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ABSTRACT 

  

Title: Impact of Elastic Passage on the Peristaltic Transport of Williamson Fluid with Slip 

Effects 

  

The main focus of this thesis is to investigates the impact of elastic wall properties on the peristaltic 

transport of Williamson fluid through a symmetric passage, incorporating the effects of slip 

boundary conditions. The mathematical model is developed under the assumptions of long 

wavelength and low Reynolds number, enabling the use of the lubrication approach. To address 

the nonlinear nature of the governing momentum and energy equations, a perturbation technique 

is applied to obtain approximate analytical solutions. The analysis explores variations in velocity 

distribution, pressure rise, and streamline patterns under the combined influence of wall elasticity 

and slip effects. Special emphasis is placed on extending the work where the peristaltic motion of 

Williamson fluid between concentric cylinders with an elastic outer wall was considered. In this 

framework, additional factors such as velocity slip at the boundaries, porosity, and 

magnetohydrodynamic (MHD) effects are incorporated into the model formulated in cylindrical 

coordinates. Solutions are derived using a regular perturbation method, while Mathematica 

software is employed for graphical representation of the results. The findings reveal that wall 

elasticity and slip conditions significantly modify the velocity profiles, shear stress, and trapping 

phenomena of the Williamson fluid. These results contribute to a deeper understanding of 

peristaltic transport mechanisms, with potential applications in physiological processes and 

industrial fluid systems. 
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                                         CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

1.1 Introduction 

Fluid mechanics explores how liquids and gases behave, whether they are stationary (fluid 

statics) or in motion (fluid dynamics), and how they interact with surrounding surfaces or other 

fluids. This area of study is crucial in explaining every-day and industrial phenomena from how 

blood moves through the human body and air is exchanged during breathing, to how fish swim 

and how machines like pumps, turbines, and aircraft function. It also helps us understand natural 

events like river currents, wind behavior, and the movement of water through pipelines. The 

way that fluids and solids react to shear stresses is one of their main differences while solids 

can resist shape changes under stress, fluids do not even a slight shear force will cause a fluid 

to continuously deform and flow. This behavior stems from the way fluid molecules are 

arranged, allowing them to move freely and adapt their shape over time. Fluid mechanics brings 

together physical theories and real-world experiments to analyze and forecast how fluids will 

act under different conditions. Because fluid behavior is affected by various factors such as 

pressure, temperature and material properties, engineers and scientists rely on both 

mathematical models and laboratory testing to gain accurate insights (Farank, 1996). 

1.2 Peristalsis  

 Peristaltic flow refers to the movement of fluid driven by wave-like contractions along a 

flexible tube or wall, typically following a sinusoidal pattern. This mechanism plays a key role 

in many natural and engineered systems, where it generates pressure changes that propel fluid 

forward often from regions of lower pressure to higher pressure. Peristalsis is particularly 

effective in handling complex, non-Newtonian fluids, making it suitable for a range of 

applications. In biological systems, it is essential for transporting fluids and particles through 

narrow channels or vessels. Peristaltic pumping transports a number of complex rheological 

fluids. In particular, peristaltic motion appears in urine transport from kidney to bladder 
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(Roshani et al., 1999), dialysis devices (Fig. 1.1), ovum movement in the fallopian tube, the 

digestive, system male reproductive tract, bile duct, gastrointestinal tract, fallopian tube, worm 

locomotion, chyme motion in the small intestinal tract (Macagno & Christensen, 1980), 

(Nadeem et al., 2012), roller and finger pumps cardiovascular flows  the mechanical and 

neurological features of reflux, lymphatic vessel transfer. Peristaltic flow is also used for 

embryo movement in the uterus and early embryonic heart development,  uterine cavities ,heart 

tubes(Taber et al., 2007), in swallowing food through the oesophagus (Paterson, 2006) (Fig. 

1.2), and pharmaceutical delivery systems (Tripathi & Bég, 2014). Aggressive chemicals and 

sanitary fluids are also transported using the peristaltic transport mechanism. Peristalsis, which 

offers significantly higher efficiency and safety than traditional methods. The peristalsis 

principle is also used in the engineering of hose pumps, tube pumps, roller pumps (Fig. 1.3), 

and finger pumps. To put it briefly, peristaltic motion is how fluid moves naturally in living 

systems and is used by humans to their benefit when creating a variety of industrial and medical 

engineering instruments.  

 

Fig. 1.1 Image of blood dialysis devices 

 

Fig. 1.2 Movement of food through esophagus. 
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                                                     Fig. 1.3 Image of Peristaltic Pump 

(Latham, 1966) researched into the mechanism behind peristaltic transfer. After then, there is a 

substantial body of research on Newtonian and non-Newtonian fluids' peristaltic mechanism. 

Initial studies on peristaltic motion primarily revolved around understanding urine transport 

through the ureters, with foundational contributions from, (Weinberg, 1970), (Lykoudis, 1971), 

(Burns & Parkes, 1967), (Hanin, 1968) and (Jaffrin & Shapiro, 1971). These early efforts were 

largely theoretical, establishing essential frameworks to comprehend the mechanics of 

peristaltic flow without delving deeply into the underlying physiological processes.  

In a notable advancement, (Jaffrin, 1973) applied regular perturbation methods to analyze 

peristaltic flow in a planar channel within the wave frame, particularly under conditions 

involving small wave numbers. This provided a more refined understanding of the wave-

induced fluid motion. Building upon this, (Srivastava & Srivastava, 1985) investigated pulsatile 

flow in a cylindrical tube, demonstrating how varying flow patterns influence peristaltic 

transport in confined geometries. Meanwhile, (Gupta & Seshadri, 1976) addressed peristaltic 

movement in non-uniform tubes and channels, highlighting the complexities introduced by 

irregular geometries an issue frequently encountered in both biological tissues and industrial 

systems. 

Additional numerical approaches to planar geometries were developed by (Gupta & Seshadri, 

1976) and (Brown & Hung, 1977), while (Takabatake et al., 1988) expanded the scope by 
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considering axisymmetric configurations. Later,(Afifi & Gad, 2001) explored peristaltic flow 

of magneto-fluids in porous media, building on the findings of Srivastava and Srivastava. (El 

Misery & El Shamy, 2004), using low Reynolds number approximations, analyzed peristaltic 

transport affected by endoscopic tools and variable-viscosity fluids. Their analytical 

formulation, based on the Weissenberg number, offered a new perspective on viscoelastic 

behaviors under medical conditions. 

Research also began focusing on boundary slip and its influence on peristaltic behavior. 

(Kwang-Hua Chu & Fang, 2000) examined how slip at the tube walls affected the motion of 

viscous fluids, revealing implications for both physiological flows and engineered systems. 

(Mekheimer, 2005), employing the long wavelength and zero Reynolds number 

approximations, studied peristaltic motion in liquid confined between coaxial tubes both 

uniform and non-uniform. His findings highlighted how geometric irregularities significantly 

reduce pressure rise. Similarly, investigated the effect of suction on (El-Shehawey & Husseny, 

2002) viscous flow in channels and presented analytical insights for low-amplitude waves using 

perturbation techniques. 

A more intricate perspective on peristaltic transport in porous and asymmetric channels was 

introduced by (Elshehawey et al., 2006), who applied the Adomian decomposition method to 

derive explicit stream functions for incompressible viscous fluids. Their findings were 

particularly relevant for biological and industrial settings involving porous media.(Hayat et al., 

2008) built upon this by incorporating partial slip effects especially important in micro-scale 

systems and non-ideal boundary conditions adding another layer of realism to the modelling of 

peristaltic systems. 

These efforts collectively underline how channel geometry, porous structures, wall motion, and 

slip conditions substantially influence fluid behavior. While most of these models assumed 

Newtonian behavior, real-world applications often involve fluids that deviate from this 

assumption. Newton’s law of viscosity, which formed the basis for many classical models, does 

not accurately describe the rheology of many biological and industrial fluids. 

This realization prompted several researchers to investigate the peristaltic motion of non-

Newtonian fluids using both analytical and computational approaches. (Raju & Devanathan, 
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1972) were among the first to address this, employing a fading memory model to study 

viscoelastic fluid transport. They derived solutions for peristaltic motion under small-amplitude 

oscillations using power-law assumptions. (Böhme & Friedrich, 1983) further explored 

peristaltic behavior in linear viscoelastic fluids, emphasizing the performance characteristics of 

peristaltic pumps a technology commonly used in medical applications. 

(Siddiqui & Schwarz, 1994) examined the motion of a second-order fluid within an 

axisymmetric duct, deriving perturbation-based expressions to relate pressure gradients and 

flow rates. Their study accounted for parameters such as occlusion and fluid elasticity. (Misra 

& Pandey, 2001) developed a model of esophageal swallowing involving power-law fluids in 

finite-length circular channels. Later contributions by (Ali & Hayat, 2007) and (Hariharan et 

al., 2008) analyzed peristaltic transport in diverging channels, discussing key behaviors like 

trapping, axial pressure distribution, and efficiency of pumping under non-Newtonian 

assumptions. 

Additional studies considered yield-stress fluids, such as Casson models, within low Reynolds 

number and long wavelength long  regimes, particularly in wave frames where fluid velocity 

matches wave propagations. Futhermore examined the effects of heat and mass transfer in an 

endoscope's peristaltic Eyring-Powell fluid flow by (Akbar & Nadeem, 2012).In another 

research in which the Weissenberg number includes the non-Newtonian coefficients relevant 

to shear thinning investigated by (Srinivas et al., 2017).  

The literature currently in publication provides an overview of numerous intriguing theoretical 

and experimental investigations on peristaltic flow mechanisms involving different fluids. 

These studies frequently make the assumption of long wavelengths and low Reynolds numbers. 

A few studies relevant to this mechanism are presented by (Rafiq et al., 2023), (Yasmin & 

Nisar, 2023) and (Hafez, 2024). To gain a better understanding of peristalsis, we are 

investigating the mathematical models and mechanisms underlying it in our research. 

1.3 Williamson Fluid 

Williamson fluids are classified as non-Newtonian fluids with shear thinning characteristics, 

this means that their viscosity reduces as the rate of shear stress increases. The Williamson fluid 
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model was first presented experimentally by (Williamson, 1929). It is widely applied to the 

flow characterization of polymer solutions, biological fluids such as blood, and a wide range of 

industrial products, including dough and sauces, pharmaceutical gels, and cosmetic creams. By 

considering how these complex fluids flow during processes like food processing, product 

formulation, and medical diagnostics, the model helps predict and manage the flow behaviour 

of these fluids. A study by  (Akbar et al., 2012) investigated a Williamson fluid's peristaltic 

flow in an inclined asymmetric channel under conditions of velocity and thermal slip. Likewise 

analysis of Williamson fluids of three-dimensional peristaltic flow of rectangular channel with 

compliant walls by (Ellahi et al., 2014). 

Williamson fluids have been the subject of recent research on peristaltic transport in asymmetric 

channels and ducts. Heat transfer and magnetic fields are taken into consideration to study 

velocity, pressure gradient, and trapped bolus formation. Studies also look into the effects of 

heat and mass transfer that are relevant to industrial cooling and biological applications, such 

as heat generation, slip conditions, and buoyancy forces. The impact of slanted magnetic fields 

on temperature and velocity profiles in magneto hydrodynamics (MHD) and porous media flow 

has been investigated, with relevance to geophysical dynamics and filtration. The Williamson 

model is also applied in industrial processes involving polymeric solutions and food products, 

as well as in biomedical investigations of blood flow and drug delivery. A few recent studies 

are by (Tanveer et al., 2024), (Abbas et al., 2023) and (Alharbi et al., 2023). According to (El-

Hamid et al., 2025) the Williamson model, the carrier fluid, urine, is modelled as a non-

Newtonian fluid. A stable magnetohydrodynamic non-Newtonian fluid is investigated 

theoretically and computationally in this work. 

1.4 Wall Properties 

 

Roughness and material selection are two factors that can regulate fluid movement in peristaltic 

flow. These factors have an impact on friction, wall deformation, and wall-fluid interaction. 

Walls must be waterproof for durability, and surface treatments can reduce friction and improve 

biological system compatibility. These wall characteristics also affect how well heat is 

transmitted in peristaltic systems. An important  researched has been done on the peristaltic 
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transport of a Williamson nano fluid with compliant walls in a curved channel (Nadeem et al., 

2014). In this model includes the combined effects of thermal dissipation and channel curvature. 

Williamson nano fluid’s peristaltic flow in a flexible-walled, curved conduit has been examined 

by (Eldesoky et al., 2019). An elastic passage is a stretchable, flexible tube or channel which 

enable fluid to flow through it. Microvasculature flow rates vary between normal and 

pathological conditions, the effects of blood flow through small arteries with elastic properties. 

 

 

Fig. 1.4 Characteristics Elastic Passage 

The fluid flow via flexible tubes is of importance because it dynamically resembles the fluid   

flow in veins, arteries, the urethra, and other comparable structures. Peristaltically transporting 

an incompressible non-Newtonian fluid in an elastic tube investigated by (Vajravelu et al., 

2016). 

Similar to the effects of an elastic wall on the peristaltic flow of a Carreau fluid between two 

concentric cylinders, the outside wall of the inner tube has a regular elastic sine wave, while 

the inner tube has an inelastic wall that is cylindrical (Al-Khafajy & Majeed Mashhadi, 2023). 

