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ABSTRACT 

DUPLICATE BUG REPORT DETECTION USING DATA 

AUGMENTATION TECHNIQUE 

                  In software projects, developers, testers, and end users identify bugs and 

report the bugs to the triager. To manage these bug reports, various Bug Tracking 

Systems (BTS) such as Bugzilla or Jira are used. One bug may be reported by multiple 

persons to the system which generate Duplicate Bug Reports in the system. Duplicate 

Bug Report Detection (DBRD) is very important because it results in a significant 

depletion of human resources. Many researchers proposed a range of machine learning 

techniques to detect the duplicate bug reports. The existing techniques performs well 

when a large number of bug reports are used as a training dataset but the performance of 

existing techniques significantly decreased for small dataset. To overcome this 

challenge, the data augmentation technique is used to increase the number of bug reports 

for the projects having small number of bug reports as training data. Various data 

augmentation techniques like synonym replacement, random insertion, component 

shuffling and class balance are used to increase the bug data. To validate the performance 

of data augmentation technique for duplicate bug detection, we used various deep 

learning models e.g. CNN, LSTM and BERT. We also compare the results of various 

deep learning techniques to analyze which model performs better with the augmented 

bug reports data. Our results show that data augmentation improved the results for all 

three models in term of accuracy, precision, recall, F1-socore and AUC score. The 

accuracy achieved on augmented data is 94.77%, 94.77% and 96.30% for LSTM, CNN 

and BERT respectively.  
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CHAPTER 1 

1. INTRODUCTION 

 

1.1 Introduction 

                    In software development and maintaining, bugs are reported by the developers, 

testers and users.  Managing bug reports effectively is essential for maintaining the quality 

and reliability of a software. In open source project, bug repositories are used to keep the 

record of bugs. These bug repositories are called bug tracking systems (BTS).There are 

following bug tracking systems like Bugzilla, Jira, Redmine and GitHub issue tacking etc. 

Bug tracking systems collect reports from users and testers to help identify and fix issues in 

the software. Developer and users from all over the world can submit the bug report. Using 

bug tracking software, we make the record of the bugs and easily it can be addressed. 

              Bug reporting is a critical component of developing and maintaining software. Bug 

report is detail document that explains the bug, its severity, priority, version, title, summary 

and description. Bug report is called duplicate bug report (BDR) when same bug is addressed 

by multiple persons and submit report in BTS [1]. Detecting duplicate bug reports is a 

challenging task. Recent data from the Eclipse Bug Tracking System (BTS) shows that, over 

three years (January 1, 2018, to January 1, 2021), 7542 bug reports were submitted. 

Approximately three-quarters of these reports were either erroneous or duplicates [2]. So, it 

is essential to improve mechanisms for finding bug reports similar or redundant. Handling 

these almost unavoidable frequent bug reports requires considerable maintenance work and 

prioritization and resolution [3]. We can utilize the existing information to fix bugs by 

efficiently identifying duplicate bug reports. [4]. 

                Bug report is written in natural language text. Developer, tester and user write same 

bug report using different vocabulary that cause duplicate bug report. Bug reports use 

semantic textual similarity (STS) techniques, which compare text similarities based on 
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semantic meaning.  Machine learning methods and natural language processing (NLP) 

methods have been applied for the same purpose. 

                Duplicate bug report has been identified in several researchers by recognizing high 

textual similarity between information (such as bug report titles and descriptions) [2]. In order 

to prevent needing to repair bugs again, these duplicates must be found. However, the daily 

bug report management process is typically effortful task that becomes more difficult as the 

project goes on. The project can be handled with ease if it is automatically identified that a 

bug report is duplicate. Over the past few years, numerous Duplicate Bug Report Detection 

(DBRD) techniques have been introduced. 

            Identification and elimination of these duplicates assist in enhancing the debugging 

process. This research focuses on using data augmentation to improve the accuracy of 

machine learning models in identifying duplicate bug reports, particularly when dealing with 

small datasets. 

 

1.2 Research Background 

                  In duplicate bug report identification, current methods such as conventional 

Information Retrieval (IR) techniques and state-of-the-art deep learning (DL) models have 

turned out to be suboptimal because of numerous reasons. Studies have highlighted that these 

methods tend to lose some of the semantic similarity between bug reports. It causes the main 

reason in losing important information.  Many machine learning and deep learning models 

do not perform well when they are trained on small amount of datasets. These model needs a 

large amount of data to learn patterns effectively. These models can learn better and provide 

better results when there is sufficient data available for training. Some new or small scale 

software projects have less number of historical bug reports. So this limited amount of data 

limits the ability of machine learning and deep learning algorithms to learn important patterns 

and it makes difficult to predict duplicate reports accurately. 
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                  There is one solution to overcome the challenge of limited data set. We can 

increase the size of the dataset through data augmentation methods. Data augmentation 

generates new data set with diversity that can be used for training machine learning models. 

It can help in enhancing the learning process and accuracy of the model. 

1.3 Problem Statement 

               Machine learning and deep learning techniques perform well and achieve high 

accuracy when trained on large and diverse datasets. It struggles with predicting accurate 

results when trained on small datasets [3] [4]. Similarly software project with limited 

historical bug reports make it difficult for model to achieve high accuracy in detecting 

duplicate bug reports (BRs) [5]. 

            Researchers explored different machine learning and deep learning techniques such 

as random forest, decision tree, SVM, CNN, LSTM and transformer based models like BERT 

[6]. These models performed well in identifying duplicate bug reports with large number of 

historical data.  

         To address the given challenge, our focus on increase large amount of training data. For 

this purpose, data augmentation technique can be applied to synthetically increase the dataset 

and improve the models performance. 

1.4  Research Question  

         There is only one research question related given problem statement. 

 RQ: How does data augmentation affect the accuracy of machine learning techniques for 

small datasets in detecting duplicate bug report? 
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1.5 Research Objective 

Obj: To evaluate the impact of augmentation techniques on the accuracy of machine learning 

models in duplicate bug report detection when bug reports data is limited. 

1.6    Motivation 

                    The motivation behind this topic “Duplicate Bug Report Detection using 

Data Augmentation Technique” arises from the growing the challenge to identify the 

duplicate bug report in bug tracking system when the available data is limited.  In many 

software projects, there is less number of bug reports and especially duplicate ones. This 

limited amount of data poses a significant obstacle to effectively training machine learning 

models, which typically require large volumes of labeled data to learn meaningful patterns 

and achieve high accuracy.  When machine learning models are trained on limited data set, 

it reduces the performance of models and it gives inaccurate outcomes in identifying 

duplicate bug reports. 

                  To overcome this challenge, data augmentation technique gives a practical 

solution. Augmentation technique is a novel technique that artificially increase the data set 

using different strategies. So data set can be increased using data augmentation techniques. 

It provides more data for a machine learning model for training, which helps in increasing 

the machine learning model performance in terms of accuracy. When we have small 

number of bug reports in bug tracking system so it is not helpful for machine learning 

models to train the enough data for better results. By increasing the size and richness of the 

dataset, data augmentation enables machine learning and deep learning models to 

generalize better, identify subtle semantic similarities and improve accuracy in detecting 

duplicates.  

                As we know that there are different machine learning models that produce results 

according to their unique mechanism. So there is motivation to compare the results of 

different machine learning model that how they improve their results when trained with 

augmented data. We decided to compare the results of three machine learning Models 

LSTM, CNN and BERT because these models performed well or large data set according 

existing literature. 
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1.7    Scope of Research 

                    The purpose of this research is to address the challenges posed by limited bug 

reports in bug tracking system and also to explore the impact of the data augmentation 

technique on the performance of machine learning and deep learning models in identifying 

duplicate bug reports when it is trained on new artificially increased data set. The research 

process includes some main steps: data collection, preprocessing, artificial expansion of 

the dataset through augmentation, model training, testing, and performance evaluation. 

Since small datasets are usually inadequate to train good models so data augmentation is 

applied to synthetically boost the size and diversity of training data. This research 

particularly addresses the impact of augmentation methods for text data. Since bug reports 

are typically written in natural language, this study emphasizes the application of 

augmentation strategies that preserve semantic meaning while increasing data volume and 

variety. 

 

1.8   Research Contribution and Significance 

                  This research makes a significant contribution. This study informs us about the 

significance of data. A limited amount of data does not assist the machine learning models in 

predicting accurate and reliable results. To achieve this purpose we employ data 

augmentation technique which assist in expanding the amount of training data.  Data 

augmentation technique gives sufficient and diverse data to train the machine learning and 

deep learning models which enables them to learn better pattern and make more accurate 

prediction. It improves the accuracy of machine learning model. By improving model 

performance, data augmentation directly contributes to more effective duplicate bug report 

detection, which is critical for maintaining software quality. It helps development teams 

reduce time spent on redundant bug handling and improves overall efficiency. Ultimately this 

research will help to improve the project management task. 
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1.9   Thesis Structure 

                      Thesis is organized in following chapters that describes about bug, bug report 

and methods of detecting duplicate bug report. Chapter 1 is dedicated to introduction of the 

thesis. It outlines the problem statement. Research question and objectives. It also outlines 

the motivation and study scope for the topic of thesis. Chapter 2 is comprehensive 

background information and review of literature of bug, bug report, bug tracking system, 

natural language processing, machine learning, deep learning and augmentation techniques. 

It provides information about techniques that has been utilized for finding duplicate bug 

report. It also tells about augmentation techniques that how efficiently enhances the data set 

size and aids in training. Chapter 3 is research methodology. It explains the steps of data 

collection, data preprocessing, and data augmentation process, training of the data set, testing 

and evaluation process and performance evaluation metrics. Chapter 4 is for result discussion 

and analysis. It describes the result as well as the comparison of results of both non-

augmented and data augmented. It discusses that how augmentation technique has enhanced 

the accuracy of the machine leaning and deep learning model. Chapter 5 discusses thesis 

work conclusion and give directions regarding the future work that will be useful for future 

researchers. 

 

1.10 Summary 

                  This chapter defines the problem statement that limited number of bug reports 

does not provide enough data for machine learning model to accurately identify duplicate 

bug reports. To address this specific problem we use a novel techniques that is data 

augmentation. Data augmentation methods assist in enhancing the synthetically data in 

terms of size that assist machine learning models to learn more effectively and predict the 

outcome more accurately. This technique enhances model’s performance. It also highlights 

the key component including research question, research objective, scope, and 

contributions. These elements help in preparing foundation for the chapter that follows.  
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  CHAPTER 2 

 

2. LITERATURE REVIEW 

 

2.1 Introduction 

               This chapter provides a detailed overview of existing studies related to bug, bug life 

cycle, bug report, duplicate bug report. It also provides existing knowledge about duplicate 

bug report detection techniques and various data augmentation techniques applicable to 

textual data. It also provides comprehensive study about natural language processing (NLP), 

its concept, techniques and working. This chapter also covers machine learning and deep 

learning techniques and their architecture, highlighting how they are applied in the context 

of bug report analysis. This chapter establishes a strong theoretical foundation that guides the 

research methodology and experimental design presented in later chapters. 

2.2 Bug Report 

               A software developers make a software for users according to their requirements. 

He fulfils their requirements if requirements does not meet, it means there is an error. 

Developers write a code according to requirement of the programs. When there is human 

mistake or errors during writing a code that can affect the functionality of the program. It is 

called bug or defect. After finding the bug, User or tester write the bug report. The word 

“Bug” is formally used since 1870 [7].  

