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ABSTRACT

In this research, the problem of redundant detections of tracks in distributed sensor net-

works for multi-object tracking is addressed. Measurement noise and network-induced

errors often result in multiple detections of the same object, complicating the accurate

estimation of object count and position. This makes it challenging to accurately determine

the true number of objects and their locations. Track-to-track association algorithms

help address this issue. Many such algorithms have been developed and can be broadly

categorized into two types: statistical algorithms and clustering-based algorithms. A key

clustering-based approach is the fuzzy track-to-track association algorithm, which is the

focus of this research. A variation of this algorithm is tested on data generated from a

model simulating a multi-sensor, multi-target environment. In real-world sensors, errors

typically arise in azimuth, elevation, and range, so this thesis proposes an error model

based on these parameters. The association algorithm’s resolutions are also grounded in

this realistic error model. Additionally, time synchronization is critical before performing

track association. This thesis employs a linear predictor to synchronize tracks before

association, and the performance of the algorithm is analyzed under these conditions.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Airborne radars are essential for intercepting airborne targets, as well as for surveil-

lance and reconnaissance operations. These radars operate at very high frequencies and

have various modes such as Track While Scan (TWS), Situational Awareness Mode (SAM),

and Single Target Tracking (STT) [1]. However, airborne radars have limitations in range,

which can impact the performance of aerial missions. Improving radar range would en-

hance mission effectiveness, and this can be achieved by addressing the design limitations

of these radars. One solution to extend range is connecting multiple radars through a

wireless network, overcoming design constraints. A Tactical Data Link (TDL) serves as

the network connecting multiple aircraft, allowing them to share data. This networked

approach reduces uncertainty in target information, thereby improving the range and ac-

curacy of airborne sensor networks [2]. However, sharing information over the network

introduces challenges, such as multiple sensors reporting the same target multiple times.

To resolve the issue of redundant reports, a Track-to-Track Association (T2TA) algorithm

is applied. For example, consider two aircraft moving in the same direction, tracking a

single target moving away from them in an overlapping coverage area shown in figure 1.1.

Due to radar inaccuracies, each aircraft may report the target’s position slightly differently

[3]. When they share this data over the TDL, sensor inaccuracies, varying sampling rates,
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and communication delays can cause the target to appear twice on each aircraft’s display.

Figure 1.1: Two sensors tracking one target and sharing data over TDL

A robust T2TA algorithm is required to prevent the issue of the same track being

reported multiple times over the TDL. The challenge becomes even more complex as the

number of targets and sensors increases as shown in figure 1.2

Figure 1.2: Multiple sensors tracking multiple targets and sharing data over TDL

In figure 1.2 four sensors are transmitting data over a TDL while operating within
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an overlapping coverage area. This shared coverage leads to uncertainty about whether

the sensors are tracking the same targets or different ones. The possible sensor-target

combinations for the situation shown in figure 1.2 include:

A. A single target is being tracked by all four sensors.

B. Four different targets are being tracked, with each sensor locking onto a separate

one.

C. Two targets are present, with some sensors tracking one and others tracking the

second. One variation could involve one sensor tracking one target while the other

three sensors focus on the second target.

D. Three targets are being tracked, with one pair of sensors tracking the same target

while the other two track two different targets.

Multi-Target Tracking (MTT) systems are designed to detect, track, and counter aerial

threats. These systems rely on a variety of heterogeneous sensors that share information

over a network [4]. Each sensor generates its own sensor-level tracks from its processed

data, while system-level tracks are created by fusing the sensor-level tracks with data

received from other sensors on the network. Since sensors operate within overlapping

coverage areas, it is crucial to determine which tracks correspond to the same targets and

which correspond to different ones. This process of correlating tracks before fusion is

known as track-to-track association.

A Distributed Sensor Network (DSN) is an architecture where multiple sensors are

connected via a network. Each sensor, or node, generates some form of data, and the

network may operate using wired or wireless communication protocols [5]. The nodes can

consist of a few large sensors or many small micro-sensors, and they can be either mobile

or stationary. The topology of this network may be static or dynamic.

In traditional target tracking methods, CEP/CAP algorithms have been widely used

due to their simplicity and ease of implementation. The CEP method provides a statistical

measure that defines a circular region within which a target is expected to appear with a

certain probability, typically 50%. It is based on fixed thresholding, assuming Gaussian

noise distributions around target estimates. CAP extends this concept by calculating the

probability of correct association within a circular error region, offering a slightly more

refined statistical approach than pure CEP.
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While CEP/CAP-based methods are computationally efficient and suitable for low-

noise environments, they struggle in real-world multi-sensor scenarios where track un-

certainty is dynamic, sensor noise levels vary, and overlapping tracks create complex

association challenges. Their reliance on fixed error thresholds limits adaptability, espe-

cially in distributed sensor networks with high target densities or asynchronous sensor

updates.

1.1.1 Research gap and Motivation

Existing multi-target tracking systems rely heavily on data association algorithms

to synchronize and fuse information from multiple sensors. Centralized fusion systems,

for instance, aggregate data from all sensors at a central node, where advanced algorithms

process and correlate the information [6]. However, centralized systems are prone to

latency, high communication costs, and vulnerability to single-point failures. On the other

hand, distributed fusion systems enable each sensor to share its processed tracks with

others, reducing dependency on a central node. Despite their scalability, these systems

face significant challenges, such as inconsistencies in track parameters, asynchronous data

updates, and sensor-specific biases.

Traditional track-to-track association methods, such as the CEP method, lack adapt-

ability and fail to accommodate varying levels of uncertainty. CEP is widely used in radar

and tracking systems to evaluate the precision of measurements and track association.

While CEP provides a simple and intuitive way to measure accuracy, its reliance on fixed

thresholds makes it less effective in scenarios with dynamic noise levels or varying envi-

ronmental conditions. This limitation highlights the need for more adaptive methods, such

as fuzzy clustering-based approaches, to improve track association accuracy in complex

environments [7].

The need for robust, adaptive, and efficient track-to-track association algorithms has

become evident with the increasing deployment of distributed sensor networks in real-time

applications. Recent advances in fuzzy clustering techniques have shown promise in

addressing these challenges. For instance, fuzzy clustering methods provide flexibility in

handling uncertainties, enabling enhanced track fusion and association in environments

with overlapping sensor coverage and dynamic targets [8]. However, these approaches often
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lack comprehensive evaluations in realistic, multi-sensor scenarios, and their performance

under dynamic conditions remains an open research question [9].

1.2 Problem Statement

Traditional track-to-track association algorithms, such as CEP, while computationally

efficient, often struggle to maintain accuracy in scenarios with high noise, overlapping

tracks, or limited temporal synchronization. These methods rely on rigid probabilis-

tic boundaries that are insufficient to handle complex, real-world scenarios, leading to

disassociation and reduced tracking reliability.

To address these limitations, this research proposes a Fuzzy Logic-based T2TA. By

leveraging fuzzy membership functions, this approach can adaptively handle uncertainty

and variability in sensor data. The proposed method incorporates a robust mechanism for

track synchronization and association, making it well-suited for high-clutter, multi-sensor

environments. The algorithm aims to improve accuracy and robustness in track association

while maintaining competitive computational efficiency, addressing the limitations of

existing systems and enhancing the operational capabilities of distributed sensor networks.

1.3 Research Question

The main research questions are as follows:

• What impact do varying track parameters (e.g., noise levels, target movement) have

on the performance of Fuzzy Logic versus CEP in track association?

• What are the computational trade-offs of using Fuzzy Logic in real-time, multi-object

tracking scenarios?

1.4 Objectives

• To design and implement a Fuzzy Logic based T2TA algorithm.

• To compare the performance of Fuzzy Logic with CEP in track association scenarios.

• To analyze the impact of track parameters on algorithm effectiveness.
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• To identify potential real-world applications and constraints of Fuzzy Logic in multi

object tracking.

1.5 Scope of Study

This research focuses on the development and evaluation of a T2TA algorithm within

the context of multi-object tracking in distributed sensor networks, specifically airborne

radar systems. The study aims to address the challenges posed by redundant target reports

in scenarios where multiple sensors operate within overlapping coverage areas.

Algorithm Development: The primary focus will be on the design and implementation

of a fuzzy clustering-based T2TA algorithm. This algorithm will be evaluated for its

effectiveness in correlating tracks from multiple sensors, minimizing redundancy, and

enhancing the accuracy of target tracking.

Simulation and Testing: The proposed algorithm will be tested using simulated data to

mimic real-world conditions. Various scenarios will be created to evaluate the algorithm’s

performance under different target and sensor configurations, including varying numbers

of targets, sensors, and environmental conditions.

Performance Metrics:The study will utilize performance metrics such as accuracy, preci-

sion, recall, and processing time to assess the effectiveness of the T2TA algorithm. These

metrics will provide insights into the algorithm’s efficiency and robustness in practical

applications.

Comparison with Existing Methods: The fuzzy clustering-based T2TA algorithm will be

compared against traditional track association methods. This comparison will highlight the

advantages and potential limitations of the proposed approach in handling track association

in dynamic environments.

Application Context: While the research is rooted in airborne radar systems, the findings

may also have implications for other domains that require multi-object tracking, such as

robotics and autonomous vehicles, thereby broadening the applicability of the developed

algorithm.By defining these boundaries, this research aims to contribute valuable insights

and advancements in the field of multi-object tracking, ultimately enhancing the operational

capabilities of sensor networks in surveillance and reconnaissance operations.
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1.6 Contribution and Significance

This research contributes to the field of MTT in distributed sensor networks, specifi-

cally airborne radar systems, through the development of a novel fuzzy clustering-based

T2TA algorithm. The contributions and significance of this study are outlined as follows:

Innovative Fuzzy Clustering T2TA Algorithm:

Provides a dynamic solution for track association, outperforming traditional fixed-threshold

methods like CEP by adapting to variations in track parameters.
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Improved Accuracy and Reduced Redundancy:

Reduces redundant reports in overlapping sensor networks, improving target tracking

accuracy and situational awareness.

Comparative Analysis:

Offers insights through a detailed comparison of the fuzzy clustering algorithm with

traditional methods, aiding future algorithm development.

Simulation Framework:

Establishes a realistic testing environment that can be used for evaluating diverse tracking

algorithms.

Broad Application Potential:

Extends fuzzy clustering-based T2TA applications to other fields requiring multi-object

tracking, including autonomous navigation and robotics.

Real-Time Fuzzy Logic Applications:

Demonstrates fuzzy logic’s strengths in handling uncertainty in real-time defense scenarios.

The proposed T2TA algorithm enhances operational effectiveness in complex envi-

ronments by improving target tracking accuracy and reliability, benefiting both defense

and civilian applications in real-time, multi-object tracking contexts.

1.7 Organization of Thesis

Chapter 2 of this thesis provides a brief overview of the existing research in this field.

It begins with an explanation of radar technology, followed by a discussion on how radars

are used to track targets. This chapter also covers the different reference frames used in

airborne target tracking and reviews the traditional track-to-track association and fuzzy

track-to-track association algorithms discussed in the literature. Chapter 3 outlines the

methodology used for data generation and the testing of our algorithm. Chapter 4 presents

the results of our proposed algorithm across various sensor-target scenarios, along with the

relevant discussion. Finally, Chapter 5 summarizes the conclusions of this research and

explores potential future directions.
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CHAPTER 2

LITERATURE REVIEW

2.1 Basics of Radar

Radar, which is short for Radio Detection and Ranging, is a crucial application of

microwave technology. It is extensively utilized to obtain information about distant objects

by sending electromagnetic signals towards them and analyzing the returning echoes. A

significant feature of electromagnetic signals is their ability to pinpoint the location of

objects. When these waves encounter a sudden change in the medium’s conductivity, a

portion of the energy is absorbed, while the rest is reflected or re-radiated. This reflected

signal, known as an echo, is captured by a powerful antenna and analyzed to determine the

object’s position.

As noted by Skolnik and others, the first known effort to detect objects using

electromagnetic radiation took place in 1904, when Christian Hülsmeyer, an engineer from

Düsseldorf, used waves to bounce off a ship, leading to the patent of the telemobiloscope.

In the 1920s, several researchers, including R. C. Newhouse, G. Breit, M. A. Tuve, G.

Marconi, L. S. Alder, and likely many others in the United States and other nations, were

obtaining patents and Scenarioing with radar technology. While these were among the

earliest uses of radar, the term "radar" itself was not yet in use. The term was coined

in 1940 by two U.S. Navy officers, Lieutenant Commanders Samuel M. Tucker and F.

R. Furth, as an abbreviation for "RAdio Detection And Ranging." As with many other
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technological innovations, significant early advancements in radar occurred during World

War II. Since that time, radar technology has advanced rapidly and continues to progress,

with widespread applications in both commercial fields, such as airport, police, and weather

radars, and military domains, including search and track radars.

Principle of Radar

A radar system comprises four primary components:

a. Transmitter

b. Antenna

c. Receiver

d. Display and Control Equipment

The transmitter generates an RF signal with sufficient power and directs it to the

antenna. The antenna then emits this RF signal (or pulse) into space in a specific direction.

As the signal travels, it encounters objects in its path, and part of the signal is reflected

back. The antenna captures these reflected signals, referred to as received signals. Because

these signals are usually very weak, they are amplified and then processed for detection.

When an object or target is present, it creates an echo in the received signal, causing the

detector’s output to increase sharply. The time interval between the transmission of the

signal and the reception of the echo is used to calculate the target’s distance.

There are two primary types of radar systems: monostatic and bistatic. A monostatic

radar system utilizes a single antenna for both transmission and reception. In a bistatic

radar system, however, two separate antennas are used for these functions. figure 2.1

depicts both monostatic and bistatic radar systems.
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Figure 2.1: Illustrative Diagrams of (a) Monostatic Radar System and (b) Bistatic

Radar System.

2.2 Radar Tracking

Tracking involves a radar to measure key data about a target to determine its path

and forecast its future positions. Radars usually track targets by assessing range, azimuth

angle, elevation angle, Doppler shift, or a combination of these parameters. Although

many radars can function as tracking radars if the data is processed correctly, a dedicated

tracking radar is specifically designed for angle tracking. Tracking radars can be classified

into various categories based on the tracking methods they use. There are at least four

different radar techniques for tracking targets, which are outlined below.

2.2.1 Single-Target Tracker (STT)

A single-target tracker continuously monitors one target at a high data rate, with

military tracking radars typically observing ten targets per second. It employs a closed-loop
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servo system to track both range and angle, ensuring the radar remains aligned with a

moving target. Monopulse trackers are highly accurate and resistant to countermeasures,

which is why they are favored for military air defense systems using STT. In a monopulse

radar, angle measurements are made using two slightly angled beams. The radar transmits

using the combined signal of these beams and receives signals from both the sum and

difference of the two beams. The angle measurement comes from the difference pattern,

while the sum pattern is used for detection and range measurement. The sum pattern also

provides a reference for detecting angle errors. To measure angles in two dimensions, four

slightly angled antenna beams are required. A monopulse tracker generally includes three

receiving channels: one for range and two for angle.

2.2.2 Multi Object Tracking (MOT)

MOT refers to the task of detecting, identifying, and continuously tracking multiple

objects in a sequence of images or video frames. The process begins with object detection,

where algorithms identify the presence and location of objects in each frame. The challenge

then shifts to associating these detected objects across frames, ensuring that each one

retains a consistent identity over time. This becomes complex in real-world scenarios,

where objects may move unpredictably, occlude each other, or change appearance due to

variations in lighting or perspective. To handle these challenges, MOT employs various

techniques such as Kalman filtering for predicting object positions, data association

algorithms like Joint Probabilistic Data Association (JPDA) for matching detections to

tracked objects, and Multiple Hypothesis Tracking (MHT) for handling uncertainties in

associations. T2TA is used to combine information from multiple sources or sensors to

improve tracking accuracy. MOT is critical in fields like autonomous driving, where it’s

essential to track pedestrians and vehicles, video surveillance, and sports analytics, where

players or objects like balls are tracked in real-time for performance evaluation.

In computer vision, the proposed fuzzy T2TA framework enhances real-time tracking

accuracy, making it valuable for applications that require reliable identification and tracking

of multiple objects in complex environments. For self-driving cars, the framework can

improve sensor fusion, enabling autonomous systems to better track pedestrians, vehicles,

and obstacles, leading to safer navigation in dynamic environments. In sea, air, and surface
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surveillance, the methodology strengthens the ability to monitor multiple targets across

different terrains and conditions, making it ideal for defense and border security operations.

Lastly, in missile defense, the advanced T2TA techniques help in accurately tracking

high-speed, unpredictable targets like missiles, enabling more effective interception and

response strategies.

A. Measurement To Track Association (Nearest Neighbor Algorithm)

The work [10] introduces a novel approach to similarity learning for MOT by focusing

on dense sampling of object regions rather than relying solely on sparse ground truth

matching. This method, termed Quasi-Dense Similarity Learning, samples hundreds of

object regions between image pairs for contrastive learning, leading to a more robust feature

space for object association. The authors of QDTrack integrate this similarity learning

framework with several existing object detectors, eliminating the need for displacement

regression or motion priors typically used in MOT systems. By relying on a nearest-

neighbor search during inference for object association, the method significantly simplifies

the tracking process. Furthermore, the method demonstrates versatility as it can effectively

learn instance similarity from static images without the necessity of video training data or

tracking supervision. Extensive Scenarios across various MOT benchmarks validate the

effectiveness of QDTrack, with the method achieving state-of-the-art performance on the

large-scale BDD100K MOT benchmark. The simplicity of the approach, combined with

its minimal computational overhead, makes QDTrack a competitive alternative to more

complex tracking systems. In response to the growing demands of autonomous driving,

[11] introduces an enhanced visual detection network tailored for speed and accuracy.

Building upon the CenterNet framework, CenterNet-Auto addresses key challenges in

autonomous driving, particularly the need for real-time object detection. By leveraging a

backbone based on the RepVGG model and structural re-parameterization technology, the

network efficiently fuses multi-scale features and integrates feature pyramids alongside

deformable convolution to improve detection across various object sizes. A notable

innovation in CenterNet-Auto is the introduction of the Average Border Model, aimed

at addressing occlusion problems commonly encountered in driving scenes. This model

enhances object localization by utilizing boundary feature information. When tested on the

BDD dataset, CenterNet-Auto demonstrates a significant improvement over its predecessor,
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achieving 55.6% accuracy while maintaining a speed of 30 FPS, thereby satisfying the

rigorous performance requirements for real-time autonomous driving scenarios. The

development of 3D object tracking is critical in enhancing the performance of autonomous

driving systems. In this context, [12] introduces a Point-Track-Transformer (PTT) module,

addressing the challenges posed by sparse or occluded point clouds at long distances.

Current LiDAR-based 3D single object tracking methods often struggle with ambiguous

feature extraction due to these limitations, resulting in poor tracking performance. To

mitigate this, the PTT module applies the powerful Transformer architecture, generating

attention-based features to guide the tracker toward crucial target information. This method

significantly improves tracking ability in complex scenarios. By embedding PTT into a

novel 3D single object tracking network, PTT-Net, the authors demonstrate the benefits of

modeling interactions among point patches in the voting stage and capturing contextual

information between objects and backgrounds in the proposal generation stage. Evaluated

on the KITTI and NuScenes datasets, PTT-Net shows a substantial performance boost

over the baseline, particularly in the Car category with an improvement of approximately

10%. Additionally, the model excels in sparse scenarios, operating in real-time at 40

FPS on an NVIDIA 1080Ti GPU. These advancements, coupled with the open-source

code availability, underscore the potential of transformer-based methods in pushing the

boundaries of 3D object tracking for robotics and autonomous vehicles.

The integration of 3D LiDAR technology in autonomous vehicle systems has been

pivotal in improving object detection and tracking accuracy. The paper [13] addresses

the specific challenge of vehicle detection by proposing a novel clustering algorithm

that extracts vehicle candidates from preprocessed LiDAR point cloud data. The use of

a Support Vector Machine (SVM) classifier then refines the vehicle detection process,

ensuring robust identification of targets from the clustered data. In the tracking phase, the

Kalman filter is employed alongside the Global Nearest Neighbor (GNN) algorithm to

track vehicles. Notably, the tracking results further enhance detection accuracy, highlight-

ing the importance of integrating detection and tracking steps in a feedback loop. The

proposed method was validated through a testing platform, demonstrating its efficacy in

real-world autonomous vehicle applications. This study illustrates the effectiveness of

combining machine learning techniques like SVM with classical tracking algorithms, such

as Kalman filters, in real-time vehicle detection and tracking, providing valuable insights
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into enhancing LiDAR-based autonomous systems. Small object detection is crucial in

many real-time applications like autonomous driving and navigation, where traditional

object detection techniques often fail to deliver satisfactory performance. The paper [14]

proposes an innovative approach specifically targeting this challenge. The authors intro-

duce a specialized network called SODNet, which integrates advanced feature extraction

and information fusion techniques to detect small objects effectively. The core of the

approach is the Adaptive Spatial Parallel Convolution module (ASPConv), which enhances

spatial information acquisition by employing multi-scale receptive fields. This adaptation

allows for better feature extraction for small objects, addressing a common limitation in

existing deep learning methods. Additionally, a split-fusion sub-module (SF) is integrated

to reduce the computational complexity of ASPConv, ensuring that the network maintains

real-time processing capabilities. To further enhance detection accuracy, a Fast Multi-scale

Fusion module (FMF) is employed, combining semantic and spatial information through

fast upsampling operators. This approach improves small object detection performance by

fusing feature maps of varying resolutions, while maintaining computational efficiency.

Comparative Scenarios demonstrate the effectiveness of this method, showing significant

improvements in both accuracy and speed on multiple benchmark datasets. This research

provides valuable insights into enhancing small object detection in time-critical applica-

tions, offering a balanced solution between detection accuracy and real-time performance.

