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ABSTRACT

Title: Design of Morlet Wavelet Artificial Neural Network for Solving Two-Species Compe-

tition Model

Artificial Neural Networks (ANNs) have gained significant interest in solving mathematical and

biological problems due to their powerful learning and approximation capabilities. The study

of Two-Species Competition Model using nonlinear differential equations is a crucial area of

computational mathematics and biomathematics. This thesis introduces a novel computational

approach using ANN and a hybrid optimization framework to study the dynamics of species

interactions. This thesis developed a hybrid optimization method using Sequential Quadratic

Programming (SQP) and Genetic Algorithm (GA) to precisely approximate the solution of

the Two-Species Competition Model. This model captures competitive behavior between two

biological species over time using a feedforward ANN architecture with a Morlet wavelet (MW)

activation function for enhanced learning capacity. The ANN-GA-SQP method is designed to

efficiently and accurately solve complex ecological systems, demonstrating its potential as a

powerful tool for modeling and understanding complex ecosystems. To verify the robustness,

accuracy, and consistency of the proposed ANN-based approach 50 experimental runs were

conducted for each test scenario of the Two-Species Competition Model. The hybrid GA-SQP

optimized ANN model outperforms conventional numerical methods and hybrid optimization

techniques in terms of convergence dependability, numerical stability, and predictive accuracy,

as evaluated using statistical measures like Mean Absolute Deviation (MAD) and Mean Square

Error MSE analysis. Overall the study demonstrates the effectiveness of neuroevolutionary meth-

ods in solving nonlinear differential equations in ecological modeling. The GA-SQP optimized

ANN framework, incorporating Morlet wavelet activation function, offers a reliable, adaptable,

and biologically inspired computational tool for complex dynamical systems.
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

This chapter provides an overview of various relevant studies and papers within this specific

field of study. This also highlights numerous relevant papers and literature related to the research

topic that enhance the fundamental understanding of the subject through a numerical simulation

process.

Artificial neural networks (ANN) are increasingly used to solve differential equations, offering

an alternative to traditional numerical methods for example the Euler Method, Taylor series,

etc. Various studies have proposed ANN architecture for solving different types of differential

equations for example PDE, ODE etc. Zulqurnain Sabir et al. [1] represented the numerical

solutions of the nonlinear mathematical model of Leptospirosis disease (LD) through ANNs for

enhanced computational efficiency, along with optimization methodologies like genetic algorithm

(GA) and ASA framework, referred to as ANNs-GA-ASA. Asif Zahoor et al. [2] proposed a

study on the use of an artificial neural network and Bayes-Reg technique to improve the relia-

bility, efficiency, and accuracy of dynamic calculations in HIV infection models. Muhammad

Asif Zahoor Raja et al. examined the behavior of the W-fluid under stretching flow using a

neural network backpropagation technique, demonstrating its robust efficacy [3]. Muhammad

Asif Zahoor Raja et al. [4] introduced ANN-GA-SQP, a novel method for solving prediction

differential models, combining genetic algorithms, sequential quadratic programming, and ANN

for accuracy, efficiency, and reliability.

Sivalingam S M et al. [5] proposed an approach for finding solutions for FDE using a PINN,

employing a constrained expression trial solution and an average and subtraction-based optimizer
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algorithm. Muhammad Asif Zahoor Raja et al. [6] developed a new methodology for handling

PDE with fractional derivatives using ANN, utilizing the Hermite wavelet neural network frame-

work for numerical solutions. Muhammad Kashan Basit et al. [7] discussed the use of ANN and

SQP to solve second-order differential equations, enhancing results with log-sigmoid. Li Yan et

al. [8] discussed the use of artificial neural networks, specifically the GA and SQP scheme, to

address the nonlinear Liénard model. Asif Zahoor Raja et al. [9] presented a MW-NNs technique

to obtain solution of the PPM, using global optimization and local optimization algorithms,

confirming its accuracy and reliability. Chetna Biswas et al. [10] developed a neural network

technique to solve a fractional order nonlinear reaction-advection-diffusion equation using

Shifted Legendre orthogonal polynomials, utilizing fractional-order derivative characteristics for

loss function calculation. Mingqiu Wu et al. [11] presented a WNN to solve FDE, using wavelet

functions and a 1xNx1 structure, with simulation outcomes demonstrating its effectiveness.

Zulqurnain Sabir et al. [12] presented a numerical solution for a nonlinear functional differential

equation using the Functional Mayer Artificial Neural Network (FM-ANN), GA, and SQP.

Korhan Günel et al. [13] explored feed-forward neural networks for solving differential equa-

tions with Dirichlet boundary conditions using swarm intelligence techniques, comparing their

efficiency with traditional methods. Zulqurnain Sabir et al. [14] presented an ANN technique for

solving multi-pantograph delay differential equations, demonstrating its accuracy and effective-

ness through successful resolution of three second-order MP-DDE problems. Zulqurnain Sabir

et al. [15] introduced a novel computational approach, GNNs-GA-SQP, to numerically address

singular periodic nonlinear differential systems in nuclear physics, evaluating its effectiveness

through two SP-NDS problems. Neha Yadav et al. [16] introduced the harmony search algorithm

(HSA) and artificial neural networks (ANN) for numerically solving differential equations, reduc-

ing error and producing approximation results Zulqurnain Sabir et al. [17] used Artificial neural

networks and Levenberg-Marquardt backpropagation technique to minimize mean squared error

in a nonlinear dengue fever SIR system, assessing its performance, accuracy, dependability, and

efficacy. Zulqurnain Sabir et al. [18] addressed an Emden Fowler system using artificial neural

network technique, genetic algorithm, and sequential quadratic programming for optimization.

Zulqurnain Sabir et al. [19] proposed a study using Artificial Neural Network (ANN) to solve

functional differential models, integrating global optimization techniques PSO and local search

optimization techniques SQP. Muhammad Umar et al. [20] developed a computational frame-

work to analyze the behavior of PPM using ANN, GA, and the IPA, focusing on optimization
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and DE development.

The LV competitive model, a basic depiction of species increase and decrease, has been solved

using various numerical techniques in existing literature [21]. The Differential Transformation

Method (DTM) is a highly effective technique for solving nonlinear equations, surpassing alter-

native techniques like variational iteration and Adomian decomposition approach [22]. In [23]

the study developed perturbation-iteration techniques to accurately approximate Lotka-Volterra

system solutions for first-order differential equation systems without requiring a small parameter

assumption. FA Abdullah et al. [24] utilized numerical methods like Euler Method, Taylor Series,

and RK method to analyze species to species competition impact, with the RK Method providing

the most accurate solution. [25] examined that Runge-Kutta method outperformed the Laplace

Adomian Decomposition Method in finding solutions of DE models related to population dynam-

ics. In [26] wavelet-based approaches are reviewed for solving linear and nonlinear fractional

DE, highlighting their efficiency, accuracy. In [27] the proposed MWNN-GAIPA model, which

integrates Morlet wavelet NN with genetic and interior-point algorithms, is tested for accuracy,

stability, and convergence through multiple test problems and neuron variations. [28] this study

enhanced the prediction capability of wavelet neural networks (WNNs) by combining various

wavelet families, demonstrating significant improvements in accuracy and efficiency compared

to current techniques.
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CHAPTER 2

BASIC CONCEPTS AND DEFINITIONS

Chapter 2 provides a comprehensive overview of the key topics relevant to our research area.

These foundational topics are crucial for understanding the fundamental concepts and phenom-

ena underlying the study. This chapter also covers areas such as differential equations, their

classifications, and an array of methods for solving differential equations, artificial intelligence,

neural network, and various types of neural networks. This comprehensive introduction provides

the necessary foundation for the research

2.1 Differential Equations

A DE is formed when a mathematical variable and its derivatives are utilised to describe a

natural law. Differential equations can describe almost all systems that undergo change. A DE is

a mathematical representation that outlines the relationship between an unknown function, its

derivatives, independent variables, and related constants [29].

2.2 Classification of Differential Equations

The DE are categorized into various types.
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2.2.1 Ordinary Differential Equations (ODE)

An ODE relates an independent variable to a dependent variable along with one or more

derivatives of the dependent variable with respect to the independent variable only [30].

