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ABSTRACT

Title: An Efficient Approach to Design a New Asymmetric Key Encryption Algorithm
Using Elliptic Curves

The Diffie-Hellman Key (DHK) protocol is highly effective for asymmetric keys, but if the
parameters are not appropriately selected, it may be vulnerable to brute force attacks. Our
research attempts to enhance the elliptic curve cryptosystem (ECC)-based asymmetric key
scheme. In the improved DHK, the sender and recipient sharing method is utilized, in which they
agree on an elliptic curve, but generator G is kept secret. We have proposed an ECC PRNG key
exchange protocol that is more reliable than the previous one, as G is kept secret. Additionally,
pseudo-random numbers are subjected to the suggested scheme. For the diffusion in this new
public key technique, pseudo-random numbers are utilized. The system enhances its security
against known or selected plaintext attacks by using a pseudo-random number stream generated
from ECC to perform modular encryption. The suggested algorithm’s security and simulation

demonstrate its effectiveness, adaptability to various threats, and potential for practical use.
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

In this chapter we discuss types of cryptography, the use of elliptic curves, and their advan-
tages and disadvantages in cryptography. Further, we discuss the Diffie-Hellman key exchange

and its computation over elliptic curves.

1.1 Background of Cryptography

For a long time, cryptography has been a widely used method of encoding messages. From
ancient ciphers to modern cryptographic algorithms, the fundamental goal remains the same
that is to use it for the confidentiality of data [1]. In the 1970’s the most important advancement
come to light was public-key cryptography which added the idea of public and private keys to the
process of encryption. RSA and Diffie-Hellman behind them use a concept that their solutions
take too long, for example, the factoring of integers or discrete logarithms. Cryptography has
been known to play a crucial role in today’s society and virtually in every electronic application
and service such as secure email, online cash transaction, block chain technology and even in
smart IoT devices [2].
Cryptographic techniques can be largely separated into two groups. These two are symmetric and
asymmetric key encryption, commonly use in the today’s world. Symmetric key cryptography
uses a single secret key for both encryption and decryption in the advanced encryption standard
AES. Although they are effective, symmetric key systems would prove problematic in key
distribution and management. Two mathematically related keys are used in asymmetric key
encryption, one key for sending the message and the other key for receiving the message. This is

used for key exchange and can therefore be used in today’s communication systems [3].



1.2 Elliptic Curve Cryptography

Since beginning, two main cryptosystems such as RSA and El-Gamal have appeared to be
resistant to all attacks. Because of this, these two public key cryptosystems are currently the most
widely used and regarded. One can make advantage of both digital signatures and encryption/de-
cryption cryptosystems. It should be safe to utilize implementations of such cryptosystems since
they are covered by all significant security standards. Elliptic curve cryptography (ECC) were
created by Miller and Koblitz in 1985 and have gained popularity due to their efficiency and
security. They are particularly relevant in today’s fast-paced information technology, where
mobile phones and handhelds require secure conversations. ECC’s ideal qualities stem from
the absence of sub exponential techniques in the elliptic curve discrete logarithmic problem,
allowing for shorter keys for higher security levels [4].
Many contemporary cryptographic systems favor ECC over more conventional techniques like
RSA or DSA because it provides robust security with significantly lower key sizes. ECC also
allows for flexibility in secure system design by supporting several cryptographic protocols,
including elliptic curve Diffie-Hellman, which is used for secure key exchange, and elliptic
curve based DSA, which is used for digital signatures. These benefits, along with the support of
prominent standards bodies like NIST, have made ECC the go-to option for putting safe, effective

cryptography systems into place.

1.2.1 Advantages of Elliptic Curve Cryptography
1. Smaller Key Sizes: ECC is capable of providing an equivalent amount of security for
different key sizes compared to RSA. For instance, an ECC key of 256 bits has the same
strength as RSA key with 3072 bits [5]. Thus, reduction in key size results in improved

computational cost and less demands on storage area.

2. Efficiency: Some ECC functions like scalar multiplication are less computationally
expensive than RSA’s modular exponentiation and therefore make ECC ideal for use in

constrained devices.

3. Security: The ECDLP is more complex than the mathematical computations which are

applied in RSA and Diffie-Hellman and is very resistant to cryptographic attacks.

4. Scalability: ECC has flexibility between devices and at the same time is applicable for

use in the [oT devices for communication securely and also in blockchain systems.



1.2.2 Challenges in Elliptic Curve Cryptography
1. Computational Cost: Though ECC is faster than RSA, the operations on elliptic curves
such as scalar point multiplication can put much load on devices with low computational

capabilities.

2. Implementation Vulnerabilities: Unfortunately, if ECC is implemented in a wrong way,
there is a threat of side-channel attacks, when an attacker engages the information leakage

during the cryptographic operations implementation.

3. Quantum Threat: Some studies suggest that Goppal’s attacks can be overcome using
Shor’s algorithm that breaks ECDLP which it an as liability of using ECC. Nevertheless,

ECC remains safe from classical computing attack kinds.

4. Key Mapping: Converting plaintext to some points on the elliptic curve is quite demand-

ing, and correct functional mapping techniques must be developed.

1.3 Comparison between RSA vs ECC

1. Foundation of Mathematics: RSA is based on the difficulty of factoring large integers,

whereas ECC requires the complexity of the ECDLP.

2. Security and Key sizes: ECC offers security that is comparable to RSA, as seen in Table
1.1 and Figure 1.1, but with much reduced key sizes.

Effective scalar multiplication computation is essential to an ECC’s performance. The

Table 1.1: Comparison of ECC and RSA Key Sizes at Equivalent Bit-Level Security

Bit-Level Security | Key Size (in bits)
ECC RSA
80 160 1024
112 224 2048
128 256 3072
192 384 7680
256 512 15360

security level of a 160-bit ECC key is equal to that of a 1024-bit RSA/DSA key. noted that

2048 bits were needed for really important keys and 1024 bits were needed for corporate



use in order to implement RSA security. Therefore, it is clear that ECC is superior to RSA
since it can offer the same level of security with a shorter key length. The key sizes used
in RSA and ECC are displayed in Table 1.1. A secure cryptosystem of ECC requires a

key size of at least 160 bits.

Standard key size for RSA and ECC
(in bits)
2 ERSA EECC
=
— 15360
IS
E 3072 =
204 12
1024 24 ‘
-256 84
80 112 128 192 256
Security Level (in Bits)

Figure 1.1: NIST’s suggested security bit level

This suggests that for the same level of security, ECC can use more parameters than RSA.
For example, RSA requires a key size of 2048 bits to achieve a security level of 112 bits,

as shown in Table 1.1 and Figure 1.1, while ECC requires a key size of 224 bits [6].

3. Competence: To generate keys, encrypt data, and decrypt it, ECC is far quicker than
RSA, particularly on low-power devices like smart cards and smartphones. Because RSA

heavily relies on modular exponentiation, it becomes slower as key sizes increase.

1.4 Diffie-Hellman Key Exchange

Two unknown parties can collaborate to generate a secure channel using a shared secret key
by employing the Diffie-Hellman key exchange technique. The multiplicative group of integers
modulo p, where p is a prime number and g is a primitive root modulo p, is used in the simplest

and original implementation of the protocol. Diffie-Hellman key is illustrated in Figure 1.2.



Public Channel

1L Alice and Bob

publicly agree on a
shared oy to wse (p, g} T ®
> < =

=23,9=5
8 Alice / s ‘ Bob
az4 bed

2 Alice combines her secret key [a) 1. Bob combines his sacret key (b)

with the shared key and sends the with the shared key and sends the
resull (A) to Bob result (B) to Alice

'JE 6¥mod 73 = 10

5. Bob combines (A)
with lver secret key {a) with his secret key ()

4. Alice combines (8]

6. Alice and Bob have a
shared secret key!

Figure 1.2: Diffie-Hellmen Protocol

1.5 Literature Review

Since ancient times, the technique of secret writing, or cryptography, has been used to conceal
information or maintain the security of messages. [6] contrasted RSA with ECC. When it comes
to key size utilization, ECC is lower while RSA is larger. Consequently, for the same security
level, RSA takes longer to upload, encrypt, and decrypt than ECC. A number of encryption
models are put out to secure the transport of crucial information by rendering it unintelligible.
These models are based on chaotic maps, algebraic systems, and EC’s. Modern cryptography
is the design, development, and analysis of various mathematical techniques to ensure secure
communication in the presence of opponent [7]. Asymmetric keys: RSA, ECC, and were used
by H T Loriya et al. [8] and compared the sizes of their keys. In devices with limited resources,
Bafandehkar et al. The concept of EC’s in cryptography was initially proposed by Miller [9].
ECC is more efficient and provides better security with a smaller key size than traditional
cryptosystems like the RSA protocol. Koblitz introduced the idea of the discrete logarithm
problem, which is employed in Diffie-Hellman key cryptography, to the EC group [10]. Neal et
al. [10] developed the concept of discrete logarithm problem for the generation of extremely
secure and repid security systems. ECC deals with the construction of secure cryptosystems
that ensure the protection of sensitive information. Numerous data security crypto-systems have
been designed based on various mathematical structures and EC. In 1949, Shannon [11] made
a significant contribution by establishing that to achieve high security in a cryptosystems, It

must be able to cause data to become confused and diffuse up to a certain point. Neal [12]



designed an EC based cryptosystem over a finite field. Amara and Siad in [13] compared ECC
with RSA. Furthermore, Hayat and Azam [14] presented a new method for image encryption
that makes use of ECs. With a limit on the number of points on an elliptic curve, a hybrid image
encryption method [14] based on a dynamic S-box and pseudo-random numbers (PRN) over
an ordered elliptic curve has already been presented. Author et al. [15] presented the original
Diffie-Hellman key exchange protocol, which is not unique to elliptic curves. The discrete log
problem is transferred into the elliptic curve group in ECDH, the elliptic curve comparable of this
basic concept. The ECDH key exchange technique uses ECC to securely transfer cryptographic
keys between two parties. The public and private keys are generated by ECDH using elliptic
curve mathematics. While the public key is made available to everyone, the private key is
kept confidential. For the exchange of keys, the two sides share public keys and calculate a
shared secret using their private keys. The shared secret can then be used to encrypt and decode
messages between the two parties [16]. In [17], the author addresses elliptic curve operations and
optimizations that are useful for ECDH and related protocols, although it is primarily concerned
with pairs. The elliptic curve is used by many academics to create cipher images for image
encryption systems. Each original image pixel [18] is transformed into the elliptic curve points
(x,y) in a new image encryption process. A cipher image pixel is created using these elliptic
curve points. When compared to other systems, the system offers tiny block size, great speed,
and high level of safety. However, there aren’t many curve points produced. If an attacker is able
to predict the elliptic curve’s basic parameters, they can also obtain these points. Therefore, great
security may not be provided by mapping the image pixel process to the curve points. In order to
improve the speed of data encryption and decryption and address the issue of key distribution, a
combination of enhanced AES and ECC [19] encryption algorithms was previously developed. A
new mapping scheme [20] has been developed for text messages, separating them into characters,
transforming them into hexadecimal values, and calculating elliptic curve points. These points
are appended to the sender’s private key for encryption. However, this method’s implementation

is limited to text and should be used for audio and video data testing.



CHAPTER 2

PRELIMINARIES

This chapter provides a theoretical background on cryptographic methods, including elliptic
curve and ECC-based pseudo-random number generators. Understanding these preliminary steps
is crucial for designing, implementing, and assessing the proposed ECC-based image encryption

system.

2.1 Cryptography

The art and study of secure communication methods in the presence of attackers is known as
cryptography. To guarantee confidentiality, integrity, and authenticity, it involves converting data
into a format that is unreadable (ciphertext), which only authorized parties can access. This is

accomplished by encoding and decoding data using mathematical methods and keys.

2.2 Types of Cryptography
Cryptography can be divided into two main categories based on how encryption techniques

are classified: symmetric and asymmetric key-based systems.

2.2.1 Symmetric Key Cryptography
Symmetric key cryptography, also known as secret key cryptography, involves data encryption
and decryption using the same secret key, which must be kept secret by both sender and recipient.

Examples include AES, DES, and 3DES.

