
An Efficient Approach to Design a New Asymmetric
Key Encryption Algorithm Using Elliptic Curves

By
Baseerat Hayat

NATIONAL UNIVERSITY OF MODERN LANGUAGES
ISLAMABAD
November, 2025

An Efficient Approach to Design a New Asymmetric Key
Encryption Algorithm Using Elliptic Curves

By

Baseerat Hayat
MS-Math, National University of Modern Languages, Islamabad, 2025

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE
In Mathematics

To

FACULTY OF ENGINEERING & COMPUTING

NATIONAL UNIVERSITY OF MODERN LANGUAGES ISLAMABAD

© Baseerat Hayat, 2025

THESIS AND DEFENSE APPROVAL FORM

The undersigned certify that they have read the following thesis, examined the defense,

are satisfied with overall exam performance, and recommend the thesis to the Faculty of

Engineering and Computing for acceptance.

Thesis Title: An Efficient Approach to Design a New Asymmetric Key Encryption Algorithm

Using Elliptic Curves

Submitted By: Baseerat Hayat Registration #:81 MS/MATH/S23

Master of Science in Mathematics

Title of the Degree

Mathematics

Name of Discipline

Dr. Ghulam Murtaza

Name of Research Supervisor Signature of Research Supervisor

Dr. Anum Naseem

Name of HOD (Math) Signature of HOD

Dr. Noman Malik

Name of Dean (FEC) Signature of Dean (FEC)

November, 2025

ii

AUTHOR’S DECLARATION

I Baseerat Hayat

Daughter of Khizar Hayat

Discipline Mathematics

Candidate of Master of Science in Mathematics at the National University of Modern Languages

do hereby declare that the thesis An Efficient Approach to Design a New Asymmetric Key

Encryption Algorithm Using Elliptic Curves submitted by me in partial fulfillment of MS de-

gree, is my original work and has not been submitted or published earlier. I also solemnly declare

that it shall not, in the future, be submitted by me for obtaining any other degree from this or any

other university or institution. I also understand that if evidence of plagiarism is found in my

thesis/dissertation at any stage, even after the award of a degree, the work may be cancelled and

the degree revoked.

Signature of Candidate

Baseerat Hayat

Name of Candidate

November 24, 2025

Date

iii

ABSTRACT

Title: An Efficient Approach to Design a New Asymmetric Key Encryption Algorithm

Using Elliptic Curves

The Diffie-Hellman Key (DHK) protocol is highly effective for asymmetric keys, but if the

parameters are not appropriately selected, it may be vulnerable to brute force attacks. Our

research attempts to enhance the elliptic curve cryptosystem (ECC)-based asymmetric key

scheme. In the improved DHK, the sender and recipient sharing method is utilized, in which they

agree on an elliptic curve, but generator G is kept secret. We have proposed an ECC PRNG key

exchange protocol that is more reliable than the previous one, as G is kept secret. Additionally,

pseudo-random numbers are subjected to the suggested scheme. For the diffusion in this new

public key technique, pseudo-random numbers are utilized. The system enhances its security

against known or selected plaintext attacks by using a pseudo-random number stream generated

from ECC to perform modular encryption. The suggested algorithm’s security and simulation

demonstrate its effectiveness, adaptability to various threats, and potential for practical use.

iv

TABLE OF CONTENTS

AUTHOR’S DECLARATION . ii

ABSTRACT . iii

TABLE OF CONTENTS . iv

LIST OF TABLES . vii

LIST OF FIGURES . x

LIST OF ABBREVIATIONS . xi

LIST OF SYMBOLS . xii

ACKNOWLEDGMENT . xiii

DEDICATION . xiv

1 Introduction and Literature Review 1

1.1 Background of Cryptography . 1

1.2 Elliptic Curve Cryptography . 2

1.2.1 Advantages of Elliptic Curve Cryptography 2

1.2.2 Challenges in Elliptic Curve Cryptography 3

1.3 Comparison between RSA vs ECC . 3

1.4 Diffie-Hellman Key Exchange . 4

1.5 Literature Review . 5

2 Preliminaries 7

2.1 Cryptography . 7

2.2 Types of Cryptography . 7

2.2.1 Symmetric Key Cryptography . 7

2.2.2 Asymmetric Key Cryptography . 7

2.3 Elliptic Curve Basics . 8

2.4 Elliptic Curve Logarithm Problem . 9

2.5 Elliptic Curve Diffie Hellman (ECDH) . 9

v

2.6 Public and Private Keys in ECC . 9

2.7 Concept of Base Point or Generator Point . 9

2.8 Diffie-Hellman Protocol . 10

2.9 Concept of Key Generation in ECC . 10

2.10 Key Generated through the ECDH Protocol 10

2.11 Pseudo-random Number Generation . 10

2.12 S-box (substitution box) . 10

2.13 Cryptosystem . 11

2.14 Cryptographic Analysis . 11

2.14.1 Differential Cryptanalysis . 11

2.14.2 Test of Entropy . 12

2.14.3 Histogram Test . 12

2.14.4 Correlation Test for Image Encryption 12

3 A Novel Image Encryption Scheme Based on Elliptic Curves and Coupled Map

Lattices 14

3.1 Overview . 14

3.2 Pseudo-random Numbers Generation . 14

3.3 Couple Map Lattice . 16

3.4 A Dynamic S-box Generator that Makes Use of a Couple Map Lattices and an

Elliptic Curve . 17

3.4.1 Review of S-box Generator . 18

3.5 Encrypting and Decrypting Images . 20

3.5.1 Process of Decryption . 24

3.6 Analysis of Security . 24

3.6.1 Difference based Cryptoanalysis . 24

3.6.2 Cryptoanalysis Using Statistics . 26

3.6.3 Key Analysis . 30

3.6.4 Computation Analysis . 33

3.7 Discussion . 34

4 An Efficient Approach to Design a New Asymmetric Key Encryption Algorithm

Using Elliptic Curves 36

vi

4.1 Overview . 36

4.2 Elliptic Curve PRNG Generator . 36

4.2.1 Output of ECC-based 3D PRNG Generator 37

4.3 ECDH Algorithm . 38

4.3.1 Results of ECDH Algorithm . 40

4.4 ECC-Based Secure PRNG . 40

4.4.1 Output of ECC-Based Secure PRNG 42

4.4.2 Results of this Algorithm . 47

4.5 Mathematical example of ECC PRNG Encryption Decryption to verify Algorithm 47

4.5.1 Step 1: Calculate the Public Key for Alice: PA = nA ·G = 3 ·G 49

4.5.2 Step 2: Calculate the Public Key for Alice: PB = nB ·G = 7 ·G 49

4.5.3 Step 3: Calculate Shared Secret SB = nB ·PA = 7 · (10,6) 50

4.5.4 Conclusion of ECDH . 50

4.5.5 Compute Shared Secret . 51

4.5.6 Hash the Shared Secret . 53

4.5.7 Generating PRNG Stream . 53

4.5.8 Encryption . 54

4.6 Differential Cryptanalysis . 56

4.6.1 The Image Encryption Calculation Process Using NPCR and UACI . . 57

4.7 Statistical Cryptanalysis . 59

4.7.1 Entropy Test . 59

4.7.2 Histogram Test . 60

4.7.3 Correlation Test . 61

4.8 Discussion . 62

5 Conclusion 68

5.1 Overview . 68

5.2 Summary and Conclusion . 68

5.3 Future Work . 69

References 71

vii

LIST OF TABLES

1.1 Comparison of ECC and RSA Key Sizes at Equivalent Bit-Level Security . . . 3

3.1 Comparison of entropy and period values for various 256×256 plain-images . . 15

3.2 Our method produced an S-box with the following parameters: T = {256,255},

x0 = 0.7500, λ = 3.9575,α = 10, ℓ = 7, z = 0.7500 and ξ = 0.4254 where

a,b, p, and G are the same as those provided as above section 19

3.3 NL evaluation of 10,000 S-boxes. 20

3.4 comparative analysis of S-box based on existing schemes 21

3.5 NPCR and UACI values for each image . 25

3.6 Image Entropy Analysis . 27

3.7 Lena Grayscale Image comparison . 28

3.8 Correlation Analysis for Original and Encrypted Images 32

3.9 Analysis of Security . 33

3.10 Analysis of Lena images running on the same OS in terms of run time in seconds 34

3.11 Analysis of the Lena256 × 256 image’s run time across various operating systems

using related schemes. 34

4.1 NPCR and UACI values for each image . 59

4.2 Image Entropy Analysis . 60

4.3 Correlation Analysis for Original and Encrypted Images 62

4.4 Lena Grayscale Image comparison . 63

viii

LIST OF FIGURES

1.1 NIST’s suggested security bit level . 4

1.2 Diffie-Hellmen Protocol . 5

2.1 Fig (a) represents Point doubling, Fig (b) represents point addition, Fig (c) repre-

sents point at infinity when both y coordinates are zero, and Fig (d) represents

point at infinity when the coordinates are exact mirror images of one another . . 8

2.2 Encryption and Decryption Process . 11

2.3 On left figure showing cipher text and right side showing uniform distribution

proves strong Encryption . 13

3.1 using the variables (p′ = 1048847,b′ = 1,my = p,mx = 256) pseudo random

number generated from the sequence αM,p′,b′,mx,my are evaluated for four grayscale

images of size 256×256 Peppers, Mandrill, Lena, and Cameraman Subfigures

(a)–(d) represent the source images;(e)–(h) display histograms of the generated

PRNs;(i)–(l) visualize the PRNs themselves for each corresponding image. . . 15

3.2 For images where every pixel is set to 255 (all-white) or 0 (all-black) for param-

eters of PRNs analysis (b′ = 1,my = p,mx = 256, p′ = 1048847) (a) All-white

plain-image (b)PRN histogram produced from the image (a) ;(c)PRN’s produced

from the image in (a) ;(d) All-black original-image;(e)PRN histogram produced

from the image in (d); (f) pseudo random numbers produced using the image in (d) 16

3.3 Flow chart of the generator . 18

3.4 Represents the encryption algorithm’s flowchart. 23

3.5 An illustration of our encryption method is displayed for a 4 by 4 image. 23

3.6 Figures (a) and (b) show the NPCR and UACI metrics, which were calculated

over 50 runs for various images . 26

ix

3.7 (a)NPCR evaluation across images of varying sizes (b) UACI evaluation across

images of varying sizes . 26

3.8 The entropy distribution of images with varying sizes 27

3.9 (a) Lena with (mx,my)= (19912,40885); (b) Mandrill with (mx,my)= (39600,54056);

(c) Peppers with (my,mx) = (49494,30600); (d) A cameraman with (mx,my) =

(36084,49952) while (e–h) Images of (a)–(d) that have been ciphered, where P

is the image that is all white, (i)–(l) The ciphered images (a)–(d) whereas P is

the image of lena; ciphered images (m)–(p), where P is the image of cameraman 29

3.10 Figure 3.8 (a-d) displays the plain image histogram, while Figure 3.8 (e-h)

displays the ciphertext histogram. 30

3.11 using the suggested encryption method, the horizontal vertical and diagonal

relationship between two adjacent pixels were examined for images with sizes

of 256 × 256, 512 × 512, and 1024 × 1024 . 31

3.12 The pixel adjacency patterns of Lena256×256 are depicted in images (a)-(c) and

its encrypted version (d)-(f) as shown in Fig. 3.8(b). 31

3.13 (a) All-white image (mx,my) = (24806,33807); (b) encrypted-image; (c) His-

tograms; (d)A black pixel located at (20022,46968); (e) encrypted-image; (f)

Histogram. 33

4.1 ECC-based 3D PRNG Generator . 38

4.2 Visualization of ECC-Based Secure PRNG . 43

4.3 Plain images are shown in (a) and (b); ciphered images are shown in (c) and (d);

and decrypted images are shown in (e), (f) . 48

4.4 The distribution of NPCR and UACI of different size images 59

4.5 In (a)-(c) figure shows the Histogram of the Plain images and (d)-(f) shows the

Histograms of the cipher texts, respectively. 60

4.6 Adjacent pixel wise distribution analysis for Lena256×256 of original Horizon-

tal, vertical and diagonal image; Adjacent pixel wise distribution analysis for

Lena256×256 of Encrypted(cipher image) Horizontal, vertical and diagonal image; 64

4.7 Adjacent pixel wise distribution analysis for cameraman256×256 of original Hori-

zontal, vertical and diagonal image; Adjacent pixel wise distribution analysis for

cameraman256×256 of Encrypted image Diagonal, Horizontal and vertical image; 65

x

4.8 Adjacent pixel wise distribution analysis for Mandrill256×256 of original Hori-

zontal, vertical and diagonal image; Adjacent pixel wise distribution analysis for

Mandrill256×256 of Encrypted(cipher image) Horizontal, vertical and diagonal

image; . 66

xi

LIST OF ABBREVIATIONS

ECC

RSA

DH

AES

ECDLP

DSA

NIST

ECDH

S-box

PRNG

3DES

DSS

NPCR

UACI

CML

NL

AC

LAP

DAP

SAC

BIC

SHA-256

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Elliptic Curve Cryptography

Rivest-Shamir-Adleman

Diffie-Hellman

Advanced Encryption Standard

Elliptic Curve Discrete Logarithm Problem

Digital Signature Algorithm

National Institute of Standards and Technology

Elliptic Curve Diffie-Hellman

Substitution box

Pseudo-random Number Generator

Triple Data Encryption Standard

Digital Signature Standard

Number of Pixels Change Rate

Unified Averaged Changed Intensity

Couple map lattices

Nonlinearity

Autocorrelation

Linear Approximation Probability

Differential Approximation Probability

Strict Avalanche Criterion

Bit Independence Criterion

Secure Hash Algorithm 256-bit

xii

LIST OF SYMBOLS

E - Elliptic curve

Fp - Finite field of prime order p

a,b - Curve parameters (coefficients)

U,V,W - Points on the elliptic curve

U +V - Elliptic curve point addition

G - Base point (generator)

n - Order of the base point G

(G,n,a,b, p)- Domain parameters for ECC over Fp

xiii

ACKNOWLEDGMENT

First of all, I wish to express my gratitude and deep appreciation to Almighty Allah, who

made this study possible and successful. This study would not be accomplished unless the

honest espousal was extended from several sources for which I would like to express my sincere

thankfulness and gratitude. Yet, there were significant contributors to my attained success and I

cannot forget their input, especially my research supervisor, Dr. Ghulam Murtaza, who did not

leave any stone unturned to guide me during my research journey. I really appreciate our HOD,

Dr. Anum Naseem providing us with a research environment and kind support. I really want to

say thanks to our respected teachers, Dr. Muhammad Rizwan, Dr. Sadia Riaz, Dr. Hadia Tariq,

Dr. Shabeela Malik, and other teachers, for their guidance and support.

I shall also acknowledge the extended assistance from the administration of the Department of

Mathematics, who supported me all through my research experience and simplified the chal-

lenges I faced. For all whom I did not mention but shall not neglect their significant contribution,

thanks for everything.

xiv

DEDICATION

This thesis work is dedicated to my parents, family, and my teachers throughout my education

career who have not only loved me unconditionally but whose good examples have taught me to

work hard for the things that I aspire to achieve.

1

CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

In this chapter we discuss types of cryptography, the use of elliptic curves, and their advan-

tages and disadvantages in cryptography. Further, we discuss the Diffie-Hellman key exchange

and its computation over elliptic curves.

1.1 Background of Cryptography
For a long time, cryptography has been a widely used method of encoding messages. From

ancient ciphers to modern cryptographic algorithms, the fundamental goal remains the same

that is to use it for the confidentiality of data [1]. In the 1970’s the most important advancement

come to light was public-key cryptography which added the idea of public and private keys to the

process of encryption. RSA and Diffie-Hellman behind them use a concept that their solutions

take too long, for example, the factoring of integers or discrete logarithms. Cryptography has

been known to play a crucial role in today’s society and virtually in every electronic application

and service such as secure email, online cash transaction, block chain technology and even in

smart IoT devices [2].