The most general expression of an ODE of nth order is given by

y(n) = f
(

x,y,y′,y′′, . . . ,y(n−1)
)
, (2.1)

which is referred to as ordinary because it involves only one independent variable.

2.2.2 Partial Differential Equations (PDE)

PDE is a system of equations characterized primarily by the presence of multiple independent

variables and a single dependent variable [31].

The mathematical representation of nth order partial differential equation is written as:

F
(

x1,x2, . . . ,xn,u,
∂u
∂x1

,
∂u
∂x2

, . . . ,
∂u
∂xn

,
∂ 2u
∂x2

1
, . . . ,

∂ 2u
∂x1∂x2

, . . .

)
= 0. (2.2)

2.2.3 Differential Algebraic Equation (DAE)

DAE represents an extended version of ODE used in mathematical modelling of scientific

and engineering problems like in-compressible fluids, optimal control, and chemical process

control. The representation of a DAE is given as:

F(t,x(t), ẋ(t)) = 0. (2.3)

2.2.4 Delay Differential Equations (DDE)

A DDE is a type of functional differential equation that involves determining the derivative

of an unknown function based on previous values, requiring knowledge of both current and

previous states. The general form is given as :

d
dt

x(t) = f (t,x(t),x(t − τ)). (2.4)
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2.2.5 Stochastic Differential Equations

SDE are a powerful framework for simulating dynamic systems influenced by noise or uncer-

tainty, unlike Ordinary Differential Equations (ODEs), which describe deterministic systems.

SDEs are important in various disciplines like physics, biology, and finance, describing particle

motion, studying population dynamics, and modeling stock prices and interest rates. The general

form is given as :
d
dt

x(t) = f (t,x(t))+σ(t,x(t))dW (t). (2.5)

2.3 Types of Differential Equation Problems

There are two categories of differential equation problems. These are listed as follows:

2.3.1 Initial Value Problem

An IVP arises when an equation includes a dependent variable, its potential derivatives, and

an independent variable, typically time. The problem is defined by assigning specific values of

the dependent variable at a particular point in the independent variable’s domain. Initial value

problems involve time-dependent equations where the dependent variable and its derivatives are

specified at the same initial point of the independent variable [32].

2.3.2 Boundary Value Problem

A BVP is a situation in which the dependent variable and its possible derivatives are deter-

mined at the extreme of the independent variable. Boundary value problems (BVPs) specify

equations or values for solution components at multiple x, with infinite or finite solutions. Pro-

grams for BVPs require users to guess the intended solution, often requiring certain parameters

and addressing infinite intervals and singularities in coefficients [33].
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Dirichlet Boundary Condition

The Dirichlet problem is based on a Dirichlet boundary condition, which outlines the values

a solution must take along the domain boundary.

Example:

−∆u(x) = f (x), x ∈ Ω

u(x) = g(x), x ∈ ∂Ω

(2.6)

Neumann Boundary Condition

Neumann boundary conditions are important for solving partial differential equations, using

the solution’s derivative in contrast to Dirichlet conditions, which define the solution’s value at

the boundary. These conditions define the derivative of a solution at the boundary of the domain.

The Neumann boundary value problem is given as−∆u(x) = f (x), x ∈ Ω

∂u
∂n(x) = h(x), x ∈ ∂Ω

(2.7)

where ∂u
∂n(x) represents the normal derivative of u on the boundary ∂Ω, h(x) is a given function

defining the flux or rate of change across the boundary ∂Ω.

Mixed Boundary Condition

Mixed boundary conditions, also known as Cauchy boundary conditions, combine Dirichlet

and Neumann boundary conditions, requiring the normal derivative and differential equations

values to both take on the domain boundary [32].

The mixed boundary conditions are given by:
∂ 2φ

∂θ 2 +
∂ 2φ

∂ t2 = f (x,y),

ω1
∂φ

∂n (0, t)+ω2φ(0, t) = ω,

ω1
∂φ

∂n (L, t)+ω2φ(L, t) = ωi,

(2.8)

where ω1,ω2 are constants, ∂φ

∂n denotes the normal derivative at the respective boundaries, ω,ωi

are known constants, L represents the spatial extent of the domain.
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2.4 Numerical Methods

Numerical approximation involves using various methods to estimate solutions to differential

equations. In mathematics, numerical approximation serves as a vital tool in solving differential

equations when direct analytical solutions to differential equations prove difficult or unachievable.

Various approaches have been designed to solve differential equations, for example the Euler

method [34], RK method [35], the Taylor method [36], and the Finite Difference method [37]

enable the computation of solutions for complex physical phenomena by dividing the problems

into smaller, more manageable elements or particles. These techniques convert the equations into

a solvable format by dividing them and using difference equations to approximate the derivatives.

The use of numerical methods is a crucial role in solving DE, providing results through iterative

calculations. They involve approximating solutions that may not be exact but are close to the

true solution. Numerical methods, while essential in various fields like structural engineering

[38], accelerator physics [39], and reaction-diffusion systems [40], have limitations that must be

acknowledged.

2.4.1 Euler Method

Euler’s method is the most basic and oldest technique to solve IVP, offering a straightforward

approach to approximate solutions without requiring advanced algebraic computations. The

purpose of Euler’s method is to provide approximate solutions to well posed initial value

problems [41].

Taylor method is used to derive the Euler method. The Euler method is given as

yi+1 = yi +h f (ti,yi), for each i = 0,1, . . . ,N −1 (2.9)

Consider an IVP
dy
dt

= f (t,y), a ≤ t ≤ b, y(a) = α, (2.10)

approximations of y will be calculated at a certain points, known as mesh points within the

interval [a,b] which can then be used to estimate the solution at other points with in the interval

as continuous approximation of the solution y(t) will not be achieved.

The mesh points are evenly distributed throughout the interval [a,b], achieved by selecting a
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positive integer N and defining them appropriately.

ti = a+ ih, for each i = 0,1,2, . . . ,N.

The step size is a typical common separation between positions, calculated as

h =
b−a

N
= ti+1 − ti.

2.4.2 Taylor Series

For many years, the Taylor series expansion approach has been employed to find a solution

for IVP in ordinary differential equations. The Taylor series technique is a method that uses an

infinite series of a function’s derivatives to solve initial value problems.

A function’s Taylor series is given by

yn+1 = yn + y(1)n
h
1!

+ y(2)n
h2

2!
+ y(3)n

h3

3!
+ y(4)n

h4

4!
+ · · · , (2.11)

where y(1)n , y(2)n , y(3)n , y(4)n are the first, second, third and fourth derivatives of the function. The

differential equation can be solved iteratively using this expansion up to a final value of the

independent variable.

The largest derivative of each equation should be retained on the right side in the same

order as the required numerical algorithm. To achieve fourth-order numerical algorithms, it is

necessary to incorporate derivatives up to and including the fourth-order in the expansions.

The Taylor series method is efficient, accurate, and expandable by maintaining higher-order

terms in Taylor expansions, requiring less calculation time [42].

2.4.3 Runge-Kutta Method

RK Method is widely used to solve DE. Taylor procedures, despite their high-order accuracy,

require derivative computation and evaluation. Taylor methods are often avoided in practical

applications due to their complexity and computational cost. RK techniques provide high-order

accuracy similar to Taylor techniques, but they avoid the need to calculate derivatives of f (t,y).

The RK technique of the fourth order is a widely known constant-step procedure.
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General form of RK-4 is given by

k1 = h f (tn,yn),

k2 = h f
(

tn +
h
2
,yn +

k1

2

)
,

k3 = h f
(

tn +
h
2
,yn +

k2

2

)
,

k4 = h f (tn +h,yn + k3),

yn+1 = yn +
1
6
(k1 +2k2 +2k3 + k4).

(2.12)

The main task in implementing the RK methods is the evaluation of f .

2.4.4 Shooting Method

This method changes boundary value problems into two initial value problems by iteratively

adjusts conditions until desired requirements are met at the other end. The given solution to the

boundary value problem is obtained by combining the solutions of two corresponding initial

value problems. These solutions of the initial value problem are derived using methods such as

the Runge-Kutta and Taylor series techniques.