2.2.2 Asymmetric Key Cryptography
Asymmetric cryptography, also known as public-key cryptography, involves two mathemati-
cally linked keys, a public key and a private key. The private key is confidential, while the public

key can be shared freely. This approach ensures safe communication through protocols like



ElGamal, ECC, RSA, and DSS.

2.3 Elliptic Curve Basics

For a prime p, an elliptic curve over a field F), is described as
Epp =1(x,y) €FpyxF,|y* =x'+ax+b (mod p)}U{ O} 2.1)

It is assumed that 4@ +27b* # 0 (modp) and that a,b € F,. O is a point at infinity. Let
U(x1,y1),V(x2,y2) € E(p,a,b), —U is calculated as

O otherwise

IfU(x1,y1),V(x2,y2) € E(p,a,b) then W = U +V is provided as follows:

p

U ifV=0
0 ifU=-V
U+V = (2.3)
Vv ifU=0
\ W (x3,y3) if Otherwise

In this case (x3,y3) = (m* —x; — x2,m(x1 — x3) — y1)(mod p) where

ii:ii itU #V
m=9q ol (2.4)
zlyl ifU=Vandy, #0

Additionally, a graphical representation of the addition, point doubling, point at infinity when
both y coordinates are zero and point at infinity when the coordinates are exact mirror images of

one another is provided in Figure 2.1.

Figure 2.1: Fig (a) represents Point doubling, Fig (b) represents point addition, Fig (c) represents
point at infinity when both y coordinates are zero, and Fig (d) represents point at infinity when

the coordinates are exact mirror images of one another



Since U € E(, 5, ) and k € F), the elliptic curve scalar operation is

0 if k=0,
kU = (2.5)
U+ (k—1)U otherwise.

The most basic scalar multiplication procedure is the double-and-add algorithm. The total

number of points for a E is represented by the notation #E Equation (2.6) uses

ab,p) a,b,p)*

Hasse’s inequality to ensure that the points boundaries on the E,, ),

HEF,) - (p+1)| <2vp (2.6)

Eq. (2.7) defines a Mordell-Elliptic Curve (MEC).
Epap) = {(xy) €F5[y* =x’+b  (mod p) ,b € (F,\{0}) U{0}[21] 2.7)

2.4 Elliptic Curve Logarithm Problem

In cryptography, the elliptic curve logarithm problem (ECDLP) is a mathematical problem.
The task is to discover the integer n such that V = nU given an elliptic curve defined over a finite
field, a point U on the curve, and another point V that is a multiple of U. It basically asks for the

"discrete logarithm" of V' with regard to the elliptic curve’s base point U [22].

2.5 Elliptic Curve Diffie Hellman (ECDH)

An ECC-based key exchange protocol that enables two parties to safely create a shared secret

over an unprotected channel [23].

2.6 Public and Private Keys in ECC

Private key: An integer chosen at random acts like the private key.
Generation: Firstly we choose elliptic curve and a base point G of a prime order n then we
generate a random integer a such that 1 <a <n— 1. we use a as a private key.
Public key: A point on the elliptic curve that is obtained from the private key is the public key.
Generation: The private key a is multiplied by the curve’s base point (generator point) G to
determine the public key P: P = a x G (where x stands for elliptic curve point multiplication)
[24].
2.7 Concept of Base Point or Generator Point

In ECC algorithms, a predetermined point G on the elliptic curve is used to generate keys.

Example: The base point G in the secp256k1 curve, which is used in Bitcoin, is a particular

point that is identified by its x and y coordinates [25].
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2.8 Diffie-Hellman Protocol

A cryptographic technique called the Diffie-Hellman protocol enables two people to create a
shared secret key via an unsecured channel, which can then be utilized for secure communication.
It prevents intercepting by facilitating key exchange without requiring the transmission of the

actual key [26].

2.9 Concept of Key Generation in ECC

In elliptic curve cryptography, key generation is the process of creating a private key and
corresponding public key. First, an elliptic curve over a finite field and a base point G with a big
prime order are selected. The private key is a randomly chosen big number a, where 1 < a < n,
and must be kept secret. The elliptic curve point P = a - G is then obtained by multiplying the
base point by the private key to generate the public key. Because of the difficulty of the ECDLP,
it is computationally impossible to determine the private key from the public key, making ECC a

secure and efficient cryptographic system [27].

2.10 Key Generated through the ECDH Protocol

Consider the public keys for the elliptic curve y? = x> 4+ ax + b over finite field F p» Where G is
a generator, P, = n,G and P, = n;G, which are generated by the sender’s n,G and the recipient’s
npG, respectively. The shared secret key is generated as n,P, by the sender and n,P, by the

recipient [28]. Consequently,

ngnpG = ngPy = npP, = npn,G (2.8)

2.11 Pseudo-random Number Generation

An algorithm that generates a random, deterministic series of numbers.

Use of ECC in PRNG

1. For strong security with small key sizes

2. For robust algebraic structure

3. For unpredictability and high entropy

4. Ideal for environments with limited resources [29]

2.12 S-box (substitution box)

A fundamental part of block ciphers, an S-box (Substitution box) substitutes input bits with

output bits in a nonlinear manner to create confusion and prevent cryptanalysis. It functions
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Recipient’s Recipient’s
Public Private
Key Key

Figure 2.2: Encryption and Decryption Process

as a lookup table, changing data in a way that is hard to undo without the secret key. It can be

dynamically generated (like in the AES) or fixed (like in the DES).

2.13 Cryptosystem

A tool for converting plain text to cipher text and vice versa is called cryptosystem. A
cryptosystem is able to convert plain text into cipher text and vice versa. Depending on the keys
used for encryption and decryption, either it is a symmetric or asymmetric key. The encryption
and decryption process is illustrated in Figure 2.2.
Encryption is the process of transforming a plain text into a form that is unreadable whereas
decryption is the process of transforming an unreadable message (cipher text) into a clear
and readable format. The encryption and decryption procedures are managed by one or more
cryptographic keys. The parameters that determine a particular involuntary transformation in
this system are called a set of keys. One or more cryptographic keys govern the encryption and
decryption process. In general, the following mathematical explanation can be used to describe
the encryption and decryption process:
EK(S) = C (Encryption Process)
DK (C) = S (Decryption Process)
Using the key K, we declare the message S to be message C. Then, in the decryption process, we

use the key K to execute the encrypted message C and obtain the original message, S [30].
2.14 Cryptographic Analysis
2.14.1 Differential Cryptanalysis

Differential cryptanalysis is a technique used to decipher and analyze cryptographic algo-

rithms, particularly block ciphers. It examines how variations in input pairs impact output pairs,
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helping attackers determine secret keys. If a small alteration in plain images results in different
cipher images, encryption algorithms are resistant to differential attacks. Methods like NPCR
and UACI are used to assess algorithmic sensitivity against differential attacks.

The ciphered images Cy and C; of Iy and Iy, ,, plain-images are produced by altering a single
pixel in UACI-NPCR analysis. Equations (2.9) and (2.10) are used to calculate the NPCR and
UACL

1
NPCR = D(i,j) x 1 2.
UACI =) N M % 255 x 100 (2.10)

i,J
where if C;(i, j) — C;(i, j) # 0 and D(i, j) = 0 otherwise, then D(i, j) = 1 [31].
2.14.2 Test of Entropy
The most crucial metric for measuring the degree of unpredictability in a dataset of images is
entropy. It displays the distribution of pixel intensity in an image. If I were a grayscale image,
the entropy S equation would be
255
S=— ;)P(xi) log, (P(x;)) (2.11)

High entropy indicates high randomness in image data [31].

2.14.3 Histogram Test

In cryptography, a histogram test is a statistical method for determining whether encrypted
data is random or not. It determines if the distribution of byte or symbol frequencies in cipher
text looks uniform, which is an ideal quality of secure encryption. A histogram test graphs the
frequency of each symbol or byte in cipher text. If a histogram appears too "structured" or "non-
random," it can indicate patterns or vulnerabilities in the encryption algorithm. Good encryption
must hide all patterns of the original plain text. Figure 2.3 show the uniform distribution proves

strong encryption [31].

2.14.4 Correlation Test for Image Encryption
Pixel correlation is typically high in plain images. Creating encrypted images with minimal

correlation is essential for a perfect cryptosystem. Pixel’s correlation coefficient is computed as

M (xi— F(x)(yi—F(y))

(2.12)
VI (= P2 (i = F(7))2

ny —
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Ciphertext Histogram Test
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Figure 2.3: On left figure showing cipher text and right side showing uniform distribution proves

strong Encryption

Under the requirement that
1 yvM
F(x) = Xz i
M is the data size in this case. F is the expected value opertaor and ¢ is the correlation coefficient

[31].
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CHAPTER 3

A NOVEL IMAGE ENCRYPTION SCHEME BASED ON
ELLIPTIC CURVES AND COUPLED MAP LATTICES

3.1 Overview

Research in [31] discusses the security of images and data sharing over the Internet, specifi-
cally digital images. Traditional encryption algorithms have limitations and inefficiencies. A
new image encryption approach based on elliptic curves (ECs) and coupled map lattices (CMLs)
is developed for real-time transmission of images. The method is resistant to brute-force attacks
and has a large keyspace. The algorithm can encrypt an image of size 256 x 256 in just 0.641

seconds.

3.2 Pseudo-random Numbers Generation
In this article the author generated 2D PRNGs by using the following parameters
A prime p’ such that p is equivalent to 2 mod 3
Selection of &' is selected from the range [1, p’ — 1] and my,my € [1, p']
Assume that Z x Z contains M as a subset.
Define transformation Q. p/ m, m,, from M to [0, my — 1] such that for each (a1,a2) € M and

((a,a1 +az) mod my) €Ey it states this

O pf b mymy (@1, G2) = a (mod my) 3.1

Author use the following fixed parameters to examine the sequence’s unpredictable behavior

O, ' 1 mym, fOr images of various sizes: p’ = 1048847,b" = 1,my, = p’ and m, = 256. Entropy
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and period analyses of PRNs produced using our approach are provided in Table 3.1. To create

Table 3.1: Comparison of entropy and period values for various 256x256 plain-images

Image Entropy | Period
All White 7.9972 65536
All Black 7.9971 65536
Lena 7.9930 65536
Mandrill 7.9932 65536
Pepper 7.9936 65536
Cameraman 7.9941 65536
Upper Bound of Entropy | 8.0000

PRN:ss, a collection of plain images (such as peppers, Mandrill, Lena, and Cameraman) is utilized

inaset M CZ X Zin Oy e m, p/ v/

o s EEEBEES
8
2

Index of Random Number Index of Random Number Index of Random Number

@ @ (k) @

Figure 3.1: using the variables (p’ = 1048847, = 1,my, = p,m, = 256) pseudo random number
generated from the sequence Oy ;v p m, m, are evaluated for four grayscale images of size
256 x 256 Peppers, Mandrill, Lena, and Cameraman Subfigures (a)—(d) represent the source
images;(e)—(h) display histograms of the generated PRNs;(1)—(1) visualize the PRNs themselves

for each corresponding image.
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Figure 3.1 show the images of PRN and Histogram. Figure 3.2 shows PRN’s graphs for

images as well as all-white and all-black histograms.

- Random Number

Index of Random Number

(b) (¢)

Random Number

50 100 150 200 250 0 10000 20000 30000 40000 50000 60000
Index of Random Number

(e) ()

(d)

Figure 3.2: For images where every pixel is set to 255 (all-white) or O (all-black) for parameters
of PRNs analysis (b’ = 1,my, = p,m, =256, p’ = 1048847) (a) All-white plain-image (b)PRN
histogram produced from the image (a) ;(c)PRN’s produced from the image in (a) ;(d) All-black
original-image;(e)PRN histogram produced from the image in (d); (f) pseudo random numbers

produced using the image in (d)

The PRNs in Table 3.1 have entropy values that are approximately around the upper bound.
Additionally, each gray image’s PRN histogram is consistent, as shown in Figure 3.1 and 3.2.
High periods and entropy values are produced by the suggested PRN generator, as Table 3.1

demonstrates. Thus, in a plain image, it can produce high diffusion.

