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ABSTRACT 

  

Title: Effects of Porous Rotating Frame on Peristaltic MHD Jeffrey Fluid Flow 

 

 

This study focuses on the peristaltic transport of a Jeffrey fluid within a porous rotating frame 

under the influence of magnetohydrodynamics (MHD). The Jeffrey fluid model, which accounts 

for relaxation and retardation times is considered to better describe the viscoelastic characteristics 

of biological and industrial fluids. The governing equations describing the system are non-linear 

and non-homogeneous partial differential equations formulated in Cartesian coordinates. By 

applying the lubrication approximation, assuming a low Reynolds number and long wavelength, 

the momentum equations are simplified and solved using the perturbation method. Analytical 

solutions are obtained and further examined through symbolic computation using Mathematica. 

The novelty of this research lies in addressing the unexplored effects of rotation on Jeffrey fluid 

peristaltic flow in a porous medium under MHD conditions, an area that has received limited 

attention in the literature. The study investigates how the velocity distribution and streamline 

patterns are influenced by variations in rotational and magnetic parameters. The outcomes are 

expected to provide deeper insights into the behavior of non-Newtonian fluids in rotating porous 

environments, with potential applications in biomedical devices, polymer processing, and 

peristaltic pumping technologies widely used in industry. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

1.1 Introduction 

The study of fluid mechanics focuses on comprehending and controlling the fluid’s behavior. Fluid 

mechanics is a significant area of the applied sciences with a wide range of fascinating and useful 

applications for engineers. A basic understanding of fluid mechanics is essential to daily living 

because we inhabit a planet primarily covered by liquid with a dense gas environment. There is an 

immense dependence on fluid machinery in our surroundings. Pumps, steam turbines, sewage, 

electrical systems, airplanes, cars, ships, spacecraft, and almost every other vehicle interact with 

fluid of some kind, either as part of an engine or as a hydraulic control system. Gaining knowledge 

of fluid mechanics also helps us comprehend our body and a variety of fascinating aspects of our 

surroundings. For instance, the heart and lungs are perfectly made pumps that function 

sporadically. However, the lungs efficiently cycle air through the branching pulmonary passages, 

and the heart efficiently pumps blood through the branching network of arteries, capillaries, and 

veins.  

Fluid dynamics and fluid statics have historically been the two subfields of fluid mechanics. The 

behavior of a fluid at rest or almost at rest is the focus of fluid statics, often known as hydrostatics 

and fluid dynamics is the field that studies fluids in motion. 

Several characteristics, such as viscosity, density, temperature, specific heat, pressure, and thermal 

conductivity, are used to categorize fluids into different types. Fluid viscosity has significant 

impact on fluid flow. The fluid having constant viscosity is the type of fluid called Newtonian 

fluids (Bansal, 2004). Example includes most common fluids water and air. Non-Newtonian fluids 

play an important role in physiological and industrial processes because of their unique and 

adjustable flow characteristics. Newton's law of viscosity, which specifies that a fluid's viscosity 

remains constant irrespective of applied stress, is not followed by these fluids. Rather, a non-

Newtonian fluid is the one whose thickness or viscosity, varies in response to applied force. A 

wide range of naturally occurring materials, such as paints, ketchup, blood and shampoo display 
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non-Newtonian behavior.  

1.2 Peristalsis 

Peristalsis is the process of contraction and relaxation of the surrounding flexible muscles or 

structures to facilitates the movement of material. Such processes include, for instance, the 

swallowing of food, the motion of digested food in the intestine, the flow of urine to the bladder, 

blood circulation in heart as well as in lungs, etc.  

Complex and profound nature of the fluid’s peristaltic motion within a conduit while experiencing 

a magnetic field, has attracted much attention in a number of studies. Engineers find peristaltic 

pumping particularly appealing because it leverages natural mechanisms to reduce work piece 

handling and provides stability in practical applications. The study about peristalsis was first 

presented by (Latham, 1966). This study served as the milestone to study Newtonian and non-

Newtonian fluids flowing past the tubes or channels exhibiting peristaltic mechanism. 

(Burns & Parkes, 1967) examined the flow of a viscous fluid via symmetrical channel and axially 

symmetric pipe, assuming that the Reynolds number is low enough to allow for the utilization of 

Stokes flow approximations. It was assumed that the pipe or channel's cross-section fluctuates 

sinusoidally over its length. (Barton & Raynor, 1968) studied the flow of peristaltic fluid in tubes, 

two flow domains of peristaltic motion in tubes had been investigated in this article. The wall 

disturbance wavelength in the first analysis was significantly greater than the average tube radius. 

The wall disturbance wavelength in the second analysis was smaller as the average radius. In a 

study by (Brown & Hung, 1977) , both computational and experimental approaches had been used 

to investigate two-dimensional nonlinear peristaltic flows. The Navier-Stokes equations for 

peristaltic flows with finite Reynolds number and wall-wave curvature were solved implicitly 

using a finite-difference method with orthogonal curvilinear coordinates. 

(Böhme & Friedrich, 1983) used an infinite train of sinusoidal waves traveling down the duct wall 

to study the peristaltic movement of an incompressible viscoelastic fluid in the case of a 

plane flow. The main assumptions were that the relevant Reynolds number was sufficiently small 

to ignore inertia effects and that the wavelength to channel height ratio is large, indicating that the 

pressure was constant across the cross-section. 
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Both Newtonian and non-Newtonian nanofluid peristaltic flow in a uniform and non-uniform tube 

channel was investigated by (Shaheen, 2017). The research illustrated the impact of multiple 

factors on nanofluid’s flow caused by pressure gradient involving endoscopic tubes, convective 

boundary conditions, magnetic fields and viscous dissipation. 

(Fauci, 1992) studied the peristalsis pumping of solid particle. This work used sinusoidal waves to 

simulate the peristalsis-based solid particle transport in a two-dimensional channel. The particle 

and the channel walls were considered to be neutrally buoyant elastic barriers submerged in a 

viscous, incompressible fluid. The absorbed boundary technique allowed them to computationally 

model fluid particle interaction. (Kumar & Naidu, 1995) conducted a numerical analysis of 

peristaltic flows. For two-dimensional peristaltic flow, the Navier-Stokes equations in Ψ − ω form 

were numerically solved. For flow analysis, an easy nonlinear streamline quadrature upwinding 

noniterative Ψ − ω finite element approach was used. For different peristaltic flows, the velocity, 

stress fields and pressure were identified. The outcomes were contrasted with those of finite 

difference analysis and perturbation analysis.  

The problem of the peristaltic movement of a viscous incompressible fluid in a porous media in 

an asymmetric channel was examined by (Elshehawey et al., 2006). The peristaltic flow of a 

Newtonian fluid which was incompressible through a porous medium in an asymmetric channel 

was examined in this work. The flow was studied in a wave frame of reference moving with the 

wave's velocity, assuming a long wavelength and a low Reynolds number. The effects of heat 

transfer and a magnetic field on the peristaltic motion of a viscous incompressible Newtonian fluid 

via porous medium in a vertical tube were examined by (Vasudev et al., 2011), assuming a long 

wavelength and a low Reynolds number. 

Peristaltically flowing Non-Newtonian and Newtonian fluids under various conditions has been 

the subject of numerous studies. (Hayat & Ali, 2008) investigated the peristaltic motion of a Jeffrey 

fluid in a tube with sinusoidal waves traveling down its wall. The fluid was electrically conducting 

when a uniform magnetic field was present. A study by (Nadeem & Akbar, 2009) was carried out 

to explain how heat transfer affects the Herschel-Bulkley fluid's peristaltic movement in a 

nonuniform inclined tube. A Williamson model's peristaltic flow in an asymmetric channel was 

demonstrated by (Nadeem & Akram, 2010), its governing equation for two-dimensional peristaltic 

flow phenomena were built using long wave length and low Reynolds numbers approximations. 

A study on the peristaltic flow of a Carreau fluid in a rectangular duct was carried out by (Nadeem 
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et al., 2012). They examined the flow in the wave frame of reference leaving the fixed frame with 

velocity. The peristaltic wave propagating on a rectangular duct's horizontal side walls under long 

wave length and low Reynolds number approximation was studied. 

1.3 Porous Medium 

In recent years, there has been significant interest among geophysical fluid dynamists in studying 

flow through porous media. A material that has a network of linked pores within it that allow liquid 

to flow through or around them is called a porous medium. Darcy's law by (Scheidegger, 1957), 

which describes the fluid’s passage within porous medium, has been employed in number of 

publications. Numerous spatial characteristics, such as permeability, porosity, hardness, and 

others, are able to differentiate between different types of porous media. However, the two most 

prominent qualities among them are porosity and permeability, (Jawad & Abdulhadi, 2023). 

Porous media can contain an extensive variety of materials, including biological tissues like wood 

and bone, natural substances like rocks, and man-made materials like cement. Numerous scientific 

and engineering fields, such as petroleum engineering, earth sciences, construction engineering, 

petroleum geology, materials science and geophysics use porous media extensively. Friction 

among the walls of the medium and liquid causes the fluid to flow through porous media, 

obstructing the fluid's passage (Jawad & Abdulhadi, 2023). 

A research was carried out by (Sochi, 2010) to cover the single-phase flow of non-Newtonian 

fluids in porous media. In this context, the four primary methods for characterizing the flow 

through porous media in general were analyzed and evaluated including pore-scale network 

modelling, numerical techniques, continuum models, and bundle of tubes models. 

Heat transfer researchers are constantly looking for new methods to enhance heat transfer and 

maximize the performance of energy devices. The simultaneous used of nanofluids and porous 

media for improving heat transfer in thermal systems with multiple structures, flow regimes, and 

boundary conditions is thoroughly reviewed in a research by (Kasaeian et al., 2017). 

(Eldesoky et al., 2020) examined how a compressible Maxwell fluid with MHD was affected by 

both wall characteristics and space porosity. In this study, a fixed magnetic field is provided to an 

axisymmetric tube with a solid wall to evaluate the peristaltic motion of a viscous Maxwell fluid 
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as it flows through a porous media. (Javid et al., 2022) investigated the impact of porosity on the 

peristaltic motion of biological fluid in a complicated curvy channel. This work considered 

biological fluid's steady, laminar rheology from a biomimetic conduit. The non-Newtonian 

parameters and porosity were two embedded parameters that regulate the rheology. The 

MHD peristaltic flow of a non-Newtonian fluid across a tapered asymmetric channel was the focus 

of a study by (Vaidya et al., 2020). A porous medium is used to carry fluids having varying 

transport qualities, such as viscosity and thermal conductivity. 