Cryptographic techniques can be largely separated into two groups. These two are symmetric and

asymmetric key encryption, commonly use in the today’s world. Symmetric key cryptography

uses a single secret key for both encryption and decryption in the advanced encryption standard

AES. Although they are effective, symmetric key systems would prove problematic in key

distribution and management. Two mathematically related keys are used in asymmetric key

encryption, one key for sending the message and the other key for receiving the message. This is

used for key exchange and can therefore be used in today’s communication systems [3].

2

1.2 Elliptic Curve Cryptography
Since beginning, two main cryptosystems such as RSA and El-Gamal have appeared to be

resistant to all attacks. Because of this, these two public key cryptosystems are currently the most

widely used and regarded. One can make advantage of both digital signatures and encryption/de-

cryption cryptosystems. It should be safe to utilize implementations of such cryptosystems since

they are covered by all significant security standards. Elliptic curve cryptography (ECC) were

created by Miller and Koblitz in 1985 and have gained popularity due to their efficiency and

security. They are particularly relevant in today’s fast-paced information technology, where

mobile phones and handhelds require secure conversations. ECC’s ideal qualities stem from

the absence of sub exponential techniques in the elliptic curve discrete logarithmic problem,

allowing for shorter keys for higher security levels [4].

Many contemporary cryptographic systems favor ECC over more conventional techniques like

RSA or DSA because it provides robust security with significantly lower key sizes. ECC also

allows for flexibility in secure system design by supporting several cryptographic protocols,

including elliptic curve Diffie-Hellman, which is used for secure key exchange, and elliptic

curve based DSA, which is used for digital signatures. These benefits, along with the support of

prominent standards bodies like NIST, have made ECC the go-to option for putting safe, effective

cryptography systems into place.

1.2.1 Advantages of Elliptic Curve Cryptography
1. Smaller Key Sizes: ECC is capable of providing an equivalent amount of security for

different key sizes compared to RSA. For instance, an ECC key of 256 bits has the same

strength as RSA key with 3072 bits [5]. Thus, reduction in key size results in improved

computational cost and less demands on storage area.

2. Efficiency: Some ECC functions like scalar multiplication are less computationally

expensive than RSA’s modular exponentiation and therefore make ECC ideal for use in

constrained devices.

3. Security: The ECDLP is more complex than the mathematical computations which are

applied in RSA and Diffie-Hellman and is very resistant to cryptographic attacks.

4. Scalability: ECC has flexibility between devices and at the same time is applicable for

use in the IoT devices for communication securely and also in blockchain systems.

3

1.2.2 Challenges in Elliptic Curve Cryptography
1. Computational Cost: Though ECC is faster than RSA, the operations on elliptic curves

such as scalar point multiplication can put much load on devices with low computational

capabilities.

2. Implementation Vulnerabilities: Unfortunately, if ECC is implemented in a wrong way,

there is a threat of side-channel attacks, when an attacker engages the information leakage

during the cryptographic operations implementation.

3. Quantum Threat: Some studies suggest that Goppal’s attacks can be overcome using

Shor’s algorithm that breaks ECDLP which it an as liability of using ECC. Nevertheless,

ECC remains safe from classical computing attack kinds.

4. Key Mapping: Converting plaintext to some points on the elliptic curve is quite demand-

ing, and correct functional mapping techniques must be developed.

1.3 Comparison between RSA vs ECC
1. Foundation of Mathematics: RSA is based on the difficulty of factoring large integers,

whereas ECC requires the complexity of the ECDLP.

2. Security and Key sizes: ECC offers security that is comparable to RSA, as seen in Table

1.1 and Figure 1.1, but with much reduced key sizes.

Effective scalar multiplication computation is essential to an ECC’s performance. The

Table 1.1: Comparison of ECC and RSA Key Sizes at Equivalent Bit-Level Security

Bit-Level Security Key Size (in bits)

ECC RSA

80 160 1024

112 224 2048

128 256 3072

192 384 7680

256 512 15360

security level of a 160-bit ECC key is equal to that of a 1024-bit RSA/DSA key. noted that

2048 bits were needed for really important keys and 1024 bits were needed for corporate

4

use in order to implement RSA security. Therefore, it is clear that ECC is superior to RSA

since it can offer the same level of security with a shorter key length. The key sizes used

in RSA and ECC are displayed in Table 1.1. A secure cryptosystem of ECC requires a

key size of at least 160 bits.

Figure 1.1: NIST’s suggested security bit level

This suggests that for the same level of security, ECC can use more parameters than RSA.

For example, RSA requires a key size of 2048 bits to achieve a security level of 112 bits,

as shown in Table 1.1 and Figure 1.1, while ECC requires a key size of 224 bits [6].

3. Competence: To generate keys, encrypt data, and decrypt it, ECC is far quicker than

RSA, particularly on low-power devices like smart cards and smartphones. Because RSA

heavily relies on modular exponentiation, it becomes slower as key sizes increase.

1.4 Diffie-Hellman Key Exchange
Two unknown parties can collaborate to generate a secure channel using a shared secret key

by employing the Diffie-Hellman key exchange technique. The multiplicative group of integers

modulo p, where p is a prime number and g is a primitive root modulo p, is used in the simplest

and original implementation of the protocol. Diffie-Hellman key is illustrated in Figure 1.2.

5

Figure 1.2: Diffie-Hellmen Protocol

1.5 Literature Review
Since ancient times, the technique of secret writing, or cryptography, has been used to conceal

information or maintain the security of messages. [6] contrasted RSA with ECC. When it comes

to key size utilization, ECC is lower while RSA is larger. Consequently, for the same security

level, RSA takes longer to upload, encrypt, and decrypt than ECC. A number of encryption

models are put out to secure the transport of crucial information by rendering it unintelligible.

These models are based on chaotic maps, algebraic systems, and EC’s. Modern cryptography

is the design, development, and analysis of various mathematical techniques to ensure secure

communication in the presence of opponent [7]. Asymmetric keys: RSA, ECC, and were used

by H T Loriya et al. [8] and compared the sizes of their keys. In devices with limited resources,

Bafandehkar et al. The concept of EC’s in cryptography was initially proposed by Miller [9].

ECC is more efficient and provides better security with a smaller key size than traditional

cryptosystems like the RSA protocol. Koblitz introduced the idea of the discrete logarithm

problem, which is employed in Diffie-Hellman key cryptography, to the EC group [10]. Neal et

al. [10] developed the concept of discrete logarithm problem for the generation of extremely

secure and repid security systems. ECC deals with the construction of secure cryptosystems

that ensure the protection of sensitive information. Numerous data security crypto-systems have

been designed based on various mathematical structures and EC. In 1949, Shannon [11] made

a significant contribution by establishing that to achieve high security in a cryptosystems, It

must be able to cause data to become confused and diffuse up to a certain point. Neal [12]

6

designed an EC based cryptosystem over a finite field. Amara and Siad in [13] compared ECC

with RSA. Furthermore, Hayat and Azam [14] presented a new method for image encryption

that makes use of ECs. With a limit on the number of points on an elliptic curve, a hybrid image

encryption method [14] based on a dynamic S-box and pseudo-random numbers (PRN) over

an ordered elliptic curve has already been presented. Author et al. [15] presented the original

Diffie-Hellman key exchange protocol, which is not unique to elliptic curves. The discrete log

problem is transferred into the elliptic curve group in ECDH, the elliptic curve comparable of this

basic concept. The ECDH key exchange technique uses ECC to securely transfer cryptographic

keys between two parties. The public and private keys are generated by ECDH using elliptic

curve mathematics. While the public key is made available to everyone, the private key is

kept confidential. For the exchange of keys, the two sides share public keys and calculate a

shared secret using their private keys. The shared secret can then be used to encrypt and decode

messages between the two parties [16]. In [17], the author addresses elliptic curve operations and

optimizations that are useful for ECDH and related protocols, although it is primarily concerned

with pairs. The elliptic curve is used by many academics to create cipher images for image

encryption systems. Each original image pixel [18] is transformed into the elliptic curve points

(x,y) in a new image encryption process. A cipher image pixel is created using these elliptic

curve points. When compared to other systems, the system offers tiny block size, great speed,

and high level of safety. However, there aren’t many curve points produced. If an attacker is able

to predict the elliptic curve’s basic parameters, they can also obtain these points. Therefore, great

security may not be provided by mapping the image pixel process to the curve points. In order to

improve the speed of data encryption and decryption and address the issue of key distribution, a

combination of enhanced AES and ECC [19] encryption algorithms was previously developed. A

new mapping scheme [20] has been developed for text messages, separating them into characters,

transforming them into hexadecimal values, and calculating elliptic curve points. These points

are appended to the sender’s private key for encryption. However, this method’s implementation

is limited to text and should be used for audio and video data testing.

7

CHAPTER 2

PRELIMINARIES

This chapter provides a theoretical background on cryptographic methods, including elliptic

curve and ECC-based pseudo-random number generators. Understanding these preliminary steps

is crucial for designing, implementing, and assessing the proposed ECC-based image encryption

system.

2.1 Cryptography
The art and study of secure communication methods in the presence of attackers is known as

cryptography. To guarantee confidentiality, integrity, and authenticity, it involves converting data

into a format that is unreadable (ciphertext), which only authorized parties can access. This is

accomplished by encoding and decoding data using mathematical methods and keys.

2.2 Types of Cryptography
Cryptography can be divided into two main categories based on how encryption techniques

are classified: symmetric and asymmetric key-based systems.

2.2.1 Symmetric Key Cryptography
Symmetric key cryptography, also known as secret key cryptography, involves data encryption

and decryption using the same secret key, which must be kept secret by both sender and recipient.

Examples include AES, DES, and 3DES.

2.2.2 Asymmetric Key Cryptography
Asymmetric cryptography, also known as public-key cryptography, involves two mathemati-

cally linked keys, a public key and a private key. The private key is confidential, while the public

key can be shared freely. This approach ensures safe communication through protocols like

8

ElGamal, ECC, RSA, and DSS.

2.3 Elliptic Curve Basics
For a prime p, an elliptic curve over a field Fp is described as

E(a,b,p) = {(x,y) ∈ Fp×Fp | y2 ≡ x3 +ax+b (mod p)}∪{ O} (2.1)

It is assumed that 4a3 + 27b2 ̸≡ 0 (mod p) and that a,b ∈ Fp. O is a point at infinity. Let

U(x1,y1),V (x2,y2) ∈ E(p,a,b), −U is calculated as

−U =

 (x, p− y) i f U ̸= O

O otherwise
(2.2)

If U(x1,y1),V (x2,y2) ∈ E(p,a,b) then W =U +V is provided as follows:

U +V =



U if V = O

O if U =−V

V if U = O

W (x3,y3) if Otherwise

(2.3)

In this case (x3,y3) = (m2− x1− x2,m(x1− x3)− y1)(mod p) where

m =


y2−y1
x2−x1

if U ̸=V
3x2

1+a
2y1

if U =V and y1 ̸= 0
(2.4)

Additionally, a graphical representation of the addition, point doubling, point at infinity when

both y coordinates are zero and point at infinity when the coordinates are exact mirror images of

one another is provided in Figure 2.1.

Figure 2.1: Fig (a) represents Point doubling, Fig (b) represents point addition, Fig (c) represents

point at infinity when both y coordinates are zero, and Fig (d) represents point at infinity when

the coordinates are exact mirror images of one another

9

Since U ∈ E(a,b,p) and k ∈ Fp, the elliptic curve scalar operation is

k U =

 O i f k = 0,

U +(k−1)U otherwise.
(2.5)

The most basic scalar multiplication procedure is the double-and-add algorithm. The total

number of points for a E(a,b,p) is represented by the notation #E(a,b,p). Equation (2.6) uses

Hasse’s inequality to ensure that the points boundaries on the E(a,b,p),∣∣#E(Fp)− (p+1)
∣∣≤ 2

√
p (2.6)

Eq. (2.7) defines a Mordell-Elliptic Curve (MEC).

E(p,a,b) = {(x,y) ∈ F2
p | y2 ≡ x3 +b (mod p) ,b ∈ (Fp\{0})∪{O}[21] (2.7)

2.4 Elliptic Curve Logarithm Problem
In cryptography, the elliptic curve logarithm problem (ECDLP) is a mathematical problem.

The task is to discover the integer n such that V = nU given an elliptic curve defined over a finite

field, a point U on the curve, and another point V that is a multiple of U . It basically asks for the

"discrete logarithm" of V with regard to the elliptic curve’s base point U [22].

2.5 Elliptic Curve Diffie Hellman (ECDH)
An ECC-based key exchange protocol that enables two parties to safely create a shared secret

over an unprotected channel [23].

2.6 Public and Private Keys in ECC
Private key: An integer chosen at random acts like the private key.

Generation: Firstly we choose elliptic curve and a base point G of a prime order n then we

generate a random integer a such that 1≤ a≤ n−1. we use a as a private key.

Public key: A point on the elliptic curve that is obtained from the private key is the public key.

Generation: The private key a is multiplied by the curve’s base point (generator point) G to

determine the public key P: P = a×G (where × stands for elliptic curve point multiplication)

[24].

2.7 Concept of Base Point or Generator Point
In ECC algorithms, a predetermined point G on the elliptic curve is used to generate keys.

Example: The base point G in the secp256k1 curve, which is used in Bitcoin, is a particular

point that is identified by its x and y coordinates [25].

10

2.8 Diffie-Hellman Protocol
A cryptographic technique called the Diffie-Hellman protocol enables two people to create a

shared secret key via an unsecured channel, which can then be utilized for secure communication.

It prevents intercepting by facilitating key exchange without requiring the transmission of the

actual key [26].

2.9 Concept of Key Generation in ECC
In elliptic curve cryptography, key generation is the process of creating a private key and

corresponding public key. First, an elliptic curve over a finite field and a base point G with a big

prime order are selected. The private key is a randomly chosen big number a, where 1 < a < n,

and must be kept secret. The elliptic curve point P = a ·G is then obtained by multiplying the

base point by the private key to generate the public key. Because of the difficulty of the ECDLP,

it is computationally impossible to determine the private key from the public key, making ECC a

secure and efficient cryptographic system [27].

2.10 Key Generated through the ECDH Protocol
Consider the public keys for the elliptic curve y2 = x3+ax+b over finite field Fp, where G is

a generator, Pa = naG and Pb = nbG, which are generated by the sender’s naG and the recipient’s

nbG, respectively. The shared secret key is generated as nbPa by the sender and naPb by the

recipient [28]. Consequently,

nanbG = naPb = nbPa = nbnaG (2.8)

2.11 Pseudo-random Number Generation
An algorithm that generates a random, deterministic series of numbers.

Use of ECC in PRNG

1. For strong security with small key sizes

2. For robust algebraic structure

3. For unpredictability and high entropy

4. Ideal for environments with limited resources [29]

2.12 S-box (substitution box)
A fundamental part of block ciphers, an S-box (Substitution box) substitutes input bits with

output bits in a nonlinear manner to create confusion and prevent cryptanalysis. It functions

11

Figure 2.2: Encryption and Decryption Process

as a lookup table, changing data in a way that is hard to undo without the secret key. It can be

dynamically generated (like in the AES) or fixed (like in the DES).

2.13 Cryptosystem
A tool for converting plain text to cipher text and vice versa is called cryptosystem. A

cryptosystem is able to convert plain text into cipher text and vice versa. Depending on the keys

used for encryption and decryption, either it is a symmetric or asymmetric key. The encryption

and decryption process is illustrated in Figure 2.2.

Encryption is the process of transforming a plain text into a form that is unreadable whereas

decryption is the process of transforming an unreadable message (cipher text) into a clear

and readable format. The encryption and decryption procedures are managed by one or more

cryptographic keys. The parameters that determine a particular involuntary transformation in

this system are called a set of keys. One or more cryptographic keys govern the encryption and

decryption process. In general, the following mathematical explanation can be used to describe

the encryption and decryption process:

EK(S) =C (Encryption Process)

DK(C) = S (Decryption Process)

Using the key K, we declare the message S to be message C. Then, in the decryption process, we

use the key K to execute the encrypted message C and obtain the original message, S [30].