            After identifying the bug, Bug report is written. It is a document that contain 

different information about bug like Bug ID, Product, Component, Title, Status, Resolution, 

Duplicate Bug report ID, Priority, Severity, Created, Summary and description. Figure 2.1 

explains the bug report. Bug report data is divided into structured and unstructured data. 

Structured data contains Bug ID, Product, Component, Status, Resolution, Duplicate ID, 
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Priority, Severity, Version, and Platform. Structured data is categorical data. Unstructured 

data is Title, Summary and Description.[8]. It is textual data. 

 

Figure 2.1: Bug Report Format [9] 

 

2.3  Bug Life Cycle and Bug Tracking System (BTS) 

                 Reporting bugs is an essential part of developing, testing, and maintaining 

software. Typically, a bug tracking system like Bugzilla, Jira and Redmine is used to submit 

and analyze reported bugs. A person called software triager, who analyze the bug report. He 

is knowledgeable about the project, system, and developers [10]. Bug is submitted in bug 

tracking system. 

               Bug has a life cycle that stats different information. When a bug is sent to the bug 

tracking system it called ‘new bug’ then it is assigned to the developers. Developer fix the 

bug. Sometimes it is not fixed for a few reasons; either the bug is invalid or the bug is already 

resolved, or it is a duplicate. Figure 2.2 explains the bug lifecycle.  
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Figure 2.2: Bug life Cycle [11] 

 

2.4 Duplicate Bug Report 

                      Bug report is written in natural language text. Duplicate bug reports arise when 

multiple individuals file bug reports for the same issue [1]. Developer, tester and user write 

same bug report using different vocabulary that cause duplicate bug report. Bug reports 

involve semantic textual similarity (STS) techniques, which compare text on the basis of 

semantic similarities. Duplicate bug report has been identified in several researchers by 

recognizing high textual similarity between information (such as bug report titles and 

descriptions) [2]. Developer mark it as duplicates bug report if it has been fixed. In order to 

prevent needing to repair bugs again, these duplicates must be found.  

                Textual similarity is determined by extracting keywords and assessing how alike 

they are. These methods employ various techniques such as word embedding, TF-IDF and 

bag-of-words. Some other approaches depend on automatically condensing keywords as 

features for training binary classifiers, such as XGBoost [12]. 
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Figure 2.3: Duplicate Bug Report [13] 

2.5 Natural Language Processing (NLP) 

                  Natural Language processing is the part of artificial intelligence. It processes 

the human language into computer language. It is used in different computer application like 

speech recognition, Chabot, sentiment analysis, machine translation and text classification. 

It fills the gap between machines and human. Different techniques of ML and DL are applied 

for natural language processing improvements [14].  

 

2.6 Natural Language Preprocessing Pipeline 

                    Natural language processing follows a systematic approach that convert human 

language into machine language and trains machine learning and deep learning model for real 

life applications. Figure 2.4 explains the whole NLP pipeline which explain the flow of 

working. 
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Figure 2.4: NLP Pipeline 

 

2.6.1 Data Collection 

                     The first step in an NLP pipeline is data collection. It is a crucial part of the 

process, as the quality and quantity of data directly impact the performance of the model. 

Various techniques can be used for data acquisition. For example, web scraping is a common 

method for collecting data from online sources. Surveys can also be conducted to gather 

relevant data. The choice of data collection technique depends on the specific topic or 

problem you are addressing. Therefore, it is important to obtain the necessary data in order 

to effectively solve the targeted problem. 

 

2.6.2 Data Extraction and Cleaning 

                    After collecting the dataset, the next step is to identify and keep only the relevant 

information. In most cases, the raw data is not well defined or well organized. Therefore, we 

need to extract the useful parts based on our specific requirements and discard any irrelevant 

or unnecessary information. We can create simple and better version of our data by removing 

irrelevant data. We can check spelling mistakes and we can remove punctuations, different 

html tags in data set and convert text in lower casing.  
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2.6.3 Data Preprocessing 

                In natural language processing (NLP), data is in form of text. Textual data is written 

in paragraphs, sentences or in lines. Computer cannot understand natural language or human 

language. Data preprocessing is necessary step that convert the unstructured text into 

structured format that machine learning model can understand it and learn effectively[15]. 

Different data preprocessing techniques are following there. 

Tokenization 

            In NLP model, Tokenization in important step. Tokenization means you have to break 

the text data into small units. It provides better understanding for NLP models [16]. There 

are two types of tokenization. Sentence tokenization and word tokenization 

Sentence Tokenization 

            In sentence tokenization we break the whole paragraph is sentences. This process is 

called sentence segmentation or sentence tokenization. 

Word Tokenization 

            In word tokenization we break the sentence into words. So it is important process for 

NLP model. On the basis of word tokenization we can train machine learning models and can 

build NLP applications. 

Stemming 

           Stemming is the process which extract the base word and remove the affix. Stemming 

does not follow grammar. It has fix rule to extract the word [17].  

Lemmatization 
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           Lemmatization is one step ahead from stemming. It extract meaningful base word 

following grammar rule. Stemming provides best result as compared to stemming because it 

understand the semantics of word [18][17]. 

2.7 Feature Engineering 

                    As we know that machine learning models do not understand the textual data 

directly. They only understand numbers so for this purpose we use different techniques to 

convert textual data into numbers. These numbers are meaningful representation of textual 

data. These numbers represent vectors. This whole process is called feature engineering [19]. 

Different feature engineering models has been proposed like Term frequency and Inverse 

document frequency (TF-IDF), One Hot encoding and Words embedding Word2vec[20][19]. 

2.8 Model Building 

                After completing the feature engineering, next step is to build machine learning 

model. All machine learning and deep learning models are not useful for natural language 

processing but classification model is helpful in it. Different classification techniques are 

Random forest, Decision tree, Support Vector machine (SVM), Naïve Bayes, Convolutional 

neural network (CNN) and Recurrent convolutional network (RNN) and Transformers like 

BERT [21] [22]. Using any model we train data set and predict the outcomes. 

 

2.9 Model Evaluation 

                 Model evaluation is a process to check the efficiency of machine learning and deep 

learning models that how affectively models learn from training data set and predicts the 

accurate results. There are following evaluation metrics that assess the performance of 

machine and deep learning models. Confusion matrix is one of them that helps to evaluate 

the model performance. We use various evaluation metrics as well like accuracy, precision, 

recall, and f1-score to evaluate the model performance [23]. 
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Accuracy 

            There are four predictions, true positive (TP), true negative (TN), false positive (FP) 

and false negative (FN). It predicts the ratio of correct or true prediction from total number 

of predictions. It can be true positive or true negative. It provides an overall result of the 

classifier is correct. 

𝐓𝐏+𝐓𝐍

𝐓𝐏+𝐓𝐍+𝐅𝐏+𝐅𝐍
    (1) 

Precision 

          It measure that how many predictions are actually correct from all positive prediction 

either true positive or false positive. 

𝐓𝐏

𝐓𝐏+𝐅𝐏
     (2) 

Recall 

      It predicts the true positive prediction from made up of all positive class. 

𝐓𝐏

𝐓𝐏+𝐅𝐍
   (3) 

F1-score  

       It provides balance score that covers precision and recall both. 

𝟐(𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧∗𝐑𝐞𝐜𝐚𝐥𝐥)

𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧+𝐑𝐞𝐜𝐚𝐥𝐥
    (4) 

ROC-AUC Curve   
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           The Receiver Operating Characteristic (ROC) - The Area Under the Curve (AUC) is 

useful in binary classification tasks. It provides result for classification model performance. 

 

2.10    Machine Learning (ML) 

                   Machine learning is the branch of artificial intelligence (AI). It is used for data 

analysis, where it learns patterns and extracts features from the given datasets. These datasets 

are then trained using different algorithms. Machine learning models and techniques predict 

results and make decisions on the basis of training data set. Supervised learning, unsupervised 

learning, semi-supervised learning and reinforcement learning are the four categories of 

machine learning. [24]. Figure 2.5 shows the working of Machine learning model. 

 

Figure 2.5: Working in ML [25] 

2.10.1 Supervised learning 

                     Supervised learning is very important in machine learning. It is used to train 

models on the labeled data set. Data is given as input to algorithm. It learns from input and 

gives output or predict results according the variable that we set [26]. Supervised learning is 

categorized in two types: Classification and regression. In regression we predict numerical 

values like temperature, score, stock prices etc.  In classification we predict different things 

like either it’s a cat or a dog. In NLP, tasks like text classification, sentiment analysis, and 

duplicate detection often rely on this approach. Each text sample is paired with a target label, 
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such as a category or class. The model learns patterns in the labeled data and generalizes to 

unseen text. Supervised learning algorithms like Random Forest, Decision Trees, SVM, and 

deep neural networks are commonly used here. 

2.10.2   Unsupervised learning 

                 Unsupervised learning is done when there is unlabeled data. It means we give data 

as input but without any labeled outcome.  Algorithms learns the pattern and predict the result 

by itself [26]. In NLP, it is often used for clustering similar documents, topic modeling, or 

word embedding learning. Models like K-Means or Latent Dirichlet Allocation (LDA) find 

structure in data without needing labels. This is useful for organizing large text corpora or 

exploring data before annotation. It helps in understanding semantic relationships between 

words or reports. 

2.10.3    Semi-Supervised learning 

                   Semi-supervised learning is done when we have labeled and unlabeled data. It 

improves the performance of model and provides better results [27]. Classification and 

clustering both are used in semi-supervised learning. This is especially helpful in NLP tasks 

where manual labeling is costly and time-consuming. The model initially learns from labeled 

data, then refines its learning using patterns from the unlabeled data. It is commonly applied 

in tasks like named entity recognition and duplicate detection when labels are limited. 

Techniques often include self-training, co-training, or graph-based methods. 

2.10.4  Reinforcement learning 

                         Reinforcement learning is done as making decision on the basis of trial and 

error [26]. It is used in complex dataset. In NLP, it's applied in tasks like dialogue systems, 

text summarization, and machine translation, where the system improves through trial and 

error. The model learns strategies for generating or selecting the best text output based on 

reward signals. Over time, it optimizes for long-term success in language interactions. 

Techniques like policy gradients and Q-learning are used in these scenarios. 
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2.11 Textual Features Extraction techniques 

                  We use following techniques for feature extraction. It converts textual data into 

vectorization form.[28][19]. 

2.11.1 Bag of words (BOW) 

                      Represents text as a collection of word counts without considering grammar or 

word order. It only works to count the words that appears frequently in document. It is not 

complicated to use but it does not work on semantics and words order. It cannot understand 

the relationship between words and often leads to high-dimensional sparse feature vectors 

[29]. 

2.11.2  Term Frequency-Inverse Document Frequency (TF-IDF) 

                        TF-IDF works same like bag of words but it is improved version of BOW. It 

works by considering how important a word is to a document in a collection. TF counts how 

often a word appears in a document. IDF reduces the weight of common words across 

documents [29]. It does not give much importance to common words. It also not understand 

the semantics in text. 

2.11.3  Words Embedding 

                     Words embedding are a powerful textual feature extraction technique that 

represent words as dense, low-dimensional vectors that capture their semantic meaning. 

These embedding map similar words to similar vector spaces, enabling models to understand 

relationships between words beyond simple frequency counts [30]. Among the most widely 

used embedding methods are Word2Vec and GloVe. 