(Nallapu & Radhakrishnamacharya, 2014) studied Jeffrey fluid flow through porous media in 

tubes with small diameters when a magnetic field was present. The investigation of the peristaltic 

motion of a Jeffrey fluid in a tube through a porous medium with sinusoidal waves traveling along 

its wall under the influence of rotation and a magnetic field is the focus of study by (Mahmoud, 

2011). (Ellahi et al., 2014) studied the effects of MHD on the Jeffrey fluid’s peristaltic flow in a 

rectangular conduit through a porous medium. Under the effect of rotating frame with a chemical 

reaction, another work by (Abd-Alla, Abo-Dahab, Thabet, et al., 2023) offered a basic 

understanding of how mass and heat transfer affect the MHD Jeffrey fluid peristaltic flow 

occupying porous space in a symmetric inclined channel.  

1.4 Magnetohydrodynamics (MHD) 

A number of studies investigated how a magnetic field effects fluid flow. A magnetic field 

produced by electric current has an immense impact on fluid’s flow within a channel. Many 

researchers have been inspired by this aspect to investigate its applications across various scientific 

domains, such as the separation devices, MHD energy generators, MHD medication targeting, 

cancer treatment, materials processing, magnetofluid rotary blood pumping and health sciences. 

Researchers use MHD to investigate the wide range of conditions with applications ranging from 

biomedical applications to space exploration. 

(Abbas & Hayat, 2008) examined the impacts of radiation on the magnetohydrodynamics (MHD) 

flow of an incompressible viscous fluid in a porous media, a non-linear stretched sheet induces the 

flow. An electrically conducting fluid's steady MHD asymmetric flow past a semi-infinite 

stationary plate was examined in a study when radiation was present, also the impact of the 

radiation parameter was examined, and numerical solutions for the temperature field had been 

obtained (Raptis, Perdikis, & Takhar, 2004). (Khan & Rafaqat, 2021) examined the effects of 
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MHD and radiation on compressible Jeffrey fluid with peristalsis. This research examined the 

MHD effect on compressible fluids as well as heat transmission via thermal radiation. It had been 

discussed how surface acoustic waves at the microchannel's edges can induce peristalsis.  

The study by (Al-Khafajy, Lelo, & Shallal, 2021) investigated how change in viscosity effect mass 

transfer in MHD oscillatory flow with in porous medium using Carreau fluid. The fluid in which 

the viscosity changes with different temperature is Carreau fluid. In a study by  (Reddy & Reddy, 

2015), they described the impact of MHD along with the Joule heating effects on nanofluid flowing 

past a tube with peristaltic waves induced. (Reddy, 2016) investigated the heat and mass transfer 

of the fluid flow in a porous channel with the slip effects at the boundaries. This study concluded 

that the velocity of the fluid dropped by enhancing the magnetic paramtere while increaded with 

the increase in the porosity. (Hayat et al., 2018) studied the two-phase non-Newtonian fluid flow 

with MHD induced flowing past an annulus. It was observed that the velocity dropped at the 

midpoint of the channel with the rise in the magnetic parameter while a surge in the velocity was 

noted at the boundaries. To study the impact of MHD on the Newtonian fluid, (Srinivas & 

Kothandapani, 2009) investigated the fluid flow in a flexible channel with porous medium. Using 

MHD, heat transfer analysis and nonlinear slip effects, (Ellahi & Hameed, 2012) conducted a 

numerical analysis of steady non-Newtonian flows.  

(Ali et al., 2023) examined the MHD influence on the peristaltic Casson fluid along with slip 

conditions at the boundaries. In a study conducted by (Hafez, Abd-Alla, & Metwaly, 2023), the 

impact of heat and mass transfer on the hydro-magnetic peristaltic flow of a Casson fluid via an 

asymmetric channel in a rotating inclined system was examined. Recently a study by (Gudekote 

et al., 2024) investigated how magnetohydrodynamics effects the Eyring-Powell fluid’s peristaltic 

motion. This study looked into how wall properties affect peristalsis when a magnetic field was 

present and also considered variable liquid properties like changing viscosity and thermal 

conductivity.  

The MHD flow of a non-Newtonian fluid on a porous plate is the subject of the research by (Hafez, 

Abd-Alla, & Metwaly, 2023). It had been analyzed that an electrically conducting second order 

incompressible fluid surrounded by an infinite non-conducting porous plate and subjected to a 

uniform suction or blowing has two perfect solutions for non-torsional induced unsteady hydro-

magnetic flow. 
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1.5 Jeffrey Fluid 

 Among many non-Newtonian fluid models, Jeffrey fluid model have caught the  attention from 

researchers. (Hayat et al., 2006) emphasized that it provides more accurate description of 

physiological fluids. A more basic linear model of viscoelastic fluid is the Jeffrey fluid. The only 

model that is capable of accurately depict the stress relaxation property is the Jeffrey fluid model. 

It has been determined that the Jeffrey fluid is an extension of standard Newtonian fluid as its 

constitutive equation can be simplified to that of the Newtonian model as a specific case. Unique 

memory time scale, commonly referred to as the relaxation time is a characteristic of Jeffrey fluid 

model which provides a great description of a class of non-Newtonian fluids.  

The Jeffrey fluid holds significant in various research fields and industries where viscoelastic 

material are used such as food rheology, biomedical applications and polymer processing. Fluid 

flow including that of certain polymers and biological fluids, can be described by it.  

Jeffrey fluid have been researched in a variety of circumstances by numerous researchers. The 

effect of MHD on a Jeffrey fluid was included in a detailed investigation by AL-Khafajy (Salih, 

2020), in which peristaltic flow through slanted porous channel in a cylindrical polar coordinate 

system was investigated. (Vajravelu, Sreenadh, & Lakshminarayana, 2011) investigated how  heat 

transmission effects Jeffrey fluid’s peristaltic flow. (Jyothi, Devaki, & Sreenadh, 2013) looked 

into the Jeffrey fluid's pulsatile motion in a circular tube with an inner porous medium lining. 

Research had been done on the peristaltic motion of a Jeffrey fluid model within an asymmetric 

channel in the existence of magnetic field by (Kothandapani & Srinivas, 2008) and (Pandey & 

Tripathi, 2010). (Nallapu & Radhakrishnamacharya, 2015) studied a two-fluid model for the 

passage of Jeffrey fluid across a porous medium in tubes having small diameters.  

In a recent study, impact of heat transfer and magnetic field on Jeffrey fluid’s peristaltic motion 

with in porous medium in an asymmetric channel is investigated by (Abd-Alla, Abo-Dahab, Salah, 

et al., 2023). Peristaltic motion of Jeffrey fluid through a duct with an elliptic cross-section was 

analytically explored by (Nadeem et al., 2023) to figure out the interpretation of heat and mass 

transfer. A study by (Rafiq et al., 2022) was carried out to study the peristaltic motion of Jeffrey 

nanofluid in the existence of magnetic field within tapered asymmetric channel. The main 

objective of this study was to examine the heat transmission property of nanofluid in order to treat 

different diseases including cancer. Another study by (Farooq et al., 2023) was carried out to study 
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the Jeffrey fluid’s peristaltic motion that conducts electricity. The walls within the peristaltic 

propagation channel were inclined and asymmetric. Applying a transverse magnetic field to the 

flow takes into consideration the effects of joule heating and magnetic field. 

1.6 Rotational Effect 

Many studies have been conducted on non-Newtonian fluids peristaltically flowing under the 

effect of rotation. (Nouri & Whitelaw, 1997) examined the Newtonian and non-Newtonian fluid’s 

flow in an eccentric annulus as the inner cylinder rotates. With a more consistent axial flow across 

the annulus and the highest tangential velocities in the tightest gap in both situations, the results 

demonstrated that the rotation had similar impacts on the Newtonian and non-Newtonian fluids. 

The flow and heat transmission of upper-convected Maxwell (UCM) fluid in a rotating frame were 

investigated analytically in study by (Mustafa, Hayat, & Alsaedi, 2017). Consideration was given 

to fluids whose thermal conductivity varies with temperature. The heat transfer process is modelled 

using a non-Fourier heat flux term that incorporates thermal relaxation effects.  

(Ayub, Ahmad, & Ahmad, 2022) discussed MHD rotating flow of a viscous fluid through porous 

media by means of a vertical plate with slip and hall effect. Therefore, the objective of this paper 

was to shed light on slip effect over the rotational flow and free convection of a viscous fluid over 

an extended plate with heat and mass transfer when a constant magnetic field is present with in 

porous medium. Since the fluid in discussion was chemically reacting, the construction of 

governing equations takes into account the impact of both chemical reaction and heat absorption.A 

study by (Mohammed & Hummady, 2023) looked how rotation impacts Sutterby fluid’s peristaltic 

flow in an asymmetric channel exhibiting heat transmission. Another research by (Moeana & Al-

Khafajy, 2024) examined the temperature and rotation-influenced MHD peristaltic flow of 

Sutterby fluid within a porous medium. Effects of fluid viscosity, average tube radius, rotation, 

and magnetic field on fluid movement and temperature have all been examined in this work.  

1.7 Thesis Contribution 

This thesis provide an in-depth examination of the work done by (Moeana & Al-Khafajy, 2024). 

They looked into the impact of rotation on the temperature and MHD peristaltically flowing non-

Newtonian Sutterby fluid through porous wave medium. This work has been extended considering 
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Jeffrey fluid model instead of Sutterby fluid model and investigates how rotation effects the 

temperature and MHD peristaltic flow of a non-Newtonian Jeffrey fluid through porous medium. 

The momentum equation has been solved using perturbation approach while considering long 

wavelength and low Reynolds number. At the end graphs are generated using program 

“Mathematica 13” for different components. 

1.8 Thesis Organization 

Thesis is further divided into following chapters. The clear overview of chapters is as follows: 

Chapter 1 provides in-depth overview of literature and it is thoroughly reviewed in accordance 

with recently released publications. 

Chapter 2 offers the fundamental concepts, principles and dimensionless parameters in order to 

acquire numerical solution and result for the flow problem. 

Chapter 3 reviews the work of (Moeana & Al-Khafajy, 2024) which examines the effects of 

rotation on the temperature and MHD peristaltically flowing non- Newtonian Sutterby fluid 

through porous wave medium. 