2.14 Cryptographic Analysis

2.14.1 Differential Cryptanalysis
Differential cryptanalysis is a technique used to decipher and analyze cryptographic algo-

rithms, particularly block ciphers. It examines how variations in input pairs impact output pairs,

12

helping attackers determine secret keys. If a small alteration in plain images results in different

cipher images, encryption algorithms are resistant to differential attacks. Methods like NPCR

and UACI are used to assess algorithmic sensitivity against differential attacks.

The ciphered images CI and C′I of IN×M and I′N×M plain-images are produced by altering a single

pixel in UACI-NPCR analysis. Equations (2.9) and (2.10) are used to calculate the NPCR and

UACI.

NPCR =
1

N×M ∑
i, j

D(i, j)×100 (2.9)

UACI = ∑
i, j

|IC(i, j)− I′C(i, j)|
N×M×255

×100 (2.10)

where if CI(i, j)−C′I(i, j) ̸= 0 and D(i, j) = 0 otherwise, then D(i, j) = 1 [31].

2.14.2 Test of Entropy
The most crucial metric for measuring the degree of unpredictability in a dataset of images is

entropy. It displays the distribution of pixel intensity in an image. If I were a grayscale image,

the entropy S equation would be

S =−
255

∑
i=0

P(xi) log2(P(xi)) (2.11)

High entropy indicates high randomness in image data [31].

2.14.3 Histogram Test
In cryptography, a histogram test is a statistical method for determining whether encrypted

data is random or not. It determines if the distribution of byte or symbol frequencies in cipher

text looks uniform, which is an ideal quality of secure encryption. A histogram test graphs the

frequency of each symbol or byte in cipher text. If a histogram appears too "structured" or "non-

random," it can indicate patterns or vulnerabilities in the encryption algorithm. Good encryption

must hide all patterns of the original plain text. Figure 2.3 show the uniform distribution proves

strong encryption [31].

2.14.4 Correlation Test for Image Encryption
Pixel correlation is typically high in plain images. Creating encrypted images with minimal

correlation is essential for a perfect cryptosystem. Pixel’s correlation coefficient is computed as

σxy =
∑

M
i=1(xi−F(x))(yi−F(y))√

∑
M
i=1(xi−F(x))2 ∑

M
i=1(yi−F(y))2

(2.12)

13

Figure 2.3: On left figure showing cipher text and right side showing uniform distribution proves

strong Encryption

Under the requirement that

F(x) = 1
M ∑

M
i=1 xi

M is the data size in this case. F is the expected value opertaor and σ is the correlation coefficient

[31].

14

CHAPTER 3

A NOVEL IMAGE ENCRYPTION SCHEME BASED ON

ELLIPTIC CURVES AND COUPLED MAP LATTICES

3.1 Overview
Research in [31] discusses the security of images and data sharing over the Internet, specifi-

cally digital images. Traditional encryption algorithms have limitations and inefficiencies. A

new image encryption approach based on elliptic curves (ECs) and coupled map lattices (CMLs)

is developed for real-time transmission of images. The method is resistant to brute-force attacks

and has a large keyspace. The algorithm can encrypt an image of size 256×256 in just 0.641

seconds.

3.2 Pseudo-random Numbers Generation
In this article the author generated 2D PRNGs by using the following parameters

A prime p′ such that p is equivalent to 2 mod 3

Selection of b′ is selected from the range [1, p′−1] and mx,my ∈ [1, p′]

Assume that Z×Z contains M as a subset.

Define transformation αM,p′,b′,mx,my, from M to [0, mx−1] such that for each (a1,a2) ∈M and

((a,a1 +a2) mod my) ∈ E,0,b′,p′ it states this

αM,p′,b′,mx,my(a1,a2) = a (mod mx) (3.1)

Author use the following fixed parameters to examine the sequence’s unpredictable behavior

αM,p′,b′,mx,my for images of various sizes: p′ = 1048847,b′ = 1,my = p′ and mx = 256. Entropy

15

and period analyses of PRNs produced using our approach are provided in Table 3.1. To create

Table 3.1: Comparison of entropy and period values for various 256×256 plain-images

Image Entropy Period

All White 7.9972 65536

All Black 7.9971 65536

Lena 7.9930 65536

Mandrill 7.9932 65536

Pepper 7.9936 65536

Cameraman 7.9941 65536

Upper Bound of Entropy 8.0000

PRNs, a collection of plain images (such as peppers, Mandrill, Lena, and Cameraman) is utilized

in a set M ⊂ Z×Z in αM,mx,my,p′,b′

Figure 3.1: using the variables (p′ = 1048847,b′ = 1,my = p,mx = 256) pseudo random number

generated from the sequence αM,p′,b′,mx,my are evaluated for four grayscale images of size

256× 256 Peppers, Mandrill, Lena, and Cameraman Subfigures (a)–(d) represent the source

images;(e)–(h) display histograms of the generated PRNs;(i)–(l) visualize the PRNs themselves

for each corresponding image.

16

Figure 3.1 show the images of PRN and Histogram. Figure 3.2 shows PRN’s graphs for

images as well as all-white and all-black histograms.

Figure 3.2: For images where every pixel is set to 255 (all-white) or 0 (all-black) for parameters

of PRNs analysis (b′ = 1,my = p,mx = 256, p′ = 1048847) (a) All-white plain-image (b)PRN

histogram produced from the image (a) ;(c)PRN’s produced from the image in (a) ;(d) All-black

original-image;(e)PRN histogram produced from the image in (d); (f) pseudo random numbers

produced using the image in (d)

The PRNs in Table 3.1 have entropy values that are approximately around the upper bound.

Additionally, each gray image’s PRN histogram is consistent, as shown in Figure 3.1 and 3.2.

High periods and entropy values are produced by the suggested PRN generator, as Table 3.1

demonstrates. Thus, in a plain image, it can produce high diffusion.

3.3 Couple Map Lattice
A logistic map is one where λxn(1−xn) = xn+1 for (0,1) ∈ xn and λ ∈ (0,4]. The definition

of a CML-system is

xn+1(j) = (1−ξ) f (xn(j))+
ξ

2
[f (xn(j+1))+ f (xn(j−1))] (3.2)

where the lattice site index is j = 1,2,,τ , the coupling constant is ξ ∈ [0 1], the time variable

is n, the real mapping is f, and τ indicates the complete number of lattices that need to be formed.

17

It is assumed that xn(0) = xn(τ).

3.4 A Dynamic S-box Generator that Makes Use of a Couple Map Lattices

and an Elliptic Curve
A chaotic substitution box generator uses an elliptic curve and couple map lattice system to

construct m×m substitution boxes, selecting variables from Ea,b,p and its generator G, and a set

T and string S is proposed in this section.

• Establishing an EC and CML-systems’ parameters: Choose G as a generator of the

parameters a,b, p and the EC Ea,p,b. Determine xi,λ ,ξ and x j = mod(z+ x j−1,1), j =

1,2,,τ . The total lattices is τ , and for each lattice τ , z is utilized to construct the initial

parameter x j.

• Point generation on an EC: Use G to create a sequence of points on the Ea,p,b. With

0 < l ≤ m, Suppose S = ⟨G⟩ so that |S| = 2l. Set up n = m− l, as well as select

T as a set where T = {t1, ..., tn} ⊂ {0,2m− 1}, t j ̸= ti for i ̸= j, meaning that T =

2m(mod 2m− i) f or i = 1, ...,n.

• Creation of a integer series depend on EC: With Si = Sy(mod ti), i = 1,,n, and Sy

being the EC points where Y-coordinate in S, for example. Concatenate (||) each Si to

create a collection X, so that X = [S1||S2||...||Sn].

• Chaotic system iteration: To obtain a sequence unaffected by the initial conditions, Eq.

(3.2) iterates the CML-system 2m+α times for α ≥ 10, removing the initial α iterations.

Transform every CML iteration into an integer number using the formula:

Yi(j) = [Ui(j)×1012] (3.3)

• Designing an integer sequence based on CML: Define an integer sequence Y j ⊂ [0,2m−

1] for every lattice j for a m×m S-box by using modulo 2m as

Y (j) = [Yi(j) mod 2m , j = 1,2,,τ, i = 1,2m.

• S-box generation: By switching the entries of the original S-box C0 = {0,1, ...,2m−1},

create candidate S-boxes Bi, i = 1,,2m. Make use of sets Y and X to iteratively conduct

the exchange operation (↔) on C0 for the S-boxes Bi, that is,

C0(Y (i)+1)↔C0(X(i)+1)

The last Bi is the wanted S-box. Figure 3.3 shows the flow chart for our S-box generator.

18

Figure 3.3: Flow chart of the generator

3.4.1 Review of S-box Generator
We will talk about the generator’s experimental analysis in this section. To do this, we utilize

the following 256-bit parameters for an Ea,b,p,

p=115792089210356248762697446949407573530086143415290314195533631308867097853951,

a=115792089210356248762697446949407573530086143415290314195533631308867097853948,

b=115792089210356248762697446949407573530086143415290314195533631308867097853951,

G=[48439561293906451759052585252797914202762949526041747995844080717082404635286,

36134250956749795798585127919587881956611106672985015071877198253568414405109].

Using a Ea,b,p with the previously mentioned parameters and a couple map lattice with various

initially conditions x0 ∈ (0,1), and setting additional criteria as ξ = 0.4254 ,λ = 3.9575 ,α =

10, l = 7, z = 0.7500 and T = {256,255},we produced a random collection of 10,000 S-boxes.

An substitution box produced by suggested generator is displayed in Table 3.2. The performance

of this generator for image encryption is assessed using the following tests:

• Sensitivity: Sensitivity is the impact of input on the generator of an substitution box

output. A generator of an S-box with high sensitivity is essential for the encryption of

images. since it strengthens the ability of an encryption algorithm to withstand differential

assaults. The generated S-box is greatly affected when the light changes in either x0 or

ξ . Therefore, we may conclude that the generator is effective and appropriate for use in

encryption applications.

• Critical point: There is no critical point because the suggested generator generates a

substitute box for every suitable set of variables. This generator function expedites the

19

Table 3.2: Our method produced an S-box with the following parameters: T = {256,255},

x0 = 0.7500, λ = 3.9575,α = 10, ℓ= 7, z = 0.7500 and ξ = 0.4254 where a,b, p, and G are the

same as those provided as above section

53 85 207 89 213 173 66 80 162 132 142 93 232 9 105 59

151 17 33 166 23 64 199 81 171 189 95 217 233 20 245 148

209 231 11 92 156 6 178 114 45 146 253 19 241 160 228 78

158 188 120 73 67 195 83 116 41 239 186 130 227 119 123 236

192 51 36 161 57 140 205 94 220 170 60 118 152 62 40 99

5 237 167 4 226 179 121 55 110 149 187 22 169 76 229 70

46 240 176 39 63 27 234 117 164 90 144 182 30 102 97 242

112 65 68 122 155 180 72 211 135 196 200 183 103 141 150 247

107 125 3 98 28 230 104 204 218 16 197 214 185 249 101 1

208 7 24 246 193 82 91 250 201 153 71 133 86 108 49 216

221 26 21 58 168 255 106 42 29 75 154 0 202 136 18 111

244 165 69 198 87 177 113 181 61 243 52 2 203 25 235 8

77 157 137 225 88 163 223 212 96 210 147 109 134 159 175 252

38 139 48 138 12 124 115 174 251 128 222 184 44 84 191 143

32 74 131 10 129 215 34 248 79 219 145 190 206 54 238 254

15 172 47 100 43 126 35 127 224 56 37 13 14 194 31 50

20

encryption process.

• Cryptography Output strength: Table 3.2 lists our generator’s NL (minimum, aver-

age, and maximum) as well as the possible schemes for 10,000 S-boxes. The findings

demonstrate that the recently constructed generator is capable to create S-boxes with an

average NL of 97.70 and 80≤ NL≤ 106. Thus, the substitution box generation technique

outperforms the generators in [14, 32, 33, 34, 35], as seen in Table 3.3. NL outcomes

The paper is taken from [14, 32, 33, 34] for 10,000 S-boxes [36]. Table 3.3 provides the

Table 3.3: NL evaluation of 10,000 S-boxes.

Generator NL

maximum average minimum

suggested 106 97.70 80

Ref. [14] 102 92.05 64

Ref. [34] 104 97.45 82

Ref. [32] 104 84.64 52

Ref. [35] 104 99.27 84

Ref. [33] 106 90.20 0

performance analysis using S-boxes in [34, 37, 38, 39, 40, 41, 42, 43, 44]. compared to

existing S box’s, our S box improved non linearity in [34, 37, 38, 39, 40, 41, 42, 43, 44],

and its BIC-NL is superior to that in [38, 39, 41, 43]. Linear approximation probability

characterizes the S box linearity of 0.148 and a differential approximation probability of

0.047 [45, 46].

3.5 Encrypting and Decrypting Images
Alice sends Bob an image, and Bob sends a simple image of Iu×v. The hash value of I

is determined, and CML-systems are initialized. Two chaotic sequences are generated, and a

diffused image D is formed. An encrypted image is created by shuffled rows and columns.

1. Computation of SHA-256

Suppose we have a image I with an m×n dimension (256× 256 pixels). we compute

SHA-256 hash of image I. This produces 32 bytes, or a 256-bit output. In second step we

divide the hash into thirty-two parts the names of each byte are h1,h2, .,h32. These integers

21

Table 3.4: comparative analysis of S-box based on existing schemes

S-box AC DAP LAP NL SAC Min SAC Max BIC Min BIC Max NL Avg

Suggested 254 0.047 0.148 106 0.406 0.641 0.459 0.523 98

[34] 253 0.054 0.141 104 0.406 0.594 0.461 0.522 98

[38] 255 0.039 0.152 100 0.391 0.586 0.468 0.537 100

[38] 255 0.047 0.125 96 0.422 0.609 0.471 0.547 96

[39] 254 0.054 0.133 98 0.422 0.609 0.477 0.535 94

[40] 255 0.039 0.125 96 0.359 0.609 0.477 0.541 98

[41] 254 0.039 0.149 102 0.422 0.594 0.461 0.527 96

[42] 255 0.039 0.145 104 0.391 0.625 0.471 0.531 98

[37] 254 0.047 0.125 102 0.422 0.641 0.477 0.533 100

[43] 255 0.039 0.133 104 0.359 0.609 0.457 0.535 96

[44] 254 0.039 0.133 104 0.438 0.641 0.475 0.547 98

range from 0 to 255 and are 8-bit.Convert them to decimal if they are hexadecimal. Now

we have 32 numbers in a set h1,h2, .,h32. These will be used to generate the chaotic map

parameters in Step 2 of image encryption and decryption. The image content is tightly

linked to the hash, which is a secret key generator. As a result, if the image is modified,

the hash is also changed, which changes the encryption output. ensures image content

sensitivity, which is a key component of secure encryption.

2. Choosing parameters to generate permutations in the CML system:

We generate s(u,a,b, p) and s(v,a,b, p), two permutations on [1,v] and [1,u], consequently.

Pick two subsets for Du = {h1,h2,,h16} and Dv = {h17,h18, ..h32} o f {h1,h2, ...,h32}.