With the increasing deployment of radar across diverse applications, accurate target clas-

sification has become a critical necessity. The paper [15] provides an in-depth review of

radar micro-Doppler signature analysis and its role in target recognition. Micro-Doppler

signatures are particularly useful for recognizing targets that exhibit micro-motions, such

as walking humans or rotating parts of vehicles, making them valuable for applications

in both defense and commercial sectors. The review systematically examines the evolu-

tion of micro-Doppler-based target classification techniques, discussing various feature

extraction methods and classification approaches employed in radar systems. As radar

technology continues to advance, the increased sensitivity to physically smaller targets

with lower velocities or radar cross-section thresholds has led to a rise in misinterpreted

signals, emphasizing the importance of reliable classification techniques. Furthermore, the

paper discusses the limitations and challenges of current micro-Doppler-based methods,

including their susceptibility to environmental factors and sensor noise. It also identifies
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future research directions, such as improving the robustness of classification algorithms and

expanding the application of micro-Doppler analysis to new areas. This review provides

a foundational understanding of micro-Doppler-based radar classification, making it a

significant contribution to the development of radar-based target recognition systems.

In the ever-expanding domain of Machine Learning (ML), a range of algorithms

is employed to tackle diverse predictive and analytical challenges. The paper [16] pro-

vides a comprehensive examination of five widely used ML algorithms-K-Nearest Neigh-

bor (KNN), Genetic Algorithm (GA), SVM, Decision Tree (DT), and Long Short-Term

Memory (LSTM). This analysis is particularly relevant to applications requiring robust

classification and prediction models, as the paper compares both the performance and the

origins of these algorithms. It reveals that, in many real-world tasks, LSTM and SVM

exhibit superior accuracy, reliability, and adaptability, particularly in complex scenarios

like time series forecasting and high-dimensional data classification. By quantitatively and

qualitatively reviewing recently published studies, the authors demonstrate the strengths

and weaknesses of each algorithm. For example, LSTM networks are highlighted for their

exceptional performance in handling sequential data, such as in time-series analysis or

natural language processing, while SVM is noted for its robustness in classification tasks

with clear decision boundaries. On the other hand, KNN and DT are simpler and easier to

implement, but their performance is often sensitive to noisy data and high-dimensionality.

The Genetic Algorithm is recognized for optimization tasks, yet it may not always perform

as well in predictive tasks compared to SVM or LSTM. This comparative study sheds light

on the trade-offs between accuracy, computational complexity, and the specific nature of

each algorithm’s application. Additionally, the authors forecast the future of machine learn-

ing, emphasizing the growing role of automation and AI not only in technology but also in

societal and humanitarian domains. The findings from this analysis guide the selection of

appropriate algorithms depending on the problem context, ensuring optimized performance

for predictive tasks. The problem of data association is central to MOT, particularly in

cluttered environments where distinguishing between targets and irrelevant measurements

is challenging. The study [17] investigates how different DA methods, specifically PDA,

JPDA, and the Loopy Sum-Product Algorithm (LSPA), perform in complex environments.

Each method varies in terms of its approach to assigning measurements to targets, which

directly impacts both tracking accuracy and computational efficiency. This study focuses
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on enhancing the well-known LSPA by integrating a distance-weighting probabilistic data

association (DWPDA) approach, which had previously shown promise when used with

PDA by improving accuracy without significantly increasing computational complexity.

However, contrary to expectations, when this distance-weighting method was combined

with LSPA, it did not improve either tracking accuracy or computation time. Despite this

outcome, the paper highlights the ongoing challenge of balancing accuracy and compu-

tational cost in multi-target tracking within clutter, a crucial consideration for real-time

applications like radar-based object tracking. The significance of this research lies in its

evaluation of DA methods in a cluttered tracking environment—a context that is highly

relevant to radar and sensor fusion systems. LSPA, for instance, offers an advantage in

terms of accuracy over PDA and outperforms JPDA in terms of speed, making it a viable

candidate for MOT in real-time systems. However, the findings also underscore the limita-

tions of modifying established algorithms such as LSPA, reinforcing the need for further

innovation in DA methods to address the computational demands of complex tracking

scenarios. In the context of autonomous driving, multi-object detection and tracking are

critical challenges due to the complexity and unpredictability of real-world driving envi-

ronments. The review paper [18] addresses this challenge by focusing on the integration of

multiple sensor modalities—such as cameras, LiDAR, radar, and ultrasonic sensors—with

Deep Neural Networks (DNNs). The fusion of sensor data using DNNs is highlighted as a

promising approach to improving the perception system of autonomous vehicles, especially

in scenarios where a single sensor may fail to provide sufficient information. The review

evaluates state-of-the-art techniques involving the three primary sensors: camera, LiDAR,

and radar, in combination with DNNs for MOT. It emphasizes the importance of sensor

fusion to achieve a more comprehensive understanding of the driving environment, ulti-

mately enhancing detection and tracking performance. The integration of DNNs allows for

more sophisticated object detection and tracking algorithms that can handle the diverse and

dynamic conditions encountered in autonomous driving. Furthermore, the paper proposes

a new perception model for autonomous vehicles, built on the fusion of multiple sensing

modalities with DNNs. This model is designed to overcome the limitations of individual

sensor systems and to optimize performance in terms of accuracy, reliability, and real-time

processing capabilities. The study concludes that while significant advancements have

been made, there remains substantial room for optimization in sensor fusion techniques,
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particularly in improving the overall system’s robustness and efficiency. This paper’s

focus on sensor fusion and DNN-based methods is particularly relevant for addressing

the challenges of real-time multi-object detection and tracking in autonomous systems,

making it an important contribution to the field of autonomous vehicle technology.

Multi-drone multi-target tracking presents unique challenges that single-drone sys-

tems struggle to overcome, particularly in situations where target occlusion or identity

association across multiple views becomes problematic. The paper [18] addresses these

challenges by leveraging multiple drones for enhanced tracking. It introduces the MDMT

dataset, specifically designed to evaluate occlusion-aware multi-drone tracking perfor-

mance. With 88 video sequences and over 2.2 million bounding boxes, including more than

543,000 occlusion-labeled instances, this dataset provides a comprehensive benchmark for

testing tracking algorithms in occlusion-heavy environments. The authors propose a novel

solution to the occlusion problem through the Multi-matching Identity Authentication

network (MIA-Net). MIA-Net utilizes a local-global matching algorithm to resolve identity

association challenges across drones, enabling robust multi-view target tracking. By effi-

ciently mapping occluded targets using multiple drone perspectives, MIA-Net significantly

improves tracking performance in scenarios where occlusions obscure critical tracking

information. To measure performance, the study introduces a new evaluation metric called

the Multi-device Target Association score (MDA), which assesses the cross-view target

association capabilities of tracking algorithms. Extensive Scenarios demonstrate that

MIA-Net, in combination with the MDMT dataset, offers significant advancements in

identity association and occlusion resolution in multi-drone tracking systems. This research

provides valuable insights into how multi-drone systems can overcome the limitations of

single-drone tracking, especially in cluttered or occlusion-prone environments, making it

an important contribution to the field of collaborative autonomous systems and multi-object

tracking. In the context of advanced driver assistance systems (ADAS) and autonomous

driving (AD), efficient MOT is essential for accurate perception and decision-making. The

paper [19] explores the capabilities of the GNN filter, highlighting its foundational role

in Bayesian tracking frameworks within the automotive industry. The study emphasizes

the evolution of random finite set (RFS) theory, which offers a rigorous mathematical

framework for tackling the MOT problem. The authors present a systematic comparative

analysis between traditional random vector-based Bayesian filters, which often rely on
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rule-based heuristic track maintenance, and RFS-based Bayesian filters. Through Sce-

narios on the nuScenes validation dataset, the research reveals that RFS-based tracking

can outperform conventional methods, addressing the persistent challenge of effective

MOT in real-world applications. A key contribution of this work is the introduction of the

Poisson multi-Bernoulli filter using the global nearest neighbor (GNN-PMB) specifically

for LiDAR-based MOT tasks. The GNN-PMB tracker demonstrates remarkable simplicity

and effectiveness, achieving competitive results on the nuScenes dataset. Notably, it ranks

third among all LiDAR-only trackers on the nuScenes 3D tracking challenge leaderboard,

showcasing its capability to deliver high-performance tracking without unnecessary com-

plexity. This research underscores the potential of RFS-based methods in enhancing

the robustness and accuracy of multi-object tracking in autonomous systems, offering

a promising direction for future developments in the field. Accurate target localization

in indoor environments poses significant challenges due to the inherent fluctuations in

received signal strength (RSS) measurements. The paper [20] addresses these challenges

by proposing two innovative range-free algorithms that leverage RSS measurements for

mobile target localization. The authors highlight the limitations of traditional trilateration

methods, which often produce inaccurate location estimates in wireless sensor networks

(WSNs). The proposed localization schemes, utilizing support vector regression (SVR) and

an enhanced SVR combined with a KF, allow for direct estimation of target locations from

field measurements, circumventing the need for distance calculations. This is particularly

advantageous in dynamic environments where conventional methods struggle. Notably,

the SVR-based approach requires only three RSS measurements to determine a mobile

target’s location, providing a significant improvement over existing localization techniques

such as generalized regression neural networks (GRNN). Through rigorous simulations,

the authors demonstrate the efficacy of the SVR-based algorithms in noisy radio frequency

(RF) conditions and dynamic target movements. The results indicate that these methods

achieve superior localization performance compared to both trilateration and GRNN-based

systems. This research not only advances the state of indoor localization techniques but

also emphasizes the potential of SVR in enhancing accuracy and robustness in challenging

environments.

B. Hungarian Algorithm
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Identity miss association in MOT remains a significant challenge, especially when

objects are mistakenly associated with incorrect identities. The paper [21] tackles this

issue by proposing an approach that emphasizes the use of multiple cues and a focus on

mitigating identity confusion, referred to as "switchers." This novel methodology stems

from two key motivations: (1) the necessity of using diverse cues from multiple sources

to ensure robust tracking in complex environments where reliance on a single cue may

be unreliable, and (2) the need for greater attention on switchers, which are critical in

understanding potential identity issues. The proposed method combines cues not just from

object appearance but also from tracklet surroundings and historical appearance features,

offering a unified approach to mitigating identity confusion. Additionally, the tracking

classifier learns strategies specific to switchers, allowing it to adapt to varying situations

and effectively address identity misassociation. The extensive Scenarios conducted by

the authors demonstrate the efficacy of this approach in handling the identity-switching

problem, with competitive results achieved across multiple MOT benchmarks. By in-

corporating multi-cue tracking and a switcher-aware classification system, this research

advances the state-of-the-art in multi-object tracking, offering a promising direction for

reducing identity mismatches in challenging tracking scenarios. Another significant devel-

opment in multi-object tracking is presented in the paper [22] This work tackles a common

limitation in traditional MOT methods where low-score detection boxes, such as those

representing occluded or partially visible objects, are discarded. Such discarding leads to

missed detections and fragmented trajectories, hindering the overall tracking performance.

The authors propose a solution by associating nearly all detection boxes, including those

with lower scores, rather than focusing solely on high-confidence detections. Their ap-

proach involves evaluating the similarities between these lower-score boxes and existing

tracklets to distinguish true objects from background noise. By applying this method

to several state-of-the-art trackers, the authors report consistent improvements in IDF1

scores, ranging from 1 to 10 points, indicating a significant reduction in identity frag-

mentation. In addition, the paper introduces ByteTrack, a high-performance tracker that

leverages this association technique. The tracker achieves exceptional results on popular

MOT benchmarks, including an 80.3 MOTA, 77.3 IDF1, and 63.1 HOTA on the MOT17

test set, all while maintaining real-time processing speeds of 30 FPS on a single GPU.

ByteTrack also demonstrates state-of-the-art performance on other challenging datasets
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such as MOT20, HiEve, and BDD100K, making it a highly effective solution for both

accuracy and efficiency in multi-object tracking. This method aligns well with the ongoing

improvements in object association and trajectory maintenance in MOT, especially in

scenarios with occlusions or fragmented detections, directly addressing key challenges in

maintaining track consistency. In their paper [23] the authors offer an insightful analysis

of 3D MOT, particularly within the widely adopted “tracking-by-detection” paradigm. The

study highlights how, despite advancements in 3D MOT methods, an overarching analysis

of their limitations has been lacking. The authors categorize the tracking pipeline into four

key components: pre-processing of detection, association, motion modeling, and life cycle

management. By analyzing failure cases across these components, they identify critical

weaknesses in existing systems. To address these challenges, they propose Simple Track, a

robust yet straightforward baseline framework that incorporates targeted improvements

in each of the identified components. Simple Track is rigorously tested on the Waymo

Open Dataset, achieving state-of-the-art results with only minor modifications to current

techniques. This highlights its potential for enhanced performance without significant

computational or structural overhauls. Additionally, the paper critiques the current MOT

benchmarks, questioning whether they adequately reflect the real-world capabilities of

these tracking systems. By probing deeper into the nuances of benchmark datasets, the au-

thors reveal interesting findings about their distributions and failure cases. This evaluation

leads to a discussion on how 3D MOT can continue to evolve by addressing real-world

challenges, particularly those highlighted through their detailed analysis of Simple Track’s

performance.

In their paper [24] the authors focus on addressing the challenges associated with

vehicle detection and tracking in intelligent transportation systems. They propose a hybrid

approach that combines an enhanced version of YOLOv5s, a popular object detection

model, with an optimized DeepSORT tracking algorithm to improve detection accuracy

and real-time tracking of vehicles. Key innovations in the detection model include the

introduction of the Attention-based Intra-scale Feature Interaction (AIFI) module, which

enhances the model’s ability to detect vehicles faster and more accurately. In the tracking

phase, the KF algorithm of DeepSORT is optimized by using vehicle width rather than the

length-to-width ratio to improve the accuracy of vehicle state predictions. Additionally,

the re-identification network of DeepSORT incorporates an improved ResNet36 backbone
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for more effective feature extraction. Scenarioal results highlight the superiority of the

proposed approach over the original algorithms. In particular, the authors report notable

improvements in target detection metrics such as recall rate (7.7%), average accuracy

(15.5%), and detection speed (14.2%). In terms of multi-object tracking performance,

significant gains are made in multi-object tracking precision (MOTP) and accuracy (MOTA)

by 14.84% and 9.62%, respectively, while the fragmentation rate of tracked trajectories is

reduced by 32.52%. These findings demonstrate that the improved algorithm meets the

demands for accurate, real-time vehicle detection and tracking in intelligent transportation

systems. The use of infrastructure-based sensors, such as roadside LiDAR, is emerging as

an important method to facilitate autonomous driving systems, especially as the industry

approaches Level 5 autonomy. In the paper [25] the authors focus on reducing latency

in vehicle detection and tracking without sacrificing accuracy. Their work proposes a

hybrid system that employs LiDAR data for tracking vehicles and achieves low-latency

processing (100 ms) through architectural optimizations. The vehicle detection architecture

is built upon an improved ResNet18 model, which enhances the bird’s eye view (BEV)

mapping and refines the loss function to increase detection accuracy. The key innovation

in the tracking algorithm involves an enhanced version of the Hungarian algorithm. This

improvement better matches objects across consecutive frames by incorporating time-space

logicality and trajectory similarity, effectively addressing short-term occlusion issues. The

system’s performance was tested using both the KITTI dataset and MATLAB/Simulink

simulations, yielding highly competitive results. For vehicle detection, F1-scores reached

96.97% (KITTI) and 98.58% (MATLAB/Simulink), while multi-object tracking metrics

such as MOTA and ID-F1 scored 88.12%/90.56% and 95.16%/96.43%, respectively.

Additionally, the optimized computation speed is particularly notable, making the system

well-suited for real-time applications in intelligent transportation systems. The integration

of multiple sensing modalities, such as cameras and radar, has become increasingly

important for enhancing MOT capabilities in autonomous vehicles (AVs). In the paper

[26] the authors propose a Tracking-By-Detection (TBD) framework, CaRA-MOT, that

leverages both camera and radar data for robust 3D-MOT. This integration addresses

the challenges posed by variable environmental conditions, a key concern in the safe

deployment of AV systems. A key feature of CaRA-MOT is its memory mechanism, which

improves object re-identification (Re-ID) by incorporating object class match identification,
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spatial proximity, and velocity similarity. This memory-based approach enables more

accurate tracking of objects across frames, particularly in scenarios where objects may

become temporarily untracked or occluded. The system also employs a class-based score

filter during preprocessing to optimize tracking across different object classes, enhancing

overall robustness. The framework’s performance is demonstrated on the nuScenes dataset,

achieving notable results such as an AMOTA score of 58.3%, an AMOTP of 0.875m,

and 336 IDS (Identity Switches). These metrics underscore the system’s ability to reduce

identity switches and maintain high tracking accuracy, setting a new benchmark in 3D

multi-object tracking.

In the field of 3D MOT, handling occlusion and distinguishing between similar objects

are critical challenges that degrade tracking performance, particularly in complex scenes.

The paper [27] introduces a novel approach to address these challenges by employing a

3D-specific distance-based Intersection over Union (IoU) method, called 3D-DIoU, to

improve tracking robustness and speed. The proposed method manipulates the speed and

position of objects from previous frames to estimate the likely location of occluded objects,

enhancing the ability to track objects through challenging environments where visibility

is temporarily lost. This method integrates a distance IoU non-maximum suppression

(DIoU-NMS) process to accurately detect objects in 3D space and subsequently uses

3D-DIoU for data association, ensuring better alignment of predicted and detected objects

across frames. By adopting this hybrid approach of DIoU-NMS and 3D-DIoU for object

association, the tracking speed and accuracy are significantly improved. Scenarioal results

on widely-used benchmarks, such as the Waymo Open Dataset and nuScenes dataset,

demonstrate that the proposed method outperforms existing 3D MOT approaches in terms

of tracking accuracy and robustness, particularly under occlusion conditions. This work

emphasizes the potential of 3D-specific methods in enhancing object tracking performance

in point cloud data. Graph-based methods have become increasingly popular in 3D MOT

due to their flexibility in representing dynamic interactions between objects across multiple

frames. The paper [28] addresses the challenges of manually designing heuristics and

handcrafted features for data association, which can often lead to suboptimal performance.

Instead, the authors propose a unified, learning-based approach that leverages a graph

structure for joint processing of detection and track states. Their method introduces

a Neural Message Passing network for data association, which is fully trainable and
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processes detections in an online manner. This graph-based structure naturally facilitates

track initialization and addresses challenges like false positive detections, improving overall

track stability. The learnable nature of this approach eliminates the need for manual feature

design, making it more adaptable to complex environments. The paper demonstrates the

efficacy of this approach by achieving a state-of-the-art performance of 65.6% AMOTA

with 58% fewer ID-switches in the nuScenes tracking challenge 2021. This was the

best-performing LiDAR-only submission and secured second place overall. This work

highlights the potential of graph-based and neural network models in improving tracking

stability and reducing identity switches in 3D MOT. In sports analytics, particularly for

football game analysis, MOT is crucial for player tracking and performance evaluation. The

paper [29] addresses the challenges posed by tracking players in video footage captured

from one side of the field. Key obstacles include frequent player occlusions, varying player

sizes due to perspective changes, inconsistent lighting, and the difficulty of distinguishing

between players of the same team based on appearance alone. The authors adopt the

widely-used tracking-by-detection paradigm, where an object detector is applied to each

frame, and a tracker associates these detections to generate player trajectories. Two types

of detectors are compared: a classical object detector that relies on background modeling,

and a deep learning-based detector, which provides a more robust solution in complex,

dynamic environments such as football fields. This approach highlights the importance of

combining detection algorithms with effective tracking models, particularly in situations

where visual obstructions and similar appearances of objects (in this case, players) can

significantly challenge tracking accuracy. The use of both traditional and deep learning-

based methods for detection underscores the ongoing evolution of MOT techniques in

handling real-world sports data.

Tracking algorithms often grapple with the challenges of unreliable detections and

identity switches in MOT. In [30], the authors tackle these challenges by proposing

a tracking-by-detection approach called BoostTrack. This method introduces several

lightweight, plug-and-play enhancements that can significantly boost MOT performance,

especially in real-time settings. A key innovation in BoostTrack is its detection-tracklet

confidence score, which is used to scale the similarity measure between detections and

tracklets, implicitly favoring high-confidence associations. The authors also move beyond

the conventional Intersection over Union (IoU) metric, incorporating Mahalanobis dis-
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tance and shape similarity to improve the accuracy of matching tracklets with detections.

Additionally, to address the problem of low-detection score bounding boxes, BoostTrack

introduces a confidence-boosting mechanism that targets both existing tracked objects and

previously undetected ones. These additions are orthogonal to other existing approaches,

making BoostTrack compatible with various MOT methods. BoostTrack’s real-time execu-

tion speed, combined with these innovations, allows it to outperform standard benchmark

solutions in the HOTA metric, particularly on the challenging MOT17 and MOT20 datasets.

The method ranks first among online methods, underscoring its effectiveness in reducing

identity switches and improving overall tracking accuracy, even in complex, cluttered

environments. Efficient vehicle tracking and counting at traffic intersections present unique

challenges, particularly concerning real-time performance and common MOT issues such

as target occlusion and detection errors. In [31], the authors propose a novel shallow

feature fusion algorithm based on the SORT framework, termed SFFSORT, designed

to enhance vehicle detection and tracking capabilities. This method seeks to bridge the

gap between computational efficiency and accuracy, addressing the resource-intensive

nature of joint detection and tracking frameworks. SFFSORT improves upon traditional

methods by utilizing shallow feature fusion, resulting in a more efficient algorithm that

outperforms both SORT and DeepSORT. The Scenarioal results indicate a MOTA of

60.9% and an IDF1 score of 65.5% on the MOT16 dataset, along with 60.1% MOTA and

64.7% IDF1 on MOT17. Furthermore, the authors leverage this tracking algorithm to

develop a comprehensive vehicle counting framework that operates effectively with road

traffic videos from the Malaysian transportation department. The SFFSORT approach

successfully addresses tracking challenges related to detection inaccuracies, demonstrating

its robustness in real-world applications. Notably, the framework is capable of achieving

lane-level vehicle counting even in scenarios with limited labeled data, highlighting its

potential for deployment in traffic monitoring systems.
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C. Probabilistic Data Association (PDA)

In the realm of computer vision, particularly within video surveillance and traffic

monitoring, advancements in visual object tracking have garnered significant attention.