GloVe 

             GloVe (Global Vectors for Word Representation), developed by Stanford, is based 

on matrix factorization and constructs word vectors by analyzing global word-word co-

occurrence statistics across a corpus. Unlike Word2Vec, which is predictive, GloVe is count-
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based and captures more global context of words[31]. It covers semantics and count words 

how many time a similar words appears in document. But it is used when we have large 

number of data set. 

Word2vec 

              Word2Vec is developed by Google, learns word representations using neural 

networks by predicting a word based on its surrounding context (Skip-gram) or predicting 

surrounding words given a central word (CBOW). It captures both syntactic and semantic 

relationships by training on large corpora and is known for producing meaningful vector 

arithmetic. It represents the similar word with semantics and syntactic. It understand the 

relationship between words in document [32]. It represents the same numerical form for the 

word having same meaning. But one problem is that it cannot handle polysemy. 

2.11.4  Context aware (BERT embedding) 

                    BERT is pre-trained using masked language modeling. It works same like glove 

and word2vec but it produces contextual embedding, meaning the same word can have 

different vectors depending on its sentence context. It uses a transformer architecture that 

considers the entire sentence bi-directionally, capturing deeper semantic relationships [22]. 

It is also helpful for large and complex data. It requires more storage and computation power 

that is its limitation. 

 

2.12  Deep Learning (DL) Models 

                       Machine learning models require features as input to learn and make 

predictions. In contrast, deep learning is an advanced version of machine learning that draws 

inspiration from the human brain and can automatically learn features from raw data using 

multiple layers. Deep learning model learns features by themselves and predict results. Deep 

learning is high efficient for complex data and high dimensional data sets [33].  
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Figure 2.6: Working in DL [25] 

                      Deep learning models have achieved immense success in Natural Language 

Processing (NLP) in recent years. Deep learning models have the ability to understand the 

semantics in NLP from raw text without manual feature engineering. In deep learning models, 

Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks 

are the powerful model. They have shown impressive ability in text classification, similarity 

detection, and semantic matching. This makes them especially effective for identifying 

duplicate bug reports. 

2.12.1 Convolutional Neural Network (CNN) 

                   Convolutional neural network is a deep learning model that is used in computer 

vision like image identification and natural language processing like text classification. It is 

used in NLP for sentiment analysis and document categorization. It achieved very promising 

results in computer vision and NLP.  It is very affective due to its architecture and way of 

working. The architecture of a CNN for NLP commences with an embedding layer that 

converts each word in a sentence into a dense vector representation. This whole process is 

followed by one or more convolutional layers that apply filters to extract local n-gram 

features from the text. Figure 2.7 explains the working architecture of CNN. 
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Figure 2.7: Convolutional Neural Network Architecture [34] 

                These convolutional layers are good enough at capturing position invariant patterns 

and local dependencies in text, such as frequent keyword combinations. The activation 

function, usually ReLU is applied. It introduces non-linearity to the model and helps it to 

learn complex relationships. A max-pooling layer is then used to select the most prominent 

features by reducing the dimensionality and retaining the most meaningful information [35]. 

              The output from the pooling layer is flattened and passed to fully connect (dense) 

layers, which further process the extracted features for the final classification task. The final 

layer mostly applies a softmax or sigmoid activation. When there is requirement either the 

output is multi class or binary classification. CNNs model can be trained on textual data to 

check the textual similarity between two bug reports in identifying duplicate bug report. 

 

2.12.2   Recurrent Neural Network (RNN) 

                       Recurrent Neural Network (RNN) is one of the neural networks that 

specifically designed to process sequential data. It is highly ideal for natural language 

processing (NLP) tasks. It works making a series or sequence. It generates results according 

to input sequences that is given to model. RNNs have multiple layer. There are some hidden 
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layers that captures information about previous input. RNNs can also learn the timing and 

order of words in sequences like sentences or documents. This helps them understand how 

words are connected and what they mean together. RNNs are useful for tasks like language 

modeling, translating languages, sentiment analysis in text, and finding duplicate text or 

classification [36]. 

 

 

Figure 2.8: Recurrent Neural Network architecture [37] 

                   RNNs are good at understanding both the structure and meaning of language. 

This makes them very useful for tasks like classifying text, labeling parts of a sequence, and 

answering questions. They can also be extended to Siamese architectures for tasks like 

sentence similarity and duplicate detection by comparing vector representations of text 

sequences learned by shared RNN branches. 

 

2.12.3  Long Short-Term Memory (LSTM) Networks 

         LSTM is a type of recurrent neural network (RNN) that is specifically designed for 

sequential data. It performs very well on sequential data like RNNs. LSTM is ideal for NLP 
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tasks because it can understand the word order or semantic similarity. Word order 

significantly impacts in meaning. LSTM networks address the shortcoming the limitations of 

traditional RNNs through integration memory cells and specialized gates like input, forget, 

and output gates that control how information is stored, used, or removed as the network 

learns [38]. 

                    An LSTM based architecture for duplicate detection begins with an embedding 

layer, followed by one or more LSTM layers that is used to process the input sequences word 

by word. The memory cells store information over long distances, capturing the semantic 

flow of sentences. This is crucial when comparing two bug reports that use different phrasing 

but convey the same issue. 

                  The final hidden states from the LSTM layers can be either passed directly to a 

dense layer for classification or combined with attention mechanisms to enhance 

interpretability. This allows model to learn and focus on specific parts input sequence when 

deciding how similar things are. It is helpful for improving the performance in complex 

sentence structures. 

 

 

Figure 2.9: LSTM Network Architecture [39] 
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Transformer Models 

              Vaswani et al. introduced “The Transformer architecture” in 2017 in the paper 

“Attention is All You Need,” marked a revolutionary shift in natural language processing 

[40]. Deep learning and machine learning model are working on NLP. Like BERT, GPT and 

T5 [41]. 

2.12.4  BERT Classifier Model: 

                 BERT (Bidirectional Encoder Representation from transformers) is a 

transformer base deep learning model that is introduced by Google in 2018 It had a huge 

impact and totally changed the landscape of Natural Language Processing (NLP) [42]. It has 

been trained on large amount of text data. That is why it is pre-trained model. It has the ability 

to understand the contextual meaning from text data including Wikipedia and books corpus. 

It has two key objectives: Masked Language model (MLM) and next sentence prediction 

(NSP)[43].  

Masked Language Modeling (MLM):  In this task, some percentage of the input tokens are 

randomly masked and the model learns to predict these masked tokens based on the context 

provided by the unmasked tokens. This forces the model to develop a contextual 

understanding of the sentence structure and word usage. 

Next Sentence Prediction (NSP): The model is given pairs of sentences and must predict 

whether the second sentence logically follows the first. This helps BERT understand 

relationships between sentences. 

BERT Variant: BERT-base and BERT-large are two versions of BERT. BERT-base has 12 

encoded layers, 768 hidden units, 12 self-attention heads, and 110 million parameters. BERT-

large has 24 encoded layers 1024 hidden units, 16 self-attention heads, and 340 million 

parameters. [44].  Fig explains the working of BERT classifier. 
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Figure 2.10: BERT architecture [44] 

                BERT Classifier architecture uses BERT embedding from pre-trained BERT 

model followed by a classification layer such as a dense layer with softmax or sigmoid 

activation to perform tasks. This model setup is especially effective in binary and multi-class 

classification tasks such as sentiment analysis, spam detection, and duplicate bug report 

detection. 

              For training the BERT classifier on text data, the first step in using BERT training 

is tokenization. It breaks the text into small units compatible with the model’s vocabulary. 

BERT uses a special tokenizer known as WordPiece tokenizer. In addition to standard tokens, 

BERT adds special tokens to each input sequence. In this purpose special token are like [CLS] 

for starting of text and [SEP] is end of the text. [CLS] a classification token added at the 

beginning of the sequence. The final hidden state corresponding to this token is used for 

classification tasks. [SEP] a separator token used to distinguish between two sentences or 

segments in input. After tokenization, the text is converted into numerical representations 

using token IDs, segment IDs, and attention masks, which are then fed into the BERT model. 

This is particularly useful in tasks like question answering or next sentence prediction. It 

extracts features by itself. These features are converted into numerical form [45]. After this 
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preprocessing data is given BERT classifier for training the model. BERT understands the 

pattern of the text by itself easily then just fine-tuning BERT for the task[46]. 

 

 

Figure 2.11: BERT architecture layers [47] 

              Figure 2.11 explains the internal structure of BERT’s encoder layers in a clear way. 

Each encoder layer is made up of two main components: a multi-head self-attention 

mechanism and a feed-forward neural network. Each layer includes residual connections, 

which help the model retain important information, and layer normalization. It stabilizes the 
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learning process. The output produced by one encoder layer is passed on as input to the next 

layer, enabling BERT to gradually learn more abstract and complex features from the input 

text data.  

           Since the release of the original BERT model, several improved and optimized 

versions have been introduced to overcome limitations like large model size and slow 

inference time. Bert-base-uncased (standard BERT model), Distil BERT-base-uncased 

(smaller, faster version of BERT), RoBERTa (improved version of BERT) and T5/Pagasus 

(Transformer-based models for text generation and classification). 

BERT-Base-Uncased: The standard, lowercase version of BERT where all input text is 

converted to lowercase and stripped of accent markers. 

DistilBERT: A distilled, compact version of BERT that is smaller and faster while retaining 

about 95% of BERT’s performance. It has 6 layers instead of 12, making it suitable for 

deployment in environments with limited computational resources. 

RoBERTa (Robustly optimized BERT approach): It is introduced by Facebook AI. 

RoBERTa modifies BERT’s training procedure by removing the NSP task, using larger mini-

batches, and training on more data. It consistently outperforms BERT on several benchmark 

datasets. 

ALBERT (A Lite BERT): It is developed by Google. It is used to reduce model size by 

sharing parameters across layers and factorizing embedding matrices. It can achieve 

competitive performance. 

T5 (Text-to-Text Transfer Transformer) and Pegasus: These are transformer-based 

models focused on text generation and summarization. T5 treats every NLP problem as a 

text-to-text problem and Pegasus is specifically pre-trained for abstractive text 

summarization using a novel pre-training objective. 
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2.13  Data Augmentation (DA) and techniques 

                  Data augmentation is a technique that synthetically enlarge the size of the data 

set. It gives the diversity to the data set and prevent data scarcity. It is also useful to manage 

class imbalance. It resolve the overfitting issue in ML models [48].   

When we have less number of training data set we can use data augmentation technique to 

enhance the size of training data set. It will help to improve the performance of ML model. 

There are following augmentation techniques. Easy data augmentation, Back translation.[49] 

2.13.1  Easy Data Augmentation 

                      EDA has further following operation. Random Insertion (RI), Random 

Deletion (RS), Synonym Replacement (SR) [50][49]. 

Synonym Replacement: It replaces words with their synonyms using WordNet tool. It is also 

called lexical substitute.  

Random Insertion: Inserts synonyms of existing words at random positions. This word should 

not be stop word. 

Random Swap or Deletion: Using this method we can randomly swap characters. We can 

delete any word. 

2.13.2  Back Translation 

                   Back translation means to generate data with different wording and translate it in 

another language. Here we can change language using translation tools like google translation 

API or Bing translate. It makes the changes in sentences or phrases [49]. 

2.14 Data Augmentation Tool 

            We use different tools and libraries for data augmentation. They are following. 

Textattack, Nlpaug, Googletrans, NLP Albumentations and TextAugment [51] 
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2.14.1  Text Attack 

 

 

Figure 2.12: Methods of Data Augmentation [52] 

Word Augmenter: It increases data by making changes in words and replacing words using 

WordNet. This technique leverages lexical databases to find synonyms or related words, thus 

enriching the dataset. By diversifying vocabulary, it helps models generalize better and 

reduces overfitting to specific word choices. 