2.4.5 Finite Difference Method

The FDM solves differential equations by approximating continuous derivatives in both

the equations and boundary conditions with finite differences. It then solves the resulting

system of linear equations using standard techniques to obtain an appropriate finite difference

approximation of the derivatives.

Example

Consider BVP,

y′′ = p(x)y′+q(x)y+ r(x), for a ≤ x ≤ b, y(a) = α, y(b) = β . (2.13)

To apply the finite difference approach to the linear second-order BVP, both y′ and y′′ must be

approximated using difference-quotient approximations [41].



11

Forward Difference Approximation

y′(x)≈ y(x+h)− y(x)
h

. (2.14)

Backward Difference Approximation

y′(x)≈ y(x)− y(x−h)
h

. (2.15)

Central Difference Approximation

y′(x)≈ y(x+h)− y(x−h)
2h

. (2.16)

2.5 Artificial Intelligence

AI focuses on the advancement and execution of computer systems designed to solve prob-

lems that usually need human expertise. AI creates human intelligence in computer systems,

enabling tasks like machine vision, natural language processing, and decision-making systems,

despite the complexity of the process [43]. AI is increasingly integrating into various sectors,

including government, business, and banks, combining knowledge-based reasoning with comple-

mentary methods from other AI domains. [44]. The advancement of AI also has influence on

various fields of mathematics.

2.6 Artificial Neural Networks (ANNs)

An ANN is a computational framework that mimics the structure and function of biological

neural networks found in the brain. Artificial neurons are interconnected nodes that make up

an ANN. These artificial neurons are the fundamental building blocks that make up an artificial

neural network. Artificial neuron mimic the action of a biological neuron, i.e., by accepting

many different signals xi, from many nearby neurons and to process them in a simple way. The

neuron j determines either to produce an output signal y j or not, depending on the outcome of

processing [45]. Artificial intelligence methods are effective in mathematical problem settings,

particularly in inverse problems in imaging sciences and numerical analysis of partial differential

equations in high-dimensional regimes [46].
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2.6.1 History of Neural Network

The evolution of neural networks occurred in a pattern of step-wise dramatic improvements.

In 1943, McCulloch and Pitts developed an algorithm that learns by mimicking the functionality

of the human brain and created an artificial neurons that connect and arrange in multiple layers

to form artificial neural networks [47]. Rosenblatt created the first perceptron learning algorithm

in the late 1950s, followed by Widrow and Hoff’s electronic circuit learning rule, igniting active

research on artificial neural networks in the 1960s. Minsky and Papert’s 1969 book Perceptrons

highlighted the computational limitations of single-layer neural networks, leading to a decline

in funding for artificial neural network research. The "golden decade" of NNs began in the

1960s and 1950s, followed by a period of peace in the 1970s. In 1986, the PDP research group

published Parallel Distributed Processing texts, which introduced MLPs and the backpropagation

learning method, enabling the training of multiple layers of perceptrons in artificial neural

networks [48]. The INNS was established in 1987, leading to the IEEE International Conference

on Neural Networks, IEEE Transactions on NN, Neural Computation, and the magazine Neural

Networks [32].

2.7 Mathematical Model of Artificial Neural Network

A neuron Ni receives a set of n inputs , S = {x j | j = 1,2, . . . ,n}. Before reaching the main

body of a neuron, each input to a neuron Ni is multiplied by a weight factor wi j for j = 1,2, . . . ,n.

The neuron requires a bias term b0 and a threshold value θk to generate an output signal. The

generated weight signal is influenced by a function called the activation function.

In terms of mathematics, the ith neuron Ni output is given by

Oi = f

[
b0 +

n

∑
j=1

wi jx j

]
. (2.17)
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2.8 Activation Functions

ANN use activation functions to convert input signals into output signals, which are then

sent to subsequent layers in the stack, after determining the sum of input products and weights.

Mathematically we can write it as;

net = wi1x1 +wi2x2 + · · ·+wi jx j +θ , (2.18)

where θ is a threshold value that is added to the neurons. The threshold-based classifier is crucial

in activation functions, determining whether a neuron is deactivated or activated based on the

input value exceeding a threshold, preventing output from being sent to the next layer. The

accuracy of the prediction of the neural network depends on the number of layers used and the

type of activation function used. Nonlinear activation functions are common in neural networks.

NN behaves like a linear regression model where the predicted output is the same as the input

provided if an activation function is not defined [49].

2.8.1 Sigmoid Activation Function

The sigmoid activation function converts the input range from (−∞;+∞) to the range in

[0;1]. It is a non-linear and smooth in nature. The sigmoid’s [0;1] output range compresses unit

output, making gradient disappear in deep networks, making network improvement difficult over

time [50].

Mathematically Sigmoid function is given as follows:

σ(x) =
1

1+ e−x . (2.19)
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Figure 2.1: Sigmoid Activation Functions

2.8.2 Binary Step Function

Binary Step Function is the most simple activation function and it can be implemented with

simple if-else statements in Python. Binary activation functions are commonly used in binary

classifiers, but they cannot be applied when the target carriage has multiclass classification. The

binary step function’s gradient is zero, potentially affecting the backpropagation step, as its

derivative equals zero when computed with respect to x.

Binary step function is written as

f (x) =

1 if x ≥ 0

0 if x < 0
(2.20)
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Figure 2.2: Binary Step Activation Functions

2.8.3 Linear Activation Function

The linear activation function is directly proportional to the input. It overcomes the zero

gradient issue in binary step functions by defining it as:

F(x) = ax. (2.21)

Value of variable a can be a constant value. In this case, the value of derivative of the function

f (x) is equal to constant that is utilized. The gradient is constant value not a zero, independent

of the input value x ,indicating that weights and biases will change during the backpropagation

step [49].



16

Figure 2.3: Linear Activation Functions

2.8.4 Morlet Wavelet Activation Function

Wavelets are reffered to as functions with zero integral value, localized along the time axis,

that can shift and scale. The MW function, a fundamental function, is utilized in the model to

effectively address optimization issues [51].

MW function is described as follows:

f (x) = cos(1.75t)e−0.5t2
. (2.22)
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Figure 2.4: Morlet Wavwlet Activation Functions

2.8.5 Mexican Hat

Mexican Hat activation function is a helpful optimization tool for solving differential equa-

tions, particularly when utilizing Artificial Neural Networks (ANNs). The shape resembles a

"hat" or bell curve, effectively captures localized features in data, making it ideal for modeling

oscillatory and wave-like phenomena. The Mexican Hat function enhances neural networks’

ability to approximate solutions, including intricate patterns like wave propagation or damped

oscillations, in differential equations.

Mexican hat Function mathematically can be written as

f (x) =
2√
3

π
− 1

4 (1− t2)e−
t2
2 . (2.23)



18

Figure 2.5: Mexican Hat Activation Functions

2.9 Neural Network Artitecture

In practical scenarios, a single node is often inadequate, making networks with multiple

nodes a more common choice. The connections between nodes are crucial in the early design of

neural networks, as they determine the execution of calculations. An ANN is a data processing

system composed of numerous simple, densely connected neurons. An artificial neuron functions

similarly to the biological neurons they accept and processes signals from nearby neurons and

decides whether to fire an output signal based on the processed results [52].
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W

b

Input Layer Hidden Layer Output Layer

Figure 2.6: Architecture of ANN

2.9.1 Feed Forward Neural Networks

A NN is classified as a feed forward neural network when there is no feedback loop, meaning

the outputs of the neurons do not feed back into the inputs within the network. This network only

allows forward information flow from input nodes to output nodes through hidden nodes within

the network. NN are often arranged in layers, and feed forward neural networks are further

divided into single-layer and multilayer networks according to the number of layers [53].

Graphical representation is given in Fig. 2.7.
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Input Layer
Output Layer

First Hidden Layer Second Hidden Layer

X1

X2

X3

Y1

Y2

Figure 2.7: Feed Forward Neural Network

2.9.2 Recurrent Neural Networks

A network is referred as a recurrent neural network if feedback is present, such as synaptic

connections from outputs to inputs (either to the same neurons or to others). This approach

is highly beneficial when solving problems that rely on both current and previous inputs. The

recurrent network transfers data from inputs to outputs while learning, and vice versa, until the

output numbers remain constant [32].