The survey [32] provides a comprehensive examination of contemporary data association

methods within MOT frameworks. The authors focus on the critical task of data association

through uniquely defined similarity functions and filters, which are essential for effectively

linking detected objects across frames. This survey emphasizes the Tracking-By-Detection

approach, which extends beyond mere object detection and identification to address the

challenges of filtering and association. By categorizing various data association techniques

ranging from legacy probabilistic and hierarchical methods to newer hybrid models the

paper elucidates the performance metrics such as stability, accuracy, robustness, speed,

and computational complexity. The qualitative analysis of these models aims to highlight

their strengths and identify areas needing improvement, providing a valuable resource for

researchers looking to advance the field. The review acknowledges the inherent difficulties

in quantitatively assessing data association results independently within proposed MOT

frameworks. Nonetheless, it systematically outlines fundamental ideas and comparisons

among various techniques used to enhance performance in vehicle and pedestrian tracking

scenarios. This work not only identifies successful models but also pinpoints weaknesses,

offering insights for future research directions in data association strategies.

Recent advancements in MOT have emphasized the significance of effectively man-

aging occlusions and enhancing data association techniques. The paper [33] introduces

a novel method that addresses these challenges by improving object detection and data

association in single views, while also fusing data from multiple views using the Ordered

Weighted Aggregation (OWA) algorithm. This work leverages a deep learning model,

specifically Mask R-CNN, to achieve more accurate object detection within a tracking-by-

detection framework. The authors enhance data association and trajectory estimation by

combining various similarity metrics alongside the innovative probability density-based

OWA (PD-OWA) approach. To match inter-frame detected objects, they utilize the Kernel

Density Estimation (KDE) to assign weight coefficients to each camera view, effectively

determining the significance of data from each perspective. The Scenarioal results demon-

strate that this multi-view data fusion strategy not only improves object detection accuracy

but also enhances tracking performance, achieving MOTA scores of 81.6% and 79.6%
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on the “PETS09-S2L1” and “EPFL Terrace” video sequences, respectively. This study

underscores the potential of integrating multiple camera perspectives and sophisticated

aggregation techniques in overcoming the challenges posed by occlusions in complex

tracking scenarios. In the context of multi-target tracking, especially in cluttered environ-

ments, the challenges of accurately associating measurements with targets are significant.

The paper [34] addresses these challenges by focusing on the optimization of the JPDA

model within a multi-static radar system framework. This study highlights the compu-

tational burdens faced by existing multi-target tracking algorithms, which often require

exhaustive joint measurement-to-track assignments, leading to inefficiencies. To overcome

these issues, the authors explore heuristic algorithms, specifically PSO and Grey Wolf

Optimization (GWO), to optimize the JPDA model. By employing these nature-inspired

algorithms, the study aims to enhance the performance of target tracking in scenarios

where measurement paths and origins introduce uncertainty. The primary objective of the

proposed model is to minimize the Mean Absolute Error (MAE) between the estimated

trajectory of the tracks and the true target states. By tuning the position and velocity of

the trackers towards the targets using these heuristic approaches, the paper demonstrates

promising results in improving tracking accuracy in cluttered environments, showcasing

the potential for heuristic methods to effectively address the complexities inherent in

multi-target tracking systems. In scenarios involving dense group targets, effective data

association presents significant challenges due to mutual occlusion and interference among

the targets. The paper [35] addresses these complexities by proposing a novel algorithm

that adapts the track-before-detect (TBD) paradigm for low-observable environments.

The authors highlight that traditional multi-target TBD algorithms often assume spatial

separation among targets, rendering them inadequate for group target scenarios where

mutual interference is prevalent. To overcome this limitation, they introduce a Group

Target Maximum-Likelihood Probabilistic Data Association (GT-ML-PDA) algorithm.

This innovative approach divides the tracking process into two stages: first, estimating the

trajectory of the group center, followed by individual target trajectory estimation. To fur-

ther enhance the algorithm’s performance, the study proposes two strategic modifications:

adjusting the equivalent measurements and extracting independent measurement sets for

each target. Simulation results demonstrate the efficacy of the GT-ML-PDA algorithm,

showing its ability to accurately track multiple individual targets within a group, even
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amidst significant clutter. This work emphasizes the importance of adapting tracking

methodologies to complex environments, thereby contributing valuable insights into the

ongoing challenges of multi-target tracking in real-world applications.

The challenges of localization in cooperative UAV swarms are crucial, particularly

when addressing data association ambiguities arising from homogeneous visual appear-

ances. The paper [36] tackles these issues by introducing a robust localization system

that leverages PDA for vision-based measurements. In this work, the authors design a

cooperative localization framework wherein each UAV shares its information with oth-

ers, facilitating robust localization for UAVs lacking Global Navigation Satellite System

(GNSS) support. They take into account the impact of position uncertainty from assisting

UAVs on the overall localization performance, which is a significant consideration in

swarm operations. To address data association challenges specifically related to visual

measurements, the authors employ a modified directional joint PDA (MDJPDA) algorithm.

This innovative approach incorporates a directional weighting factor, effectively reducing

localization errors that can occur due to variations in the observation angle. Simulation

and Scenarioal results presented in the paper demonstrate that the proposed algorithm sig-

nificantly outperforms existing methods, such as the EKF, the modified PDA (MPDA), and

the modified joint PDA (MJPDA) algorithms, in terms of both localization accuracy and

robustness. This study contributes valuable insights into enhancing localization strategies

in UAV swarms, highlighting the effectiveness of cooperative approaches in addressing

data association ambiguities. In the realm of multi-spacecraft operations, effective tracking

and data association are essential for mission success. The paper [37] introduces a novel

method that enhances data association through a systematic approach to orbit uncertainty

propagation. The proposed framework comprises three critical components: uncertainty

propagation, data association, and orbit estimation. By leveraging dynamic information,

this method significantly improves data association performance. The authors derive

second-order solutions for state and measurement prediction, which serve as the founda-

tion for optimal association. To address computational efficiency, the optimal association

problem is solved using a contract network algorithm, streamlining the process while main-

taining accuracy. Additionally, the method incorporates a second-order EKF for precise

orbit estimation of each spacecraft. Simulations conducted within the study demonstrate

the method’s effectiveness in tracking four spacecraft simultaneously, achieving close to
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100% data association precision. This research highlights the proposed method’s efficiency

and effectiveness, providing a robust solution to the challenges faced in multi-spacecraft

tracking scenarios. In the domain of intelligent driving, multitarget tracking is critical for

ensuring safety and efficiency. The paper [38] addresses the challenges posed by complex

multitarget maneuvers, measurement outliers, and unknown environmental parameters that

adversely affect tracking accuracy. The authors introduce the Multiconstrained Generalized

Probabilistic Data Association Filtering (MCGPDAF) algorithm, which utilizes target posi-

tion and heading information to construct constraint parameters. This approach calculates

the association probability between effective measurement combinations and target tracks,

effectively mitigating measurement association anomalies and prior information errors.

The robustness of this algorithm facilitates accurate tracking of multitarget states under

challenging conditions. Furthermore, the study presents a multitarget tracking method

based on composite perception fusion, employing correlation sequential track association

and covariance cross fusion algorithms. This combination enhances the association and

estimation of target states across multiple sensors, thereby improving tracking accuracy.

Simulation and real vehicle Scenario results indicate significant performance improve-

ments: the MCGPDAF algorithm achieves reductions in root mean square error (RMSE)

and mean absolute percentage error (MAPE) by an average of 23.97% and 24.35%, re-

spectively. Additionally, the average improvements in MOTA and MOTP are 14.68% and

15.71%. When compared to single-sensor multitarget tracking, the composite perception

fusion based on the MCGPDAF algorithm shows further enhancements in RMSE and

MAPE by 26.43% and 27.15%, respectively, highlighting the practicality and effectiveness

of this tracking method.

Addressing the challenges of target tracking in cluttered environments, the paper

[39] proposes a novel approach that integrates probabilistic data association with a target

existence assisted Bayesian detector (TE-BD). This method innovatively incorporates

feedback from the predicted target position and the existence probability from the tracker

to enhance detection and tracking efficiency. The core concept of the proposed method is

to improve target detection while allowing the radar system to quickly terminate tracking

when a target is no longer detected. The authors derive a prior information-assisted target

detection model, outlining the general steps of the TE-BD scheme within the integrated

probabilistic data association (IPDA) framework. Simulation results demonstrate the effec-
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tiveness of the IPDA-TE-BD approach compared to existing methodologies, showcasing

significant improvements in cluttered scenarios. This contribution highlights the potential

of feedback mechanisms in enhancing target tracking performance in complex environ-

ments, emphasizing the relevance of probabilistic data association techniques in modern

tracking systems. In the realm of MTT, the paper [40] provides a comprehensive overview

of data association techniques, which are crucial for effective tracking in complex and

uncertain environments. The authors emphasize the significance of data association within

MTT and its challenges, noting that it remains a persistent issue across various applica-

tions, including security, transportation, and military operations. This review presents a

structured approach to understanding the evolution of data association methods over recent

decades. It begins with an introduction to the fundamentals of MTT and outlines common

data association algorithms. The authors then delve into detailed descriptions of several

mainstream algorithms, highlighting their mechanisms and applications. Finally, the paper

summarizes the discussed methods, providing a clear overview of their contributions to

the field. This comprehensive examination of data association techniques serves as a

valuable resource for researchers and practitioners seeking to enhance MTT systems, par-

ticularly in addressing the complexities and uncertainties inherent in real-world scenarios.

The paper [41] addresses the challenges associated with tracking extended objects (EOs)

that yield an unknown number of measurements at each time step. As advancements in

sensor technology enable more detailed measurements, the task of correctly identifying

the origins of these measurements becomes increasingly complex. To tackle this issue,

the authors propose a novel message passing inference method that significantly reduces

the computational burden of determining marginal association probabilities. Instead of

exhaustively enumerating all possible measurement partitions or association hypotheses,

the algorithm leverages an overcomplete representation of data association uncertainty,

achieving linear complexity relative to the number of measurements and targets. Utilizing

factor graph theory and the sum-product algorithm (SPA), this approach demonstrates

effective performance when compared to traditional data association methods. The authors

highlight the algorithm’s potential to enhance tracking accuracy and efficiency in scenarios

where extended objects are present, offering a robust solution to a common problem in

the field. This innovative methodology provides valuable insights into improving data

association for multi-object tracking, particularly in environments where the number of
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measurements can vary significantly.

D. Measure to Sensor Fusion (M2SF)

The paper [42] explores the integration of physical and virtual objects within the IoT

ecosystem, which generates vast amounts of heterogeneous and sparse data from numerous

wireless sensor devices. As IoT aims to enhance services through effective data utilization,

data fusion emerges as a critical technique to minimize data size, optimize traffic volume,

and extract significant information that can lead to improved IoT services. The authors

highlight the necessity for interoperable technologies that facilitate the integration and

division of validated data among diverse IoT devices. They propose a design framework

that addresses the challenges associated with multi-sensor data fusion, particularly in

autonomous systems enabled by IoT. The paper reviews traditional and advanced data

fusion algorithms and presents two models: a single filter model and a multi-filter model.

In their Scenarioal results, the authors demonstrate that the multi-filter model significantly

reduces the error rate from 30% with the single filter method to 25% with the multi-

filter approach, showcasing a notable enhancement in tracking accuracy. This study

not only emphasizes the importance of effective data fusion in the IoT landscape but

also provides valuable insights into improving object tracking through innovative data

integration techniques. In [43] the authors address the growing demand for reliable

perception systems in the autonomous and automotive industries by introducing a robust

tracking framework that combines data from millimeter wave radar and monocular cameras.

This innovative method aims to enhance localization accuracy through decision-level sensor

fusion, capitalizing on the strengths of radar’s depth perception and the camera’s cross-

range resolution. The framework employs a tri-Kalman filter setup to maintain tracking

continuity, even in the event of single sensor failures. By utilizing intrinsic calibration

parameters from the camera and sensor placement height, the system generates a bird’s-eye

view of the environment, facilitating the estimation of the 2-D positions of targets detected

by the camera. The authors utilize the Hungarian algorithm for effective association of

radar and camera measurements within each frame. The Scenarioal results demonstrate

promising performance metrics, including high MOTA and MOTP, alongside significantly

low missed detection rates. This approach holds potential for enhancing perception

capabilities in both large-scale and small-scale autonomous systems, contributing to safer
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operational environments in robotics and autonomous driving applications. In the paper

[44] the authors investigate the effectiveness of three widely used tracking algorithms such

as EKF, UKF, and PF in the context of multi-sensor fusion for autonomous vehicles. As the

demand for enhanced environmental perception and safety in autonomous driving increases,

integrating data from advanced sensors like LiDAR and Radar becomes crucial. The study

aims to determine which of these tracking algorithms performs best when processing data

from multiple sensors in a highway scenario. The authors first preprocess point cloud data

from each sensor and utilize bounding box representations to standardize obstacle data.

They develop a flexible tracking system that allows for the dynamic switching between

EKF, UKF, and PF algorithms. A key aspect of their approach involves the use of distinct

state vector update matrices tailored for the specific characteristics of LiDAR and Radar

data for both position and speed updates. By recording actual highway driving data and

employing a Robotic Operating System (ROS) model for implementation and analysis, the

authors provide a comprehensive evaluation of the algorithms’ performances in real-world

conditions. This research contributes valuable insights into optimizing tracking systems

for autonomous vehicles through effective multi-sensor data fusion.

In the paper [45] the authors explore the use of millimeter-wave (mmWave) radar

sensors for enhancing indoor object detection and tracking capabilities. This research

is motivated by the growing applications in energy management, privacy, health, and

safety. The focus is on expanding the valid field of view and improving accuracy through

the integration of multiple sensors. The study employs two mmWave radar sensors,

implementing a two-stage noise reduction process to minimize interference and effectively

identify clustered object groups. A novel data fusion technique is introduced to align

and synchronize data from the two sensors, enabling a comprehensive visualization of

object information. To achieve high clustering accuracy, the authors propose a density-

based clustering algorithm and utilize the UKF for tracking multiple objects concurrently,

ensuring both precision and timeliness. An indoor object tracking system is developed

based on these methods, and the effectiveness of the proposed approach is validated through

comparisons with both an earlier system and a commercial solution. Scenarioal results

highlight the advantages of the proposed method, particularly in addressing challenges

related to occlusions and the detection of multiple weak data points, thereby improving the

overall accuracy of object tracking. In the review [46] the authors examine the evolving
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landscape of tracking and sensing solutions, specifically focusing on the application of

millimeter wave (mmWave) radar for simultaneous multi-object tracking and sensing.

This paper critically analyzes the existing literature on short-range mmWave radar for

multi-object scenarios. While significant progress has been made in single-object tracking

systems, the authors highlight the need for innovative research in multi-object tracking,

particularly regarding the identification of multiple target tracks in obstructed fields of

view. The review defines a typical architecture for multi-object tracking and identifies key

areas for further advancement, including sensor fusion, micro-Doppler feature analysis,

activity recognition, and shape profiling. The review assesses various methodologies

based on their adaptability, performance, accuracy, and specificity, noting that much of the

existing research emphasizes human targets. However, many techniques can be extended

to track objects with diverse profiles and characteristics. Finally, the paper discusses future

research directions, outlining opportunities and potential approaches in this open research

area. In the paper [47] the authors emphasize the importance of accurate orientation

and position estimation in enhancing the performance of real-time object tracking using

smartphone sensors, including accelerometers and gyroscopes. The study addresses

common challenges such as GPS signal reliability, the canyon effect, orientation errors,

and sensor accumulation errors. To overcome these limitations, the authors propose a

novel smartphone application that utilizes IMU multi-sensor fusion through a Kalman filter

and rotation vector. The integration of Kalman filtering allows for effective data fusion

of sensor inputs, while the rotation vector aids in achieving precise orientation estimates.

Additionally, geohash filtering is introduced to improve the quantification of complex

spatial relationships and to visualize tracking paths on maps within the application. A

thorough mathematical analysis is presented, along with a detailed comparison to existing

algorithms in the field. The evaluation demonstrates that the proposed object tracking

scheme exhibits significant advancements over state-of-the-art approaches, showcasing its

efficacy in real-time applications.

The paper [48] presents a system designed to enhance the autonomous perception ca-

pabilities of quadruped robots, focusing on object detection and Simultaneous Localization

And Mapping (SLAM). The authors aim to improve both target tracking and map con-

struction, which are crucial for navigation in challenging environments. To achieve this, a

hierarchical controller is implemented, integrating a proportional derivative control scheme
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with a model predictive control algorithm based on differential evolution. This controller is

specifically tailored for effective navigation in complex terrains. The paper emphasizes the

importance of data fusion from various sensors to enhance SLAM applications, resulting

in precise map generation and accurate target tracking. Additionally, the dynamic window

approach algorithm is employed to optimize the trajectory for target tracking, balancing

traversability and localization. Extensive testing in a demanding simulation environment

demonstrates that the proposed system significantly enhances target tracking and map

construction capabilities for quadruped robots. The paper [49] provides a comprehensive

survey of recent advancements in MOT within the field of autonomous robotics. The

authors emphasize the need for reliable systems that can effectively detect and track mul-

tiple objects to enhance navigation and guidance capabilities. The study identifies key

challenges faced in MOT, including heavy occlusion, dynamic backgrounds, and changes

in illumination. It reviews various MOT methods that integrate data from sensors such

as cameras and LIDAR. The paper outlines a general framework that encompasses data

association techniques and occlusion handling strategies, contributing to a clearer under-

standing of the literature’s approach to these challenges. Additionally, the authors present

an overview of relevant metrics and benchmark datasets, such as the Karlsruhe Institute of

Technology and Toyota Technological Institute (KITTI), MOTChallenges, and University

at Albany DEtection and TRACking (UA-DETRAC), which are critical for training and

evaluating MOT performance. The findings indicate that deep learning has significantly

enhanced MOT techniques in recent research, achieving high accuracy while ensuring real-

time processing capabilities. The paper [50] addresses the critical challenge of persistent

MOT in dynamic environments, particularly focusing on object occlusion. Traditional

MOT methods often rely on short-term memory for storing object information, which can

lead to losing track of objects during extended occlusions. To overcome this limitation, the

authors propose DFR-FastMOT, a lightweight tracking method that integrates data from

both camera and LiDAR sensors. This method employs an algebraic formulation for object

association and fusion, enabling long-term memory capabilities and improved handling

of occlusion scenarios. The results demonstrate that DFR-FastMOT achieves significant

tracking performance improvements over existing benchmarks, showing margins of approx-

imately 3% and 4% in MOTA compared to recent learning-based and non-learning-based

methods, respectively. Extensive Scenarios simulate occlusion effects with detectors at
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various distortion levels, showcasing superior performance of the proposed method under

these conditions. Furthermore, the framework processes approximately 7,763 frames in

just 1.48 seconds, making it seven times faster than recent benchmarks, highlighting its

efficiency and effectiveness in real-time applications.

The paper [51] explores the significance of the Linear Kalman Filter (LKF) in the

context of multi-sensor data fusion. The LKF is recognized for its recursive solution to the

linear filtering problem, making it a powerful tool for estimating states in dynamic systems

by effectively reducing measurement and process noise. The authors emphasize the appli-

cability of the LKF in linear dynamic systems, detailing its assumptions regarding system

dynamics, measurement noise, and initial conditions. The paper provides a comprehensive

overview of the principles and mechanisms of the LKF, highlighting its critical role in

integrating diverse sensor inputs to enhance the accuracy and reliability of state estimations.

To demonstrate the practical utility of the LKF, two real-world examples are presented,

showcasing how it significantly improves precision and stability in dynamic environments.

These examples illustrate not only theoretical concepts but also practical implementation

strategies for multi-sensor data fusion. The discussion emphasizes the LKF’s relevance

across various fields, including robotics, navigation, and signal processing. By merging

theoretical insights with practical applications, the paper aims to enrich the understanding

of multi-sensor data fusion and promote advancements in this area, encouraging broader

adoption of data fusion technologies in scientific and industrial contexts.

E. Extended Kalman Filter (EKF)

The paper titled [52] focuses on the advantages of using mobile vehicles or UAV in

surveillance and monitoring systems. These platforms enhance operational capabilities

through improved range, maneuverability, and safety, allowing for autonomous exploration

and security tasks. The study addresses the challenges posed by errors and uncertainties

in data, which can hinder object recognition and resolution. To mitigate these issues, the

authors propose a data sensor fusion system that integrates measurements from multiple

sensors to enhance data accuracy. Specifically, the paper employs the constant turn and

rate velocity (CTRV) kinematic model, incorporating angular velocity a factor overlooked

in previous research. Utilizing both LiDAR and Radar data collected via UAVs, the authors

apply the EKF to detect moving targets. The EKF’s performance is assessed using a
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dataset featuring position data from both sensors, tracking an object with a trajectory that

includes sudden changes. To evaluate the robustness of the EKF, additive white Gaussian

noise is introduced to the data, and the results demonstrate a significant improvement in

object detection accuracy, achieving a reduction in root mean square error (RMSE) by 0.4

compared to conventional kinematic models that do not account for rapid trajectory changes.

The paper [53] addresses the critical role of data fusion technology in enhancing target

detection, recognition, and tracking capabilities in modern sensor systems. It highlights the

limitations of single sensors, which often provide imprecise information and may introduce

ambiguity in environmental descriptions. To leverage the strengths of different sensors, the

authors propose a multi-sensor fusion method utilizing the EKF. This approach capitalizes

on the complementary information provided by various sensors, resulting in more accurate

and reliable data than any single sensor could deliver. Scenarioal results presented in the

paper demonstrate significant improvements in both the accuracy and robustness of target

detection and tracking when integrating data from infrared and millimeter-wave radar

sensors. This reinforces the effectiveness of the proposed EKF-based fusion method in

real-world applications.