Embedding Augmenter: Word embedding mean change the textual data into numerical 

form or vectorization form. Embedding augmenter increases dataset size by selecting words 

with similar vector representations. Cosine similarity above 0.8 ensures that substituted 

words remain contextually and semantically relevant. [49]. 

Easy Data Augmenter: It simply insert, delete or replace the data to increase its size. This 

method is easy to implement and introduces random variations in the dataset. It helps simulate 

user errors and informal writing, which improves model robustness[53]. 
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Char Swap Augmenter: It increases the data size by simply swapping the character. In this 

we simply can add or delete words. 

Checklist Augmenter: It increases data by making sentences long, short and swap using 

different methods like name, location, number. 

Clare Augmenter: It also helps in increasing data by adding new text, replacing the text with 

similar one. Synonym can be written for this purpose. It integrates the data with pre-trained 

masked language models.     

2.15 Existing studies for duplicate bug report detection 

In recent decades, numerous machine learning approaches have been put forward by 

researchers to enhance the accuracy of identifying duplicate bug reports. With the recent 

advancements in this field, additionally, academics have developed a number of methods for 

detecting duplicate bug reports that use deep learning techniques. It is commonly known that 

the size of the training dataset has a significant impact that deep learning-based techniques 

have great impact. Deep learning approaches have displayed potential when applied to bug 

repositories featuring a substantial volume of problem reports. 

 The industry makes use of various extra techniques. It's difficult to gauge how far we've 

come because there isn't enough area to compare them. The elements influencing DBRD 

performance were investigated. It was demonstrated that DBRD techniques exhibited 

significant differences in performance between recent and older data. It is evident that 

developers today would derive limited benefit from a DBRD technique excelling with data 

from many years ago but faltering with more recent data [5]. 

Automatic DBR detection methods are introduced based on several criteria for determining 

if the newly submitted report is a duplicate report or not. Especially machine learning 

techniques are used to detect the DBRs. 

For detecting duplicate, cosine similarity is used but a new methodology Manhathan distance 

similarity approach is used for feature extraction. It helps to enhance the accuracy for 
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detecting duplicate bug report. Decision tree classifier performed well due best feature 

extraction. It provided high accuracy [54]. 

An approach named as Detecting Duplicate bug reports with convolutional neural network 

has been used. The main purpose of this approach is to use semantic and syntactic features 

for model accuracy. Hadoop, Hdfs, Mapreduce and Spark data set have been used for it. 

DBR-CNN achieved accuracy 0.925, 0.954, 0.823 and 0.944 for mapreduce, hdfs, Hadoop 

and spark respectively [55]. 

Deep learning model like Convolutional Neural Network (CNN) is used for DBRD. The 

performance of proposed system is evaluated on datasets that are publicly available. This 

technique performed well and achieving accuracy rates ranging from 85% to 99% and 

recall@k rates between 79% and 94%. Furthermore, cross-training datasets from both the 

same and separate domains were used to evaluate the technique’s performance. When applied 

to datasets from the same domain, the suggested technique produces high accuracy; however, 

when used to datasets from different domains, the accuracy is lower [56]. 

An approach Dual-Channel Convolutional Neural Networks (DC-CNN) is presented for 

identifying duplicate bug reports. Word2vec is used for vocabulary then single convolutional 

matrix is generated. CNN model is trained and predict duplicate bug reports. This approached 

is tested on three large data set Open Office, Eclipse, Net Beans. This model performed very 

well, with accuracy scores of 0.9429, 0.9685, 0.9534, and 0.9552, which were even better 

than other methods that use deep learning [57]. 

Bug reports contain structured and unstructured data. Feature extraction is best for 

unstructured data so a new approached feature extraction model has been used for detecting 

duplicate bug report. This approach used Term Frequency and Inverse Term Frequency (TF-

IDF) for better feature extraction using uni-gram and bi-gram. Decision tree classifier 

performed well on proposed approach and improved 2% accuracy and precision and 4.5% 

and 5.9% recall and f-1 measurement results [58]. 
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 Another comparative analysis between deep learning techniques has been conducted. The 

purpose of this technique to explore different embedding models like TF-IDF, Gensim, 

Fasttext, BERT and ADA. According this BERT performed very well instead of other models 

regarding recall [59]. 

Another transformer based approach has been used which improved the duplicate bug report 

detection. This technique used unstructured information of bug report as input. BERT MLP 

model performed best with comparison of DC-CNN and sentence BERT. 92.11 %, 94.08%,      

89.03% accuracy achieved using BERT MLP model on Mozilla, Eclipse and Thunderbird 

dataset respectively [60]. 

Another approached has been use on transformer models, it combines retrieval and 

classification approached for detecting duplicate bug reports. Sentence BERT and RoBERTa 

outperformed as compared to other models in retrieval and classification. This technique is 

applied on five different data sets. It performed well for time efficiency and accuracy as well 

[61] 

 A new method is introduced for identifying the duplicate bug report. It utilizes BERT model 

as a foundation for constructing SBERTs for both titles and content. By processing each item 

separately and optimizing SBERT with reports, the proposed system outperformed the 

baseline systems, demonstrating that it is possible to discover duplicate bug reports. [62]. 

 The aim of study on DBRD is to lessen the workload of developers and improve the working 

of software bug tracking system by differentiating between duplicate and new bug reports. It 

employs topic modeling and a feature selection algorithm to extract relevant information, 

then utilizes the BERT algorithm for accurate prediction, streamlining bug report 

management. The proposed model achieved an accuracy of approximately 89.85% in 

Mozilla, 87.03% in Apache, 87.67% in Eclipse and 88.95% in KDE. These results represent 

a significant boost over the baseline, with improvements of roughly 44.46% in Mozilla, 

47.77% in Apache, 45.17% in KDE and 36.33% in Eclipse [6]. 
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Maintaining industrial software is vital but complex. Identifying duplicate bug reports, 

typically done manually, can be enhanced by employing automated methods. This approach 

involves vectorising report content and using deep learning-based sentence embedding for 

similarity assessment. The system's performance, fine-tuned with sentence-BERT, is 

empirically compared to benchmarks, demonstrating its superior effectiveness in locating 

duplicate bug reports [63]. 

A novel approach for detecting Duplicate Bug Reports (DBRs) is introduced, known as the 

CTEDB method. This method involves selecting key information from Eclipse and Mozilla 

projects. The subsequent step involves assessing the similarity of the technical terms 

extracted from the bug report text data. The similarity calculation findings are coupled with 

the binary classification confidence of the DeBERTaV3 model to provide the final score that 

is used to evaluate the bug report duplication once the technical terms have been extracted. 

The experiment compares the use of a dual-channel convolutional neural network and a 

conventional convolutional neural network to identify Duplicate Bug Reports (DBRs) in 

order to evaluate the accuracy of the outcomes [[64].  

Different embedding models are examined and compared. How can accurately identify the 

duplicate bug report on the base of textual similarities. Such as TF-IDF (Baseline), Gensim, 

BERT, FastText and ADA. In general, BERT outperformed the other models, especially in 

terms of recall [65]. 

This study aimed to enhance the integration of automated duplicate bug report detection 

techniques into a tester's workflow. They proposed Bugle as an automated tool to present 

relevant bug reports. They achieved an average success rate of 94.44% in locating duplicates 

based on participants' queries. Participants achieved a 75.00% accuracy in identifying 

duplicates from the reports Bugle retrieved [66]. 

Duplication in bug reports poses a significant challenge in large open-source projects. To 

overcome this challenge they introduced a novel machine learning based approach for 

automatically detecting duplicate bug reports using textual data. They explored six distinct 
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methods: Topic modeling, Gaussian Naïve Bayes, deep learning, time based organization, 

clustering, and summarization via a generative pre-trained transformer large language model. 

They introduced a new method for finding duplicate bug reports. This method uses a 

threshold-based approach instead of the usual "top-k" selection. They tested their methods on 

a public dataset from an Eclipse open-source project. It showed good accuracy ranging from 

the high 70% to 90%. The multi-layer perceptron neural network model performed the best 

[67]. 

Duplicate bug report detection is difficult when the reports are written in different ways or 

are very short. According to existing studies 23% of duplicate reports don’t look similar in 

word. They just mean the same thing which traditional methods struggle to identify.78% of 

bug reports in open-source projects are short and use technical terms that make the task even 

harder. They used over 92,000 bug reports from three open-source systems and tested seven 

existing detection techniques to tackle these problems. They found that when reports were 

enriched, these techniques performed much better [68]. 

       A novel technique CorNER has been introduce. It has primary goal of significantly 

improving the accuracy of duplicate bug report (DBR) detection. This technique tackle the 

challenge of unstructured bug report information by converting the into structured data 

format. This technique initially employs Random forest with context (RNER). This RNER 

component is specifically designed to identify and label important entities of bug report like 

titles and their detailed descriptions. This technique used Text Convolutional Neural 

Networks (TextCNN) for feature extraction after using Random Forest with context (RNER) 

[69]. CorNER is able to process bug reports more effectively. It ultimately achieves much 

higher precision in identifying duplicate bug reports. 

 Deep learning-based methods have performed well in bug repositories with a high volume 

of bug reports. However, the available deep learning algorithms perform worse than the 

traditional approaches in bug repositories with a normal number of issues [5][70]. 
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 Data augmentation has different techniques for natural language processing. Easy data 

augmentation technique is one of the best techniques. It reduces the overfitting and boost the 

performance of model on text data [50] 

A useful method for dealing with the problem of small sample sizes in many natural language 

processing (NLP) jobs is text data augmentation. It helps to enhance the performance in form 

of accuracy of machine learning techniques [71]. Text classification performance is 

significantly improved by data augmentation techniques. It incorporates four key operations: 

random deletion, synonym replacement, random insertion and random swap [72]. It helps to 

increase the bug reports. 

This study centers on spotting duplicate bug reports in projects with small bug report 

numbers. A novel approach named "Cupid" combines traditional methods with advanced 

language models like ChatGPT. Cupid uses ChatGPT to identify crucial keywords and pairs 

them with the REP method. Across three datasets, Cupid outperforms other techniques, 

achieving scores between 0.59 and 0.67 in Recall Rate@10 [73]. 

2.16  Summary 

                This chapter gives a detailed review of the research background related to the study, 

including a comprehensive examination of existing literature on bug reports, duplicate bug 

report detection, data augmentation techniques, machine and deep learning models. It 

explores various methods and approaches previously proposed by researchers to identify and 

manage duplicate bug reports effectively. The chapter discusses the challenges commonly 

faced in this area, such as data imbalance, semantic similarity, and limited labeled datasets. 

It examines different data augmentation strategies that have been used to enhance training 

data and improve model performance. By analyzing past studies and comparing their 

outcomes, this chapter establishes the research gap and demonstrates the need for an 

improved and more effective solution.  
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CHAPTER 3 

3. RESEARCH METHODOLOGY 

 

                      This chapter lays out the research methodology for finding duplicate bug report 

detection. It is helpful in detecting duplicate bug reports when we have small project or small 

number of data set of bug reports. Basically, in this research, an experiment has been 

conducted to address the research question effectively. This experiment follows a well-

defined sequence of steps like data acquisition, preprocessing, data augmentation, model 

selection, implementation and evaluation of model. To address the research problem, the 

following methodology is proposed. Figure 3.1 explains the research methodology and 

experimental process. 
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Figure 3.1: Research Methodology and Experimental Procedure. 