3.3 Couple Map Lattice
A logistic map is one where Ax, (1 —x,) = x,41 for (0,1) € x,, and A € (0,4]. The definition
of a CML-system is

. 6 : :
41 (J) = (1=8)f(xa())) + Zf (0a(j + 1)) + f(xa(j = 1))] (3.2)
where the lattice site index is j = 1,2, ....., T, the coupling constant is & € [0 1], the time variable

is n, the real mapping is f, and 7 indicates the complete number of lattices that need to be formed.
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It is assumed that x,,(0) = x,, (7).
3.4 A Dynamic S-box Generator that Makes Use of a Couple Map Lattices

and an Elliptic Curve
A chaotic substitution box generator uses an elliptic curve and couple map lattice system to
construct m X m substitution boxes, selecting variables from E, ;, , and its generator G, and a set

T and string S is proposed in this section.

* Establishing an EC and CML-systems’ parameters: Choose G as a generator of the
parameters a,b, p and the EC E,, , ,. Determine x;,A,§ and x; = mod(z+x;—1,1), j =
1,2,....,7. The total lattices is 7, and for each lattice 7, z is utilized to construct the initial

parameter x;.

* Point generation on an EC: Use G to create a sequence of points on the E, , ;. With
0 <1 < m, Suppose S = (G) so that |S| = 2[. Set up n =m —1, as well as select
T as a set where T = {t1,....t,} C {0,2m — 1}, t; # t; for i # j, meaning that T =

2m(mod 2m —i) fori=1,...,n.

* Creation of a integer series depend on EC: With S; = Sy (mod t;), i =1,....,n, and S,
being the EC points where Y-coordinate in S, for example. Concatenate (||) each S; to

create a collection X, so that X = [S1|[S2]]...||Sx].

* Chaotic system iteration: To obtain a sequence unaffected by the initial conditions, Eq.
(3.2) iterates the CML-system 2m + ¢ times for o > 10, removing the initial & iterations.

Transform every CML iteration into an integer number using the formula:
Yi(j) = [Ui(j) x 10'%] (3.3)

* Designing an integer sequence based on CML: Define an integer sequence Y; C [0,2m —
1] for every lattice j for a m x m S-box by using modulo 2m as

Y(j) = [Yi(j) mod 2™ ,j=1,2,....,T,i=1,..2™

* S-box generation: By switching the entries of the original S-box Cy = {0, 1,...,2m — 1},
create candidate S-boxes B;, i = 1,....,2m. Make use of sets Y and X to iteratively conduct
the exchange operation (<) on Cy for the S-boxes B;, that is,

Co(Y (i) +1) ¢ Co(X (i) +1)

The last B; is the wanted S-box. Figure 3.3 shows the flow chart for our S-box generator.
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Compute initial conditions for a Parameters p, a, b and G of
' () g
CML an EC

Iteration CML 2™ + « times

Generate S = (G) s.t. |S| =
QZ

and skip first a values to obtain
Y(j)7j:17"‘77—

l

Y (j) = [Ui(4) (mod 2™)], ¢ =

1,...,2m

Figure 3.3: Flow chart of the generator

S; =Sy (mod t;) and X =
[Sill---lISnli=1,...,n

[Co:{o,...,2m—1} ]

S-box obtained by shuffling C,
using Y and X

« |

3.4.1 Review of S-box Generator

We will talk about the generator’s experimental analysis in this section. To do this, we utilize
the following 256-bit parameters for an E, 5, ,,
p=115792089210356248762697446949407573530086143415290314195533631308867097853951,
a=115792089210356248762697446949407573530086143415290314195533631308867097853948,
b=115792089210356248762697446949407573530086143415290314195533631308867097853951,
(G=[48439561293906451759052585252797914202762949526041747995844080717082404635286,
36134250956749795798585127919587881956611106672985015071877198253568414405109].
Using a E, j, , with the previously mentioned parameters and a couple map lattice with various
initially conditions xy € (0, 1), and setting additional criteria as § = 0.4254 ;A =3.9575 ;00 =
10,1 =7, z=0.7500 and T = {256,255} ,we produced a random collection of 10,000 S-boxes.
An substitution box produced by suggested generator is displayed in Table 3.2. The performance

of this generator for image encryption is assessed using the following tests:

* Sensitivity: Sensitivity is the impact of input on the generator of an substitution box
output. A generator of an S-box with high sensitivity is essential for the encryption of
images. since it strengthens the ability of an encryption algorithm to withstand differential
assaults. The generated S-box is greatly affected when the light changes in either xq or
. Therefore, we may conclude that the generator is effective and appropriate for use in

encryption applications.

* Critical point: There is no critical point because the suggested generator generates a

substitute box for every suitable set of variables. This generator function expedites the
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Table 3.2: Our method produced an S-box with the following parameters: 7 = {256,255},
xo = 0.7500, A =3.9575,00 = 10, £ =7, z=0.7500 and & = 0.4254 where a, b, p, and G are the

same as those provided as above section

53 | 8 | 207 | 8 | 213|173 | 66 | 80 | 162 | 132 | 142 | 93 | 232 | 9 | 105| 59

151 17 | 33 | 166 | 23 | 64 | 199 | 81 | 171 | 189 | 95 | 217 | 233 | 20 | 245 | 148

200 | 231 | 11 | 92 | 156 | 6 | 178 | 114 | 45 | 146 | 253 | 19 | 241 | 160 | 228 | 78

158 | 188 | 120 | 73 | 67 | 195 | 83 | 116 | 41 | 239 | 186 | 130 | 227 | 119 | 123 | 236

192 | 51 | 36 | 161 | 57 | 140 | 205 | 94 | 220|170 | 60 | 118 | 152 | 62 | 40 | 99

5 |237 167 | 4 |226 (179|121 | 55 | 110 | 149 | 187 | 22 | 169 | 76 | 229 | 70

46 (240 (176 | 39 | 63 | 27 | 234 | 117 | 164 | 90 | 144 | 182 | 30 | 102 | 97 | 242

112 65 | 68 | 122 | 155 | 180 | 72 | 211 | 135 | 196 | 200 | 183 | 103 | 141 | 150 | 247

107 | 125 | 3 98 | 28 [ 230 | 104 | 204 | 218 | 16 | 197 | 214 | 185|249 | 101 | 1

208 | 7 24 | 246 | 193 | 82 | 91 | 250 | 201 | 153 | 71 | 133 | 86 | 108 | 49 | 216

221 | 26 | 21 | 58 | 168 | 255|106 | 42 | 29 | 75 | 154 | O |202 | 136 | 18 | 111

244 1165 | 69 | 198 | 87 | 177 | 113 | 181 | 61 | 243 | 52 | 2 |[203| 25 |235| 8

77 | 157 | 137 | 225 | 88 | 163 | 223 | 212 | 96 | 210 | 147 | 109 | 134 | 159 | 175 | 252

38 | 139 | 48 | 138 | 12 | 124 | 115 | 174 | 251 | 128 | 222 | 184 | 44 | 84 | 191 | 143

32 | 74 | 131 10 | 129 | 215 | 34 | 248 | 79 | 219 | 145 | 190 | 206 | 54 | 238 | 254

15 | 172 | 47 | 100 | 43 | 126 | 35 | 127 | 224 | 56 | 37 | 13 | 14 | 194 | 31 | 50
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encryption process.

* Cryptography Output strength: Table 3.2 lists our generator’s NL (minimum, aver-
age, and maximum) as well as the possible schemes for 10,000 S-boxes. The findings
demonstrate that the recently constructed generator is capable to create S-boxes with an
average NL of 97.70 and 80 < NL < 106. Thus, the substitution box generation technique
outperforms the generators in [14, 32, 33, 34, 35], as seen in Table 3.3. NL outcomes
The paper is taken from [14, 32, 33, 34] for 10,000 S-boxes [36]. Table 3.3 provides the

Table 3.3: NL evaluation of 10,000 S-boxes.

Generator NL
maximum | average | minimum

suggested 106 97.70 80
Ref. [14] 102 92.05 64
Ref. [34] 104 97.45 82
Ref. [32] 104 84.64 52
Ref. [35] 104 99.27 84
Ref. [33] 106 90.20 0

performance analysis using S-boxes in [34, 37, 38, 39, 40, 41, 42, 43, 44]. compared to
existing S box’s, our S box improved non linearity in [34, 37, 38, 39, 40, 41, 42, 43, 44],
and its BIC-NL is superior to that in [38, 39, 41, 43]. Linear approximation probability
characterizes the S box linearity of 0.148 and a differential approximation probability of

0.047 [45, 46].

3.5 Encrypting and Decrypting Images
Alice sends Bob an image, and Bob sends a simple image of ,x,. The hash value of /
is determined, and CML-systems are initialized. Two chaotic sequences are generated, and a

diffused image D is formed. An encrypted image is created by shuffled rows and columns.

1. Computation of SHA-256
Suppose we have a image / with an mxn dimension (256 x 256 pixels). we compute
SHA-256 hash of image /. This produces 32 bytes, or a 256-bit output. In second step we

divide the hash into thirty-two parts the names of each byte are k1, hy, ., h3>. These integers
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S-box AC | DAP | LAP | NL | SAC Min | SAC Max | BIC Min | BIC Max | NL Avg
Suggested | 254 | 0.047 | 0.148 | 106 0.406 0.641 0.459 0.523 98
[34] 253 1 0.054 | 0.141 | 104 0.406 0.594 0.461 0.522 98
[38] 255 1 0.039 | 0.152 | 100 0.391 0.586 0.468 0.537 100
[38] 2551 0.047 | 0.125 | 96 0.422 0.609 0.471 0.547 96
[39] 254 1 0.054 | 0.133 | 98 0.422 0.609 0.477 0.535 94
[40] 255 1 0.039 | 0.125 | 96 0.359 0.609 0.477 0.541 98
[41] 254 1 0.039 | 0.149 | 102 0.422 0.594 0.461 0.527 96
[42] 255 1 0.039 | 0.145 | 104 0.391 0.625 0.471 0.531 98
[37] 254 1 0.047 | 0.125 | 102 0.422 0.641 0.477 0.533 100
[43] 2551 0.039 | 0.133 | 104 0.359 0.609 0.457 0.535 96
[44] 254 1 0.039 | 0.133 | 104 0.438 0.641 0.475 0.547 98

range from O to 255 and are 8-bit.Convert them to decimal if they are hexadecimal. Now
we have 32 numbers in a set /1, hy, ., h3p. These will be used to generate the chaotic map
parameters in Step 2 of image encryption and decryption. The image content is tightly
linked to the hash, which is a secret key generator. As a result, if the image is modified,
the hash is also changed, which changes the encryption output. ensures image content

sensitivity, which is a key component of secure encryption.

Choosing parameters to generate permutations in the CML system:

We generate s(u,a,b, p) and s(v,a,b, p), two permutations on [1,v] and [1, u], consequently.

Pick two subsets for D, = {hl,hz, ....,/’l16} and D, = {h17,/’l18, ..h32} of {hl,hz, ...,/’l32}.

Now we calculate using Egs.(3.4) and (3.5) of two sets of parameters. d, =
(k" k" k" KM and d, = (K k" KM KM}, Compute parameters k;, i =
1,2,...,8 as follows: K; =Y/  h;, whereas r = 1 +4(i—1) while s = 4i. If ¢ is the
set {hy,hy,....,h3;} and the hash values of the arithmetic mean, then the members of sets

d, d, are calculated based on

K" =375+ mod(q,0.25+ &) and

0 _ o (3.4)
. =mod(q, 14 %), fori=2,..,4.
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K =3.75+mod(q,0.25+ %) and

o) . (3.5)
K, =mod(q,1+ 5), fori=6,7,8.

3. Permutation construction
Establish the following beginning conditions for the CML. Using the permutation
S(a,b,u,p): Applying the variables of the elliptic curve (a,b, p,G), create a set of points
S = (G) G on an elliptic curve: A = Kl(”),s = Kz(”),xo = Kg”) and 7 = Ki”). Now use
the procedure as above to create an substitution box S(a,b, p,u). Establish the follow-
ing beginning conditions for a CML about the permutation process S(v,a,b): Using
A= KS(V),S = Kév),xo = K7(V) and 7 = Kév) while parameters of an EC (a,b,v, p), Use the
above procedure to create an substitution box S(v,a,b, p). Suppose A and & be used for

efficiency represent S(p,a,v,b) and S(p,u,a,b), consequently.

