-induced deformation of the wall, leading to a weaker driving force
for fluid motion. The system with L, = 0.4 exhibits the most suppressed flow, while L, = 0.1
permits the highest velocity peak. This demonstrates the inverse relationship between viscous
damping and axial velocity magnitude in peristaltic transport of Williamson fluid through an

elastic-walled channel.
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The (Fig. 3.8) shows the velocity profile versus the radial coordinate r for different values of
the parameter, that represents the spring stiffness L of the elastic wall in the peristaltic transport
of Williamson fluid. The curves correspond to L = 0, 0.1, and 1.1 and all exhibit a classic
parabolic velocity distribution, peaking at the center of the flow channel. A careful observation
reveals that its increases, the velocity profile shows a slight but consistent rise, indicating that
the spring stiffness enhances the wall's ability to push fluid more effectively. Physically, a stiffer
spring attached to the elastic wall leads to more efficient restoration and propagation of the
wall's peristaltic wave, that in turn transmits greater mechanical energy into the fluid. This
increased wall motion boosts axial fluid momentum, especially in the core region, resulting in
the observed higher peak velocity. While the difference between the curves is relatively subtle,
it shows that spring stiffness plays a supportive role in enhancing flow rate, especially in
applications where precise fluid control is critical, such as in biomedical devices or microfluidic

systems.

The (Fig. 3.9) shows the velocity distribution versus radial position for different values of the
parameter ¢, that represents the inner radius ratio (i.e., the relative size of the inner cylinder
within the channel). The solid, dashed, and dotted lines correspond to € = 0.1, 0.125, and 0.15
from the figure, it is evident that increasing and leads to a significant decrease in the maximum
velocity within the channel. where the inner cylinder radius increases, it constricts the flow
domain, leaving less space for the fluid to move, thereby reducing axial velocity. Physically,
this makes intuitive sense a thicker inner wall reduces the available flow area and introduces
greater resistance to fluid motion. The figure also shows that the velocity profiles remain
parabolic in shape, but the peak shifts downward as and increases. Thus, increasing the inner
wall size higher and leads to more constricted flow and reduced pumping efficiency in
peristaltic motion, an important consideration in applications such as biomedical fluid transport

and microchannel design.

3.5.2 Shear Stress

Figures 3.10 - 3.17 shows the effect of parameters «, L4, L,, L3, L4, Lg, € and We on the shear
stress. In the (Fig. 3.10) shows the shear stress as a function of radial position r for various
values of the amplitude ratio ¢ , that characterizes the height of the wave on the outer elastic

wall in a peristaltic channel. The solid, dashed, and dotted curves represent ¢ =0.1, 0.125, and
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0.15. As seen, increasing the amplitude ratio leads to a significant rise in shear stress near the
inner wall (lower r) where the stress values are strongly positive. However, as r increases
towards the outer wall, the shear stress decreases and eventually becomes negative, indicating
a change in shear direction. This trend is consistent with highlights that increasing and
intensifies wall deformation, thereby generating stronger velocity gradients near the solid wall,
resulting in higher positive shear stress there. The physical explanation lies in the fact that a
larger wave amplitude enhances the wall's peristaltic pumping action, increasing the strain rate
and hence shear stress in the fluid near the inner boundary. As the wave effect tapers off towards
the elastic outer wall, the stress declines and becomes negative due to the wall's flexibility
absorbing some of the energy. Therefore, larger wave amplitudes amplify shear near the solid
wall and intensify the stress reversal across the channel, that is a key consideration in designing
peristaltic pumps or understanding biological flow phenomena where wave amplitude impacts

shear-driven transport and mixing.

The (Fig. 3.11) displays the shear stress as a function of radial position for different values of
the flexural rigidity L, parameter, that characterizes the stiffness of the outer elastic wall in
response to bending in peristaltic flow. The curves correspond to L;= 0.1, 0.15, and 0.2 for the
solid, dashed, and dotted lines. The figure shows in that increasing significantly enhances the
shear stress near the inner wall (lower r), where the stress is strongly positive. As r increases
toward the outer elastic wall, the stress declines, crosses zero, and becomes increasingly
negative with higher. Its explained that a stiffer elastic wall (higher flexural rigidity) transmits
more mechanical energy to the fluid, thereby increasing the velocity gradient and, consequently,
the shear stress. From a physical standpoint, a stiffer wall is less prone to damping, and its
deformation more effectively drives the fluid, especially near the rigid inner boundary.
However, the outer flexible wall absorbs some of this energy, causing the shear stress to flip

sign as it adjusts to the wave-induced motion.

In the (Fig. 3.12) shows the variation of shear stress along the radial coordinate r for different
values of the longitudinal tension parameter , that characterizes the tensile force per unit width
acting along the elastic wall in the peristaltic flow of a Williamson fluid. The solid, dashed, and
dotted lines represent increasing values of at L, = 0.1, 0.5, and 0.9. It is clear that as increases,
the magnitude of shear stress near the inner wall (lower r) becomes significantly higher

(positive), while the stress decreases toward the outer elastic wall, eventually becoming
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negative. where increasing L, enhances the stretching ability of the wall, leading to more
effective fluid-wall interaction and greater deformation, that in turn produces higher velocity
gradients near the inner wall. Physically, greater longitudinal tension strengthens the elastic
wave's ability to transmit force into the fluid, increasing the shear effect in regions closest to
the rigid boundary. As the wave moves outward, the stress declines due to energy absorption
by the elastic wall and reduced velocity gradient. The point at that the stress crosses zero shifts
slightly depending on, illustrating the dynamic balance between the solid and elastic walls in
transferring momentum. Increased longitudinal wall tension enhances shear stress intercity and
steepens the radial gradient, making a key control parameter in fine-tuning flow behavior for

efficient transport in peristaltic pumping systems.