The paper [54] addresses the critical issue of accurate localization in mobile robots,

particularly in the presence of sensor faults. It emphasizes the challenges that single-

sensor localization faces, such as hardware and software issues or data outages. To

mitigate these challenges, the authors propose a sensor fusion approach that employs two

Inertial Measurement Units (IMUs) and wheel encoders for enhanced localization. The

proposed method utilizes an Interacting Multiple Model (IMM) Kalman filter, integrating

both UKF and EKF techniques. This is particularly relevant due to the highly nonlinear

nature of the localization dynamic model. A significant contribution of this work is that it

eliminates the need to model every possible fault scenario, allowing the use of an additional

sensor solely for performance oversight. The authors conduct simulations to compare the

performance of the proposed filters under various trajectories and intentionally corrupted

sensor data. Results indicate that both UKF and EKF-based IMM filters achieve accurate

3D localization estimations, effectively demonstrating fault detection capabilities. The

comparison of the two filters reveals insights regarding error rates and computational costs,

showing that both methods enable reliable fault isolation.

Overall, the findings suggest that this approach provides a straightforward and effec-
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tive solution for sensor fault detection and localization in mobile robots, enhancing their

operational reliability in dynamic environments. The paper [55] presents a framework

designed to enhance autonomous navigation and management in orchards by addressing

the challenges of real-time positioning and mapping in unstructured environments. The

authors propose a multi-sensor fusion approach that integrates LiDAR, visual, and inertial

data using an EKF to achieve accurate localization and generate colorful 3D maps of

orchard surroundings. The study outlines a loosely-coupled framework where pose estima-

tion is enhanced through the integration of predictions from LiDAR and gyroscope data

with observations from visual-inertial odometry. Additionally, the Loam Livox algorithm

is improved by incorporating color information from images into the LiDAR point cloud,

facilitating the real-time construction of a detailed and colorful 3D map of the orchard.

Results demonstrate high localization accuracy across various motion trajectories and sce-

narios, with average Root Mean Square Errors (RMSE) of 0.3436 and 0.1230, respectively.

The proposed method efficiently processes localization and mapping for a frame of LiDAR

point cloud in just 75.01 milliseconds. These findings highlight the potential of this method

for supporting autonomous navigation in agricultural vehicles, contributing significantly to

the fields of precision agriculture and robotics. The paper [56] addresses the limitations of

conventional GPS systems, which typically provide accuracy within 3-5 meters insufficient

for the precision required in autonomous navigation. The authors propose a sensor fusion

approach that combines data from LiDAR, IMU, and GPS, utilizing an Error-State EKF

to enhance positional accuracy. Previous methods, such as IMU and GPS fusion using

EKF, achieved an average error of 2.66 meters, but these systems remained dependent

on GPS functionality. The proposed method aims to provide a cost-effective and reliable

alternative to existing solutions, including Differential GPS, which is often prohibitively

expensive. The system was evaluated using synthesized data from the Carla Simulator,

demonstrating a significant improvement in accuracy. The proposed approach reduced po-

sition error by nearly 95%, indicating its potential for effective application in autonomous

navigation systems. This advancement underscores the importance of multi-sensor fusion

in enhancing positional accuracy while maintaining cost-effectiveness.

The paper [57] focuses on enhancing the robustness of indoor localization for multi-

rotor UAVs through the fusion of visual and LiDAR SLAM methodologies using an EKF.

The research addresses the varying pose errors encountered in different environmental
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conditions, such as lighting and reflective surfaces, by integrating data from both SLAM

systems. In the Scenarios, a stereo camera and LiDAR sensor were mounted on the UAV

to simultaneously execute both SLAM methods, generating position and orientation data.

The EKF was employed to fuse this information, ensuring the system’s resilience in the

event of errors in either SLAM approach. Testing in diverse scenarios demonstrated that

the EKF effectively maintained accurate localization, providing reliable outputs even

when one SLAM method encountered challenges. The findings underscore the effective-

ness of multi-sensor fusion in achieving robust indoor navigation for UAVs, highlighting

the potential for enhanced operational reliability in complex environments. The article

[58] introduces a novel dual neural extended Kalman filter (DNEKF) method designed

to enhance multi-rate sensor fusion by addressing model inaccuracies and violations of

noise assumptions inherent in traditional EKF-based approaches. The DNEKF leverages

two neural networks for simultaneous state and parameter estimation, which allows for

augmented state vector predictions. This approach improves the accuracy of process state

and output predictions. The key innovation lies in a multi-rate parameter update strategy

that capitalizes on frequent, less accurate measurements and infrequent, more accurate

measurements. This enables the neural networks to adapt to different sensor update rates,

improving performance over standard EKF methods. The paper validates the proposed

DNEKF through two numerical examples and an industrial application, showcasing its

ability to compensate for limited process knowledge and improve multi-rate sensor fusion

performance in real-world scenarios. The paper [59] presents an improved approach

to multi-sensor fusion localization for UAV. The proposed method aims to address the

shortcomings of the standard EKF, particularly the large errors it can generate during UAV

localization. The authors introduce an adaptive error correction EKF algorithm to enhance

accuracy and robustness. The system integrates data from multiple sensors gyroscopes,

accelerometers, magnetic sensors, and mileage sensors and optimizes the sensor fusion

process by adjusting for errors between estimated and real values. The algorithm utilizes

Taylor series linearization and the normal distribution hypothesis in the prediction and

correction steps. Furthermore, genetic algorithms are employed to optimize the system

and measurement noise covariance parameters in the EKF, thereby improving the filter’s

adaptability. Simulation results demonstrate that the proposed method achieves higher lo-

calization accuracy and robustness compared to the standard EKF, making it more suitable
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for real-time UAV applications.

The paper [60] introduces an advanced algorithm for improving the accuracy of ballis-

tic target tracking by utilizing multi-sensor data fusion based on the Cubature Kalman Filter

(CKF). The study begins by establishing a dynamic model for midcourse ballistic targets

using force analysis in the Earth-Centered Inertial (ECI) frame. The model is subsequently

transformed into the local East-North-Up (ENU) frame through coordinate transformation,

which is critical for accurate real-time tracking. A centralized measurement model is then

constructed by augmenting multi-sensor measurements in the ENU frame, with one sensor

selected as the fusion center. Using the state-space and observation equations derived

earlier, the CKF-based algorithm is designed to estimate the target’s state in real time. The

performance and accuracy of the proposed tracking algorithm are evaluated through Monte

Carlo simulations. Simulation results demonstrate that the CKF-based fusion algorithm

provides high precision and stable tracking performance, making it a robust solution for

tracking maneuvering ballistic targets. The paper [61] presents an innovative approach

to improve the state estimation accuracy in underwater vehicle localization by enhancing

the traditional error-state Kalman filter (ESKF) with a radial basis function (RBF) neural

network. The authors point out that conventional Kalman filters, including the EKF and

ESKF, suffer from reduced estimation accuracy in highly nonlinear environments due to

their reliance on first-order Taylor series approximations in the error covariance matrix.

To overcome this limitation, the proposed algorithm augments ESKF with an RBF neural

network, which helps in refining the innovation error term by optimizing the weights and

centers of the network through a steepest descent approach that minimizes the mean square

error (MSE). The performance of the RBF-augmented ESKF was rigorously tested and

compared with conventional ESKF across three realistic underwater navigation scenarios

using Monte Carlo simulations. The results demonstrate that the proposed method sig-

nificantly enhances the accuracy of navigation and localization in underwater environments.

F. Particle Filter (PF)

The paper [62] explores a Joint Sensing and Communication (JSC) network frame-

work where multiple base stations (BSs) collaborate through a fusion center (FC) to detect

and track objects in a monitored area. Each BS functions as a monostatic sensor, simul-

taneously sensing the environment and communicating with user equipment (UEs). The
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core innovation in this study is the use of range-angle maps generated by each BS, which

are then sent to the FC for fusion and tracking using PF and multi-hypothesis tracking

(MHT) algorithms. The authors analyze the performance of these solutions by altering the

allocation of power and time to sensing, thus addressing the trade-off between network

overhead and sensing/communication efficiency. Results from numerical simulations,

particularly in a vehicular context, show that the proposed algorithms can accurately track

multiple targets, including pedestrians, with a RMSE of less than 50 cm when using three

BSs.

The paper [63] addresses the challenges associated with tracking dim and small

targets, which are crucial in navigation and surveillance applications. Traditional particle

filters often struggle due to issues like poor feature representation and particle depletion dur-

ing resampling, which degrade tracking performance. To overcome these limitations, the

authors propose an improved particle filter algorithm that employs adaptive multi-feature

fusion. This method integrates weighted grayscale intensity, edge information, and wavelet

transform to build a robust observation model. Additionally, they enhance resampling by

using residual resampling, combining target positions from the previous frame with high-

weight particles from the current frame. This approach improves both tracking accuracy

and particle diversity. Scenarioal results showcase the method’s effectiveness, with a 77.2%

tracking accuracy and a processing speed of 106 frames per second (fps), highlighting its

potential for real-time applications in dim and small target tracking. The paper [64] focuses

on improving UAV localization in indoor environments where traditional GNSS systems

are ineffective. The authors propose a particle filter-based approach that fuses data from

visual odometry cameras and fiducial marker detection to estimate the UAV’s position. The

method is designed to be lightweight, robust, and capable of running at high frequencies

on the UAV’s onboard computer. A key feature of the proposed system is its ability to

handle sensor failures and disconnections without interrupting localization performance.

Additionally, the system can be extended to integrate other sensor inputs, making it flexible

for various applications. The method was validated through real-world UAV test flights,

achieving an average position error of less than 0.4 meters, demonstrating its accuracy and

reliability for industrial use. The paper [65] presents a hybrid Bayesian filter for fusing

GNSS and visual odometry (VO) data, particularly for use in urban environments. This

filter combines the tracking efficiency of the Kalman filter with the uncertainty modeling
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advantages of the particle filter, offering a robust fusion method for state estimation. By

employing Rao-Blackwellization, the filter efficiently decouples the problem into two

parts: a non-linear position tracking and a linear tracking for orientation, velocity, and

carrier phase integer ambiguities. The decoupling approach not only enhances the filter’s

efficiency in tracking but also provides a rich probability distribution for the position,

which helps quantify uncertainty in situations where the tracking data is unreliable. The

system was evaluated on real-world GNSS and VO fusion data, demonstrating comparable

computational efficiency and improved state and uncertainty estimates compared to other

Bayesian filter approaches.

The paper [66] focuses on the enhancement of estimation algorithms by improving

the quality of information obtained from raw sensor measurements. The goal is to achieve

more accurate and reliable target motion parameter estimation by fusing data from five

different sensors. This multi-sensor fusion approach is particularly aimed at passive target

tracking in underwater environments. For performance evaluation, the paper adopts the

UKF as the sub-optimal filtering technique, which is known for handling nonlinear systems

more effectively than standard Kalman filters. The simulations were carried out using

Monte-Carlo methods in MATLAB to thoroughly analyze and validate the algorithm’s

performance. The paper [67] introduces an algorithm aimed at improving the accuracy of

MTT by addressing the lack of particle diversity in traditional PF. The authors propose

an Improved Resampling Particle Filter (IRPF), which stratifies the adaptive regions of

particles based on the influence of their likelihood probability distribution, and introduces

a particle diversity measurement index to evaluate resampling performance. A threshold is

set for particle diversity, and if it isn’t met after resampling, the new particles undergo a

Gaussian random walk to enhance their diversity. This approach is tested in both simulation

and actual indoor ultrawideband (UWB) non-line-of-sight (NLOS) environments. The

results show that the algorithm improves nonlinear target state estimation accuracy by

up to 12.83% in simulation, and reduces root mean square error (RMSE) from 17.131

cm to 10.471 cm in real-world UWB NLOS environments. These results demonstrate

the effectiveness of the IRPF algorithm in improving target estimation accuracy and state

tracking performance. The paper [68] presents a novel algorithm designed to tackle the

complexities of underwater multi-target tracking, which is crucial for military operations

like patrol and combat in dense, challenging environments. Due to the complex underwater
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environment and the potential for target trajectory intersections, ensuring precise tracking

can be difficult. To address this, the authors propose a Two-Layer Particle Filter with

Distributed Probability Fusion (TLPF-DPF) algorithm, along with a dynamic network

resource allocation mechanism. The proposed solution integrates a position estimation

model based on geometric constraints and a dynamic allocation mechanism based on prior

position estimates to optimize network resources. The TLPF-DPF algorithm, which lever-

ages an improved filtering approach, successfully tracks multiple targets with trajectory

intersections in small, noisy areas using known initial states. In simulations conducted

in non-Gaussian environments, TLPF-DPF reduces average positioning error by nearly

30% compared to alternative algorithms. Moreover, its performance degradation when

transitioning from Gaussian to non-Gaussian environments is less than 12%, demonstrating

the algorithm’s stability even when targets are in close proximity and have intersecting

trajectories.

The paper [69] introduces an advanced object tracking system designed to enhance

accuracy and computational efficiency in real-time applications. The system integrates

adaptive resampling strategies with a feature fusion model in a particle filter architecture to

create a comprehensive object representation by utilizing both color and edge descriptors.

One of the key challenges addressed by the proposed solution is the issue of particle

degeneracy and sample impoverishment common in particle filters. To mitigate this, a novel

adaptive resampling technique is introduced, which dynamically adjusts the resampling

process based on the effective sample size. This preserves particle diversity and reduces

the computational load. The system also implements a masking mechanism to remove

particles with insignificant contributions, improving the efficiency of the tracking process.

The system’s performance is evaluated through RMSE and computational time metrics, and

compared to conventional particle filter methods. Results show significant improvements in

tracking accuracy and efficiency, demonstrating the effectiveness of the proposed approach

in varied real-time tracking scenarios. Future work includes exploring machine learning

models to further enhance feature extraction and expanding the method to scenarios

requiring multi-object tracking. The paper [70] presents an advanced algorithm tailored

for tracking maneuvering weak radar targets in complex sea environments. The algorithm

enhances the performance of interactive multiple model particle filtering (IMMPF) by

combining it with a track-before-detect (TBD) approach. To minimize clutter interference,
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the radar echo images are first preprocessed using the fractional Fourier transform (FrFT).

The feedback factor and residual resampling techniques are then incorporated to optimize

the IMMPF algorithm, enhancing its ability to track maneuvering targets. The integration

with the TBD algorithm allows for clutter suppression and target trajectory accumulation,

further improving tracking efficiency. Simulation Scenarios show that the proposed method

significantly outperforms other TBD algorithms in effectively tracking weak radar targets.

The paper [71] delves into the fundamental issue of state estimation in multi-sensor

fusion for navigation, which is critical for tasks like navigation, perception, and decision-

making in intelligent robotic systems. The authors explore two primary methods for

state estimation: optimization and filtering. Though optimization-based frameworks have

been shown to outperform filtering-based methods in terms of accuracy, both methods are

theoretically equivalent when based on maximum likelihood estimation (MLE) and under

the same assumptions (e.g., Gaussian noise and equivalent linearization points). However,

in practical real-time applications, the performance divergence arises due to the differing

strategies employed in each approach. The study conducts Monte-Carlo simulations and

vehicular ablation Scenarios using VO, showing that, when the strategies used in filtering

are adjusted, filtering approaches can yield results equivalent to those of optimization

frameworks. The paper suggests that future research on sensor fusion should focus more

on improving the algorithms and strategies rather than on the overarching state estimation

methods.

The paper [72] introduces a novel data fusion framework for predicting degrada-

tion in aerial bundled cables (ABCs). The framework integrates multi-sensor data from

Non-Destructive Testing (NDT) methods, such as Ultrasonic Probe Listening and Thermal

Imaging, to improve prognostics of cable degradation, particularly in coastal environ-

ments. Rather than using conventional methodologies that fuse sensor data before the

prognosis step, the authors propose a unique post-prognosis data fusion technique that

applies Particle Filtering (PF) in combination with the Auto-Regressive Integrated Moving

Average (ARIMA) model. This approach allows for better prediction of cable degradation

by leveraging the strengths of different sensors, which each capture partial information

about the degradation process. The framework is tested on historical data, and the results

show that the fused degradation predictions offer higher accuracy compared to predictions

based on individual sensor data, demonstrating the effectiveness of this approach.
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G. Track To Track Association (CEP/CAP Algorithm)

The study [73] addresses the issue of inaccurate positioning in intersection areas

during firefighter localization, a problem often caused by poor sensor accuracy and random

error measurements in Ultra-Wide Band (UWB) and Beidou Satellite Navigation System

(BDS) technologies. To tackle this, the authors propose a fusion positioning algorithm

based on the CEP method. This algorithm integrates Inertial Navigation System (INS)

data to assist UWB in enhancing positioning accuracy by detecting and correcting non-

line-of-sight errors. By utilizing the precision and real-time analysis of CEP, the algorithm

optimizes weighting calculations for more accurate fusion of UWB and BDS positioning

data. The key contributions of the study include improved UWB error detection and

elimination of abnormal deviation data using INS initial positioning, optimization of

the average method for real-time error correction, and achieving a 95% probability of

improved accuracy in CEP and positioning calculations. Scenarioal results demonstrate

that the proposed algorithm enhances positioning accuracy in intersection areas by 47.4%

compared to traditional UWB/BDS weighted fusion algorithms. The paper [74] focuses on

enhancing detection accuracy in multi-UAV formations using the bearing-only detection

method, which is crucial in modern military scenarios where the geometric arrangement

of UAV formations significantly impacts detection effectiveness. To improve this, the

authors propose a Distributed Stochastic Subgradient Projection Algorithm (DSSPA)

that optimizes UAV positioning under layered constraints. The system is designed for

cooperative positioning within the formation, constrained by safe flight altitudes and

fixed baselines, resulting in a layered UAV formation. The DSSPA algorithm integrates

stochastic subgradient descent to manage objective functions that involve non-smooth

and convex optimization elements, alongside projection operations to ensure that each

parameter update adheres to the layered constraints, thus maintaining safe flight conditions

and geometric accuracy. Through simulation Scenarios, the authors demonstrate the

effectiveness and superiority of this distributed method for array planning in multi-UAV

formations. The results underscore the algorithm’s capability to tackle complex positioning

tasks and enhance bearing-only detection accuracy in multi-UAV operations.

The paper [75] tackles the challenge of accurate indoor positioning, where the

complex propagation of signals makes it difficult to track positions using traditional
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methods. The authors propose using a Stein Particle Filter (SPF) that leverages the Stein

Variational Gradient Descent (SVGD) method to approximate the posterior distribution

with particles, enabling efficient tracking in multipath environments. The innovation in

this paper is the design of the Annealed Stein Particle Filter (A-SPF), which improves

upon the standard SPF by incorporating annealed scheduling into SVGD. This allows

A-SPF to better handle multi-modal distributions that often occur in indoor localization

scenarios without requiring an increase in the number of particles. The effectiveness of

A-SPF was tested in two indoor environments a machinery area and an office using Ultra

Wide-Band (UWB) technology to collect data. The Scenarioal results showed that A-SPF

outperformed conventional solutions such as the EKF and PF demonstrating improved

positioning accuracy in complex indoor settings. The paper [76] addresses the complex

challenge of achieving a safe and short landing for a flying-wing unmanned aircraft

equipped with a three-bearing-swivel thrust vector. The task is complicated by the need to

transition between multiple control modes while accounting for environmental disturbances

and model uncertainties to maintain flight safety. To tackle this issue, the authors propose

a mixed control strategy that combines lift fans, thrust vectors, and aerodynamic control

surfaces. A key innovation is the integration of an Extended State Observer (ESO) into

both the inner angular rate control and outer sink rate control to counteract disturbances

and uncertainties. To further enhance safety, the aircraft’s linear and angular acceleration is

calculated through trim analysis, which informs the command values for velocity and angle

of attack during the landing process. In addition, the paper introduces a flight boundary

protection method that adjusts the command value of the angle of attack, increasing the

likelihood of a successful landing. The strategy is tested through Monte Carlo simulations,

which evaluate the effectiveness and robustness of the approach. The authors use the

circular error probability metric to assess the landing accuracy. The paper [77] presents

a robust guidance and control system aimed at managing large maneuver penetration

for hypersonic glide vehicles during their dive phase, focusing on executing a snake-

shape maneuver under multiple constraints and uncertain disturbances to optimize the

vehicle’s control and precision. Central to this strategy is the generation of a snake-shape

maneuver acceleration command based on a sine function influenced by key variables such

as altitude, Line of Sight (LOS) declination, and missile-target distance. The integrated

control framework comprises three major components: a terminal guidance law designed
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with sliding mode control and an adaptive technique for estimating disturbances, featuring

a sliding mode surface with variable gain based on estimated time-to-go; an attitude control

law that ensures effective tracking of the vehicle’s expected attack and bank angles; and

an angular velocity control law that maintains stability throughout the maneuver. The

terminal guidance law is configured to ensure convergence of the LOS angular rate to

zero and achievement of the desired LOS angle, while incorporating the snake-shape

maneuver acceleration command as a bias to manage trajectory shaping and stability. The

overall system’s stability is demonstrated using the Lyapunov theorem, confirming robust

performance despite disturbances, and the paper concludes with simulations that validate

the effectiveness and robustness of the integrated guidance and control law.