Now we calculate using Eqs.(3.4) and (3.5) of two sets of parameters. du =

{K(u)
1 ,K(u)

2 ,K(u)
3 ,K(u)

4 } and dv = {K(u)
5 ,K(u)

6 ,K(u)
7 ,K(u)

8 }. Compute parameters ki, i =

1,2, ...,8 as follows: Ki = ∑
r
i=s hi, whereas r = 1 + 4(i−1) while s = 4i. If q is the

set {h1,h2,,h32} and the hash values of the arithmetic mean, then the members of sets

du dv are calculated based on K(u)
1 = 3.75+mod(q,0.25+ k1

2n) and

K(u)
i = mod(q,1+ k1

2n), f or i = 2, ..,4.
(3.4)

22

 K(v)
5 = 3.75+mod(q,0.25+ K5

2n) and

K(v)
i = mod(q,1+ ki

2n), f or i = 6,7,8.
(3.5)

3. Permutation construction

Establish the following beginning conditions for the CML. Using the permutation

S(a,b,u, p): Applying the variables of the elliptic curve (a,b, p,G), create a set of points

S = ⟨G⟩ G on an elliptic curve: λ = K(u)
1 ,ε = K(u)

2 ,xo = K(u)
3 and z = K(u)

4 . Now use

the procedure as above to create an substitution box S(a,b, p,u). Establish the follow-

ing beginning conditions for a CML about the permutation process S(v,a,b): Using

λ = K(v)
5 ,ε = K(v)

6 ,xo = K(v)
7 and z = K(v)

8 while parameters of an EC (a,b,v, p), Use the

above procedure to create an substitution box S(v,a,b, p). Suppose λ and σ be used for

efficiency represent S(p,a,v,b) and S(p,u,a,b), consequently.

4. The creation of PRN variables:

Assume that a precomputed E0,b′,p′ for a parameter b′ ∈ [1, p′−1] and a prime p≡ 2 (mod3)

is agreed upon by the sender and the recipient. Pick mx = hi×h j and my ∈ {hi ·h j | i, j ∈

[1,32], hi ̸= 0, h j ̸= 0}. Lastly, calculate these equations for the plain-image p the

sequence is γP,p′,b′,mx,my

5. Diffusion locally

Make a diffused image D of the plain-image I such that d(i;D) = (d(i; I) +

αb′,p′,mx,my,P(i,d(i;P))) (mod|s|) for each integer i≤ uv.

6. Diffusion globally

From top to bottom, let Ri, i ∈ [1,u] represent the ith row of D. Next, We get an image

σ(D) so that the ith, the ith row of σ(D) where i ∈ [1,u] is Rσ(i). Going from left to right,

suppose Ci, i ∈ [1,v] represent the ith column of σ(D). λ (σ(D)) is the cipher text of I is

then obtained so that the ith, i ∈ [1,u] and Cλ (i) is the column of λ (σ(D)). Figure 3.4

showing the encryption algorithm flowchart and an illustration of our encryption method

is displayed in Figure 3.5 for a 4 by 4 image.

23

Figure 3.4: Represents the encryption algorithm’s flowchart.

Figure 3.5: An illustration of our encryption method is displayed for a 4 by 4 image.

24

3.5.1 Process of Decryption
In contrast to the encryption approach, this scheme allows for decoding. λ−1 and σ−1, the

reverse substitution boxes must be understood for this. The CML and Ep,a,b parameters allow for

the complete derivation of these S-boxes. Alice is able to obtain the plain image Iu×v by doing

these steps.

1. Determine I′s hash value.

2. Use the method outlined above to create the permutations σ and λ . Find the inverse

S-boxes for σ−1 and λ−1 of σ and λ , respectively.then use Equation (3.6) to obtain

d(i,D).

d(i,D) = σ
−1(λ−1(CI)) (3.6)

3. For the plain-image P, calculate the sequence γP,p′,b′,mx,my .

4. For each integer i≤ uv, find the plain-image. d(i; I)= (d(i;D)+γP,b′,p′,mx,my(i,d(i;P))) (mod|s|)

is the condition.

3.6 Analysis of Security
Now, we use the standard 256×256 Lena image and every image from the USC-SIPI database

for encryption. Every image in the USC-SIPI database has the dimensions k×k = 256,512,1024.

Every image is subjected to security analysis. We executed the encryption schemes using

MATLAB R2017a. Every experiment uses a PC with an Intel(R) Core(TM) i5 processor running

at 3.20 GHz, Microsoft Windows 10/64 bit, and 8.00 GB of RAM. The public image P utilized

for analysis in this section is an all-white image. The image of Lena, sized 256× 256 used

in this section has a hash value of 663124595124170100185186724251131341822297710310

392243116172166113131491

52221972. For a Ea,b,p, the parameter set (a,b, p,G) is similar to the one above.

3.6.1 Difference based Cryptoanalysis
If a small alteration in plain images results in noticeably different cipher images, So, the

encryption algorithm is resistant to differential attacks from a cryptographic perspective. The

UACI [47] and NPCR [47] are two techniques for evaluating how sensitive encryption algorithms

are to algorithmic assaults that target differentials. Differential attacks are essentially pointless if

a minor alteration to a plain image does not result in inconsistent or varied encryption behavior

25

across the cipher image. To generate the ciphered images CI and C′I of IN×M and I′N×M plain-

images, a single pixel is altered in UACI-NPCR analysis. Equations (3.7) and (3.8) are used to

calculate the NPCR and UACI.

NPCR =
1

N×M ∑
i, j

D(i, j)×100 (3.7)

UACI = ∑
i, j

|IC(i, j)− I′C(i, j)|
N×M×255

×100 (3.8)

where if CI(i, j)−C′I(i, j) ̸= 0 and D(i, j) = 0 otherwise, then D(i, j) = 1. The proposed method

performed 50 NPCR and UACI tests on various images by altering a single pixel at various plain

image locations. Table 3.5 displays the average NPCR/UCAI value.

Table 3.5: NPCR and UACI values for each image

Metric Image Value (%)

NPCR Peppers 99.61

NPCR Mandrill 99.60

NPCR Lena 99.61

NPCR Cameraman 99.60

UACI Peppers 33.50

UACI Mandrill 33.51

UACI Lena 33.49

UACI Cameraman 33.44

Figure 3.6 displays the numbers for each iteration. The schemes in [48] are not as good

as our results in Table Comparison for Lena gray scale image. Additionally, we perform the

NPCR/UACI test on every plain image found in the USC-SIPI database. Figure 3.7 show the

plotted findings on paper.

26

Figure 3.6: Figures (a) and (b) show the NPCR and UACI metrics, which were calculated over

50 runs for various images

Figure 3.7: (a)NPCR evaluation across images of varying sizes (b) UACI evaluation across

images of varying sizes

3.6.2 Cryptoanalysis Using Statistics
An encryption system can be used for encryption in real time if it passes widely recognized

tests like correlation, histogram, and entropy. Below is a detailed discussion of each test and the

related findings.

Test of Entropy

The most crucial metric for measuring the degree of unpredictability in a dataset of images

is entropy. It illustrates the unpredictability of pixel intensity in an image dataset. If I were a

27

grayscale image, the entropy S equation would be

S =−
255

∑
i=0

P(xi) log2(P(xi)) (3.9)

High entropy indicates high randomness in image data. Following Table 3.6 provides a list of

multiple images’ entropy. When compared to methods in [48, 49, 50, 51, 52, 53, 54, 55, 56, 57,

Table 3.6: Image Entropy Analysis

Plain-image Peppers Mandrill Lena Cameraman

Plain image Entropy 7.5571 7.2641 7.4204 7.1048

Cipher image Entropy 7.9976 7.9971 7.9975 7.9972

58], entropy is better than the entropy of lena encrypted image shown in Table 3.7. Additionally,

we evaluate the suggested technique on every plain image in the USC-SIPI collection. The

entropy ranges from 7.995≤ H(I)≤ 7.9999. The results are shown in Figure 3.8. As a result,

the suggested technique generates a lot of randomness.

Figure 3.8: The entropy distribution of images with varying sizes

28

Table 3.7: Lena Grayscale Image comparison

Algorithm Entropy UACI Corr-H Corr-D Corr-V NPCR

presented 7.9975 33.670 0.0030 0.0096 0.0026 99.610

[59] 7.9975 33.472 -0.0018 -0.0009 0.0011 99.614

[49] 7.9965 33.392 0.0029 -0.0003 0.0080 99.617

[50] 7.9972 33.423 0.0069 0.0075 0.0479 99.625

[60] 7.9977 33.413 0.0003 -0.0003 -0.0000 99.621

[48] 7.9974 33.463 0.0004 0.0051 0.0051 99.606

[61] 7.9976 33.451 -0.0018 0.0040 -0.0006 99.609

[51] 7.9967 34.080 -0.0003 -0.0066 -0.0013 99.580

[52] 7.9970 33.505 0.0119 0.0011 0.0092 99.594

[53] 7.9971 33.456 -0.0029 0.0004 -0.0017 99.599

[54] 7.9970 33.419 0.0086 0.0009 0.0024 99.605

[55] 7.9962 33.384 0.0015 0.0057 0.0041 99.633

[56] 7.9970 33.546 -0.0016 -0.0026 0.0043 99.614

[57] 7.9973 33.458 -0.0023 -0.0029 0.0016 99.626

[58] 7.9975 33.457 -0.0034 -0.0063 0.0013 99.621

[62] 7.9966 33.452 -0.0008 -0.0101 0.0014 99.617

[63] 7.9974 33.356 0.0102 0.0052 0.0067 99.580

29

Histogram Analysis

If the histograms of the ciphered images are consistent, the cipher method becomes secure.

Figure 3.9 (a)-(d) show histograms of the plain images in Figure 3.10 (a)-(d), while Figure

3.10 (e)-(h) show the histograms of their encrypted images. The suggested encryption scheme’s

security is demonstrated by the consistent distribution of encrypted image histograms.

Figure 3.9: (a) Lena with (mx,my) = (19912,40885); (b) Mandrill with (mx,my) =

(39600,54056); (c) Peppers with (my,mx) = (49494,30600); (d) A cameraman with (mx,my) =

(36084,49952) while (e–h) Images of (a)–(d) that have been ciphered, where P is the image that

is all white, (i)–(l) The ciphered images (a)–(d) whereas P is the image of lena; ciphered images

(m)–(p), where P is the image of cameraman

30

Figure 3.10: Figure 3.8 (a-d) displays the plain image histogram, while Figure 3.8 (e-h) displays

the ciphertext histogram.

Correlation Test

Pixel correlations are typically high in plain images. Creating encrypted images with minimal

correlation is essential for a perfect cryptosystem. Pixels’ correlation coefficient is computed as

σxy =
∑

M
i=1(xi−F(x))(yi−F(y))√

∑
M
i=1(xi−F(x))2 ∑

M
i=1(yi−F(y))2

(3.10)

Where

E(x) =
1
M

M

∑
i=1

xi. (3.11)

The data size in this case is M. F is the expected value opertaor and σ is the correlation

coefficien. Table 3.8 shows the correlation between various images. The results of Table 3.7 is

also comparable to this schemes. The correlation between each plain image within the USC-SIPI

database is shown in Figure 3.11. The results shown in Figure 3.11 and Figure 3.12 show that

the proposed approach passes the correlation test.

3.6.3 Key Analysis

Key space

If a cryptosystem’s key space is larger than 2128, it passes the key space analysis. Our

suggested cryptosystem uses SHA-256 and the 256-bit parameters a, p,b,G,b′,P′ as keys. As a

31

Figure 3.11: using the suggested encryption method, the horizontal vertical and diagonal

relationship between two adjacent pixels were examined for images with sizes of 256 × 256, 512

× 512, and 1024 × 1024

Figure 3.12: The pixel adjacency patterns of Lena256×256 are depicted in images (a)-(c) and its

encrypted version (d)-(f) as shown in Fig. 3.8(b).

32

Table 3.8: Correlation Analysis for Original and Encrypted Images

Image Original Image Encrypted Image

Horizontal Vertical Diagonal Horizontal Vertical Diagonal

Peppers 0.9429 0.9441 0.9025 −0.0042 0.0039 −0.0046

Cameraman 0.9331 0.9592 0.9075 0.0015 0.0023 0.0025

Lena 0.9390 0.9136 0.9680 0.0007 0.0022 0.0085

Mandrill 0.9048 0.8899 0.8199 0.0032 0.0042 0.0020

result, our crypto-system’s key space is significantly bigger than 2128. Our encryption method is

therefore impervious to brute-force attacks.

Sensitivity of keys

In order to obtain the real keys, opponents typically encrypt a plain image using multiple keys

and compare it to the original encrypted image. A cryptosystem needs to be extremely sensitive

to every key in order to attain higher security. On the basis of I′s hash value, we construct

CML parameters. The cryptosystem is especially sensitive to keys due to the sensitivity of the

CML-system to the initial conditions.

Known-plaintext and chosen-plaintext attack

Following the use of a sequence of PRNs in order to create diffusion in the plain image, the

SHA-256 algorithm has the goal of creating confusion in a diffused image. Because the pair of

S-boxes varies depending on the type of plain image, the strategy is immune to plaintext attacks.

Someone outside the system cannot use a chosen-plain text attack to crack the cryptosystem. In

order to prevent the attacker from using a chosen-plain text attack to discover any information

about the final substitution box S(u, p,a,b), the sets Y and X are arbitrary generated over the

set Z2n . These sequences’ output, αp′,b′,mx,my,A, is highly reliant on mx and my, which makes it

challenging for the attacker to locate secret keys. Because of this, the technique is very resistant

to chosen-plaintext attacks. Table 3.9 demonstrates that the NPCR and UACI are extremely near

to optimal values and Figure 3.13 represents that histogram are uniform . Thus, the suggested

system has good resistance against known-plain text and chosen-plain text attacks.

33

Figure 3.13: (a) All-white image (mx,my) = (24806,33807); (b) encrypted-image; (c) His-

tograms; (d)A black pixel located at (20022,46968); (e) encrypted-image; (f) Histogram.

Table 3.9: Analysis of Security

Metric Category All-black All-white

NPCR 99.63 99.68

UACI 33.60 33.45

Correlation - Horizontal -0.0056 0.0028

Correlation - Vertical 0.0076 0.0050

Correlation - Diagonal 0.0046 -0.0002

Entropy 7.9941 7.9946

3.6.4 Computation Analysis
We set the total lattice configuration count in the CML-structure to τ = 8 for analysis. The

suggested scheme has a lower time complexity. The calculation of the the computation time is

given in Table 3.10.

34

Table 3.10: Analysis of Lena images running on the same OS in terms of run time in seconds

size of image Proposed system [50] [14] [64] [65] [66] [67] [68]

256×256 0.641 1.286 8.744 3.035 0.834 2.913 1.654 15.45

512×512 1.311 4.333 2731.450 3.082 2.849 11.26 6.353 76.777

Table 3.11 compares the run times of our approach with those of algorithms in [60, 48, 69,

70, 71, 72] across various operating systems. Our encryption method encrypts grayscale Lena

image (256× 256) and high resolution image Lena (512× 512) in 0.641 and 1.311 seconds,

respectively. The suggested encryption system is significantly faster than the techniques in

[50, 64, 67, 66, 65, 68, 73], as Table 3.10 illustrates. In Table 3.10, we compared Lena images

with sizes of 256×256 and 512×512. In a similar vein, Table 3.11 results make it evident that

Table 3.11: Analysis of the Lena256 × 256 image’s run time across various operating systems

using related schemes.

Algorithm Time (s) MATLAB Version CPU RAM

Proposed 0.6460 R2017a Intel i5, 3.2 GHz 8 GB

[48] 1.8936 R2016b 2.4 GHz 12 GB

[60] 1.1247 R2016a 3.0 GHz 8 GB

[69] 1.4816 7.14 Intel i7, 3.4 GHz 16 GB

[70] 2.2234 R2016a Intel i7, 2.7 GHz 8 GB

[71] 2.4600 R2017a 2.8 GHz 8 GB

[72] 4.6880 R2016b 2.8 GHz 8 GB

the newly created cryptosystem outperforms the algorithms in [48, 60, 69, 70, 71, 72]. We find

that our recommended methodology performs better than current methods and can be used for

encryption of images in real time.

3.7 Discussion
A safe cryptosystem for encrypting digital images is suggested in this study. A suggested

approach is predicated on a CML system and EC’s. To make the plain image diffuse, a collection

of key-dependent PRN’s is built. To create image-sensitive dynamically substitution boxes from

an elliptic curve and a couple map lattice, an effective S-box generator is created. The purpose

35

of the suggested S-boxes is to confuse the basic image. After that benefits of the S-box generator

and encryption technique are demonstrated by experimental results:

• The suggested generator is more efficient than the generators in [14, 32, 33, 34], according

to Table 3.3.