 

Deformable
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Durability
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Contract
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1.5 Cylindrical Coordinates 

Cylindrical coordinates describe the motion and characteristics of fluids in systems with 

rotational symmetry around an axis. By superimposing a height (z) axis, two-dimensional polar 

coordinates can be generalized to three dimensions using cylindrical coordinates. Regretfully, 

the other two coordinates are represented by a variety of different notations. The radial 

coordinate is denoted by either r or ρ, and the azimuthal coordinates by either phi or theta. For 

example, Beyer (1987) uses (r, θ, z), whereas Arfken (1985) uses (ρ,φ,z). The notation (r,θ,z) 

is utilized in this work (Weisstein, 2005). The non-Newtonian fluid's peristaltic flow in a 

circular cylindrical tube is the subject by (Ali et al., 2009). Low Reynolds number and long 

wavelength approximations are used in the problem definition. Using an iterative scheme and 

an appropriate finite-difference method, the governing nonlinear equation and boundary 

conditions are numerically solved. This coordinate system is especially effective for situations 

involving.  

 Pipes 

 Ducts  

 Geometries in which the flow is naturally aligned with a cylindrical shape. 

1.6 Porosity 

A porous medium filled with fluid (liquid or gas) is defined as a material that contains pores 

(voids). 

V =  − 
K1

μ
∇P, 

 K1 is the permeability of the porous medium with dimensions (length),V is the Darcy velocity, 

∇P represents pressure gradient and μ indicates the dynamic viscosity of the fluid and negative 

sign reflects the flow occurs from high to low pressure.  

 Porous media play a pivotal role in numerous engineering systems, where they serve as the 

foundation for various fluid and transport-related phenomena. These processes are inherently 
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complex due to the irregular geometry of the pore structure, the narrow spatial constraints, and 

the multifaceted interactions among the fluid, the solid matrix, and suspended particles. The 

study of transport phenomena in porous media provides a robust theoretical and computational 

framework for understanding how mass, momentum, energy, and species are transferred within 

these heterogeneous environments (Civan, 2011). This multidisciplinary approach integrates 

physical principles with mathematical modelling to address the challenges posed by the intricate 

microstructure and dynamic interactions present in porous systems. 

Recent investigations that are related to engineering and biomedical as well as industrial and 

filtration chemical reactors by (Rafiq et al., 2023), (Ajithkumar et al., 2024) and (Abd-Alla et 

al., 2025). 

1.7 Magnetohydrodynamics 

The study of magnetohydrody or MHD, examines the combination of fluid dynamics and 

electromagnetic dynamics. A fluid creates an electric current when it flows through a field of 

magnets. 

This electric current may affect both the fluid's temperature and flow characteristics. MHD 

examines the dynamics of electrically conducting fluids, ionized gases, and liquid metals in the 

context of fluid mechanics when magnetic fields are present. The peristaltic MHD flow of an 

electrically conducting, Williamson fluid that is not compressible  in a symmetric planar 

channel with mass and heat transfer   when an angled magnetic field is present was covered by 

(Veera Krishna & Swarnalathamma, 2016). The interplay between electrically conducting 

fluids and magnetic fields opens up a wide range of research and creative possibilities. 

Applications of MHD range from space exploration to biomedical applications, allowing 

researchers to study a wide range of phenomena. Magnetohydrodynamic flows have a wide 

range of applications, such as separation devices, MHD energy generators, MHD drug targeting 

(Eldabe et al., 2020), endoscope (Hayat et al., 2017), materials processing, biomedical flow 

control (Nuwairan & Souayeh, 2022) , cancer treatment (Alqarni et al., 2023), indusrial 

processes (Shaheen et al., 2024), microfludic devices (Ridha & Solagh, 2025). 
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1.8 Slip Boundary Condition 

The surface and fluid layer velocities are not equal in the slip boundary condition. Best example 

to understand slip flow is Mercury. A fluid flow known as "slip flow" occurs when a thin layer 

of fluid near a barrier moves in relation to the boundary or slips in that path. In contrast to the 

no slip scenrio, which occurs when fluid molecules adhere to the barrier and move at the same 

speed as the border, slip occurs when the fluid close to the boundary has a velocity differential. 

The flow of a Newtonian and non-Newtonian Maxwellian fluid in an axisymmetric cylindrical 

tube (pore), where the movement is caused by propagating transversal oscillations along the 

tube wall, how slip boundaries affect fluid motion in media with pores  investigated by (El-

Shehawy et al., 2006). Another worked by (Akram et al., 2020) Impact of generated 

electromagnetic field and velocity second slip model on non- Newtonian transportation in tiny 

fluids with double-diffusivity convection. 

1.9 Thesis Contribution 

This thesis includes a thorough analysis of  (Al-Khafajy & Al-Delfi, 2023) has been presented 

and then a flow analysis has been extended  with impact of elastic passage on the peristaltic 

transport of Williamson fluid with slip effects. Williamson fluid trapped between two 

concentric cylinder. The main focus on effect of slip at the boundaries, porosity and MHD. The 

number of dependent variables has been reduced using an appropriate transformation technique, 

and solutions have been obtained using a perturbation technique. Mathematica software was 

used to evaluate the findings. At the end graphic results are provided for several important 

components, including wave frame streamlines, stress, and velocity distribution. 

1.10 Thesis Organization 

This thesis comprises the following chapters:  

Chapter 1 covers a comprehensive and detailed analysis of the literature in accordance with   

recent published articles. 
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Chapter 2 examines the basic ideas, guidelines, and principles required to comprehend the            

upcoming work. An overview of the perturbation method and numerous terms that we are use 

in our research are provided in this chapter. 

Chapter 3 provides a  review of the work by (Al-Khafajy & Al-Delfi, 2023). The authors 

studied how an elastic wall affects the peristaltic flow of a non-Newtonian Williamson fluid 

between two concentric cylinders. The lubrication approach has been utilized to study the 

problem. Perturbation technique has been employed to obtain the analytical solution of the 

problem. 

Chapter 4 is the extension work on research  done by (Al-Khafajy & Al-Delfi, 2023). The 

effects of elastic wall properties on the Williamson fluid flowing past a symmetric passage with 

the slip boundary condition will are considered and by incorporating the effects of 

magnetohydrodynamics (MHD) and porous media. 

Chapter 5 contains the conclusion drawn in chapter 4. Future recommendations are also 

included for the future researches. 

In the end, the reference list is also incorporated. 
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CHAPTER 2 

                    BASIC DEFINITIONS AND CONCEPTS 

2.1   Mechanics 

The oldest branch of physics that studies moving and stationary objects under the influence of 

forces is called mechanics. Statics and dynamics are the names of the branches of mechanics 

that deal with bodies at rest and in motion (Janna, 2009). 

 2.1.1     Statics  

The study of fluid dynamics, also referred to as hydrostatics, examines how a fluid behaves at 

rest or very close to it (Rajput, 2010).  

2.1.2     Dynamics 

It examines the connections between fluid velocities and accelerations and the forces or energy 

that gives rise to them (Rajput, 2010).  

2.2    Fluid 

 A fluid is defined as any substance with the ability to flow, that includes gases as well as liquids 

(Rajput, 2010). 

 According to density two categories of fluids are recognized. 

2.2.1    Gas  

Substances like hydrogen and nitrogen belong to a class of fluids that possess neither a fixed 

shape nor a constant volume; such fluids are known as gases (Rajput, 2010). 
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2.2.2    Liquids  

Fluids that maintain a constant volume but do not retain a fixed shape are categorized as liquids. 

Examples include oil and water (Rajput, 2010). 

2.3   Fluid Mechanics 

One area of physics called fluid mechanics is focused on the characteristics and behavior of 

liquids and gases, whether they are moving or stationary. It helps understand how fluids interact 

with forces under varying conditions and is fundamental in several engineering and scientific 

areas like aerodynamics, hydrodynamics, and the development of devices such as turbines, 

pumps, and aircraft. This discipline also aids in understanding natural processes such as climate 

behavior, oceanic circulation, and blood circulation in the human body. It integrates principles 

from classical mechanics and thermodynamics to analyze how fluids behave across varying 

settings. The insights gained are highly valuable across diverse domains such as civil 

engineering, meteorology, biophysics, and aerospace research. 

 

Fig. 2.1: Classification of Fluid Mechanics 
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Applications include analyzing bodily fluids, designing transport systems, forecasting weather 

patterns, and enhancing efficiency in industrial processes. Fluid mechanics research can be 

approached both macroscopically, focusing on average fluid behaviour, and microscopically, 

examining molecular-level interactions (Granger, 2012). 

2.4    Properties of Fluid 

2.4.1   Compressibility 

A compressibility is a measure of how much its density changes in response to a change in 

pressure. It quantifies the fluid's ability to decrease in volume when subjected to an increase in 

pressure, reflecting how easily the fluid can be compressed (Bradford & Gupta, 1986). 

2.4.2    Density 

Density is the measure of mass per unit volume of a substance. Mathematically, it is expressed 

as the ratio of mass to volume, where ρ represents density, m is mass, and v is volume (Janna, 

2009). 

                                                                         ρ =  
m

v
.                                                                          (2.1) 

The dimensions are [ML−3] and the SI units of density are 
kg

m−3
 . 

2.4.3   Pressure 

Pressure is defined as the force exerted per unit area on a surface. It refers to the physical force 

applied to an object, and as a result of this force, stress is generated within the material (Raju, 

2011). 

                                                                      P =  
F

A
 .                                                                            (2.2) 
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2.4.4    Temperature 

A physical characteristic of matter that measures how hot or cold a body is a temperature. An 

object's temperature, typically expressed in degrees Celsius, Fahrenheit, or Kelvin.  The kinetic 

energy of a substance's molecules or atoms is measured by its thermodynamic temperature 

(Raju, 2011). 

2.4.5   Viscosity 

A fluid's viscosity is a measurement of its internal friction. When two fluid layers move in 

relation to each other, the internal frictional force between them is related to viscosity. A fluid's 

state, which includes its temperature, pressure, and rate of deformation, typically affects its 

viscosity (Pritchard & Leylegian, 2011).           

2.4.6   Dynamic Viscosity 

Absolute or dynamic viscosity is the measure of a fluid's resistance to flow between two layers 

of fluid in motion. It is defined as the ratio of shear stress to the velocity gradient within the 

fluid, indicating how easily a fluid flows under an applied force (Pritchard & Leylegian, 2011). 

Viscosity =  
Shear stress

velocity gradient
 , 

                                                            μ  =   
τ

du
dy

 .                                                                   (2.3) 

The SI units of  
Ns

m2 or  
kg

m
  are used to measure dynamic viscosity, and its dimensions are [

M

  LT
 ].                      

2.4.7    Kinematic Viscosity                                             

Kinematic viscosity is determined by the ratio of fluid density to dynamic viscosity. This idea 

can be further developed mathematically as 
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                                                                                 v =  
μ

ρ
.                                                                   (2.4) 

The units used to measure kinematic viscosity are  
m2

s
   and dimensions are [

𝐿2

𝑇
] (Pritchard & 

Leylegian, 2011). 

2.4.8     Specific Heat 

The amount of heat energy needed to increase a substance's temperature by one degree per unit 

mass is known as specific heat. It can be measured under different conditions, such as constant 

pressure (specific heat at constant pressure, cp) or constant volume (specific heat at constant 

volume, cv), depending on the temperature and pressure constraints  (Raju, 2011). 

2.4.9     Heat Flux 

The heat flux is a measurement of the quantity of heat that moves across a surface in a specific 

amount of time. It is the rate of heat transfer per unit area across a surface. The unit of 

measurement is watts per square meter  
W

m2  (Raju, 2011). 

2.4.10      Heat generation and Absorption 

Heat generation or absorption, is determined by the amount of heat generated or absorbed per 

unit volume (Raju, 2011). 

2.4.11       Thermal Conductivity  

The study of a material's ability to transfer heat is known as thermal conductivity. Heat can 

move in three different ways: conduction, convection, and radiation. In particular, we can 

demonstrate this mathematically as 

                          Thermal Conductivity = 
heat ×distance

area ×temperature gradient
 , 
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                                                                         k =  
QL

A∆T
,                                                                     (2.5) 

In this case, ∆T is the temperature difference, the cross-sectional area is signified by A, k the 

thermal conductivity, Q the heat flow per unit time and SI unit is  
kg.m

s3K
   (Raju, 2011). 

2.4.12      Thermal Diffusivity 

It is defined as the ratio of specific heat to thermal diffusivity per unit density. In terms of math, 

it is expressed as 

                                                                 α =  
K

ρcp
,                                                                       (2.6) 

where cp stands for heat capacity, ρ for density, and K for thermal conductivity  (Raju, 2011). 

2.4.13     Viscous Dissipation 

Viscous dissipation refers to the irreversible conversion of kinetic energy from fluid flow into 

internal energy due to the effects of viscosity. This process results in the generation of heat 

within the fluid, reducing the overall mechanical energy of the system (Rajput, 2010). 

2.5    Rheology      

The study of matter flow and modify in form, including elasticity, viscosity and plasticity is 

known as rheology (Raju, 2011). 

2.6    Flow     

The volume of fluid that moves through an area in a given amount of time is called flow 

(Pritchard & Leylegian, 2011). 
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 Fluids are classified into based on their flow, which are 

1. Compressible or incompressible flows. 

2. Uniform and non-uniform flows. 

3. Rotational / Irrotational flows. 

4. Steady and unsteady flows. 

5. Laminar and turbulent flows. 

2.6.1     Steady and Unsteady Flows 

A steady flow is one in which the fluid properties like pressure and velocity, remain persistent 

over time at a definite point. When these properties change with time at a given location, the 

flow is considered unsteady (Pritchard & Leylegian, 2011). 

2.6.2     Uniform and Non uniform 

When the velocity is the same in both direction and magnitude everywhere, the flow is 

considered uniform; when  it is not, the flow is said to be non-uniform at any given time 

(Pritchard & Leylegian, 2011). 

2.6.3     Compressible and Incompressible Flows 

Compressible flow occurs when the fluid's density (ρ) fluctuates from one point to another in 

other words, the density is not constant for this flow. For example, gas flow via nozzles, gas 

turbines, orifices, etc. Incompressible flow where the fluid's density remains constant. In terms 

of mathematics, ρ = constant. For example, aerodynamics at subsonic speed (Pritchard & 

Leylegian, 2011). 