The paper [78] addresses the critical challenge of enhancing the accuracy of Point of

Impact (POI) predictions for anti-ship missiles, particularly when targeting large vessels

such as aircraft carriers. The study highlights that real-time estimation of the POI at the

end of the missile’s trajectory can significantly improve damage effectiveness by adjusting

the standoff based on the predicted impact location. The research begins by examining the

reflection characteristics of the sea surface and the deck of ships when illuminated by a laser

with a wavelength of 1.06 µm. The Scenarios confirm a significant difference in reflectivity

between these two surfaces. Building on these findings, the authors develop a geometric

features model of a typical maritime target and establish an ideal missile-target distance

model, which is then refined to account for CEP a statistical measure of accuracy. Utilizing

the target geometric features, CEP, and data from a four-way laser detection device, the

researchers apply the Monte Carlo method to simulate and predict the POI of the anti-ship

missile. The results demonstrate that this comprehensive approach effectively predicts

the missile’s impact point, enhancing accuracy through analysis of multiple ballistic

experience points. Furthermore, the proposed method effectively reduces the uncertainty

associated with POI predictions, underscoring its potential for improving missile targeting

effectiveness. The paper [79] addresses the limitations of traditional UAV ranging-based

target localization algorithms, particularly concerning the SEP. The authors propose a novel

target ranging localization algorithm that leverages the resolution of nonlinear equations

combined with the total least squares method. A critical analysis is conducted to evaluate

the factors influencing both CEP and SEP, culminating in four significant conclusions

based on simulations. To validate the proposed localization algorithm’s effectiveness and
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accuracy, a series of flight Scenarios are conducted. The research further analyzes the

target locatable duration during the UAV formation’s straight flight for target localization,

providing a geometric analysis along with a corresponding calculation formula. Simulation

results indicate that the proposed algorithm consistently achieves lower CEP and SEP

values compared to traditional methods. The flight Scenarios confirm the algorithm’s

robustness and precision, showcasing its potential applicability in real-world engineering

scenarios for cooperative ground target localization using multiple UAVs. The study

[80] focuses on detecting moving targets within a foliage environment using a Frequency

Modulated Continuous Wave (FMCW) Radar system, approached through two distinct

methods: the Fourier Transform Method, which identifies frequency peaks in the Fourier

transform of the mixer output to ascertain target presence, and spatial frequency domain

analysis, which considers the mixer output in the spatial frequency domain where targets

further away correspond to higher spatial frequencies. Detection and range are determined

through the Inverse Fourier Transform of the mixer output and Range Time Intensity

(RTI) plotting. The FMCW radar system is meticulously designed, incorporating essential

RF subsystems and a signal processing unit, utilizing off-the-shelf RF components for

the RF section, along with a four-channel analog-to-digital converter for data acquisition

and conversion. The processed signal data is analyzed in MATLAB using Fast Fourier

Transform (FFT) and Inverse Fast Fourier Transform (IFFT) techniques to extract moving

target information. The study also calibrates the system based on a target with a known

Radar Cross-Section (RCS).

The research paper [81] addresses the challenges of continuous positioning and low

accuracy in tracking moving targets using multiple UAV. The proposed method integrates

nonlinear equation solving, cooperative tracking control, and Kalman filtering to enhance

tracking precision. Key contributions of the study include a nonlinear equation solution

that computes the initial target position by effectively addressing inaccuracies in estimat-

ing the target’s height, which are common in traditional methods; the identification of

the optimal UAV formation shape through simulation analysis, maximizing positioning

accuracy under static conditions; and the introduction of a novel multi-UAV cooperative

tracking method that ensures the UAV formation maintains its optimal shape throughout

the target positioning process, facilitating continuous and precise tracking. Additionally, a

new phase control method based on UAV spacing and sliding mode control is proposed
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to enhance robustness in engineering applications, overcoming limitations of traditional

phase angle-based control methods. To achieve high-precision continuous positioning,

Kalman filtering is integrated with UAV position information and target position results,

further improving localization accuracy. The effectiveness of the multi-UAV cooperative

tracking control algorithm, along with the positioning result filtering algorithm, is validated

through simulation, demonstrating significant improvements in continuous high accuracy

tracking and positioning of moving targets. The paper [82] addresses the challenges

posed by the increasing diversity in general aviation aircraft and their performance varia-

tions, which complicate traditional multiple model tracking algorithms that often require a

larger number of motion models to accurately describe the actual maneuvering behavior

of moving targets. This need can lead to degraded tracking accuracy and heightened

computational demands. Key contributions of the study include the introduction of a

Target Classification Aided Variable-Structure Multiple-Model Algorithm (TCA-VSMM),

which integrates target classification to enhance state estimation accuracy; the screening of

motion models that incorporates target classification and velocity information derived from

Automatic Dependent Surveillance-Broadcast (ADS-B) measurements, aiding in refining

the motion model set to align better with the actual maneuvering behavior; and improved

efficiency and performance, as Scenarios demonstrate that the TCA-VSMM algorithm

achieves superior performance with a reduced computational load, offering high estimation

accuracy compared to traditional model-group switching variable-structure multiple-model

algorithms. Overall, the TCA-VSMM algorithm represents a significant advancement in

multiple model tracking by leveraging target classification to optimize model selection

and improve tracking efficiency, making it particularly valuable in contexts with diverse

aircraft dynamics. The paper [83] introduces a novel technique for determining the 2D

position of a signal source, termed the Inscribed Angle (InA), which leverages the time

difference of sequential irradiation by the main beam of a target antenna’s radiation pattern

using electronic support measures receivers. Key assumptions for this method include

the rotation of the target antenna at a constant angular velocity for accurate tracking of

the radiation pattern, operation under line of sight conditions critical for effective signal

measurement, and the placement of three time-synchronized sensors arbitrarily across

the operational area to enable triangulation of the signal source. Key contributions of the

study include a detailed geometric representation of the proposed localization method. An
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analytical approach to assess the accuracy of the method, which relies on the timing of

irradiation events correlating with the direction of maximum received signal strength, a

derived method for enhancing accuracy in the proposed positioning technique through

improved irradiation time estimation; and extensive simulation results that validate the

performance and accuracy of the positioning method, showcasing its potential efficacy in

practical applications. Overall, this study represents a significant advancement in radar

position estimation methodologies, highlighting the utility of ESM receivers in accurately

determining target locations through innovative geometric techniques.

G. Fuzzy Logic Algorithm

The paper titled [84] presents a comprehensive survey on recent advancements in data

association techniques within MOT, specifically focusing on visual object tracking tasks in

video surveillance for traffic scenarios. It emphasizes the tracking-by-detection framework,

which integrates object detection and identification tasks with solving filtering problems

to maintain object continuity in tracking. The survey concentrates on data association

methods that utilize uniquely defined similarity functions and filters, essential for effectively

linking detections to corresponding objects across video frames. The study categorizes

these methods into legacy techniques, such as probabilistic and hierarchical methods, and

analyzes more recent hybrid approaches that incorporate advanced models. It assesses

the performance of these methods based on stability, accuracy, robustness, speed, and

computational complexity, providing a clear understanding of the strengths and limitations

of current data association techniques. Rather than presenting quantitative results, the paper

focuses on a qualitative review, identifying key trends and challenges in the data association

task within MOT frameworks. Furthermore, it highlights successful models and suggests

future research directions to address limitations in current data association techniques.

Overall, this survey makes a significant contribution to the field of multiple object tracking

by offering an insightful comparison of various data association techniques and their

impact on the performance of MOT frameworks in real-time applications. The paper

[84] introduces a novel approach to address the challenges of tracking multiple moving

objects in dynamic, non-stationary environments. The proposed method is particularly

relevant for applications in autonomous navigation, surveillance, healthcare, and human-

machine interaction. The system utilizes movement information between successive
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frames, comparing the new and previous frames to detect the location of moving objects

within the camera’s field of view. To achieve this, it applies a matching algorithm along

with the Kanade–Lucas–Tomasi (KLT) feature tracker, identifying key feature points in

each frame. The movement size of these points, along with camera motion, is analyzed

to subtract previously captured moving objects, allowing for accurate detection of newly

moving objects in real time. In addition, the system employs fuzzy logic to classify and

segregate objects based on their mass center and length-to-width ratio, making it capable

of distinguishing between different types of moving objects such as vehicles, pedestrians,

bicycles, and motorcycles. This classification approach allows the system to adapt to the

complexities of non-stationary conditions effectively. The method demonstrates promising

results, with a tracking and classification accuracy of approximately 75%, while processing

43 frames per second. This makes it not only accurate but also computationally efficient,

outperforming many existing techniques in terms of speed and precision. Overall, the

system contributes significantly to improving multi-object tracking in dynamic conditions

by integrating fuzzy decision-making with advanced movement analysis.

The paper [85] presents a novel approach to solving the task allocation problem

for UAVs tasked with tracking multiple ground targets in an urban environment. The

authors propose a multi-objective optimization framework that aims to minimize the

total flight distance, ensure balanced task allocation, and reduce completion time. This

framework is modeled as a multi-objective integer programming problem. To address the

complexities of the task allocation, the paper introduces a fuzzy two-phase optimization

method that incorporates the relaxed order of desirable satisfactory degrees, allowing for

the formulation of mixed integer programming based on the linguistic importance of the

objectives. The proposed solution also includes an adaptive pigeon-inspired algorithm,

combined with an auction mechanism to solve the optimization model. In this context,

the position of each "pigeon" is defined as the bidding price that each UAV submits for

tracking a particular target. To ensure that the constraints of the problem are met and

to avoid suboptimal solutions, the auction mechanism is designed to convert the pigeon

positions into feasible task allocation schemes. The paper compares the performance of

this pigeon-inspired approach with conventional particle swarm optimization techniques.

Simulation results demonstrate that the proposed method is both effective and efficient,

offering improvements in UAV task allocation for multi-target tracking over traditional
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optimization methods. The paper [86] explores a robust control method for the longitudinal

dynamics of autonomous underwater vehicles (AUVs) with an emphasis on target tracking.

The authors propose a novel approach that integrates Fuzzy Logic Systems (FLS) with

adaptive control techniques to address the uncertainties in AUV dynamics. The target

tracking command is transformed into a pitch angle command, allowing for the design

of a tracking controller that employs a switching mechanism. This mechanism enables

the FLS to work in conjunction with robust control strategies to handle the uncertainties

inherent in the system’s dynamics. One of the key contributions of the paper is the

use of the FLS’s approximation capabilities to construct and model errors, which are

then used to develop a fuzzy update law. This law allows the system to adapt and learn

from dynamic changes during the tracking process. Additionally, the authors introduce a

parameter adaptation law for the unknown control gain function, which further enhances

the control system’s adaptability. The stability of the proposed control method is rigorously

analyzed and proved through Lyapunov stability theory, ensuring that the system remains

uniformly ultimately bounded. Simulation tests validate the effectiveness of the approach,

demonstrating improved tracking accuracy and learning performance during target tracking

tasks, highlighting the potential for this method in real-world AUV applications.

The paper [87] addresses the challenges of track-to-track association in compact

High-Frequency Surface Wave Radar (HFSWR) systems, which are commonly limited

by low transmit power and small receiving antenna arrays. These limitations lead to low

detection probability, low positioning accuracy, and a high false alarm rate, especially in

multitarget tracking situations where targets have similar kinematic parameters. These

factors complicate the track-to-track association process, a crucial aspect of multitarget

tracking. To address these issues, the authors propose a track-to-track association method

based on Maximum Likelihood Estimation (MLE) specifically designed for T/R-R com-

posite compact HFSWR. The method begins with the application of a multitarget tracking

algorithm to plot data sequences from both T/R monostatic and T-R bistatic radars, produc-

ing two distinct track sets. Measurement errors in range, azimuth, and doppler velocity

are then computed using these radar tracks alongside automatic identification system track

data. A gaussian distribution model is derived by fitting these measurement errors to a

probability distribution, forming the foundation for the likelihood functions used to calcu-

late the association cost between tracks. A cost matrix is created based on these likelihood
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values. The final step in the process is the application of the Jonker–Volgenant–Castanon

(JVC) assignment algorithm to the cost matrix, which determines the track-to-track pairs

by minimizing the association cost. The paper presents Scenarioal results, comparing the

performance of the proposed method with the Mahalanobis distance-based nearest neighbor

method. The Scenarios, which use both simulated and field data, show that the proposed

method effectively resolves association ambiguity and improves track-to-track association,

particularly in scenarios involving track crossing or adjacent multitargets. This suggests

that the MLE-based method is more robust and accurate in challenging multitarget tracking

conditions. The paper [88] addresses the challenge of track association in distributed fusion

systems, particularly in scenarios where targets exhibit strong maneuverability and system

bias is substantial. In such cases, local tracks generated by individual sensors may contain

inaccurate information, and relying solely on motion state features like position and speed

may not provide an accurate representation of the target’s true state. This inaccuracy can

significantly restrict the performance of data association, especially when conventional

methods are employed. To overcome these limitations, the authors propose a bias-tolerant

track association method using the Interactive Multi-Model (IMM) algorithm. The IMM

algorithm is typically used in tracking maneuvering targets by switching between different

motion models to represent various movement patterns. In this paper, the IMM algorithm

is applied to capture the motion characteristics or patterns of the local tracks. By incorpo-

rating multiple model features into the track association process, the algorithm can provide

a more accurate representation of complex target behavior, even in the presence of large

system biases. The proposed method is tested through simulations, and the results show

that it performs better than traditional methods, particularly in situations where the tracks

are complex and system biases are pronounced. The study demonstrates that utilizing the

IMM algorithm for track association offers greater robustness and accuracy in distributed

fusion systems, enhancing the overall effectiveness of multitarget tracking in challenging

environments.

The paper [89] presents a robust method for track association based solely on bearing

data from airborne sensors. The proposed approach addresses challenges in multitarget

tracking, particularly in combat scenarios with sparse, dense, and crossing targets. It

leverages two existing algorithms, the Probabilistic Neural Network (PNN) and the GNN

which are traditionally used for data association tasks. However, these algorithms often un-
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derperform in complex environments, such as when targets are densely populated or cross

each other’s paths. To enhance association accuracy in such scenarios, the authors propose

a modified method that incorporates the instantaneous outcomes from the PNN/GNN

algorithms. They also factor in the confidence of the previous updates and the number of

successive hits to calculate the final confidence score. By introducing an averaging scheme

post PNN/GNN processing, the method smooths out inconsistencies and improves overall

performance. The method is validated through simulations replicating combat scenarios,

and the results show that the modified approach significantly improves association accuracy,

especially in situations where traditional algorithms struggle. This work contributes to

more reliable airborne surveillance, particularly in environments where bearing-only data

is available, by refining the association process with enhanced confidence calculations

and post-algorithm adjustments. The paper [90] addresses the challenge of associating

data for tracking multiple targets using ship-borne radar. The authors propose a robust and

adaptive fuzzy density clustering algorithm, which simplifies the process of associating

measurements with target states. The algorithm operates in three key steps. First, an

adaptive density clustering method is employed to identify valid measurements correspond-

ing to each target’s state. This step avoids the need for traditional gating techniques that

are typically used in data association. Second, the degree of fuzzy membership for each

valid measurement is computed based on the maximum entropy principle, allowing for

a more flexible representation of uncertainties. In the final step, measurements with the

highest degree of membership are selected to update the positions of the tracked targets. A

significant advantage of this approach is its ability to function without the complexity of

traditional gating, leading to a reduction in computational steps when compared to other

data association methods. The algorithm also takes into account the movement of the ship

and its effect on tracking performance, using an EKF to ensure accurate updates. The

paper compares the proposed algorithm’s performance with more conventional methods,

such as the nearest neighbor approach using Mahalanobis distance method. The results

highlight the advantages of the proposed algorithm, particularly its simplicity, real-time

adaptability, and effectiveness in tracking multiple targets in cluttered environments. This

makes the algorithm highly suitable for real-time applications in dynamic and challenging

conditions, such as those encountered in maritime radar systems. The paper [91] intro-

duces an advanced method for track-to-track association in multitarget tracking scenarios
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involving multiple sensors. In distributed information fusion, efficiently associating tracks

from different sensors is critical for improving the accuracy of the subsequent track fusion

process. The proposed method utilizes a fuzzy membership function to mathematically

estimate the likelihood that two tracks from different sensors are tracking the same tar-

get. This membership function assigns a value between 0 and 1, where a higher value

indicates a greater probability that the tracks are associated with the same target. Once

the fuzzy membership values are calculated, a clustering technique is employed to group

tracks that are determined to be tracking the same target. The novelty of this approach

lies in its use of fuzzy logic to handle the inherent uncertainty in associating tracks from

distributed sensors, as well as its application of clustering methods to effectively group

similar tracks. Simulation results presented in the paper demonstrate that this method

performs better than existing approaches, offering improved efficiency and accuracy in

track-to-track association for distributed information fusion systems. The paper highlights

the potential of this method to enhance multitarget tracking in complex and dynamic

environments where multiple sensors are used. The paper [92] presents an innovative

solution for track-to-track association in multi-sensor, multi-target environments. The pro-

posed algorithm modifies the fuzzy clustering means approach to address the issue of track

redundancy, which is a common challenge in MSMT systems. Traditional methods often

assume ideal conditions, but this research aims to solve the problem under more realistic

conditions, where track data includes biases and imperfections typically encountered with

real-world sensors. One of the key contributions of this paper is the incorporation of a

systematic bias model that reflects the inherent inaccuracies and noise in sensor measure-

ments, making the algorithm more applicable to real-world scenarios. The algorithm’s

performance is tested across two MSMT scenarios with different levels of measurement

noise and sensor resolution, allowing for a comprehensive evaluation of its effectiveness.

The results show that this modified fuzzy clustering approach improves track association

accuracy by accounting for realistic conditions, making it highly relevant for practical

applications in MSMT systems. This method provides a more robust and reliable solution

for managing track redundancy and improving data fusion in multitarget tracking scenarios.

H. COVARIANCE INTERSECTION (CI) ALGORITHM

The paper titled [93] focuses on improving the accuracy of multitarget tracking
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for intelligent driving systems, particularly in challenging environments where targets

exhibit complex maneuvers, outliers in measurements, and lack of prior environmental

data. To address these challenges, the authors introduce the Multi-constrained Gener-

alized Probabilistic Data Association Filtering (MCGPDAF) algorithm. This algorithm

employs target position and heading information to construct constraint parameters that

calculate the association probabilities between effective measurement combinations and

target tracks. This approach minimizes issues caused by measurement anomalies and errors

in prior information, enabling robust association for single-sensor multitarget tracking

in complex conditions. In addition, the paper proposes a multitarget tracking method

based on composite perception fusion. Using correlation sequential track association and

covariance cross-fusion algorithms, it enhances the track association, state estimation, and

fusion across multiple sensors, which further improves tracking accuracy. The authors

validate their approach through simulations and real-vehicle Scenarios, showing that the

MCGPDAF algorithm significantly outperforms advanced existing methods. Specifically,

it improves the RMSE and Mean Absolute Percentage Error (MAPE) for multitarget

tracking by an average of 23.97% and 24.35 respectively. The MOTA and MOTP also

show improvements of 14.68% and 15.71%. Moreover, when incorporating composite

perception fusion, the RMSE and MAPE improve further by 26.43% and 27.15%, high-

lighting the algorithm’s practicality and effectiveness for dynamic multitarget tracking

in intelligent driving applications. The paper [94] presents a novel algorithm for track-

to-track association in distributed multi-target tracking systems where cross-covariance

between sensor nodes is unknown. The proposed algorithm leverages CI to calculate the

association statistics, eliminating the need to compute cross-covariance among nodes. This

not only simplifies the process but also enhances the algorithm’s usability in scenarios

with limited information sharing between distributed sensors. The authors also introduce

a fast CI algorithm, which is designed to reduce both communication and computational

overhead among the sensor nodes. This improvement ensures that the algorithm remains

efficient even in systems where bandwidth or processing power is constrained. The method

focuses on balancing accuracy with operational efficiency, making it highly applicable

to real-time multi-target tracking environments. The paper concludes with simulation

results demonstrating the algorithm’s effectiveness. The simulations validate the CI-based

approach, showing that it provides reliable track-to-track association without requiring
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detailed inter-sensor covariance information, which can be challenging to obtain in dis-

tributed systems. Moreover, the fast CI variant further enhances the system’s performance

by significantly lowering the computational and communication load while maintaining

robust tracking accuracy.

The paper [95] presents an advanced multi-target tracking algorithm leveraging the

Gaussian Mixture Cardinalized Probability Hypothesis Density (GM-CPHD) filter within

a distributed framework. The proposed approach addresses the challenge of efficiently

fusing information from multiple nodes in a decentralized sensor network for multi-target

tracking applications. At the core of the paper is the use of Generalized ICI as a fusion

method. CI is commonly used in multi-sensor systems to produce a conservative estimate

of the joint covariance, regardless of the degree of correlation between nodes. However,

CI’s conservative nature often limits its effectiveness. The Inverse Covariance Intersection

(ICI) method, on the other hand, offers a less conservative approach, ensuring consistent

and more accurate fusion results. Although ICI had not been previously extended to

multi-sensor, multi-target tracking systems, this paper fills that gap by integrating it with

the GM-CPHD filter. The authors generalize the ICI formula to adapt it for Random Finite

Set (RFS) fusion, in a manner similar to Generalized Covariance Intersection (GCI). This

fusion mechanism works by restructuring ICI as a naive fusion method with covariance

inflation in the Gaussian probability density function, making it suitable for GM-CPHD.

Through simulations, the proposed method is shown to outperform naive fusion and

GCI-based methods, achieving lower Optimal Sub-pattern Assignment (OSPA) errors in

multi-target tracking tasks. This result indicates improved accuracy in estimating target

states across multiple sensors. The study highlights the strength of combining ICI with

GM-CPHD to achieve more reliable and efficient multi-target tracking in decentralized

sensor networks.