4. The creation of PRN variables:
Assume that a precomputed E ;s , for a parameter b’ € [1, p’ — 1] and a prime p = 2 (mod3)
is agreed upon by the sender and the recipient. Pick m, = h; x hj and my, € {h;-h; | i,j €
[1,32], h; # 0, h; # 0}. Lastly, calculate these equations for the plain-image p the

sequence is Yp ' i/ my,m,

5. Diffusion locally
Make a diffused image D of the plain-image I such that d(i;D) = (d(i;1) +

' mymy,p(i:d(i; P))) (mod|s|) for each integer i < uv.

6. Diffusion globally
From top to bottom, let R;,i € [1,u] represent the i’ row of D. Next, We get an image
o (D) so that the i, the i’ row of 6(D) where i € [1,u] is R (). Going from left to right,
suppose C;,i € [1,v] represent the i’ column of o(D). A(c(D)) is the cipher text of I is
then obtained so that the i'", i € [1,u] and Cy.(j) is the column of A(o(D)). Figure 3.4
showing the encryption algorithm flowchart and an illustration of our encryption method

is displayed in Figure 3.5 for a 4 by 4 image.
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[ Image(]) J

S-box Je { SHA—256 )

Y

Image (P) PRNs

Global Diffusion H Local Diffusion ]‘

y

A
Cipher-image ]

Figure 3.4: Represents the encryption algorithm’s flowchart.

Public-image

135 | 135 | 135 | 135 15 | 227 | 67 | 229
135 | 135 | 135 | 134 | TP'6/mxmy, P [ 198 | 26 | 209 | 229
134 | 134 | 133 | 132 g 198 | 26 | 67 | 206
133 | 132 | 132 | 131 198 | 227 | 67 | 206

Plain-image DHEREIEn J
145 | 135 | 135 | 136 160 | 106 | 202 | 109
135 | 135 | 135 | 134 . 77 | 161 | 88 | 107
134 | 134 | 133 | 132 g 76 | 160 | 200 | 82
137 | 132 | 132 | 133 79 | 103 | 199 | 83
41

Row shift
Cipher-image | a
199 | 103 | 83 | 79 79 | 103 | 199 | 83
200 | 160 82 | 76 | Column shift | 76 | 160 | 200 | 82
202 | 106 | 109 | 160 ) .y 160 | 106 | 202 | 109
88 | 161 | 107 | 77 3 77 | 161 | 88 | 107

Figure 3.5: An illustration of our encryption method is displayed for a 4 by 4 image.
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3.5.1 Process of Decryption

In contrast to the encryption approach, this scheme allows for decoding. A ~! and 6!, the
reverse substitution boxes must be understood for this. The CML and E,, , ;, parameters allow for
the complete derivation of these S-boxes. Alice is able to obtain the plain image ,«, by doing

these steps.
1. Determine I's hash value.

2. Use the method outlined above to create the permutations ¢ and A. Find the inverse

I'and 17! of o and A, respectively.then use Equation (3.6) to obtain

S-boxes for o~
d(i,D).

d(i,D)=c"'(A"1C))) (3.6)
3. For the plain-image P, calculate the sequence Yp i/ m, m, -

4. For each integer i <uv, find the plain-image. d(i;1) = (d(i;D) + Vp/ ' imy.m, (i,d(i; P))) (mod|s|)

is the condition.

3.6 Analysis of Security

Now, we use the standard 256 x 256 Lena image and every image from the USC-SIPI database
for encryption. Every image in the USC-SIPI database has the dimensions k x k = 256,512, 1024.
Every image is subjected to security analysis. We executed the encryption schemes using
MATLAB R2017a. Every experiment uses a PC with an Intel(R) Core(TM) 15 processor running
at 3.20 GHz, Microsoft Windows 10/64 bit, and 8.00 GB of RAM. The public image P utilized
for analysis in this section is an all-white image. The image of Lena, sized 256 x 256 used
in this section has a hash value of 663124595124170100185186724251131341822297710310
392243116172166113131491

52221972. For a E, j, ,, the parameter set (a, b, p, G) is similar to the one above.

3.6.1 Difference based Cryptoanalysis

If a small alteration in plain images results in noticeably different cipher images, So, the
encryption algorithm is resistant to differential attacks from a cryptographic perspective. The
UACI [47] and NPCR [47] are two techniques for evaluating how sensitive encryption algorithms
are to algorithmic assaults that target differentials. Differential attacks are essentially pointless if

a minor alteration to a plain image does not result in inconsistent or varied encryption behavior
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across the cipher image. To generate the ciphered images C; and C; of Iy and Iy, ,, plain-
images, a single pixel is altered in UACI-NPCR analysis. Equations (3.7) and (3.8) are used to
calculate the NPCR and UACI.

|
NPCR=——) D(i,j) x 100 3.7
I~(i. i _I/ ..

7 NxXMx 255
where if C;(i, j) — C;(i, j) # 0 and D(i, j) = 0 otherwise, then D(i, j) = 1. The proposed method
performed 50 NPCR and UACI tests on various images by altering a single pixel at various plain

image locations. Table 3.5 displays the average NPCR/UCALI value.

Table 3.5: NPCR and UACI values for each image

Metric Image Value (%)

NPCR Peppers 99.61
NPCR Mandrill 99.60
NPCR Lena 99.61

NPCR | Cameraman 99.60

UACI Peppers 33.50
UACI Mandrill 33.51
UACI Lena 33.49

UACI | Cameraman 33.44

Figure 3.6 displays the numbers for each iteration. The schemes in [48] are not as good
as our results in Table Comparison for Lena gray scale image. Additionally, we perform the
NPCR/UACI test on every plain image found in the USC-SIPI database. Figure 3.7 show the
plotted findings on paper.
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Figure 3.6: Figures (a) and (b) show the NPCR and UACI metrics, which were calculated over

50 runs for various images
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Figure 3.7: (a)NPCR evaluation across images of varying sizes (b) UACI evaluation across

images of varying sizes

3.6.2 Cryptoanalysis Using Statistics
An encryption system can be used for encryption in real time if it passes widely recognized
tests like correlation, histogram, and entropy. Below is a detailed discussion of each test and the

related findings.

Test of Entropy

The most crucial metric for measuring the degree of unpredictability in a dataset of images

is entropy. It illustrates the unpredictability of pixel intensity in an image dataset. If I were a
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grayscale image, the entropy S equation would be
255
S=—Y P(xi)log,(P(x;)) (3.9)
i=0
High entropy indicates high randomness in image data. Following Table 3.6 provides a list of

multiple images’ entropy. When compared to methods in [48, 49, 50, 51, 52, 53, 54, 55, 56, 57,

Table 3.6: Image Entropy Analysis

Plain-image Peppers | Mandrill | Lena | Cameraman

Plain image Entropy 7.5571 7.2641 | 7.4204 7.1048
Cipher image Entropy | 7.9976 7.9971 | 7.9975 7.9972

58], entropy is better than the entropy of lena encrypted image shown in Table 3.7. Additionally,
we evaluate the suggested technique on every plain image in the USC-SIPI collection. The
entropy ranges from 7.995 < H(I) <7.9999. The results are shown in Figure 3.8. As a result,

the suggested technique generates a lot of randomness.

——256% 256 |
199 gi0u512 M

7.9990 [— 1024 x 1024

7.9985
> 7.9980 1
a
79975 [ 1

T
—
1

Entro

7.9970 1
7.9965 1

7.9960 7

7.9955 1

1 | I 1

50 100 150 200
Images

Figure 3.8: The entropy distribution of images with varying sizes



Table 3.7: Lena Grayscale Image comparison

Algorithm | Entropy | UACI | Corr-H | Corr-D | Corr-V | NPCR
presented 7.9975 | 33.670 | 0.0030 | 0.0096 | 0.0026 | 99.610
[59] 7.9975 | 33.472 | -0.0018 | -0.0009 | 0.0011 | 99.614
[49] 7.9965 | 33.392 | 0.0029 | -0.0003 | 0.0080 | 99.617
[50] 7.9972 | 33.423 | 0.0069 | 0.0075 | 0.0479 | 99.625
[60] 7.9977 | 33.413 | 0.0003 | -0.0003 | -0.0000 | 99.621
[48] 7.9974 | 33.463 | 0.0004 | 0.0051 | 0.0051 | 99.606
[61] 7.9976 | 33.451 | -0.0018 | 0.0040 | -0.0006 | 99.609
[51] 7.9967 | 34.080 | -0.0003 | -0.0066 | -0.0013 | 99.580
[52] 7.9970 | 33.505 | 0.0119 | 0.0011 | 0.0092 | 99.594
[53] 7.9971 | 33.456 | -0.0029 | 0.0004 | -0.0017 | 99.599
[54] 7.9970 | 33.419 | 0.0086 | 0.0009 | 0.0024 | 99.605
[55] 7.9962 | 33.384 | 0.0015 | 0.0057 | 0.0041 | 99.633
[56] 7.9970 | 33.546 | -0.0016 | -0.0026 | 0.0043 | 99.614
[57] 7.9973 | 33.458 | -0.0023 | -0.0029 | 0.0016 | 99.626
[58] 7.9975 | 33.457 | -0.0034 | -0.0063 | 0.0013 | 99.621
[62] 7.9966 | 33.452 | -0.0008 | -0.0101 | 0.0014 | 99.617
[63] 7.9974 | 33.356 | 0.0102 | 0.0052 | 0.0067 | 99.580

28
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Histogram Analysis

If the histograms of the ciphered images are consistent, the cipher method becomes secure.
Figure 3.9 (a)-(d) show histograms of the plain images in Figure 3.10 (a)-(d), while Figure
3.10 (e)-(h) show the histograms of their encrypted images. The suggested encryption scheme’s

security is demonstrated by the consistent distribution of encrypted image histograms.

(m) (n) (0) (p)

Figure 3.9: (a) Lena with (my,m,) = (19912,40885); (b) Mandrill with (m,,m,) =
(39600, 54056); (c) Peppers with (my,,m,) = (49494,30600); (d) A cameraman with (m,,m,) =
(36084,49952) while (e-h) Images of (a)—(d) that have been ciphered, where P is the image that
is all white, (i)—(1) The ciphered images (a)—(d) whereas P is the image of lena; ciphered images

(m)—(p), where P is the image of cameraman
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Figure 3.10: Figure 3.8 (a-d) displays the plain image histogram, while Figure 3.8 (e-h) displays

the ciphertext histogram.

Correlation Test

Pixel correlations are typically high in plain images. Creating encrypted images with minimal

correlation is essential for a perfect cryptosystem. Pixels’ correlation coefficient is computed as

2y (i —F(0)) (v = F(y))
VM = F0)2T (= F(7)2

Oy = (3.10)

Where

1 M
E@:MZM (3.11)
i=1

The data size in this case is M. F is the expected value opertaor and o is the correlation
coefficien. Table 3.8 shows the correlation between various images. The results of Table 3.7 is
also comparable to this schemes. The correlation between each plain image within the USC-SIPI
database is shown in Figure 3.11. The results shown in Figure 3.11 and Figure 3.12 show that

the proposed approach passes the correlation test.

3.6.3 Key Analysis

Key space

If a cryptosystem’s key space is larger than 2128, it passes the key space analysis. Our

suggested cryptosystem uses SHA-256 and the 256-bit parameters a, p,b, G,b’, P as keys. As a
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Figure 3.11: using the suggested encryption method, the horizontal vertical and diagonal
relationship between two adjacent pixels were examined for images with sizes of 256 x 256, 512

x 512, and 1024 x 1024
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Figure 3.12: The pixel adjacency patterns of Lenassex2s6 are depicted in images (a)-(c) and its

encrypted version (d)-(f) as shown in Fig. 3.8(b).
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Table 3.8: Correlation Analysis for Original and Encrypted Images

Image Original Image Encrypted Image
Horizontal | Vertical | Diagonal | Horizontal | Vertical | Diagonal
Peppers 0.9429 0.9441 0.9025 —0.0042 0.0039 | —0.0046
Cameraman 0.9331 0.9592 0.9075 0.0015 0.0023 0.0025
Lena 0.9390 0.9136 0.9680 0.0007 0.0022 0.0085
Mandrill 0.9048 0.8899 0.8199 0.0032 0.0042 0.0020

result, our crypto-system’s key space is significantly bigger than 2128. Our encryption method is

therefore impervious to brute-force attacks.