2.6.4      Rotational and Irrotational Flows 

Rotational flow refers to a type of flow in which fluid particles rotate around their own mass 

centres while moving in the direction of the flow. This typically occurs near solid boundaries. 
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An example of rotational flow is the movement of liquid in a rotating tank, where the fluid 

experiences both translational and rotational motion. 

Irrotational flow occurs when fluid particles do not rotate around their mass centres while 

moving in the direction of the flow. Generally, the flow outside the boundary layer is considered 

irrotational, where the fluid particles follow a smooth path without any spin. For instance, Flow 

over a wash basin or stationary tank's drain hole (Pritchard & Leylegian, 2011). 

2.6.5     Laminar and Turbulent Flows 

Laminar flows are those in which fluid particles move in smooth layers, whereas turbulent flows 

are those in which random 3D velocity differences cause fluid particles to mix quickly as they 

move (Pritchard & Leylegian, 2011).  

 2.7    Newton’s Law of Viscosity 

As per this law, the rate of shear strain in a fluid element layer is directly related to the shear 

stress (τ), with the coefficient of viscosity serving as the constant of proportionality. This 

relationship describes how the fluid's viscosity resists deformation due to shear forces. The term 

Newtonian fluids refers to fluids that obey this law (Pritchard & Leylegian, 2011). 

                                                            τ = μ 
du

dy
.                                                                (2.7)                    

2.8   Types of Fluid 

Fluids are classified to according viscosity:  

1. Ideal Fluid.                                                                   

2. Real Fluid.  

3. Newtonian Fluid.       

4. Non-Newtonian fluid.  
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2.8.1   Ideal Fluid 

These are hypothetical fluids with zero viscosity and no frictional forces. This implies 

they can flow without resistance and do not waste energy to friction. Ideal fluids are 

valuable for mathematical modelling, but they do not exist in reality. Ideal fluids include 

incompressible fluids, non-viscous fluids, perfect gas  (Pritchard & Leylegian, 2011). 

2.8.2    Real Fluid  

These fluids experience frictional forces and have a viscosity that is not zero. Friction 

causes them to lose energy, and they can exhibit turbulence and other complicated 

behaviors. Real fluids include things like blood, oxygen, and water (Pritchard & 

Leylegian, 2011). 

2.8.3   Newtonian Fluid  

Fluid which follows the Newton's law of viscosity. For these fluids, the rate of deformation has 

no effect on µ. The viscosity of these fluids remains constant irrespective of the shear forces 

exerted on the fluid layers.  

 Newtonian fluids are defined as those whose shear stress versus shear rate plot at a specific 

temperature is a straight line with a constant slope, regardless of the shear rate. Examples. Air, 

kerosene, and water (Pritchard & Leylegian, 2011). 

 2.8.4   Non-Newtonian Fluid 

Non-Newtonian fluids are fluids that do not exhibit a linear relationship between shear stress 

and the rate of deformation. These fluids are relatively rare and often consist of complex 

mixtures. Examples include suspensions or solutions (such as slurries), mud flows, polymer 

solutions, and blood. Non-Newtonian fluids are typically studied in the field of rheology, which 

focuses on the science of deformation and flow of materials (Pritchard & Leylegian, 2011). 
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Classifications for non-Newtonian fluid include 

Fluids with Time Dependence 

 Rheopectic or Anti-Thixotropic Fluids. 

 Thixotropic Fluids. 

Fluids that are Time Independent 

 Dilatant Fluids 

 Pseudo-plastic Fluids 

2.8.4.1      Rheopectic or Anti-Thixotropic Fluids 

As shear stress increases, the fluid's viscosity increases as well, and this relationship changes 

over time. One example of such a fluid would be gypsum paste (Pritchard & Leylegian, 2011). 

2.8.4.2     Thixotropic Fluid 

The fluid's viscosity decreases as shear stress increases, and the two variables' relationship 

varies over time. Paint and glue are two examples of thixotropic fluids (Pritchard & Leylegian, 

2011). 

2.8.4.3     Dilatant Fluid 

A non-Newtonian fluid that experiences an increase in shear viscosity when shear stress is 

applied is called a dilatant. For example, mud slur and quicksand (Pritchard & Leylegian, 2011). 

2.8.4.4    Pseudo-Plastic Fluid 

Fluids Shear thinning fluids, such as paint and ketchup, are pseudo-plastic substances whose 

viscosity decreases with an increase in the rate of applied shear stress (Pritchard & Leylegian, 

2011). 
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2.8.4.5    Bingham- Plastic Fluid 

Bingham plastics are viscoelastic materials that behave like a rigid body under low stress and 

like a viscous fluid under high stress (Pritchard & Leylegian, 2011). 

2.9        Scalar Field 

A scalar field assigns a single numerical value to each point in a space, thereby characterizing 

the distribution of a scalar quantity. The only thing that a scalar quantity has is magnitude. The 

representation of scalar properties in fluid mechanics, like temperature and pressure, depends 

on scalar fields, mainly because they give a comprehensive picture of how these variables are 

distributed in a fluid. They aid in the analysis of fluid flow and support forecasts and 

optimizations in a range of engineering applications (Pritchard & Leylegian, 2011). 

2.9.1     Tensor Field 

A mathematical framework that allocates a tensor to every point in a space to analyze how 

physical properties vary across dimensions is termed as tensor field. In fluid mechanics, such 

fields are indispensable for understanding advanced concepts like stress, strain, and flow. They 

enable precise mapping of spatial changes and interactions between variables, offering deep 

insight into fluid behavior (Pritchard & Leylegian, 2011). 

2.9.2     Vector Field 

A vector field is a mathematical structure that allocates a vector to every point in a region to 

depict the direction and intensity of a physical quantity, such as velocity or force. These fields 

display both magnitude and direction. In fluid mechanics, vector fields play a central role in 

analyzing fluid motion, forces, and flow configurations. They simplify fluid behaviour, which 

aids in the design and advancement of technical applications such as aerodynamics and fluid 

flow in pipes (Pritchard & Leylegian, 2011). 
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2.9.3      Velocity Field 

A velocity field describes the distribution of particle or fluid element velocities in a given space. 

A vector indicating the direction and speed of motion is used to represent each point in the field. 

Fields are essential to many areas of physics, such as electromagnetic, quantum, and general 

relativity. These mathematical fields can be used to represent and analyse physical phenomena 

in a variety of engineering and research fields. Three categories of fields exist: vector, tensor, 

and scalar fields (Pritchard & Leylegian, 2011). 

2.10     Dimensionless Numbers 

The inertia force, which is always present when any mass is in motion, is divided by the viscous, 

gravity, pressure, surface tension, or elastic forces to get the dimensionless numbers, also 

known as non-dimensional parameters (Raju, 2011). 

2.10.1     Prandtl Number 

The viscous-to-thermal diffusivity ratio is known as the Prandtl number. 

                                     Pr =  
Viscous diffusivity

thermal diffusivity
 , 

                                          Pr =     
v

∝∗ =   
μ

ρ⁄

k
ρcp⁄

=  
cpμ

k
 ,                                                                  (2.8) 

where cp is for specific heat at constant pressure, v is for kinematic viscosity (momentum 

diusivity), k is for thermal conductivity, and ∝∗is for thermal diusivity. Pr << 1 is dominated 

by thermal diffusivity, while Pr >> 1 is dominated by momentum diffusivity (Raju, 2011). 

2.10.2     Eckert Number 

The Eckert number (Ec) is a dimensionless parameter expressing the proportion between a 

fluid's kinetic energy and the variation in its enthalpy. It reflects how significantly kinetic 
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energy contributes to the thermal behavior of a flow and establishes a link between convective 

heat transfer and motion energy. It is particularly valuable in the study of high-velocity flows 

where heat transfer is influenced by dynamic forces (Raju, 2011). 

                                                                Ec =
v2

cp T0

.                                                                 (2.10) 

2.10.3    Reynolds Number 

The Reynolds number is widely regarded as the most important dimensionless quantity in fluid 

flow, as it helps predict the flow regime, indicating whether the flow is laminar or turbulent. 

The inertial to effective viscous force ratio is how it is defined. 

                                                      𝑅𝑒 =  
Inertial force

Viscous force
, 

                                                           𝑅𝑒 =
vL

v∗
.                                                                         (2.9) 

The symbols as μ , v, represent dynamic viscosity, and kinematic viscosity and v∗, L represent  

velocity, and characteristic length, respectively. A high Reynolds number indicates that viscous 

forces are negligible in the flow, leading to inviscid flow behavior. In contrast, low Reynolds 

numbers signify dominant viscous forces, resulting in laminar flow. For intermediate to high 

Reynolds numbers, inertial forces become more significant, often leading to turbulent flow 

where chaotic fluid motion prevails (Raju, 2011). 

2.10.4     Weissenberg Number 

The Weissenberg number is a dimensionless measure.In the study of rheology, 𝑊𝑒 is used to 

quantify the relative importance of elastic vs viscous effects in a viscoelastic fluid or material. 

It can be represented mathematically as follows:  

                                                                         We =  λ γ̇,                                                                  (2.11) 
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where γ̇  is the shear rate, λ is the material's characteristic relaxation time, and We is the  

Weissenberg (Raju, 2011). 

2.10.5     Grashof Number 

 It depicts how the buoyancy forces behave in a fluid that is flowing in opposition to the viscous 

forces. It is used to determine the laminar system's fluid boundary layer flow regime. 

                                                                       Gr =  
L3

v2
gβ(T −   T0),                                               (2.12) 

where T and  T0 stand for fluid and ambient temperature, respectively, and β for volumetric 

thermal expansion coefficient, g for acceleration due to gravity, v for kinematic viscosity, and 

L for characteristic length (Raju, 2011). 

2.10.6     Biot Number 

Biot number is a dimensionless parameter that relates a solid’s interior thermal resistance to its 

exterior convective resistance at the surface. It represents how quickly heat can travel within a 

substance in comparison to how easily it can be transferred to the surrounding fluid (Raju, 

2011). 

                                                                            𝐵 =  
ℎ𝐿𝑐

𝑘
                                                                   (2.13)  

Where 𝐿𝑐 denote characteristic length of the solid, ℎ for convective heat transfer coefficient and 

𝑘 represents thermal conductivity of the solid. 

2.10.7     Hartmann Number 

Hartmann number is a dimensionless magnetohydrodynamic quantity that compares the 

strength of the magnetic for (Lorentz force) to the viscous force in an electrically conducting 
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fluid. Its reflects how strongly a magnetic field may inhibit or influence fluid mobility (Raju, 

2011). 

                                                                        𝑀 = 𝐵0𝐿√
𝜎

𝜇
                                                               (2.14)  

Where 𝐿 denotes characteristic of length, 𝐵0 for applied magnetic field, 𝜎 for electric 

conductivity of the fluid and 𝜇 represents dynamic viscosity of the fluid. 

2.11   Heat Transfer 

It is the transfer of energy between two surfaces as a result of temperature differences. 

Typically, heat moves from an area with a high temperature to one with a low temperature. Heat 

is transferred, for instance, from the stove to the cooking pan (Raju, 2011). 

2.11.1     Conduction 

When two objects come into physical contact, heat is transferred through the material through 

a process known as conduction. For instance, cooking vegetables in a pan, grabbing a steaming 

cup of tea, or a car's engine heating up after starting and using an automatic radiator (Raju, 

2011). 

2.11.2     Convection 

The movement of heat-carrying fluid particles is known as convection, and it can occur 

spontaneously due to floatability caused by temperature changes or be induced by outside 

sources such as fans or pumps (Raju, 2011). 

2.11.3     Radiation 

Thermal radiation is the process through which heat is transferred from a body to its 

surroundings due to its temperature, without requiring a medium. Examples include the warmth 
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felt from the sun, the heat emitted by a lightbulb, or the thermal radiation from a toaster's heating 

element that toasts bread (Raju, 2011). 

2.12     Stress  

Stress is defined as the average force applied per unit area of a body’s surface that is subjected 

to external forces or pressure. It quantifies the intensity of internal forces within a material in 

response to external loads (Pritchard & Leylegian, 2011). 

                                                                σ =  
Force 

Area
.                                                                 (2.15) 

2.12.1    Shear Stress 

Shear stress is a type of stress where the applied force acts parallel to the surface or cross-

sectional area of a material, causing layers of the material to slide past each other (Pritchard & 

Leylegian, 2011). 

2.12.2    Normal Stress 

Normal stress is a type of stress that occurs when a force is applied perpendicular to the cross-

sectional area of a material, causing compression or tension within the material (Pritchard & 

Leylegian, 2011). 

2.12.3    Cauchy Stress Tensor 

The stress within a material at a particular position is described by the Cauchy stress tensor. It 

is essential for assessing and forecasting the mechanical behavior of materials under diverse 

circumstances and pertains to the force per unit area operating on numerous planes at that 

moment. The components of Cauchy stress tensor represents normal and shear stresses 

(Pritchard & Leylegian, 2011). 
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2.12.4   Extra Stress Tensor 

The extra stress tensor is used to take into consideration extra stress contributions brought on 

by fluid motion. A common constitutive equation that governs the relationship between stress 

and strain in a fluid is the additional strain tensor (Pritchard & Leylegian, 2011). 

2.12.5     Strain 

Strain is the measure of the relative deformation or change in shape of a material when a force 

is applied. It is a dimensionless quantity, representing the ratio of the material's deformation to 

its original dimensions (Pritchard & Leylegian, 2011). 

2.13    Streamline 

A track that is always tangent to the velocity field at every point, representing the direction of 

fluid flow is termed as streamline. In two-dimensional flows, the slope of the streamline must 

be equal to the tangent of the angle between the velocity vector and the x-axis (Rajput, 2010). 