2.2.3 Filtering for Target Tracking

Real-time tracking is a crucial feature of tracking radar systems. Filtering involves

processing radar data using adaptive techniques to track targets, such as determining

their range, course, heading, flight level, and speed. It also reduces measurement errors

by applying appropriate methods to accurately calculate a target’s speed, position, and
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acceleration. Filtering in target tracking is essential because it helps manage and analyze

vast amounts of data by isolating relevant information from noise. In dynamic environments

where data is continuously generated, filtering allows for the extraction of meaningful

patterns and trends specific to the targets of interest. Without effective filtering, the sheer

volume of irrelevant data can overwhelm analysts, making it difficult to identify significant

events or anomalies. By applying filters based on defined criteria, such as keywords or

contextual information, tracking systems can focus on the most pertinent data, enhancing

accuracy and efficiency. This targeted approach not only saves time but also ensures that

critical insights are not lost amidst the data deluge, leading to more informed decision-

making and timely responses. Some of the filters are discussed briefly as following:

2.3 Tactical Data Link (TDL)

To broaden the field of view for a standalone sensor or a network of sensors and

enhance the number of insights that can be derived from the data, the concept of tactical

data links has emerged within the C4ISR (Command, Control, Communication, Computers,

Intelligence, Surveillance and Reconnaissance) systems framework. These links facilitate

a continuous flow of information from various sensors via a wireless network to both the

command center and individual mission participants. One of the key benefits of tactical

data links is their ability to deliver real-time data collected from multiple sources, which

may include precise locations and imagery of objects of interest. The primary goal of

tactical data links is to improve monitoring capabilities at the command center during an

ongoing mission while also enabling the distribution of mission-related information to

participant nodes. Additionally, standards have been established for sharing various types

of data through tactical data links as depicted in figure 2.2
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Figure 2.2: Centralized information sharing via Tactical Data Link (TDL) between

multiple participant nodes and their tracked objects.

2.4 Frame of Reference

In surveillance and object tracking, multiple sensors are required to obtain the

complete knowledge of the ongoing mission. Each sensor transmits it’s information to the

base station which when combined together gives a clear view of the parameters required

for the object tracking. These sensors are working on different kinds of frame of reference.

Some of the most commonly used frames of reference in airborne systems are briefly

mentioned as following:

Earth Centered Inertial (ECI)

When an object is stationary or is moving at a fixed speed is known as inertial frame

of reference. On the basis of steady view point and keeping a specific direction in focus, an

inertial sensor makes measurements. Looking at the earth, the steady view point is starts at

the center of the earth. Z axis is the direction that follows earth’s location pointing towards

north pole. X-axis and Y-axis points towards a specific point on that sky also know vernal

equinox. It is when a right-handed system is said to be completed.
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2.4.1 Body Frame

While considering the frame of reference for the body. The center points is considered

to be the point of origin. X and Y axis points towards longitudinal and latitudinal directions

and the z axis is perpendicular to the x and y axis that points to the downward direction.

Between the frame of the body and the interest of the body, there is a strong attachment.

The three angles can be used to describe the geographical representation of the frame i.e

(φ ,θ ,Ψ). These angles are also known as Eular angles. Where ϕ is the roll angle of the

body, Θ is the pitch angle and Ψ is the yaw angle of the body. Usually, the output of the

inertial sensor is also represented by this frame. When the body of interest rotates this

frame rotates with the body and its origin moves in the direction of the body. Axes of body

frame are shown as following in figure 2.3:

Figure 2.3: This image illustrates an aircraft’s body frame, highlighting the roll, pitch,

and yaw axes that are vital for flight dynamics.

2.4.2 Geographic Frame

In navigation the most commonly used frame is the geographic frame, origin of this

frame lies at the center of the earth. This frame considers an ellipsoidal nature of the earth

and then assigns the point of interest P in a 3-tuple manner as λϕ ,h). Where λ is the

latitude, ϕ is the longitude and h is the elevation of the point of interest. Latitude is an

angle defined in the meridian plane, it runs from equatorial plane to ellipsoidal normal at
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point P, longitude is an angle in the equatorial plane running from prime meridian to the

projection of point P on the equatorial plane. A geographic frame is depicted in figure 2.4:

Figure 2.4: This image illustrates three fundamental geographic frames used for

defining positions and orientations on or near the Earth’s surface: the Geographic

Frame, the ECEF Frame, and the Local Geodetic Frame.

2.4.3 Earth Centered Earth Fixed Frame (ECEF)

This frame is similar to a geographic frame defined by the position of origin, but

ECEF frames are in Cartesian coordinates. This is a frame with an x-axis perpendicular to

the earth’s surface, where in this example, they would be pointing towards the north pole

and x-y plane lies at the equator. The literature also suggests this frame for the purpose of

tracking. A basis diagram of ECEF frame is shown in figure 2.4.

2.4.4 Local Geodetic Frame

This frame of reference is also called the East-North-Up (ENU) reference framework,

is laid out by fitting a tangent plane to the World’s reference geoid at the point of interest,

P. In this system, the x-axis points east, the y-axis points north, and the z-axis face up from

the Earth’s surface, completing the rotation. A diagram of local geodetic frame is shown in
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figure 2.4

2.5 Data Association

One of the most essential aspects in MTT is data association. In simpler terms,

it is the method of testing whether two pieces of information could either be same or

different. Data association problem can be mainly divided into three main categories

i.e. (a) Measurement to Measurement Association (M2MA), (b) Measurement to Track

Association (M2TA) and (c) Track To Track Association (T2TA). The concept of data

association is simply explained with the help of figure 2.5:

Figure 2.5: This figure illustrates Data Association, distinguishing between associa-

tions with different objects (top) and same object types (bottom)

2.6 Summary

In conclusion, a radar system is crucial for multi-object tracking and comprises four

key components: a transmitter, an antenna, a receiver, and display/control equipment. The

transmitter generates an RF signal that the antenna sends out in a specific direction. When

this signal hits objects, it creates echoes that the antenna picks up, allowing for distance

calculations based on how long it takes for the echoes to return. Radar systems can be

either monostatic, using a single antenna for both sending and receiving signals, or bistatic,
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which uses two separate antennas. There are various tracking methods, including STT,

ADT systems, electronically steered phased array radars, and TWS radars. To ensure

accurate tracking, filtering techniques are employed, such as the KF, which estimates the

state of dynamic systems in the presence of noise, and the PF, which addresses non-linear

data by representing possible states with multiple particles. TDL improve the ability

to share data among radar systems, while different reference frames like earth-centered

inertial, body, and geographic frames are essential for precise tracking. Data association

plays a critical role in multi-target tracking, helping to determine whether different pieces

of information relate to the same object.

Table 2.1: Comparison of data association methods in multi-object tracking, high-

lighting each method’s strengths, limitations, and existing research gaps relevant to

real-time and cluttered environments.

No. Method Used Strengths Limitations Research Gap

1 Kalman Filter

(KF, EKF,

UKF)

Real-time perfor-

mance, simple

implementation

Assumes linearity or

small nonlinearities;

sensitive to noise

models

Poor performance in

highly nonlinear or

cluttered environments

2 Particle Filter

(PF)

Handles non-linear,

non-Gaussian pro-

cesses

Computationally expen-

sive; particle degener-

acy

Challenging for real-time

applications with many

targets

3 Nearest Neigh-

bor (NN)

Light computation,

easy implementation

High false matches in

dense data

Unreliable with occlu-

sion or ambiguous mea-

surements

4 Global Near-

est Neighbor

(GNN)

Uses global optimiza-

tion for assignment

High cost with large

problems

Limited scalability for

real-time, multi-sensor

systems

Continued on next page
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No. Method Used Strengths Limitations Research Gap

5 Probabilistic

Data Associa-

tion (PDA)

Manages clutter and

uncertainty well

Assumes one true mea-

surement per scan

Poor with crossing/group

targets

6 Hungarian

Algorithm

Exact assignment opti-

mization

One-frame matching

only

Cannot handle long-term

temporal dependencies

7 Fuzzy Cluster-

ing T2TA

Handles uncertainty

and partial member-

ships

Limited multi-sensor,

real-time validation

Not widely deployed in

dynamic networks

8 Deep Learning

MOT (e.g., QD-

Track)

High detection and

tracking accuracy

High resource and data

requirements

Infeasible for embedded/-

lightweight systems

9 SVM for Track-

ing

Strong classifier, good

generalization

Feature-dependent per-

formance

Requires real-time fusion

integration

10 Fuzzy Logic in

MOT

Flexible with noise and

uncertainty

Needs careful tuning of

membership functions

Lacks validation in de-

fense or UAV settings
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CHAPTER 3

METHODOLOGY

3.1 Overview

This chapter presents the methodology used to implement the proposed T2TA algo-

rithm using fuzzy logic. It outlines the mathematical foundation of the CEP/CAP algorithm,

details the design of the fuzzy logic-based approach including fuzzy sets, membership

functions, and decision-making rules and describes the simulation methodology used for

performance evaluation. A comparative analysis is also presented between the fuzzy logic-

based algorithm and the CEP/CAP algorithm. The results and discussion are provided in

Chapter 4.

The primary focus of this study is the application of a fuzzy logic-based approach for

track association, which offers an improved ability to manage uncertainties and imprecise

data compared to conventional methods.

This chapter is organized as follows:

• We begin by providing a detailed explanation of the CEP/CAP algorithm, discussing

its mathematical basis, assumptions, and its role in the track association process.

• Next, we provide a detailed explanation of the fuzzy logic approach for track

association, covering the fuzzy sets, membership functions, and decision-making

rules.
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• Finally, we conclude with a comparative analysis between the fuzzy logic approach

and the other algorithms, highlighting their respective strengths, weaknesses, and

practical implications.

3.2 Traditional Track Association Methods

3.2.1 CEP/CAP Algorithm

The CEP and CAP algorithms are commonly used to measure the accuracy of

tracking systems. In T2TA, these algorithms help determine whether two tracks from

different sensors correspond to the same object based on their spatial and temporal overlap.

In the context of this study, CEP/CAP is applied to calculate the likelihood that two

tracks, each with their own measurement uncertainty, correspond to the same target. By

comparing the error regions around each track, we can associate tracks if their regions

overlap significantly.

3.2.2 Mathematical Basis of CEP/CAP

The CEP/CAP algorithms rely on the assumption of a bivariate normal distribution for

tracking errors in the x and y directions. The error distributions are characterized by their

standard deviations, σx and σy which represent the uncertainty in the positional estimates

from different sensors. The CEP is calculated as the radius of a circle that contains 50% of

the position estimates from a sensor. Mathematically, the CEP for a normally distributed

error can be expressed as:

CEP = k50 ·
√

σ2
x +σ2

y (3.1)

Where k50 is a constant that corresponds to the 50% confidence level and σx and σy

are the standard deviations of the errors in the x and y directions, respectively.

The CAP extends this concept to a higher confidence level, typically 90% or 95%. The

corresponding radius, rCAP, is given by:

rCAP = kp ·
√

σ2
x +σ2

y (3.2)
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Where kp is a constant depends on the desired probability P

The CEP and CAP radii are calculated based on the sensor’s positional uncertainty, provid-

ing a circular region where the true target position is likely to be found. These regions are

then used to determine track associations.

3.2.3 Assumptions of CEP/CAP

The CEP and CAP algorithms are based on a few critical assumptions that impact

their application to track association problems. These assumptions simplify the mathemat-

ical formulation of the algorithms but also introduce certain limitations. Understanding

these assumptions helps to frame the algorithm’s effectiveness and possible drawbacks.

Gaussian Error Distribution:

The fundamental assumption of CEP and CAP is that the tracking errors follow a

normal (Gaussian) distribution. This means that the positional errors in the x and y coordi-

nates are distributed symmetrically around the true position. The gaussian distribution is

characterized by its mean (expected position) and variance (error spread), which in this

case corresponds to the uncertainty in the sensor’s measurement.

This assumption simplifies the analysis by allowing the errors to be represented by

standard deviations σx and σy and enables the use of probabilistic regions to describe the

likely position of a target. Real-world sensors may not always produce normally distributed

errors. non-gaussian errors may reduce the accuracy of CEP/CAP-based decisions.

Stationary or Linearly Moving Targets:

CEP and CAP are typically applied to scenarios where the target is either stationary

or moving in a linear trajectory with constant velocity. This assumption works well for

simple tracking systems, where the motion model of the target is relatively predictable.

Targets with complex, non-linear movements (e.g., sudden changes in speed or direction)

require more sophisticated models. If such dynamics are not accounted for, the CEP/CAP

estimates may lead to incorrect associations due to misalignment between predicted and

actual positions.
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Independent Errors: The errors in the x and y directions are assumed to be independent.

This means that an error in one coordinate does not affect the error in the other. Under

this assumption, the covariance matrix is diagonal, simplifying the computation of the

CEP/CAP region. In some cases, sensor errors may be correlated (e.g., atmospheric

disturbances might affect both x and y measurements). Ignoring such correlations can lead

to inaccurate association results.

3.2.4 CEP/CAP Algorithm Process

The CEP/CAP algorithm process involves a systematic series of steps that allow us

to determine whether two tracks, coming from different sensors, belong to the same target.

The process begins with data collection and progresses through several key steps, resulting

in a decision based on the geometric overlap of error regions.

The first step involves collecting positional data from multiple sensors that are track-

ing the same target. Each sensor generates its own track, which consists of measurements

of the target’s position (often in the form of x and y coordinates). These measurements

inherently contain errors due to sensor limitations. Each sensor’s data includes positional

estimates and the corresponding measurement uncertainty, expressed as standard deviations

σx and σy.

For each track, compute the error covariance matrix which describes the uncertainty

in the positional estimates. This matrix is typically diagonal (under the assumption of

independent errors), with the variances σ2
x and σ2

y as the diagonal elements.

P = (σ2
x , 0 , 0 , σ

2
y ) (3.3)

The covariance matrix is a key element in determining the size and shape of the error

region around each track.

Using the variances from the covariance matrix, calculate the CEP and CAP radii.

These radii define the circular regions around each track that represent the probable location

of the target. The CEP radius typically encloses 50% of the probable positions, while the

CAP radius encloses a larger percentage, such as 90% or 95%.

The final step is to compare the error regions of different tracks. If the CEP or

CAP regions of two tracks overlap significantly, there is a high probability that the tracks
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represent the same target. The amount of overlap is used as a measure of the likelihood

of track association. The association threshold is set based on the desired confidence

level. Tracks whose error regions overlap beyond the threshold are considered associated,

otherwise, they are treated as separate.

3.2.5 Simulations for CEP/CAP

To evaluate the performance of the CEP/CAP algorithm, simulations are conducted.

These simulations test the algorithm’s ability to accurately associate tracks under varying

conditions, such as different levels of sensor noise, target speeds, and motion patterns.

For simulation setup first we define a 2D scenario where multiple targets move through a

defined space. These targets may be stationary, moving linearly, or following more complex

trajectories, depending on the test case. After that, for each target, generate positional data

from simulated sensors, adding random gaussian noise to simulate measurement errors.

The amount of noise is characterized by the standard deviations σx and σy, representing

the sensor’s accuracy.

Step-by-Step Simulation:

1. Generate True Positions: Set the initial positions of each target.

2. Simulate Noisy Observations: Apply noise to these true positions to generate noisy

observations that simulate real sensor data.

3. Calculate CEP/CAP Regions: For each noisy observation, compute the CEP and

CAP radii based on the measurement uncertainties.

4. Assess Track Association: Using the CEP/CAP algorithm, determine whether the

tracks from different sensors should be associated based on the overlap of their

circular regions.

3.2.6 Decision-Making in CEP/CAP

The final decision on whether to associate two tracks is based on the degree of overlap

between their CEP or CAP regions. The decision-making process involves comparing
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the calculated error regions and using predefined criteria to determine whether the tracks

belong to the same target. A threshold is defined based on the desired confidence level

(e.g., 90% or 95%). The threshold determines the minimum amount of overlap required

between two error regions for the tracks to be considered associated. For example, if the

overlap between the two CAP regions exceeds the threshold for 95% confidence, the tracks

are associated.

The decision to associate or not associate tracks is a binary one. If the overlap exceeds

the threshold, the decision is "associate" (1). If the overlap is below the threshold, the

decision is "not associate" (0). This binary decision is useful for making clear, yes-or-no

choices in automated tracking systems, but it may not fully capture the uncertainties

involved in more complex cases.

3.2.7 Summary of CEP/CAP Approach

The CEP/CAP algorithm provides a simple and intuitive method for associating

tracks based on their spatial proximity and positional uncertainties. By leveraging the

assumption of gaussian-distributed errors, CEP/CAP can effectively handle a wide range

of scenarios where track association is required. However, its reliance on circular error

regions may limit its performance in situations where errors are anisotropic or the motion

of the targets is highly dynamic. In the following sections, we will compare its performance

with other algorithms, such as the fuzzy logic approach, to highlight its strengths and

limitations.

3.3 Proposed Method

This thesis proposes a fuzzy logic-based T2TA algorithm as a more effective alterna-

tive to traditional CEP/CAP methods. Using fuzzy membership, it adaptively evaluates

track similarity based on position, velocity, and heading, offering improved handling of

sensor noise and asynchronous data.
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3.3.1 Fuzzy Track-to-Track Association Algorithm

Fuzzy T2TA is a multi-sensor data fusion technique used to combine and associate

tracks of the same object generated from different sensors or tracking systems. The goal

is to minimize uncertainties and discrepancies between tracks by associating them into a

unified representation. The fuzzy logic approach leverages the inherent uncertainties in

the data, allowing for a more flexible and adaptive solution when compared to classical

deterministic algorithms.

3.3.2 Key Elements of Fuzzy T2TA

Input Data (Tracks) The algorithm operates on track data provided by multiple sensors.

Each sensor independently detects and tracks the same object, leading to multiple "tracks"

for that object. These tracks are composed of state variables, such as:

• Position (e.g., x, y, z coordinates): The spatial location of the object as estimated

by the sensor.

• Velocity (e.g., vx, vy, vz): The speed and direction of the object’s movement.

• Other attributes (e.g., acceleration, sensor confidence): Some systems may

include higher-order dynamics like acceleration or the sensor’s confidence level in

its measurement.

Each sensor’s data is subject to its own unique errors and noise, so the tracks may not be

identical even if they represent the same object. This is where the challenge of track-to-

track association arises, as the goal is to determine which tracks from different sensors

belong to the same real-world object.

3.3.3 Association Criteria

The fuzzy T2TA algorithm defines several criteria to assess whether two or more

tracks, each from different sensors, should be associated. These criteria are modeled using
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fuzzy sets, which handle the inherent uncertainty in the data. Common association criteria

include:

• Spatial Proximity: The fuzzy T2TA algorithm defines several criteria to assess

whether two or more tracks, each from different sensors, should be associated. These

criteria are modeled using fuzzy sets, which handle the inherent uncertainty in the

data. Common association criteria include:

• Velocity Consistancy: The algorithm checks whether the velocities of the tracks are

similar. If two tracks have consistent velocities (i.e., they are moving at the same

speed in the same direction), it increases the likelihood that they belong to the same

object.

• Temporal Alignment: Tracks from different sensors must also be consistent in

time. If one sensor’s track lags significantly behind another, they may not represent

the same object. Temporal alignment helps avoid mismatches due to differences in

sensor update rates or latency.

• Sensor Accuracy: The accuracy or confidence of each sensor can also be considered

in the association process. Tracks from more reliable sensors may be weighted more

heavily in the association process, while less reliable sensors may contribute less to

the decision.

3.3.4 Fuzzy Membership Functions

Fuzzy membership functions are used to represent how closely the tracks match in

terms of the criteria mentioned above. In fuzzy logic, these functions do not result in

binary decisions (i.e., a track either does or does not belong to an object). Instead, they

return values between 0 and 1, representing the degree of membership or similarity.

Spatial Proximity: A fuzzy membership function might map the distance between two

tracks to a membership value. If the distance is very small, the membership value will be

close to 1, meaning the tracks are likely from the same object. If the distance is large, the

membership value approaches 0.
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Velocity Similarity: A fuzzy membership function for velocity might take into account

both speed and direction. If two tracks are moving at similar speeds and in the same

direction, the membership value will be high.

Temporal Alignment: Tracks that are recorded at similar times (within a certain fuzzy-

defined threshold) will have a higher membership value, while those with significant time

differences will have a lower membership score.

3.3.5 Performance Metrices

The fuzzy rule base consists of a set of rules that define how the different criteria

interact to produce an association decision. These rules are typically structured in an

IF-THEN format, and they integrate the fuzzy membership values calculated for each

criterion.

Examples of fuzzy rules might include:

• IF the spatial distance is small AND the velocity difference is small, THEN the

tracks are likely associated.

• IF the spatial distance is moderate AND the velocity difference is large, THEN the

tracks are less likely associated.

• IF the position difference is high AND the time difference is large, THEN the tracks

are unlikely to belong to the same object.

The fuzzy rule base allows for combining various factors that influence the track associa-

tion in a non-binary, flexible way. Each rule helps capture different aspects of uncertainty

and variability in the data.

Defuzzification

Once the fuzzy inference engine generates a fuzzy output (typically a fuzzy degree

of association), this result needs to be converted into a crisp value that can be used to make

a final decision. This process is called defuzzification.



73

A common method is to take a weighted average of the fuzzy outputs to produce a

single number, which can be interpreted as the likelihood that two tracks are associated. A

threshold is then applied to this value to make the final decision:

• If the defuzzified value is above a certain threshold, the tracks are associated.

• If the value is below the threshold, the tracks are considered not associated.

Track Fusion

Once the tracks are associated, they are merged into a single, unified track rep-

resenting the object more accurately. The fusion process involves combining the state

estimates (position, velocity, etc.) of the associated tracks, often using weighted averaging

or statistical filtering methods like the KF. This step improves the overall accuracy of the

object’s state by reducing noise and incorporating data from multiple sources as shown in

figure 3.1

Figure 3.1: A system model illustrating the process from sensor inputs and environ-

mental observations to the generation of actual object tracks through coordinate

conversion, synchronization, and track association.

3.3.6 Advantages of Fuzzy T2TA

Robustness to uncertainty: Unlike hard decision methods, fuzzy logic handles uncer-

tainty and partial truth, making it ideal for noisy environments where sensor measurements

are imprecise.
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Flexibility: Fuzzy rules allow for the inclusion of multiple criteria, enabling the algorithm

to adapt to different scenarios, such as varying sensor qualities or measurement inconsis-

tencies.