 

3.1 Data Collection 

             The first step in conducting the experiment is data acquisition, specifically bug 

reports. Bug report data is the requirement. Bug report data has been collected from various 

open-source software systems, including Eclipse, Firefox, and Focus for iOS and Gecko view 

for Android version. Data is stored on popular bug tracking system called Bugzilla [74]. This 
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data set has been used in different existing studies [75] [76][77] [78]. This particular dataset 

featuring bug reports exclusively from mobile applications. All available bug reports from 

Firefox for iPhone, Focus for iPhone, and GeckoView for Android have been compiled and 

gave it the name "Mobile Dataset". The main reason for choosing this specific dataset for 

experiment is its limited number of bug reports. Table 3.1 shows detail about data set. 

 

Table3.1: Data set [74] 

Bug Reports Dataset (2017 – 2022) Number 

Whole Dataset (Bug Reports) 5320 

Duplicate Dataset (Bug Reports) 562 

Non-duplicate 4758 

Duplicate Ratio of Bug 10.56% 

3.2 Targeted Features from dataset 

                   Bug report is an important document that contains following information about 

Bug like Bug ID, Type, Summary, Product, Component, Status, Resolution, Description and 

Duplicate Bug ID. For the research experiment, following features have been selected from 

the dataset that are type, summary and description. Type is a categorical and structured data 

type. It classifies the nature of bug. Summary and description are textual data and 

unstructured data type.  On the basis of these features we can predict that bug report is 

duplicate or not. So the target column is Duplicate_Bug_ids. 

 

Figure 3.2: Data set columns 
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3.3  Data Preprocessing 

                    Before training data set, data preprocessing is an essential part of NLP. There is 

requirement of preprocessing in natural language processing. It organizes the data and makes 

it more meaningful and noise free. Following steps have been followed for data preprocessing 

that has been explained in chapter 2. 

3.3.1 Loading Dataset 

              Information was extracted from CSV data file using Pandas library. 

3.3.2 Data Cleaning 

                    In data clearing, firstly all alphanumeric characters like punctuations, html tags 

and stop words were removed to make data set more meaningful and understandable. Missing 

values were handled by either dropping or filling the values. Irrelevant data entries were 

discarded and the duplicates values were removed. Finally the text was in standard form [14]. 

3.3.3 Tokenization 

                 The summary and description fields in bug reports were in textual form, so 

tokenization was applied to process them. Tokenization split the text into individual words 

or tokens, making it easier for machine learning models to understand and analyze [29]. Tools 

such as NLTK, spaCy, and Hugging Face tokenizers were used for this purpose. For CNN 

and LSTM tokenization is performed on word level and for BERT use special token like 

([CLS], [SEP]) 

3.3.4 Feature Engineering 

     Feature engineering was a crucial step in the Natural Language Processing (NLP) 

workflow, as it transformed raw text data into a numerical vectored format suitable for 

machine learning and deep learning models. In this study, three deep learning models have 
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been selected. CNN, LSTM, and BERT were utilized. For CNN and LSTM models, the 

TF-IDF vectorizer was employed for feature engineering. It is used to convert textual data 

into numerical features[29]. For BERT model, Pre-trained BERT embedding were used to 

encode the semantic and contextual meaning of the text.  BERT embedding are more 

accurate numerical representation and it improves the model’s performance. 

 

3.4 Data Augmentation 

                    In order to address the challenge of limited bug number of data set, data 

augmentation technique was applied. Augmentation technique artificially increases the data 

size that is helpful in the training model. Many augmentation techniques were applied to 

synthetically expand the dataset without making any original semantic meaning of the text 

[79]. To accomplish the whole augmentation process, the TextAugmenter class was 

introduced. This class specifically designed to handle text augmentation and tackle class 

imbalance in text classification tasks. It can be applied particularly for duplicate or non-

duplicate classification problems. 

            The TextAugmenter class was set up using a pandas data frame. This data frame 

included both the text data and their labels. The class takes in: 

A Data Frame (df) that holds the data 

The name of the text column (text_col, default is 'text_data') 

The name of the label column (label_col, default is 'is_duplicate') 

            When the class was first initialized, it checked and showed the original distribution 

of class labels. This gave us a clear picture of the data before any changes were made. It also 

helped us spot any imbalance between duplicate and non-duplicate reports. 
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              When the augmentation process began. It created new, diverse and synthetic samples 

by using NLP based techniques. These included replacing words with synonyms, randomly 

inserting new words, and shuffling sentences [80] [81]. 

We used the following augmentation methods to increase the size of our dataset [82]. 

 

3.4.1 Synonym Replacement 

                    The synonym replacement method was employed as a data augmentation 

technique to enhance the diversity and size of the textual dataset. This approach involved 

replacing a predefined number of words (n) in each sentence with their corresponding 

synonyms [49]. We tried to make sure the meaning of sentence stayed same. This technique 

proved particularly useful in tasks such as duplicate bug report detection, where the same 

idea may be conveyed using different vocabulary. The synonym replacement process 

followed a structured procedure: 

                    In the first step, the input text was tokenized into individual words or tokens. We 

randomly chose some selection of words for synonym replacement from the tokenized 

sentence. Preference was given to longer words because it carry more semantic weight than 

shorter or functional words. The selected words were then passed through WordNet. It is a 

widely used lexical database. We can retrieve appropriate synonyms. In the final step, the 

original words were replaced by their synonyms. These changes gave a new version of the 

sentence with slightly altered wording but retained intent [71]. 

                    To ensure consistency and control over the augmentation process, the following 

fixed parameters were applied: 

A default of n = 2 replacements was performed for sentences classified under class 0 (non-

duplicate). 
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A slightly higher n = 3 replacements were carried out for class 1 (duplicate) sentences to 

introduce more variation, as duplicates are often expressed in different phrasings. 

Only words longer than 3 characters were considered for synonym substitution to avoid 

replacing articles, conjunctions, or common short words that could negatively affect sentence 

structure. 

Only alphanumeric words were included in the replacement process, excluding punctuation 

marks, numeric values, or special characters. 

 

3.4.2 Component Shuffling 

                    The method worked by shuffling components of a sentence that were separated 

by specific delimiters. It was particularly effective for texts with naturally segmented 

structures, such as descriptive fields or formal documentation. The following patterns and 

strategies were employed: 

It handled colon separated segments, commonly found in structured entries (e.g., "Title: 

Description: Additional Info"), by reordering these segments to generate new sentence forms. 

It also shuffled components of the sentence that were separated by common prepositions such 

as in, at, with, by, for, and on. This allowed variation in the placement of phrases without 

altering the core meaning. 

The method ensured that the main content or key information of the sentence remained intact 

while its structure was modified, thus supporting semantic preservation. 

To guide the augmentation process and maintain linguistic coherence, the following fixed 

values were applied: 

A regular expression pattern was used to identify and split text based on the presence of 

relevant prepositions. This ensured precise segmentation for shuffling. 
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If no suitable splits were found (i.e., the sentence did not contain colon-separated parts or 

prepositions matching the pattern), the original sentence structure was preserved to avoid 

unnecessary distortion or semantic drift. 

3.4.3 Random Insertion  

                    The random insertion method inserts n words that are synonyms of existing 

words: Finds candidate words from the original text, Generates synonyms using WordNet 

and Inserts synonyms at random positions  

To ensure control and consistency, the following fixed values were applied during this 

augmentation technique: 

A default of n = 2 synonym insertions was used for class 0 (non-duplicate) sentences. 

A more aggressive augmentation of n = 3 insertions was applied to class 1 (duplicate) 

sentences, as these benefit from greater lexical variety due to their semantic overlap. 

Only words longer than 3 characters were considered valid candidates for synonym 

generation to avoid inserting function words or short, context-independent terms. 

Additionally, only alphanumeric words were eligible, ensuring that symbols, numbers, and 

punctuation marks were excluded from the augmentation process. 

 

3.4.4 Class Balancing Strategy  

                     Class balance strategy is very important when we have unevenly distributed data 

set. One class is minority or second one is majority class. Model performance get improve 

for majority because of more training data set. This situation can cause poor classification 

[48]. The balance class method generates synthetic samples to reach a target count for each 

class. The method calculates how many samples need to be generated for each class based on 

the difference between the current count and the target count.   
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                     We have total 5320 number of bug reports. 4758 are non-duplicate and 562 are 

duplicate bug reports. In our data set we have less amount of duplicate bug report as compared 

to non-duplicate bug reports. So predicting duplicate bug report is comparatively difficult 

because of less amount of training data. To solve this problem we have following key 

parameters.  

Key Parameters: Fixed Value for Target Count, Default target_count=10000 samples per 

class and this parameter can be adjusted based on requirements. 

3.4.5 Augmentation Rotation Strategy 

                We have two classes. Duplicates and non-duplicates.  

For class non-duplicates we say it 0. We uses 4 different augmentation techniques in rotation. 

Here (n) represents number of samples:  

1. Synonym replacement (n=2) 

2. Component shuffling  

3. Random insertion (n=2)  

4. Combined approach (synonym replacement + shuffling)  

For class duplicates we say it 1. We use five different augmentation techniques in rotation 

(more aggressive):  

1. Synonym replacement (n=3)  

2. Component shuffling  

3. Random insertion (n=3)  

4. Double synonym replacement  
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5. Multi-combined approach (synonym + shuffle + insertion) 

3.4.6 Main Augmentation Interface  

                The augment method provides the main interface for users. This method accepted 

the following two key parameters: 

Balance (default=true): This Boolean parameter controlled whether the dataset should be 

balanced across classes after augmentation. When set to True, the method ensured that each 

class in the dataset contained an equal number of samples, which is particularly useful in 

scenarios with class imbalance, such as binary classification tasks. 

target_count (default=10,000): This integer parameter defined the desired number of 

samples per class. It specified how many total augmented instances should exist for each 

class after augmentation. This value was passed to internal methods to guide the extent of 

augmentation.  

                If balance is set to True, the method calls balance_classes with the specified target 

count. Otherwise, it adds a fixed number of augmentations for each original sample without 

attempting to balance the classes. 

 

3.4.7 Data Generation Process  

                    The data generation process was a structured and iterative approach designed to 

balance the dataset and enhance its overall size through systematic application of 

augmentation techniques. This process ensured that both duplicate and non-duplicate classes 

were well represented, addressing the issue of class imbalance which can adversely affect the 

performance of machine learning models. The following key steps were followed: 

Initial Analysis: 
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The process began with an analysis of the initial distribution of the dataset classes. The 

distribution revealed a significant class imbalance: 

Class 0 (non-duplicate bug reports) consisted of 4,759 samples. 

Class 1 (duplicate bug reports) consisted of only 562 samples. 

This imbalance highlighted the need for a targeted augmentation strategy to generate 

synthetic data for both classes in order to achieve uniform representation. 

 

Generation Planning: 

          After analyzing the class distribution, the system calculated the number of synthetic 

samples required to meet the predefined target of 10,000 samples per class. The augmentation 

goals were set as follows: 

For Class 0, with 4,759 original samples, an additional 5,241 synthetic samples were 

required. 

For Class 1, with only 562 original samples, a much larger number of 9,438 synthetic samples 

had to be generated. 

This planning stage was crucial to ensure a balanced and comprehensive dataset suitable for 

model training and evaluation. 