2.13.1    Stream Function 

A helpful tool for researching fluid dynamics is the stream function. Usually, the streamlines 

created by the stream function are used to realize the flow pattern surrounding an object. A 

function that solves the given equation is called a stream function (Rajput, 2010).  

2.14    Darcy’s Law 

For water flowing through a saturated porous medium, Darcy's law provides a linear flow 

model. The renowned equation put forth by French engineer Henry P.G. Darcy in 1856 states 

that the hydraulic conductivity (k) and the pressure gradient (∇H) determine the flow rate (q) 

(Tanveer et al., 2017). 

                                                                            q =  k∇H.                                                               (2.16) 
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2.15     Basic Equations and Conservation Laws 

2.15.1   Continuity Equation 

The equation presents the rate of mass flow into and out of a given region, along with any 

accumulation within that region, must be balanced, ensuring the conservation of mass (Rajput, 

2010).  

               Mathematically                    
∂ρ

∂t
+ 𝛁 . (ρ𝐕) = 0,                                                        (2.17) 

where 𝜌 is the fluid's density, 𝑡 is time, and 𝑽 is its velocity. 

When incompressible flow occurs, then 

                                                   𝛁    . 𝐕 = 0.                                                        (2.18) 

2.15.2      Momentum Equation    

The sum of the mass and velocity of a body is referred to as "linear momentum." Newton's 

second law states that a body's acceleration is proportional to the net force acting on it and 

inversely related to its mass. This is because the acceleration of a body is equal to the net force 

acting on it. The momentum of such systems is therefore conserved when there is no net force 

acting on them. This equation shows that the system's total momentum will always be conserved 

because it is physically related to the law of conservation of momentum. The equation is 

expressed as follows if incompressible fluid is considered. 

                                                                     ρ
d𝐕∗

dt
= div𝛕 +  ρ𝐛∗ ,                                                (2.19)  

where 𝐕∗ stands for velocity, ρ for density,  𝐛∗ for body forces  
d

dt
  material time derivative , 

divτ for surface forces, and τ characterizes the Cauchy stress tensor indicates the presence of 

inertial forces (Rajput, 2010).   
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2.15. 3    Energy Equation 

The concept of energy conservation, also referred to as the first law of thermodynamics, is a 

natural rule. It states that energy can only change form during a process; it cannot be created or 

destroyed. The energy equation for the base fluid in a two-dimensional system can be written 

as 𝑇 temperature. 

                                                           (ρcp)
dT

dt
  =   div q∗,                                                             (2.20) 

                                                                          q∗ =  −k∇T,                                                              (2.21) 

k is thermal conductivity, cp is specific heat, q∗ denotes heat flux, and ρ represents density 

(ρcp) 
dT

dt
  for total internal energy, total heat flux div q∗ (Rajput, 2010). 

2.16   Perturbation Method 

Mathematical techniques known as perturbation methods are used to approximate solutions to 

challenging mathematical equations, particularly those involving large or small parameters.  

The nonlinear differential equation's small parameters should be identified. 

 Explain the answer using the perturbation expansion power series. 

 Add the perturbation expansion to the equation system. 

 Resolve the equation systems in various orders with small parameters. 

 Integrate the solutions acquired at various orders to create the ultimate perturbation. 

 

 

 



31 
 

CHAPTER 3 

THE PERISTALTIC FLOW OF WILLIAMSON FLUID 

THROUGH A FLEXIBLE CHANNEL 

(Al-Khafajy & Al-Delfi, 2023) 

3.1   Introduction  

The research conducted by (Al-Khafajy & Al-Delfi, 2023) is thoroughly reviewed in this 

chapter. The main objective of research is to investigate the influence of flexible wall occur on 

the peristaltic transport of Williamson fluid. The suggested model is mathematically formulated 

using the continuity and momentum equation in cylindrical coordinates under the assumptions 

of a long wavelength and a low Reynolds number. Because the produced differential systems 

are non-linear, the series solutions are obtained using a regular perturbation method. The 

governing equations are solved using Mathematica software, which also examines the influence 

of critical parameters including wave amplitude, wall elasticity, and fluid rheology. The results 

demonstrate that significant variations in shear stress and velocity profiles are caused by the 

outer wall's elastic behavior. 

3.2     Physical Model 

The Williamson fluid's peristaltic flow travels through two concentric cylinders. There is a 

cylindrical inner tube and a regular elastic wall with a sinusoidal wave on the outside. As 

illustrated in Fig. 3.1. The cylindrical coordinates are represented as Ẑ in synchrony with the 

tube's axis and R̂ with the tube's radius. The wall surface's geometry is as follows: 

               Inner wall       r̂ =  r̂1 = a1,                                                                                      (3.1) 

             Outer wall     r̂ = r̂2(Ẑ , t̂) = a2 + bsin (
2π

l
(Ẑ − st̂)),                                     (3.2) 
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where a1 is the radius of the inner core region, a2 is the average radius of the undisturbed tube,  

l is a wavelength, 𝑠 is the wave propagation speed, t̂ is time, and 𝑏 is the amplitude of a 

peristaltic wave. 

 

Fig. 3.1 The Geometry of the Problem 

The basis for this system is the cylindrical coordinates system (R̂, Ẑ), where the velocity field 

in an unstable two-dimensional flow is described as : 

                                                 𝐕̂ = [Û1(R̂, Ẑ, t̂), Û3(R̂, Ẑ , t̂) ].                                                         (3.3)  

The incompressible Williamson fluid, the basic governing continuity along momentum 

equations are   

                                                                  div𝐕̂  = 0,                                                                            (3.4)  

                                                         ρ (
d𝐕̂

dt
) =   div𝐒 +  ρ𝐟,                                                               (3.5) 

where, the velocity field is denoted by 𝐕̂, the density by ρ, specific body force is denoted by 𝐟, 

and the material time derivative by 
d

dt
 . 
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For an incompressible fluid, the Cauchy stress tensor S can be written as follows: 

                                                            S = [−P̂Î +  τ̂],                                                                         (3.6) 

here the Cauchy stress tensor by S, pressure by P̂, the identity tensor by Î, τ̂ extra stress 

tensor.The Williamson fluid constitutive equation is given as:            

                                               τ̂ = [μ∞ + ( μ0 + μ∞)(1 −  Γ|α̂|)−1]α̂.                                           (3.7) 

We examine the constitutive equation (3.7), where μ∞ = 0 and  Γ|α̂ | < 1. 

The extra stress tensor component can be expressed as: 

                                                    τ̂  =  μ0 [(1 −  Γ|α̂|)−1]α̂,                                                              (3.8) 

                                                   τ̂ =    μ0[1 +  Γ|α̂|]α̂ ,                                                                      (3.9)  

in which Γ is the time constant, μ0 is a zero-shear rate viscosity, μ∞ is an infinite shear viscosity, 

α̂  is shear strain which is define as: 

                                 α̂  =  √
1

2
∑ ∑ α̂ijα̂jiji      or     α̂  =  √

1

2
 ⨅  , i, j = 1,2.                                 (3.10)                    

The second invariant strain tensor is represented by Π and is given as: 

                                                         Π = ((gradV̂ + (gradV̂)
T

)
2

.                                                (3.11)  

The components of tensor and magnitude are                                                                                 

                                                   τ̂R̂R̂ =    2 μ0  [1 +  Γ|α̂|]
∂Û1

∂R̂
,                                                      (3.12)  

                                                     τ̂R̂Ẑ  =     μ0 [1 +  Γ|α̂|] (
∂Û1

∂Ẑ
+  

∂Û3

∂R̂
),                                      (3.13)  

                                                   τ̂ẐẐ =     2 μ0 [1 +  Γ|α̂|]
∂Û3

∂Ẑ
 ,                                                     (3.14)  
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                                α̂ = √2 (
∂Û1

∂R̂
)

2

+ (
∂Û1

∂Ẑ
+

∂Û3

∂R̂
 )

2

+  2 (
∂Û3

∂Ẑ
)

2

 .                                            (3.15)  

An elastic wall's motion can be described by the following equation: 

                                                              L⋄ =  P̂ − P̂0.                                                                         (3.16)  

Viscosity damping forces and the motion of a stretched membrane are represented by the 

operator L⋄ 

                                      L⋄  =  E
∂4

∂Ẑ4 − F 
∂2

∂Ẑ2 + G
∂2

∂t̂2 + H 
∂2

∂t̂
+ IL ,                                             (3.17)  

where IL is the spring stiffness, longitudinal tension per unit width is F, viscous damping 

coefficient is H, G is the mass per unit area and E is the flexural rigidity of a wall. For the 

properties of a flexible wall canal the governing equation at r̂ =  r̂2 is 

                               
∂P̂

∂Ẑ
=

∂

∂Ẑ
 ( E

∂4

∂Ẑ4 − F 
∂2

∂Ẑ2 + G
∂2

∂t̂2 + H 
∂2

∂t̂
+  IL) (r̂2).                                  (3.18)                                    

The governing equations for fluid motion are obtained by replacing Williamson's fluid with 

the velocity components in the shear stress equations. 

                                                            
∂Û1 

∂R̂
+ 

Û1

R̂
+

 ∂Û3

∂Ẑ
 = 0,                                                           (3.19)  

                            ρ (
∂Û1 

∂t̂
+ Û1  

∂Û1 

∂R̂
+ Û3

 ∂Û1

∂Ẑ
) = − 

∂P̂

∂R̂
+

1

R̂
 

∂

∂R̂
(R̂τ̂R̂R̂) +

∂

∂Ẑ
(τ̂R̂Ẑ),                (3.20)  

                             ρ (
∂Û3 

∂t̂
+ Û1  

∂Û3 

∂R̂
+ Û3

 ∂Û3

∂Ẑ
)  = − 

∂P̂

∂Ẑ
+

1

R̂

∂

∂R̂
(R̂τ̂R̂Ẑ) +

∂

∂Ẑ
(τ̂ẐẐ).               (3.21)  

 Using equation (3.18) in (3.21), we get  

         
∂

∂ẑ
 ( E

∂4

∂Ẑ4
− F 

∂2

∂Ẑ2
+ G

∂2

∂t̂2
+ H 

∂2

∂t̂
+  IL) (r̂2) =  

1

R̂

∂

∂R̂
(R̂τ̂R̂Ẑ) +

∂

∂Ẑ
(τ̂ẐẐ)  

                                                                                          − ρ (
∂Û3 

∂t̂
+ Û1  

∂Û3 

R̂
+ Û3

 ∂Û3

∂Ẑ
),            (3.22)  
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along with boundary conditions  

                                               Û3 = Û1 = 0,   at       r̂ =  r̂1 a1,                                                    (3.23)  

                     Û3 =  Û1 = 0 ,       at      r̂ =  r̂2(Ẑ, t̂) =  a2 + bsin (
2π

l
(Ẑ − st̂)).                  (3.24)  

The following are the general and particular two-frame coordinate transformations: 

r̂ =  R̂ ,                         ẑ =  Ẑ − st̂ ,                     û1 = Û1, 

                                 û3 =  Û3  − s ,            𝑝̂ =  𝑃̂(𝑍̂ − 𝑠𝑡̂ ,  𝑅̂, 𝑡̂ ).                                         ( 3.25)  

These transformations give the following set of equations 

                                                       
∂û1 

∂r̂
 +  

û1

𝑟̂
 +

 ∂û3

∂ẑ
= 0,                                                                (3.26)  

                                      ρ (û1  
∂û1 

∂r̂
+ û3

 ∂û1 

∂ẑ
) =  − 

∂p̂

∂r̂
+

1

r̂
 

∂

∂r̂
(r̂τ̂r̂r̂) +

∂

∂ẑ
(τ̂r̂ẑ),                       (3.27)  

                           ρ (û1  
∂û3

∂r̂
+ û3

 ∂û3

∂ẑ
)  =  − 

∂p̂

∂ẑ
+  

1

r̂

∂

∂r̂
(r̂τ̂r̂ẑ) +

∂

∂Ẑ
(τ̂ẑẑ),                                 (3.28) 

                      ( E
∂5

∂ẑ5
− F 

∂3

∂ẑ3
+ G

∂3

∂ẑ ∂t̂2
+ H 

∂2

∂ẑ ∂t̂
+  IL

∂

∂ẑ
) (r̂2) =

1

r̂

∂

∂r̂
(r̂τ̂r̂ẑ) + 

∂

∂ẑ
(τ̂ẑẑ)               

                                                                                       −  ρ  (û1  
∂û3

∂r̂
  +   û3

 ∂û3

∂ ẑ
),                     (3.29)  

where 

                                                          τ̂r̂r̂  = 2μ0 [1 +  Γ|α̂|]
∂û1

∂r̂
,                                                    (3.30)     

                                                   τ̂r̂ẑ  = μ0 [1 +  Γ|α̂|] (
∂û1

∂Ẑ
+

∂û3

∂r̂
),                                        (3.31) 

                                                         τ̂ẑẑ = 2 μ0 [1 +  Γ|α̂|]
∂û3

∂ẑ
,                                                     (3.32)  
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and 

                                           α̂ =  √2 (
∂û1

∂r̂
)

2

+ (
∂û1

∂ẑ
+

∂û3

∂r̂
 )

2

+  2 (
∂û3

∂ẑ
)

2

 .                                 (3.33)  

Following are non-dimensional quantities to be used in the above system of equations 

           u1 =
û1

a2s
,   u3 =

û3

s
,    r =  

r̂

a2
,   z =  

ẑ

l
,   τ =

a2τ̂

sμ0
,   We =  

Γs

a2
,   t =  

st̂

l
,   p =   

a2
2P̂

slμ0
 ,  

         α =  
α̂a2  

s
, Re =   

ρsa2

μ0
, r1 =  

r̂1

a2
= ε < 1, φ =  

b

a2
, r2 =  

r̂2

a2
 = 1 + φ sin(2πẑ),        (3.34)  

where, Re is Reynolds number, We is the Weissenberg number, δ the dimensionless wave 

number, and φ the amplitude ratio. 