2.9.3 Radial Basis Function Neural Network (RBF-NN)

In a RBF network, the structure starts with an input layer, followed by a hidden layer

containing the basis functions, and ends with an output layer.
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2.10 Learning in Neural Networks

Machine learning focused on designing and building algorithms and techniques that helps

computers to "learn" from data and improve their performance over time. Two widely recognized

types of learning are supervised learning and unsupervised learning [54].

2.10.1 Supervised Learning

In supervised learning the system is provided with the desired output. A supervised learning

approach involves altering weights by comparing them to a set of goal outputs. The algorithm

generates a mathematical model in the learning process by utilizing a comprehensive data set that

containing all inputs and outputs. Text instances are utilized to teach algorithms, with pre-defined

input and output. The algorithm in this study receives the input set and the corresponding results.

The algorithm compares its actual results with the relevant outcomes to obtain the results [55].

The inaccuracy is determined by comparing the network’s calculated output with the predicted

output upon correction. After the error identification performance can be enhanced by doing

changing in network settings.

Training Data Feature Extraction Feature 
Matrix

Train the model Model Evaluation Model

Label

New Data  Feature Extraction Prediction LabelsFeature Vector

Training

Prediction

Figure 2.8: Supervised Learning workflow

2.10.2 Unsupervised Learning

In unsupervised learning, the system is presented only with the input data, and the aim is to

uncover the inherent patterns and structure within the data. In an unsupervised learning approach,
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weight adjustments are not based on a comparison with a target output. In this approach, there is

no direct teaching signal for weight adjustments; however, it still requires certain guidelines to

facilitate successful learning. This property is referred to as self-organization.

Raw Data Scaled Data Build
Model

Validate

Done

Analyze and Tune

Figure 2.9: Unsupervised Learning workflow

2.11 ANN in solving Differential Equation

Artificial neural network appeared as a effective tool for solving differential equations, mainly

those that are complex or lack analytical solutions. ANN in association with optimization tools

offers an alternative approach to traditional numerical methods for solving ODE, PDE, and

nonlinear DE. ANN techniques have effectively given the solutions of linear/nonlinear systems

such as an algorithm based on neural network to solve differential equation of fractional order

[56], utilizing artificial neural networks to solve fractal-fractional differential equations [57],

an adaptive algorithm to solve fractional partial differential equations using wavelet artificial

neural networks [58], fuzzy differential models [59], singular Lane–Emden model [60], nonlinear

Jeffery–Hamel flow model [61].
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CHAPTER 3

REVIEW OF COMPARATIVE ANALYSIS OF TAYLOR SERIES

AND RUNGE-KUTTA FEHLBERG METHODS IN SOLVING

THE LOTKA-VOLTERRA COMPETITIVE MODEL

3.1 Introduction

This study compares the Runge-Kutta Method and Taylor Series for sloving mathematical

models, focusing on the Lotka-Volterra competitive model. This Lotka-Volterra competition

model explains the growth dynamics of Paramecium Caudatum and Stylonychia Pustulata,

considering interspecific competitive effects, carrying capacities, and population growth rates.

This research employs Mathematica 13.2 for numerical solutions of Two- Species Competition

Model to demonstrate how these approaches effectively manage non-linear interactions in the

model. This paper highlights the importance of numerical techniques like Runge-Kutta Fehlberg

methods and the Taylor Series for approximating solutions in situations where analytical solutions

may be impossible or complex.
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3.2 Problem statement

The Lotka-Volterra competitive model is a crucial mathematical framework for analyzing

biological interactions, particularly competitive dynamics between species, understanding of

ecological balance and resource allocation. Traditional methods for solving complex biological

equations often face challenges that may hinder their ability to provide precise answers. This

review focuses on the effectiveness of numerical techniques like the RK method and the Taylor

Series method in overcoming challenges.

3.3 Background of research on Two-species Competition Model

In an ecological system, species interact through factors like climate, resources, population

density, and reproduction capacity. These interactions can be categorized as predators, competi-

tion, mutualism or parasitism. Biological interaction can have positive, negative or no impact on

interacting species. Competition is a type of biological interaction that can be harmful to both

species involved. In competition species compete for the shared resource in a specific region. The

author’s previous publications extensively examined the growth of mixed populations of various

species under mutual interdependence, covering numerous special scenarios[62]. Volterra has

addressed a unique case of two species competing for a common food supply, which extends

and easily provides a solution [63]. Volterra’s theory suggests that population growth rate is

directly proportional to the current population size without limiting factors, following established

literature principles
dN
dt

= rN. (3.1)

leading to a population growth law that is exponential (Malthusian). The natural limitation of

food supply transforms the coefficient r into a decreasing function of N. If r > 0, the model

predicts exponential growth; if r < 0, it predicts exponential decrease. In exponential growth a

population can increase continuously at an exponential rate. Logistic growth model overcome

this prediction of an exponential growth model which is a simplest extension of 3.1

dN
dt

= rN
(

1− N
K

)
. (3.2)
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It is basically the most basic rule which states that population density determines intrinsic growth

rate, explaining the reason behind the decrease in per capita growth rate as population grows

[64].

3.4 Two Species Competition Model

The independent contributions of Lotka and Volterra, who developed many model including

predator-prey dynamics and two-species competition, significantly influenced the field now

called as population biology. They were among the first to explore the interactions between

species by introducing several simplifying assumptions, resulting in non-trivial but manageable

mathematical problems [65]. The two species competition model is an ecological framework

that illustrates species interaction and competition for resources. It helps predict the growth

and fall of competing species in population ecology, using a system of nonlinear equations.

Life equilibrium is influenced by competition, and understanding species interaction is crucial

for predicting outcomes in natural settings.The two-species competition model in population

ecology describes the interdependent growth and fall of two competing species using a system of

nonlinear equations. The two species competition model is proposed by Lotka-Volterra [64, 66].

Two species competition model is given by:

dx
dt

= r1x
(

1− x+αy
K1

)
, (3.3)

dy
dt

= r2y
(

1− y+βx
K2

)
, (3.4)

x(0) = x0, (3.5)

y(0) = y0, (3.6)

where r1,r2 are intrinsic growth rates of species 1 and species 2 respectively. K1,K2 are carrying

capacities of the environment for species 1 and species 2 respectively. α is Competition

coefficient that evaluates the effect of species 2 on species 1. β is Competition coefficient that

evaluate the effect of species 1 on species 2. x = 1 is initial population of species 1 at time t = 0.

y = 1 is initial population of species 2 at time t = 0.

In this research, two numerical methods, the Taylor Series Method and the Runge-Kutta (RK)
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method, are used for solving the model and their accuracy is compared to Morlet Wavelet

based ANN using hybrid ANN optimization techniques Genetic Algorithm and Sequential

Quadratic Programming (GA-SQP) and discern which one gives the best results. This thesis

aims to investigate the effectiveness of optimization techniques, such as GA-SQP, in achieving

better results compared to traditional numerical techniques in particular RK-4 and Taylor Series

techniques. We have performed some variations in parameters (α,β ,K1,K2) , that are used in

equation 4.19 and equation 4.20.

3.5 Methodology

This study primarily focuses on the Lotka-Volterra competitive model, which explains

interactions between two species competing for limited resources. The study uses ordinary

differential equations to represent a model and compares Runge-Kutta Fehlberg (RKF) and

Taylor Series numerical techniques for resolving these equations. The coupled equation, requires

a significant amount of time to solve using an exact analytical solution, is numerically solved

using Mathematica 13.2.