Sample Generation:  

            To generate the synthetic samples, the process followed a randomized sampling 

approach: 

For each required augmentation, an original text sample was selected at random with 

replacement from the existing dataset. 



46 

 

One or more augmentation techniques were applied based on a rotational strategy, cycling 

through different methods (e.g., synonym replacement, shuffle components, random 

insertion, character swaps) [80]. 

The newly generated text was stored along with associated metadata, maintaining traceability 

and allowing further filtering or analysis if needed. 

           This ensured diversity in the augmented data while retaining the core semantics of the 

original bug reports. 

Metadata Tracking:  

          Each generated sample was meticulously tracked using metadata fields to distinguish 

between original and synthetic data. The metadata included: 

The original class label (0 or 1). 

An augmentation status flag, set to True for synthetic samples and False for original ones. 

The type of augmentation applied, such as "synonym", "shuffle", "insertion", "character 

swap", or "combined". 

Verification: 

              After the data generation process was completed, a final verification step was 

performed. This included: 

Confirming that the target sample count for each class (10,000) was met. 

Reporting the final distribution across both classes to ensure balance. 

Reviewing the total sample size and ensuring all augmented data was properly labeled and 

stored. 
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 This comprehensive verification validated the effectiveness and correctness of the 

augmentation process and prepared the dataset for downstream machine learning 

applications. 

 

3.5 Model Selection  

                      Based on insights from the literature review and the nature of the problem, three 

deep learning models have been opted for this study: Convolutional Neural Network (CNN) 

[83], Long Short-Term Memory (LSTM), and Bidirectional Encoder Representations from 

Transformers (BERT) [80]. These models are widely recognized for their strong performance 

in various NLP tasks, especially text classification and semantic similarity. We applied these 

models to both the original (non-augmented) and the synthetically expanded (augmented) 

datasets. The goal was to analyze their performance in detecting duplicate bug reports. The 

figure 3.3 illustrates the architecture of the BERT model used in our experiment. The input 

bug report text undergoes preprocessing, including tokenization, stop-word removal, and 

stemming. These inputs are then embedded and passed into the BERT encoder, which 

produces contextualized embedding. These are followed by a SoftMax classification layer 

that outputs whether the bug report is duplicate or non-duplicate. Here is working of BERT 

model [84], which we applied for duplicate bug reports detection. 
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Figure 3.3: Working of BERT Classifier 

3.6 Training and Testing  

                    The dataset was systematically divided into three subsets to ensure fair and 

unbiased training and evaluation. 70% of the data was used for training the model, 20% for 

testing and 10% for validation purposes. 

                 This split helps in both optimizing the model and validating it on unseen data. To 

train the deep learning models, we used the Adam Optimizer. It is an efficient and adaptive 

gradient descent algorithm. Fine-tuning was performed particularly on the BERT model, 

where the pre-trained weights were adjusted on our domain-specific bug report data. Hyper 

parameters such as learning rate, batch size, and number of epochs were tuned to maximize 

classification accuracy. Early stopping and dropout techniques were also used to prevent 

overfitting and improve generalization. Special care was taken to ensure the data split 

preserved the balance between duplicate and non-duplicate classes. 
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3.7 Model Evaluation 

                       Following metrics were used for model evaluation and comparison. Accuracy, 

precision, recall, f1-score ROC-AUC Score and confusion matrix. Details of these model 

evaluation metrics have been discussed in chapter 2. This comparison is necessary to identify 

the best deep learning model. 

3.8 Comparative analysis 

                      After training and evaluating the CNN, LSTM, and BERT models on both the 

augmented and non-augmented datasets, we conducted a comparative analysis as part of our 

research methodology. To enhance the effectiveness of proposed approach, result are 

compared with existing latest studies. This step aimed to systematically examine how the 

inclusion of synthetically generated data influenced the learning process of each model. The 

purpose of comparative analysis was not only to compare machine learning model’s 

performance or outcomes but also to understand the methodological impact of data 

augmentation. How it gives impact on model training and feature representation. We also 

studied how it influences the model’s ability to generalize. 

                     This comparison was done carefully to make it fair. We used the same 

preprocessing steps for all models. We split data 70, 20 and 10 ratio for training, testing, and 

validation. We also used the same hyper parameters wherever possible. 

                     To reduce the effect of randomness, we ran the models multiple times. This 

helped us get stable and reliable performance results. We also watched how the models 

learned during training. We checked how the loss values changed over time. This helped us 

spot any signs of overfitting or under fitting in both datasets augmented and non-augmented. 

                    We kept the experiment setup controlled to make sure the results were reliable. 

This helped us check if data augmentation truly improved the model in a meaningful way. It 

also showed whether the new data added any bias or caused the model to behave differently 

during training. 
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                     These findings are important. They helped in support the idea that data 

augmentation is a useful step, especially when working with limited data. This is particularly 

helpful for tasks like text classification and duplicate bug report detection [17]. 

3.9 Summary 

                     Research methodology is explained in this chapter. It explained the flow of 

working and structured approach we followed to keep the research systematic. Experiment is 

designed to solve the problem of detecting duplicate bug reports. We covered the detailed 

process of NLP like data collection, data extraction and cleaning, data preprocessing, training 

and testing. Detail process of data augmentation technique is explained that we applied for 

increasing the data size. These steps are important to make sure the models got best 

preprocessed data. 

                   The main goal of this chapter is to describe the whole experiment process that we 

used. It also shows that how we covered all research objectives. It gives a step by step 

explanation of the full process, from preparing the data to evaluating the results.  
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CHAPTER 4 

4. RESULT AND DISCUSSION 

                    This chapter covered the effectiveness of data augmentation techniques that is 

used to increase the number of bug report in bug tracking system. It also explained the 

effectiveness of data augmentation techniques for deep learning models.  It systematically 

explores that how the augmentation process contributes to enhancing model performance. 

           Comprehensive analysis of the results has been addressed in this chapter that we 

obtained from applying deep learning and machine learning models to both augmented and 

non-augmented datasets.  

           Three deep learning models CNN, LSTM, and BERT is analyzed and evaluated 

comparatively in this chapter. Both augmented and non-augmented datasets have been used 

to train and test these models. The effectiveness of these techniques has been assessed 

through comparative analysis.  

4.1 Overview 

                       Machine learning and deep learning models’ evaluation is an important step in 

the research process. It can be used to understand the extent to which models can perfectly 

provide insights on new data. How the model has learned from the training data can be 

evaluated through model evaluation. It also evaluates how the predictions can be generalized 

to new inputs. In order to assess the reliability, robustness and applicability of the models, 

this step is quite crucial. We performed the evaluation on both data set non-augmented 

(original, small dataset) or augmented. 

           For training, testing, and validation, the dataset was divided into three subsets 70, 20 

and 10%. The data split is necessary to make sure that the models are trained for specific 

portions of the data. However, it is still analyzed on unseen examples to examine 

generalization performance.  
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4.2  Deep learning model results on Non-Augmented Data 

                 Three deep learning models CNN, LSTM and BERT’s performance on the non-

augmented data through validation process is summarized below. Table 4.1 explains the 

result of machine learning models of non-augmented data. Five metrics of evolutions are 

discussed that is accuracy, precision, recall, F1 score and AUC score. 

Table 4.1: Result of non-augmented data 

Model Accuracy Precision Recall F1 Score 
AUC 

Score 

LSTM 88.47% 0.9039 0.9308 0.9172 0.97 

CNN 89.35% 0.4000 0.0732 0.1237 0.69 

BERT 89.72% 0.5000 0.0366 0.0682 0.68 

 

4.2.1    LSTM Model 

                In the LSTM model, Different parameters are selected to evaluate the performance 

for the task of duplicate bug report detection. LSTM model can learn the complex pattern in 

textual data using 480 hidden dimensions. This network architecture model consisted on 3 

layers. These layers are enable to capture long range dependencies in sequences effectively. 

0.25 dropout rate was applied to reduce the risk of overfitting and improve generalization in 

model. 0.0007learning rate was setup which helped to ensure smooth and stable model 

learning.  64 batch size is selected to balance training speed and memory efficiency. Adam 

optimizer is used for training model. It is known for its adaptive learning capabilities. The 

model is trained for over 15 epochs to allow sufficient learning while avoiding excessive 

training time. The entire process helped in achieving high recall and F1-scores on the non-

augmented dataset. Figure 4.1 is showing the results of training and validation process how 

it works. 
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Figure 4.1: LSTM Accuracy and Loss 

 

 

Figure 4.2: LSTM ROC Curve 

Figure 4.2 shows the model performance. It showed good score. It means model performed 

well. 
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Figure 4.3: LSTM Confusion Matrix 

Figure 4.3 confusion matrix shows the correct prediction of the result. LSTM predict 

maximum correct duplicate repots. 

4.2.2 CNN Model 

                        In the CNN (Convolutional Neural Network) model, various parameters are 

fine tuned to ensure best performance in detecting duplicate bug reports. 128 filters of CNN 

are used to capture and understand the text pattern. The model used kernel size of 3. It allowed 

the model to extract meaningful n-gram patterns from the input data. To extract the textual 

features at different point, CNN architecture used 3 layers. 0.4 dropout rate of was applied to 

prevent overfitting using convolutional and fully connected layers.32 batch size is selected 

and 0.0005 is a learning rate.  It is used to keep a balance between model effectiveness and 

resource usage. 

                         CNN model has fully connected layers that come after convolutional layers. 

It helps in reducing dimensions. It helps in compressing features before final classification. 

For best optimization, the Adam optimizer is employed. It helps to improve learning stability 

and reduce overfitting. This configuration allowed the CNN model to learn efficiently from 
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limited non-augmented data. The model’s performance is affected by the sparsity of duplicate 

samples. Figure 4.4 explained the training and validation loss. Figure 4.5 showed training vs 

validation accuracy. This pattern showed overfitting so need data augmentation. 

 

Figure 4.4: CNN Training vs Validation Loss 

 

 

Figure 4.5: CNN Training vs Validation Accuracy 
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Figure 4.6: CNN ROC Curve 

 

 

Figure 4.7: CNN Confusion Matrix 
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Figure 6.7 shows that model performed well on class 0 but struggled in class 1.  It indicates 

class imbalance. To overcome this challenge data augmentation has been done to create 

balance class. 

4.2.3 BERT Classifier 

                       Pre-trained 'BERT-base-uncased' model is used. It is suitable for natural 

language understanding tasks due to its ability to capture deep semantic relationships from 

textual data. The learning rate is set to 2e-5. This fine-tuning transformer based model is best 

for training. A batch size of 8 is selected that helped in considering the high memory 

requirements of BERT. 

                 A dropout rate of 0.3 is applied during training. It is useful to reduce the risk of 

overfitting. It improves model generalization. The model is optimized using the AdamW 

optimizer. It is specifically designed for weight decay regularization and has shown strong 

performance with transformer architectures. The hidden layer architecture was configured as 

768, 256, and 2. It means the output from the BERT encoder is 768 dimensional. It went 

through a dense layer of 256 units before mapping to the final binary output layer. This fine-

tuning approach enabled BERT to adapt to the duplicate bug report detection task effectively 

although it is relatively small datasets. Figure 4.8 shows the model’s achievement. 

 

Figure 4.8: BERT Training vs Validation Loss and Accuracy 
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Figure 4.9: BERT ROC Curve 

 

 

 

Figure 4.10: BERT Confusion Matrix 
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Figure 4.10 explains true negatives predicted well and false positive predicted incorrect. False 

negative predicted incorrect or true positive correctly predicted. 