The (Fig. 3.13) demonstrates the impact of the wall mass parameter on the radial distribution
of shear stress in the peristaltic flow of Williamson fluid through a cylindrical channel with an
elastic outer wall. As seen, the shear stress is maximal near the solid inner wall (small r) and
declines toward the elastic outer wall (higher r), eventually crossing into negative territory.
With a small wall mass (L; = 0.1), the fluid-wall interaction is more pronounced, producing
higher stress values. However, as increases to 0.5 and 0.9 the wall's inertial resistance increases,
that causes the magnitude of shear stress near the inner wall to drop significantly. The
smoothening of the curve and shallower stress gradient indicate a buffering effect caused by
the heavier wall, that absorbs and redistributes the shear more evenly across the flow domain.
This matches the description that explains that an increase in leads to a decrease in shear stress
near the inner wall and a rise at the elastic wall. Overall, this behavior is a reflection of the
damping role played by wall mass in modulating peristaltic stresses within the fluid, and it
shows how structural parameters directly affect flow behavior in biological or industrial

applications involving flexible conduits.

The (Fig. 3.14) effectively illustrates how the coefficient of viscous damping, a critical wall
property, influences the distribution of shear stress during peristaltic transport of Williamson
fluid. As seen the value of increases, there is a clear reduction in the peak stress near the solid
inner wall, and the decay of stress across the radius becomes more gradual. Physically, this
means a wall with higher internal friction or damping capacity resists rapid motion changes,
thereby absorbing part of the mechanical stress transmitted by the fluid flow. This results in

smoother stress transitions and less energy being transmitted to the fluid. Noted this inverse
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relationship, where increased leads to decreased stress at the inner wall and increased stress at
the elastic outer wall, due to redistribution. This trend is relevant in bio fluid applications where
tissue or membrane damping can regulate stress propagation such as in arteries or soft conduits.
Ultimately, underscores the role of damping as a stress moderator in peristaltic systems, helping

to shield the channel walls from extreme shear conditions and stabilizing the flow.

The (Fig. 3.15) illustrates the variation of the shear stress component with respect to the radial
coordinate r, for different values of the parameter (spring stiffness of the outer elastic wall).
Specifically, the Fig. 3.15 shows curves for Lg =0.1, 1.1, and 2.1. As observed, the shear stress
is maximum and positive near the inner rigid wall (small r), and it steadily decreases as we
move radially outward toward the elastic outer wall. The stress even becomes negative near the
outer edge. According to the study, an increase in (spring stiffness) intensifies the resistance
offered by the elastic wall, thereby altering the stress distribution inside the fluid domain.
However, in this particular figure, all curves appear similar and almost overlap, suggesting that
changes in may have a subtle effect in this range or for this particular case. Physically, a higher
spring stiffness makes the outer wall more resistant to deformation, that stabilizes the wall shape
and hence restricts large variations in shear stress. Near the inner wall, the positive stress
indicates stronger interaction and push of the fluid against the rigid boundary, while the
negative values near the elastic wall suggest a pull or suction-like effect due to wall elasticity.

The (Fig. 3.17) shows how the shear stress changes with the radial position r for different values
of the Weissenberg number We, which reflects the fluid’s elastic behavior. As r increases from
the inner to the outer wall, shear stress decreases from a high positive value to a negative one,
indicating a change in shear direction near the elastic wall. When We increases from 0 to 0.02,
the stress near the center of the channel increases slightly, showing that elasticity enhances
shear strength in that region. The results suggest that a higher We strengthens the fluid's
resistance and flow near the center while increasing stress variation across the channel. This
behavior matches the findings in the article, where a rise in We increases stress near the solid

wall and deepens the negative stress near the elastic boundary.
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Fig. 3.2 Variation of ¢ on velocity field at ¢ = 0.1, 0.125, 0.15 with We = 0.01, € = 0.15,
L,=01,z=04,L,=05,L;=01,L,=0.1,L;=0.1,t=0.1.
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Fig. 3.3 Variation of We on velocity field at We =0, 0.01, 0.02 with ¢ = 0.1, € = 0.15,

L,=0.1,z=04,L, =05 L; =0.1, L, =0.1, Ls = 0.1, t = 0.1.
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Fig. 3.4 Variation of L; on velocity field at L,=0.05, 0.1, 0.15 with ¢ = 0.1, € = 0.15,
We=0.01,L,=01,z = 04, L;=0.1,L,=0.1,L;=0.1,t=0.1.
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Fig. 3.5 Variation of L, on velocity field at L,= 0.2, 0.4, 0.6 with ¢ = 0.1, € = 0.15,
We=0.01,L,=01,L3=01,L,=01,L;=0.1,z=04,t=0.1

48



i

0.2 0.4 0.6 0.8 1.0
r

Fig. 3.6 Variation of L; on velocity field at L; = 0.1, 0.3, 0.5 with ¢ = 0.1, € = 0.15,
We=001,L,=01,L,=05,L,=02,L;=0.1,z=04,t=0.1.
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Fig. 3.7 Variation of L, on velocity field at L,= 0.1, 0.2, 0.4 with ¢ = 0.15, € = 0.15,
We=001,L,=01,L,=05,L;=0.1,L;=0.1,z=04,t=0.1.
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Fig. 3.8 Variation of Ls on velocity field at Ls=0, 0.1, 1.1 with ¢ = 0.15, € = 0.15,
We=001,L,=01,L,=05,L;=01,L;=0.1,z=04,t=0.1.
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Fig. 3.9 Variation of € on velocity field at € = 0.1, 0.125, 0.15 with We = 0.01, ¢ = 0.15,
L,=01L,=05L;=0.1,L,=0.1,Ls=0.1,z=0.4,t=0.1.
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Fig. 3.10 Variation of ¢ on Shear-Stress at ¢ = 0.1, 0.125, 0.15 with We = 0.01, € = 0.15,
L,=01L,=05L;=0.1,L,=01,Ls=0.1,z=04,t=0.1.
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Fig. 3.11 Variation of L, on Shear-Stress at L;=0.1, 0.15, 0.2 with ¢ = 0.15, € = 0.15,
We=001,L,=05L;=01,L,=01,Ls=0.1,2z=04,t=0.1.
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Fig. 3.12 Variation of L, on Shear-Stress at L,=0.1,0.5,0.9 with ¢ = 0.1, € = 0.15,
We=001,L,=01,L;=01,L,=01,L;=0.1,z=04,t=0.1.
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Fig. 3.13 Variation of L on at Shear-Stress L;=0.1, 0.5, 0.9 with ¢ =0.15, € = 0.15,
We=0.01,L,=0.1,L,=05,L,=02,Ls=0.1,z=04,t=0.1.
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Fig. 3.14 Variation of L, on Shear-Stress at L,=0.1, 1.1, 2.1 with ¢ = 0.15, € = 0.15,