Chapter 4 extends the review work by examining how rotation influences peristaltic MHD 

Jeffrey fluid flow through porous media. 

Chapter 5 includes conclusion obtained by the overall study and recommendations for further 

research. 

The list of all references utilized in this research work are provided at the end. 
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CHAPTER 2 

BASIC CONCEPTS AND DEFINITIONS 

2.1 Fluid Mechanics 

The analysis of fluid behavior in motion or at rest is the focus of the physical science field of fluid 

mechanics. Statics and dynamics are the two subfields of the fluid mechanics, which further 

subdivide into compressible and incompressible flow. There are two types of incompressible and 

compressible flow: ideal and real. Real split into turbulent and laminar flow. Following five 

physics principles form the foundation of fluid mechanism, (Granger, 2012). 

• Mass conservation  

• Energy Conservation  

• Linear momentum conservation 

• Angular momentum conservation 

• Second law of thermodynamics  

Fluid mechanics has undeniable scientific significance since the atmosphere and oceans that cover 

this planet are fluids, and the great bulk of the observable mass in the universe resides in a fluid 

state. The practical significance of fluid mechanics is likewise undeniable, since it is the 

fundamental field for transportation systems, power generation and converters, material processing 

and manufacturing, food production, and civil infrastructure. Like any other area of the physical 

sciences, advances in fluid mechanics can result from experiments, computer stimulation, or 

mathematical studies. Analytical methods are frequently effective in solving idealized and 

simplified problems, and these solutions can be extremely valuable for acquiring understanding 

and insight as well as for comparison with experimental and numerical data (Kundu et al., 2024). 

 



11 

 

2.2 Fluids  

Any substance that has the ability to flow is considered fluid. Fluid is defined as any substance 

that constantly deforms when exposed to even a slight shear force. Because of their constant 

volume, liquids cannot fill a big container fully; instead, a free surface isolates the liquid from its 

vapor in a gravitational field. They have strong cohesive forces. However, with a specified volume 

and few cohesive forces, gas always expands and fills the entire container (Kundu et al., 2024). 

2.3 Properties of Fluids 

Fluid can be classified into several categories and show different behaviors based on different 

properties including density, viscosity, temperature, specific heat, thermal conductivity, pressure 

and surface tension etc. 

2.3.1 Dimension and Units 

The temperature [𝜃], length [𝐿], mass [𝑀] and time [𝑇] are key dimensions in fluid mechanics. 

The units are kelvin for temperature, meter for length, second for time and kilogram for mass. In 

fluid mechanics, they are the fundamental units from which all physical quantities can be obtained. 

The table 2.1 lists a few common physical quantities together with their SI units and symbols 

(Kundu et al., 2024). 

Table 2.1 Physical Quantities  
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2.3.2 Density 

Density is the measure of mass per volume. It is ratio of the mass of fluid to the volume that a 

material occupies. 𝜌 symbol is used to denote density. 

Mathematically, 

𝜌 =
𝑚𝑎𝑠𝑠 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑

𝑣𝑜𝑙𝑢𝑚𝑒
. 

SI unit of density is 
𝑘𝑔

𝑚3 (Bansal, 2004). 

2.3.3 Pressure 

When a fluid is at rest, its normal stress is called pressure it is presumed to be positive in 

compressive fluids, (Granger, 2012). It is the force per unit area denoted by P. 

Mathematically, 

𝑃 =  
𝐹𝑜𝑟𝑐𝑒

𝐴𝑟𝑒𝑎
. 

𝑁

𝑚2 is the SI unit of pressure. 

2.3.4 Viscosity 

The property of a fluid which causes resistance to its movement is called viscosity. Kinematic and 

dynamic viscosity are the two types into which viscosity is classified. 

Dynamic viscosity is defined as when one fluid layer resists to flow across another adjacent fluid 

layer. SI unit of dynamic viscosity is 
𝑁𝑠

𝑚2 and µ (mu) is the coefficient of dynamic viscosity.  

Kinematic viscosity is referred to as dynamic viscosity divided by its density. 
𝑚2

𝑠
 is the SI unit of 

kinematic viscosity and it is denoted by 𝜈 (Bansal, 2004). 
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2.3.5 Specific Heat 

The quantity of heat energy needed to rise the temperature of fluid of a unit mass by unit degree 

is known as the specific heat capacity 𝐶𝑝. Temperature and the method of adding heat both effect 

the value of 𝐶𝑝 (Shaughnessy, Katz, & Schaffer, 2005). 

2.3.6 Thermal Conductivity 

A substance's capacity to conduct heat or its ability to allow flow of heat under temperature 

gradients is calculated by its thermal conductivity. It is denoted by the letter 𝑘.  

𝑘 =
𝑄𝐿

𝐴∆𝑇
 , 

here, Q represents heat flow per unit time, ∆𝑇 is change in temperature and and 𝐴 refers to cross 

sectional area. 

2.4 Types of Fluid 

The fluids can be further grouped into ideal, real, ideal plastic, Newtonian and non-Newtonian 

fluids. (Bansal, 2004) 

 
Figure 2.1 Fluid Types  
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2.4.1 Ideal Fluids  

Ideal fluids are also known as perfect fluids, they have zero viscosity and constant density. It is 

referred to an imaginary fluid since every fluid in existence has some viscosity (Bansal, 2004). 

2.4.2 Real Fluids 

A real fluid is defined as one that has viscosity. As a matter of fact, every fluid that exists is a real 

fluid (Bansal, 2004). 

2.4.3 Ideal Plastic Fluids  

When shear stress surpasses the yield stress value and is directly proportional to the rate of shear 

strain then this type of fluid is called as ideal plastic fluids (Bansal, 2004). 

2.4.4 Newtonian Fluids 

A Newtonian fluid is referred to as a fluid that conforms with Newton's law of viscosity. It 

emphasizes that rate of shear stress and shear strain are directly proportional (Bansal, 2004). 

2.4.5 Non-Newtonian Fluids 

A type of fluid where the rate of shear strain and shear stress are not directly proportional. It doesn’t 

conforms with Newton’s law of viscosity (Bansal, 2004). 

2.5 Flow 

In fluid mechanics, flow is defined as the fluid’s motion. It is very important to understand fluid 

flow in order to understand fluids behavior as well as their interaction with surroundings.  

Following are the different kinds of fluid flow. 
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2.5.1 Unsteady Flow and Steady Flow 

In a steady flow, the fluid's density, pressure, and velocity do not change over time, they remain 

constant. However, in unsteady flow the properties like density, pressure and velocity are vary 

with time (Bansal, 2004). 

 2.5.2 Laminar Flow and Turbulent Flow 

A laminar flow is one having all the stream lines parallel and straight, and particles of fluid flow 

along well specified paths or stream lines. So, the particles float easily upon the succeeding layer 

as they move in laminas or layers (Bansal, 2004). Because adjacent layers glide past one another 

smoothly and the fluid often flows without lateral mixing al low velocity, it typically occurs in 

small viscous pipes with low fluid velocity. There are no fluid swirls or eddies in laminar flow. 

The movement of fluid particles in a zig zag pattern is known as turbulence or turbulent flow. The 

eddies that occur as a result of the particles moving in a zig zag pattern are responsible for the 

significant energy loss. Randomness is one of the characteristics of turbulent flow, which makes 

flows seem erratic, unpredictable and chaotic. Nonlinearity, heat and momentum diffusion, and a 

high degree of fluctuating vorticity are also included (Kundu et al., 2024). 

2.5.3 Uniform Flow and Non-Uniform Flow 

The uniform flow is described as a flow type having constant velocity relative to space. 

Conversely, a non-uniform flow is one in which the velocity at any given time fluctuates relative 

to space. It involves change in pressure, density and velocity over space and time (Bansal, 2004). 

2.5.4 Compressible Flow and Incompressible Flow 

A compressible flow occurs when the density of fluid fluctuates from a place to another or stated 

differently, is not constant. When the fluid's density remains constant and temperature and pressure 

variations hardly ever influence the fluid's volume, the flow is said to be incompressible. When 

examining how gases behave at high speeds, it is essential to understand compressible flow, 

whereas liquid and low speed gas flows are usually incompressible (Bansal, 2004). 
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2.5.5 Rotational and Irrotational Flow 

When fluid particles rotate about their own axis while moving along stream lines, this is known as 

rotational flow. It entails the existence of whirling motion, circulatory flow patterns, or vortices. 

The flow is referred to as irrotational if the fluid particles show zero vorticity with 

no rotation about their axes while moving along stream lines (Bansal, 2004). 

2.6 Newton’s Law of Viscosity 

Newton’s law of viscosity emphasizes that the shear stress on elementary layer of fluid and shear 

strain is exactly proportional (Bansal, 2004). 

2.7 Law of Mass Conservation 

The law of mass conservation emphasizes that the total mass in a closed system always remains 

constant. Energy can only be moved from one system to another, it cannot be generated or 

dissipated (Crowell, 2001). 

2.8 Law of Conservation of Energy 

The law of conservation of energy emphasizes that the total energy in a closed system never 

changes over time. Energy can only be moved from one system to another, it cannot be generated 

or dissipated. The sum of the contributions from the system's properties, including motion of 

objects, heating of objects, and the relative positions of objects interacting through forces, yields 

the total energy (Crowell, 2001). 

2.9 Dimensionless Numbers 

2.9.1 Prandtl Number 

In fluid mechanics, Prandtl number (𝑃𝑟) is a parameter which is dimensionless, asserts that 

momentum diffusivity is divided by heat diffusivity (Kundu et al., 2024). 
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𝑃𝑟 =  
𝐾𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 

𝐻𝑒𝑎𝑡 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑖𝑡𝑦
, 

𝑃𝑟 =
 𝜈

𝛼
. 

2.9.2 Reynolds Number 

In fluid mechanics, Reynolds number is calculated by dividing inertial forces by viscous forces, 

that helps to estimate fluid’s flow patterns in several scenarios. It is used to identify the laminar or 

turbulent flow type (Kundu et al., 2024). 

𝑅𝑒 =
𝐼𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝑓𝑜𝑟𝑐𝑒

𝑉𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒
=  

𝜌𝑠𝐿

𝜇
, 

where 𝜇 is the dynamic viscosity, 𝜌 is density, 𝐿 is representing characteristic length and 𝑠 refers 

to flow speed. 

2.9.3 Eckert Number 

A nondimensional parameter, Eckert number (𝐸𝑐) determines the proportion of kinetic energy to 

total heat alteration in the flow of fluid. The Eckert number is widely used in studies involving 

high-speed flows and serves the purpose to determine how kinetic energy impacts heat transfer. 