• The typical Lena image’s NPCR and UACI values in Table 3.7.

• According to theory, the suggested cryptosystem is less complex in terms of time than the

schemes in and requires less running time than the algorithms.

• The suggested approach is effective for EC’s with big parameters.

Additionally, the suggested approach offers extra security features to defend against attacks using

attacks with prior knowledge (KPA) and encryption oracle attacks (CPA) by leveraging PRNs’

key-stream and key-dependent dynamic S-boxes. Also, the security against brute-force attacks

is guaranteed by the large key space. According to the suggested article, we hope to use the

cipher technique for upcoming visual data, even though we employ it for grayscale images in

this article.

36

CHAPTER 4

AN EFFICIENT APPROACH TO DESIGN A NEW

ASYMMETRIC KEY ENCRYPTION ALGORITHM USING

ELLIPTIC CURVES

4.1 Overview
This chapter presents an asymmetric key encryption scheme using elliptic curves. It generates

pseudo random numbers over finite fields, non-linear mixing, and modular exponentiation for

greater entropy. Diffie-Hellman key exchange is generated using elliptic curves. A secure ECC-

based pseudo random number generator is used in a third algorithm. The last algorithm uses

ECC pseudo random number generator to encrypt images, featuring secure pixel permutation

and bitwise XOR. This hybrid cryptosystem combines safe key exchange with elliptic curves

and symmetric encryption.

4.2 Elliptic Curve PRNG Generator
• Purpose of Algorithm:

To generate pseudo-random numbers from elliptic Curves over a finite field Fp, followed

by nonlinear mixing and modular exponentiation for greater entropy.

• Parameter initialization

In our first algorithm p represents a prime number of a finite field, mx,my,mz represent the

output moduli for the x,y,z axes, and N represents the number of pseudo-random points to

draw.

37

• Describe the Elliptic Curve:

we choose an elliptic curve is y2 = x3 +ax+b mod p where a,b ∈ Fp.

• Assign Start Point:

Saves all the valid (x,y) points of the curve into Fp

• Establish ECC Points:

Repeat for every x in Fp. Find R.H.S of

y2 ≡ x3 +ax+b (mod p), a,b ∈ Fp

• Ensure Enough Points:

Repeat list P with exactly N entries.

• Create Random Third Coordinate:

In our algorithm, we extend the elliptic curve points to 3D by adding a random w coordinate.

We increase entropy (randomness) by introducing a random w value, which makes it more

difficult to reverse the output. Now we will discuss how the code operates. Firstly, we

generate (x,y) points on the curve, then for every point (x,y,w), define a random w, then

utilizing all three coordinates, we calculate the PRNG output:

For X axis (x+ y+w)4 mod mx

For Y axis (x.y+w)5 mod my

For Z axis (x · y+w)8 mod mw

• PRNG Base Loop:

For each point:

Combine x,y,w with nonlinear exponentiation.

Employ modular operations to maintain finite limits.

Outputs: Xi,Yi,Zi form a 3D pseudo-random numbers.

4.2.1 Output of ECC-based 3D PRNG Generator
A list of pseudo-random 3D points (X ,Y,Z) calculated using elliptic curve mathematics,

modular exponentiation, and non-linear operations is the algorithm’s output. We present these

inside a three-dimensional scatter plot to demonstrate their dispersion and randomness. With

the addition of an arbitrary third component w, the coordinates are derived from elliptic curve

38

Algorithm 1 ECC-Based PRNG

1: Input: p≥ m×n, mx,my, mw ∈ [2,M], N ∈ Z+ , Choose EC ∈ (x3 +ax+b) mod p

2: Output: 3D points (Xi,Yi,Zi)
N
i=1

3: procedure GENERATE PRNG(p,mx,my,mw,N)

4: EC← Generate-ECC-Points(p)

5: Extend EC to N points with random w values

6: for (x,y,w) in EC3D do

7: Xi← (x+ y+w)4 mod mx

8: Yi← (x.y+w)5 mod my

9: Zi← (xy+w)8 mod mw

10: end for

11: return (Xi,Yi,Zi)
N
i=1

12: end procedure

points that are valid across a finite field. A number of modular operations and entropy increasing

transformations, including exponentiation, are used to create each output triple (Xi,Yi,Zi). Ex-

treme randomness and suitability for simulation or cryptographic applications are shown by the

final scatter plot’s enormous dispersion and lack of observable patterns. Figure 4.1 shows the

distribution of ECC-based PRNG output graphically.

Figure 4.1: ECC-based 3D PRNG Generator

4.3 ECDH Algorithm
Alice and Bob can safely calculate a shared secret over an unprotected channel using elliptic

curve cryptography by using the following algorithm, which realizes the Elliptic Curve Diffie-

39

Hellman key exchange protocol.

• Parameter Initialization:

In this algorithm, the elliptic curve is defined on the field of prime number p, Fp. a is a

curve coefficient and b is implicit on the elliptic curve y2 = x3 +ax+b mod p. We create

Base Points G = (xG,yG) ∈ E(Fp) on the curve that is utilized for key exchange.

• Private key generation:

A private key is chosen by Alice na ∈ [1, p−1] .

A private key is chosen by Bob nb ∈ [1, p−1]

• Function SM (scalar multiplication):

Applies the double-and-add procedure k times to add point U to itself. The purpose is that

caculate k.U on elliptic curve efficiently.

• Elliptic curve function point addition:

On the elliptic curve calculate the sum of two points U +V . Manage many cases like

Returns the other point if U or V is the identity point (0,0).

Using point doubling formula if U =V

If U ̸=V , apply the elliptic curve addition formula.

Result is identity point if U =−V

• Elliptic curve function (Modular inverse):

The modular inverse of a mod p is computed using the Extended Euclidean algorithm.

Verifies the validity of divisions in point addition and doubling in Fp.

• Calculation of Public key:

Alice uses the following to create her public key: PA = na.G

Bob uses the following to create her public key: PB = nb.G.

• Shared secret:

We compute shared secret by using Shared secret = na.PB = nb.PA.

So Alice obtain her public key by SA = na.PB and Bob obtain his public key by SB = nb.PA.

The shared secret matches if SA = SB and scalar multiplication is commutative.

40

Algorithm 2 ECDH Key Exchange (Compact)

1: Input: p ∈ P, a,b ∈ [1, p−1], G ∈ EC(F p)

2: nA← Rand(1, p−1), nB← Rand(1, p−1)

3: Output: Generation of ECDH Keys

4: function SM(U,k)

5: W ← (0,0), V ←U

6: while k > 0 do

7: if k mod 2 = 1 then

8: W ← ADD(W,V)

9: end if

10: V ← ADD(V,V), k← ⌊k/2⌋

11: end while

12: return W

13: end function

4.3.1 Results of ECDH Algorithm
ECDH algorithm is used to show the generation and agreement of public keys and shared

secrets between two parties. For example, Alice and Bob randomly choose their private keys,

Alice’s public key is (3,91) and Bob’s public key is (80,10). The shared secret between them

is then matched, confirming the proper operation of the ECDH protocol. The shared secret

generated by Alice and Bob will be identical, and the output will display a return message

confirming the successful and secure key exchange.

4.4 ECC-Based Secure PRNG
The third pseudocode presents a complete and secure ECC-based PRNG system that uses el-

liptic curve cryptography along with Diffie-Hellman key exchange and hashing. The outcome is a

high-entropy PRNG output appropriate for cryptographic usage and the additional benefit of ECC

security and precomputation methods for performance enhancements.Explanation is given below:

• Parameter Initialization:

First, we define an elliptic curve, y2 = x3+ax+b (mod p), over a finite field Fp. and other

parameters are constant where p ∈ P and a,b ∈ [1, p−1] are curve parameters and Base

point is G = (xG,yG).

41

• Hide generator point:

To create a hidden generator, multiply the base point G by a secret random scalar r:

G′ = [r]G. This improves randomization and privacy while also hiding the original

generator.

• Precompute the powers of Hidden generator:

Precompute G′i = 2i−1G′ for i=1 to i=32 which allows for scalar multiplication up to 32

bits. This increases scalar multiplication efficiency.

• Create Pairs of ECC Keys:

Two private keys, nA and nB, should be chosen at random for Alice and Bob: nA,nB ∈R

[2, p−1] .

We calculate the public keys, PA = [nA]G′ and PB = [nB]G′, using private keys.

• Implement the DH Key Exchange for ECC:

Both parties compute shared secret S = nA.PB = nB.PA. If both parties do the same

calculation, then the key exchange will be successful.

• The shared ECC point is hashed:

Combine the x and y coordinates and shared point S.

To obtain a fixed-length hexadecimal string, use SHA-256:

K = SHA-256 (xS||yS)

This acts as the PRNG output generation’s seed or key.

• Pseudo-Random Point Generation:

For every i = 1 to N (for example, N = 500):

Using SHA-256 Hash K||i . Three hash portions should be collected and reduced modulo

maximum values such as:

u = H1
i mod mu, v = H2

i mod mv, w = H3
i mod mw.

Store each 3D point (u,v,w).

• Return the final PRNG output back:

A list of N 3D pseudo-random points, securely formed from hash functions and ECC

procedures, is the algorithm’s output.

42

Algorithm 3 ECC-Based Secure PRNG

1: Input: Set curve: y2 = x3 +ax+b mod p

2: G← (xG,yG), p ∈ P, a,b ∈ [1, p−1]

3: G′← [r]G with random r

4: Precompute G′i = 2i−1G′ for i = 1 to 32

5: Generate private keys: nA,nB ∈R [2,232−1]

6: PA← [nA]G′, PB← [nB]G′

7: Derived secret: S← [nA]PB = [nB]PA

8: K← SHA-256 of xS∥yS

9: for i = 1 to N do

10: Hi← SHA-256(K∥i)

11: (u,v,w)← (mod(H(1)
i ,mu),mod(H(2)

i ,mv),mod(H(3)
i ,mw))

12: Store (u,v,w)

13: end for

14: return PRNG point list

4.4.1 Output of ECC-Based Secure PRNG
Using a custom curve parameter and a secret generator point, this Algorithm performs elliptic

curve Diffie-Hellman key exchange, computes a common ECC point between two parties, hashes

the common secret using SHA-256, and then uses the hash as a seed to create 500 pseudo-random

3D points, with each value being calculated by hashing the seed with an integer counter and

projecting portions of the hash to U , V , and W coordinates in specified ranges. The output is a

500×3 matrix of cryptographically secure pseudo-random coordinates, which is also visualized

in Figure 4.2.

ECC PRNG with Image Encryption (XOR + Permutation)
This algorithm uses a pseudo-random number generator based on ECC to encrypt images.

Secure pixel permutation and bitwise XOR are features of the encryption. This method is a

hybrid cryptosystem that combines safe key exchange with Elliptic Curve Cryptography (ECC)

and symmetric encryption with a pseudo-random number generator (PRNG). It uses permutation-

based confusion and XOR-based diffusion to encrypt images, guaranteeing confidentiality and

defense against statistical assaults. A thorough explanation of each element is provided below.

43

Figure 4.2: Visualization of ECC-Based Secure PRNG

Step by Step Explaination

• Parameter initialization:

First, we define an elliptic curve, y2 = x3 +ax+b mod p, over a finite field Fp. G is the

base point on the curve. For security or privacy purposes, the generator point G may be

hidden using the Hide-Generator custom function.

• Compute the G Table in advance:

In order to faster ECC point multiplication, this phase precomputes multiples of the

(hidden) generator, usually through windowing techniques. For scalar multiplication k ·G,

this is helpful when k is a 32-bit value. The generating point G is concealed through a

transformation (may be randomization or point compression) to improve security.

• Generation of ECC Diffie-Hellman Keys:

Bob chooses private key nb, while Alice chooses private key na. Thus, Alice computes

the public key Pa = na.G′, and Bob uses scalar multiplication to compute his public key

Pb = nb.G′. Then Alice calculates ABG′ = na.Pb and Bob calculate BAG′ = nb.Pa, where

ABG′ represents that A is the sender (Alice) and B represents that B is the reciever (Bob) and

G is the generator point or base point of Elliptic curve But we use G′= s(secret scalar)×G

44

which is a modified generator for security and randomness.

• Derivation of a Shared Secret:

A shared ECC secret is calculated by each party:

ABG′ = na.PB and BAG′ = nb.PA

Both get to the same conclusion because of ECC properties:

ABG′ = na.(nB.G′) = Pb.(Pa.G′) = BAG′ (4.1)

• Agree the derived secret:

Checking the derived secret of both parties. The commutative nature of scalar multipli-

cation on elliptic curves ensures this that Shared secret match. if shared secret fails then

some possible reason are MATLAB precision problems or symbolic mismatches, errors in

scalar multiplication or ECC addition function or error in computing by using different G′

between the two key calculations. To securely agree on a shared key, asymmetric ECC is

utilized.

• Generation of Symmetric key for Decryption and Encryption:

In this algorithm we use asymmetric key cryptography, which involves generating symmet-

ric keys using a hash. The symmetric key is then used to encrypt and decrypt images. The

shared secret, ABG′, is obtained by multiplying Party A’s private key and Party B’s public

key, resulting in a point on the elliptic curve. The coordinates are then hashed into a string,

and a safe, fixed-length key is generated using SHA-256. This key, which appears random,

can be computed independently by Alice and Bob, who share the same ECC point.

• Set the PRNG Key:

The process involves creating a stream of pseudo-random numbers using a symmetric

key as a seed, which is then used to XOR image pixels. The randomness is generated

using the hashed ECC shared secret. The XOR technique makes each pixel unreadable by

scrambling its data and can be reversed with the same random number. The shared key,

created by Alice and Bob using ECC as a seed, generates the random numbers. This results

in an encrypted image with chaotic values, making it impossible to guess the original.

• preparation of image:

Firstly we load Gray scale image . Make sure the image is 256×256 pixels in size before

45

loading it. Create a 1D vector by flattening the 2D image:

N = 256×256 = 65536

• Generation of PRNG Streams:

The PRNG is seeded by the key, which is derived by ECC. [N/3] triplets are produced

by the method (probably for RGB, but the image is grayscale). To match the picture

vector length (N), the PRNG output is trimmed or reshaped. Create enough PRNG output

(maybe dependent on ECC output chunks) to fill the image. Reshape or truncate to fit the

image vector’s dimensions. For the security of PRNG, PRNG needs to be secure using

cryptography (e.g., ChaCha20, AES-CTR). Decryption is made possible by reusing the

same key, which will replicate the same keystream.

• Encryption Process:

The two main steps of encryption are XOR encryption, a symmetric method comparing

each pixel to its associated PRNG byte, and encryption via permutation, a permutation

index array created using the key-derived seed and a deterministic permutation. The

XOR-encrypted image vector is shuffled to increase confusion.

• Resize the Encrypted Image:

Return the encrypted vector to a two-dimensional image.

• Decryption Process:

The decryption process reverses encryption processes to restore the original image. It has

two primary functions: permutation in reverse and XOR decryption. Perm is a permutation

vector used to mix pixels during encryption, using the same RNG seed. The precise

permutation order is retrieved using perm (N) and the inverse permutation perm−1. The

encrypted image is rearranged using perm−1, and the rearranged pixel values are stored in

the working variable depermuted. XOR decryption involves generating a PRNG stream

using the same key as encryption and XORing each element in depermuted. The original

grayscale intensities of the pixel values are restored.

• Confirmation:

The algorithm determines whether the original image and the decrypted image are identical:

The comparison is done pixel by pixel. If every pixel is the same result in the form of

success . If there are discrepancies result shows Fail indicating a key/PRNG/permutation

mistake.