The dimensionless form of the ruling equations are 

                                                                  
∂u1 

∂r
+  

u1

r
+

 ∂u3

∂z
= 0,                                                       (3.35)  

                                  Reδ3 (u1  
∂u1 

∂r
+ u3

 ∂u1

∂z
)  = − 

∂p

∂r
+

1

r
 

∂

∂r
(rτrz) + δ

∂

∂z
(τzz),                 (3.36)  

                               Reδ (u1  
∂u3 

∂r
+ u3

 ∂u3

∂z
)   =  − 

∂p

∂z
+

1

r
 

∂

∂r
(rτrz) + δ

∂

∂z
(τzz).                    (3.37)  

The equation of motion governing the elastic wall 

( (
Ea2

3

μ0sl5)
∂5r2

∂z5 −  (
Fa2

3

μ0sl3)
∂3r2

∂z3 +  (
Gsa2

3

μ0l3 )
∂3r2

∂z ∂t2 +  (
Hsa2

3

μ0l2 )
∂2r2

∂z ∂t
+   (

ILa2
3

μ0sl
)

∂r2

∂z
) =

1

r
 

∂

∂r
(rτrz) +

                                                                            δ
∂

∂z
(τzz) −  Reδ (u1  

∂u1 

∂r
+ u3

 ∂u3

∂z
),                (3.38)   

where 

                                           τrr  =      2μ0  δ[1 +  We|α|]
∂u1

∂r
,                                                       (3.39)  

                                            τrz   =         μ0 [1 +  We|α|] (
∂u1

∂z
+  

∂u3

∂r
),                                        (3.40)  
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                                           τrz  =       2 μ0 δ[1 +  We|α|]
∂u3

∂z
 ,                                                     (3.41)  

  and 

                                   α =  √2δ2 
(

∂u1

∂r
)

2

+ (
∂u1

∂z
δ4 +

∂u3

∂r
 )

2

+  2δ2 (
∂u3

∂z
)

2

,                           (3.42)  

and the dimensionless boundary conditions are  

                                                  u3 = −1 ,     at        r =  r1 =    ε,                               

                                                 u3 =  −1,     at         r = 𝑟2 = 1 +  φ sin(2𝜋𝑧).                        (3.43)   

We assume an extremely small wavenumber, as solving the problem in its original form is 

exceedingly difficult (𝛿 ≪ 1), hence equations (3.36-3.39) become 

                                                                                  
∂p

∂r
= 0,                                                                (3.44)  

                                                                            
∂p

∂z
=  

1

r
 

∂

∂r
(rτrz),                                                    (3.45)  

                   ( L1
∂5r2

∂z5 −  L2
∂3r2

∂z3 +  L3
∂3r2

∂z ∂t2 +  L4
∂2r2

∂z ∂t
+   L5

∂r2

∂z
)  =   

1

r
 

∂

∂r
(rτrz),               (3.46)  

where 

                       L1 =  
Ea2

3

μsl5 , L2 =  −
Fa2

3

μsl3     , L3 =  
Ga2

3

μl3  , L4 =  
Ha2

3

μl3    , L5 =  
Ila2

3

μsl
 .                     (3.47)  

L1is flexural stiffness of the wall, L2 is a longitudinal tension unit, L3 is mass per unit area, L4 

is a coefficient of viscid damping and L5 is spring stiffness and the components of extra stress 

are 

                                   τrr = τzz = 0      and     τrz  =   (
∂u3

∂r
+ We ( 

∂u3

∂r
)

2

),                           (3.48)  

                                  r
∂2u3

∂r2 +  
∂u3

∂r
+ We ( 

∂u3

∂r
)

2

+ 2rWe (
∂u3

∂r
) (

∂2u3

∂r2 ) =  r𝐾̃,                       (3.49)  



38 
 

where  

                      𝐾̃ = L1
∂5r2

∂z5
−  L2

∂3r2

∂z3
+  L3

∂3r2

∂z ∂t2
+  L4

∂2r2

∂z ∂t
+   L5

∂r2

∂z
,                                      (3.50)  

 

3.3    Solution Methodology 

Equation (3.48) is nonlinear and may not have an exact solution, we apply the regular 

perturbation method in terms of a variant of the Weissenberg number for the second order to 

find the solution. Using the We, we extend 

                                    u3 =  u03  +  We u13  + We2u23 +  O(We3).                                        (3.51)  

 

3.3.1   Zero order system 

                                                    r
∂2u03

∂r2 + 
∂u03

∂r
= r𝐾̃,                                                                     (3.52)  

with boundary conditions as  

                            u03 =  −1   at   𝑟1  =  ε  and    𝑟2 = 1 +  φ sin(2π(z − t)).                      (3.53) 

3.3.2   First order system 

                                              r
∂2u13

∂r2
+  

∂u13

∂r
=  −2r (

∂2u03

∂r2
) (

∂u03

∂r
) −  (

∂u03

∂r
)

2

,                        (3.54)  

with boundary conditions 

                                          u23 =  0    at   𝑟1    =  ε   and   𝑟2 = 1 +   φ sin(2𝜋𝑧).                   (3.55) 
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3.3.3   Second order system 

            r
∂2u23

∂r2 +  
∂u23

∂r
= −2r (

∂2u03

∂r2 ) (
∂u13

∂r
) −  2r (

∂2u13

∂r2 ) (
∂u03

∂r
) − 2 (

∂u03

∂r
) (

∂u13

∂r
),         (3.56)  

 

with boundary conditions: 

                                  u23 =  0   at     𝑟1 =  ε    and    𝑟2 = 1 +  φ sin(2𝜋𝑧).                             (3.57) 
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3.5    Result and Discussion  

This part shows results we obtained by using perturbation approach to solve the problem 

equations then drawing these results using a MATHEMATICA program. 

Two section make up this part: The first part covers how parameters affect the fluid’s through 

the flow channel, the second part covers how they affect shear stress. 

      3.5.1 Velocity Profile 

Figures 3.2-3.9 shows the effect of parameters  We, φ , L1, L2, L3, L4 , L5 and ϵ on the velocity  

vs. r distribution. In the  (Fig. 3.2) illustrates the axial velocity distribution u3 versus radial 

position r for three different values of the amplitude ratio φ = 0.1, 0.125, and 0.15, under fixed 

values of other parameters (We = 0.01, ϵ = 0.15, L1 = 0.1, L2 = 0.5, L3 = 0.1, L4 = 0.1, L5 = 0.1, 

z = 0.4, t = 0.1). As shown, the velocity profile is parabolic in shape, typical of peristaltic 

transport, peaking at the center of the channel and diminishing toward both the inner (rigid) and 

outer (elastic) walls. A key observation is that increasing the amplitude ratio φ that represents 

the strength of the peristaltic wave undulations on the elastic outer wall leads to a progressive 

rise in maximum velocity. This is evident from the upward shift in the curves from solid (φ = 

0.1) to dotted (φ = 0.15). Physically, a larger φ increases the deformation of the elastic wall, 

effectively widening the flow path and intensifying the fluid pumping action. This greater wall 

motion amplifies the peristaltic driving force, especially near the central axis of the tube, 

causing higher axial velocities. where the increase in velocity to stronger peristaltic motion 

induced by a more undulating outer wall. Thus, the figure effectively demonstrates how elastic 

wall behavior, via the amplitude ratio, significantly influences fluid transport in peristaltic 

motion of Williamson fluid. 

The (Fig. 3.3) illustrates the axial velocity component plotted against the radial coordinate r for 

varying values of the Weissenberg number We, that quantifies the degree of fluid elasticity in 

non-Newtonian flow, specifically during Williamson fluid. The three curves correspond to We 

= 0, (solid),  We = 0.01 (dashed), and We = 0.02 (dotted). From the figure, it is evident that as 

the Weissenberg number increases, the velocity profile shifts upward, especially near the center 

of the channel, indicating that higher fluid elasticity enhances axial flow velocity. Physically, 
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this can be explained by the nature of elastic fluids higher  We means that the fluid retains more 

of its deformation energy, that supports faster movement along the axis. This energy storage 

and release mechanism enhances the fluid's ability to accelerate during wave propagation. The 

parabolic shape of the velocity profile remains, but with a broader and taller peak as We 

increases. Thus, we conclude that elastic effects introduced by a higher Weissenberg number 

promote faster transport in peristaltic systems, that is crucial in engineering and biomedical 

applications where non-Newtonian behavior dominates, such as in blood flow, mucus transport, 

or industrial polymer pumping. 

The (Fig. 3.4) illustrates the axial velocity distribution  versus the radial coordinate r for three 

different values of the flexural rigidity L1 parameter  of the elastic outer wall during peristaltic 

flow of a Williamson fluid. As shown, increasing significantly enhances the peak velocity in 

the central region of the channel. Specifically, when   increases from 0.05 to 0.15, the velocity 

profile becomes more pronouncedly parabolic and reaches higher maximum values at the 

center-line ≈ 0.6, suggesting a more vigorous axial flow. This behavior aligns with the physical 

interpretation that greater wall flexural stiffness allows the elastic outer wall to store and release 

more mechanical energy, amplifying the peristaltic wave-induced pumping effect. From a 

mechanical standpoint, the flexible wall behaves like a spring as increases, the wall's response 

to peristaltic undulation becomes stronger, generating greater forward momentum in the fluid. 

The amplification effect is especially relevant in biomedical applications (e.g., blood transport), 

where wall elasticity can be tuned to control flow rates. Therefore, this figure demonstrates how 

increasing flexural rigidity enhances the propane strength of peristaltic pumping in non-

Newtonian fluids within deformable geometries. 

In the (Fig. 3.5) depicts the axial velocity component as a function of the radial coordinate r, 

under different values of the longitudinal tension L2 parameter ,that represents the axial tension 

per unit width in the flexible outer wall of the cylindrical channel. The profiles demonstrate a 

clear decrease in peak velocity as increases from 0.2 (solid line) to 0.6 (dotted line). The 

parabolic shape of the velocity remains, with symmetry about the center, but the amplitude of 

the velocity diminishes progressively. This indicates that higher longitudinal tension restricts 

the dynamic deformation of the elastic wall, thereby limiting the transmission of peristaltic 

wave energy into forward fluid motion. Physically, a larger means a stiffer axial stretch of the 

wall, resisting the sinusoidal wave's ability to expand and contract the channel effectively. As 
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a result, the peristaltic pumping weakens, leading to a lower induced axial velocity. This insight 

is particularly important in bio fluid dynamics, where tunable wall stiffness can modulate flow 

characteristics in artificial or physiological conduits, such as arteries or ureters. The figure 

highlights a dampening effect of axial wall tension on the efficiency of peristaltic transport, a 

crucial design consideration in fluidic systems employing elastic conduits. 

The (Fig. 3.6) illustrates the velocity distribution versus the radial position r for different values 

of the parameter, that represents the mass per unit area L3 of the elastic wall in the peristaltic 

flow of Williamson fluid. The three curves (solid, dashed, and dotted) correspond to L3 = 0.1, 

0.3 and 0.5. From the fig, seen that as increases, the peak velocity in the centre of the channel 

decreases noticeably. This implies that a heavier elastic wall (higher) resists the deformation 

caused by the peristaltic wave, resulting in lower fluid transport efficiency through the channel. 

Physically, this makes sense because a heavier wall has greater inertia and requires more force 

to achieve the same level of deformation thus, it transmits less energy to the fluid. As a result, 

the parabolic velocity profile flattens, and the maximum velocity achieved at the centreline 

reduces. Therefore, it can be concluded that increasing the wall's mass per unit area leads to a 

suppression of peristaltic pumping strength and a reduction in fluid flow velocity throughout 

the channel. 

The (Fig. 3.7) illustrates how the axial velocity component varies along the radial direction r 

within a flexible cylindrical channel, under the influence of different values of the viscous 

damping coefficient L4. The solid, dashed, and dotted lines represent L4 = 0.1, 0.2, and 0.4. The 

velocity profile is parabolic in nature peaking at the center of the channel and reducing 

symmetrically toward the walls. The maximum velocity decreases progressively as increases. 

Physically, this reflects the damping effect a higher viscous damping coefficient introduces 

more resistance to motion from the flexible wall, thereby suppressing the velocity. This trend 

is consistent with the theoretical modelling presented in the study, that shows that damping 

resists the amplitude of wave-induced deformation of the wall, leading to a weaker driving force 

for fluid motion. The system with L4 = 0.4 exhibits the most suppressed flow, while L4 = 0.1 

permits the highest velocity peak. This demonstrates the inverse relationship between viscous 

damping and axial velocity magnitude in peristaltic transport of Williamson fluid through an 

elastic-walled channel. 
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 The (Fig. 3.8) shows the velocity profile versus the radial coordinate r for different values of 

the parameter, that represents the spring stiffness L5 of the elastic wall in the peristaltic transport 

of Williamson fluid. The curves correspond to L5 = 0, 0.1, and 1.1 and all exhibit a classic 

parabolic velocity distribution, peaking at the center of the flow channel. A careful observation 

reveals that its increases, the velocity profile shows a slight but consistent rise, indicating that 

the spring stiffness enhances the wall's ability to push fluid more effectively. Physically, a stiffer 

spring attached to the elastic wall leads to more efficient restoration and propagation of the 

wall's peristaltic wave, that in turn transmits greater mechanical energy into the fluid. This 

increased wall motion boosts axial fluid momentum, especially in the core region, resulting in 

the observed higher peak velocity. While the difference between the curves is relatively subtle, 

it shows that spring stiffness plays a supportive role in enhancing flow rate, especially in 

applications where precise fluid control is critical, such as in biomedical devices or microfluidic 

systems. 