𝐸𝑐 =  
𝑐2

𝐶𝑝∆𝑇
, 

where 𝐶𝑝 is the constant velocity, 𝑐 refers to flow velocity and ∆𝑇 denotes the difference between 

local and wall temperature. 

2.9.4 Darcy Number 

The relative effect of medium’s permeability over its cross sectional area is known as the Darcy 

number (𝐷𝑎) in fluid dynamics via porous media (Shruti et al., 2023). 
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𝐷𝑎 =
𝐾

𝑑2
, 

where 𝐾 denotes the medium’s permeability and 𝑑 is the characteristic length here. 

2.10 Basic Equations 

2.10.1 Equation of Continuity 

The continuity equation is the one that relies on the principle of conservation of mass. Therefore, 

the amount of fluid per second is constant for a fluid passing through the pipe at all cross sections 

(Bansal, 2004). 

Mathematically, 

𝜕𝜌

𝜕𝑡
+  𝛻. (𝜌𝑽) =  0. 

𝛻. 𝑽 = 𝟎, when density remains constant. 

2.10.2 Momentum Equation 

The law of conservation of momentum, which asserts that the change in momentum of flow per 

unit of time in a given direction equals to the net force applied on a fluid mass, serves as the 

foundation of momentum equation (Bansal, 2004).  

Mathematically, the momentum equation for incompressible fluid is expressed as 

𝜌
𝑑𝑽

𝑑𝑡
 = −𝛻𝒑 + 𝑑𝑖𝑣𝑺, 

here, surface force is represented by 𝑑𝑖𝑣𝑺 and 𝜌
𝑑𝑽

𝑑𝑡
 refers to local rate of change of momentum 

with time. 
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2.10.3 Energy Equation 

The first law of thermodynamics, which is formulation of the law of conservation of energy, is the 

origin of the energy equation. 

Mathematically, the energy equation for incompressible fluid is expressed as 

𝜌𝐶𝑝

𝑑𝑇

𝑑𝑡
= −𝛻. 𝒒 + 𝑇𝑟(𝝉. 𝑳), 

where, total internal energy is represented by the term 𝜌𝐶𝑝
𝑑𝑇

𝑑𝑡
, 𝝉. 𝑳 is viscous dissipation and 

−𝛻. 𝒒 refers to heat flux.  

2.11 Perturbation Method 

Analytical methods used for finding approximate solutions of non-linear equations for which it is 

impossible to obtain exact solution are known as perturbation techniques. With this approach, 

difficult problem is broken down into a feasible one. It formulates the desired solution in terms of 

perturbation series by adding small parameter. Smallness and largeness of a given quantity can be 

determined by the perturbation parameters expressed as ε and δ. The solution to the exactly 

solvable problem is the leading term of perturbation series and remaining terms indicate the 

deviation in solution. 

Perturbation techniques are frequently used across multiple fields including fluid dynamics, 

physics, quantum mechanics and celestial mechanics. The most challenging and developed 

applications of perturbation techniques found in quantum field theory. These techniques are also 

significant in illustrating, estimating and analyzing phenomena caused by non-linear operations in 

vibrating systems.  
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CHAPTER 3 

ANALYZE A TEMPERATURE AND MHD PERISTALTIC 

FLOW OF SUTTERBY FLUID THROUGH A POROUS WAVE 

CHANNEL IN A ROTATING FRAME (Moeana & Al-Khafajy, 

2024) 

3.1 Introduction 

This chapter offers a detailed review of work done by (Moeana & Al-Khafajy, 2024). They 

investigated the effects of rotation on the temperature and MHD peristaltically flowing non- 

Newtonian Sutterby fluid through porous wave medium. Assuming a low Reynolds number and 

long wavelength, perturbation technique was used to solve momentum equation. By using software 

“Mathematica 13”, data was analyzed and graphs were obtained.  

3.2 Mathematical Formulation 

By considering Sutterby fluid peristaltically flowing through a porous wave channel, the equation 

for the flow channel wall in two-dimensional cartesian coordinates is given by 

                                          𝑦∗ =  ± [𝑑∗ −  𝜑∗ sin
2𝜋

𝜔
(𝑋̅ − 𝑠𝑡)],                                        (3.1) 

where the channel’s lower wall is represented by negative sign, and the upper wall by the positive 

sign. The average radius of the channel is denoted by 𝑑*, the amplitude of a peristaltic wave by 𝜑∗, 

the wavelength by 𝜔, the wave propagation speed by 𝑠, and the time by 𝑡. 

 An external magnetic field conducts electricity through the fluid given as 𝐵 = (0, 𝐵0, 0). Around 

the z-axis, the fluid rotates at a constant angular velocity 𝛺. The fluid flows peristaltically in the 

middle of the channel because of the wave motion of the flow channel wall (contraction and 

relaxation). (𝑉̅1, 𝑉̅3) are velocity components and 𝑝̅ represents pressure. 

The extra stress tensor τ of Sutterby fluid is 



21 

 

                                                τ =
μ

2
 [

sinh−1 𝑏𝛾̂

𝑏𝛾̂
]

𝑛

(∇𝑉 + (∇𝑉̅)𝑇),                                                    (3.2) 

where velocity field is denoted by 𝑉̅, ∇𝑉̅ is fluid velocity’s gradient, 𝜇 refers to zero-shear rate 

viscosity and second invariant strain tensor is denoted by 𝛾 which is defined as  

 𝛾 ̂ =  √
1

2
 𝑡𝑟(∇𝑉 +  (∇𝑉̅)𝑇)2.                                                  (3.3)                                                  

When |𝑏𝛾| ≪ 1, then sinh−1(𝑏𝛾) ≈ (𝑏𝛾) −  
(𝑏𝛾̂)3

6
 

Equation (3.2) becomes 

 τ ≈
μ

2
 [1 −

𝑛𝑏2

6
(𝛾)2] (∇𝑉̅ + (∇𝑉)𝑇).                                              (3.4)                                               

Now we know that,, 

  (∇𝑉 + (∇𝑉̅)𝑇) =  [
2

𝜕𝑉̅1 

𝜕𝑋̅

𝜕𝑉̅1 

𝜕𝑌̅
+

𝜕𝑉̅3 

𝜕𝑋̅
𝜕𝑉̅1 

𝜕𝑌̅
+

𝜕𝑉̅3 

𝜕𝑋̅
2

𝜕𝑉̅3 

𝜕𝑌̅

],                                    (3.5)  

 𝛾 =  √2 (
𝜕𝑉̅1 

𝜕𝑋̅
)

2

+  (
𝜕𝑉̅1 

𝜕𝑌̅
+

𝜕𝑉̅3 

𝜕𝑋̅
)

2

+ 2 (
𝜕𝑉̅3 

𝜕𝑌̅
)

2

  .                                (3.6) 

The component of tensor is, 

  𝜏𝑋̅̅𝑌̅ =  
μ

2
 [1 −

𝑛𝑏2

6
(2 (

𝜕𝑉̅1 

𝜕𝑋̅
)

2

+  (
𝜕𝑉̅1 

𝜕𝑌̅
+

𝜕𝑉̅3 

𝜕𝑋̅
)

2

+ 2 (
𝜕𝑉̅3 

𝜕𝑌̅
)

2

)] (
𝜕𝑉̅1 

𝜕𝑌̅
+

𝜕𝑉̅3 

𝜕𝑋̅
).         (3.7)        

The governing equations for the Sutterby fluid model’s flow problem are given as 

Equation of Continuity 

 
𝜕𝑉̅1 

𝜕𝑋̅
+  

𝜕𝑉̅3 

𝜕𝑌̅
 = 0.                                                                  (3.8) 

The x- component of Momentum equation is 
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 𝜌 (
𝜕𝑉̅1 

𝜕𝑡̅
+ 𝑉̅1 

𝜕𝑉̅1 

𝜕𝑋̅
+ 𝑉̅3

 𝜕𝑉̅1 

𝜕𝑌̅
) −  𝛺𝜌𝑉̅1 =    − 

𝜕𝑃̅

𝜕𝑋̅
+

𝜕𝜏̅𝑋̅𝑋̅

𝜕𝑋̅
+  

𝜕𝜏̅𝑋̅𝑌̅

𝜕𝑌̅
− 𝜎𝐵0

2𝑉̅1 −
𝜇

𝐾̂
𝑉̅1.      (3.9) 

The y- component of Momentum equation is 

   𝜌 (
𝜕𝑉̅3 

𝜕𝑡̅
+ 𝑉̅1 

𝜕𝑉̅3 

𝜕𝑋̅
+ 𝑉̅3 

 𝜕𝑉̅3 

𝜕𝑌̅
) −  𝛺𝜌𝑉̅3 = − 

𝜕𝑃̅

𝜕𝑌̅
+

𝜕𝜏̅𝑌̅𝑋̅

𝜕𝑋̅
+  

𝜕𝜏̅𝑌̅𝑌̅

𝜕𝑌̅
−

𝜇

𝐾̂
𝑉̅3 .          (3.10) 

The Energy equation is 

 𝜌𝐶𝑝 (
𝜕𝑇

𝜕𝑡̅
+ 𝑉̅1 

𝜕𝑇

𝜕𝑋̅
+ 𝑉̅3 

 𝜕𝑇

𝜕𝑌̅
) =  𝐻 (

𝜕2𝑇

𝜕𝑋̅2 +
𝜕2𝑇

𝜕𝑌̅2) +
𝜕𝑉̅1 

𝜕𝑋̅
𝜏𝑋̅̅𝑋̅ +  

𝜕𝑉̅1 

𝜕𝑌̅
𝜏𝑋̅̅𝑌̅ +

𝜕𝑉̅3 

𝜕𝑋̅
𝜏𝑌̅̅𝑋̅ + 

𝜕𝑉̅3 

𝜕𝑌̅
𝜏𝑌̅̅𝑌̅ −

𝐺(𝑇 − 𝑇0).                                                                           (3.11)  

where 𝛺 is rotation parameter, 𝐵0 represents applied magnetic field, 𝜎 represents electric 

conductivity, 𝐾̂ refer to permeability, 𝜌 is fluid density, specific heat is represented by 𝐶𝑝, H refer 

to thermal conductivity and heat source is represented by G. 