3.5.1 Taylor Series Method

The Taylor Series Method is a method that transforms a function into an infinite series for

approximating the solution of differential equations. This study use Mathematica 13.2 to solve

model equations by Taylor series. To utilize the Taylor Series method, it is necessary to first

determine the derivatives of model equations. The model equations provide the first derivatives

given in 4.19, 4.20. Differentiating these equations give second derivative

d2x
dt2 = r1

(
1− 2x+αy

k1

)
dx
dt

− r1αx
k1

dy
dt

, (3.7)

d2y
dt2 = r2

(
1− 2y+βx

k2

)
dy
dt

− r2βy
k2

dx
dt

. (3.8)

This study uses Mathematica 13.2 to solve model equations by Taylor series.
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3.5.2 Runge-Kutta Method

The Runge-Kutta technique is a well-known procedure that can accurately approximate

a Taylor Series approximation without requiring higher derivative computations. This study

utilizes Mathematica 13.2 to solve model equation by RK Method.

k1 = h f (xi,yi),

k2 = h f
(
xi +

1
4h, yi +

1
4k1

)
,

k3 = h f
(
xi +

3
8h, yi +

3
32k1 +

9
32k2

)
,

k4 = h f
(
xi +

12
13h, yi +

1932
2197k1 − 7200

2197k2 +
7296
2197k3

)
,

k5 = h f
(
xi +h, yi +

439
216k1 −8k2 +

3680
513 k3 − 845

4104k4
)
,

k6 = h f
(
xi +h, yi − 8

27k1 +2k2 − 3544
2565k3 +

1859
4104k4 − 11

40k5
)
.

yi+1 = yi +
16

135k1 +
6656

12825k3 +
28561
56430k4 − 9

50k5 +
2

55k6 (3.9)

Mathematica 13.2 utilizes the built-in NDSolve function to construct the RK method.

3.5.3 Comparison of Methods

The accuracy of RK and the Taylor Series method can be assessed by comparing the results

from both approaches.
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Table 3.1: Numerical solution for P. Caudatum and S. Pustulata.

Days P. Caudatum in mixed S. Pustulata in mixed

0 2.000000000 2.000000000

1 3.751451974 2.000000000

2 4.504472679 2.000000000

3 6.808330731 9.304627060

4 11.683631120 16.591242660

5 18.612572770 24.421613580

6 27.522162810 30.003024910

7 38.313686050 32.453811910

8 50.911572770 32.557535140

9 65.061172600 31.279097530

10 80.206496750 29.258908940

11 95.554528050 26.882724210

12 110.267244900 24.399495860

13 123.667222000 21.977749000

14 135.357183700 19.725021040

15 145.223933000 17.698338470

16 153.364466400 15.916144810

17 159.991369700 14.371408780

18 165.355793800 13.043100870

19 169.699790500 11.904482790

20 173.233788400 10.928200410

21 176.130265700 10.088946640

22 178.525818200 9.364558700

23 180.526588800 8.736231420

24 182.214318400 8.188295469

25 183.651802800 7.707823312

26 184.887408900 7.284194294

This study provides essential insights into the application of numerical approximation tech-

niques, including the Taylor Series and RKF method, in tackling the Lotka-Volterra competitive
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model. Table 3.1 shows that the RKF approach outperformed the Taylor Series by a significant

margin. RKF is the more reliable option when biological modeling precision is the top priority.

In conclusion, the Taylor Series may be uncomplicated, but it is less appropriate for accurate

biological modeling of the organisms in issue due to its decreased accuracy, particularly when

contrasted with the RKF approach.

3.6 Novelty of Research Thesis

It is evident from reviewing so many academic publications that authors main focus in current

technological age remains on computation intelligence (CI)-based solvers. This research employs

a hybrid GA-SQP strategy to optimize Morlet wavelet functions and artificial neural networks

(ANN) for solving complex differential equations. The ANN-GA-SQP framework is created to

solve Two-Species Competition Model and obtain the best solution.
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CHAPTER 4

DESIGN OF MORLET WAVELET ARTIFICIAL NEURAL

NETWORK FOR SOLVING TWO-SPECIES COMPETITION

MODEL

4.1 Introduction

This chapter focuses on solving Two- Species Competition Model using a hybrid Artificial

Neural Network (ANN) aiming to enhance the accuracy, stability, and adaptability in differential

equations. The hybrid approach utilizes local optimizer SQP and global optimizer GA. The

Morlet wavelet is used as an activation function for the modeling of ANN to solve the model.

The effectiveness of a strategy is verified by comparing numerical solutions from traditional

techniques such as the RK method and the Taylor series method. The model’s non-linearity and

sensitivity to parameter changes make it challenging to manage and find analytical solutions.

Conventional numerical techniques such as the RK4 and Taylor series can approximate solutions,

but their precision requires small time steps, increasing computing costs. ANN-based methods

offer a viable substitute and their accuracy and stability require careful optimization. The hybrid

GA-SQP optimization approach improves the accuracy of the ANN model while maintaining

computing efficiency.

The hybrid GA-SQP strategy aims to combine the advantages of local and global optimization

methods. The Genetic Algorithm (GA) is utilized as a global optimizer to determine the optimal

initial weights for the ANN to ensure a well-optimized model start. GA may not always provide
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the maximum level of accuracy needed to solve differential equations. To overcome the limitation,

local optimizer SQP is used to enhance the convergence of the GA-obtained solution [9]. SQP is

a highly effective local optimization technique, especially for constrained nonlinear optimization

problems. SQP is effective in achieving rapid convergence to an ideal solution by fine-tuning

solutions within a local region, unlike GA which explores the entire search space. The hybrid

GA-SQP optimization approach ensures that the ANN accurately and efficiently represents

the Two-Species Competition Model. It is more effective in comparison to other numerical

techniques, as it improves accuracy and also reduces the computational burden. The Morlet

wavelet activation function enhances the network’s ability to approximate complex, nonlinear

differential equations.

The main purpose of the study is to effectively manage the non-linearity of the model while

providing highly accurate solutions for the Two-Species Competition Model. The Morlet wavelet

activation function significantly enhances the network’s approximation capacity, making it an

ideal tool for modeling differential equations. The study highlights the potential of ANN-

based techniques as a viable alternative to traditional numerical techniques for solving DE in

mathematical and ecological models.The proposed method utilizes hybrid GA-SQP and morlet

wavelets to reduce error, enhance stability, and offer a more optimal solution framework.

4.2 Problem Statement

The Two-Species Competition Model is used to model the interaction between two competing

species and is often presented by using the coupled nonlinear mathematical model based on

differential equations. To understand the dynamics of the system, the accurate solution of these

differential equations is crucial. In the Two-Species Competition Model, researchers proposed

various numerical solvers for instance Runge-Kutta and Taylor Series [67] but these methods

are not generalized, are less accurate, and are computationally expensive. In the recent past,

ANN-based numerical solvers have emerged as powerful tools for approximating solutions of

various systems based on nonlinear differential equations [68, 69, 70]. However, the designing

of the ANN-based numerical solvers integrated the computational efficiency of the Morlet

wavelet and optimized with hybrid GA-SQP for the approximating solutions of the Two-Species

Competition Model is challenging. The Morlet wavelet-based ANN is a promising alternative
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to investigate the dynamics of nonlinear coupled systems. This study designs and evaluates the

Morlet wavelet-based ANN optimized with hybrid GA-SQP for the numerical treatment of the

Two-Species Competition Model, aiming to improve the accuracy and stability.

4.3 Research Gap

Despite advancements in ANN-based differential equation solvers and their potential in

solving various differential equation types, Artificial Neural Networks (ANNs) have not yet

tackled the Two-Species Competition Model. No research has utilized wavelet-based ANNs,

particularly those utilizing the Morlet wavelet activation function, on this ecological model. The

integration of hybrid optimization techniques like GA-SQP for such networks remains a subject

of further research. This study presents a novel ANN framework optimized with GA-SQP and

the Morlet wavelet to solve the Two-Species Competition Model, aiming to fill a crucial gap.

• The effectiveness of hybrid GA-SQP optimization for ANN-based solvers in ecological

models has been under-researched.

• Further research is required to explore the potential of wavelet-based activation functions,

specifically Morlet wavelet, in improving the performance of Artificial Neural Networks

(ANN).

4.4 Research Objective

The research objective to address existing knowledge gaps is as follows.

• To develop a novel ANN framework utilizing the computing efficiency of Morlet wavelet

along with hybrid optimizing the performance of GA-SQP for solving differential equations

based on Two-Species Competition Model.