The (Fig. 3.9) shows the velocity distribution versus radial position for different values of the 

parameter ε, that represents the inner radius ratio (i.e., the relative size of the inner cylinder 

within the channel). The solid, dashed, and dotted lines correspond to ε = 0.1, 0.125, and 0.15 

from the figure, it is evident that increasing and leads to a significant decrease in the maximum 

velocity within the channel. where the inner cylinder radius increases, it constricts the flow 

domain, leaving less space for the fluid to move, thereby reducing axial velocity. Physically, 

this makes intuitive sense a thicker inner wall reduces the available flow area and introduces 

greater resistance to fluid motion. The figure also shows that the velocity profiles remain 

parabolic in shape, but the peak shifts downward as and increases. Thus, increasing the inner 

wall size higher and leads to more constricted flow and reduced pumping efficiency in 

peristaltic motion, an important consideration in applications such as biomedical fluid transport 

and microchannel design. 

3.5.2   Shear Stress 

Figures 3.10 - 3.17 shows the effect of parameters  φ, L1, L2, L3, L4, L5, ϵ and We on the shear 

stress. In the (Fig. 3.10) shows the shear stress as a function of radial position r for various 

values of the amplitude ratio φ , that characterizes the height of the wave on the outer elastic 

wall in a peristaltic channel. The solid, dashed, and dotted curves represent φ  = 0.1, 0.125, and 
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0.15. As seen, increasing the amplitude ratio leads to a significant rise in shear stress near the 

inner wall (lower r) where the stress values are strongly positive. However, as r increases 

towards the outer wall, the shear stress decreases and eventually becomes negative, indicating 

a change in shear direction. This trend is consistent with highlights that increasing and 

intensifies wall deformation, thereby generating stronger velocity gradients near the solid wall, 

resulting in higher positive shear stress there. The physical explanation lies in the fact that a 

larger wave amplitude enhances the wall's peristaltic pumping action, increasing the strain rate 

and hence shear stress in the fluid near the inner boundary. As the wave effect tapers off towards 

the elastic outer wall, the stress declines and becomes negative due to the wall's flexibility 

absorbing some of the energy. Therefore, larger wave amplitudes amplify shear near the solid 

wall and intensify the stress reversal across the channel, that is a key consideration in designing 

peristaltic pumps or understanding biological flow phenomena where wave amplitude impacts 

shear-driven transport and mixing. 

The (Fig. 3.11) displays the shear stress as a function of radial position for different values of 

the flexural rigidity L1 parameter, that characterizes the stiffness of the outer elastic wall in 

response to bending in peristaltic flow. The curves correspond to L1= 0.1, 0.15, and 0.2 for the 

solid, dashed, and dotted lines. The figure shows in that increasing significantly enhances the 

shear stress near the inner wall (lower r), where the stress is strongly positive. As r increases 

toward the outer elastic wall, the stress declines, crosses zero, and becomes increasingly 

negative with higher. Its explained that a stiffer elastic wall (higher flexural rigidity) transmits 

more mechanical energy to the fluid, thereby increasing the velocity gradient and, consequently, 

the shear stress. From a physical standpoint, a stiffer wall is less prone to damping, and its 

deformation more effectively drives the fluid, especially near the rigid inner boundary. 

However, the outer flexible wall absorbs some of this energy, causing the shear stress to flip 

sign as it adjusts to the wave-induced motion.  

In the  (Fig. 3.12) shows the variation of shear stress  along the radial coordinate r for different 

values of the longitudinal tension parameter , that characterizes the tensile force per unit width 

acting along the elastic wall in the peristaltic flow of a Williamson fluid. The solid, dashed, and 

dotted lines represent increasing values of at L2 = 0.1, 0.5, and 0.9. It is clear that as  increases, 

the magnitude of shear stress near the inner wall (lower r) becomes significantly higher 

(positive), while the stress decreases toward the outer elastic wall, eventually becoming 
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negative. where increasing L2 enhances the stretching ability of the wall, leading to more 

effective fluid-wall interaction and greater deformation, that in turn produces higher velocity 

gradients near the inner wall. Physically, greater longitudinal tension strengthens the elastic 

wave's ability to transmit force into the fluid, increasing the shear effect in regions closest to 

the rigid boundary. As the wave moves outward, the stress declines due to energy absorption 

by the elastic wall and reduced velocity gradient. The point at that the stress crosses zero shifts 

slightly depending on, illustrating the dynamic balance between the solid and elastic walls in 

transferring momentum. Increased longitudinal wall tension enhances shear stress intercity and 

steepens the radial gradient, making a key control parameter in fine-tuning flow behavior for 

efficient transport in peristaltic pumping systems. 

The (Fig. 3.13) demonstrates the impact of the wall mass parameter on the radial distribution 

of shear stress in the peristaltic flow of Williamson fluid through a cylindrical channel with an 

elastic outer wall. As seen, the shear stress is maximal near the solid inner wall (small r) and 

declines toward the elastic outer wall (higher r), eventually crossing into negative territory. 

With a small wall mass (L3 = 0.1), the fluid-wall interaction is more pronounced, producing 

higher stress values. However, as increases to 0.5 and 0.9 the wall's inertial resistance increases, 

that causes the magnitude of shear stress near the inner wall to drop significantly. The 

smoothening of the curve and shallower stress gradient indicate a buffering effect caused by 

the heavier wall, that absorbs and redistributes the shear more evenly across the flow domain. 

This matches the description that explains that an increase in leads to a decrease in shear stress 

near the inner wall and a rise at the elastic wall. Overall, this behavior is a reflection of the 

damping role played by wall mass in modulating peristaltic stresses within the fluid, and it 

shows how structural parameters directly affect flow behavior in biological or industrial 

applications involving flexible conduits. 

The (Fig. 3.14) effectively illustrates how the coefficient of viscous damping, a critical wall 

property, influences the distribution of shear stress during peristaltic transport of Williamson 

fluid. As seen the value of increases, there is a clear reduction in the peak stress near the solid 

inner wall, and the decay of stress across the radius becomes more gradual. Physically, this 

means a wall with higher internal friction or damping capacity resists rapid motion changes, 

thereby absorbing part of the mechanical stress transmitted by the fluid flow. This results in 

smoother stress transitions and less energy being transmitted to the fluid. Noted this inverse 
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relationship, where increased leads to decreased stress at the inner wall and increased stress at 

the elastic outer wall, due to redistribution. This trend is relevant in bio fluid applications where 

tissue or membrane damping can regulate stress propagation such as in arteries or soft conduits. 

Ultimately, underscores the role of damping as a stress moderator in peristaltic systems, helping 

to shield the channel walls from extreme shear conditions and stabilizing the flow. 

The (Fig. 3.15) illustrates the variation of the shear stress component with respect to the radial 

coordinate r, for different values of the parameter (spring stiffness of the outer elastic wall). 

Specifically, the Fig. 3.15 shows curves for  L5 = 0.1, 1.1, and 2.1. As observed, the shear stress 

is maximum and positive near the inner rigid wall (small r), and it steadily decreases as we 

move radially outward toward the elastic outer wall. The stress even becomes negative near the 

outer edge. According to the study, an increase in (spring stiffness) intensifies the resistance 

offered by the elastic wall, thereby altering the stress distribution inside the fluid domain. 

However, in this particular figure, all curves appear similar and almost overlap, suggesting that 

changes in may have a subtle effect in this range or for this particular case. Physically, a higher 

spring stiffness makes the outer wall more resistant to deformation, that stabilizes the wall shape 

and hence restricts large variations in shear stress. Near the inner wall, the positive stress 

indicates stronger interaction and push of the fluid against the rigid boundary, while the 

negative values near the elastic wall suggest a pull or suction-like effect due to wall elasticity.  

The (Fig. 3.17) shows how the shear stress changes with the radial position r for different values 

of the Weissenberg number We, which reflects the fluid’s elastic behavior. As r increases from 

the inner to the outer wall, shear stress decreases from a high positive value to a negative one, 

indicating a change in shear direction near the elastic wall. When We increases from 0 to 0.02, 

the stress near the center of the channel increases slightly, showing that elasticity enhances 

shear strength in that region. The results suggest that a higher We strengthens the fluid's 

resistance and flow near the center while increasing stress variation across the channel. This 

behavior matches the findings in the article, where a rise in  We increases stress near the solid 

wall and deepens the negative stress near the elastic boundary. 
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Fig. 3.2  Variation of φ on velocity field at φ = 0.1, 0.125, 0.15 with We = 0.01, ϵ = 0.15, 

L1 = 0.1, z = 0.4, L2 = 0.5, L3 = 0.1, L4 = 0.1, L5 = 0.1, t = 0.1. 

 

 

 

     Fig. 3.3  Variation of  We on velocity field at  We = 0, 0.01, 0.02 with φ = 0.1, ϵ = 0.15, 

     L1= 0.1, z = 0.4, L2 = 0.5, L3 = 0.1, L4 = 0.1, L5 = 0.1, t = 0.1. 
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Fig. 3.4  Variation of L1 on velocity field at L1= 0.05, 0.1, 0.15 with φ = 0.1, ϵ = 0.15, 

           We = 0.01, L2 = 0.1, z =  0.4, L3 = 0.1, L4 = 0.1, L5 = 0.1, t = 0.1. 

 

 

 

   Fig. 3.5  Variation of L2  on velocity field at L2= 0.2, 0.4, 0.6 with φ = 0.1, ϵ = 0.15, 

            We = 0.01, L1 = 0.1, L3 = 0.1, L4 = 0.1, L5 = 0.1, z = 0.4, t = 0.1. 
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        Fig. 3.6  Variation of L3 on velocity field at L3 = 0.1, 0.3, 0.5 with φ = 0.1, ϵ = 0.15,  

                 We = 0.01, L1 = 0.1, L2 = 0.5, L4 = 0.2, L5 = 0.1, z = 0.4, t = 0.1. 

 

 

 

             Fig. 3.7  Variation of L4 on velocity field at L4= 0.1, 0.2, 0.4 with φ = 0.15, ϵ = 0.15,  

       We = 0.01, L1 = 0.1, L2 = 0.5, L3 = 0.1, L5 = 0.1, z = 0.4, t = 0.1. 
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           Fig. 3.8  Variation of L5 on velocity field at L5= 0, 0.1, 1.1 with φ = 0.15, ϵ = 0.15,  

        We = 0.01, L1 = 0.1, L2 = 0.5, L3 = 0.1, L5 = 0.1, z = 0.4, t = 0.1. 

 

 

 

   Fig. 3.9  Variation of ϵ on velocity field at  ϵ = 0.1, 0.125, 0.15 with We = 0.01, φ = 0.15,  

          L1 = 0.1, L2 = 0.5, L3 = 0.1, L4 =0.1, L5 =0.1, z = 0.4, t = 0.1. 



51 
 

 

Fig. 3.10  Variation of φ on Shear-Stress at φ = 0.1, 0.125, 0.15 with We = 0.01, ϵ = 0.15, 

       L1 = 0.1, L2 = 0.5, L3 = 0.1, L4 =0.1, L5 = 0.1, z = 0.4, t = 0.1. 

 

 

Fig. 3.11  Variation of L1 on Shear-Stress  at L1= 0.1, 0.15, 0.2 with φ = 0.15, ϵ = 0.15, 

           We = 0.01, L2 = 0.5, L3 = 0.1, L4 = 0.1, L5 = 0.1, z = 0.4, t = 0.1. 
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   Fig. 3.12  Variation of L2 on Shear-Stress at L2= 0.1,0.5,0.9 with φ = 0.1, ϵ = 0.15, 

                   We = 0.01, L1 = 0.1, L3 = 0.1, L4 = 0.1, L5 = 0.1, z = 0.4, t = 0.1. 

 

 

                   
 

           Fig. 3.13  Variation of L3 on at Shear-Stress  L3= 0.1, 0.5, 0.9 with φ = 0.15, ϵ = 0.15,  

                     We = 0.01, L1 = 0.1, L2 = 0.5, L4 = 0.2, L5 = 0.1, z = 0.4, t = 0.1. 

 



53 
 

 

Fig. 3.14  Variation of L4 on Shear-Stress  at L4= 0.1, 1.1, 2.1 with φ = 0.15, ϵ = 0.15, 

               We = 0.01, L1 = 0.1, L2 = 0.5, L3 = 0.1, L5 = 0.1, z = 0.4, t = 0.1. 

 

 

Fig. 3.15  Variation of L5 on Shear-Stress at L5 = 0.1, 1.1, 2.1 with φ = 0.15, ϵ = 0.15, 

                We = 0.01, L1 = 0.1, L2 = 0.5, L3 = 0.1, L5 = 0.1, z = 0.4, t = 0.1. 
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    Fig. 3.16  Variation of ϵ on Shear-Stress at  ϵ = 0.1, 0.125, 0.15 with We = 0.01, φ = 0.15,  

                  L1 = 0.1, L2 = 0.5, L3 = 0.1, L4 =0.1, L5 =0.1, z = 0.4, t = 0.1. 