We=0.01,L,=01,L,=05,L;=0.1,L;=0.1,z=04,t=0.1.
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Fig. 3.15 Variation of Lg on Shear-Stress at L; = 0.1, 1.1, 2.1 with ¢ = 0.15, € = 0.15,
We=0.01,L,=01,L,=05,L;=0.1,L;=0.1,z=04,t=0.1
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Fig. 3.16 Variation of € on Shear-Stress at € = 0.1, 0.125, 0.15 with We = 0.01, ¢ = 0.15,
L,=01L,=05L;=0.1,L,=0.1,L;=0.1,z=0.4,t=0.1.
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Fig. 3.17 Variation of We on Shear-Stress at We =0,0.01,0.02 with ¢ =0.1, € = 0.15,
L,=01,L,=05L;=0.1,L,=0.1,Ls =0.1,z=04,t=0.1.
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CHAPTER 4

IMPACT OF ELASTIC PASSAGE ON THE
PERISTALTIC TRANSPORT OF WILLIAMSON
FLUID WITH SLIP EFFECTS

4.1 Introduction

In this chapter, extension of the work by (Al-Khafajy & Al-Delfi, 2023) in which the effect of
an elastic outer wall on the peristaltic transport of a non-Newtonian Williamson fluid trapped
between two concentric cylinders where the outer wall exhibits a sinusoidal wave pattern while
the inner wall stays inelastic is examined. The effects of velocity slip at the boundaries, porosity,
and magnetohydrodynamics (MHD) are taken into account. The mathematical formulation of
the proposed model is done by using the momentum and energy equations in cylindrical
coordinates while assuming a long wavelength and a low Reynolds number assumption. The
series solutions of the produced differential systems are obtained using a regular perturbation
technique due to their non-linear nature. Mathematica software is used to solve the governing
equations and investigate the effects of important parameters including fluid rheology, wall
elasticity, and wave amplitude. The findings show that the elastic behaviour of the outer wall

causes notable differences in shear stress, streamlines, and velocity profiles.

4.2  Physical Model

The proposed model considers the flow of incompressible Williamson fluid passes through the
tube exhibiting the peristaltic mechanism as illustrated in Fig. 4.1. The cylindrical coordinates

Z in synchrony with the tube's axis and R with its radius.

PN 2,
R(Z, t)=a,+ bsinTn(Z — st) (4.1)
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Fig. 4.1 Geometry of the Tube.

where wave propagation speed is s, wavelength is 1, a, is the average radius of the tube, small
holes shows the porous structure, time is t and b is the amplitude of a peristaltic wave, 7 is the
inclination of the tube B, is the magnetic field.

In two-dimensional flow, the velocity field is defined as follows:
V=[0,(R20),0,(RZ,0] (4.2)

The basic governing continuity along momentum and energy equations describing the fluid
model are

divV =0, (4.3)
p (Z—‘g) = divS + pf, (4.4)
dT C s
( pcp) i divq® + Q, (4.5)
where
q° = —KkV?T,
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the velocity field is denoted by V, the density by p, specific body force is denoted by f, and the
material time derivative by % . T denotes temperature, k is thermal conductivity, Cp Is specific

heat, Q, heat generation, g* denotes heat flux, total heat flux div g*.

The Cauchy stress tensor S for incompressible fluid can be expressed as:
S=[-Pi+ %] (4.6)

where Cauchy stress tensor by S pressure by P, the identity tensor by I, T extra stress tensor.

The Williamson fluid constitutive equations and elastic wall's equations already discussed in

chapter 03.

After substituting the velocity components in the shear stress equation for Williamson's fluid,

the governing equations for fluid motion are obtained in equations (4.3) - (4.5), we have

00, 0 90y _
T AT =0, 4.7)
aﬁl 5 6U1 661 _ @ l i AAAA i ~
p( at +U, AR +Us az) - aﬁ+ﬁ aﬁ(RTRR) +02(TRZ)

+ pBog(Ty — Ty)Cosn, (4.8)

~ B30, + 2%, (4.9)
per (240,240, %) = k(404 ) vop, @10

The equation of the elastic passage is
+ pBog(Ty — To) Sinn — oU3B3 + “"Kﬁg, -p (% + 0, % + U, aa—l;s). (4.11)

g is a gravitational acceleration, T; is a fluid temperature , T, refer to wall temperature, S, is a

Thermal expansion coefficient, k refer to permeability, p is a fluid density, B3 represents
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applied magnetic field, specific heat is represented by ¢, K refer to thermal conductivity and

heat source is represented by Q.