Improved Accuracy: By integrating multiple factors and handling them with flexible,

adaptive rules, the fuzzy approach often yields more accurate associations, especially in

complex and uncertain conditions.

3.3.7 Mathematical Modeling of Fuzzy Logic for T2TA

We take help from a simple scenario for formulation of a track-to-track association

problem in MSMT setting as shown in figure 3.2. The scenario has two sensors in an

overlapping coverage region observing three distinct targets. A total of four track reports

will be generated for these three targets due to overlapping nature of the scenario. Let’s

consider the target reports are denoted as, Top, o = 1, 2, 3 and p = 1, 2, have two attributes

i.e. the positions in Cartesian coordinates as x and y coordinates of the tracks. In track

report Top, o represents the target number and p represents the sensor number.
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Figure 3.2: An illustration of a MSMT setting, where two sensors (S1, S2) are tracking

three distinct targets (T1, T2, T3), with data fused at a central Fusion Center.

The data from the tracks, as shown in the figure above, can be organized into a data

matrix, as illustrated in the table in figure 3.3. This matrix contains the track information

reported to the fusion center during each scan. The columns of the matrix represent the

tracks being evaluated for correlation, while the rows represent the distinct features of

the tracks. The primary goal of the fuzzy track-to-track association algorithm, or any

track-to-track association algorithm, is to distinguish between similar tracks (same target)

and dissimilar tracks (different targets) among the multiple reported tracks.

Figure 3.3: Data Matrix received from different sensor incorporated into a matrix

The data matrix shown in the table above is derived from a simple scenario with
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straightforward data that does not require clustering analysis. The results from this

matrix indicate that tracks T21 and T22 correspond to the same target, while tracks T11

and T32 represent different targets. However, when dealing with larger datasets, such

as those with 15 attributes and 100 tracks, visual inspection is insufficient, and more

advanced techniques like clustering are needed to perform track-to-track association.

Fuzzy clustering is a particularly useful technique for solving such track association

problems, and it is described in detail in the following paragraphs.

The fuzzy T2TA algorithm is based on the fuzzy c-means (FCM) clustering algorithm.

This algorithm generates a membership matrix M, where each element Moq represents the

membership degree of data point xq within fuzzy clustero, which has a center Co. The

membership degrees are calculated by minimizing the sum of squared errors, weighted by

the membership degrees raised to the power of a, an iterative parameter. After extensive

simulations, the value of a is found to perform well between 1 and 2 for the problem under

consideration. The expressions for calculating the membership degrees and cluster centers

are as follows:

moq
1

∑
nc
p=1

(
doq
dpq

) 2
a−1

∀o,q, (3.4)

co
∑

nm
q=1(moq)

axq

∑
nm
q=1(moq)a ∀o, (3.5)

Here, nc represents the number of clusters, and nm denotes the total number of

measurements. Now, suppose we have two tracks; in this case, we will initialize two

distinct clusters for them. The optimal membership degrees can then be determined using

the following matrix:

DC f cm =

∥x1 − c1∥2 ∥x2 − c1∥2

∥x1 − c2∥2 ∥x2 − c2∥2

=

d11 d12

d21 d22

 (3.6)

The membership degrees represent the level of similarity between the elements in

the matrix DCfcm. To solve the track-to-track association problem effectively, we need

to align the matrix described earlier. Let To be a column vector with A attributes, which

could include range, bearing, speed, etc. Each attribute in the vector has a corresponding
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resolution ∑o (where o=1,2), indicating the sensor’s accuracy for that attribute. Suppose

we have two sensors, with the first sensor being more accurate than the second, meaning

∑1(p) < ∑2(p) for all p=1, 2,. . . ,A, where A is the attribute number.

For track-to-track association, the primary goal is to determine whether the two track

reports correspond to the same target or different targets. The fuzzy T2TA algorithm works

by transforming all the attribute differences between two tracks into a single membership

degree (or cost). This membership degree is then compared to another membership degree

(or threshold), which is calculated using the known attribute resolutions of the sensors

reporting the tracks.

Once both the single membership degree and the threshold between a pair of tracks are

available, the problem reduces to a binary hypothesis testing problem, as described below:

H =

1, Reported Tracks are Identical

0, Reported Tracks are Non-Identical

When comparing a pair of tracks, the track-to-track association decision can be

made in two ways: (1) by comparing the resolution of sensor 1 with the distance between

the tracks from sensors 1 and 2, or (2) by comparing the resolution of sensor 2 with the

distance between the tracks from sensors 1 and 2. This concept is illustrated using the

matrix DCfcm for two sensors, as shown below:

DC =

 ∥Σ1∥2 ∥T2 −T1∥2

∥T1 −T2∥2 ∥Σ2∥2

=

d11 d12

d21 d22

 (3.7)

Where,

doq =

∥Tq −To∥2, if o ̸= q

∥Σ2∥2, if o = q
(3.8)

Equations 3.22 and 3.23 can then be applied to compute the optimal membership degrees

for a scenario where each of the two sensors reports one track, as follows:

m11 =
(Σ′

1Σ1)
1

1−a(
Σ′

1Σ1
) 1

1−a +((T1 −T2)′(T1 −T2))
1

1−a

(3.9)
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m12 =
((T1 −T2)

′(T1 −T2))
1

1−a(
Σ′

2Σ2
) 1

1−a +((T2 −T1)′(T2 −T1))
1

1−a

(3.10)

m21 =
((T2 −T1)

′(T2 −T1))
1

1−a(
Σ′

2Σ2
) 1

1−a +((T1 −T2)′(T1 −T2))
1

1−a

(3.11)

m22 =
(Σ′

2Σ2)
1

1−a(
Σ′

2Σ2
) 1

1−a +((T2 −T1)′(T2 −T1))
1

1−a

(3.12)

Hence, a similarity matrix is obtained as given below:

S =

m11 m12

m21 m22

 (3.13)

In the matrix above, the diagonal elements reflect the membership degrees associated

with the thresholds of sensors 1 and 2, while the off-diagonal elements represent the

membership degrees of the differences between the two reported tracks as measured by

each sensor. The fuzzy association decision can be made in two ways i.e. using the more

accurate sensor, or using the less accurate sensor, as follows:

The fuzzy decision based on the more accurate sensor is defined as:

FD1 =

1, If m21 > m11

0, if m21 < m11

The fuzzy decision using the less accurate sensor is expressed as:

FD2 =

1, if m12 > m22

0, if m12 < m22
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Sensors typically have different resolutions and levels of noise. To account for the effects

of noise on association decisions and enhance the robustness of the algorithm, global

decisions are made based on the less accurate sensor, as follows:

FDg = FD2

Here, FDg => Fuzzy global decision

Thus, the correlation between the two reported tracks T1 and T2 is defined as:

CORR(T1,T2) =

1, if FDg = 1 (Tracks are same)

0, if FDg = 0 (Tracks are different)

A logical advancement of the method described above is to adapt it to a multi-sensor,

multi-target scenario. This can be achieved simply by defining a matrix as shown below:

DC =



∥Σ1∥2 ∥T1 −T2∥2 . . . ∥T1 −TnT ∥2

∥Σ2∥2 ∥T2 −T1∥2 . . . ∥T2 −TnT ∥2

...
... . . .

...

∥ΣnT ∥2 ∥TnT −T2∥2 . . . ∥TnT −TnT−1∥2


(3.14)

Where nT represents the total number of track reports.

The resolution elements can be diagonalized to form a matrix similar to matrix DC, as

shown below:

DC =



∥Σ1∥2 ∥T1 −T2∥2 . . . ∥T1 −TnT ∥2

∥T2 −T1∥2 ∥Σ2∥2 . . . ∥T2 −TnT ∥2

...
... . . .

...

∥TnT −T1∥2 ∥TnT −T2∥2 . . . ∥ΣnT ∥2


(3.15)

The elements of the above matrix are obtained using:

doq =

∥Tq −To∥2, if o ̸= q

∥Σo∥2, if o = q where o,q = 1,2, . . . ,nT
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Therefore, the distance matrix is obtained as shown below:

DC =



d11 d12 . . . d1nT

d21 d22 . . . d2nT

...
... . . .

...

dnT 1 dnT 2 . . . dnT nT


(3.16)

Once the distance matrix is obtained, we can then calculate the similarity matrix using

Equations 3.15 and 3.16 as follows:

Once the similarity matrix is obtained, we can easily make the association decision between

any two tracks Ta and Tb , where Tb comes from the less accurate sensor, as follows:

CORR(Ta,Tb) =

1, if mTaTb > mTbTb (Tracks are same)

0, if mTaTb < mTbTb (Tracks are different)
(3.17)

Track Synchronization

The tracks employed in this thesis adhere to a particular format. Each reported track

contains a sensor identity indicating its source, a unique time tag denoting when it was

reported, the positional coordinates of the sensor along with its speed and heading, and

the positional coordinates of the tracked targets, including their speeds and headings. An

example of the data packets used in this thesis is presented in figure 3.4, as follows:

Figure 3.4: An example structure of data packets received from tracking systems,

detailing sensor identification, timestamp, sensor position and kinematics, and target

position and kinematics.

The track data mentioned in the previous paragraph includes a time tag assigned to

each track. To perform accurate associations, we first need to align the tracks to a common

time instance before applying the association algorithm. Consider a MSMT scenario with

two sensors, each reporting one track and both having an update rate of 100 ms. Each

sensor will be allocated a specific time slot for reporting its data: for example, the scenario
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begins with sensor 1 reporting its data at 100 ms, followed by sensor 2 at 200 ms, then

sensor 1 again at 300 ms, and so on.

The association will not commence until both sensors have reported their respective

tracks; instead, the data from both sensors will be stored in a data buffer until the designated

association time is reached. This association time will be selected to ensure that both

sensors have provided at least two updates of their respective tracks. A conceptual diagram

illustrating a time synchronization scenario for the two-sensor case is presented in figure

3.5, as follows:

Figure 3.5: This figure demonstrates the track synchronization process over time for

two sensors (Sensor 1 and Sensor 2), showing how individual sensor measurements

are predicted and then associated to form synchronized tracks.

To keep things straightforward in this thesis, we have used the prediction equation

of a Kalman filter to synchronize the tracks. The inputs for our synchronization filter

include the geodetic positions of the sensor and its corresponding target track, with at

least two samples of positional data, the time instances associated with those samples, and

the time at which the prediction needs to be made. Once the filter receives the necessary

inputs, it converts the geodetic positional data into ECEF coordinates for the two given

time instances. The time difference between the two samples and the change in position

over that time are calculated, which are then used to determine the velocity in cartesian

coordinates. Using the calculated velocities, the positional data of the most recent sample,

and the time for prediction, the position is forecasted using a constant velocity motion

model.

Assuming the geodetic positions have been converted to cartesian coordinates, let
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(x1,xt1),(y1,yt1) and (z1,zt1) represent the sensor and track positions at the previous time

instant, and (x2,xt2),(y2,yt2) and (z2,zt2) represent the sensor and target positions at the

current time instant. Let t1 be the time for the previous instant and t2 the time for the

current instant for both the sensor and target track data. The cartesian velocities for the

sensor and target can be calculated as follows:

(vx,vxt) =

(
x2 − x1

t2 − t1
,
xt2 − xt1
t2 − t1

)
(3.18)

(vy,vyt) =

(
y2 − y1

t2 − t1
,
yt2 − yt1
t2 − t1

)
(3.19)

(vz,vzt) =

(
z2 − z1

t2 − t1
,
zt2 − zt1
t2 − t1

)
(3.20)

Let’s assume the prediction needs to be made 50ms after t2; in that case, the prediction can

be made using the following equation:

xnew

ynew

znew

vxnew

vynew

vznew


=



1 0 0 T 0 0

0 1 0 0 T 0

0 0 1 0 0 T

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





x2

y2

z2

vx

vy

vz


(3.21)

Where T=50ms.

In a similar way, we can predict the velocities and positions for the target track. After

making the prediction, the positions can be calculated using the following equation:


xpred

ypred

zpred

=


1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0





xnew

ynew

znew

vxnew

vynew

vznew


(3.22)
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After obtaining the predicted sensor and target positions, we input these predicted positions

into the error model described in section 3.4 to enhance the realism of the model.
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3.4 Fuzzy Algorithms used in this thesis

Three different versions of the fuzzy track-to-track association algorithm were examined

in this thesis, as outlined below:

A. Converted Measurement Fuzzy Track-to-Track Association Algorithm

CMS Algorithm

1. Initialize with sensor and target tracks in geodetic coordinates.

2. Add noise to the geodetic coordinates of the tracks using the proposed model.

3. Convert the positions of sensors and targets to ECEF coordinates.

4. Perform time synchronization on the tracks.

5. Apply the noise model to the synchronized data to obtain the Cartesian resolu-

tion of the tracks.

6. Implement the fuzzy track-to-track association algorithms.

7. Analyze and obtain the results.
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B. Fuzzy T2TA with Speed and Heading Filters

HSF Algorithm

1. Initialize with sensor and target tracks in time-synchronized geodetic coordi-

nates.

2. Convert the positions of sensors and targets to ECEF coordinates.

3. Apply the fuzzy track-to-track association algorithm based on positional data.

4. Apply the fuzzy track-to-track association algorithm based on heading.

5. Apply the fuzzy track-to-track association algorithm based on speed.

6. Assign weights to the fuzzy algorithms in the following order: positional >

heading > speed.

7. Analyze and obtain the results.

C. Window Based Fuzzy Track-to-Track Association Algorithm
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Windowing Based Fuzzy Algorithm

1. Initialize with sensor and target tracks in geodetic coordinates.

2. Add noise to the geodetic coordinates of the tracks using the proposed model.

3. Convert the positions of sensors and targets to ECEF coordinates.

4. Perform time synchronization on the tracks.

5. Apply the noise model to the synchronized data to obtain the Cartesian resolu-

tion of the tracks.

6. Set the window size and implement the fuzzy track-to-track association algo-

rithms.

7. Average the fuzzy results over the specified window length.

8. Obtain the windowed results.

3.5 Simulation Setup

Figure 3.6: A flowchart illustrating the multi-step process for track processing, from

coordinate conversion to data association.
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3.5.1 Coordinate Conversion

In the simulation setup, the positions of the sensor and target are initially specified

using geographic coordinates latitude, longitude, and altitude. To enable more precise cal-

culations and streamline spatial operations, these geographic coordinates are converted into

the cartesian coordinate system using the ECEF model. The ECEF system is well-suited

for global navigation and tracking because it represents positions as three-dimensional

coordinates (X, Y, Z) relative to the Earth’s center. This conversion, based on the WGS84

ellipsoid model, transforms latitude, longitude, and altitude into ECEF coordinates. By

doing so, the sensor and target positions can be expressed in Cartesian form, facilitating

calculations of distances, velocities, and angles. Once in ECEF coordinates, the positions

can be further transformed into the local ENU coordinate system of the sensor using a

rotation matrix. This transformation is essential for analyzing the target’s position within

the sensor’s local frame of reference, which is key for tasks such as tracking, localization,

and estimation.

In the simulation setup, we convert the geographic coordinates of NUML University

(33.6661° N, 73.0503° E) into Cartesian coordinates using the ECEF model. Here’s the

step-by-step process of how the conversion is carried out.

Step 1: Geographic Coordinates

The geographic coordinates for NUML University are:

• Latitude (φ ): 33.66612056792409°

• Longitude (λ ): 73.05028138305937°

• Altitude (h): 0 km (assuming sea level)

Step 2: Conversion to Radians Convert latitude and longitude from degrees to radians:

φrad = 33.661◦ ∗ π

180
= 0.5874 radians

φrad = 73.0503◦ ∗ π

180
= 1.2746 radians

Step 3: Constants for WGS84 Ellipsoid

We use the WGS84 model for the Earth, with the following parameters:
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• Semi-major axis (α): 33.66612056792409°

• Flattening ( f ): 73.05028138305937°

• Eccentricity squared (e2): 0 km (assuming sea level)

e2 = 2 f = f 2 = 0.00669437999014

Step 4: Radius of Curvature in the Prime Vertical (N(φ))

The radius of curvature N(φ) is calculated using the formula:

N(φ) =
a√

1− e2 sin2(φ)

Substituting the values:

N(33.6661◦) =
a√

1−0.00669437999014∗ sin2(0.5874)
≈ 6384.333 km

Step 5: ECEF Coordinates Formulas

Now, the ECEF coordinates X, I and Z are calculated using the following formulas:

X = N(φ +h) · cos(φ) · cos(λ )

X = N(φ +h) · cos(φ) · sin(λ )

Z =
(
(1− e2) ·N(φ)+h

)
· sin(φ)

Step 6: Substituting Values

Substituting the known values into the formulas:

1. For X:

X= (6384.333+0) . cos (0.5874) . cos (1.2746) = 1549.17km

2. For Y:

Y= (6384.333+0) . cos (0.5874) . sin (1.2746) = 5083.05km

3. For Z:

Y= ((1-0.00669437999014) . 6384.333+0) . sin (0.5874) = 3515.68km
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Final ECEF Coordinates for NUML University

• X = 1549.17 km

• Y = 5083.05 km

• Z = 3515.68 km

3.6 Summary

Chapter 3 outlines the methodology for evaluating two T2TA approaches: the

traditional CEP/CAP algorithm and a fuzzy logic-based method. The CEP/CAP algorithm

uses probabilistic thresholds to associate tracks based on spatial overlap, excelling in

computational efficiency and low-noise environments. However, its reliance on rigid

gaussian assumptions and isotropic errors limits adaptability in dynamic or cluttered

scenarios.

In contrast, the fuzzy logic approach employs adaptive membership functions and

rule-based criteria (spatial proximity, velocity consistency, temporal alignment) to handle

uncertainty. Three variants (CMS, HSF, and Windowing-based) are designed to enhance

robustness, particularly in noisy or overlapping environments. The methodology integrates

geodetic-to-cartesian coordinate conversions, Kalman-filter-based synchronization, and

realistic error modeling to simulate real-world sensor inaccuracies.

Simulations validate both methods, revealing key trade-offs: CEP/CAP prioritizes

speed and simplicity, while fuzzy logic offers superior accuracy in complex conditions at

higher computational cost. This chapter establishes a foundation for Scenarioal validation,

highlighting the potential of adaptive techniques to improve multi-object tracking in

distributed sensor networks.
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CHAPTER 4

SIMULATIONS AND RESULTS

4.1 Overview

This chapter presents a comparative evaluation of CEP and Fuzzy Logic for Track-

to-Track Association, assessing their performance in terms of accuracy, noise robustness,

speed, and scalability. The analysis is conducted within a MATLAB-based simulated

multi-sensor tracking environment, incorporating varying levels of noise and clutter to

replicate real-world conditions.

The findings show that Fuzzy Logic outperforms CEP in accuracy, especially in noisy

and cluttered scenarios. Fuzzy Logic showed greater resilience to noise, maintaining high

accuracy as noise levels increased, whereas CEP’s performance decreased under similar

circumstances. On the other hand, CEP demonstrated better computational efficiency

making it faster than Fuzzy Logic in terms of processing time. In terms of scalability,

Fuzzy Logic handled larger numbers of tracks and more complex environments more

effectively.

Overall, the results suggest that CEP is well-suited for low-noise environments

and applications with limited computational resources, whereas Fuzzy Logic offers a

more accurate and reliable solution for more complex tracking scenarios, though with

higher computational demands. The choice between these methods should be guided

by the specific requirements of the application, with Fuzzy Logic being more helpful in
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environments that require greater robustness and flexibility.

4.2 Experimental Setup / Simulation Environment

The Scenarios were conducted in a MSMT environment, simulating distributed

airborne radars with overlapping coverage areas. Sensors generate tracks in geodetic

coordinates (latitude, longitude, altitude) to reflect real-world radar. To standardize spatial

calculations, these coordinates were converted to ECEF Cartesian coordinates. This

conversion enabled precise distance and velocity calculations critical for track association.

To address asynchronous sensor updates, time synchronization was implemented via a

linear Kalman filter predictor, which generalized the tracks to a common timestamp using

a constant velocity motion model. This ensured temporal alignment of tracks before

association, minimizing latency-induced mismatches.

4.2.1 Implementation Tools

The simulations were conducted in MATLAB, using its computational efficiency

and built-in toolboxes for matrix operations, fuzzy logic, and Kalman filtering. The Fuzzy

Logic Toolbox simplified the design of membership functions and rule bases for the T2TA

algorithm, while custom scripts handled coordinate transformations, noise addition, and

performance metric calculations. All Scenarios were run on a workstation with an Intel i7

processor and 32 GB RAM to ensure rapid iteration and scalability testing.

4.3 Performance of CEP/CAP Algorithm

The CEP/CAP algorithm achieved 95% accuracy under low uncertainty (σ=1) by

associating tracks within 90% overlap thresholds. However, accuracy dropped sharply to

52% at (σ=4) as overlapping error regions caused false positives. CEP’s firm probabilistic

limitations struggled to differentiate tracks in high-noise scenarios, while CAP’s wider
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confidence regions (95%) marginally improved reliability but introduced redundancy

4.3.1 Computational Efficiency

CEP/CAP showed near-linear scalability, processing 10,000 tracks in 18.2s (CEP)

and 22.7s (CAP) on standard hardware. The complexity for pairwise overlap checks

ensured viability for real-time systems, with CAP’s marginally slower speed offset by its

robustness in cluttered environments.

Table 4.1: Processing times for different numbers of tracks using CEP and CAP

methods. CEP consistently outperforms CAP, with lower processing times as the

number of tracks increases from 100 to 10,000.

Number of Tracks Processing Time (CEP) Processing Time (CAP)

100 0.12s 0.15s

1,000 1.8s 2.1s

5,000 8.5s 10.3s

10,000 18.2s 22.7s

4.4 Performance of Fuzzy Logic T2TA

Fuzzy logic T2TA method demonstrates strong performance in scenarios involving

variations in track means and covariance. Its use of similarity measures allows for effective

handling of uncertainty, especially where conventional methods like CEP may struggle.