The relations to convert (𝑋̅, 𝑌̅) to the (𝑥̅, 𝑦̅) are given by, 

𝑣̅1(𝑥̅, 𝑦̅) =  𝑉̅1(𝑋̅ − 𝑠𝑡̅, 𝑌̅, 𝑡̅) − 𝑠,    𝑣̅3(𝑥̅, 𝑦̅) =  𝑉̅3(𝑋̅ − 𝑠𝑡̅, 𝑌̅, 𝑡̅),     𝑝̅(𝑥̅, 𝑦̅) =  𝑃̅(𝑋̅ − 𝑠𝑡̅, 𝑌̅, 𝑡̅).  

(3.12) 

The dimensionless quantities utilized are: 

 𝑥 =  
𝑥̅

𝜔
 ,   𝑦 =  

𝑦̅

𝑑1
 ,   𝑣1 =  

𝑣̅1

𝑠
 ,   𝑣3 =  

𝜔𝑣̅3

𝑠𝑑1
 , 𝑝 =  

𝑑1
2𝑝̅

𝜇𝜔𝑠
 , 𝑅𝑒 =  

𝜌𝑠𝑑1

𝜇
 , 𝜀 =  

𝑛𝑏2𝑠2

2𝑑1
2 ,               

    𝛿 =  
𝑑1

𝜔
 , 𝜑 =  

𝜑̅

𝑑1
 , 𝜏𝑥𝑥 =  

𝜏̅𝑥̅𝑥̅

𝜇𝑠
 ,   𝜏𝑥𝑦 =  

𝜏̅𝑥̅𝑦̅

𝜇𝑠
,   𝜏𝑦𝑦 =  

𝜏̅𝑦̅𝑦̅

𝜇𝑠
, 𝛳 =  

𝑇− 𝑇0

 𝑇1− 𝑇0
,                               

  𝑀𝑒2 =  
𝑑1

2

𝜇
𝜎𝐵0

2 , 𝐻𝑐 =  
𝐺𝑑1

2

𝜇𝐶𝑝
 , 𝐷𝑎 =  

𝐾̂

𝑑1
2 , 𝑃𝑟 =  

𝜇𝑐𝑝

𝐻
 , 𝐸𝑐 =  

𝑠2

𝐶𝑝(𝑇− 𝑇0)
,       (3.13) 

where 𝑃𝑟 is Prandtl number, 𝐸𝑐 is Eckert number, 𝐷𝑎 is Darcy number,  𝑅𝑒 is Reynolds number, 

𝐻𝑐 is heat source parameter, 𝜖 is sutterby fluid parameter, 𝛿 is dimensionless wave number and 

𝑀𝑒 is magnetic parameter.  Dimensionless temperature and amplitude ratio are given by 𝜃 and φ 

respectively.  
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After the non-dimensional analysis, the system obtained is 

 
𝜕𝑣1 

𝜕𝑥
+  

𝜕𝑣3 

𝜕𝑦
 = 0,                                                              (3.14)   

 𝑅𝑒𝛿 (𝑣1 
𝜕𝑣1 

𝜕𝑥
+ 𝑣3 

𝜕𝑣1 

𝜕𝑦
) −

𝜌𝑑1
2

𝜇
𝛺(𝑣1 + 1) = − 

𝜕𝑝

𝜕𝑥
+ 𝛿2 𝜕𝜏𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑥𝑦

𝜕𝑦
− ( 𝑀𝑒2 +  

1

𝐷𝑎
) (𝑣1 + 1), 

(3.15) 

  𝑅𝑒𝛿3 (𝑣1 
𝜕𝑣3 

𝜕𝑥
+ 𝑣3 

𝜕𝑣3 

𝜕𝑦
) − 𝛿2 𝜌𝑑1

2

𝜇
𝛺𝑣3 =    − 

𝜕𝑝

𝜕𝑦
+ 𝛿2 𝜕𝜏𝑦𝑥

𝜕𝑥
+  𝛿2 𝜕𝜏𝑦𝑦

𝜕𝑦
− 𝛿2 1

𝐷𝑎
𝑣3 , (3.16) 

 𝑅𝑒𝛿 (𝑣1 
𝜕𝜃

𝜕𝑥
+ 𝑣3 

 𝜕𝜃

𝜕𝑦
) =  

1

𝑃𝑟
(𝛿2 𝜕2𝜃

𝜕𝑥2 +
𝜕2𝜃

𝜕𝑦2) + 𝐸𝑐 (𝛿2 𝜕𝑣1 

𝜕𝑥
(𝜏𝑥𝑥) + 

𝜕𝑣1 

𝜕𝑦
(𝜏𝑥𝑦) + 𝛿2 𝜕𝑣3 

𝜕𝑥
(𝜏𝑦𝑥) +

 𝛿2 𝜕𝑣3 

𝜕𝑦
(𝜏𝑦𝑦)) − 𝐻𝑐𝜃.                                                       (3.17) 

Component of extra stress tensor is 

 𝜏𝑥𝑦 =  [1 − 𝜖 {2𝛿2 (
𝜕𝑣1 

𝜕𝑥
)

2

+  (
𝜕𝑣1 

𝜕𝑦
+ 𝛿2 𝜕𝑣3 

𝜕𝑥
)

2

+ 2𝛿2 (
𝜕𝑣3 

𝜕𝑦
)

2

}] (
𝜕𝑣1 

𝜕𝑦
+ 𝛿2 𝜕𝑣3 

𝜕𝑥
).    (3.18)  

The associated dimensionless boundary conditions are 

   𝑣1 =  −1   𝑎𝑡     𝑦∗ =  ±𝑤 =  ±(1 − 𝜑∗ sin 2 𝜋𝑥), 

𝜃 =  0     𝑎𝑡    𝑦∗ =  −𝑤 =  −1 + 𝜑∗ sin 2 𝜋𝑥, 

 𝜃 =  1    𝑎𝑡      𝑦∗ =  𝑤 =  1 − 𝜑∗ sin 2 𝜋𝑥. 

By assuming wavelength to be small (𝛿 ≪ 1) and applying lubrication approach we get 

 − 
𝜌𝑑1

2

𝜇
𝛺(𝑣1 + 1) =    − 

𝜕𝑝

𝜕𝑥
+  

𝜕𝜏𝑥𝑦

𝜕𝑦
− ( 𝑀𝑒2 +  

1

𝐷𝑎
) (𝑣1 + 1),               (3.19) 

  
𝜕𝑝

𝜕𝑦
= 0,                                                                  (3.20) 

 
1

𝑃𝑟

𝜕2𝜃

𝜕𝑦2 + 𝐸𝑐 𝜏𝑥𝑦 (
𝜕𝑣1 

𝜕𝑦
) − 𝐻𝑐𝜃 = 0 ,                                          (3.21) 
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 𝜏𝑥𝑦 =  [
𝜕𝑣1 

𝜕𝑦
− 𝜀 (

𝜕𝑣1 

𝜕𝑦
)

3

].                                                   (3.22) 

By substituting equation (3.22) in (3.19), we obtain: 

 − 
𝜌𝑑1

2

𝜇
𝛺(𝑣1 + 1) =  − 

𝜕𝑝

𝜕𝑥
+

𝜕2𝑣1 

𝜕𝑦2 − 3𝜀 (
𝜕𝑣1 

𝜕𝑦
)

2 𝜕2𝑣1 

𝜕𝑦2 − ( 𝑀𝑒2 +  
1

𝐷𝑎
) (𝑣1 + 1),    (3.23) 

In fixed coordinate system, the real time flow rate is determined by 

𝑄̂ = ∫ 𝑉̅1(𝑋̅ − 𝑠𝑡,̅ 𝑌̅, 𝑡)̅𝑑𝑌̅
𝑤

−𝑤

.                                             (3.24) 

Using transformation in equation (3.13) and intergrating it, we obtain 

𝑄̂ = 𝑞̅ + 2𝑠𝑤.                                                          (3.25) 

Where 𝑞̅ =  ∫ 𝑣̅1(𝑥̅, 𝑦̅)𝑑𝑦̅
𝑤

−𝑤
. 

The flow rate over a period 𝑇 =
𝜔

𝑠
 at a fixed position is defined as 

𝑄̅ =
1

𝑇
∫ 𝑄̂𝑑𝑡.̅

𝑇

0

                                                         (3.26) 

By substituting equation (3.25) in equation (3.26), we get 

𝑄̅ =
1

𝑇
∫ (𝑞̅ + 2𝑠𝑤)𝑑𝑡̅ =  𝑞̅ + 2𝑠 (𝑑 −

∅̅

2
)

𝑇

0

.                              (3.27) 

By using equation (3.13) into equation (3.27) 

𝑑𝑠𝑄 = 𝑑𝑠𝑞 + 2𝑠 (𝑑 −
𝑑∅̅

2
).                                         (3.28) 

The non dimensional equation (3.28) is 

𝑄 = 𝑞 + 2 − ∅, 
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then  𝑞 = 𝑄 + ∅ − 2, 

where q refers to non dimensional volume flow rate in the wave frame and takes the following 

form 

𝑑𝑠𝑞 =  ∫ 𝑠𝑣1

𝑤

−𝑤

𝑑 𝑑𝑦, 

𝑞 = ∫ 𝑣1

𝑤

−𝑤

 𝑑𝑦. 

3.3 Solution Methodology 

By solving, equation (3.23) becomes  

 
𝜕2𝑣1 

𝜕𝑦2 − 𝐴𝑣1 =  
𝜕𝑝

𝜕𝑥
+ 3𝜀 (

𝜕𝑣1 

𝜕𝑦
)

2 𝜕2𝑣1 

𝜕𝑦2 + 𝐴,                               (3.29) 

with 

 𝐴 = 𝑀𝑒2 +  
1

𝐷𝑎
−

𝜌𝑑1
2

𝜇
𝛺.                                                              

To find the problem solution, Perturbation technique is used. Using the small parameter  

𝜀 ≪ 1, we open the perturbation series as 

𝑣1 =  𝑣10 + 𝜀𝑣11 + 𝑂(𝜀2), 

𝑝 =  𝑝0 + 𝜀𝑝1 + 𝑂(𝜀2).                                                   (3.30)               

3.3.1 Zeroth Order System (𝜺𝟎) 

 
𝜕2𝑣10 

𝜕𝑦2 − 𝐴𝑣10 =  
𝑑𝑝0

𝑑𝑥
+ 𝐴,                                                  (3.31) 

with corresponding boundary conditions 
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 𝑣10 =  −1,    𝑎𝑡     𝑦∗ =  ±𝑤 =  ±(1 − 𝜑∗ sin 2 𝜋𝑥) 

3.3.2 First Order System (𝜺𝟏) 

 
𝜕2𝑣11

𝜕𝑦2
− 𝐴𝑣11 =

𝑑𝑝1

𝑑𝑥
+ 3 (

𝜕𝑣10 

𝜕𝑦
)

2 𝜕2𝑣10

𝜕𝑦2
,                                      (3.32) 

with corresponding boundary conditions: 

𝑣11 =  0,     𝑎𝑡      𝑦∗ =  ±𝑤 =  ±(1 − 𝜑∗ sin 2 𝜋𝑥). 