To convert the proposed model into a steady — state problem, the following transformations are

used
/sz, 2=Z—St, ﬁlzﬁl,

3= U; —s, p=P(Z-st,R1). (4.12)

=

The governing equations take the form as:

94, , Oy 003 _
Gy Ly I o, (4.13)
.9y, . . 0 B 10 .. IR L
p (u1 % + U3 %) =513 g(rTff) T35 (Tp2) + pﬁog(Tl - TO)COSH: (4.14)
. 003 . 090 B1d . 0 . A o "
p (u1 % + U3 %) = T % ;g(”’fﬁ)g(%z) + Pﬁog(Tl - To) Sinn — GBg(us) -
Ho (ﬁ3)’ (415)
K
. T | . oT\ _ a (oT\ 10T aT (0T
pep (0255 + 8s55) = K<§(§)+%%+£(%)> tQ,  (216)

GE GE GE 02 O\ jnn 10 ,on PN
(B35 —F 55+ Gaam + H g + 1) () = 30 () + 35 (B)

~ =~ . ~ (t3) ~ 0l ~ 0l
— pBg(T1 — TO) Sinn — oB3(li3) — % - p (ul =3 4 i, %) (4.17)

And the components of the stress tensor are same in equation (3.30) - (3.33) in the chapter 03.

Following are the non-dimensional quantities used in the above system of equations.

ﬁl ﬁg T Z S HoCp
u, = — U = — r= — 7 = - t= — P = —
17 4,8’ 3 s’ a,’ 1’ 1’ K '’
a,t I's aZ,P aa, psa, a,
T=—, We = —, p= , o= , e = , §=—=
SHo az slpo S Ho 1
b fz . A a%ﬁ k T _TO
= — r, =h=—==1+4 @sin(2nZ T=— Da=— 0 =—=
® azr 2 a, o ( )l SIJo’ ay ) T, - TO’
2 ) 2
o as;(T,y =T a
M= [2Bya, Gr=2P2ui-Td g _3e (4.18)
H SHo K( T1—To)
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where u, is the dimensionaless radial velocity, us is the dimensionaless axial velocity, r is the
dimensionless radial coordinate, z is the dimensionless axial coordinate, t is the dimensionless
time, T is the dimensionless shear stress, ¢ is the amplitude ratio, & is the dimensionless wave
number, and We is the Weissenberg number, M is the Hartmann number, Gr is the Grashof
Number, B is Biot number, 6 is the dimensionless temperature, Re is the Reynolds number, Pr

Is prandtl number, a is the dimensionless shear rate, Da is the Darcy number.

By using these non-dimensional quantities in the equations (4.13) - (4.17) we get

Re&3 (u1 6511 + ug Zul) = Z—f +% %(rrrz) + 8% (t,,) + 8GrOCosn, (4.20)

ap , 10 ] .
a_I: +t- o (rte,) + 85 (1) + GréSinn —

Red (u1 6513 + us 2“3)

(M2 + —)us, (4.21)

N ae)_1ae 9%0 82629 . 192
i u3az + + B. (4.22)

RePré (u1 = ; E + o2 372

The equation of motion governing the elastic wall is

Ea3 \ 0°r Fa3 \ d03r Gsa3\ d3r Hsa3\ 0%r Ia3\ ar 10
(Gor) 5 - Gan) 58+ (vt (o)t ()52 =1 s +
Wosls/ az Wosl3/ az3 wol3/ dz at? Wol? / 9z at uosl/ dz r or

a . 1 a 3]
8+ (1;,) + Grosing — (M2 + =) — Res (u; 22 +u;22), (4.23)

and the dimensionless boundary conditions are

dug _0 a0 _0 . _0
or ar a r=5
00
u; + B, = -1, E =0, at r =h. (4.24)

We assume an extremely small wavenumber because it is exceedingly difficult to solve the

problem in the latter form (6 « 1), hence equations (4.19- 4.23) become
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® _ (4.25)

2 19 : 1

a_lz) = — - (rty,) + GréSinn — (M2 + E) us, (4.26)
1ae+aze+B_0 (4.27)
r or  0r? - '

d°r, 03r, 93r, 9%r, arz) 10 )
—=) = - = roSinn —
(L2 - L2+ Lyt Ly 2+ Lg32) = = (rty,) + GrésSim
2 L)
(M2 + —)us. (4.28)
where
__ Eaj _ Fa3 _ Gaj _ Haj _ 1nad
17 e "2 T 3T s M T e 5T e (4.29)

L, is flexural stiffness of the wall, L, is a longitudinal tension unit, L is mass per unit area, L,

Is a coefficient of viscous damping and L is spring stiffness.

The components of extra stress are

OU3

2
Tr=T,=0 and T, = (ar + We(aai:) ) (4.30)

Replacing T, into equation (4.28) we have:

OZU3 6u3 6u3 2 6u3 02u3 2 i _
2 o e (52) +2rwe (52) (52) — (M2 + ) us =
— GréSinn + rk, (4.31)
where
6 Iy 6 Iy 631"2 6 Iy 6r2

(4.32)
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4.3 Solution Methodology

Equation (4.32) is difficult to solve analytically, therefore, to obtain the solution, we employ

the regular perturbation strategy in terms of a second-order form of the Weissenberg number.

To solve the perturbation problem, it has been expanded as follows:
Uz = Ups + We Uq3 +We2uZ3 + O(We3)
4.3.1 Zero order System

9%uo3 %__( 2 L) _ ; 7
r— + =, = M= + 5a) Uos GroSinn + rkK,

with boundary conditions as:

6u03

uos _ 0, at r=0, and uy+p =-—1, at r=h.

ar ar

4.3.2 First order System

62u13 6u13 _ (62u03) (6u03) (6u03)2 ( 2 1)
r arz + or 2r or2 ar or M®+ Da U1z,

with boundary conditions as

6u13 _
or

iz _ g, at r=20, and wu;3+p 0, at r=h.

or !
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(4.36)
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4.4 Result and Discussion

The behavior of the parameters used in the temperature (0), axial velocity (u), and streamline
expressions is discussed. Specifically the effects of the magnetic parameter (M), porosity
parameter (Da), slip parameter (f3), Grashof number (Gr), Biot number (B), Weissenberg
number (We) , and wall properties are examined. To analyze their influence, graphs were
generated using the MATHEMATICA software.