While generally robust, its performance may degrade in high-noise environments due to

reduced decision stability.
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4.4.1 Adaptive Association

Fuzzy Logic’s adaptive membership functions and rules achieved 88% accuracy in

low-noise scenarios and 92% accuracy under high noise (σ = 4). By fuzzifying spatial

proximity, velocity consistency, and temporal alignment, the algorithm effectively distin-

guished tracks, outperforming CEP in uncertain environments. Key membership values

(e.g., spatial proximity = 0.78, velocity consistency = 0.72) demonstrated the system’s

ability to handle variability.

Table 4.2: Effect of increasing noise (σ = 1 to σ = 4) on spatial proximity, velocity

consistency, and accuracy. Higher noise reduces membership values but accuracy

remains stable or improves slightly.

Noise Level (σ ) Spatial Proximity

(Membership)

Velocity Consistency

(Membership)

Accuracy (%)

Low (σ = 1) 0.92 0.85 88

Medium (σ = 2.5) 0.85 0.78 90

High (σ = 4) 0.78 0.72 92

4.4.2 Clutter Handling

In cluttered scenarios with overlapping tracks and dynamic targets, Fuzzy Logic

maintained 92% accuracy for overlapping tracks and 89% accuracy for dynamic targets.

The algorithm’s ability to adapt to velocity and heading variations allowed it to outperform

CEP in complex environments, reducing false positives to 8% in overlapping cases.

4.4.3 Fuzzy T2TA Tradeoffs

Fuzzy Logic T2TA achieved high accuracy (85–92%) across varying track densities,

outperforming in complex, noisy environments. However, this performance came at
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Table 4.3: Comparison of accuracy and false positive rates in two scenarios: over-

lapping tracks and dynamic targets. The system performs better with overlapping

tracks, showing higher accuracy and fewer false positives.

Scenario Accuracy (%) False Positives (%)

Overlapping Tracks 92 8

Dynamic Targets 89 11

the cost of increased computational load, processing 1,000 tracks in 4.8s and 10,000

tracks in 48.7s. While its adaptive rules and membership functions enabled robust track

association, the higher processing time makes it more suitable for offline or less time-

critical applications compared to faster methods like CEP. This trade-off highlights the

need for optimization to balance accuracy and efficiency in real-time systems.

Table 4.4: Effect of increasing number of tracks on processing time and accuracy. As

the number of tracks grows from 100 to 10,000, processing time increases significantly

while accuracy gradually decreases.

Number of Tracks Processing Time (s) Accuracy (%)

100 0.45 92

1,000 4.8 90

5,000 22.3 88

10,000 48.7 85

4.5 Comparative Analysis

This section presents a systematic comparative analysis of the performance of two

track-to-track association techniques i.e. CEP and fuzzy logic under varying tracking

conditions. The experiment is conducted by designing four distinct scenarios, each repre-

senting different configurations of track means and covariance structures. These scenarios
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range from ideal conditions, where both tracks are statistically identical, to more complex

situations involving differences in both mean positions and noise characteristics. The

purpose of this analysis is to highlight the strengths and limitations of each method and to

determine the conditions under which one method may outperform the other in multi-object

tracking applications.

4.5.1 Scenario 1: Same Means [10,10] and Same Noise (σ = 0.5)

The study evaluated how track uncertainty (sigma) and the track mean affects the

T2TA. Results showed that tracks remain reliable for association when sigma is low, but

beyond a threshold of 4, uncertainty degrades track quality, making them unsuitable for

association. In scenario 1 both the tracks 1 and 2 share the same mean [10,10], and the

same sigma i.e. 0.5. This illustrates how uncertainty impacts association as shown in Table

4.5

SCENARIO-1A

Figure 4.1: At same means [10,10] and same noise (σ = 0.5) for both tracks, CEP

performs better than fuzzy logic. Error rate of CEP stays constant whereas for fuzzy

it drops with increasing sigma i.e. noise.
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Table 4.5: Scenario 1-A with same track means and low noise (σ = 0.5) allows reliable

track association. CEP performs better than fuzzy logic.

Scenario Track 1

Mean (µ)

Track 2

Mean (µ)

Track 1

Sigma (σ )

Track 2

Sigma (σ )

Results

1-A [10,10] [10,10] 0.5 0.5 Tracks associated successfully

(high confidence). Low sigma

ensures reliable association. CEP

outperforms fuzzy logic.
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4.5.2 Scenario 2: The mean position is same but the noise is increased

from (σ = 0.5 to σ = 4)

In Scenario 2-A, 2-B and 2-C, both tracks 1 and 2 share the same mean [10,10], but

their differing sigma values illustrate how uncertainty impacts association as shown in

Table 4.4. Track 1 has lower sigma values, while Track 2 exhibits slightly higher uncer-

tainty, demonstrating the effect of increasing noise on track performance. Maintaining low

uncertainty is crucial for effective association.

SCENARIO 2-A

Figure 4.2: When both tracks are at the same position [10, 10], and noise is increased

(σ = 1) for Track 2, CEP outperforms fuzzy logic. The error rate of CEP remains

constant, while the error rate for fuzzy logic decreases to 0.41 as sigma increases.
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SCENARIO 2-B: Same Mean [10, 10], but noise is increased from (σ = 1 to σ = 2.5)

Figure 4.3: When both tracks are at the same position [10, 10], and noise is increased

to (σ = 2.5) for Track 2, CEP continues to follow the same pattern. In contrast, fuzzy

logic demonstrates a significant reduction in the error rate.

SCENARIO 2-C: Same Mean [10, 10], but noise is increased from (σ = 2.5 to σ = 4)

Figure 4.4: When both tracks are at the same position [10, 10], and noise is increased

to (σ = 4) for Track 2, fuzzy logic outperforms CEP. However, in this case, the high

level of noise causes the tracks to no longer remain viable candidates for association.
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Table 4.6: Scenarios 2-A, 2-B & 2-C illustrate how increasing noise (σ ) in Track 2

affects association. The increase in σ reduces the the association accuracy, leading to

the rise in unreliable or failed track association.

Scenario Track 1 Mean (µ) Track 2 Mean (µ) Track 1 Sigma (σ ) Track 2 Sigma (σ ) Results

2-A [10,10] [10,10] 0.5 1 Tracks associated successfully

(high confidence). Low sigma

ensures reliable association.

2-B [10,10] [10,10] 0.5 2.5 Association accuracy decreases

significantly. Uncertainty begins to

affect track reliability.

2-C [10,10] [10,10] 0.5 4 Tracks fail to associate. Sigma > 4

causes significant degradation;

tracks deemed unreliable.

4.5.3 Scenario 3: The mean position is different i.e. [10,10] and [10,11]

but the noise is kept same i.e. (σ = 0.5)

Scenario 3-A examined how different mean effect the effect track-to-track association.

Results showed that when the tracks have different means but same sigma, fuzzy logic

surpasses CEP. The results also show that moderate differences in uncertainty do not

impact association performance. This suggests the process remains stable across varying

uncertainties.
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SCENARIO 3-A

Figure 4.5: When both tracks are at the different position [10, 10], and [10,11] and

same noise (σ = 0.5) for both the tracks, fuzzy logic outperforms CEP.

Table 4.7: Scenario 3-A explores track association with slightly different means and

low noise (σ = 0.5). Despite the mean difference, tracks are successfully associated,

with fuzzy logic outperforming CEP.

Scenario Track 1 Mean (µ) Track 2 Mean (µ) Track 1 Sigma (σ ) Track 2 Sigma (σ ) Results

3-A [10,10] [10,11] 0.5 0.5

Tracks associated successfully

(high confidence). Fuzzy logic

outperforms CEP with same sigma

but different mean.

4.5.4 Scenario 4: The mean position is different i.e. [10, 10] and [10, 11]

and the noise is increased from (σ = 0.5 to σ = 4)

In scenario 4, the analysis delved deeper into how the absolute value of sigma

representing the total uncertainty affects the performance of track-to-track association,

with a specific focus on Fuzzy Logic as the method for handling track associations. The

goal was to explore whether the level of uncertainty impacts Fuzzy Logic’s ability to
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correctly associate tracks, particularly comparing its performance on identical versus

different tracks.

The results uncovered a clear pattern. When the tracks are identical, Fuzzy Logic

struggles to make precise associations, leading to poor performance. This may be due to

the fact that Fuzzy Logic, which relies on degrees of uncertainty and ambiguity, finds it

difficult to differentiate between two very similar tracks, especially when sigma values are

high. The inherent fuzziness of the logic likely causes confusion between identical tracks,

leading to errors in association.

In contrast, when the tracks are different, Fuzzy Logic excels. The method’s ability

to handle uncertainty becomes an advantage in these cases, as it can effectively distinguish

between tracks with dissimilar characteristics, despite the presence of noise or variability

(sigma). This highlights Fuzzy Logic’s strength in scenarios where tracks differ signifi-

cantly in their attributes or behaviors, allowing it to make more accurate associations than

other techniques. The findings suggest that Fuzzy Logic performs best in environments

with high variability among tracks, leveraging the differences between them to improve

association accuracy, while it struggles when tasked with associating highly similar tracks

under uncertain conditions.
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Scenario 4-A

Figure 4.6: When both tracks are at the different position [10, 10] and [10,11] and

noise is increased to (σ = 1.0) for Track 2, CEP performs worse as compared to fuzzy.

The fuzzy logic performs better in higher noise scenario.

Scenario 4-B

Figure 4.7: When both tracks are at the different position [10, 10] and [10,11] and

noise is increased to (σ = 4.0) for Track 2, performance of fuzzy degrades as compared

to CEP.However, in this case, the high level of noise causes the tracks to no longer

remain viable candidates for association.
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Table 4.8: Examples 4-A and 4-B demonstrate stable association accuracy (90%)

despite increasing noise (σ ) in Track 2. Moderate mean and sigma differences do not

significantly affect performance.

Example Track 1 Mean (µ) Track 2 Mean (µ) Track 1 Sigma (σ ) Track 2 Sigma (σ ) Results

4-A [10,10] [10,11] 0.5 1.0

Association accuracy remains stable

(90%). Moderate sigma differences do

not degrade performance.

4-B [10,10] [10,11] 0.5 4.0

Association accuracy remains stable

(90%). Moderate sigma differences do

not degrade performance.

Table 4.9: Summary of four scenarios evaluating the effect of mean and sigma

variations on track association. Results show that CEP performs better with identical

tracks, while fuzzy logic excels when there is a difference in means. Large sigma

differences reduce reliability, especially beyond σ > 3.

Scenario Key Parameter Range Tested Result

1
Track mean and sigma

uniformity

µ = 10,10

σ = 0.5−0.5
CEP performs better than fuzzy logic.

2
Sigma differences

between tracks

µ = 10,10

σ = 0.5−4.0

Moderate differences (σ ≤ 1.5) do not

degrade performance.

3

Tracks with different

means, same sigma

values

µ = 10,11

σ = 0.5−0.5
Fuzzy logic outperforms CEP.

4
Tracks with different

means and sigma values

µ = 10,11

σ = 0.5−4.0

Fuzzy logic performs better than CEP.

σ > 3 leads to unreliable association;

σ < 2 maintains high accuracy.

4.6 Summary

In scenario 1, where both tracks have the same means and identical covariance values,

CEP performs better than fuzzy logic due to its consistent and structured association
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approach. In scenario 2, where the track means remain the same but the covariance values

differ, the performance of CEP remains largely unaffected, particularly when the sigma

variation is moderate (σ ≤ 1.5). However, in scenario 3, where the means of the tracks are

different but the covariance values are the same, Fuzzy Logic begins to outperform CEP, as

it is better suited to handle spatial separation between tracks. In scenario 4, where both the

means and covariance values differ, Fuzzy Logic again shows better performance than CEP,

especially when the sigma values are below 2. However, when the sigma increases beyond

3, the association results from fuzzy logic become less reliable. These observations suggest

that Fuzzy Logic provides greater flexibility and adaptability in complex conditions, while

CEP remains effective under simpler or more uniform scenarios.

4.7 Discussion

The Scenarios conducted provide a comprehensive analysis of how track parameters,

specifically the mean and sigma, influence the performance of track-to-track association

methods such as CEP and Fuzzy Logic. The overall results reveal key distinctions in how

these algorithms manage uncertainty and variability, which are critical factors in multi-

object tracking applications. As sigma increases, particularly beyond a threshold of 4, track

quality degrades to the point where it becomes unsuitable for association. This degradation

highlights the inherent limitations of both methods under high uncertainty conditions,

emphasizing the need for low sigma values to maintain reliable track associations.

Interestingly, when examining the differences in sigma values between tracks, it was

found that such variations do not significantly impact the performance of the association

process. This finding suggests that both CEP and Fuzzy Logic are relatively robust to

differences in uncertainty levels, maintaining stability even in the presence of varying noise

conditions. This robustness is crucial for real-world applications where track uncertainties

can fluctuate significantly. However, the absolute value of sigma proved to be a critical

determinant of effectiveness in the association methods.

Fuzzy Logic, while exhibiting strength in scenarios where tracks differ significantly,

demonstrates limitations when tasked with associating identical tracks, leading to poorer

performance compared to CEP. This indicates that Fuzzy Logic’s capabilities are best
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utilized in environments characterized by diverse and distinct tracks, where its adaptability

to uncertainty can enhance association accuracy. Conversely, CEP remains a more reliable

choice in situations that demand high precision, particularly when the tracks exhibit

similarities. In conclusion, the results from these Scenarios highlight the trade-offs between

the two methodologies. Fuzzy Logic offers greater flexibility and adaptability in complex

tracking environments, thriving on variability, while CEP provides robust performance

in more controlled scenarios with low uncertainty and high precision requirements. The

choice between these two methods ultimately depends on the specific characteristics of

the tracking scenario, necessitating a careful consideration of the trade-offs involved to

optimize track association performance in various contexts.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

This research focused on the development and evaluation of a fuzzy logic based

T2TA algorithm for multi-object tracking in distributed sensor networks. The simulation

results indicate that the proposed method performs effectively under varying levels of

noise and uncertainty. In comparison to traditional method i.e. CEP, the fuzzy logic

approach demonstrated improved accuracy and flexibility in associating tracks, especially

in moderate noise environments. The integration of a realistic error model and a track

synchronization mechanism contributed to enhanced association reliability, supporting the

use of fuzzy logic in practical multi-sensor applications.

5.1.1 Performance Comparison of CEP and Fuzzy Logic

The performance comparison between CEP and fuzzy logic reveals significant

differences in how both handle noise and uncertainty. CEP, although computationally

efficient, relies on fixed probabilistic boundaries, which limits its adaptability in dynamic

scenarios. On the other hand, the fuzzy logic approach shows better association accuracy

in moderate noise conditions due to its ability to manage uncertainty through fuzzy

membership functions. However, when the noise level becomes very high (σ ≥ 4), both
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methods experience a decline in performance, and the tracks become less suitable for

association. Overall, fuzzy logic offers a more robust and adaptable solution in varying

sensor conditions.

5.1.2 CEP’s Computational Efficiency

The Circular Error Probable (CEP) approach demonstrated a significant advantage

in computational efficiency due to its straightforward mathematical formulation. CEP

utilizes circular areas to probabilistically associate tracks, allowing it to quickly evaluate

potential matches without extensive data processing. This makes it a favorable option in

environments where multiple targets need to be tracked in real time, such as in defense

or surveillance systems that rely on fast updates to maintain accuracy. Its simplicity also

allows it to handle track associations with minimal computational burden, which is ideal

for systems with limited processing power.

5.1.3 CEP’s Limitations in Cluttered Environments

However, CEP’s reliance on probabilistic assumptions means it is best suited for envi-

ronments with low to moderate noise. When operating in high-clutter environments with

frequent overlapping tracks, CEP’s probabilistic boundaries sometimes led to false associa-

tions or failures to accurately distinguish between similar tracks. This limitation suggests

that while CEP may be ideal for certain controlled scenarios, it lacks the flexibility needed

in dynamic environments where noise levels fluctuate, and sensor overlap is common.

5.1.4 Fuzzy Logic’s Adaptability in Complex Environments

In contrast, the Fuzzy Logic approach excelled in high-noise, high-clutter environ-

ments, which often challenge traditional probabilistic methods. By evaluating tracks

based on membership functions rather than fixed thresholds, Fuzzy Logic can effectively

handle overlapping or intersecting tracks with differing parameters. This adaptability is

particularly useful for applications such as multi-sensor networks in urban areas, where
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sensor readings may vary, and noise is abundant. The fuzzy approach provided better

differentiation between tracks, making it more robust in high-clutter environments than

CEP.

5.1.5 Drawbacks of Fuzzy Logic’s Computational Demand

The trade-off, however, lies in the computational cost. Fuzzy Logic requires the

establishment and evaluation of fuzzy rules and membership functions for each parameter

(e.g., position, velocity, and range), resulting in higher processing times. While this enables

Fuzzy Logic to maintain a high level of accuracy, it may pose challenges for real-time

applications that cannot accommodate longer processing times. This limitation implies that

Fuzzy Logic’s strengths are best suited to applications prioritizing accuracy over speed, or

where processing resources are not as constrained.

5.1.6 Impact of Track Parameters on Algorithm Performance

Behavior in Identical Track Scenarios:

In scenarios where tracks shared similar parameters, Fuzzy Logic struggled to differ-

entiate them effectively. This is due to its reliance on fuzzy membership thresholds, which

are beneficial in varied settings but may not offer the necessary precision in controlled

environments with near-identical tracks. In contrast, CEP’s fixed probabilistic boundaries

allowed it to consistently identify and associate similar tracks, providing more reliable

associations in these conditions.

Handling of Differing Track Characteristics:

For tracks with varied parameters such as distinct velocities, headings, or sensor-specific

uncertainties Fuzzy Logic demonstrated superior performance. Its adaptable nature allowed

it to make nuanced distinctions between tracks, achieving a higher association accuracy

than CEP in complex, multi-target scenarios. This makes Fuzzy Logic particularly valuable

in real-world applications where sensor inputs differ, such as in distributed sensor networks,

autonomous vehicles, or collaborative robotics, where each sensor might bring unique

biases and noise profiles to the tracking process. This adaptability emphasizes Fuzzy

Logic’s strength in multi-object tracking environments that require versatile, reliable track



109

association in the face of variability and complexity.

5.2 Limitation

While the fuzzy logic-based approach showed improved performance in many sce-

narios, it has certain limitations. The algorithm’s effectiveness reduces in environments

with very high noise, where tracks become unreliable for association. Additionally, the use

of fuzzy logic introduces higher computational complexity compared to CEP. Moreover,

the evaluation was based on simulated data, and actual field deployments may present addi-

tional challenges such as sensor calibration issues, varying update intervals, and real-time

communication delays that were not fully modeled in this study.

5.2.1 Computational Demands of Fuzzy Logic

One of the primary challenges identified with Fuzzy Logic is its computational

demand. Fuzzy systems require the processing of multiple fuzzy rules and membership

functions for each input variable, resulting in a processing load that scales with the

number of objects and parameters involved. In real-time applications or systems with

limited computational resources, this could hinder performance, making it less suitable for

scenarios demanding high-speed processing, such as missile tracking or high-speed object

tracking in autonomous driving.

To illustrate, if Fuzzy Logic is used in a multi-sensor system with dense clutter, each

sensor’s data must be processed individually and mapped onto fuzzy membership functions

before being aggregated into the track association model. This can cause latency, impacting

the system’s ability to provide timely updates in real-time scenarios. In high-performance

environments, this delay could compromise the system’s overall effectiveness, underscoring

the need for streamlined or optimized fuzzy systems if they are to be implemented in

time-sensitive applications.
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5.2.2 Scenario-Specific Effectiveness

The Scenarioal results indicated that Fuzzy Logic is not universally advantageous

and is most effective in environments with high variability or noise. In low-noise, high-

similarity scenarios, Fuzzy Logic’s fuzzy thresholds may create ambiguity, resulting in

decreased association accuracy. Conversely, CEP performed well in these environments due

to its precise probabilistic boundaries, which allowed for consistent association between

tracks with minimal variability.

This observation suggests that Fuzzy Logic’s benefits are best realized in environ-

ments that challenge traditional association methods, such as distributed sensor networks

with varied data or in fields like surveillance where targets may vary significantly in

appearance and behavior. Therefore, while Fuzzy Logic is highly effective in complex sce-

narios, its reliance on adaptable, context-sensitive thresholds may reduce its applicability

in controlled, uniform environments where precise association is paramount

5.3 Future Work

5.3.1 Optimization of Fuzzy Logic for Real-Time Applications

• To address the computational limitations of Fuzzy Logic, future research could

focus on reducing its processing requirements. Techniques such as fuzzy clustering,

dimensionality reduction, or parallel processing could streamline fuzzy inference,

making it more practical for real-time applications. Fuzzy clustering, for instance,

could simplify the membership function definitions by grouping similar inputs,

allowing for faster inference without sacrificing accuracy.

• Another promising direction is the development of a hybrid model that combines

CEP’s probabilistic efficiency with Fuzzy Logic’s adaptive precision. Such a model

could use CEP to make quick associations for straightforward cases while reserving

Fuzzy Logic for more complex, high-clutter scenarios. This would balance accuracy

with processing speed, optimizing performance across a wider range of scenarios
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and enhancing applicability for dynamic real-world settings.

5.3.2 Incorporating Advanced Data-Driven Techniques

• Machine learning models, particularly deep learning, offer potential for enhancing

track-to-track association by learning associations from past data, predicting asso-

ciation parameters, or automatically adjusting fuzzy membership functions. These

techniques could adapt the association process to changing conditions, making it

possible to address challenges in diverse environments.

• Reinforcement learning is another promising avenue, particularly for systems that

operate in continuously changing environments. In this approach, the association

algorithm could learn optimal behaviors based on feedback from past tracking per-

formance. By continuously updating association rules in response to environmental

changes, a reinforcement learning-based approach could improve performance in

unpredictable scenarios, allowing for rapid and accurate associations in challenging

environments.
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