Sensitivity of keys

In order to obtain the real keys, opponents typically encrypt a plain image using multiple keys
and compare it to the original encrypted image. A cryptosystem needs to be extremely sensitive
to every key in order to attain higher security. On the basis of I’s hash value, we construct
CML parameters. The cryptosystem is especially sensitive to keys due to the sensitivity of the

CML-system to the initial conditions.

Known-plaintext and chosen-plaintext attack

Following the use of a sequence of PRNs in order to create diffusion in the plain image, the
SHA-256 algorithm has the goal of creating confusion in a diffused image. Because the pair of
S-boxes varies depending on the type of plain image, the strategy is immune to plaintext attacks.
Someone outside the system cannot use a chosen-plain text attack to crack the cryptosystem. In
order to prevent the attacker from using a chosen-plain text attack to discover any information
about the final substitution box S(u, p,a,b), the sets Y and X are arbitrary generated over the
set Zyn. These sequences’ output, Q' b mymy.A» 18 highly reliant on m, and my, which makes it
challenging for the attacker to locate secret keys. Because of this, the technique is very resistant
to chosen-plaintext attacks. Table 3.9 demonstrates that the NPCR and UACI are extremely near
to optimal values and Figure 3.13 represents that histogram are uniform . Thus, the suggested

system has good resistance against known-plain text and chosen-plain text attacks.
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Figure 3.13: (a) All-white image (m,,m,) = (24806,33807); (b) encrypted-image; (c) His-
tograms; (d)A black pixel located at (20022,46968); (e) encrypted-image; (f) Histogram.

Table 3.9: Analysis of Security

Metric Category All-black | All-white
NPCR 99.63 99.68
UACI 33.60 33.45
Correlation - Horizontal | -0.0056 0.0028
Correlation - Vertical 0.0076 0.0050
Correlation - Diagonal 0.0046 -0.0002
Entropy 7.9941 7.9946

3.6.4 Computation Analysis
We set the total lattice configuration count in the CML-structure to T = 8 for analysis. The

suggested scheme has a lower time complexity. The calculation of the the computation time is

given in Table 3.10.
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Table 3.10: Analysis of Lena images running on the same OS in terms of run time in seconds

size of image | Proposed system | [50] [14] [64] [65] [66] [67] [68]

256 x 256 0.641 1.286 8.744 3.035 | 0.834 | 2913 | 1.654 | 15.45

512 x 512 1.311 4.333 | 2731.450 | 3.082 | 2.849 | 11.26 | 6.353 | 76.777

Table 3.11 compares the run times of our approach with those of algorithms in [60, 48, 69,
70, 71, 72] across various operating systems. Our encryption method encrypts grayscale Lena
image (256 x 256) and high resolution image Lena (512 x 512) in 0.641 and 1.311 seconds,
respectively. The suggested encryption system is significantly faster than the techniques in
[50, 64, 67, 66, 65, 68, 73], as Table 3.10 illustrates. In Table 3.10, we compared Lena images

with sizes of 256 x 256 and 512 x 512. In a similar vein, Table 3.11 results make it evident that

Table 3.11: Analysis of the Lenajsg « 25¢ image’s run time across various operating systems

using related schemes.

Algorithm | Time (s) | MATLAB Version | CPU RAM
Proposed 0.6460 R2017a Intel i5,3.2 GHz | 8 GB
[48] 1.8936 R2016b 2.4 GHz 12 GB
[60] 1.1247 R2016a 3.0 GHz 8 GB
[69] 1.4816 7.14 Intel i7, 3.4 GHz | 16 GB
[70] 2.2234 R2016a Intel i7,2.7 GHz | 8 GB
[71] 2.4600 R2017a 2.8 GHz 8 GB
[72] 4.6880 R2016b 2.8 GHz 8 GB

the newly created cryptosystem outperforms the algorithms in [48, 60, 69, 70, 71, 72]. We find
that our recommended methodology performs better than current methods and can be used for

encryption of images in real time.

3.7 Discussion

A safe cryptosystem for encrypting digital images is suggested in this study. A suggested
approach is predicated on a CML system and EC’s. To make the plain image diffuse, a collection
of key-dependent PRN’s is built. To create image-sensitive dynamically substitution boxes from

an elliptic curve and a couple map lattice, an effective S-box generator is created. The purpose
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of the suggested S-boxes is to confuse the basic image. After that benefits of the S-box generator

and encryption technique are demonstrated by experimental results:

* The suggested generator is more efficient than the generators in [14, 32, 33, 34], according

to Table 3.3.

The typical Lena image’s NPCR and UACI values in Table 3.7.

According to theory, the suggested cryptosystem is less complex in terms of time than the

schemes in and requires less running time than the algorithms.

The suggested approach is effective for EC’s with big parameters.

Additionally, the suggested approach offers extra security features to defend against attacks using
attacks with prior knowledge (KPA) and encryption oracle attacks (CPA) by leveraging PRNs’
key-stream and key-dependent dynamic S-boxes. Also, the security against brute-force attacks
is guaranteed by the large key space. According to the suggested article, we hope to use the
cipher technique for upcoming visual data, even though we employ it for grayscale images in

this article.
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CHAPTER 4

AN EFFICIENT APPROACH TO DESIGN A NEW
ASYMMETRIC KEY ENCRYPTION ALGORITHM USING
ELLIPTIC CURVES

4.1 Overview

This chapter presents an asymmetric key encryption scheme using elliptic curves. It generates
pseudo random numbers over finite fields, non-linear mixing, and modular exponentiation for
greater entropy. Diffie-Hellman key exchange is generated using elliptic curves. A secure ECC-
based pseudo random number generator is used in a third algorithm. The last algorithm uses
ECC pseudo random number generator to encrypt images, featuring secure pixel permutation
and bitwise XOR. This hybrid cryptosystem combines safe key exchange with elliptic curves

and symmetric encryption.

4.2 Elliptic Curve PRNG Generator
* Purpose of Algorithm:

To generate pseudo-random numbers from elliptic Curves over a finite field I, followed

by nonlinear mixing and modular exponentiation for greater entropy.

* Parameter initialization
In our first algorithm p represents a prime number of a finite field, ., my, m, represent the
output moduli for the x,y, z axes, and N represents the number of pseudo-random points to

draw.
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Describe the Elliptic Curve:

we choose an elliptic curve is y> = x> +ax+ b mod p where a,b € Fp.

Assign Start Point:

Saves all the valid (x,y) points of the curve into [,

Establish ECC Points:
Repeat for every x in IF,,. Find R.H.S of

yV=x+ax+b (mod p), a,bcT,

* Ensure Enough Points:

Repeat list P with exactly N entries.

Create Random Third Coordinate:

In our algorithm, we extend the elliptic curve points to 3D by adding a random w coordinate.
We increase entropy (randomness) by introducing a random w value, which makes it more
difficult to reverse the output. Now we will discuss how the code operates. Firstly, we
generate (x,y) points on the curve, then for every point (x,y,w), define a random w, then
utilizing all three coordinates, we calculate the PRNG output:

For X axis (x4 y+ w)* mod m,

For Y axis (x.y +w)> mod m,

For Z axis (x-y +w)® mod m,,

* PRNG Base Loop:
For each point:
Combine x,y,w with nonlinear exponentiation.
Employ modular operations to maintain finite limits.

Outputs: X;.Y;, Z; form a 3D pseudo-random numbers.

4.2.1 Output of ECC-based 3D PRNG Generator

A list of pseudo-random 3D points (X,Y,Z) calculated using elliptic curve mathematics,
modular exponentiation, and non-linear operations is the algorithm’s output. We present these
inside a three-dimensional scatter plot to demonstrate their dispersion and randomness. With

the addition of an arbitrary third component w, the coordinates are derived from elliptic curve
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Algorithm 1 ECC-Based PRNG

1: Input: p > m X n, my,my, m,, € [2,M], N € Z* , Choose EC € (x3 +ax+b) mod p

2: Output: 3D points (X;,Y;,Z)Y

3: procedure GENERATE PRNG(p, m,,my,m,,,N)

4.
S:
6:
7:
8:
9:
10:
11:

12: end procedure

EC <+ Generate-ECC-Points(p)

Extend EC to N points with random w values

for (x,y,w) in EC3p do

X; + (x+y+w)* mod mx

Y; < (x.y+w)> modmy

Z; + (xy+w)® mod mw

end for

return (X;,Y;,Z)Y

points that are valid across a finite field. A number of modular operations and entropy increasing

transformations, including exponentiation, are used to create each output triple (X;,Y;,Z;). Ex-

treme randomness and suitability for simulation or cryptographic applications are shown by the

final scatter plot’s enormous dispersion and lack of observable patterns. Figure 4.1 shows the

distribution of ECC-based PRNG output graphically.
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Figure 4.1: ECC-based 3D PRNG Generator

4.3 ECDH Algorithm

Alice and Bob can safely calculate a shared secret over an unprotected channel using elliptic

curve cryptography by using the following algorithm, which realizes the Elliptic Curve Diffie-
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Hellman key exchange protocol.

* Parameter Initialization:
In this algorithm, the elliptic curve is defined on the field of prime number p, F),. a is a
curve coefficient and b is implicit on the elliptic curve y*> = x> +ax+ b mod p. We create

Base Points G = (xg,yg) € E(F,) on the curve that is utilized for key exchange.

* Private key generation:
A private key is chosen by Alice n, € [1,p—1].
A private key is chosen by Bob n, € [1,p — 1]

* Function SM (scalar multiplication):
Applies the double-and-add procedure & times to add point U to itself. The purpose is that

caculate k.U on elliptic curve efficiently.

* Elliptic curve function point addition:
On the elliptic curve calculate the sum of two points U 4 V. Manage many cases like
Returns the other point if U or V is the identity point (0,0).
Using point doubling formulaif U =V
If U # V, apply the elliptic curve addition formula.

Result is identity point if U = =V

* Elliptic curve function (Modular inverse):
The modular inverse of a mod p is computed using the Extended Euclidean algorithm.

Verifies the validity of divisions in point addition and doubling in F,.

* Calculation of Public key:
Alice uses the following to create her public key: Py = n,.G

Bob uses the following to create her public key: P = n;.G.

* Shared secret:
We compute shared secret by using Shared secret = n,.Pg = ny,.Py.
So Alice obtain her public key by S4 = n,.Pp and Bob obtain his public key by Sp = n;,.P4.

The shared secret matches if S4 = Sp and scalar multiplication is commutative.
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Algorithm 2 ECDH Key Exchange (Compact)
1: Input: pe P, a,be[l,p—1], GE EC(Fp)

2: ng + Rand(1, p—1), ng < Rand(1, p—1)
3: Output: Generation of ECDH Keys

4: function SM(U k)

5: W+ (0,0), VU

6: while k£ > 0 do

7: if k mod 2 =1 then

8: W < ADD(W.,V)

9: end if
10: V <~ ADD(V,V), k< |k/2]
11: end while
12: return W

13: end function

4.3.1 Results of ECDH Algorithm

ECDH algorithm is used to show the generation and agreement of public keys and shared
secrets between two parties. For example, Alice and Bob randomly choose their private keys,
Alice’s public key is (3,91) and Bob’s public key is (80,10). The shared secret between them
is then matched, confirming the proper operation of the ECDH protocol. The shared secret
generated by Alice and Bob will be identical, and the output will display a return message

confirming the successful and secure key exchange.

4.4 ECC-Based Secure PRNG

The third pseudocode presents a complete and secure ECC-based PRNG system that uses el-
liptic curve cryptography along with Diffie-Hellman key exchange and hashing. The outcome is a
high-entropy PRNG output appropriate for cryptographic usage and the additional benefit of ECC

security and precomputation methods for performance enhancements.Explanation is given below:

* Parameter Initialization:
First, we define an elliptic curve, y?> = x> +ax+ b (mod p), over a finite field [F),. and other
parameters are constant where p € P and a,b € [1, p — 1] are curve parameters and Base

point is G = (xg,y¢)-
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* Hide generator point:
To create a hidden generator, multiply the base point G by a secret random scalar r:
G' = [r]G. This improves randomization and privacy while also hiding the original

generator.