The first figure presents streamline patterns of Williamson fluid under the action of a magnetic
field for different values of the magnetic parameter M. In Fig. 4.2 (a) when M = 0.1 the
streamlines show a relatively larger bolus (trapped fluid region) near the channel center. At this
stage, the magnetic resistance is weak, which allows the recirculation zone to expand and fluid
particles to move more freely. In Fig. 4.2 (b) when M =1, the bolus size decreases slightly and
streamlines compress near the channel walls due to the Lorentz force, which resists fluid motion
and reduces recirculation. In Fig. 4.2 (c) for M = 1.5 the bolus becomes even smaller, and
streamlines shift closer to the axis. The stronger magnetic field further suppresses circulation,
reducing trapped zones and restricting secondary flows.

Fig. 4.3 (a — c) illustrates the effect of the porosity parameter Da. In Fig. 4.3 (a) when Da =
0.1, the bolus is relatively small due to low porosity, which offers greater resistance to flow and
limits fluid entrapment. In Fig. 4.3 (b) when Da = 1 the bolus size increases as porosity
improves, allowing more fluid to be trapped and carried along by the peristaltic wave. In Fig.
4.3 (c) for Da = 1.5 the bolus becomes largest confirming that higher porosity reduces

resistance and enhances fluid trapping.

Fig. 4.4 (a — c) show streamlines for different values of L;. The closed loops represent trapped
boluses that move with the peristaltic wave. In Fig. 4.4 (a) for L= 0.1 the bolus is small,
indicating minimal trapping. When L, = 0.2 in Fig. 4.4 (b) the bolus size increases, and more
fluid is trapped in the channel center. In Fig. 4.4(c) for L; = 0.3 the bolus reaches its maximum
size, confirming that increasing L,enhances fluid trapping. Fig. 4.5 (a — ¢) demonstrates the
effect of on L, peristaltic flow. In Fig. 4.5 (a) for L,= 0.1 the bolus is relatively small. As L,
increases to 0.2 in Fig. 4.5 (b) the bolus expands significantly. At L, = 0.3 in Fig. 4.5 (c) the
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trapped bolus is largest, showing that higher L, enhance fluid entrapment. Fig. 4.6 (a — ¢)
show the effect of Ls. In Fig. 4.6 (a) when L3 = 0.1 the trapped bolus is small. As L5 increases
to 0.2 in Fig. 4.6(b) the bolus expands, trapping more fluid. In Fig. 4.6 (c) at L;= 0.3 the bolus

reaches its largest size, indicating that higher Lzvalues increase fluid trapping.

Fig. 4.7 (a — c) shows the effect of L,. In Fig. 4.7 (a) when L,= 0.1 the bolus is relatively
small. In Fig. 4.7 (b) when L,= 0.2 the bolus size reduces noticeably, unlike the previous
parameters. In Fig. 4.7 (c) at L,= 0.3 the bolus is smallest. This indicates that L, acts differently
representing resistance or damping which reduces fluid trapping. Fig. 4.8 (a — c¢) show the
influence of Ls. In Fig. 4.8 (a) at L, = 0.1 the bolus is small. In Fig. 4.8 (b) for Lg = 0.2 the
bolus grows larger. In Fig. 4.8 (c) at Lg = 0.3 the bolus is largest. This confirms that increasing
Lg enhances fluid trapping. Fig. 4.9 (a — ¢) presents the impact of the slip parameter 8. In Fig.
4.9 (a) when B = 0.1 the bolus is smallest. Increasing  to 0.3 in Fig. 4.9 (b) reduces the bolus
size. At 3 =0.5inFig. 4.9 (c) the trapped bolus is largest, indicating that slip enhance trapping

efficiency by stronger peristaltic pumping.

Fig. 4.10 displays velocity profiles for different slip parameter values. For 8 = 0 (solid line),
the classic parabolic profile appears, with maximum velocity at r = 0 and zero velocity at the
walls. When B = 0.02 (dashed line), velocity at the walls is non-zero, and the overall velocity
increases. For $ = 0.04 (dotted line), the velocity further increases, and wall slip becomes

stronger.

Fig. 4.11 shows the effect of the Weissenberg number We. At We = 0 (solid line), the velocity
profile is parabolic, characteristic of Newtonian fluids. At We = 0.02 (dashed line), velocity
decreases across the channel and the profile flattens. At We = 0.04 (dotted line), the velocity

reduces further, with the lowest peak at the center, showing stronger viscoelastic effects.

Fig. 4.12 shows velocity profiles for different magnetic parameter values. At M = 0.1 (solid
line), velocity is maximum with a classic parabolic shape. At M = 2 (dashed line), velocity
decreases due to Lorentz force. At M =4 (dotted line), velocity reduces further, with the flattest
profile, as magnetic resistance is strongest. Fig. 4.13 illustrates velocity profiles for different
Darcy numbers Da. At Da = 0.1 (solid line), velocity is highest with a parabolic profile. At Da

= 0.2 (dashed line), velocity decreases due to porous resistance. At Da = 0.4 (dotted line),
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velocity reduces further, showing the strongest damping effect. Fig. 4.14 shows velocity
profiles for various Grashof numbers Gr. At Gr = 0.1 (solid line), velocity is lowest. Increasing
Gr to 0.3 (dashed line) raises velocity across the channel. At Gr = 0.5 (dotted line), velocity is

highest, confirming that buoyancy effects enhance flow strength.