• To compare the accuracy and stability of the Morlet wavelet-based ANN with existing

numerical techniques for solving the two-species competition model.
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4.5 Methodology

Morlet Wavelet-ANNs is designed for solving the Two-Species Competition Model. Morlet

Wavelet activation function is used to build the fitness function, and optimization is performed

by GA integrated with SQP. The methodology is represented graphically in Fig.4.1.

Problem Domain

Two species competition
model

MW-ANN modeling

Design Morlet Wavelet Artificial Neural
Network

Define the fitness Function by unsupervised
Error Function

Optimization

GA integrated with SQP

Initialization (GA) Fitness Function

Termination Criterion 
Achieved?
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Using selection, crossover and mutation
operations with increase in generation index

Best fitted weight of
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Initialization (SQP)

Start point: Global best individual of
GA, Bounds, and assignment of Optimset

parameters

No
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Fitness Evaluation

Termination 

Criterion Achieved?

Iterative Update

Weights are updated as per step increment in
SQP

No

Best Individual of GA-SQP
Algorithm

Yes

Results

Absolute Error Analysis

Mean Square Error

Mean Deviation Error

Figure 4.1: Methodology of ANN
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4.5.1 Design of MW-ANN

ANNs are known for their ability to provide accurate and reliable answers in various ap-

plications [71, 72]. Mathematical formulations of Two-Species Competition Model given in

the system 4.19 and 4.20 using feed-forward Morlet Wavelet-ANNs in terms of approximate

outcomes and its 1st order derivative is given as:

[x̂(t)] = [
n

∑
i=1

αix f (Wixt +bix)]. (4.1)

[x̂′(t)] = [
n

∑
i=1

αix f ′(Wixt +bix)]. (4.2)

[ŷ(t)] = [
n

∑
i=1

αiy f (Wiyt +biy)]. (4.3)

[ŷ′(t)] = [
n

∑
i=1

αiy f ′(Wiyt +biy)]. (4.4)

where n represents the number of neurons and unidentified weight vectors are presented by [α ,

w, b], i.e.

W = [wx,wy], b = [bx,by] and α = [αx,αy]

bx = [b1x,b2x,b3x, . . . ,bkx], by = [b1y,b2y,b3y, . . . ,bky]

αx = [α1x,α2x,α3x, . . . ,αkx] , αy = [α1y,α2y,α3y, . . . ,αky]

wx = [w1x,w2x,w3x, . . . ,wkx], wy = [w1y,w2y,w3y, . . . ,wky]

The design of MW-ANNs will be presented for solving the Two-Species Competition Model.

This function is given as

f (x) = cos(1.75t)e−0.5t2
, (4.5)

f (Wit +bi) = cos(1.75(Wit +bi))e−0.5(Wit+bi)
2
. (4.6)

Using the Morlet Wavelet as a activation function, the updated form of (4.1-4.4) is given by

x̂(t) =
n

∑
i=0

αi

(
cos(1.75(Wit +bi))e−0.5(Wit+bi)

2
)
. (4.7)

ŷ(t) =
n

∑
i=0

αi

(
cos(1.75(Wit +bi))e−0.5(Wit+bi)

2
)
. (4.8)

x̂′(t) =
n

∑
i=1

−αiWie−0.5(Wit+bi)
2
[1.75sin(1.75(Wit +bi))+2(0.5)cos(1.75(Wit +bi))(Wit +bi)] .

(4.9)
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ŷ′(t) =
n

∑
i=1

−αiWie−0.5(Wit+bi)
2
[1.75sin(1.75(Wit +bi))+2(0.5)cos(1.75(Wit +bi))(Wit +bi)] .

(4.10)

The graphical representation of methodology is given in 4.2

α

w

b

d²x̂ /dt²

+

1 x m

1 x m
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x̂ (t) Exp ( )

+

wx+b
f( )

d²f/dt²

x

(0,1)

Input Layer Hidden Layer Output Layer

f(x) = cos(1.75t) · e^(-0.5t²)

Figure 4.2: MWANNs architecture

4.5.2 Justification for selecting the Morlet Wavelet Activation Function

In this work, the Morlet wavelet function is used as the activation function because it can

capture the nonlinear and complex dynamics of the Two-Species Competition Model more

effectively than common functions like sigmoid, tanh, or ReLU. Traditional functions have

certain drawbacks: sigmoid may show good accuracy but fails to maintain stability over short

time intervals; tanh and ReLU often cause deviations in solutions when dealing with nonlinear

systems. The Morlet wavelet provides better approximation capabilities for nonlinear systems.

4.5.3 Fitness Function

An essential part of optimization algorithms, especially evolutionary techniques like GA,

is the fitness function. The fitness function is able to differentiate between better and worse
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solutions by assessing each candidate’s performance using the fitness function. The selection

process is guided by this evaluation, which guarantees that individuals with greater fitness

have a greater chance of being selected for reproduction, ultimately resulting in an optimal or

nearly optimal solution. For solving the two species competition model, the fitness function is

formulated

ε f = εx + εy + ε, (4.11)

where εx from equation 4.11 is given as:

εx =

[
dx̂
dt

− r1x̂
(

1− x̂+α ŷ
k1

)]2

. (4.12)

εy From equation 4.11 is given as:

εy =

[
dŷ
dt

− r2ŷ
(

1− ŷ+β x̂
k2

)]2

. (4.13)

ε from initial conditions 4.11 is given as:

ε = (x̂(0)− x0)
2 +(ŷ(0)− y0)

2. (4.14)

Eq 4.11 becomes

ε f =

[
dx̂
dt

− r1x̂
(

1− x̂+α ŷ
k1

)]2

+

[
dŷ
dt

− r2ŷ
(

1− ŷ+β x̂
k2

)]2

+(x̂(0)− x0)
2 +(ŷ(0)− y0)

2.

(4.15)

4.5.4 GA-SQP Optimization

In order to solve the Two-Species Competition Model, an evolutionary computing approach

called MV-GA-SQP, which combines Morlet Wavelet (MV) and Genetic algorithm (GA) sup-

ported by Sequential Quadratic Programming (SQP), is used to optimize the unknown adjustable

parameter of ANNs Designed parameters of MV-ANN are optimized using the optimization

techniques of GA integrated with SQP.

Genetic Algorithm (GA)

Genetic algorithm is a global optimization procedure. Just like in nature, GAs work by

selecting the best solutions from a group, combining them, and making small changes to create

new solutions. Genetic algorithm is a search algorithm that uses a solution space to find the
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optimal solution to a problem. Its defining feature lies in the method it employs to conduct the

search. The algorithm generates a "population" of potential solutions to a problem, allowing

them to evolve over generations to discover improved solutions [73]. Genetic algorithms (GAs)

are widely applicable for solving nonlinear differential equation and optimization method is

inspired by natural selection, enabling them to explore complex solution spaces and solve various

optimization issues in various fields. The study explores the use of a genetic algorithm for

solving Two-Species Competition Model and comparing its efficiency with numerical methods.

In 1970 John H. Holland presented the first practical use of GA [74]. GA has been employed to

solve nonlinear differential equations [75, 76]. The genetic algorithm operates in a step-by-step

manner. During the first step a random initial population is created. The population represents

the algorithm’s candidate solutions being evaluated throughout the algorithm’s process, with new

members added and others eliminated over generations. An individual is a single solution in the

population. Individual fitness measures the effectiveness of their solution, with higher fitness

values indicating better solutions, which are determined by the specific problem being addressed.

Genetic algorithms aim to optimize problems by iteratively reaching their final value based on

stopping criteria. The genetic algorithm operates in a step wise manner. GA continue with the

following steps until the algorithm’s termination conditions are satisfied.

1. Step 1: Randomization

The initial stage generates a random initial population.

2. Step 2: Fitness Function

The fitness function evaluates the alignment of ANN-predicted solutions with numerical

solutions in the second GA phase, helping in the selection of optimal optimization settings.

3. Step 3: Reproduction

The algorithm generates a series of new populations, using the current population to create

the next in a recursive manner. Choose two individual at random from the population,

making sure that those that are fitter have a better chance of getting chosen.

Perform crossover on the two individuals to generate two new individuals.

Let each individual of the new-population a random chance of mutation.