3.4 Result and Discussions 

Figures 3.1 − 3.6 showing the effects of rotation parameter 𝛺, porosity parameter 𝐷𝑎, magnetic 

parameter 𝑀𝑒, Sutterby fluid parameter 𝜖, 𝜙 and 𝑄0, 𝑄1. The conduct of different factors on 

pressure gradient are plotted in figures 3.7 − 3.10. Plots illustrating the impacts of different 

parameters on the temperature distribution can be seen in figures 3.11 − 3.14.  

Figure 3.1 shows that the velocity 𝑣1 rises as the rotation parameter 𝛺 increases. Increase in 

rotation parameter enhances the centrifugal force which tends the fluid in the center of the channel 

to surge in velocity. Figure 3.2 shows how the velocity 𝑣1 changes as the porosity parameter value 

changes. The fluid velocity near the channel center increases as 𝐷𝑎 rises because the flow 

resistance falls but near the walls, fluid velocity decreases. The variation of magnetic parameter 

𝑀𝑒 on the velocity component 𝑣1 is shown in Figure 3.3. The fluid flow is opposed by a resistive 

force generated by the applied magnetic field. This resistive effect grows with the magnetic 

parameter, reducing the velocity’s magnitude at the channel’s center. 

Figure 3.4 illustrates how the velocity profile is affected by Sutterby fluid parameter 𝜖. Improved 

shear thinning effects which are correlated with a surge in 𝜖, reduce the resistance of fluid to flow 

under deformation and results in higher velocity at channel’s center. For different values of 

parameter 𝜙, figure 3.5 plots the fluctuation of velocity component 𝑣1 along the y-axis. Rise in 𝜙 

improves momentum diffusion and heat conductivity, which lowers flow resistance due to which 

velocity increases. The rise in velocity is relatively small because heat enhancement and viscosity 

have opposing effects. 



27 

 

Figure 3.6 is showing the variation of different values of the parameter 𝑄0, 𝑄1 on the velocity 

component 𝑣1 along the y-axis. Velocity profile is enhanced, practically near to centerline by an 

increase in 𝑄0, 𝑄1, which indicates increased internal heat generation. As a result, a rise in 𝑄0, 𝑄1 

leads to higher velocity at the channel’s center. 

The fluctuation of the pressure gradient 
𝑑𝑝

𝑑𝑥
 for various values of Darcy number (𝐷𝑎) can be seen 

in Figure 3.7. 𝐷𝑎 represents the porous medium’s Permeability. Resistance to the flow of fluid 

decreases with higher 𝐷𝑎 due to more open pore space, which lowers the value of pressure 

gradient. Figure 3.8 shows how pressure gradient 
𝑑𝑝

𝑑𝑥
 changes for different values of magnetic 

parameter. As 𝑀𝑒 rises, magnetic field employs a Lorentz force that opposes the fluid flow which 

results in higher pressure gradient values. The pressure gradient’s fluctuation for various rotation 

parameter values is shown in figure 3.9. Reduced values of the pressure gradient are the result of 

stronger Coriolis effects caused by a surge in rotation parameter, which also lessens flow 

resistance. Figure 3.10 illustrates how increasing the Sutterby fluid parameter 𝜖 drives the pressure 

gradient to decrease. It indicates that a greater value of 𝜖 reduces flow resistance, which lowers 

the pressure gradient for all values.  

The temperature profile can be seen in figure 3.11 for a range of Sutterby fluid parameter 𝜖 values. 

Fluid shows better shear thinning behavior as 𝜖 rises, leads to decreased thermal boundary layer 

thickness and more effective heat transmission. In turn, the fluid’s temperature drops. The 

temperature variation for various rotation parameter values is depicted in the figure 3.12. As the 

rotation parameter 𝛺 rises, the fluid experiences rotational motion and stronger fluid mixing. 

Which enhances heat dissipation and as a result, the temperature slightly falls. Consequently, 

temperature profile lowers. Figure 3.13 illustrate how the temperature changes for various 

magnetic parameter (𝑀𝑒) values. A Lorentz force is produced when magnetic field is applied, 

which opposes fluid flow and slows fluid motion. As there is lower convective heat transfer due 

to reduced velocity, the temperature distribution is higher. The temperature variations for different 

porosity parameter (𝐷𝑎) values can be seen in figure 3.14. The resistance to flow lowers as 

porosity parameter 𝐷𝑎 rises, improving thermal energy storage and causing the fluid to cool more 

slowly, ultimately leading to higher fluid temperature. 
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Figure 3.1 Velocity variation for the rotation parameter. 

 

 

 

Figure 3.2 Velocity variation for the porosity parameter. 
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Figure 3.3 Velocity variation for the magnetic parameter. 

 

 

 

Figure 3.4 Variation of Sutterby fluid parameter 𝜖 on the velocity. 
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Figure 3.5 Variation of 𝜙 on the velocity. 

 

 

 

Figure 3.6  𝑄0, 𝑄1 variations on the velocity. 
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Figure 3.7 Variation of porosity parameter on pressure gradient. 

 

Figure 3.8 Variation of Magnetic parameter on pressure gradient. 
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Figure 3.9 Variation of rotation parameter on pressure gradient. 

 

 

 

Figure 3.10 Variation of 𝜖 on pressure gradient. 
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Figure 3.11 Temperature variation for the Sutterby fluid parameter 𝜖. 

 

 

 

Figure 3.12 Temperature variation for the 𝛺. 
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Figure 3.13 Temperature variation for the 𝑀𝑒. 

 

 

 

Figure 3.14 Temperature variation for the 𝐷𝑎. 
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CHAPTER 4 

EFFECTS OF POROUS ROTATING FRAME ON PERISTALTIC 

MHD JEFFREY FLUID FLOW 

4.1 Introduction 

Chapter 4 extends the review work by (Moeana & Al-Khafajy, 2024). In this system, we are 

considering Jeffrey fluid model instead of Sutterby fluid model. This study investigates the impact 

of rotation on a non-Newtonian Jeffrey fluid’s temperature and magnetohydrodynamic peristaltic 

flow in a porous medium. The system of equations is non-homogeneous and non-linear partial 

differential stated in the cartesian coordinates. The momentum problem is solved using the 

perturbation method, assuming a very low Reynolds number and long wavelength. The program 

"Mathematica 13" is used to analyse data and generate graphs.  

4.2 Mathematical Formulation 

Considering Jeffrey fluid flow peristaltically in two dimensional cartesian coordinates through 

porous wave channel. 

 

Figure a: The geometry of the problem. 
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 The equation for flow channel wall is given by 

                                          𝑦∗ =  ± [𝑑∗ −  𝜑∗ sin
2𝜋

𝜔
(𝑋̅ − 𝑠𝑡)],                                         (4.1) 

where the upper wall is denoted by positive sign and lower wall of channel is denoted by negative 

sign. 𝑑* refers to average radius of channel, the peristaltic wave’s amplitude is represented by 𝜑∗, 

wavelength is indicated by 𝜔, 𝑠 represents the wave propagation speed and t refers to time. 

(𝑉̅1, 𝑉̅3)  are velocity components and 𝑝̅ represents pressure. 

The components of tensor of Jeffrey fluid model are given by 

𝜏𝑋̅̅𝑋̅ =  
2𝜇

1+𝜆1
(1 + 𝜆2 (

𝜕

𝜕𝑡
+ 𝑉̅1 

𝜕

𝜕𝑋̅
+ 𝑉̅3

𝜕

𝜕𝑌̅
))

𝜕𝑉̅1 

𝜕𝑋̅
,                                   (4.2)                                          

 𝜏𝑋̅̅𝑌̅ =
𝜇

1+𝜆1
(1 + 𝜆2 (

𝜕

𝜕𝑡
+ 𝑉̅1 

𝜕

𝜕𝑋̅
+ 𝑉̅3

𝜕

𝜕𝑌̅
)) (

𝜕𝑉̅1 

𝜕𝑌̅
+

𝜕𝑉̅3 

𝜕𝑋̅
),                           (4.3) 

 𝜏𝑌̅̅𝑌̅ =  
2𝜇

1+𝜆1
(1 + 𝜆2 (

𝜕

𝜕𝑡
+ 𝑉̅1 

𝜕

𝜕𝑋̅
+ 𝑉̅3

𝜕

𝜕𝑌̅
))

𝜕𝑉̅3 

𝜕𝑌̅
.                                   (4.4) 

The governing equations in two dimensions for the Jeffrey fluid model’s flow problem is given 

as: 

The Continuity equation is 

 
𝜕𝑉̅1 

𝜕𝑋̅
+  

𝜕𝑉̅3 

𝜕𝑌̅
 = 0.                                                                (4.5) 

The x- component of Momentum equation is 

 𝜌 (
𝜕𝑉̅1 

𝜕𝑡̅
+ 𝑉̅1 

𝜕𝑉̅1 

𝜕𝑋̅
+ 𝑉̅3

 𝜕𝑉̅1 

𝜕𝑌̅
) −  𝛺𝜌𝑉̅1 =    − 

𝜕𝑃̅

𝜕𝑋̅
+

𝜕𝜏̅𝑋̅𝑋̅

𝜕𝑋̅
+  

𝜕𝜏̅𝑋̅𝑌̅

𝜕𝑌̅
− 𝜎𝐵0

2𝑉̅1 −
𝜇

𝐾̂
𝑉̅1.      (4.6) 

The y- component of Momentum equation is  

   𝜌 (
𝜕𝑉̅3 

𝜕𝑡̅
+ 𝑉̅1 

𝜕𝑉̅3 

𝜕𝑋̅
+ 𝑉̅3 

 𝜕𝑉̅3 

𝜕𝑌̅
) −  𝛺𝜌𝑉̅3 = − 

𝜕𝑃̅

𝜕𝑌̅
+

𝜕𝜏̅𝑌̅𝑋̅

𝜕𝑋̅
+  

𝜕𝜏̅𝑌̅𝑌̅

𝜕𝑌̅
−

𝜇

𝐾̂
𝑉̅3 .            (4.7) 

The Energy equation is 
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 𝜌𝐶𝑝 (
𝜕𝑇

𝜕𝑡̅
+ 𝑉̅1 

𝜕𝑇

𝜕𝑋̅
+ 𝑉̅3

 𝜕𝑇

𝜕𝑌̅
) =  𝐻 (

𝜕2𝑇

𝜕𝑋̅2
+

𝜕2𝑇

𝜕𝑌̅2
) +

𝜕𝑉̅1 

𝜕𝑋̅
𝜏𝑋̅̅𝑋̅ + 

𝜕𝑉̅1 

𝜕𝑌̅
𝜏𝑋̅̅𝑌̅ +

𝜕𝑉̅3 

𝜕𝑋̅
𝜏𝑌̅̅𝑋̅ +  

𝜕𝑉̅3 

𝜕𝑌̅
𝜏𝑌̅̅𝑌̅ −

𝐺(𝑇 − 𝑇0).                                                                           (4.8)  

where 𝛺 represents rotation parameter, 𝐵0 is applied magnetic field, 𝜎 denotes electric 

conductivity, 𝐾̂ is permeability, 𝜌 refers to fluid density, specific heat is represented by 𝐶𝑝, 𝐻 refer 

to thermal conductivity and heat source is represented by 𝐺. 