* Precompute the powers of Hidden generator:
Precompute G = 2i=1G’ for i=1 to i=32 which allows for scalar multiplication up to 32

bits. This increases scalar multiplication efficiency.

* Create Pairs of ECC Keys:
Two private keys, ng and np, should be chosen at random for Alice and Bob: n4,np €r
[2,[7 - 1] .
We calculate the public keys, Py = [n4]G’ and Pg = [ng]G’, using private keys.

* Implement the DH Key Exchange for ECC:
Both parties compute shared secret S = n4.Pp = np.Ps. If both parties do the same

calculation, then the key exchange will be successful.

* The shared ECC point is hashed:
Combine the x and y coordinates and shared point S.
To obtain a fixed-length hexadecimal string, use SHA-256:
K = SHA-256 (xs||ys)

This acts as the PRNG output generation’s seed or key.

* Pseudo-Random Point Generation:
For every i = 1 to N (for example, N = 500):
Using SHA-256 Hash K||i . Three hash portions should be collected and reduced modulo
maximum values such as:
u= Hil mod my, v = Hizmod m,, w= Hfmod My,

Store each 3D point (u,v,w).

* Return the final PRNG output back:
A list of N 3D pseudo-random points, securely formed from hash functions and ECC

procedures, is the algorithm’s output.
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Algorithm 3 ECC-Based Secure PRNG
1: Input: Set curve: y> =x>+ax+b mod p

2: G+ (x6,y6), pEP, a,be[l,p—1]

3: G’ + [r]G with random r

4: Precompute G| =2"'G’ fori = 1to 32

5: Generate private keys: ny,np €g [2,23? — 1]
6: Py < [na|G', Pg + [np]G’

7: Derived secret: S < [ns|Pp = [np|P4

8: K ¢ SHA-256 of xs|lys

9: fori=1to N do
10: H; < SHA-256(K||i)
1: (u,v,w) — (mod(H", m,), mod(H'> ,m,), mod(H"> m,,))
12: Store (u,v,w)
13: end for

14: return PRNG point list

4.4.1 Output of ECC-Based Secure PRNG

Using a custom curve parameter and a secret generator point, this Algorithm performs elliptic
curve Diffie-Hellman key exchange, computes a common ECC point between two parties, hashes
the common secret using SHA-256, and then uses the hash as a seed to create 500 pseudo-random
3D points, with each value being calculated by hashing the seed with an integer counter and
projecting portions of the hash to U, V, and W coordinates in specified ranges. The output is a
500 x 3 matrix of cryptographically secure pseudo-random coordinates, which is also visualized

in Figure 4.2.
ECC PRNG with Image Encryption (XOR + Permutation)

This algorithm uses a pseudo-random number generator based on ECC to encrypt images.
Secure pixel permutation and bitwise XOR are features of the encryption. This method is a
hybrid cryptosystem that combines safe key exchange with Elliptic Curve Cryptography (ECC)
and symmetric encryption with a pseudo-random number generator (PRNG). It uses permutation-
based confusion and XOR-based diffusion to encrypt images, guaranteeing confidentiality and

defense against statistical assaults. A thorough explanation of each element is provided below.
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Final 3D PRNG Outputs Based on ECC Diffie-Hellman

ZValue

Figure 4.2: Visualization of ECC-Based Secure PRNG

Step by Step Explaination

* Parameter initialization:
First, we define an elliptic curve, y2 = x>+ ax+bmod p, over a finite field F,. G is the
base point on the curve. For security or privacy purposes, the generator point G may be

hidden using the Hide-Generator custom function.

¢ Compute the G Table in advance:
In order to faster ECC point multiplication, this phase precomputes multiples of the
(hidden) generator, usually through windowing techniques. For scalar multiplication k - G,
this is helpful when k is a 32-bit value. The generating point G is concealed through a

transformation (may be randomization or point compression) to improve security.

* Generation of ECC Diffie-Hellman Keys:
Bob chooses private key n;,, while Alice chooses private key n,. Thus, Alice computes
the public key P, = n,.G’, and Bob uses scalar multiplication to compute his public key
P, = n,.G'. Then Alice calculates ABG' = n,.P, and Bob calculate BAG' = n;,.P,, where
ABG represents that A is the sender (Alice) and B represents that B is the reciever (Bob) and

G is the generator point or base point of Elliptic curve But we use G’ = s(secret scalar) x G
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which is a modified generator for security and randomness.

Derivation of a Shared Secret:
A shared ECC secret is calculated by each party:
ABG' =n,.Pg and BAG =ny.Py

Both get to the same conclusion because of ECC properties:

ABG' = n,.(n3.G') = P,.(P,.G') = BAG’' 4.1

Agree the derived secret:

Checking the derived secret of both parties. The commutative nature of scalar multipli-
cation on elliptic curves ensures this that Shared secret match. if shared secret fails then
some possible reason are MATLAB precision problems or symbolic mismatches, errors in
scalar multiplication or ECC addition function or error in computing by using different G’
between the two key calculations. To securely agree on a shared key, asymmetric ECC is

utilized.

Generation of Symmetric key for Decryption and Encryption:

In this algorithm we use asymmetric key cryptography, which involves generating symmet-
ric keys using a hash. The symmetric key is then used to encrypt and decrypt images. The
shared secret, ABG', is obtained by multiplying Party A’s private key and Party B’s public
key, resulting in a point on the elliptic curve. The coordinates are then hashed into a string,
and a safe, fixed-length key is generated using SHA-256. This key, which appears random,

can be computed independently by Alice and Bob, who share the same ECC point.

Set the PRNG Key:

The process involves creating a stream of pseudo-random numbers using a symmetric
key as a seed, which is then used to XOR image pixels. The randomness is generated
using the hashed ECC shared secret. The XOR technique makes each pixel unreadable by
scrambling its data and can be reversed with the same random number. The shared key,
created by Alice and Bob using ECC as a seed, generates the random numbers. This results

in an encrypted image with chaotic values, making it impossible to guess the original.

preparation of image:

Firstly we load Gray scale image . Make sure the image is 256 x 256 pixels in size before
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loading it. Create a 1D vector by flattening the 2D image:
N =256 x 256 = 65536

Generation of PRNG Streams:

The PRNG is seeded by the key, which is derived by ECC. [N/3] triplets are produced
by the method (probably for RGB, but the image is grayscale). To match the picture
vector length (N), the PRNG output is trimmed or reshaped. Create enough PRNG output
(maybe dependent on ECC output chunks) to fill the image. Reshape or truncate to fit the
image vector’s dimensions. For the security of PRNG, PRNG needs to be secure using
cryptography (e.g., ChaCha20, AES-CTR). Decryption is made possible by reusing the

same key, which will replicate the same keystream.

Encryption Process:

The two main steps of encryption are XOR encryption, a symmetric method comparing
each pixel to its associated PRNG byte, and encryption via permutation, a permutation
index array created using the key-derived seed and a deterministic permutation. The

XOR-encrypted image vector is shuffled to increase confusion.

Resize the Encrypted Image:

Return the encrypted vector to a two-dimensional image.

Decryption Process:

The decryption process reverses encryption processes to restore the original image. It has
two primary functions: permutation in reverse and XOR decryption. Perm is a permutation
vector used to mix pixels during encryption, using the same RNG seed. The precise
permutation order is retrieved using perm (N) and the inverse permutation perm~!. The
encrypted image is rearranged using perm ™', and the rearranged pixel values are stored in
the working variable depermuted. XOR decryption involves generating a PRNG stream
using the same key as encryption and XORing each element in depermuted. The original

grayscale intensities of the pixel values are restored.

Confirmation:

The algorithm determines whether the original image and the decrypted image are identical:
The comparison is done pixel by pixel. If every pixel is the same result in the form of
success . If there are discrepancies result shows Fail indicating a key/PRNG/permutation

mistake.
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Algorithm 4 ECC PRNG Image Encryption System

1:

2:

3:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24

25:

26:

27:

28:

29:

Input: Prime p, curve params a, b, base point G, image /
Output: Encrypted image C, decrypted image I’

Step 1: System Initialization

. E « EllipticCurve(y> = x> + ax+b mod p)
: G+ (xg,y6) €E

Step 2: Generator Obfuscation

: k < RandomlInteger(2,p — 1)

G’ + EC_ScalarMult(G, k,a, p)

Step 3: Key Exchange (ECDH)

apriv < RandomlInteger(2,p — 1)

bpriv < RandomlInteger(2,p — 1)

A < EC_ScalarMult(G’, apyiv,a, p)

B < EC_ScalarMult(G', b iy, a, p)

S < EC_ScalarMult(B, apiv,a, p)
Verify S = EC_ScalarMult(A, by, a, p)
Step 4: Key Derivation

K < SHA-256(xs || ys)

Step 5: PRNG Generation
PRNG_stream <— Generate_ PRNG(K, len(7))

for i < 1tolen(/) do
seed; + SHA-256(K || i)
PRNG; < seed;[0: 24] mod 256

end for

Step 6: Image Encryption/Decryption
C < I ®PRNG_stream

I' < C®PRNG stream

return C, [’
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4.4.2 Results of this Algorithm

The resulting images proves the security of the ECC-based PRNG encryption system. In the
figure Figure 4.3 (a)-(c) which are grayscale images of lena , cameramen and mandrill with the
size of 256 x 256 . These are plain images which are used in encryption while the Figure 4.3
(d)-(f) are cipher uses a result of the combined effect of encryption and pixel permutation, it
looks like pure ciphered and then we apply decryption on figures and Figure 4.3 (g)-(i) are the
image that has been decoded, which is visually the same as the plain image, proving that the
decryption stage correctly inverted both operations. This confirms the correctness of the system

and its high potential for safe image encryption based on elliptic curve cryptography.

4.5 Mathematical example of ECC PRNG Encryption Decryption to verify

Algorithm
We take a ECC example over small field

* we select Prime field where p = 17

Choose Elliptic curve: y> = x> +2x+2 mod 17

Generator point: G = (5,1)

G(ord)=19

The private key of Alice: nqg =3

The private key of Bob: np =7
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(©) (d

(e) ()

Figure 4.3: Plain images are shown in (a) and (b); ciphered images are shown in (c) and (d); and

decrypted images are shown in (e), (f)



4.5.1 Step 1: Calculate the Public Key for Alice: Py =n4-G=3-G

Calculate 2G = G + G (point doubling):

32
A= Yt mod p
2y1
_3.5742
241
I5+2 77
= = 17
> > mod
77=9 mod17
359-9:81513 mod 17

=A2—2x=132-10=169—-10=159=6 mod 17

v3i=Ax1—x3)—y1=13(5-6)—1=—-13—1=—-14=3 mod 17

2G = (6,3)

Calculate 3G =2G+ G = (6,3) + (5,1) (point addition):

— 1-3 =2
;L_)’Z Yy

T x—x 5-6 -1

=A2—x—x,=4-6—-5=-7=10 mod 17

y3=A(x;—x3)—y1=2(6—-10)—3=-8-3=—-11=6 mod 17

3G = (10,6) = P4

4.5.2 Step 2: Calculate the Public Key for Alice: P =ng-G=7-G

— =2 mod17
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Using double-and-add method (7 =4+ 2+ 1): Calculate 2G = (6, 3) (from above). Calculate

4G =2G+2G = (6,3) + (6,3):

L3 6+2 110
23 6

110=8 mod 17
258.3:2457 mod 17

x3=49—-12=37=3 mod 17

y3=7(6-3)—3=21-3=18=1

4G = (3,1)
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Calculate 6G =4G+2G = (3,1) +(6,3):
==
x3=144-3-6=135=16 mod 17

A =12 mod17

W

y3=12(3-16)—1=—-156—1=—157=13 mod 17

6G = (16,13)

Calculate 7G = 6G+ G = (16,13) 4 (5,1):