 

4.3 Deep learning model results on Augmented Data 

        There are following results of deep learning models on augmented data. 

Table 4.2: Results of augmented data 

Model Accuracy Precision Recall F1 Score AUC Score 

LSTM 94.77% 0.9190 0.9695 0.9436 0.98 

CNN 94.77% 0.9083 0.9939 0.9492 0.99 

BERT 96.30% 0.9528  0.9715 0.9621 0.99 

 

4.3.1 LSTM Model 

                 To evaluate the impact of data augmentation on the performance of deep learning 

models, we trained the LSTM model using the synthetically expanded dataset. Several hyper 

parameters were adjusted to enhance the model's learning capabilities. The LSTM model was 

configured with 64 hidden dimensions, which helped in learning relevant sequential patterns 

from the augmented textual data. The model architecture included 2 LSTM layers, which 

provided sufficient depth to capture long-term dependencies within the bug report 

descriptions. 

                    Using data augmentation, data set is increased. To avoid overfitting a relatively 

high dropout rate of 0.6 was applied. 0.001 Learning rate is selected for efficient training of 

the model.  A batch size of 32 is selected for smooth and balance training. The model is 
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trained for 15 epochs using the Adam optimizer. Adam works well because it adjusts the 

learning rate and makes gradient updates more efficient. 

                     The results showed a significant improvement in all performance metrics, 

specifically in recall and F1-score.It indicates that the augmented data effectively enhanced 

the LSTM model’s ability to detect duplicate bug reports. The performance gains validated 

that data augmentation contributed positively by enriching the training set and reducing class 

imbalance. 

 

 

Figure 4.11: LSTM model training vs Validation Accuracy and Loss 

Figure 4.11 showed how augmentation resolved the overfitting and performed well. 
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Figure 4.12: LSTM ROC Curve 

 

 

Figure 4.13: LSTM Confusion Matrix 

Figure 4.13 explained the model’s performance. It shows model predicted true results. 
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4.3.2 CNN Model 

                        CNN (Convolutional Neural Network) model is trained on the augmented 

dataset. To optimize effective feature extraction and classification, we configured the model 

with hyper parameters. A total of 128 filters are used to capture a wide range of n-gram 

patterns from the input text. The kernel size of 3 is selected. It enables the model to learn 

localized semantic features. We implemented 3 convolutional layers, which progressively 

extracted hierarchical features from the textual input. 

                       A dropout rate of 0.4 is applied across both convolutional and dense layers to 

improve generalization and prevent overfitting. The learning rate is fixed at 0.0005. It helped 

the model data training smooth and stable. A batch size of 64 was selected to accelerate the 

training process while maintaining performance stability. 

                    In the fully connected part of the model, we used several dense layers with 

decreasing sizes. This helped to compress the features extracted earlier before making the 

final classification. We used the Adam optimizer along with weight decay. This helped 

prevent overfitting and made the model generalize better to new data. 

                     The CNN model showed much better results on the augmented data. This was 

clear from the higher recall and F1-score. It shows that using synthetic data can really help 

improve deep learning performance. 

 

Figure 4.14: CNN model training vs Validation Accuracy and Loss 
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Figure 4.14 shows how CNN improved performance after resolving class imbalance problem 

through data augmentation. 

 

Figure 4.15: CNN ROC Curve 

 

 

Figure 4.16: CNN Confusion Matrix 

Figure 4.16 showed the result of model performance. Model performance improved due to 

augmentation. 
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4.3.3 BERT Model 

                    BERT model is trained on the augmented dataset. We applied the same hyper 

parameters used in the non-augmented setting to ensure consistency and to effectively assess 

the impact of data augmentation. Specifically, we used the pre-trained 'BERT-base-uncased' 

model with a learning rate of 2e-5, a batch size of 8, and a dropout rate of 0.3. The AdamW 

optimizer was employed for its regularization capabilities, and the hidden layer structure 

remained 768, 256, and 2. 

                    Despite no changes in model configuration, the BERT model achieved 

significantly higher performance on the augmented dataset across all evaluation metrics. This 

underscores the strength of the data augmentation techniques applied, which enriched the 

training data with more diverse and representative examples. The results highlight BERT’s 

robustness and ability to leverage augmented textual data effectively for improved duplicate 

bug report detection. 

 

 

Figure 4.17: BERT Training vs Validation Accuracy 
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Figure 4.18: BERT Training vs Validation Loss 

Figure 4.17 and 4.18 showing how data set trained very well. Model is generalized. 

 

Figure 4.19: BERT ROC Curve 
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Figure 4.20: BERT Confusion Matrix 

Figure 4.20 showing BERT model performance and it showed good results. 
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4.4 Comparison of Result, Augmented and Non-Augmented 

                According to results table 4.3, we can see that augmentation improved the accuracy 

of machine learning models. To verify that augmented data improved the model’s 

performance we decided to check three deep learning models: CNN, LSTM and BERT. CNN, 

LSTM and BERT across all three models, the application of data augmentation resulted in 

considerable performance improvements. The enhancements were not only reflected in the 

accuracy values but were more pronounced in recall and F1-score. These two metrics 

especially important in class-imbalanced classification problems. The original dataset 

contained a significantly lower number of duplicate bug reports compared to non-duplicates. 

As a result, models trained on the non-augmented dataset tended to become biased toward 

the majority class, often failing to detect duplicates. 

                  Data augmentation helped address this imbalance by generating more 

representative samples of the minority class. Using techniques such as synonym replacement, 

random insertion, sentence shuffling, and component reordering, the training set was 

effectively expanded. These artificially generated samples introduced linguistic variety while 

preserving the core semantic intent of the reports. This variety made the training process more 

robust by helping the models recognize duplicate reports that may be phrased differently but 

refer to the same issue. 

            The overall improvements across all performance metrics after augmentation support 

the conclusion that the technique helped in achieving better generalization and reduced 

overfitting. This was particularly vital for deep learning models, which require a large amount 

of data to reach optimal performance. Table 4.3 explained the detailed comparison between 

augmented and non-augmented data set. How following evaluation metrics improved their 

results on augmented data as compared to non-augmented data.  
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Table 4.3: Comparisons of Result 

Model Data Type Accuracy Precision Recall F1-Score AUC 

Score 

LSTM Non-Augmented 
88.47% 0.9039 0.9308 0.9172 0.97 

Augmented 
94.77% 0.9190 0.9695 0.9436 0.98 

CNN Non-Augmented 
89.35% 0.4000 0.0732 0.1237 0.69 

Augmented 
94.77% 0.9083 0.9939 0.9492 0.99 

BERT Non-Augmented 
89.72% 0.5000 0.0366 0.0682 0.68 

Augmented 
96.30% 0.9528 0.9715 0.9621 0.99 

 

4.4.1 LSTM Model 

Before augmentation: The LSTM model already demonstrated relatively high performance 

before augmentation, achieving an accuracy of 88.47% and an F1-score of 0.9172. The recall 

value was particularly impressive at 0.9308, indicating the model was good at correctly 

identifying actual duplicates. However, this performance likely benefited from the sequential 

modeling capabilities inherent in LSTM architecture, which is adept at handling textual data 

with dependencies spread across multiple words. 

LSTM networks are particularly strong at learning from ordered data sequences. In the 

context of bug reports, the order in which terms appear can provide crucial contextual 

information, especially for understanding how one issue may resemble another. Despite the 

small dataset, the LSTM model's internal memory structure helped maintain context and 

sequence, allowing it to make reasonably accurate classifications. 
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After augmentation: After training on the augmented dataset, the LSTM model showed 

notable improvements. Accuracy increased to 94.77%, and the F1-score rose to 0.9436. These 

gains suggest that the model benefited from both a larger and a more balanced training 

dataset. The improvements in recall and precision (both over 0.91) signify better 

identification of true positives and fewer false positives and false negatives. 

The richer dataset provided more varied sequences for the model to learn from, enabling it to 

generalize better across unseen bug reports. The new examples introduced via augmentation 

made the model less likely to over fit and more likely to distinguish subtle differences and 

similarities between different bug reports, which is key in real-world bug tracking systems. 

4.4.2 CNN Model 

Before augmentation: The CNN model presented an interesting case. It achieved a relatively 

high accuracy of 89.35%, but this was misleading. The precision, recall, and F1-score were 

extremely low, with recall at only 0.0732 and F1-score at 0.1237. These values clearly 

indicated that the model was failing to identify duplicates effectively and was biased towards 

predicting the majority class. This is a classic example of accuracy paradox in imbalanced 

classification problems: high accuracy does not always indicate good performance if minority 

classes are ignored. 

CNNs, while strong in image recognition tasks, often underperform in NLP problems with 

short, context-sensitive texts unless the dataset is sufficiently large. The model failed to 

capture the semantic similarities between differently worded duplicate bug reports due to 

limited and skewed training data. 

After augmentation: The augmented dataset brought about a dramatic transformation in 

CNN's performance. Accuracy remained high at 94.77%, but the real gains were in recall 

(0.9939) and F1-score (0.9492), showing that the model had learned to detect duplicates with 

much greater accuracy. Precision also improved significantly to 0.9083. 
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            These improvements suggest that CNNs can perform well in NLP tasks when 

supported by a large and balanced dataset. The convolutional layers were able to pick up on 

more diverse patterns and relationships in the text, which were only made available through 

the use of augmentation techniques. Importantly, this case underscores the necessity of 

dataset enhancement for CNN-based text classification tasks, particularly when dealing with 

limited and imbalanced data. 

 

4.4.3 BERT Model 

Before augmentation: An accuracy of 89.72% has been shown by the pre-trained BERT 

model. However, a lower rate of 0.0366 and 0.0682 has been shown by Recall and F1-score. 

Despite the accuracy, this highlighted an inadequate ability to detect bugs. The fine-turning 

process is a major reason behind this underperformance.  

BERT is an intricate model consisting of a number of parameters. Sufficient and balanced 

data is required when fine-turning BERT for a specific task, although it comes pre-trained on 

vast text corpora. BERT generalizes poorly for minority class as a result of the limited and 

imbalanced data, which leads to low recall and precision for duplicates.  

After augmentation: BERT surpassed all other models across every metric after the 

augmentation was applied. It achieved the highest accuracy at 96.30%, and most 

impressively, an F1-score of 0.9621, with recall and precision above 0.95. The full potential 

of the model is highlighted upon given the enough and representative data.  

The relationship between different textual descriptions is understood efficiently by BERT 

with augmented date. The context could be analyzed by it better than CNN and LSTM due 

to its deep architecture, which resulted in accurate classification even with different structure 

of duplicate reports.  
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The augmented dataset gave BERT the linguistic variety it needed to fine-tune effectively, 

proving that while BERT can be resource-intensive, it offers superior results when 

appropriately supported by data augmentation. 

4.5 Result comparison with existing studies 

           To prove the effectiveness of study, the results are compared with the state of art 

approaches of duplicate bug report detection. Table 4.4 shows the comparison of our 

augmentation base approach with the state of art approaches. 

Table 4.4: Comparison with existing studies 

Author/Year Dataset Techniques Result 

Clare et al. (2025) 

[67] 

Eclipse (Bugzilla 

repository) 

Multi-layer perception 

neural network (MLP) 

Naïve Bayes Model, BERT 

Model 

26% precision 

on duplicate 

bug report 

Q Meng et al. 