The relations to convert (𝑋̅, 𝑌̅) to the (𝑥̅, 𝑦̅) are given by 

𝑣̅1(𝑥̅, 𝑦̅) =  𝑉̅1(𝑋̅ − 𝑠𝑡̅, 𝑌̅, 𝑡̅) − 𝑠,    𝑣̅3(𝑥̅, 𝑦̅) =  𝑉̅3(𝑋̅ − 𝑠𝑡̅, 𝑌̅, 𝑡̅),     𝑝̅(𝑥̅, 𝑦̅) =  𝑃̅(𝑋̅ − 𝑠𝑡̅, 𝑌̅, 𝑡̅).  

(4.9)                  

The dimensionless quantities are given as 

𝑥 =  
𝑥̅

𝜔
 ,   𝑦 =  

𝑦̅

𝑑1
 ,   𝑣1 =  

𝑣̅1

𝑠
 ,   𝑣3 =  

𝜔𝑣̅3

𝑠𝑑1
 , 𝑝 =  

𝑑1
2𝑝̅

𝜇𝜔𝑠
 , 𝑅𝑒 =  

𝜌𝑠𝑑1

𝜇
 , 𝜀 =  

𝑛𝑏2𝑠2

2𝑑1
2 , 

𝛿 =  
𝑑1

𝜔
 , 𝜑 =  

𝜑̅

𝑑1
 , 𝜏𝑥𝑥 =  

𝜏̅𝑥̅𝑥̅

𝜇𝑠
 ,   𝜏𝑥𝑦 =  

𝜏̅𝑥̅𝑦̅

𝜇𝑠
,   𝜏𝑦𝑦 =  

𝜏̅𝑦̅𝑦̅

𝜇𝑠
, 𝛳 =  

𝑇− 𝑇0

 𝑇1− 𝑇0
,  𝑀𝑒2 =  

𝑑1
2

𝜇
𝜎𝐵0

2 , 

        𝐻𝑐 =  
𝐺𝑑1

2

𝜇𝑐𝑝
 , 𝐷𝑎 =  

𝐾̂

𝑑1
2 , 𝑃𝑟 =  

𝜇𝑐𝑝

𝐻
 , 𝐸𝑐 =  

𝑠2

𝑐𝑝(𝑇 −  𝑇0)
,    𝜂 = 1 + 𝜑∗ sin 2𝜋𝑥.          (4.10) 

𝑃𝑟 is Prandtl number, 𝐷𝑎 is Darcy number, 𝑅𝑒 is Reynolds number, 𝐻𝑐 is heat source parameter, 

𝐸𝑐 is Eckert number, 𝛿 is dimensionless wave number and 𝑀𝑒 is magnetic parameter. 

Dimensionless temperature and amplitude ratio are given by 𝜃 and φ respectively.  

The non-dimensional system of governing equations is 

 
𝜕𝑣1 

𝜕𝑥
+  

𝜕𝑣3 

𝜕𝑦
 = 0,                                                            (4.11)   

Re𝛿 (𝑣1 
𝜕𝑣1 

𝜕𝑥
+ 𝑣3 

𝜕𝑣1 

𝜕𝑦
) −

𝜌𝑑1
2

𝜇
𝛺(𝑣1 + 1) = − 

𝜕𝑝

𝜕𝑥
+ 𝛿2 𝜕𝜏𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑥𝑦

𝜕𝑦
− ( 𝑀𝑒2 +  

1

𝐷𝑎
) (𝑣1 + 1), 
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(4.12) 

  𝑅𝑒𝛿3 (𝑣1 
𝜕𝑣3 

𝜕𝑥
+ 𝑣3 

𝜕𝑣3 

𝜕𝑦
) − 𝛿2 𝜌𝑑1

2

𝜇
𝛺𝑣3 = − 

𝜕𝑝

𝜕𝑦
+ 𝛿2 𝜕𝜏𝑦𝑥

𝜕𝑥
+  𝛿2 𝜕𝜏𝑦𝑦

𝜕𝑦
− 𝛿2 1

𝐷𝑎
𝑣3 ,     (4.13) 

 𝑅𝑒𝛿 (𝑣1 
𝜕𝜃

𝜕𝑥
+ 𝑣3 

 𝜕𝜃

𝜕𝑦
) =  

1

𝑃𝑟
(𝛿2 𝜕2𝜃

𝜕𝑥2 +
𝜕2𝜃

𝜕𝑦2) + 𝐸𝑐 (𝛿2 𝜕𝑣1 

𝜕𝑥
(𝜏𝑥𝑥) + 

𝜕𝑣1 

𝜕𝑦
(𝜏𝑥𝑦) + 𝛿2 𝜕𝑣3 

𝜕𝑥
(𝜏𝑦𝑥) +

  𝛿2 𝜕𝑣3 

𝜕𝑦
(𝜏𝑦𝑦)) − 𝐻𝑐𝜃.                                                       (4.14) 

The components of extra stress tensor are  

 𝜏𝑥𝑥 =  
2

1+𝜆1
(1 + 𝜆2

𝛿𝑠

𝑑
(𝑣1 

𝜕

𝜕𝑥
+ 𝑣3 

𝜕

𝜕𝑦
))

𝜕

𝜕𝑥
(𝑣1 + 1),                          (4.15) 

 𝜏𝑥𝑦 =  
1

1+𝜆1
(1 + 𝜆2

𝛿𝑠

𝑑
(𝑣1 

𝜕

𝜕𝑥
+ 𝑣3 

𝜕

𝜕𝑦
)) (

𝜕

𝜕𝑦
(𝑣1 + 1) + 𝛿2 𝜕𝑣3 

𝜕𝑥
),              (4.16) 

 𝜏𝑦𝑦 =  
2

1+𝜆1
(1 + 𝜆2

𝛿𝑠

𝑑
(𝑣1 

𝜕

𝜕𝑥
+ 𝑣3 

𝜕

𝜕𝑦
))

𝜕𝑣3 

𝜕𝑦
.                                (4.17) 

By assuming wavelength is too small (𝛿 ≪ 1) and applying lubrication approach we get 

 − 
𝜌𝑑1

2

𝜇
𝛺(𝑣1 + 1) =    − 

𝜕𝑝

𝜕𝑥
+  

𝜕𝜏𝑥𝑦

𝜕𝑦
− ( 𝑀𝑒2 +  

1

𝐷𝑎
) (𝑣1 + 1),               (4.18) 

 − 
𝜕𝑝

𝜕𝑦
= 0,                                                                  (4.19) 

 
1

𝑃𝑟

𝜕2𝜃

𝜕𝑦2 + 𝐸𝑐𝜏𝑥𝑦 (
𝜕𝑣1 

𝜕𝑦
) − 𝐻𝑐𝜃 = 0,                                          (4.20) 

𝜏𝑥𝑦 =  
1

1+𝜆1
(

𝜕

𝜕𝑦
(𝑣1 + 1)).                                              (4.21)  

The corresponding boundary conditions are 

             𝑣1 ± 𝛽
𝜕𝑣1

𝜕𝑦
= 0,                    𝑎𝑡                 𝑦 =  ±𝜂,             
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𝜃 = 0,                         𝑎𝑡                     𝑦 =  −𝜂, 

                                          𝜃 = 1,                        𝑎𝑡                      𝑦 = 𝜂.                                      (4.22) 

4.3 Result and Discussions 

In this section, using NDSolve command in MATHEMATICA programming language, graphs 

were created to illustrate how various parameters influence the temperature, velocity and 

streamlines structures. Figures 4.1 − 4.5 depict the effects of rotation parameter, slip parameter, 

magnetic parameter, porosity parameter and relaxation parameter on velocity distribution. Figures 

4.6 − 4.12 illustrate how the temperature is affected by these parameters along with heat source 

parameter and Eckert number. One of the most important phenomena frequently seen in the 

peristaltic flows, porous media or MHD flow is trapping, by which streamlines form closed loops 

or recirculating zones. The conduct of different factors on streamline structures is depicted in 

figures 4.13 −  4.17. 

The velocity variation for various rotation parameter values can be seen in figure 4.1. Coriolis 

forces are introduced as the rotation parameter rises, altering the fluid’s momentum distribution 

which leads to higher velocity in the channel. Figure 4.2 displays the velocity fluctuation with 

respect to the slip parameter 𝛽. A greater slip parameter results in less friction near the wall. As 𝛽 

rises, fluid flows more quickly throughout, particularly in the center. Figure 4.3 plots velocity 

variation with respect to varying magnetic parameter values. When a magnetic field is applied, the 

Lorentz force is produced which opposes the motion of the fluid. Consequently, velocity falls 

across the domain as the magnetic parameter 𝑀𝑒 rises. 

The velocity variation for various porosity parameter values can be seen in figure 4.4. Increase in 

the porosity parameter 𝐷𝑎 cause the porous medium to become more flow resistive, leading to 

lessen the velocity. The effect of relaxation parameter on the velocity profile can be seen in figure 

4.5. As the relaxation parameter 𝜆1 rises, the fluid’s resistance to deformation enhances, which 

causes resistance in the flow of fluid. Thus, velocity decreases as 𝜆1 rises. 