46

Algorithm 4 ECC PRNG Image Encryption System
1: Input: Prime p, curve params a,b, base point G, image I

2: Output: Encrypted image C, decrypted image I′

3: Step 1: System Initialization

4: E← EllipticCurve(y2 = x3 +ax+b mod p)

5: G← (xG,yG) ∈ E

6: Step 2: Generator Obfuscation

7: k← RandomInteger(2, p−1)

8: G′← EC_ScalarMult(G,k,a, p)

9: Step 3: Key Exchange (ECDH)

10: apriv← RandomInteger(2, p−1)

11: bpriv← RandomInteger(2, p−1)

12: A← EC_ScalarMult(G′,apriv,a, p)

13: B← EC_ScalarMult(G′,bpriv,a, p)

14: S← EC_ScalarMult(B,apriv,a, p)

15: Verify S = EC_ScalarMult(A,bpriv,a, p)

16: Step 4: Key Derivation

17: K← SHA-256(xS ∥ yS)

18: Step 5: PRNG Generation

19: PRNG_stream← Generate_PRNG(K, len(I))

20:

21: for i← 1 to len(I) do

22: seedi← SHA-256(K ∥ i)

23: PRNGi← seedi[0 : 24] mod 256

24:

25: end for

26: Step 6: Image Encryption/Decryption

27: C← I⊕PRNG_stream

28: I′←C⊕PRNG_stream

29: return C, I′

47

4.4.2 Results of this Algorithm
The resulting images proves the security of the ECC-based PRNG encryption system. In the

figure Figure 4.3 (a)-(c) which are grayscale images of lena , cameramen and mandrill with the

size of 256×256 . These are plain images which are used in encryption while the Figure 4.3

(d)-(f) are cipher uses a result of the combined effect of encryption and pixel permutation, it

looks like pure ciphered and then we apply decryption on figures and Figure 4.3 (g)-(i) are the

image that has been decoded, which is visually the same as the plain image, proving that the

decryption stage correctly inverted both operations. This confirms the correctness of the system

and its high potential for safe image encryption based on elliptic curve cryptography.

4.5 Mathematical example of ECC PRNG Encryption Decryption to verify

Algorithm
We take a ECC example over small field

• we select Prime field where p = 17

• Choose Elliptic curve: y2 ≡ x3 +2x+2 mod 17

• Generator point: G = (5,1)

• G(ord)=19

• The private key of Alice: nA = 3

• The private key of Bob: nB = 7

48

(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Plain images are shown in (a) and (b); ciphered images are shown in (c) and (d); and

decrypted images are shown in (e), (f)

49

4.5.1 Step 1: Calculate the Public Key for Alice: PA = nA ·G = 3 ·G
Calculate 2G = G+G (point doubling):

λ =
3x2

1 +a
2y1

mod p

=
3 ·52 +2

2 ·1
=

75+2
2

=
77
2

mod 17

77≡ 9 mod 17

9
2
≡ 9 ·9 = 81≡ 13 mod 17

x3 = λ
2−2x1 = 132−10 = 169−10 = 159≡ 6 mod 17

y3 = λ (x1− x3)− y1 = 13(5−6)−1 =−13−1 =−14≡ 3 mod 17

2G = (6,3)

Calculate 3G = 2G+G = (6,3)+(5,1) (point addition):

λ =
y2− y1

x2− x1
=

1−3
5−6

=
−2
−1

= 2 mod 17

x3 = λ
2− x1− x2 = 4−6−5 =−7≡ 10 mod 17

y3 = λ (x1− x3)− y1 = 2(6−10)−3 =−8−3 =−11≡ 6 mod 17

3G = (10,6) = PA

4.5.2 Step 2: Calculate the Public Key for Alice: PB = nB ·G = 7 ·G
Using double-and-add method (7 = 4+2+1): Calculate 2G = (6,3) (from above). Calculate

4G = 2G+2G = (6,3)+(6,3):

λ =
3 ·62 +2

2 ·3
=

110
6

mod 17

110≡ 8 mod 17

8
6
≡ 8 ·3 = 24≡ 7 mod 17

x3 = 49−12 = 37≡ 3 mod 17

y3 = 7(6−3)−3 = 21−3 = 18≡ 1 mod 17

4G = (3,1)

50

Calculate 6G = 4G+2G = (3,1)+(6,3):

λ =
3−1
6−3

=
2
3
≡ 12 mod 17

x3 = 144−3−6 = 135≡ 16 mod 17

y3 = 12(3−16)−1 =−156−1 =−157≡ 13 mod 17

6G = (16,13)

Calculate 7G = 6G+G = (16,13)+(5,1):

λ =
1−13
5−16

=
−12
−11

≡ 12
11
≡ 15 mod 17

x3 = 225−16−5 = 204≡ 0 mod 17

y3 = 15(16−0)−13 = 240−13 = 227≡ 6 mod 17

7G = (0,6) = PB

4.5.3 Step 3: Calculate Shared Secret SB = nB ·PA = 7 · (10,6)

Following comparable computations (neglected for conciseness), we discover:

SB = (6,3)

4.5.4 Conclusion of ECDH
The two sides come to the same mutually held secret:

S = (6,3)

So Alice Private key is na = 3

Alice Public key is PA = (10,6)

Shared Secret is SA = (6,3)

Bob Private key is nb = 7

Bob Public key is PB = (0,6)

Shared secret is SB = (6,3)

51

4.5.5 Compute Shared Secret

SA = nA ·PB = 3 · (0,6) Calculate 2 · (0,6):

λ =
3 ·02 +2

2 ·6
=

2
12
≡ 3 mod 17

x3 = 9−0 = 9 mod 17

y3 = 3(0−9)−6 =−27−6 =−33≡ 1 mod 17

2 · (0,6) = (9,1)

Compute 3 · (0,6) = (0,6)+(9,1):

λ =
1−6
9−0

=
−5
9
≡ 7 mod 17

x3 = 49−0−9 = 40≡ 6 mod 17

y3 = 7(0−6)−6 =−42−6 =−48≡ 3 mod 17

SA = (6,3)

Bob’s Shared Secret Calculation SB = 7 · (10,6)

Given:The private key of Bob: nb = 7

The public key of Alice: PA = (10,6) = 3G

Elliptic Curve: y2 = x3 +2x+2 mod 17

Step 1: Point Doubling - Calculate 2 · (10,6) By Using the point doubling formula:

λ =
3x2

1 +a
2y1

mod 17

=
3 ·102 +2

2 ·6
=

300+2
12

=
302
12

mod 17

Make the denominator and numerator simpler:

302 mod 17 = 302−17×17 = 13

12−1 mod 17 = 10 (since 12×10 = 120≡ 1 mod 17)

λ = 13×10 = 130 mod 17

= 130−7×17 = 11 mod 17

52

Calculate new point:

x3 = λ
2−2x1 = 112−20 = 121−20 = 101 mod 17

= 101−5×17 = 16

y3 = λ (x1− x3)− y1 = 11(10−16)−6 =−66−6 =−72 mod 17

=−72+5×17 = 13

2 · (10,6) = (16,13)

Step 2: Point Doubling - Calculate 4 · (10,6) = 2 · (16,13)

λ =
3 ·162 +2

2 ·13
=

768+2
26

=
770
26

mod 17

770 mod 17 = 5

26 mod 17 = 9

9−1 mod 17 = 2

λ = 5×2 = 10 mod 17

Calculate new point:

x3 = 102−2×16 = 100−32 = 68 mod 17 = 0

y3 = 10(16−0)−13 = 160−13 = 147 mod 17

= 147−8×17 = 11

4 · (10,6) = (0,11)

Step 3: Point Addition - Compute (0,11)+(16,13)

λ =
13−11
16−0

=
2

16
=

1
8

mod 17

8−1 mod 17 = 15

λ = 1×15 = 15 mod 17

Calculate new point:

x3 = 152−0−16 = 225−16 = 209 mod 17

= 209−12×17 = 5

y3 = 15(0−5)−11 =−75−11 =−86 mod 17

=−86+6×17 = 16

(0,11)+(16,13) = (5,16)

53

Step 4: Final Addition - Calculate (5,16)+(10,6)

λ =
6−16
10−5

=
−10

5
=−2≡ 15 mod 17

Calculate new point:

x3 = 152−5−10 = 225−15 = 210 mod 17

= 210−12×17 = 6

y3 = 15(5−6)−16 =−15−16 =−31 mod 17

=−31+2×17 = 3

7 · (10,6) = (6,3)

Conclusion of Bob’s shared secret The Shared secret of Bob:

SB = (6,3)

Hence Shared secret Matched.

4.5.6 Hash the Shared Secret
Now we hash the ECC point by converting shared Secret point "0623"

Use ASCII SUM

’0’=50

’6’=48

’0’=52

’3’=51

So Sum = 201. Now this is a PRNG seed

4.5.7 Generating PRNG Stream
–––• Now we generate PRNG stream by using this logic

PRNG[i] = mod ((Hash−Seed× i×17) ,256) (4.2)

Compute i=1 to 16

54

i PRNG-stream PRNG-Value

i=1 mod(201+17,256) 218

i=2 mod(402+17,256) 163

i=3 mod(603+17,256) 108

i=4 mod(804+17,256) 53

i=5 mod(1005+17,256) 254

i=6 mod(1206+17,256) 199

i=7 mod(1407+17,256) 144

i=8 mod(1608+17,256) 89

i=9 mod(1809+17,256) 34

i=10 mod(2010+17,256) 235

i=11 mod(2211+17,256) 180

i=12 mod(2412+17,256) 125

i=13 mod(2613+17,256) 70

i=14 mod(2814+17,256) 15

i=15 mod(3015+17,256) 216

i=16 mod(3216+17,256) 161

4.5.8 Encryption

Encrypted matrixi = mod (Original matrixi +PRNG,256) (4.3)

The above equation is used to encrypt our matrix

Let Original matrix =


12 34 56 78

30 60 90 120

90 123 200 15

150 180 210 240

 We apply encryption on original matrix below

from i = 1 to 16

55

i Original-Value PRNG Encrypted-Value

i=1 12 218 230

i=2 30 163 193

i=3 90 108 198

i=4 150 53 203

i=5 34 254 32

i=6 60 199 3

i=7 123 144 11

i=8 180 89 13

i=9 56 34 90

i=10 90 235 69

i=11 200 180 124

i=12 210 125 79

i=13 78 70 148

i=14 120 15 135

i=15 15 216 231

i=16 240 161 145

So the encrypted Matrix =


230 32 90 148

193 3 69 135

198 11 124 231

203 13 79 145


• Shuffling the Encrypted Matrix Our shuffle version is given below:

enc-shuffled =


e3 e12 e7 e1

e15 e9 e6 e14

e4 e2 e8 e16

e5 e13 e11 e10



Shuffled - Matrix=


90 231 69 230

79 198 3 13

148 32 135 145

193 203 124 11


• Decryption Process of 4-by-4 Matrix:

For decryption firstly we reverse the permutation

56

Shuffled[reverse-perm]=


230 32 90 148

193 3 69 135

198 11 124 231

203 13 79 145


We done Decryption by using this

Decrypted = mod(Encrypted−PRNG,256) (4.4)

i Encrypted-Value PRNG Decryption Decrypted-Value

i=1 230 218 mod(12,256) 12

i=2 193 163 mod(30,256) 30

i=3 198 108 mod(90,256) 90

i=4 203 53 mod(150,256) 150

i=5 32 254 mod(-222,256) 34

i=6 3 199 mod(-196,256) 60

i=7 11 144 mod(-133,256) 123

i=8 13 89 mod(-76,256) 180

i=9 90 34 mod(56,256) 56

i=10 69 235 mod(-166,256) 90

i=11 124 180 mod(-56,256) 200

i=12 79 125 mod(-46,256) 210

i=13 148 70 mod(78,256) 78

i=14 135 15 mod(120,256) 120

i=15 231 216 mod(15,256) 15

i=16 145 161 mod(-16,256) 240

Decrypted - Value = Original-Value =


12 34 56 78

30 60 90 120

90 123 200 15

150 180 210 240


4.6 Differential Cryptanalysis

The UACI and NPCR techniques evaluate the sensitivity of encryption algorithms to differen-

tial attacks. If a minor alteration in plain images results in different cipher images, the algorithm

57

is resistant to differential attacks. The NPCR and UACI are calculated using equations (4.5) and

(4.6).

NPCR =
1

N×M ∑
i, j

D(i, j)×100 (4.5)

UACI = ∑
i, j

|IC(i, j)− I′C(i, j)|
N×M×255

×100 (4.6)

whereever D(i, j) = 1 unless CI(i, j)−C′I(i, j)eq0 and D(i, j) = 0. The average NPCR and UCAI

value is shown in the following table.

4.6.1 The Image Encryption Calculation Process Using NPCR and UACI
NPCR and UACI are two crucial security metrics that are used to evaluate the strength

of an image encryption system. These metrics evaluate the degree to which an encryption

algorithm modifies the plain image in order protect against statistical attacks. Below is a detailed

explanation of how these values were calculated and analyzed:

Number of Pixel Change Rate, or NPCR

Basic goal: NPCR measures the proportion of pixels that are different between the ciphered

and plain images. A high NPCR (near 100%) means that the image is substantially changed by

the encryption process, making it secure to differential attacks.

Now we describe the calculation steps below:

1. To make computations easier, the RGB input image is first converted to grayscale.

2. Determine whether the Plain (I) and ciphered (I′) images differ for each pixel at position

(i, j):

D(i, j) =

1, if I(i, j) ̸= I′(i, j)

0, otherwise
(4.7)

3. Determine how many different pixels there are in total:

Total_Diff =
H

∑
i=1

W

∑
j=1

D(i, j)

where height and width of an images are denoted by H and W .

58

4. The percentage of NPCR is now determined by dividing the total number of pixels (H×W)

by the total number of differing pixels, and then multiplying the result by 100.

NPCR =

(
Total_Diff

H×W

)
×100

5. NPCR should be approximately 99.6094% for encryption to be effective, meaning that

practically all pixels are changed.

UACI(Unified Average Changing Intensity)

Finding the average intensity difference between the original and encrypted images is the

main objective of UACI. Uniform pixel changes are indicated by a value near 33.4635%, which

guarantees resistance to statistical analysis.

Now we calculate the steps:

1. Image Conversion to Double Precision: For precise arithmetic, both the original (I) and

encrypted (I′) images are doubled.

2. Determine Absolute Differences: Determine the absolute intensity difference for each

pixel:

∆(i, j) =
∣∣I(i, j)− I′(i, j)

∣∣
3. Add up the differences: Add up all of the absolute differences:

Total_Abs_Diff =
H

∑
i=1

W

∑
j=1

∆(i, j)

4. Improve for Maximum Intensity: The sum of the difference is divided by the maximum

pixel value (255 in 8-bit grayscale) and the total number of pixels:

UACI =
(

Total_Abs_Diff
255×H×W

)
×100

5. A uniform distribution of pixel changes is indicated by a secure encryption produce of

approximately 33.4635%.

Both the NPCR and UACI tests are important because the former ensures that the encryption is

extremely vulnerable to even small changes, preventing predictability, while the latter ensures

that pixel changes are statistically uniform by preventing frequency analysis.

Now, Table 4.1 and Figure 4.4 displays the average NPCR/UCAI value.

59

Table 4.1: NPCR and UACI values for each image

Metric Image Value (%)

NPCR Mandrill 99.5865

NPCR Lena 99.6582

NPCR Cameraman 99.6201

UACI Mandrill 27.9499

UACI Lena 28.6563

UACI Cameraman 31.1600

Figure 4.4: The distribution of NPCR and UACI of different size images

4.7 Statistical Cryptanalysis
As we discussed in chapter 2 the tests use in cryptography now in this section will apply

test on images. If an encryption system passes well-known tests like correlation, histogram, and

entropy, It can be applied to encryption in real time. Each test and its associated results are

covered in full below.