 

 

Fig. 3.17  Variation of  We on  Shear-Stress at  We = 0,0.01,0.02 with φ = 0.1, ϵ = 0.15, 

        L1= 0.1, L2 = 0.5, L3 = 0.1, L4 =0.1, L5 =0.1, z = 0.4, t = 0.1. 
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CHAPTER 4 

IMPACT OF ELASTIC PASSAGE ON THE 

PERISTALTIC TRANSPORT OF WILLIAMSON 

FLUID WITH SLIP EFFECTS 

4.1    Introduction 

In this chapter, extension of the work by (Al-Khafajy & Al-Delfi, 2023) in which the effect of 

an elastic outer wall on the peristaltic transport of a non-Newtonian Williamson fluid trapped 

between two concentric cylinders where the outer wall exhibits a sinusoidal wave pattern while 

the inner wall stays inelastic is examined. The effects of velocity slip at the boundaries, porosity, 

and magnetohydrodynamics (MHD) are taken into account. The mathematical formulation of 

the proposed model is done by using the momentum and energy equations in cylindrical 

coordinates while assuming a long wavelength and a low Reynolds number assumption. The 

series solutions of the produced differential systems are obtained using a regular perturbation 

technique due to their non-linear nature. Mathematica software is used to solve the governing 

equations and investigate the effects of important parameters including fluid rheology, wall 

elasticity, and wave amplitude. The findings show that the elastic behaviour of the outer wall 

causes notable differences in shear stress, streamlines, and velocity profiles.  

4.2     Physical Model 

The proposed model considers the flow of incompressible Williamson fluid passes through the 

tube exhibiting the peristaltic mechanism as illustrated in Fig. 4.1. The cylindrical coordinates 

Ẑ in synchrony with the tube's axis and R̂ with its radius.  

                                              𝑅̂(𝑍̂,  𝑡̂) = 𝑎2 +  𝑏𝑠𝑖𝑛
2𝜋

𝑙
(𝑍̂ − 𝑠𝑡̂)                                                    (4.1) 
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Fig. 4.1 Geometry of the Tube. 

where wave propagation speed is s, wavelength is l, a2 is the average radius of the tube, small 

holes shows the porous structure, time is t̂  and b is the amplitude of a peristaltic wave, 𝜂 is the 

inclination of the tube 𝐵0 is the magnetic field. 

In two-dimensional flow, the velocity field is defined as follows: 

                                                     𝐕̂ = [Û1(R̂, Ẑ, t̂), Û3(R̂, Ẑ , t̂) ].                                                     (4.2) 

The basic governing continuity along momentum and energy equations describing the fluid 

model are  

                                                                 div 𝐕̂ = 0,                                                                             (4.3)                                 

                                                              ρ (
d𝐕̂

dt̂
)  =  div𝐒 +  ρ𝐟,                                                            (4.4) 

                                                        ( ρcp)
dT̂

dt̂
    =  − div 𝐪∗ + 𝐐𝟎,                                              (4.5) 

where 

         q∗    =  −𝐤∇2T̂,               
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the velocity field is denoted by 𝐕̂, the density by ρ, specific body force is denoted by 𝐟, and the 

material time derivative by 
d

dt̂
 . T̂ denotes temperature, 𝐤 is thermal conductivity, cp is specific 

heat, 𝐐𝟎 heat generation, q* denotes heat flux, total heat flux div q*. 

The Cauchy stress tensor  S for incompressible fluid can be expressed as: 

                                                                       S = [−P̂Î +  τ̂],                                                              (4.6) 

 

where Cauchy stress tensor by S pressure by P̂, the identity tensor by Î, τ̂ extra stress tensor.  

The Williamson fluid constitutive equations and elastic wall's equations already discussed in 

chapter 03.                                       

After substituting the velocity components in the shear stress equation for Williamson's fluid, 

the governing equations for fluid motion are obtained in equations (4.3) - (4.5), we have 

                                                              
∂Û1 

∂R̂
+ 

Û1

R̂
+

 ∂Û3

∂Ẑ
 = 0 ,                                                           (4.7)  

  ρ (
∂Û1 

∂t̂
+ Û1  

∂Û1 

∂R̂
+ Û3

 ∂Û1

∂Ẑ
)    =  − 

∂P̂

∂R̂
+

1

R̂
 

∂

∂R̂
(R̂τ̂R̂R̂) +

∂

∂Ẑ
(τ̂R̂Ẑ)   

                                                                                                      + ρ𝛽0g(T̂1 − T̂0)Cosη,                  (4.8)  

   ρ (
∂Û3 

∂t̂
+ Û1  

∂Û3 

∂R̂
+ Û3

 ∂Û3

∂Ẑ
) = − 

∂P̂

∂Ẑ
+

1

R̂

∂

∂R̂
(R̂τ̂R̂Ẑ) +

∂

∂Ẑ
(τ̂ẐẐ) + ρ𝛽0g(T̂1 − T̂0) Sinη  

                                                                                                                   −   σ𝐵0
2Û3 +

μ0Û3

k
,            (4.9)  

                                          ρcP (
∂T̂

∂t̂
+ Û1

∂T̂

∂R̂
+ Û3

∂T̂

∂Ẑ
)  =  K (

∂T̂

∂R̂2
+

1

R̂

∂T̂

∂R̂
+

∂T̂

∂Ẑ2
) + Q0 ,            (4.10)  

The equation of the elastic passage is  

              
∂

∂ẑ
 ( E

∂4

∂Ẑ4 − F 
∂2

∂Ẑ2 + G
∂2

∂t̂2 + H 
∂2

∂t̂
+ IL) (r̂2)  = − 

∂P̂

∂Ẑ
+

1

R̂

∂

∂R̂
(R̂τ̂R̂Ẑ) +

∂

∂Ẑ
(τ̂ẐẐ)          

              +  ρ𝛽0g(T̂1 − T̂0) Sinη −  σÛ3𝐵0
2 +

μ0Û3

K
, − ρ (

∂Û3 

∂t̂
+ Û1  

∂Û3 

∂R̂
+ Û3

 ∂Û3

∂Ẑ
).          (4.11)            

𝑔 is a gravitational acceleration, 𝑇̂1 is a fluid temperature , 𝑇̂0 refer to wall temperature, 𝛽0 is a 

Thermal expansion coefficient, 𝑘 refer to permeability, 𝜌 is a fluid density, 𝐵0
2 represents 
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applied magnetic field, specific heat is represented by 𝑐𝑝, 𝐾 refer to thermal conductivity and 

heat source is represented by 𝑄0. 

To convert the proposed model into a steady – state problem, the following transformations are 

used     

r̂ =  R̂ ,                             ẑ =  Ẑ − st̂ ,                û1 = Û1, 

                                  û3 =  Û3  − s ,                𝑝̂ = 𝑃̂(𝑍̂ − 𝑠𝑡̂ ,  𝑅̂, 𝑡̂ ).                                      ( 4.12)                                                    

The governing equations take the form as: 

                                                             
∂û1 

∂r̂
+  

û1

r̂
+

 ∂û3

∂ẑ
 = 0,                                                          (4.13)  

         ρ (û1  
∂û1 

∂r̂
+ û3

 ∂u1

∂ẑ
) = − 

∂P̂

∂r̂
+

1

r̂
 

∂

∂r̂
(r̂τ̂r̂r̂) +

∂

∂ẑ
(τ̂r̂ẑ) + ρ𝛽0g(T̂1 − T̂0)Cosη,           (4.14) 

           ρ (û1  
∂û3

∂r̂
+ û3

 ∂û3

∂ẑ
) =   − 

∂P̂

∂ẑ
 
1

r̂

∂

∂r̂
(r̂τ̂r̂ẑ)

∂

∂ẑ
(τ̂ẑẑ) +  ρ𝛽0g(T̂1 − T̂0) Sinη −  σ𝐵0

2(û3) −

                                                                                                                                           
μ0 (û3)

k
,       (4.15) 

                                 ρcp (û1
∂T̂

∂r̂
 +  û3

∂T̂

∂ẑ
)  =   K (

∂

∂r̂
(

∂T̂

∂r̂
) +

1

r̂

∂T̂

∂r̂
+

∂T̂

∂ẑ
(

∂T̂

∂ẑ
))  + Q0 ,              (4.16)  

                       ( E
∂5

∂ẑ5 − F 
∂3

∂ẑ3 + G
∂3

∂ẑ ∂t̂2 + H 
∂2

∂ẑ ∂t̂
+  IL

∂

∂ẑ
) (r̂2) =

1

r̂

∂

∂r̂
(r̂τ̂r̂ẑ) + 

∂

∂ẑ
(τ̂ẑẑ)                

                           − ρβg(T̂1 −  T̂0) Sinη −  σ𝐵0
2(û3) −

μ0 (û3)

K
−  ρ (û1  

∂û3

∂r̂
+ û3  

∂û3

∂ẑ
 ).       (4.17)  

And the components of the stress tensor are same in equation (3.30) - (3.33) in the chapter 03.                                          

Following are the non-dimensional quantities used in the above system of equations. 

 

     u1 =
û1

a2s
,                 u3 =

û3

s
,             r =  

r̂

a2
,            z =  

ẑ

l
,               t =  

st̂

l
 ,            Pr =

μ0cp

K
 ,    

     τ =
a2τ̂

sμ0
,                 We =  

Γs

a2
,           p =   

a2
2P̂

slμ0
 ,      α =  

α̂a2  

s
, Re =   

ρsa2

μ0
, δ =

a2

l
   

    φ =  
b

a2
,                   r2 = h =  

r̂2

a2
= 1 + φ sin(2πẑ),      τ =

a2
2P̂

sμ0
,       Da =

k

a2 
,       θ =

T̂  − T̂0

T̂1− T̂0
 ,    

      M = √
σ

μ
 𝐵0 a2,    Gr =  

gp𝛽0a2
2(T̂1  − T̂0)

sμ0
,          B =

a2𝑄0

K(  T̂1− T̂0)
,                                           (4.18)  
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where u1 is the dimensionaless radial velocity,  u3 is the dimensionaless axial velocity, r   is the 

dimensionless radial coordinate, z is the dimensionless axial coordinate,  t is the dimensionless 

time, τ is the dimensionless shear stress, φ is the amplitude ratio, δ is the dimensionless wave 

number, and We is the Weissenberg number, M is the Hartmann number, Gr is the Grashof  

Number, B is Biot number, θ is the dimensionless temperature, Re is the Reynolds number, Pr 

is prandtl number, α is the dimensionless shear rate, Da is the Darcy number. 

By using these  non-dimensional quantities in the equations (4.13) - (4.17) we get  

                                                              
∂u1 

∂r
+  

u1

r
+

 ∂u3

∂z
= 0,                                                           (4.19)                                         

             Reδ3 (u1  
∂u1 

∂r
+ u3

 ∂u1

∂z
) = − 

∂p

∂r
+

1

r
 

∂

∂r
(rτrz) + δ

∂

∂z
(τzz) + δGrθCosη,               (4.20)  

             Reδ (u1  
∂u3 

∂r
+ u3

 ∂u3

∂z
) = − 

∂p

∂z
+

1

r
 

∂

∂r
(rτrz) + δ

∂

∂z
(τzz) +  GrθSinη −  

                                                                                                                       (M2 + 
1

Da
) u3,             (4.21)  

                                     RePrδ (u1

∂θ

∂r
+ u3

∂θ

∂z
) =

1

r
 
∂θ

∂r
+  

∂2θ

∂r2
+ δ2

∂2θ

∂z2
  +  B.                        (4.22) 

The equation of motion governing the elastic wall is 

( (
Ea2

3

μ0sl5)
∂5r2

∂z5 −  (
Fa2

3

μ0sl3)
∂3r2

∂z3 +  (
Gsa2

3

μ0l3 )
∂3r2

∂z ∂t2 +  (
Hsa2

3

μ0l2 )
∂2r2

∂z ∂t
+   (

ILa2
3

μ0sl
)

∂r2

∂z
) =

1

r
 

∂

∂r
(rτrz) +

      δ
∂

∂z
(τzz) +  GrθSinη − (M2 +  

1

Da
)  −  Reδ (u1  

∂u1 

∂r
+ u3

 ∂u3

∂z
),                                    (4.23)   

and the dimensionless boundary conditions are 

∂u3

∂r
 = 0,                            

∂θ

∂r
= 0,                         at           r = 0, 

                              u3 + βτrz = −1,              
∂θ

∂r
= 0,                            at         r = h.                 (4.24) 

We assume an extremely small wavenumber because it is exceedingly difficult to solve the 

problem in the latter form (𝛿 ≪ 1), hence equations (4.19- 4.23) become 
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∂p

∂r
=  0,                                                                        (4.25) 

                                        
∂p

∂z
   =  

1

r
 

∂

∂r
(rτrz) + GrθSinη − (M2 +  

1

Da
) u3,                                (4.26)  

                                                                   
1

r
 
∂θ

∂r
+  

∂2θ

∂r2
+ B = 0,                                                                  (4.27) 

        ( L1
∂5r2

∂z5 −  L2
∂3r2

∂z3 +  L3
∂3r2

∂z ∂t2 + L4
∂2r2

∂z ∂t
+   L5

∂r2

∂z
)  =   

1

r
 

∂

∂r
(rτrz)  +  GrθSinη −

                                                                                                            (M2 +  
1

Da
) u3.                        (4.28)  

where 

                        L1 =
Ea2

3

μsl5 ,   L2 =  −
Fa2

3

μsl3 ,   L3 =  
Ga2

3

μl3 , L4 =  
Ha2

3

μl3 ,   L5 =  
Ila2

3

μsl
,                      (4.29) 

L1is flexural stiffness of the wall, L2 is a longitudinal tension unit, L3 is mass per unit area, L4 

is a coefficient of viscous damping and L5 is spring stiffness. 

The components of extra stress are 

                                 τrr = τzz = 0      and     τrz  =   (
∂u3

∂r
+ We ( 

∂u3

∂r
)

2

).                           (4.30)    

Replacing τrz into equation (4.28) we have: 

                    r
∂2u3

∂r2 +  
∂u3

∂r
+  We ( 

∂u3

∂r
)

2

+ 2rWe (
∂u3

∂r
) (

∂2u3

∂r2 ) − (M2 + 
1

Da
) u3 =

                                                                                                         − GrθSinη +   r𝐾̃,                    (4.31)  

where  

                          𝐾̃ = L1
∂5r2

∂z5 −  L2
∂3r2

∂z3 +  L3
∂3r2

∂z ∂t2 +  L4
∂2r2

∂z ∂t
+   L5

∂r2

∂z
.                                (4.32)  
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4.3    Solution Methodology  

Equation (4.32) is difficult to solve analytically, therefore, to obtain the solution, we employ 

the regular perturbation strategy in terms of a second-order form of the Weissenberg number. 