Replace population with new-population for beter solution. This procedure is repeated

until a minimum error is reached.

4. Step 4: Stopping Criteria
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Genetic algorithms aim to optimize a problem by completing an iterative process under

stopping conditions to reach its final value.

5. Step 5: As long as the ending condition is not yet met, proceed to step 2.

Start

Initial Population

Calculate the Fitness value

Selection

Crossover

Mutation

Is termination criteria
satisfied?

End

Yes

No

Figure 4.3: Genetic Algorithm Flowchart

Sequential Quadratic Programming (SQP)

Wilson’s 1963 PhD thesis introduced the first SQP method to solve constrained nonlinear

optimization problems. SQP is a local optimization algorithm. SQP focuses on solving problems

by decomposing them down into smaller, manageable parts (QP sub problems). SQP methods

approximate a solution by solving a series of QP subproblems, where a quadratic model of the

objective function is minimized under linearized constraints. The subproblem in SQP method is
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solved through iteration using a QP method. One of the essential applications of SQP is its great

accuracy in locating optimal solutions. SQP emphasis on quadratic sub problems enables it to

rapidly converge to a solution, making it well-suited for complicated optimization tasks [77].

After Wilson’s 1963 publication, there has been a significant transformation in SQP techniques.

Since the late 1970s, Sequential Quadratic Programming (SQP) has emerged as the most effective

method for solving nonlinear constrained optimization problems [78]. Numerous writers have

extensively studied sequential quadratic programming (SQP) techniques during past decades

[79, 80, 81, 82].

The performance of GA is improved by integrating it with SQP, a local optimization algorithm.

SQP focuses on solving problems by decomposing them down into smaller, manageable parts

(quadratic programming sub problems). One of the essential applications of SQP is its great

accuracy in locating optimal solutions. SQP emphasis on quadratic sub problems enables it

to rapidly converge to a solution, making it well-suited for complicated optimization tasks.

Some of the applications of SQP are optimal control in direct numerical modeling of turbulent

flow [83], Optimization of a multi-product economic production quantity problem [84]. MW-

ANN designed parameters are optimized using GA and SQP algorithms to solve two species

competition, a nonlinear problem. This combination is particularly useful for solving two species

competition model, which is a complex mathematical problem. Using a software tool called

MATLAB, which has built-in functions to help with optimization. The specific functions they

are using are called ‘GA’ for Genetic Algorithms and ‘FMINCON’ for Sequential Quadratic

Programming. MATLAB is like a tool box that can help in solving different type of problem

making it easier to implement complex algorithms.
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Figure 4.4: SQP flowchart

Hybrid GA-SQP

SQP requires fewer objective and constraint function evaluations compared to GA. As a

deterministic algorithm, it can produce extremely highly accurate optimal results. SQP’s local

optima and noise sensitivity make it susceptible to constraints, while GA’s global search approach

increases the likelihood of identifying the global optimum. The GA should be utilized for a

preliminary global search, with its outcomes serving as a guide for the subsequent local search.

The combination of GA and SQP enhances a GA global search capacity and SQP local search

precision. The GA stopping criteria, such as low generation, low population, or high tolerance,

are established to cause the GA to stop early, The GA is supposed to find its best outcomes

close to the actual global optimum.The SQP algorithm utilizes GA findings to identify its local

optimum, which is the globally searched optimum, after conducting a local search [85].

This process of optimization through Hybrid GA-SQP consist of following steps

1. Step 1: Define the Objective Function

The objective function is defined at the beginning of the optimization process, assessing

the model’s fitness or error using the provided parameters.

2. Step 2: Parameters for Genetic Algorithm (GA)

The Genetic Algorithm (GA) is utilized as the primary global optimization method to

determine the optimal set of parameters. The Genetic Algorithm (GA) is designed for 50

generations with a 100-person population size. It ended early if no improvement is seen
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for 40 generations, and a function tolerance was used for convergence. All 60 variables

were kept within predetermined ranges for meaningful values.

3. Step 3: Run Genetic Algorithm

The objective function is optimized by using the GA function in MATLAB is utilized

to optimize across the specified search space, with the best solution obtained from GA

(WBest −GA) optimal solution saved for future improvement.

4. Step 4: Parameters for Sequential Quadratic Programming (SQP)

SQP was utilized as a local optimization technique to enhance the GA solution. This

study utilized Sequential Quadratic Programming (SQP) due to its proven effectiveness in

resolving constrained optimization issues. The algorithm, with a step tolerance of 1e−20

and function tolerance of 1e−18, can operate for 1500 iterations and ensures reliability

and comprehensive evaluation.

5. Step 5: Hybrid GA-SQP Process

The first guess for SQP was based on the best GA solution (WBest − GA), with 50

iterations for refinement and actions taken every cycle.

The first guess for SQP was based on the best GA solution (WBest − GA), with 50

iterations for refinement and actions taken every cycle. The GA-derived parameters were

optimized using SQP refinement using f mincon, with iterations, fitness, optimized values,

and function evaluations documented.

6. Step 6: Save Results

After optimization, all outcomes, including fitness values and optimized parameters, were

saved in a MATLAB data file for future examination. The grapgical representation of

hybrid GA-SQP is given in Fig.4.5.

4.5.5 Performance Measures

To evaluate the effectiveness of ANN-GA-SQP technique we will compute the following:

Absolute Error =
n

∑
i=1

(|xi − x̂i|, |yi − ŷi|) , (4.16)

Mean Square Error =
1
n

n

∑
i=1

(
(xi − x̂i)

2,(yi − ŷi)
2) , (4.17)



42

Mean Absolute Deviation =
1
n

n

∑
i=1

(|xi − x̂i|, |yi − ŷi|) . (4.18)
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Figure 4.5: Hybrid GA-SQP Flowchart

4.6 Results and Discussion

This study utilized an Artificial Neural Network (ANN) architecture to numerically solve the

Two-Species Competition Model. The ANN approximated the solution by reducing the error



43

between the predicted and the exact solutions after the model equations were structured into an

unsupervised learning problem. MATLAB was utilized for the development of the ANN due to

its computational capabilities and integrated tools for neural network modeling and optimization.

The Artifcial Neural Network design consisted of three layers, a single input layer, a hidden

layer with Morlet wavelet activation functions, and an output layer representing the dependent

variables x(t) and y(t). This study used an hybrid optimization technique that combined GA and

SQP.

The ANN based numerical solution for the nonlinear coupled mathematical model of the Two-

Species Competition Model is developed using appropriate parameter values is as follows

dx̂
dt

= 0.75x̂
(

1− x̂+1.2ŷ
100

)
, (4.19)

dŷ
dt

= 0.75ŷ
(

1− ŷ+0.8x̂
80

)
, (4.20)

x(0) = 10, (4.21)

y(0) = 20, (4.22)

Parameter Values

α 1.2

β 0.8

r1 0.75

r2 0.75

K1 100

K2 80

Table 4.1: List of parameters for Two-Species Competition Model

The Fitness Function becomes

ε f =

[
dx̂
dt

−0.75x̂
(

1− x̂+1.2ŷ
100

)]2

+

[
dŷ
dt

−0.75ŷ
(

1− ŷ+0.8x̂
80

)]2

+(x̂(0)−10)2+(ŷ(0)−20)2.

(4.23)

For the numerical solution of the nonlinear mathematical system of Two-Species Competition

Model, the fitness function has been optimized through a hybrid computing procedure i.e. GA-

SQP. The study utilized 50 independent runs with a 10 neuron network and Morlet wavelet
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activation functions in the hidden layer, resulting in 30 weights for each output variable, and

presented the optimal weights obtained using a hybrid GA-SQP approach. The best weights are

presented in Fig. 4.6 through ANN-GA-SQP.