4.7.1 Entropy Test
The most crucial metric for measuring the degree of unpredictability in a dataset of images

is entropy. It illustrates the unpredictability of pixel intensity in an image dataset. If I were a

60

grayscale image, the entropy S equation would be

S =−
255

∑
i=0

P(xi) log2(Pxi) (4.8)

High entropy indicates high randomness in image data. Thus, the suggested technique generates

a lot of randomness. So, the entropy of following images shown below. With p(i) representing

Table 4.2: Image Entropy Analysis

Plain-image Lena Cameraman Mandrill

Plain image Entropy 7.7662 7.1048 7.3233

Cipher image Entropy 7.9976 7.9976 7.9969

the probability of each pixel intensity, H = −∑ p(i) · log2(p(i)). One entropy value in bits is

obtained from this result. Strong confusion and diffusion properties are desired in encryption,

and a more randomized, information-rich image is indicated by a higher entropy (nearer to 8).

4.7.2 Histogram Test
Now we will apply histogram test in ciphered images. The cipher scheme will be considered

secure if the encrypted images’ histograms are uniform. The histograms of the plain and

encrypted images are displayed in figures 4.5 (a)–(c) and 4.5 (d)–(f), respectively. our proposed

encryption scheme’s security is demonstrated by the uniform distribution of encrypted image

histograms.

Figure 4.5: In (a)-(c) figure shows the Histogram of the Plain images and (d)-(f) shows the

Histograms of the cipher texts, respectively.

Through a calculated procedure, the histogram test is used to confirm that the distribution of

61

pixels in the encrypted image is uniform. The encrypted image is first multiplied by 255 and

rounded to integers to create 256 distinct intensity levels (pixel values normalized to [0,1)). The

histogram data is then produced by using MATLAB’s ‘imhist()‘ function to count the instances

of each intensity value (0–255). Each bin should have roughly N/256 pixels. The chi-square

test quantitatively compares these observed bin counts against the expected uniform distribution

by calculating the X2 statistic, which is the sum of squared differences between observed and

expected counts divided by the expected counts. A Cumulative Distribution Function (or CDF)

expresses the likelihood that a random variable X will take a value less than or equal to a given

value x. The empirical distribution function of the pixel values is compared to the theoretical uni-

form CDF. It is a basic idea in statistics and probability that is used to examine data distribution.),

the Kolmogorov-Smirnov test simultaneously assesses whether the values follow a continuous

uniform distribution. A bar graph is produced visually, with the y-axis displaying the frequency

counts and the x-axis representing the 256 intensity levels. A horizontal red line denotes the

expected uniform frequency level. In order to confirm that the encryption successfully eliminated

all traces of the original image’s statistical properties, the histogram is considered uniform if:

1. The X2 statistic falls below the critical threshold (293.25 for 255 degrees of freedom at 5

2. The KS-test produces a p-value > 0.05; and (3) the bar heights fluctuate randomly around

the red reference line without discernible patterns.

3. It is confirmed that the encryption effectively eliminated all traces of the original image’s

statistical properties because the bar heights varies randomly and uniformly around the red

reference line.

4.7.3 Correlation Test
We will apply Correlation test on plain images and ciphered images. we will discuss further

that what correlation values are secure for encrypted image.

The purpose of correlation test is to see if the encrypted image’s neighboring pixels are still

correlated, as this would be detrimental to security. Values appear random when this correlation

is broken by a good encryption (ideally, correlation ≈ 0). Table 4.2 displays the association

between various images. we will also compared the results in Table 4.3 . Figure 4.6 shows the

correlation of each plain image in the USC-SIPI database. The suggested method passes the

correlation test, according to the findings in Figures 4.6, 4.7, 4.8.

62

Table 4.3: Correlation Analysis for Original and Encrypted Images

Image Original Image Encrypted Image

Horizontal Vertical Diagonal Horizontal Vertical Diagonal

Cameraman 0.9469 0.9626 0.9062 -0.0185 0.0334 -0.0564

Lena 0.9128 0.9555 0.8947 -0.0361 0.0178 0.0067

Mandrill 0.8732 0.8297 0.7854 0.0040 -0.0040 -0.0021

One essential statistical technique for assessing an image encryption algorithm’s competency

is the correlation test. It calculates how similar the values of nearby pixels in an image are to

one another. Because of the slow changes in intensity throughout the image, neighboring pixels

in plain images, whether they are oriented diagonally, vertically, or horizontally, tend to show

strong correlation. There are three ways to test correlation:

Horizontal: (x,y) and (x+1,y)

Vertical: (x,y) and (x,y+1)

Diagonal: (x,y) and (x+1,y+1)

This statistical redundancy should be removed by a robust encryption algorithm, though, creating

an encrypted image in which neighboring pixels seem statistically independent and uncorrelated.

In this work, 2000 pairs of adjacent pixels in each of the three location directions (horizontal,

vertical, and diagonal) are randomly selected from both the plain and ciphered images in order to

perform the correlation analysis. The intensity values of the pixel and its neighbor are noted for

every sampled pair, and the Pearson correlation coefficient is calculated. Strong correlation is

indicated by values close to +1 or −1, whereas no correlation is indicated by values close to

0. This coefficient measures the linear relationship between pixel pairs. Additionally, scatter

plots are produced to show the pixel relationships graphically. The encryption process effectively

breaks the plain image’s predictable structure, improving security, as demonstrated by the nearly

zero correlation of the encrypted image and the high correlation of the plain image. The ECC-

PRNG-based encryption technique successfully generates a cipher image with high statistical

randomness, as evidenced by the significant decrease in correlation coefficients in all directions.

4.8 Discussion
The experimental findings used to assess the effectiveness of the suggested ECC-based image

encryption scheme are shown in this section. The algorithm was validated under various condi-

tions using a number of standard test images, such as Lena, Cameraman, and Mandrill. Several

63

Table 4.4: Lena Grayscale Image comparison

Algorithm Entropy UACI Corr-H Corr-D Corr-V NPCR

Our 7.9976 28.65630 -0.0361 0.0178 0.0067 99.6582

[31] 7.9975 33.670 0.0030 0.0096 0.0026 99.610

[59] 7.9975 33.472 -0.0018 -0.0009 0.0011 99.614

[49] 7.9965 33.392 0.0029 -0.0003 0.0080 99.617

[50] 7.9972 33.423 0.0069 0.0075 0.0479 99.625

[60] 7.9977 33.413 0.0003 -0.0003 -0.0000 99.621

[48] 7.9974 33.463 0.0004 0.0051 0.0051 99.606

[61] 7.9976 33.451 -0.0018 0.0040 -0.0006 99.609

[51] 7.9967 34.080 -0.0003 -0.0066 -0.0013 99.580

[52] 7.9970 33.505 0.0119 0.0011 0.0092 99.594

[53] 7.9971 33.456 -0.0029 0.0004 -0.0017 99.599

[54] 7.9970 33.419 0.0086 0.0009 0.0024 99.605

[55] 7.9962 33.384 0.0015 0.0057 0.0041 99.633

[56] 7.9970 33.546 -0.0016 -0.0026 0.0043 99.614

[57] 7.9973 33.458 -0.0023 -0.0029 0.0016 99.626

[58] 7.9975 33.457 -0.0034 -0.0063 0.0013 99.621

[62] 7.9966 33.452 -0.0008 -0.0101 0.0014 99.617

[63] 7.9974 33.356 0.0102 0.0052 0.0067 99.580

64

Figure 4.6: Adjacent pixel wise distribution analysis for Lena256×256 of original Horizontal,

vertical and diagonal image; Adjacent pixel wise distribution analysis for Lena256×256 of En-

crypted(cipher image) Horizontal, vertical and diagonal image;

65

Figure 4.7: Adjacent pixel wise distribution analysis for cameraman256×256 of original Horizon-

tal, vertical and diagonal image; Adjacent pixel wise distribution analysis for cameraman256×256

of Encrypted image Diagonal, Horizontal and vertical image;

66

Figure 4.8: Adjacent pixel wise distribution analysis for Mandrill256×256 of original Horizontal,

vertical and diagonal image; Adjacent pixel wise distribution analysis for Mandrill256×256 of

Encrypted(cipher image) Horizontal, vertical and diagonal image;

67

statistical and differential analyses, such as NPCR, UACI, histogram uniformity, information

entropy, and pixel correlation tests, were carried out to evaluate security and efficiency. The

following tables and figures present the findings, which are given below:

• The typical Lena grayscale image’s NPCR and UACI values in Table 4.1. it can be

observed that the NPCR values indicating strong resistance against differential attacks

• Table 4.2 presents the entropy value of the plain and cipher test images. The entropy

of the plain images is significantly below the ideal value of 8, indicating non-random

distribution of pixel intensity. After applying encryption, the entropy values are very close

to 8, confirming that the cipher images approximate random noise and reveal no statistical

patterns. Because of its high entropy, the encryption scheme defends against entropy-based

attacks and successfully conceals all valuable information from possible attackers.

• Figure 4.5 illustrates the histogram of plain and cipher images of cameramen, Mandrill,

and Lena. The histogram of the plain image shows significant peaks and valleys, reflecting

non-uniform pixel intensity distribution. In contrast, the cipher image is rarely uniform,

with no visible patterns, which indicates the pixel values are well randomized. This

consistent distribution demonstrates how well the suggested encryption technique hides

the plain image’s statistical characteristics, preventing histogram-based attacks.

• Table 4.3 shows the correlation coefficients of adjacent pixels in plain and cipher images.

As illustrated in Figure 4.7, 4.8, 4.6, the scatter plots of the plain images show dense

clustering along the diagonal line, indicating strong correlation. In contrast, the cipher

images display a uniform noise-like distribution, further confirming the effectiveness of

the proposed method.

• Table 4.4 presents a performance comparison between the proposed ECC-based image

encryption scheme and several existing methods reported in [31, 59, 49, 50, 60, 48, 61,

51, 52, 53, 54, 55, 56, 57, 58, 62, 63].

68

CHAPTER 5

CONCLUSION

5.1 Overview
In this chapter we describe our proposed algorithm and its efficiency. In this section, we

discuss how we improve security in our algorithms.

5.2 Summary and Conclusion
In our ECC-Based PRNG Generator we use the suggested framework and reducing the EC

and non-EC operations, the presented PRNG’s design is straightforward and effective. As a

result, the proposed encryption system is an excellent fit for real-time applications because it

uses minimal computational resources. To sum up, EC’s make excellent candidates for PRNG

design. In secure curves with big prime numbers, the amount of bits in each point coordinate is

appropriate for bit extraction. By fusing the algebraic complexity of elliptic curves with random

perturbations and nonlinear arithmetic, this ECC-based PRNG offers a promising method for

generating random numbers. Additional improvements, such changing curve parameters, secure

seeding, and formal testing, can increase its durability and applicability for cryptographic

applications, even though the functional and visual properties show great unpredictability.

In the second algorithm we make the ECDH protocol, which we use in image encryption. In

this algorithm, we used modular arithmetic over a finite field to develop the Elliptic Curve

Diffie-Hellman (ECDH) key exchange mechanism. The code effectively illustrated how Alice

and Bob, two parties, might exchange elliptic curve public keys obtained from private scalars

to safely build a common shared secret across an insecure channel. Both sides independently

69

calculated the same shared secret using elliptic curve point addition and scalar multiplication,

confirming the protocol’s accuracy and security. This shared secret, represented as a point on

the elliptic curve, may be subjected to further processing (e.g., hashing) in order to be used in

symmetric encryption systems. The answer exemplifies the fundamental strength of elliptic

curve cryptography (ECC), which offers strong security with relatively small key sizes, making it

suitable for resource-constrained scenarios like embedded systems and wireless communication

protocols.

In our 3rd algorithm, we aim to improve our PRNG so that it can generate points with higher

randomness. High-entropy, unpredictable random numbers are produced by the implemented

ECC-based PRNG system using secure hash functions and elliptic curve encryption. The system

guarantees cryptographic strength and effective key agreement by combining precomputation,

hidden generation techniques, and Diffie-Hellman key exchange. Strong randomness features

are displayed by the final 3D PRNG outputs, making them appropriate for safe applications

including cryptographic protocols, secure communications, and image encryption.

The XOR-permutation procedure in our ECC based PRNG image cipher takes advantage of

ECC’s asymmetric security to convert it into an effective symmetric encryption method. After

exchanging elliptic-curve public keys, Alice and Bob reach the same curve point without

disclosing their secrets. By hashing the curve’s (x,y) coordinates, they are able to obtain an

identical 256-bit key that never crosses the channel. In addition to driving a key-dependent

permutation that confuses all pixel positions (diffusion), that key also seeds a PRNG whose bytes

are XOR-mixed with every pixel (confusion). While anyone without the key sees only noise,

Bob can undo the shuffle and XOR to restore the image flawlessly because both procedures are

fully reversible with the same PRNG output and permutation order.

5.3 Future Work
While ECC is widely regarded as a robust and efficient cryptographic scheme, the following

challenges remain:

Scalar Multiplication Optimization: Although those techniques are available, scalar multipli-

cation is still the performance hindrance of ECC operations, especially in the limited-resource

scenario.

Side-Channel Attacks: Timing and power analysis attack on ECC implementations are possible

if security measures are not adopted.

Quantum Computing Threat: The Elliptic Curve Discrete Logarithm Problem (ECDLP) could

70

theoretically be solved by new quantum algorithms like Shor’s algorithm, lowering the security

of ECC once sufficiently powerful quantum computers become available.

This presents the direction for further research work to improve ECC performance and to

strengthen its security, especially in the post-quantum cryptography environment.

71

REFERENCES

[1] S. Bhattacharya, “Cryptology and information security—past, present, and future role in

society,” International Journal on Cryptography and Information Security (IJCIS), vol. 9,

no. 1/2, pp. 13–36, 2019.

[2] F. Maqsood, M. Ahmed, M. M. Ali, and M. A. Shah, “Cryptography: A comparative

analysis for modern techniques,” International Journal of Advanced Computer Science and

Applications, vol. 8, no. 6, pp. 1–6, 2017.

[3] S. Chandra, S. Paira, S. S. Alam, and G. Sanyal, “A comparative survey of symmetric and

asymmetric key cryptography,” in Proceedings of the 2014 International Conference on

Electronics, Communication and Computational Engineering (ICECCE), pp. 83–93, IEEE,

2014.

[4] E. Oswald, “Introduction to elliptic curve cryptography,” Institute for Applied Information

Processing and Communication, Graz University Technology, 2002.

[5] V. Gupta, S. Gupta, S. Chang, and D. Stebila, “Performance analysis of elliptic curve

cryptography for ssl,” in Proceedings of the 1st ACM workshop on Wireless security,

pp. 87–94, 2002.

[6] M. Bafandehkar, S. M. Yasin, R. Mahmod, and Z. M. Hanapi, “Comparison of ecc and

rsa algorithm in resource constrained devices,” in 2013 international conference on IT

convergence and security (ICITCS), pp. 1–3, IEEE, 2013.

[7] D. Hankerson, S. Vanstone, and A. Menezes, Guide to elliptic curve cryptography. Springer,

2004.

[8] H. Loriya, A. Kulshreshta, and D. Keraliya, “Security analysis of various public key

cryptosystems for authentication and key agreement in wireless communication network,”

72

International Journal of Advanced Research in Computer and Communication Engineering

(IJARCCE), vol. 6, no. 2, pp. 267–274, 2017.

[9] V. S. Miller, “Use of elliptic curves in cryptography,” in Advances in Cryptology – CRYPTO

’85, Santa Barbara, CA, USA, vol. 218, pp. 417–426, 1985.

[10] N. Koblitz, A. Menezes, and S. Vanstone, “The state of elliptic curve cryptography,”

Designs, codes and cryptography, vol. 19, pp. 173–193, 2000.

[11] C. E. Shannon, “Communication theory of secrecy systems,” The Bell system technical

journal, vol. 28, no. 4, pp. 656–715, 1949.

[12] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of computation, vol. 48, no. 177,

pp. 203–209, 1987.

[13] M. Amara and A. Siad, “Elliptic curve cryptography and its applications,” in Proceedings

of the International Workshop on Systems, Signal Processing and Their Applications

(WOSSPA), pp. 247–250, IEEE, 2011.