To solve the perturbation problem, it has been expanded as follows: 

                             u3 =  u03  +  We u13  + We2u23 +  O(We3).                                               (4.33) 

4.3.1   Zero order System 

                           r
∂2u03

∂r2 +  
∂u03

∂r
=  − (M2 +  

1

Da
) u03  −  GrθSinη + r𝐾̃,                                (4.34)  

   with boundary conditions as: 

           
∂u03

∂r
=  0,      at     r =  0,      and      u03 + β

∂u03

∂r
= −1,      at     r = h.                       (4.35)  

 

4.3.2   First order System 

       r
∂2u13

∂r2 + 
∂u13

∂r
=  −2r (

∂2u03

∂r2 ) (
∂u03

∂r
) −  ( 

∂u03

∂r
)

2

− (M2 +  
1

Da
) u13,                          (4.36)  

   with boundary conditions as 

             
∂u13

∂r
=  0,      at     r =  0,      and      u13 + β

∂u13

∂r
= 0,      at     r = h.                        (4.37)  
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4.4 Result and Discussion 

The behavior of the parameters used in the temperature (θ), axial velocity (u), and streamline 

expressions is discussed. Specifically the effects of the magnetic parameter (M), porosity 

parameter (Da), slip parameter (β), Grashof number (Gr), Biot number (B) , Weissenberg 

number (We) , and wall properties are examined. To analyze their influence, graphs were 

generated using the MATHEMATICA software. 

The first figure presents streamline patterns of Williamson fluid under the action of a magnetic 

field for different values of the magnetic parameter M. In Fig. 4.2 (a) when M = 0.1 the 

streamlines show a relatively larger bolus (trapped fluid region) near the channel center. At this 

stage, the magnetic resistance is weak, which allows the recirculation zone to expand and fluid 

particles to move more freely. In Fig. 4.2 (b) when  M = 1, the bolus size decreases slightly and 

streamlines compress near the channel walls due to the Lorentz force, which resists fluid motion 

and reduces recirculation. In Fig. 4.2 (c) for M = 1.5 the bolus becomes even smaller, and 

streamlines shift closer to the axis. The stronger magnetic field further suppresses circulation, 

reducing trapped zones and restricting secondary flows. 

Fig. 4.3 (a −  c) illustrates the effect of the porosity parameter Da. In Fig. 4.3 (a) when  Da = 

0.1, the bolus is relatively small due to low porosity, which offers greater resistance to flow and 

limits fluid entrapment. In Fig. 4.3 (b) when Da = 1 the bolus size increases as porosity 

improves, allowing more fluid to be trapped and carried along by the peristaltic wave. In Fig. 

4.3 (c) for Da = 1.5 the bolus becomes largest confirming that higher porosity reduces 

resistance and enhances fluid trapping. 

Fig. 4.4 (a − c) show streamlines for different values of L1. The closed loops represent trapped 

boluses that move with the peristaltic wave. In Fig. 4.4 (a) for L1= 0.1 the bolus is small, 

indicating minimal trapping. When L1 = 0.2 in Fig. 4.4 (b) the bolus size increases, and more 

fluid is trapped in the channel center. In Fig. 4.4(c) for L1  = 0.3 the bolus reaches its maximum 

size, confirming that increasing L1enhances fluid trapping. Fig. 4.5 (a − c) demonstrates the 

effect of  on L2 peristaltic flow. In Fig. 4.5 (a) for L2= 0.1 the bolus is relatively small. As L2 

increases to 0.2 in Fig. 4.5 (b) the bolus expands significantly. At L2 = 0.3 in Fig. 4.5 (c) the 
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trapped bolus is largest, showing that higher  L2 enhance fluid entrapment. Fig. 4.6 (a − c) 

show the effect of L3. In Fig. 4.6 (a) when L3 = 0.1 the trapped bolus is small. As  L3 increases 

to 0.2 in Fig. 4.6(b) the bolus expands, trapping more fluid. In Fig. 4.6 (c) at L3= 0.3 the bolus 

reaches its largest size, indicating that higher L3values increase fluid trapping. 

Fig. 4.7 (a − c) shows the effect of L4. In Fig. 4.7 (a) when L4= 0.1 the bolus is relatively 

small. In Fig. 4.7 (b) when  L4= 0.2 the bolus size reduces noticeably, unlike the previous 

parameters. In Fig. 4.7 (c) at L4= 0.3 the bolus is smallest. This indicates that L4 acts differently 

representing resistance or damping which reduces fluid trapping. Fig. 4.8 (a − c) show the 

influence of L5. In Fig. 4.8 (a) at  L4 = 0.1 the bolus is small. In Fig. 4.8 (b) for L5 = 0.2 the 

bolus grows larger. In Fig. 4.8 (c) at L5 = 0.3 the bolus is largest. This confirms that increasing 

L5 enhances fluid trapping. Fig. 4.9 (a − c)  presents the impact of the slip parameter β. In Fig. 

4.9 (a) when β = 0.1 the bolus is smallest. Increasing β to 0.3 in Fig. 4.9 (b) reduces the bolus 

size. At  β = 0.5 in Fig. 4.9 (c) the trapped bolus is largest, indicating that slip enhance trapping 

efficiency by stronger peristaltic pumping.  

Fig. 4.10 displays velocity profiles for different slip parameter values. For β = 0 (solid line), 

the classic parabolic profile appears, with maximum velocity at r = 0 and zero velocity at the 

walls. When β = 0.02 (dashed line), velocity at the walls is non-zero, and the overall velocity 

increases. For β = 0.04 (dotted line), the velocity further increases, and wall slip becomes 

stronger.  

Fig. 4.11 shows the effect of the Weissenberg number We. At We = 0 (solid line), the velocity 

profile is parabolic, characteristic of Newtonian fluids. At  We = 0.02 (dashed line), velocity 

decreases across the channel and the profile flattens. At We = 0.04 (dotted line), the velocity 

reduces further, with the lowest peak at the center, showing stronger viscoelastic effects.  

Fig. 4.12 shows velocity profiles for different magnetic parameter values. At M = 0.1 (solid 

line), velocity is maximum with a classic parabolic shape. At M = 2 (dashed line), velocity 

decreases due to Lorentz force. At M = 4 (dotted line), velocity reduces further, with the flattest 

profile, as magnetic resistance is strongest. Fig. 4.13 illustrates velocity profiles for different 

Darcy numbers Da. At Da = 0.1 (solid line), velocity is highest with a parabolic profile. At Da 

= 0.2 (dashed line), velocity decreases due to porous resistance. At Da = 0.4 (dotted line), 
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velocity reduces further, showing the strongest damping effect. Fig. 4.14 shows velocity 

profiles for various Grashof numbers Gr. At Gr = 0.1 (solid line), velocity is lowest. Increasing 

Gr to 0.3 (dashed line) raises velocity across the channel. At Gr = 0.5 (dotted line), velocity is 

highest, confirming that buoyancy effects enhance flow strength. 

Fig. 4.15 the variation of velocity distribution with respect to different values of the parameter 

B is displayed in the figure. The horizontal axis represents the radial position r, while the 

vertical axis corresponds to the velocity component. For all cases, the velocity profile retains a 

parabolic nature, reaching its maximum at the channel centerline (r = 0) and gradually 

decreasing towards the walls (r = ±1), where it approaches zero due to the no-slip condition. 

The effect of parameter B is clearly visible: when B = 1 the velocity attains the highest peak, 

signifying faster fluid motion. Increasing B to 5 reduces the peak velocity, and a further increase 

to B = 10 produces a much flatter curve with a significantly lower magnitude of velocity. These 

observations indicate that larger values of B enhance the resistive influence on the flow, thereby 

suppressing the velocity throughout the domain, while smaller values of B allow the fluid to 

accelerate more freely. 

Fig.4.16 demonstrates the influence of wall properties L1, L2, L3, L4, L5 on velocity distribution. 

As wall property values increase, the velocity at the centerline decreases, and overall flow 

reduces due to enhanced wall rigidity and resistance. Fig. 4.17 presents temperature profiles for 

different Biot number values. At B = 0.01 (solid line), temperature is lowest, with nearly 

uniform distribution across the channel, indicating dominant conduction. At B = 0.02 (dashed 

line), temperature increases and becomes more parabolic. At B = 0.03 (dotted line), 

temperature is highest across all radial positions, showing stronger convective heat transfer at 

the boundaries. 
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(a)  M =  0.1                                               (b)   M  =  1 

 

 

 

                                                               (c)   M  =  1.5 

 

Fig. 4.2   Streamlines for the diverse values of magnetic parameter. 
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                                 (a)      Da =  0.1                                                         (b)      Da  =  1 

 

 

 

 

                                                                               (c)   Da =  1.5 

 

 

Fig. 4.3 Streamlines for the diverse values of porosity parameter. 
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                                    (a)   L1  =  0.1                                                                  (b)  L1    =  0.2 

 

 

 

(c)   L1 = 0.3 

  

                    Fig. 4.4 Streamlines for the diverse value of flexural stiffness of wall (L1).  
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                                    (a)     L2  =  0.1                                                       (b)         L2  =  0.2 

 

 

                                                                                  (c)    L2   =  0.3 

 

 

Fig. 4.5 Streamlines for the diverse of longitudinal tension per unit width (L2). 
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                                     (a)   L3   =  0.1                                                             (b)    L3    =  0.2 

 

 

 

 

      (c)      L3  =  0.3 

 

 

Fig. 4.6 Streamlines for diverse of Mass per unit area (L3). 
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                                      (a)    L4  =  0.1                                                                 (b)   L4   =  0.2 

 

 

 

 

  (c)     L4  =   0.3 

 

 

Fig. 4.7 Streamlines for the diverse of coefficient of viscid damping (L4). 
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                                  (a)  L5   =  0.1                                                                    (b)  L5   =  0.2 

 

 

 

 

(c)    L5    =    0.3 

 

 

Fig. 4.8 Streamlines for the diverse of Spring stiffness (L5). 
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                               (a)   Slip (β)  =  0.1                                                    (b)  Slip (β)  =  0.3 

 

 

 

 

                                                                                 (c)  Slip (β)  =  0.5 

 

 

Fig. 4.9 Streamlines for the diverse values of slip parameter. 
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Fig. 4.10 Velocity distribution for the diverse values of slip parameter. 

 

 

 

Fig. 4.11 Velocity distribution for the diverse values of Weissenberg number. 
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       Fig. 4.12 Velocity distribution for the diverse values of magnetic parameter. 

 

 

 

Fig. 4.13 Velocity distribution for the diverse values of porosity parameter. 
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Fig. 4.14 Velocity distribution for the diverse values of Grashof number. 

 

 

 

Fig. 4.15 Velocity distribution for the diverse values of Biot number. 
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Fig. 4.16 Velocity distribution for the diverse values of wall properties. 

 

 

 

Fig. 4.17 Temperature distribution for the diverse values of Biot number. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

This thesis has examined the peristaltic flow of a non-Newtonian Williamson fluid, revealing a 

complex interdependence between porosity, magnetic effects, slip conditions, and the fluid’s 

overall dynamics. Streamline analysis has proven particularly effective in illustrating the 

influence of these parameters on the trapped bolus a pocket of fluid carried by the peristaltic 

wave. The complexity of the governing equations has been addressed through lubrication 

approach and the perturbation techniques Furthermore, graphical representations of streamline 

patterns, velocity function and temperature profile, generated using Mathematica, provided 

meaningful insights into the flow characteristics under varying conditions. 

The notable conclusions drawn this research are that the velocity of the Williamson fluid 

declined as the magnetic parameter enhanced. This shows that the increase in the Lorentz force 

created resistance in the fluid flow thus causing a significant decline in the velocity. The 

increase in Grashof Number (Gr) means the growing dominance of inertial over the viscous 

forces, which in turn increases the fluid’s velocity. The surge in Weissenberg Number (We) 

shows that non-Newtonian effects are intensifying, thus decline in the fluid’s velocity is 

observed as this number is elevated. Porosity parameter (Da) indicates that the void spaces in 

the medium are increasing. As these void spaces increase, fluid experiences interruption to flow 

freely through the channel, thus reduce in the velocity can be seen in the graphical 

representation. For the diverse wall properties like stiffness, damping, rigidity etc. It can be 

seen that the surge in these parameters causes declines in the fluid’s velocity.  

Impact of the slip parameter refers to the situation where the fluid slides along the channel’s 

walls. The resistance near the wall declines allowing fluid to flow past the channel easily. Biot 

number is a non-dimensional number that helps to investigate if the temperature gradient inside 

the fluid is substantial or not. Velocity descended as Biot number was enhanced thus causing 

the convection process accelerate in the passage, this results elevation in the temperature profile 

as depicted in the graph.    
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5.2 Future Work 

The model studied in this dissertation includes MHD, porosity and slip effects along with heat 

transfer. However, this model has potential to be extended for the future researches as well by 

including thermal effects and mass transfer.  

 Investigating various fluid models, such as the Carreau and Walter's B fluid models, as 

well as non-Newtonian fluid models, could be part of this.   

 As our current study focused on the effect of elastic passage properties, slip boundary 

conditions in a tube, the same model can be studied in an endoscope as well. 

  Furthermore, adding boundary conditions like thermal slip and convective boundary 

conditions may help future researchers understand how peristaltic flow behaves in real-

world situations. 
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