Fig. 4.15 the variation of velocity distribution with respect to different values of the parameter
B is displayed in the figure. The horizontal axis represents the radial position r, while the
vertical axis corresponds to the velocity component. For all cases, the velocity profile retains a
parabolic nature, reaching its maximum at the channel centerline (r = 0) and gradually
decreasing towards the walls (r = £1), where it approaches zero due to the no-slip condition.
The effect of parameter B is clearly visible: when B = 1 the velocity attains the highest peak,
signifying faster fluid motion. Increasing B to 5 reduces the peak velocity, and a further increase
to B = 10 produces a much flatter curve with a significantly lower magnitude of velocity. These
observations indicate that larger values of B enhance the resistive influence on the flow, thereby
suppressing the velocity throughout the domain, while smaller values of B allow the fluid to

accelerate more freely.

Fig.4.16 demonstrates the influence of wall properties L,, L,, L3, L4, Lg on velocity distribution.
As wall property values increase, the velocity at the centerline decreases, and overall flow
reduces due to enhanced wall rigidity and resistance. Fig. 4.17 presents temperature profiles for
different Biot number values. At B = 0.01 (solid line), temperature is lowest, with nearly
uniform distribution across the channel, indicating dominant conduction. At B = 0.02 (dashed
line), temperature increases and becomes more parabolic. At B = 0.03 (dotted line),
temperature is highest across all radial positions, showing stronger convective heat transfer at

the boundaries.
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Fig. 4.2 Streamlines for the diverse values of magnetic parameter.
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Fig. 4.15 Velocity distribution for the diverse values of Biot number.
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CHAPTER 5
CONCLUSION AND FUTURE WORK

5.1 Conclusion

This thesis has examined the peristaltic flow of a non-Newtonian Williamson fluid, revealing a
complex interdependence between porosity, magnetic effects, slip conditions, and the fluid’s
overall dynamics. Streamline analysis has proven particularly effective in illustrating the
influence of these parameters on the trapped bolus a pocket of fluid carried by the peristaltic
wave. The complexity of the governing equations has been addressed through lubrication
approach and the perturbation techniques Furthermore, graphical representations of streamline
patterns, velocity function and temperature profile, generated using Mathematica, provided

meaningful insights into the flow characteristics under varying conditions.

The notable conclusions drawn this research are that the velocity of the Williamson fluid
declined as the magnetic parameter enhanced. This shows that the increase in the Lorentz force
created resistance in the fluid flow thus causing a significant decline in the velocity. The
increase in Grashof Number (Gr) means the growing dominance of inertial over the viscous
forces, which in turn increases the fluid’s velocity. The surge in Weissenberg Number (We)
shows that non-Newtonian effects are intensifying, thus decline in the fluid’s velocity is
observed as this number is elevated. Porosity parameter (Da) indicates that the void spaces in
the medium are increasing. As these void spaces increase, fluid experiences interruption to flow
freely through the channel, thus reduce in the velocity can be seen in the graphical
representation. For the diverse wall properties like stiffness, damping, rigidity etc. It can be
seen that the surge in these parameters causes declines in the fluid’s velocity.

Impact of the slip parameter refers to the situation where the fluid slides along the channel’s
walls. The resistance near the wall declines allowing fluid to flow past the channel easily. Biot
number is a non-dimensional number that helps to investigate if the temperature gradient inside
the fluid is substantial or not. Velocity descended as Biot number was enhanced thus causing
the convection process accelerate in the passage, this results elevation in the temperature profile

as depicted in the graph.
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5.2 Future Work

The model studied in this dissertation includes MHD, porosity and slip effects along with heat
transfer. However, this model has potential to be extended for the future researches as well by

including thermal effects and mass transfer.

e Investigating various fluid models, such as the Carreau and Walter's B fluid models, as
well as non-Newtonian fluid models, could be part of this.

e As our current study focused on the effect of elastic passage properties, slip boundary
conditions in a tube, the same model can be studied in an endoscope as well.

e Furthermore, adding boundary conditions like thermal slip and convective boundary
conditions may help future researchers understand how peristaltic flow behaves in real-

world situations.

78



References

Abbas, Z., Irshad, S., & Rafig, M. (2023). Study of peristaltic activity in non-linear blood
analysis of Williamson fluid in a microchannel. Waves in Random and Complex Media,
1-24.

Abd-Alla, A., Abbas, I. A., Abo-Dhab, S., ElImhedy, Y., Sapoor, H., & Abdelhafez, M. (2025).
Effect of magnetic field and heat transfer on peristaltic flow of a micropolar fluid
through a porous medium. Waves in Random and Complex Media, 35(2), 4070-4081.

Afifi, N., & Gad, N. (2001). Interaction of peristaltic flow with pulsatile magneto-fluid through
a porous medium. Acta Mechanica, 149(1), 229-237.

Ajithkumar, M., Kuharat, S., Bég, O. A., Sucharitha, G., & Lakshminarayana, P. (2024).
Catalytic effects on peristaltic flow of Jeffrey fluid through a flexible porous duct under
oblique magnetic field: Application in biomimetic pumps for hazardous materials.
Thermal Science and Engineering Progress, 49, 102476.

Akbar, N. S., Hayat, T., Nadeem, S., & Obaidat, S. (2012). Peristaltic flow of a Williamson
fluid in an inclined asymmetric channel with partial slip and heat transfer. International
Journal of Heat and Mass Transfer, 55(7-8), 1855-1862.

Akbar, N. S., & Nadeem, S. (2012). Characteristics of heating scheme and mass transfer on the
peristaltic flow for an Eyring—Powell fluid in an endoscope. International Journal of
Heat and Mass Transfer, 55(1-3), 375-383.

Akram, S., Razia, A., & Afzal, F. (2020). Effects of velocity second slip model and induced
magnetic field on peristaltic transport of non-Newtonian fluid in the presence of double-
diffusivity convection in nanofluids. Archive of Applied Mechanics, 90(7), 1583-1603.

Al-Khafajy, D., & Al-Delfi, W. N. (2023). The peristaltic flow of Williamson fluid through a
flexible channel. Iraqi Journal of Science, 865-877.

Al-Khafajy, D. G. S., & Majeed Mashhadi, R. R. (2023). The peristaltic flow for Carreau fluid
through an elastic channel. Journal of the Mechanical Behavior of Materials, 32(1),
20220257.