1-13 —-12 12
e O L 17
5516 1o 1o D med

x3=225-16—5=204=0 mod 17
y3=15(16—0)—13=240—13=227=6 mod 17

7G = (0,6) = Py

4.5.3 Step 3: Calculate Shared Secret Sp =ng-Py =7-(10,6)

Following comparable computations (neglected for conciseness), we discover:
Sp=1(6,3)

4.5.4 Conclusion of ECDH

The two sides come to the same mutually held secret:
S=(6,3)

So Alice Private key is n, =3
Alice Public key is P4 = (10,6)
Shared Secret is S4 = (6,3)
Bob Private key is n, =7

Bob Public key is Pg = (0,6)
Shared secret is Sp = (6,3)



4.5.5 Compute Shared Secret
Sa =ny-Pg=3-(0,6) Calculate 2- (0,6):

3.0242 2
A= T % —3 modl7
2.6 12 mo

x3=9—-0=9 modl7
y3=3(0-9)—6=-27-6=-33=1 mod 17

2-(0,6) = (9,1)

Compute 3-(0,6) = (0,6) +(9,1):

1-6 -5
_ﬂ_7:7 mod 17

x3=49-0-9=40=6 mod17

A

y3=7(0—6)—6=—-42—6=—-48=3 mod 17

Sa = (6,3)
Bob’s Shared Secret Calculation Sg =7-(10,6)

Given:The private key of Bob: n, =7
The public key of Alice: P, = (10,6) = 3G
Elliptic Curve: y> = x* +2x+2 mod 17

Step 1: Point Doubling - Calculate 2 - (10,6) By Using the point doubling formula:

3 2
A= X ta mod 17
PAY
~3.10742
2.6
3004+2 302
— - = d17
12 M

Make the denominator and numerator simpler:

302 mod17=302—-17x17=13
127! mod17=10 (since 12x10=120=1 mod 17)
A=13x10=130 mod 17
=130-7x17=11 mod 17
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Calculate new point:
x3=A%=2x; =112-20=121—-20=101 mod 17
=101-5x17=16
v3=Ax1—x3)—y; =11(10—16) -6 =—66—6=—72 mod 17
= _—T724+5%x17=13
2-(10,6) = (16,13)

Step 2: Point Doubling - Calculate 4 - (10,6) =2-(16,13)

/1_3.162+2_768+2_770
2413 26 26
770 mod 17 =5

mod 17

26 modl17=9
97! mod17=2
A=5%x2=10 mod17

Calculate new point:

x3=102=2%x16=100—32=68 mod17=0
y3=10(16—0)—13=160—13 = 147 mod 17
=147-8x17=11
4-(10,6) = (0,11)
Step 3: Point Addition - Compute (0,11) + (16, 13)
13—-11 2 1

87! mod17=15

A=1x15=15 mod 17
Calculate new point:
x3=152-0—16=225—16=209 mod 17
=209—-12x17=5
y3=150-5)—11=-75—11=-86 mod 17
=-86+6x17=16
(0,11) 4 (16,13) = (5,16)
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Step 4: Final Addition - Calculate (5,16) 4 (10,6)

6—-16 —10
= =—=-2=1 1
A T 3 5 mod 17

Calculate new point:
x3=152-5-10=225—15=210 mod 17
=210—12x17=6
y3=15(5—6)—16=—15—16=—31 mod 17
=-3142x17=3

7-(10,6) = (6,3)
Conclusion of Bob’s shared secret The Shared secret of Bob:
Sp=(6,3)

Hence Shared secret Matched.

4.5.6 Hash the Shared Secret

Now we hash the ECC point by converting shared Secret point "0623"

Use ASCII SUM

’0’=50

'6’=48

'0’=52

’3’=51

So Sum = 201. Now this is a PRNG seed

4.5.7 Generating PRNG Stream

- Now we generate PRNG stream by using this logic

PRNG]i] = mod ((Hash — Seed x i x 17) ,256) 4.2)

Compute i=1 to 16



4.5.8 Encryption

Encrypted matrix; = mod (Original matrix; + PRNG,256)

i PRNG-stream PRNG-Value
i=1 | mod(201+17,256) 218
i=2 | mod(402+17,256) 163
i=3 | mod(603+17,256) 108
i=4 | mod(804+17,256) 53
i=5 | mod(1005+17,256) 254
i=6 | mod(1206+17,256) 199
i=7 | mod(1407+17,256) 144
i=8 | mod(1608+17,256) 89
i=9 | mod(1809+17,256) 34

i=10 | mod(2010+17,256) 235
i=11 | mod(2211+17,256) 180
i=12 | mod(2412+17,256) 125
i=13 | mod(2613+17,256) 70

i=14 | mod(2814+17,256) 15

i=15 | mod(3015+17,256) 216
i=16 | mod(3216+17,256) 161

The above equation is used to encrypt our matrix

Let Original matrix =

fromi=1t0 16

12
30
90

150 180 210 240

34 56 78
60 90 120
123 200 15

54

4.3)

We apply encryption on original matrix below



i Original-Value | PRNG | Encrypted-Value
i=1 12 218 230
i=2 30 163 193
i=3 90 108 198
i=4 150 53 203
i=5 34 254 32
i=6 60 199 3
i=7 123 144 11
i=8 180 89 13
i=9 56 34 90
i=10 90 235 69
i=11 200 180 124
i=12 210 125 79
i=13 78 70 148
i=14 120 15 135
i=15 15 216 231
i=16 240 161 145

-230 32 90 148
193 3 69 135
198 11 124 231
203 13 79 145

So the encrypted Matrix =

* Shuffling the Encrypted Matrix Our shuffle version is given below:

e3 e e7 €

€15 €9 €p €14
enc-shuffled =

es ey eg ele

es €13 el e
[ 90 231 69 230-
79 198 3 13
148 32 135 145
193 203 124 11

Shuffled - Matrix=

* Decryption Process of 4-by-4 Matrix:

For decryption firstly we reverse the permutation
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230 32 90 148
193 3 69 135
198 11 124 231

203 13 79 145
We done Decryption by using this

Shuffled[reverse-perm]=

Decrypted = mod(Encrypted — PRNG,256) (4.4)
i Encrypted-Value | PRNG | Decryption | Decrypted-Value
i=1 230 218 mod(12,256) 12
i=2 193 163 mod(30,256) 30
i=3 198 108 mod(90,256) 90
i=4 203 53 mod(150,256) 150
i=5 32 254 | mod(-222,256) 34
i=6 3 199 | mod(-196,256) 60
i=7 11 144 | mod(-133,256) 123
i=8 13 89 mod(-76,256) 180
i=9 90 34 mod(56,256) 56
i=10 69 235 | mod(-166,256) 90
i=11 124 180 mod(-56,256) 200
i=12 79 125 mod(-46,256) 210
i=13 148 70 mod(78,256) 78
i=14 135 15 mod(120,256) 120
i=15 231 216 mod(15,256) 15
i=16 145 161 mod(-16,256) 240

12 34 56 78
30 60 90 120
90 123 200 15
150 180 210 240

Decrypted - Value = Original-Value =

4.6 Differential Cryptanalysis
The UACI and NPCR techniques evaluate the sensitivity of encryption algorithms to differen-

tial attacks. If a minor alteration in plain images results in different cipher images, the algorithm
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is resistant to differential attacks. The NPCR and UACTI are calculated using equations (4.5) and
(4.6).

1
NPCR=——Y) D(i,j) x 100 4.5
(i, 7) —1c (i, J)
ACI = 1 4.
vac IZJ’ N x M x 255 x 100 (4.6)

whereever D(i, j) = 1 unless C; (i, j) — Cj(i, j)eq0 and D(i, j) = 0. The average NPCR and UCAI

value is shown in the following table.

4.6.1 The Image Encryption Calculation Process Using NPCR and UACI
NPCR and UACI are two crucial security metrics that are used to evaluate the strength

of an image encryption system. These metrics evaluate the degree to which an encryption

algorithm modifies the plain image in order protect against statistical attacks. Below is a detailed

explanation of how these values were calculated and analyzed:

Number of Pixel Change Rate, or NPCR

Basic goal: NPCR measures the proportion of pixels that are different between the ciphered
and plain images. A high NPCR (near 100%) means that the image is substantially changed by
the encryption process, making it secure to differential attacks.

Now we describe the calculation steps below:

1. To make computations easier, the RGB input image is first converted to grayscale.

2. Determine whether the Plain (/) and ciphered (I’) images differ for each pixel at position
(i, J):
L, if I, j) #1'(, j)
D(i, j) = .7)
0, otherwise

3. Determine how many different pixels there are in total:

H W
Total_Diff =} Y D(i, j)
i=1j=1

where height and width of an images are denoted by H and W.
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4. The percentage of NPCR is now determined by dividing the total number of pixels (H x W)

by the total number of differing pixels, and then multiplying the result by 100.

NPCR — Total_Diff < 100
HxW

5. NPCR should be approximately 99.6094% for encryption to be effective, meaning that

practically all pixels are changed.

UACI(Unified Average Changing Intensity)

Finding the average intensity difference between the original and encrypted images is the
main objective of UACI. Uniform pixel changes are indicated by a value near 33.4635%, which
guarantees resistance to statistical analysis.

Now we calculate the steps:

1. Image Conversion to Double Precision: For precise arithmetic, both the original () and

encrypted (I') images are doubled.

2. Determine Absolute Differences: Determine the absolute intensity difference for each
pixel:
AGi, j) = [1(i, ) = 1'(i, j)

3. Add up the differences: Add up all of the absolute differences:

H W
Total_Abs_Diff = }" ¥ A(i, j)
i=1j=1

4. Improve for Maximum Intensity: The sum of the difference is divided by the maximum

pixel value (255 in 8-bit grayscale) and the total number of pixels:

e <Total_Abs_D1ff ) < 100

255 x Hx W

5. A uniform distribution of pixel changes is indicated by a secure encryption produce of

approximately 33.4635%.

Both the NPCR and UACI tests are important because the former ensures that the encryption is
extremely vulnerable to even small changes, preventing predictability, while the latter ensures
that pixel changes are statistically uniform by preventing frequency analysis.

Now, Table 4.1 and Figure 4.4 displays the average NPCR/UCALI value.
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Table 4.1: NPCR and UACI values for each image

Metric Image Value (%)
NPCR Mandrill 99.5865
NPCR Lena 99.6582
NPCR | Cameraman | 99.6201
UACI Mandrill 27.9499
UACI Lena 28.6563
UACI | Cameraman | 31.1600

NPCR UACI
0.9968 0.3365
256=256 256256
0.9966 512x512 0.336 512x512
1024=1024 1024=1024
0.9964 0.3355
0.9962 0335
1 —
& G
& 0896 I} < 0.33451
z :
0.9958 0.334
0.9956 0.3335
0.9954 0.333
0.9952 0.3325
0 10 20 30 o 10 20 30
Images Images

Figure 4.4: The distribution of NPCR and UACI of different size images

4.7 Statistical Cryptanalysis

As we discussed in chapter 2 the tests use in cryptography now in this section will apply
test on images. If an encryption system passes well-known tests like correlation, histogram, and
entropy, It can be applied to encryption in real time. Each test and its associated results are

covered in full below.

4.7.1 Entropy Test
The most crucial metric for measuring the degree of unpredictability in a dataset of images

is entropy. It illustrates the unpredictability of pixel intensity in an image dataset. If I were a
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grayscale image, the entropy S equation would be

255
§=—Y P(xi)log,(Px;) (4.8)
i=0
High entropy indicates high randomness in image data. Thus, the suggested technique generates

a lot of randomness. So, the entropy of following images shown below. With p(i) representing

Table 4.2: Image Entropy Analysis

Plain-image Lena | Cameraman | Mandrill
Plain image Entropy | 7.7662 7.1048 7.3233
Cipher image Entropy | 7.9976 7.9976 7.9969

the probability of each pixel intensity, H = — Y p(i) - log,(p(i)). One entropy value in bits is
obtained from this result. Strong confusion and diffusion properties are desired in encryption,

and a more randomized, information-rich image is indicated by a higher entropy (nearer to 8).