[14] U. Hayat and N. A. Azam, “A novel image encryption scheme based on an elliptic curve,”

Signal Processing, vol. 155, pp. 391–402, 2019.

[15] W. Diffie and M. E. Hellman, “New directions in cryptography,” in Democratizing Cryp-

tography: The Work of Whitfield Diffie and Martin Hellman, pp. 365–390, 2022.

[16] R.-I. Chang, C.-W. Chiang, and Y.-H. Hung, “Grouping sensors for the key distribution

of implicit certificates in wireless sensor networks,” Electronics, vol. 12, no. 13, p. 2815,

2023.

[17] M. Scott, “Implementing cryptographic pairings,” Lecture Notes in Computer Science,

vol. 4575, p. 177, 2007.

[18] K. Gupta, S. Silakari, R. Gupta, and S. A. Khan, “An ethical way of image encryption using

ecc,” in 2009 First International Conference on Computational Intelligence, Communica-

tion Systems and Networks, pp. 342–345, IEEE, 2009.

[19] X. Li, J. Chen, D. Qin, and W. Wan, “Research and realization based on hybrid encryption

algorithm of improved aes and ecc,” in 2010 International Conference on Audio, Language

and Image Processing, pp. 396–400, IEEE, 2010.

73

[20] Z. E. Dawahdeh, S. N. Yaakob, and A. M. Sagheer, “Modified elgamal elliptic curve

cryptosystem using hexadecimal representation,” Indian Journal of Science and Technology,

vol. 8, no. 15, pp. 1–8, 2015.

[21] L. C. Washington, Elliptic curves: number theory and cryptography. Chapman and

Hall/CRC, 2008.

[22] A. Menezes, “Evaluation of security level of cryptography: The elliptic curve discrete

logarithm problem (ecdlp),” University of Waterloo, vol. 14, pp. 1–24, 2001.

[23] R. Haakegaard and J. Lang, “The elliptic curve diffie-hellman (ecdh),” Online at

https://koclab. cs. ucsb. edu/teaching/ecc/project/2015Projects/Haakegaard+ Lang. pdf,

2015.

[24] S. H. Islam and G. Biswas, “Design of two-party authenticated key agreement protocol

based on ecc and self-certified public keys,” Wireless Personal Communications, vol. 82,

no. 4, pp. 2727–2750, 2015.

[25] A. R. Omondi, “Elliptic-curve basics,” in Cryptography Arithmetic: Algorithms and

Hardware Architectures, pp. 225–241, Springer, 2020.

[26] U. M. Maurer and S. Wolf, “The diffie–hellman protocol,” Designs, Codes and Cryptogra-

phy, vol. 19, no. 2, pp. 147–171, 2000.

[27] S. M. C. Vigila and K. Muneeswaran, “Elliptic curve based key generation for symmetric

encryption,” in 2011 International Conference on Signal Processing, Communication,

Computing and Networking Technologies, pp. 824–829, IEEE, 2011.

[28] S. Baghbanijam, H. Sanaei, and M. Farajzadeh, “An improved authentication & key

exchange protocol based on ecdh for wsns,” in 2022 30th International Conference on

Electrical Engineering (ICEE), pp. 563–569, IEEE, 2022.

[29] E. Avaroğlu, I. Koyuncu, A. B. Özer, and M. Türk, “Hybrid pseudo-random number

generator for cryptographic systems,” Nonlinear Dynamics, vol. 82, no. 1, pp. 239–248,

2015.

[30] A. Zaru and M. Khan, “General summary of cryptography,” Journal of Engineering

Research and Application, vol. 8, no. 02, pp. 68–71, 2018.

74

[31] N. A. Azam, G. Murtaza, and U. Hayat, “A novel image encryption scheme based on

elliptic curves and coupled map lattices,” Optik, vol. 274, p. 170517, 2023.

[32] M. F. Khan, A. Ahmed, and K. Saleem, “A novel cryptographic substitution box design

using gaussian distribution,” IEEE Access, vol. 7, pp. 15999–16007, 2019.

[33] D. Lambić, “A novel method of s-box design based on discrete chaotic map,” Nonlinear

dynamics, vol. 87, pp. 2407–2413, 2017.

[34] A. H. Zahid and M. J. Arshad, “An innovative design of substitution-boxes using cubic

polynomial mapping,” Symmetry, vol. 11, no. 3, p. 437, 2019.

[35] G. Murtaza, N. A. Azam, and U. Hayat, “Designing an efficient and highly dynamic

substitution-box generator for block ciphers based on finite elliptic curves,” Security and

Communication Networks, vol. 2021, no. 1, p. 3367521, 2021.

[36] S. Ibrahim and A. M. Abbas, “Efficient key-dependent dynamic s-boxes based on permu-

tated elliptic curves,” Information Sciences, vol. 558, pp. 246–264, 2021.

[37] F. Özkaynak and A. B. Özer, “A method for designing strong s-boxes based on chaotic

lorenz system,” Physics Letters A, vol. 374, no. 36, pp. 3733–3738, 2010.

[38] B. B. Cassal-Quiroga and E. Campos-Cantón, “Generation of dynamical s-boxes for block

ciphers via extended logistic map,” Mathematical Problems in Engineering, vol. 2020,

no. 1, p. 2702653, 2020.

[39] A. A. Abdellatif and F. Holzapfel, “Model based safety analysis (mbsa) tool for avionics

systems evaluation,” in 2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC),

pp. 1–5, IEEE, 2020.

[40] A. A. Abd EL-Latif, B. Abd-El-Atty, and S. E. Venegas-Andraca, “A novel image steganog-

raphy technique based on quantum substitution boxes,” Optics & Laser Technology, vol. 116,

pp. 92–102, 2019.

[41] G. Liu, J. Zhang, G. Xi, R. Zuo, and S. Liu, “Designing mg alloys with high ductility:

Reducing the strength discrepancies between soft deformation modes and hard deformation

modes,” Acta Materialia, vol. 141, pp. 1–9, 2017.

75

[42] U. Hayat, N. A. Azam, and M. Asif, “A method of generating 8× 8 substitution boxes

based on elliptic curves,” Wireless Personal Communications, vol. 101, pp. 439–451, 2018.

[43] M. B. Farah, A. Farah, and T. Farah, “An image encryption scheme based on a new

hybrid chaotic map and optimized substitution box,” Nonlinear Dynamics, vol. 99, no. 4,

pp. 3041–3064, 2020.

[44] T. Farah, R. Rhouma, and S. Belghith, “A novel method for designing s-box based on

chaotic map and teaching–learning-based optimization,” Nonlinear dynamics, vol. 88, no. 2,

pp. 1059–1074, 2017.

[45] E. Biham and A. Shamir, “Differential cryptanalysis of des-like cryptosystems,” Journal of

CRYPTOLOGY, vol. 4, pp. 3–72, 1991.

[46] M. Matsui, “Linear cryptanalysis method for des cipher,” in Workshop on the Theory and

Application of of Cryptographic Techniques, pp. 386–397, Springer, 1993.

[47] Y. Wu, J. P. Noonan, S. Agaian, et al., “Npcr and uaci randomness tests for image encryp-

tion,” Cyber journals: multidisciplinary journals in science and technology, Journal of

Selected Areas in Telecommunications (JSAT), vol. 1, no. 2, pp. 31–38, 2011.

[48] X. Wang and M. Zhang, “An image encryption algorithm based on new chaos and diffusion

values of a truth table,” Information Sciences, vol. 579, pp. 128–149, 2021.

[49] C. Zou, X. Wang, and H. Li, “Image encryption algorithm with matrix semi-tensor product,”

Nonlinear Dynamics, vol. 105, no. 1, pp. 859–876, 2021.

[50] K. Hosny, S. Kamal, M. Darwish, and G. Papakostas, “New image encryption algorithm

using hyperchaotic system and fibonacci q-matrix. electronics 2021 (10): 1066,” 2021.

[51] M. Y. Abdelatty and M. A. Swillam, “Hybrid plasmonic electro-optical absorption modula-

tor based on phase change characteristics of vanadium-dioxide,” Journal of Nanophotonics,

vol. 13, no. 4, pp. 046014–046014, 2019.

[52] S. Amina and F. K. Mohamed, “An efficient and secure chaotic cipher algorithm for image

content preservation,” Communications in Nonlinear Science and Numerical Simulation,

vol. 60, pp. 12–32, 2018.

76

[53] X. Wang, X. Zhu, and Y. Zhang, “An image encryption algorithm based on josephus

traversing and mixed chaotic map,” IEEE Access, vol. 6, pp. 23733–23746, 2018.

[54] X. Wang, S. Wang, Y. Zhang, and K. Guo, “A novel image encryption algorithm based on

chaotic shuffling method,” Information Security Journal: A Global Perspective, vol. 26,

no. 1, pp. 7–16, 2017.

[55] A. Pourjabbar Kari, A. Habibizad Navin, A. M. Bidgoli, and M. Mirnia, “A novel multi-

image cryptosystem based on weighted plain images and using combined chaotic maps,”

Multimedia Systems, vol. 27, no. 5, pp. 907–925, 2021.

[56] X. Yan, X. Wang, and Y. Xian, “Chaotic image encryption algorithm based on arithmetic se-

quence scrambling model and dna encoding operation,” Multimedia Tools and applications,

vol. 80, pp. 10949–10983, 2021.

[57] Y. Niu and X. Zhang, “A novel plaintext-related image encryption scheme based on chaotic

system and pixel permutation,” IEEE Access, vol. 8, pp. 22082–22093, 2020.

[58] H.-M. Yuan, Y. Liu, T. Lin, T. Hu, and L.-H. Gong, “A new parallel image cryptosystem

based on 5d hyper-chaotic system,” Signal Processing: Image Communication, vol. 52,

pp. 87–96, 2017.

[59] M. Li, M. Wang, H. Fan, K. An, and G. Liu, “A novel plaintext-related chaotic image

encryption scheme with no additional plaintext information,” Chaos, Solitons & Fractals,

vol. 158, p. 111989, 2022.

[60] X. Wang and Y. Li, “Chaotic image encryption algorithm based on hybrid multi-objective

particle swarm optimization and dna sequence,” Optics and Lasers in Engineering, vol. 137,

p. 106393, 2021.

[61] Y. Luo, S. Tang, J. Liu, L. Cao, and S. Qiu, “Image encryption scheme by combining the

hyper-chaotic system with quantum coding,” Optics and Lasers in Engineering, vol. 124,

p. 105836, 2020.

[62] Y. Chen, Y. Hu, K. Li, C. K. Yeo, and K. Li, “Approximate personalized propagation

for unsupervised embedding in heterogeneous graphs,” Information Sciences, vol. 600,

pp. 287–300, 2022.

77

[63] X. Wang, Y. Wang, S. Wang, Y. Zhang, and X. Wu, “A novel pseudo-random coupled lp

spatiotemporal chaos and its application in image encryption,” Chinese Physics B, vol. 27,

no. 11, p. 110502, 2018.

[64] N. A. Azam, I. Ullah, and U. Hayat, “A fast and secure public-key image encryption scheme

based on mordell elliptic curves,” Optics and Lasers in Engineering, vol. 137, p. 106371,

2021.

[65] E. Z. Zefreh, “An image encryption scheme based on a hybrid model of dna computing,

chaotic systems and hash functions,” Multimedia Tools and Applications, vol. 79, no. 33,

pp. 24993–25022, 2020.

[66] L. Xu, Z. Li, J. Li, and W. Hua, “A novel bit-level image encryption algorithm based on

chaotic maps,” Optics and Lasers in Engineering, vol. 78, pp. 17–25, 2016.

[67] G. Ye, “Image scrambling encryption algorithm of pixel bit based on chaos map,” Pattern

Recognition Letters, vol. 31, no. 5, pp. 347–354, 2010.

[68] T. J. Satish, M. N. S. Theja, G. G. Kumar, and V. Thanikaiselvan, “Image encryption using

integer wavelet transform, logistic map and xor encryption,” in 2018 Second International

Conference on Electronics, Communication and Aerospace Technology (ICECA), pp. 704–

709, IEEE, 2018.

[69] P. Singh, A. Yadav, and K. Singh, “Phase image encryption in the fractional hartley

domain using arnold transform and singular value decomposition,” Optics and Lasers in

Engineering, vol. 91, pp. 187–195, 2017.

[70] K. Xuejing and G. Zihui, “A new color image encryption scheme based on dna encoding

and spatiotemporal chaotic system,” Signal Processing: Image Communication, vol. 80,

p. 115670, 2020.

[71] A. A. Karawia and Y. A. Elmasry, “New encryption algorithm using bit-level permutation

and non-invertible chaotic map,” IEEE Access, vol. 9, pp. 101357–101368, 2021.

[72] X. Wang and H. Sun, “A chaotic image encryption algorithm based on improved joseph

traversal and cyclic shift function,” Optics & Laser Technology, vol. 122, p. 105854, 2020.

78

[73] U. Hayat, I. Ullah, N. A. Azam, and S. Azhar, “A novel image encryption scheme based on

elliptic curves over finite rings,” Entropy, vol. 24, no. 5, p. 571, 2022.

	AUTHOR’S DECLARATION
	ABSTRACT
	TABLE OF CONTENTS
	Table of Contents
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	LIST OF SYMBOLS
	ACKNOWLEDGMENT
	DEDICATION
	=Introduction and Literature Review
	Background of Cryptography
	Elliptic Curve Cryptography
	Advantages of Elliptic Curve Cryptography
	Challenges in Elliptic Curve Cryptography

	Comparison between RSA vs ECC
	Diffie-Hellman Key Exchange
	Literature Review

	=Preliminaries
	Cryptography
	Types of Cryptography
	Symmetric Key Cryptography
	Asymmetric Key Cryptography

	Elliptic Curve Basics
	Elliptic Curve Logarithm Problem
	Elliptic Curve Diffie Hellman (ECDH)
	Public and Private Keys in ECC
	Concept of Base Point or Generator Point
	Diffie-Hellman Protocol
	Concept of Key Generation in ECC
	 Key Generated through the ECDH Protocol
	Pseudo-random Number Generation
	S-box (substitution box)
	Cryptosystem
	Cryptographic Analysis
	Differential Cryptanalysis
	Test of Entropy
	Histogram Test
	Correlation Test for Image Encryption

	=A Novel Image Encryption Scheme Based on Elliptic Curves and Coupled Map Lattices
	Overview
	Pseudo-random Numbers Generation
	Couple Map Lattice
	A Dynamic S-box Generator that Makes Use of a Couple Map Lattices and an Elliptic Curve
	Review of S-box Generator

	Encrypting and Decrypting Images
	Process of Decryption

	Analysis of Security
	Difference based Cryptoanalysis
	Cryptoanalysis Using Statistics
	Key Analysis
	Computation Analysis

	Discussion

	=An Efficient Approach to Design a New Asymmetric Key Encryption Algorithm Using Elliptic Curves
	Overview
	Elliptic Curve PRNG Generator
	Output of ECC-based 3D PRNG Generator

	ECDH Algorithm
	Results of ECDH Algorithm

	ECC-Based Secure PRNG
	Output of ECC-Based Secure PRNG
	Results of this Algorithm

	Mathematical example of ECC PRNG Encryption Decryption to verify Algorithm
	Step 1: Calculate the Public Key for Alice: PA = nA G = 3 G
	Step 2: Calculate the Public Key for Alice: PB = nB G = 7 G
	Step 3: Calculate Shared Secret SB = nB PA = 7 (10, 6)
	Conclusion of ECDH
	Compute Shared Secret
	Hash the Shared Secret
	Generating PRNG Stream
	Encryption

	Differential Cryptanalysis
	The Image Encryption Calculation Process Using NPCR and UACI

	Statistical Cryptanalysis
	Entropy Test
	Histogram Test
	Correlation Test

	Discussion

	Conclusion
	Overview
	Summary and Conclusion
	Future Work

	References