Figure 4.6: Best weights of the ANNs-GA-SQP

The study compares the results of RK numerical solvers and the proposed stochastic comput-

ing procedure MW-ANN-GA-SQP. Tables 4.2 and 4.3 provide a detailed comparison between

the results produced by the proposed ANN model and those calculated using the numerical

technique. The close similarity between the two sets of values highlights the ANN’s strength

in accurately approximating the solution. This consistency in results reflects the robustness of

the ANN-based approach. The overlapping outcomes further suggest that the model performs

reliably. In summary, the table reinforces the validity of the ANN method in capturing the

dynamics of the numerical solution.
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Table 4.2: Comparison of ANN and Numerical Solutions for x(t)

t xANN xNumerical Error

0 10.0000016 10 1.60E-06

0.1 10.50084889 10.50084834 5.50E-07

0.2 11.0127194 11.0127219 2.50E-06

0.3 11.5345326 11.53453797 5.37E-06

0.4 12.06511423 12.06511995 5.72E-06

0.5 12.60320383 12.6032072 3.37E-06

0.6 13.14746618 13.14746679 6.10E-07

0.7 13.69650593 13.69650671 7.80E-07

0.8 14.24888446 14.2488905 6.04E-06

0.9 14.80313806 14.80315278 1.47E-05

1 15.35779669 15.3578154 1.87E-05

Table 4.3: Comparison of ANN and Numerical Solutions for y(t)

t yANN yNumerical Error

0 20.00000066 20 6.60E-07

0.1 20.98552424 20.98556488 4.06E-05

0.2 21.99087475 21.99079943 7.53E-05

0.3 23.01357491 23.01336368 2.11E-04

0.4 24.0510246 24.05073294 2.92E-04

0.5 25.10051271 25.10021986 2.93E-04

0.6 26.15922993 26.15899997 2.30E-04

0.7 27.22428243 27.22414042 1.42E-04

0.8 28.29270609 28.29263123 7.49E-05

0.9 29.36148145 29.36141837 6.31E-05

1 30.42754906 30.42743795 1.11E-04

Figs.4.7 and 4.8 presents a comparison between the optimal solutions achieved using the

ANNs-GA-SQP method for the Two-Species Competition Model and the corresponding reference

solutions. The best results from the ANNs-GA-SQP are shown to overlap with the reference
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solutions, demonstrating the accuracy of the suggested numerical approach.
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Figure 4.7: Result Comparison of x-species
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The proposed scheme’s precision is verified by performing absolute error values through

the mean and best. The absolute error graph illustrates the difference at each point between

the solutions estimated by the ANN model and the corresponding numerical results for each

species in competition model. The absolute error values for Two-Species Competition Model

are depicted in Fig. 4.10 which displays the absolute errors for species x and y between ANN-

predicted solutions and reference numerical solutions like Runge-Kutta over a time interval

t ∈ [0,1].
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Figure 4.9: Absolute Error for x−species

Figure 4.10: Absolute Error for y−species
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It is evident that the ANN and numerical technique have similar results due to the extremely

low absolute error for the x species over a wide timeframe, primarily in the 10−5 to 10−7 range,

while the error for the y species ranges from 10−4 to 10−7 which is manageably minimal. Overall,

the absolute error analysis confirms that the neural network successfully approximates the true

solution with high precision, effectively capturing the non-linear interactions in the Two-Species

Competition Model.

The performance and consistency of the proposed NN model were evaluated through the calcula-

tion of the Mean Square Error for 50 simulation runs.
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Figure 4.11: Mean Square Error

The accuracy and reliability of the Morlet wavelet-based ANN was evaluated by computing

the mean square error for both species over 50 optimization runs. The graph’s steady drop in

MSE values for dx
dt and dy

dt illustrates the strong approximation capabilities of the model. The

Morlet wavelet-based ANN optimized with the hybrid GA-SQP algorithm exhibits high accuracy,
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as indicated by the MSE values ranging from 10−7 to 10−13. The results indicate that the neural

network consistently produces very low MSE values for both species. The error associated

with the x-component is the smallest, nearing 10−13, while the y-component follows closely

with slightly higher, yet still minimal, error values. This suggests that the model successfully

captures the dynamics of both species with a high degree of accuracy.The model’s stability and

effectiveness in resolving the nonlinear Two-Species Competition System are demonstrated by

its exceptionally low error values.

The Mean Absolute Deviation (MAD) is calculated from 50 simulation runs to assess the

model’s stability and accuracy. The consistent MAD values confirm the reliability of the Morlet

wavelet-based neural network optimized through the hybrid GA-SQP method.
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Figure 4.12: MAD Performance

MAD values are calculated using 4.18 for the morlet wavelet ANN technique.The graph

illustrate the MAD values for the x(t) and y(t) components of the Two-Species Competition
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Model over 50 optimization runs. The MAD evaluation across 50 optimization runs reveals

that the error values for MAD d(x) and MAD d(y) both fall within the extremely accurate

range of 10−6 to 10−11. The network effectively simulates the dynamics of the first species,

with MAD d(x) reaches the smallest deviation among two species approaching values close to

10−11. Similar to this MAD d(y) maintains a low error range between 10−8 to 10−7, indicating

a well-captured behavior of the second species, with a slightly more complex nature. The Morlet

wavelet-based ANN, using a hybrid GA-SQP technique, exhibits exceptional approximation

capability due to its constant low deviation. These very small MAD values show that the model

is highly reliable in capturing the complex interactions between the two species. They also

confirm that the hybrid GA-SQP optimization method works well to reduce errors without

causing overfitting.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

The thesis presents a precise, biologically-inspired neuro-heuristic framework for solving

nonlinear differential systems, primarily focusing on the Two-Species Competition Model. The

model consists of a system of coupled nonlinear ODE that is commonly employed to represent

population interactions between different species in ecological studies. The proposed method

integrates ANN with deterministic and evolutionary optimization techniques to efficiently solve

nonlinear systems with accuracy and stability. The proposed model is designed using an ANN

that utilizes the Morlet wavelet as its activation function. Using a wavelet-based activation

function improves the network’s capability to identify complex and localized nonlinear patterns

within the system, which makes it especially effective for modeling ecological interactions. The

neural network’s weights and biases were optimized using a hybrid approach that combined the

local refinement power of SQP with the global search capability of GA. This hybrid GA-SQP

technique ensures convergence towards globally optimal solutions by improving accuracy.

The performance of the model was thoroughly verified through multiple independent optimiza-

tion runs (a total of 50). The accuracy of neural network solutions was evaluated using Mean

Square Error (MSE) and Mean Absolute Deviation (MAD) as performance measures. For both

species, the MAD values remained between 10−6 and 10−11, while the MSE values continuously

ranged from 10−7 to 10−13. The consistently low error values highlight the high accuracy of
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the proposed method and also reflect its stability over multiple runs, indicating that the neural

network can generalize well and remains reliable despite different initial conditions.

In addition, the performance of the proposed ANN model was compared with traditional numeri-

cal methods, including the fourth-order Runge-Kutta (RK4) and the Taylor series approach. The

analysis showed that the ANN model, optimized through the hybrid GA-SQP method, achieved

accuracy that was comparable to or even better than traditional numerical methods, particularly in

maintaining stability over extended simulation periods and in the presence of nonlinear parameter

changes.

To conclude, the GA-SQP optimized ANN using the Morlet wavelet offers a strong and adaptable

method for numerically solving nonlinear DE like the Two-Species Competition Model. The

proposed method has shown excellent accuracy, consistent convergence behavior, and reliable

results across numerous test runs. Due to its strong performance, this framework has the potential

to be extended to a wide range of nonlinear differential systems, particularly in cases where

conventional numerical approaches prove inadequate. In future research, this strategy could

be adapted for more complex models involving multiple species, systems with time delays, or

ecological scenarios driven by real-world data.

5.2 Future Work

The study demonstrates the effectiveness of ANN in solving the Two-Species Competition

Model, particularly when combined with hybrid GA-SQP optimization and Morlet wavelet

activation function. The current model could be expanded to handle complex ecological interac-

tions involving multiple species, providing broader ecological insights. The Morlet wavelet’s

effectiveness is being evaluated against alternative wavelet-based to find more ideal setups

for specific differential equations, despite its effectiveness. The current optimization method

GA-SQP could be enhanced by incorporating metaheuristic algorithms like Particle Swarm

Optimization and hybrid swarm-intelligence-based strategies like PSO-ASA. The suggested

framework may develop into a more complete and flexible system for modeling and resolving a

variety of nonlinear differential equation issues in ecology and other fields as a result of these

additions.
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