Alharbi, K. A. M., Adnan, A., Eldin, S. M., & Akgul, A. (2023). Investigation of Williamson
nanofluid in a convectively heated peristaltic channel and magnetic field via method of
moments. AIP Advances, 13(6).

Ali, N., & Hayat, T. (2007). Peristaltic motion of a Carreau fluid in an asymmetric channel.
Applied Mathematics and Computation, 193(2), 535-552.

79



Ali, N., Wang, Y., Hayat, T., & Oberlack, M. (2009). Numerical solution of peristaltic transport
of an Oldroyd 8-constant fluid in a circular cylindrical tube. Canadian Journal of
Physics, 87(9), 1047-1058.

Algarni, A. J., Abo-Elkhair, R., Elsaid, E. M., Abdel-Aty, A.-H., & Abdel-wahed, M. S. (2023).
Effect of magnetic force and moderate Reynolds number on MHD Jeffrey hybrid
nanofluid through peristaltic channel: application of cancer treatment. The European
Physical Journal Plus, 138(2), 1-30.

Bohme, G., & Friedrich, R. (1983). Peristaltic flow of viscoelastic liquids. Journal of Fluid
Mechanics, 128, 109-122.

Bradford, J., & Gupta, S. (1986). Compressibility. Methods of Soil Analysis: Part 1 Physical
and Mineralogical Methods, 5, 479-492.

Brown, T. D., & Hung, T.-K. (1977). Computational and experimental investigations of two-
dimensional nonlinear peristaltic flows. Journal of Fluid Mechanics, 83(2), 249-272.

Burns, J., & Parkes, T. (1967). Peristaltic motion. Journal of Fluid Mechanics, 29(4), 731-743.

Civan, F. (2011). Porous media transport phenomena. John Wiley & Sons.

El-Hamid, M. A., Abo-El Dahab, E. M., Abd El-Aziz, M., & Salem, A. M. (2025). Finite
difference versus unsupervised machine learning approach for exploring trihybrid non-
Newtonian nanofluid flow around spinning cone. International Communications in Heat
and Mass Transfer, 168, 109435.

El-Shehawey, E., & Husseny, S. Z. (2002). Peristaltic transport of a magneto-fluid with porous
boundaries. Applied Mathematics and Computation, 129(2-3), 421-440.

El-Shehawy, E., EI-Dabe, N., & El-Desoky, I. (2006). Slip effects on the peristaltic flow of a
non-Newtonian Maxwellian fluid. Acta Mechanica, 186(1), 141-159.

El Misery, A., & ElI Shamy, 1. (2004). Effects of an endoscope and fluid with variable viscosity
on peristaltic motion. Applied Mathematics and Computation, 158(2), 497-511.
Eldabe, N., Moatimid, G., Abouzeid, M., EIShekhipy, A., & Abdallah, N. F. (2020). A
semianalytical technique for MHD peristalsis of pseudoplastic nanofluid with
temperature-dependent viscosity: Application in drug delivery system. Heat Transfer—

Asian Research, 49(1), 424-440.

Eldesoky, I., Abumandour, R., Kamel, M., & Abdelwahab, E. (2019). The combined influences
of heat transfer, compliant wall properties and slip conditions on the peristaltic flow
through tube. SN Applied Sciences, 1(8), 897.

80



Ellahi, R., Riaz, A., & Nadeem, S. (2014). Three-dimensional peristaltic flow of a Williamson
fluid in a rectangular channel having compliant walls. Journal of Mechanics in Medicine
and Biology, 14(01), 1450002.

Elshehawey, E., Eldabe, N. T., Elghazy, E., & Ebaid, A. (2006). Peristaltic transport in an
asymmetric channel through a porous medium. Applied Mathematics and Computation,
182(1), 140-150.

Farank, w. (1996). fluid mechnics.

Granger, R. A. (2012). Fluid mechanics. Courier Corporation.

Gupta, B., & Seshadri, V. (1976). Peristaltic pumping in non-uniform tubes. Journal of
Biomechanics, 9(2), 105-1009.

Hafez, N. (2024). EHD peristaltic flow of Sisko fluid under the effects of convection and
endoscope. Ain Shams Engineering Journal, 15(5), 102647.

Hanin, M. (1968). The flow through a channel due to transversally oscillating walls(Mean flow
rate calculated for flow in two dimensional channel generated by transverse deflection
oscillations along walls). Israel Journal of Technology, 6, 67-71.

Hariharan, P., Seshadri, V., & Banerjee, R. K. (2008). Peristaltic transport of non-Newtonian
fluid in a diverging tube with different wave forms. Mathematical and Computer
Modelling, 48(7-8), 998-1017.

Hayat, T., Hussain, Q., & Ali, N. (2008). Influence of partial slip on the peristaltic flow in a
porous medium. Physica A: Statistical Mechanics and its Applications, 387(14), 3399-
34009.

Hayat, T., Saleem, A., Tanveer, A., & Alsaadi, F. (2017). Numerical study for MHD peristaltic
flow of Williamson nanofluid in an endoscope with partial slip and wall properties.
International Journal of Heat and Mass Transfer, 114, 1181-1187.

Jaffrin, M., & Shapiro, A. (1971). Peristaltic pumping. Annual Review of Fluid Mechanics,
3(1), 13-37.

Jaffrin, M. Y. (1973). Inertia and streamline curvature effects on peristaltic pumping.
International Journal of Engineering Science, 11(6), 681-699.

Janna, W. S. (2009). Introduction to fluid mechanics. CRC press.

Kwang-Hua Chu, W., & Fang, J. (2000). On the peristaltic transport in small-Knudsen-number
flow. Meccanica, 35, 69-74.

Latham, T. W. (1966). Fluid motions in a peristaltic pump Massachusetts Institute of

Technology.