4.7.2 Histogram Test

Now we will apply histogram test in ciphered images. The cipher scheme will be considered
secure if the encrypted images’ histograms are uniform. The histograms of the plain and
encrypted images are displayed in figures 4.5 (a)—(c) and 4.5 (d)—(f), respectively. our proposed
encryption scheme’s security is demonstrated by the uniform distribution of encrypted image

histograms.

Figure 4.5: In (a)-(c) figure shows the Histogram of the Plain images and (d)-(f) shows the

Histograms of the cipher texts, respectively.

Through a calculated procedure, the histogram test is used to confirm that the distribution of
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pixels in the encrypted image is uniform. The encrypted image is first multiplied by 255 and
rounded to integers to create 256 distinct intensity levels (pixel values normalized to [0,1)). The
histogram data is then produced by using MATLAB’s ‘imhist()‘ function to count the instances
of each intensity value (0-255). Each bin should have roughly N /256 pixels. The chi-square
test quantitatively compares these observed bin counts against the expected uniform distribution
by calculating the X? statistic, which is the sum of squared differences between observed and
expected counts divided by the expected counts. A Cumulative Distribution Function (or CDF)
expresses the likelihood that a random variable X will take a value less than or equal to a given
value x. The empirical distribution function of the pixel values is compared to the theoretical uni-
form CDF. It is a basic idea in statistics and probability that is used to examine data distribution.),
the Kolmogorov-Smirnov test simultaneously assesses whether the values follow a continuous
uniform distribution. A bar graph is produced visually, with the y-axis displaying the frequency
counts and the x-axis representing the 256 intensity levels. A horizontal red line denotes the
expected uniform frequency level. In order to confirm that the encryption successfully eliminated

all traces of the original image’s statistical properties, the histogram is considered uniform if:

1. The X? statistic falls below the critical threshold (293.25 for 255 degrees of freedom at 5

2. The KS-test produces a p-value > 0.05; and (3) the bar heights fluctuate randomly around

the red reference line without discernible patterns.

3. Itis confirmed that the encryption effectively eliminated all traces of the original image’s
statistical properties because the bar heights varies randomly and uniformly around the red

reference line.

4.7.3 Correlation Test

We will apply Correlation test on plain images and ciphered images. we will discuss further
that what correlation values are secure for encrypted image.
The purpose of correlation test is to see if the encrypted image’s neighboring pixels are still
correlated, as this would be detrimental to security. Values appear random when this correlation
is broken by a good encryption (ideally, correlation ~ 0). Table 4.2 displays the association
between various images. we will also compared the results in Table 4.3 . Figure 4.6 shows the
correlation of each plain image in the USC-SIPI database. The suggested method passes the

correlation test, according to the findings in Figures 4.6, 4.7, 4.8.



Table 4.3: Correlation Analysis for Original and Encrypted Images

Image Original Image Encrypted Image
Horizontal | Vertical | Diagonal | Horizontal | Vertical | Diagonal
Cameraman 0.9469 0.9626 0.9062 -0.0185 0.0334 | -0.0564
Lena 0.9128 0.9555 0.8947 -0.0361 0.0178 0.0067
Mandrill 0.8732 0.8297 0.7854 0.0040 -0.0040 | -0.0021
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One essential statistical technique for assessing an image encryption algorithm’s competency
is the correlation test. It calculates how similar the values of nearby pixels in an image are to
one another. Because of the slow changes in intensity throughout the image, neighboring pixels
in plain images, whether they are oriented diagonally, vertically, or horizontally, tend to show
strong correlation. There are three ways to test correlation:

Horizontal: (x,y) and (x+1,y)
(x,y) and (x,y+1)

(x,y) and (x+1,y+1)

Vertical:

Diagonal:
This statistical redundancy should be removed by a robust encryption algorithm, though, creating
an encrypted image in which neighboring pixels seem statistically independent and uncorrelated.
In this work, 2000 pairs of adjacent pixels in each of the three location directions (horizontal,
vertical, and diagonal) are randomly selected from both the plain and ciphered images in order to
perform the correlation analysis. The intensity values of the pixel and its neighbor are noted for
every sampled pair, and the Pearson correlation coefficient is calculated. Strong correlation is
indicated by values close to +1 or —1, whereas no correlation is indicated by values close to
0. This coefficient measures the linear relationship between pixel pairs. Additionally, scatter
plots are produced to show the pixel relationships graphically. The encryption process effectively
breaks the plain image’s predictable structure, improving security, as demonstrated by the nearly
zero correlation of the encrypted image and the high correlation of the plain image. The ECC-
PRNG-based encryption technique successfully generates a cipher image with high statistical

randomness, as evidenced by the significant decrease in correlation coefficients in all directions.
4.8 Discussion
The experimental findings used to assess the effectiveness of the suggested ECC-based image

encryption scheme are shown in this section. The algorithm was validated under various condi-

tions using a number of standard test images, such as Lena, Cameraman, and Mandrill. Several



Table 4.4: Lena Grayscale Image comparison

Algorithm | Entropy | UACI | Corr-H | Corr-D | Corr-V | NPCR
Our 7.9976 | 28.65630 | -0.0361 | 0.0178 | 0.0067 | 99.6582
[31] 7.9975 33.670 | 0.0030 | 0.0096 | 0.0026 | 99.610
[59] 7.9975 33.472 | -0.0018 | -0.0009 | 0.0011 | 99.614
[49] 7.9965 33.392 | 0.0029 | -0.0003 | 0.0080 | 99.617
[50] 7.9972 33.423 | 0.0069 | 0.0075 | 0.0479 | 99.625
[60] 7.9977 33.413 | 0.0003 | -0.0003 | -0.0000 | 99.621
[48] 7.9974 33.463 | 0.0004 | 0.0051 | 0.0051 | 99.606
[61] 7.9976 33451 | -0.0018 | 0.0040 | -0.0006 | 99.609
[51] 7.9967 34.080 | -0.0003 | -0.0066 | -0.0013 | 99.580
[52] 7.9970 33.505 | 0.0119 | 0.0011 | 0.0092 | 99.594
[53] 7.9971 33.456 | -0.0029 | 0.0004 | -0.0017 | 99.599
[54] 7.9970 33.419 | 0.0086 | 0.0009 | 0.0024 | 99.605
[55] 7.9962 33.384 | 0.0015 | 0.0057 | 0.0041 | 99.633
[56] 7.9970 33.546 | -0.0016 | -0.0026 | 0.0043 | 99.614
[57] 7.9973 33.458 | -0.0023 | -0.0029 | 0.0016 | 99.626
[58] 7.9975 33.457 | -0.0034 | -0.0063 | 0.0013 | 99.621
[62] 7.9966 33.452 | -0.0008 | -0.0101 | 0.0014 | 99.617
[63] 7.9974 33.356 | 0.0102 | 0.0052 | 0.0067 | 99.580
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statistical and differential analyses, such as NPCR, UACI, histogram uniformity, information
entropy, and pixel correlation tests, were carried out to evaluate security and efficiency. The

following tables and figures present the findings, which are given below:

* The typical Lena grayscale image’s NPCR and UACI values in Table 4.1. it can be

observed that the NPCR values indicating strong resistance against differential attacks

» Table 4.2 presents the entropy value of the plain and cipher test images. The entropy
of the plain images is significantly below the ideal value of 8, indicating non-random
distribution of pixel intensity. After applying encryption, the entropy values are very close
to 8, confirming that the cipher images approximate random noise and reveal no statistical
patterns. Because of its high entropy, the encryption scheme defends against entropy-based

attacks and successfully conceals all valuable information from possible attackers.

* Figure 4.5 illustrates the histogram of plain and cipher images of cameramen, Mandrill,
and Lena. The histogram of the plain image shows significant peaks and valleys, reflecting
non-uniform pixel intensity distribution. In contrast, the cipher image is rarely uniform,
with no visible patterns, which indicates the pixel values are well randomized. This
consistent distribution demonstrates how well the suggested encryption technique hides

the plain image’s statistical characteristics, preventing histogram-based attacks.

» Table 4.3 shows the correlation coefficients of adjacent pixels in plain and cipher images.
As illustrated in Figure 4.7, 4.8, 4.6, the scatter plots of the plain images show dense
clustering along the diagonal line, indicating strong correlation. In contrast, the cipher
images display a uniform noise-like distribution, further confirming the effectiveness of

the proposed method.

* Table 4.4 presents a performance comparison between the proposed ECC-based image
encryption scheme and several existing methods reported in [31, 59, 49, 50, 60, 48, 61,
51,52, 53, 54, 55, 56, 57, 58, 62, 63].
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CHAPTER 5

CONCLUSION

5.1 Overview
In this chapter we describe our proposed algorithm and its efficiency. In this section, we

discuss how we improve security in our algorithms.

5.2 Summary and Conclusion

In our ECC-Based PRNG Generator we use the suggested framework and reducing the EC
and non-EC operations, the presented PRNG’s design is straightforward and effective. As a
result, the proposed encryption system is an excellent fit for real-time applications because it
uses minimal computational resources. To sum up, EC’s make excellent candidates for PRNG
design. In secure curves with big prime numbers, the amount of bits in each point coordinate is
appropriate for bit extraction. By fusing the algebraic complexity of elliptic curves with random
perturbations and nonlinear arithmetic, this ECC-based PRNG offers a promising method for
generating random numbers. Additional improvements, such changing curve parameters, secure
seeding, and formal testing, can increase its durability and applicability for cryptographic
applications, even though the functional and visual properties show great unpredictability.
In the second algorithm we make the ECDH protocol, which we use in image encryption. In
this algorithm, we used modular arithmetic over a finite field to develop the Elliptic Curve
Diffie-Hellman (ECDH) key exchange mechanism. The code effectively illustrated how Alice
and Bob, two parties, might exchange elliptic curve public keys obtained from private scalars

to safely build a common shared secret across an insecure channel. Both sides independently
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calculated the same shared secret using elliptic curve point addition and scalar multiplication,
confirming the protocol’s accuracy and security. This shared secret, represented as a point on
the elliptic curve, may be subjected to further processing (e.g., hashing) in order to be used in
symmetric encryption systems. The answer exemplifies the fundamental strength of elliptic
curve cryptography (ECC), which offers strong security with relatively small key sizes, making it
suitable for resource-constrained scenarios like embedded systems and wireless communication
protocols.

In our 3rd algorithm, we aim to improve our PRNG so that it can generate points with higher
randomness. High-entropy, unpredictable random numbers are produced by the implemented
ECC-based PRNG system using secure hash functions and elliptic curve encryption. The system
guarantees cryptographic strength and effective key agreement by combining precomputation,
hidden generation techniques, and Diffie-Hellman key exchange. Strong randomness features
are displayed by the final 3D PRNG outputs, making them appropriate for safe applications
including cryptographic protocols, secure communications, and image encryption.

The XOR-permutation procedure in our ECC based PRNG image cipher takes advantage of
ECC’s asymmetric security to convert it into an effective symmetric encryption method. After
exchanging elliptic-curve public keys, Alice and Bob reach the same curve point without
disclosing their secrets. By hashing the curve’s (x,y) coordinates, they are able to obtain an
identical 256-bit key that never crosses the channel. In addition to driving a key-dependent
permutation that confuses all pixel positions (diffusion), that key also seeds a PRNG whose bytes
are XOR-mixed with every pixel (confusion). While anyone without the key sees only noise,
Bob can undo the shuffle and XOR to restore the image flawlessly because both procedures are

fully reversible with the same PRNG output and permutation order.

5.3 Future Work

While ECC is widely regarded as a robust and efficient cryptographic scheme, the following
challenges remain:
Scalar Multiplication Optimization: Although those techniques are available, scalar multipli-
cation is still the performance hindrance of ECC operations, especially in the limited-resource
scenario.
Side-Channel Attacks: Timing and power analysis attack on ECC implementations are possible
if security measures are not adopted.

Quantum Computing Threat: The Elliptic Curve Discrete Logarithm Problem (ECDLP) could
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theoretically be solved by new quantum algorithms like Shor’s algorithm, lowering the security
of ECC once sufficiently powerful quantum computers become available.
This presents the direction for further research work to improve ECC performance and to

strengthen its security, especially in the post-quantum cryptography environment.
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