(2024) [61] 

Eclipse, Firefox, 

Mozilla, JDT, 

Thunder Bird 

Bi-LSTM, DC-CNN and 

Transformer base models 

(BERT, ALBERT, 

RoBERTa) 

87% Average 

F1-Score  

M. B. Messaoud et 

al. (2023) [60] 

Thunderbird BERT-MLP using BERT 

Comparison between (DC-

CNN, Sentence BERT) 

89.03%  

Xiaoxue Wu et al. 

(2023) [64] 

Mozilla Core, 

Mozilla Firefox, 

Thunderbird, Eclipse 

CTEDB (Combination of 

Term Extraction and 

DeBERTaV3)  techniques 

95% accuracy 

Proposed approach Mobile dataset Easy data augmentation 

technique, BERT Model 

96% accuracy, 

97% recall 

In the previous studies they used different machine learning techniques that performed well 

when they used large data set. In the given table, Meng et al. used Bi-LSTM, DC-CNN and 

Transformer base models and achieved 87% result because they used large number of data 
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set of different projects. Messaoud et al. proposed another techniques BERT-MLP using 

BERT Comparison between (DC-CNN, Sentence BERT) and achieved 89.03% accuracy. All 

these approaches performed well because they used large datasets. There are some studies 

where the small datasets are used for duplicate bug report detection. They also use machine 

learning and deep learning approaches but these studies achieved less accuracy. For example, 

Clare et al. used Multi-layer perception neural network (MLP) Naïve Bayes Model to identify 

duplicate bug report and achieved 26% accuracy on duplicate bug report because of small 

and imbalance dataset. The results of the studies as shown in the table depicts that when there 

is small dataset for training, the machine learning models struggle to achieve the high 

accuracy. To resolve this issue, our proposed augmentation base approach played a 

significant role to achieve the high accuracy of deep learning model. BERT model achieved 

96% accuracy and 97% recall and overall AUC score is 99%.  

4.6 Discussion 

                 By addressing one of the common challenges in machine learning that is the 

scarcity and imbalance of labeled data, the focus of this research is to focus on increasing the 

performance of deep learning models for duplicate bug report detection. The number of bug 

reports available for training is limited for numerous software projects. This limited 

availability challenges the deep learning models which often require vast volumes of diverse 

and well-labelled data to achieve generalized performance. Moreover, the number of non-

duplicate reports are often higher in number than duplicates which results in imbalanced bug 

report datasets. This imbalance results in the biasness of the model towards the majority class, 

which eventually leads to poor detection of duplicate bug reports.  

               To overcome these challenges, this study employed data augmentation techniques 

aimed at increasing both the size and diversity of the training data. Data augmentation, a 

widely recognized approach in machine learning, artificially expands a dataset by creating 

new samples through transformations applied to existing data. In the context of natural 

language processing (NLP) and specifically for bug report texts, augmentation is less 

straightforward compared to images due to the semantic sensitivity of textual data. Therefore, 
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careful selection of augmentation techniques is crucial to avoid generating irrelevant or 

misleading examples. 

               Numerous augmentation methods, such as random insertion, synonym replacement, 

random shuffling, and component shuffling, were applied in this study. The alteration of 

words by inserting new words for the purpose of diversification of data comes under random 

insertion. In order to introduce lexical diversity, synonym replacement is used for the purpose 

of swapping certain words with their synonyms. The fixed word sequence is overcome 

through the use random shuffling that rearranges words or phrases within the text, which in 

turn encourages the model to reply on overall semantics rather than specific lexical 

arrangement. Component shuffling reorders distinct sections of a bug report, such as steps to 

reproduce or expected behavior, fostering robustness against variations in report structure. 

                By introducing meaningful variation and training samples, the dataset was 

enhanced by these augmentation techniques collectively. As learning models, like CNN, 

LSTM, and BERT reply on varied and diverse data, this expansion is quite crucial. By 

generating more duplicate bug reports, augmentation reduced the class imbalance issue. This 

balanced the dataset and prevented the biasness of the models towards the majority of non-

duplicate class.  

                After augmenting the dataset, we retrained three distinct models: Convolutional 

Neural Network (CNN), Long Short-Term Memory (LSTM), and Bidirectional Encoder 

Representations from Transformers (BERT). The models were evaluated using multiple 

metrics, including accuracy, precision, recall, F1-score, and Area Under the Curve (AUC), 

to provide a comprehensive understanding of their performance improvements. 

                 The results clearly demonstrated that all three models benefited significantly from 

data augmentation, with improvements seen across all metrics. The BERT model exhibited 

the most substantial gains, achieving an accuracy of 96.30% and an F1-score of 0.9621, 

considerably outperforming its non-augmented counterpart and the other models. This is 

attributed to BERT’s architecture, which uses a transformer-based, bidirectional mechanism 
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capable of understanding context in both directions within a sentence or document. BERT is 

pre-trained on massive corpora and fine-tuned on the specific bug report data, making it 

especially effective at capturing nuanced semantic relationships when trained on a large and 

varied dataset. 

                    The CNN model showed the most dramatic improvement post-augmentation. 

Initially, CNN struggled with the dataset due to its small size and imbalance, reflected by its 

low recall (0.0732) and F1-score (0.1237) on non-augmented data. However, after 

augmentation, the CNN’s recall skyrocketed to 0.9939, and its F1-score reached 0.9492. This 

indicates that CNN’s convolutional filters could effectively extract local textual features 

related to duplicates once provided with a balanced and diverse training set. CNN’s strength 

in recognizing patterns in short text snippets was unlocked by augmentation, highlighting the 

importance of dataset quality for model performance. 

              The LSTM model, known for its ability to process sequential data and capture 

temporal dependencies, performed reasonably well even before augmentation, with an 

accuracy of 88.47% and a recall of 0.9308. Nonetheless, its performance improved notably 

with augmentation, achieving 94.77% accuracy and a balanced F1-score of 0.9436. The 

LSTM’s ability to handle variable-length sequences made it robust in learning from the 

augmented, varied bug report data, enhancing its predictive capacity for duplicates. 

           Overall, data augmentation served two crucial roles. First, it increased the volume of 

training data, which is essential for the high capacity of deep learning models to learn 

effectively without overfitting. Second, it enhanced the diversity and balance of the dataset, 

which enabled models to learn richer representations and make more accurate predictions for 

both majority and minority classes. 

          The success of this approach has important practical implications. It has been compared 

with existing start of art to prove the success of this approach. In real-world software 

development environments, acquiring large labeled datasets is often expensive and time-

consuming. Manual annotation of duplicate bug reports requires expert knowledge and is 
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prone to inconsistency. Data augmentation thus provides a cost-effective alternative for 

boosting model performance without the need for extensive new data collection. 

          Furthermore, this study reinforces the idea that the combination of augmentation and 

sophisticated models like BERT can create powerful solutions for text classification problems 

involving limited and imbalanced datasets. While BERT’s pre-trained knowledge base is 

valuable, its performance in domain-specific tasks heavily depends on the quality and 

quantity of fine-tuning data. Augmentation can therefore be seen as an indispensable step to 

unlock the full potential of such models. 

          There are numerous avenues that are worth looking at for further research. Further 

improvement can be done on the automated augmentation pipelines that use generate context-

aware and semantically accurate examples with the help of language models. Additionally, 

integrating active learning, where models iteratively select the most informative samples for 

human annotation, can synergize well with augmentation to optimize dataset quality. Finally, 

deploying these models in real bug tracking systems and evaluating their impact on developer 

productivity and bug resolution times would provide valuable insights into practical usability. 

            In conclusion, the fact, that data augmentation can be an effective strategy used to 

improve the performance of deep learning models on small and imbalanced datasets, is 

posited by this study. Augmentation reduces model bias by increasing dataset size, which 

results in improved generalization. This leads to reliable and accurate duplicate bug report 

detection. The findings highlight the critical role of data quality in machine learning and offer 

a promising pathway for practical implementations in software engineering domains. 

4.7 Summary 

             A comprehensive assessment of the results taken from the experimental evaluation 

is provided by this chapter. The proposed approach is used for the basis of the result, whereas 

its implementation is based on the selected dataset. The main focus is on the accuracy and 

overall efficiency of the approach that has been used. It goes into great detail on the key 

outcomes and performance indicators such as precision, recall, F1-score, and AUC score, 
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showing how they can be utilized to enhance the accuracy of duplicate bug report 

identification in real-world applications. A critical and thorough review is provided by this 

chapter of the prior studies. The proposed approach has been compared with existing 

literature. The comparison is primarily based on statistical performance metrics like accuracy, 

precision, and recall rates. Additionally, the analysis highlights specific strengths, 

improvements, and innovations introduced by the proposed method. In the scenarios with 

small datasets or imbalanced data, where traditional models often fail to perform well, these 

improvement are evident. Overall, this chapter serves to validate the proposed method’s 

superiority and its contribution to the field of software maintenance and bug tracking.  
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CHAPTER 5 

5. CONCLUSION AND FUTURE WORK 

 

5.1 Conclusion 

            The identification of duplicate bug reports that is essential for efficient software 

maintenance. Repetitive task and speed up issue resolution can be solved through it. Due to 

unavailability of large label dataset, machine learning and deep learning models often 

struggle to predict accurate result. It may result in poor model outcomes due to limited 

training data. The motivation behind this research is to investigate techniques that improve 

the accuracy of these deep learning models that struggle in predicting accurate result 

especially when historical bug report data is insufficient. 

            The main research question (RQ1) examined the effectiveness of data augmentation 

technique that explored in this thesis. It is explored that data augmentation affects the 

accuracy of machine learning and deep learning methods for detecting duplicate bug reports. 

The experiment in this research revealed that how LSTM, CNN, and BERT models enhance 

the performance on trained augmented datasets. Models, such as CNN and BERT, 

demonstrated low recall and F-1 scores. Therefore, struggling to highlight semantic 

similarities between duplicate reports. However, all the models showed improvements in key 

measures upon the application of the augmentation techniques that expanded the training 

data. 

           BERT model, with its F1-score rising from 0.0682 to 0.9621 and accuracy increasing 

from 89.72% to 96.30%, showed notable improvement outperforming other architectures. 

Similarly, LSTM and CNN models significant improved in precision, recall, and AUC scores 

with augmented data. This highlights that the small datasets issues can be overcome with 

augmentation. The possibility of the transformation of poorly performing models into reliable 

tools is evident in this study through augmentation.  
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           This research presents data augmentation as a powerful approach that can be used to 

boost the accuracy of models that are used for detecting duplicate bug reports. The answer to 

RQ1 is directly provided by it, and it asserts machine learning models can be improved by 

increasing the data size. Future research could build on these insights by investigating 

domain-specific augmentation methods, incorporating multi-modal data such as logs or 

screenshots, and optimizing transformer-based models for broader use in real-world software 

development contexts. 

5.2 Future Work 

            For Future work, I purpose that we can explore more targeted augmentation 

techniques for technical text. We are able to analyze the impact of different augmentation 

ratios to evaluate the performance of machine learning models. We can use different types of 

data like stack traces, screenshots, and logs to improve duplicate bug report detection. These 

extra details can give more clues about the bug and make it easier to find similar reports. 

Using multimodal data can help the model understand the bug more clearly and make better 

predictions. Leveraging larger pre-trained language models like GPT or RoBERTa could 

improve contextual understanding. Developing real time duplicate detection systems for 

integration into issue tracking tools is another promising direction. We can experiment with 

different approaches like few-shot and zero-shot learning approaches. It can give benefit 

projects with extremely limited data. Cross-project transfer learning can help models 

generalize better across different software domains.  
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