81



Lykoudis, P. (1971). Peristaltic pumping: A bioengineering model. Proceeding Workshop
Hydrodynamic Upper Urinary Tract, Nat. Acad. Sci., Washington, DC,

Macagno, E. O., & Christensen, J. (1980). Fluid mechanics of the duodenum. Annual Review
of Fluid Mechanics, 12(1), 139-158.

Mekheimer, K. S. (2005). Peristaltic transport of a Newtonian fluid through a uniform and non-
uniform annulus. Arabian Journal for Science and Engineering, 30(1), 69-83.

Misra, J., & Pandey, S. (2001). A mathematical model for oesophageal swallowing of a food-
bolus. Mathematical and Computer Modelling, 33(8-9), 997-1009.

Nadeem, S., Ashiq, S., & Ali, M. (2012). Williamson fluid model for the peristaltic flow of
chyme in small intestine. Mathematical Problems in Engineering, 2012(1), 479087.

Nadeem, S., Maraj, E., & Akbar, N. S. (2014). Investigation of peristaltic flow of Williamson
nanofluid in a curved channel with compliant walls. Applied Nanoscience, 4(5), 511-
521.

Nuwairan, M. A., & Souayeh, B. (2022). Simulation of gold nanoparticle transport during MHD
electroosmotic flow in a peristaltic micro-channel for biomedical treatment.
Micromachines, 13(3), 374.

Paterson, W. G. (2006). Esophageal peristalsis. GI Motility online.

Pritchard, P. J., & Leylegian, J. C. (2011). Introduction to fluid mechanics. ISBN-13
9780470547557.

Rafig, M., Shaheen, A., Trabelsi, Y., Eldin, S. M., Khan, M. I., & Suker, D. K. (2023). Impact
of activation energy and variable properties on peristaltic flow through porous wall
channel. Scientific Reports, 13(1), 3219.

Rajput, R. (2010). A textbook of fluid mechanics and hydraulic machines: in Sl units. (No
Title).

Raju, K. K., & Devanathan, R. (1972). Peristaltic motion of a non-Newtonian fluid. Rheologica
Acta, 11(2), 170-178.

Raju, K. S. N. (2011). Fluid mechanics, heat transfer, and mass transfer: chemical engineering
practice. John Wiley & Sons,.

Ridha, S. R., & Solagh, H. N. (2025). Effect of Inclined MHD Peristaltic Transport for non-
Newtonian model in a Non-Uniform Channel Through Porous Medium As: HTF. Iraqi
Journal of Science, 635-651.

Roshani, H., Dabhoiwala, N., Tee, S., Dijkhuis, T., Kurth, K., Ongerboer de Visser, B., de Jong,
J., & Lamers, W. (1999). A study of ureteric peristalsis using a single catheter to record

EMG, impedance, and pressure changes. Techniques in urology, 5(1), 61-66.

82



Shaheen, A., Muhammad Hussain, S., Ghazwani, H. A., Huma, Z., & Siddique, 1. (2024).
Analytical solution of non-Newtonian Williamson fluid under the effect of
magnetohydrodynamics. Modern Physics Letters B, 38(13), 2450103.

Siddiqui, A., & Schwarz, W. (1994). Peristaltic flow of a second-order fluid in tubes. Journal
of Non-Newtonian Fluid Mechanics, 53, 257-284.

Srinivas, A., Selvi, C., & Sreenadh, S. (2017). Peristaltic pumping of a generalized Newtonian
fluid in an elastic tube. Journal of Applied Fluid Mechanics, 10(6), 1785-1798.
Srivastava, L., & Srivastava, V. (1985). Interaction of peristaltic flow with pulsatile flow in a

circular cylindrical tube. Journal of Biomechanics, 18(4), 247-253.

Taber, L. A., Zhang, J., & Perucchio, R. (2007). Computational model for the transition from
peristaltic to pulsatile flow in the embryonic heart tube.

Takabatake, S., Ayukawa, K., & Mori, A. (1988). Peristaltic pumping in circular cylindrical
tubes: a numerical study of fluid transport and its efficiency. Journal of Fluid
Mechanics, 193, 267-283.

Tanveer, A., Hayat, T., Alsaedi, A., & Ahmad, B. (2017). On modified Darcy's law utilization
in peristalsis of Sisko fluid. Journal of Molecular Liquids, 236, 290-297.

Tanveer, A., Rasheed, I., & Jarral, S. (2024). Peristaltic flow of Williamson nanofluid on a
rough surface. Advances in Mechanical Engineering, 16(1), 16878132231222793.

Tripathi, D., & Bég, O. A. (2014). A study on peristaltic flow of nanofluids: Application in drug
delivery systems. International Journal of Heat and Mass Transfer, 70, 61-70.

Vajravelu, K., Sreenadh, S., Devaki, P., & Prasad, K. (2016). Peristaltic pumping of a Casson
fluid in an elastic tube. Journal of Applied Fluid Mechanics, 9(4), 1897-1905.

Veera Krishna, M., & Swarnalathamma, B. (2016). Convective heat and mass transfer on MHD
peristaltic flow of Williamson fluid with the effect of inclined magnetic field. AIP
Conference Proceedings,

Weinberg, S. L. (1970). A theoretical and experimental treatment of peristaltic pumping and its
relation to ureteral function Massachusetts Institute of Technology].

Weisstein, E. W. (2005). Cylindrical coordinates. https://mathworld. wolfram. com/.

Williamson, R. V. (1929). The flow of pseudoplastic materials. Industrial & Engineering
Chemistry, 21(11), 1108-1111.

Yasmin, H., & Nisar, Z. (2023). Mathematical analysis of mixed convective peristaltic flow for

chemically reactive Casson nanofluid. Mathematics, 11(12), 2673.

83


https://mathworld/

	Front Pages final 22-12-2025
	final 16-12-2025 thesis complte (1)