Figure 4.6 depicts how the temperature changes with varying values of rotation parameter 𝛺. As 

the rotation parameter 𝛺 rises, the rotational effect promotes stronger mixing, pushing heat away 
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and the temperature falls throughout the flow domain. The variation in temperature with regard to 

the slip parameter is plotted in figure 4.7. Friction is reduced at the boundary when slip parameter 

increases and fluid movement improves. Consequently, declining heat diffusion causing decline 

in temperature throughout. The temperature fluctuations relative to the magnetic parameter is 

depicted in figure 4.8. As the magnetic parameter rises, a greater magnetic field is applied, 

suppressing fluid motion due to Lorentz force which increases the thickness of thermal boundary 

layer. The temperature profile shifts upward, indicating an increase in temperature. 

The temperature profile can be seen in figure 4.9 for various values of relaxation parameter 𝜆1 . 

Heat builds up more in the medium with an increased 𝜆1 because the heat flux reacts to temperature 

gradient more slowly which leads to higher temperature profile. Figure 4.10 plots the temperature 

changes for various porosity parameter values. The temperature rises as porosity parameter 𝐷𝑎 

increases because heat transmission improves as fluid moves more freely. The temperature 

distribution is depicted in figure 4.11 with respect to various values of the heat source parameter. 

More thermal energy is produced inside the fluid as 𝐻𝑐 rises resulting in less cooling and more 

heat accumulation. Consequently, the overall temperature rises. The temperature change for 

various Eckert number values can be seen in figure 4.12. Because of improved viscous dissipation, 

the temperature rises as 𝐸𝑐 rises and the curves shift upward showing higher thermal energy. 

The streamline pattern of the fluid flow with the parameter value 𝜆1 = 1 can be seen in figure 4.13 

(a). the appearance of trapped bolus regions is demonstrated by the presence of closed streamlines. 

The two separate boluses shown in the domain imply that the flow permits entrapment, which 

lowers net transport and increases internal mixing. The streamline pattern of fluid flow for 𝜆1 = 

0.8 is shown in figure 4.13 (b). the bolus region’s size has decreased significantly. This drop 

implies that fewer particles have been trapped within the recirculating zones and that the trapping 

strength has reduce. The streamline pattern of fluid flow for 𝜆1 = 1.6 is depicted in figure 4.13 (c).  

the higher bolus size implies a stronger trapping effect. Now that the recirculating boluses are more 

prominent and enlarged, it indicates that a larger volume of fluid is confined inside the vortical 

structure. Figure 4.14 (a) shows the streamline structure of fluid flow for 𝐷𝑎 = 0.01, representing 

extremely low permeability porous medium. Trapping phenomena are weaker and bolus regions 

are substantially smaller and more densely packed suggesting that fewer fluid particles are being 

trapped in recirculation zones. fluid streamline pattern for 𝐷𝑎 = 0.1 can be seen in figure 4.14 (b). 

Reduced trapping is demonstrated by moderate bolus size, compact streamlines, smaller 

recirculation zones. figure 4.14 (c) depicts the fluid streamline pattern for 𝐷𝑎 = 0.2, showing higher 
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permeability. Because to improved fluid mobility, bolus increases as Da rises. The recirculating 

regions have enlarged, suggesting stronger trapping and more intense internal fluid movement. 

Figure 4.15 (a) plots the streamline pattern of the fluid flow for 𝑀𝑒 = 0.01, exhibiting a very weak 

influence of magnetic field. The bolus size is comparatively large and well-defined, indicating 

strong trapping. figure 4.15 (b) illustrates the streamline configuration of fluid flow for 𝑀𝑒 = 1, 

which shows reduction in trapping strength. As 𝑀𝑒 increases to 1, due to suppressed fluid mobility 

bolus size decreases and trapping effect weakens, which lessens the extent of recirculation. In 

figure 4.15 (c), the streamline structure of the fluid flow for 𝑀𝑒 = 2 can be seen, indicating that 

bolus region has contracted and become more compressed. Consequently, trapping effect is 

decreased. Figure 4.16 (a) displays the streamline pattern of the fluid flow when 𝛽 = 0, which 

represents the neutral or initial trapping state. trapping is clearly associated with symmetric bolus 

formation, where fluid particles circulate in confined zones and bolus size is moderate which is a 

baseline scenario. The fluid streamline pattern for 𝛽 = 0.2, indicating improved internal circulation 

can be seen in Figure 4.16 (b). Stronger trapping behaviour with clearly defined closed loops is 

reflected by slightly larger and more prominent bolus regions. Figure 4.16 (c) depicts fluid 

streamlines structure for 𝛽 = 0.4, indicating increased recirculatory motion. Bolus size has 

increased with increasing 𝛽 and trapping becomes more apparent and stronger. The fluid 

streamline distribution for 𝛺 = 0.01 is depicted in figure 4.17 (a), which indicate strong trapping 

phenomena. The symmetric and large bolus structure indicate that the fluid particles are effectively 

circulating within trapped zones without significant distortion. Figure 4.17 (b) illustrates the 

streamline configuration for 𝛺 = 0.1. The bolus structure appears slightly compressed and shifted 

suggesting reduced recirculation, demonstrating the effect of increased rotation. Figure 4.17 (c) 

displays the fluid streamline structure for 𝛺 = 0.2. As 𝛺 increases, bolus formation decreases as a 

consequence of rational forces suppressing symmetric recirculation and weakening trapping 

behaviour. 
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Figure 4.1 Velocity variation for the rotation parameter. 

 

Figure 4.2 Velocity variation for the Slip Parameter. 
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Figure 4.3 Velocity variation for the magnetic parameter. 

 

 

Figure 4.4 Velocity variation for the porosity parameter. 
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Figure 4.5 Velocity variation for the Relaxation parameter. 

 

 

Figure 4.6 Temperature variation for the rotation parameter. 

 



45 

 

 

 

Figure 4.7 Temperature variation for the slip parameter. 

 

 

       Figure 4.8 Temperature variation for the magnetic parameter. 
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Figure 4.9 Temperature variation for the relaxation parameter. 

 

 

Figure 4.10 Temperature variation for the porosity parameter. 
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Figure 4.11 Temperature variation for the heat source parameter. 

 

 

Figure 4.12 Temperature variation for the Eckert number. 
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                      (a)  𝜆1 = 0                                                                          (b)  𝜆1 = 0.8 

 

 

 

 

 

(c)  𝜆1 = 1.6 

 

 

Figure 4.13 depicts the significance of 𝜆1 on the fluid streamline structures 

 



49 

 

 

 

 

                    

                          

                       (a) 𝐷𝑎 = 0.01                                                               (b)  𝐷𝑎 = 0.1 

 

 

 

 

 

(c) 𝐷𝑎 = 0.2 

 

 

Figure 4.14 depicts the significance of 𝐷𝑎 on the fluid streamline structures 
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(a) 𝑀𝑒 = 0.01                                                           (b) 𝑀𝑒 = 1 

 

 

 

 

 

  (c)  𝑀𝑒 = 2 

 

 

Figure 4.15 depicts the significance of 𝑀𝑒 on the streamline structures 
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(a) 𝛽 = 0                                                                      (b)  𝛽 = 0.2 

 

 

 

 

 

(𝑐) 𝛽 = 0.4 

 

 

Figure 4.16 depicts the significance of 𝛽 on the fluid streamline structures 
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                          (a) 𝛺 = 0.01                                                             (b)  𝛺 = 0.1 

 

 

 

 

 

(c)  𝛺 = 0.2 

 

 

Figure 4.17 depicts the significance of 𝛺  on the streamline structures 

 



53 

 

CHAPTER 5 

CONCLUSION AND FUTURE WORK 

5.1 Conclusion  

The purpose of this study is to investigates the impact of rotation on a non-Newtonian Jeffrey 

fluid’s temperature and magnetohydrodynamic peristaltic flow in a porous medium. Considering 

low Reynolds number and long wavelength, the numerical method is employed. Through In-depth 

stimulations and graphical analysis with Mathematica, this study focuses on the impact of various 

parameters on streamline structures, velocity and temperature distribution. The findings indicates 

that these parameters have a significant effect on fluid’s thermal characteristics and flow behavior.  

 

The results demonstrate that the considerable increase in fluid velocity is caused by the rotation 

parameter 𝛺 and slip parameter 𝛽. The porosity parameter 𝐷𝑎, relaxation parameter 𝜆1 and the 

magnetic parameter 𝑀𝑒 resists fluid motion and reduces velocity throughout the domain. 

It is also observed that the temperature profile rises with higher values of the parameters including 

magnetic parameter 𝑀𝑒, relaxation parameter 𝜆1 , porosity parameter 𝐷𝑎, heat source parameter 

𝐻𝑐 and Eckert number 𝐸𝑐. A decline is observed in the temperature with enhancement in the 

rotation and slip parameter. Additionally, internal heat production by 𝐻𝑐 and viscous dissipation 

through 𝐸𝑐 substantially raise fluid temperature.  

Trapping is an important mechanism to be study in the peristaltic flow of the fluids. In this study, 

trapping effect is influenced by relaxation parameter 𝜆1, porosity parameter 𝐷𝑎 and slip parameter 

𝛽, with higher values resulting in stronger trapping behavior and larger bolus. While an increase 

in magnetic parameter 𝑀𝑒 and rotation parameter 𝛺, bolus formation decreases and results in weak 

trapping behavior. 

5.2 Future Work 

In this suggested study, MHD and porosity is incorporated in the symmetric channel along with 

rotation phenomena. The fluid model considered is Jeffrey model that provides an insight to keenly 

investigate the time taken by the fluid to get back to its original position after disturbance. This 
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suggested model has still much to explore.  

• This model can be broadened by incorporating more complex boundary conditions, 

additional factors or using different fluid models instead of Jeffrey fluid.  

• Using nanoparticles to investigate peristaltic nanofluid flow could provide further insights 

of heat transmission.  

• Various numerical methods such as finite difference or finite element may also be 

employed for solving governing equations instead of utilizing perturbation techniques 

which allows the study of higher Reynolds number and shorter wavelength.  

• Furthermore, the practical applicability of model in many applications such as biomedical 

engineering, industrial processes and petroleum engineering would be enhanced by 

experimental validation of the theoretical conclusions. 
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