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ABSTRACT  

Title: A Deep Learning Method For Inner Speech Classification Using EEG Signal 

This thesis studies utilizing electroencephalography (EEG) signals the difficulties of subject-

independent inner speech classification. Particularly for those with severe motor disabilities, 

inner speech the act of silently communicating to oneself offers a potential modality for Brain-

Computer Interfaces (BCIs). Low signal-to-noise ratios and great inter-subject variability make 

deciphering inner speech from EEG difficult, nevertheless. Based on EEG data, this thesis 

evaluates several machine learning and deep learning models for inner speech classification. 

Particularly, a deep learning model, a Convolutional Neural Network (CNN) with triplet loss, 

is contrasted against conventional machine learning methods including Linear Support Vector 

Machine (SVM), More general SVM with various kernels, and LightGBM. Subject-

independent framework with leave-one-subject-out cross-valuation on the Thinking Out Loud 

(TOL) dataset evaluates the models. Performance is evaluated with reference to accuracy, F1-

score, precision, and recall. The CNN-based triplet network achieves the best average accuracy 

among other models, so the results show the promise of deep learning for subject-independent 

inner speech classification. Although the results imply that deep learning presents a viable path 

for future research, especially with bigger and more diverse datasets and advanced 

architectures, benefits over conventional approaches are minor. This work advances knowledge 

of the difficulties and possible solutions for creating strong, generally applicable inner voice 

BCIs. 
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CHAPTER 1  

INTRODUCTION  

1.1 Overview   

Brain-Computer Interface (BCIs) are new techniques circumventing conventional 

neuromuscular paths by means of a direct communication link between the human brain and 

outside equipment. This technology allows humans to control robotic limbs, computers, or other 

equipment just with their brain activity. BCIs change human-computer interaction and provide 

new opportunities for people with impairments since they basically provide a new 

communication channel from the brain to the outer environment. Thus, the BCI offers great 

opportunities for persons who have lost physical or language abilities from neurological 

illnesses or other constraints. By translating brain signals into executable commands, BCIs 

provide tools to reestablish communication, control assistive technology, and finally increase 

quality of life [1]. A case study for instance showed the possibility of BCIs for communication, 

self-expression, and social connection when a patient with locked-in ALS effectively long-term 

utilized a BCI for autonomous painting at home [2]. 

Usually fitting either invasive or non-invasive categories are BCIs. By physically 

implanting electrodes precisely into the brain, invasive BCIs generate a high-density signal for 

recording and stimulation of neural activity. Although it offers improved signal quality and 

accuracy, this approach reveals natural risks connected to surgery including infection, bleeding, 

and probably tissue damage. On the other hand, non-invasive BCIs evaluate brain activity from 

the scalp or surface of the head using external sensors, such as those used in 

electroencephalography (EEG) or functional near-infrared spectroscopy (fNIRS). These 

methods are more prone to noise and artifacts even if they have superior safety and simplicity 

of use than invasive BCIs. Their spatial resolution is really poor generally. Using non-invasive 
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BCI method electroencephalography (EEG), the current thesis explores the subtleties of inner 

speech classification. 

1.1.2   Non-Invasive BCI 

Unlike non-invasive techniques, invasive BCIs surgically put electrodes right into the 

brain. This method naturally carries hazards including brain damage, infection, and surgical 

problems even if it offers acceptable signal quality [3]. Usually depending on 

electroencephalography (EEG) to capture brain waves from the scalp, non-invasive techniques 

usually have certain benefits instead of these hazards. Examining several brain activities 

including sleep, emotion, and cognition, this safe and non-invasive method is EEG especially 

suitable for studies on inner speech since EEG can record the minute changes in brain activity 

resulting from inner speech. Non-invasive BCIs such as EEG offer accessibility, simplicity of 

use, reduced expense, and most likely application in both research and pragmatic contexts. 

Moreover, non-invasive methods are not useful for BCI development because of ethical issues 

and patient comfort they entail [3]. Particularly, electroencephalogram (EEG) measurements, 

non-invasive BCIs have shown good efficacy in treating severely and partially disabled people. 

These BCIs restore basic control tools by allowing individuals to recover prosthetic limbs and 

wheelchairs as well as communication skills. Researchers have created BCI systems, for 

example, allowing paraplegic people to type words on a computer screen, maneuver a 

wheelchair or robotic arm merely using their thoughts. 

1.1.3  Inner Speech: A Natural BCI Modality 

Development of EEG-based systems has much benefited from common BCI methods 

as those using P300 waves, SSVP visual stimuli, or motor imagery. These methods, meanwhile, 

are sometimes slow or demanding for consumers, which limits their practicality for daily and 

extended usage. Researchers are looking at speech-related techniques such silent, imagined, or 

inner speech in BCI systems as a more simple approach to manage devices in order to meet 

these difficulties. It is well known that speech generation is a complicated process including 
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auditory processing, semantics, syntax, and articulatory motions. Though these speech-related 

techniques have great promise, their particular definitions and differences in the literature 

remain very vague. [3} 

Among these techniques, inner speech—also known as verbal thinking or internal 

monologue offers a particularly interesting path for BCI control because of its covert character 

and absence of reliance on overt speech articulation or muscle movements. For those with 

severe movement disabilities, BCIs can offer a more natural and simple way of communication 

and control by directly decoding the brain correlates of inner speech. It is easier and more 

natural for humans. 

Inner speech has a long history, beginning in the writings of Plato and Socrates. Still, 

scientific study of inner speech started only in the early 20th century. According to Soviet 

psychologist Lev Vygotsky, a process starting in childhood leads from exterior speech to 

internal speech. Young children commonly express their ideas and behaviors loudly as they 

engage with their surroundings. This "self-talk" gradually becomes absorbed and turns into the 

quiet inner speech we know from adulthood. Vygotsky claimed that complex reasoning, 

planning, and problem-solving all depend on this internalization of language, therefore 

supporting cognitive development. 

More recently, neuroimaging methods including fMRI and EEG have been used to 

explore the brain foundations of inner speech with conventional focus on the left hemisphere; 

these investigations have shed light on the complex network of brain areas engaged in this 

cognitive process. Although areas like the frontal lobe, temporal lobe, and parietal lobe all help 

to process inner speech, a studies challenge the notion of the left hemisphere being solely 

dominant even if their results also strongly support the significance of particular areas within 

the *left* hemisphere. For example, although some research employing EEG have showed 

greater activity in the left hemisphere during imagined speech classification, this result should 

be seen in light of the complex and multifarious network supporting inner speech *within that 

hemisphere. [16] 

Using lesion analysis, a method able to pinpoint areas vital for a certain function rather 

than those just engaged, a study looked at the neurological correlates of inner speech [16]. Using 
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voxel-based lesion-symptom mapping to link lesion locations with performance on inner speech 

tasks (such as rhyme and homophone judgments), overt speech tasks (like reading aloud), and 

working memory tasks (including sentence repetition), their study comprised 17 patients with 

chronic post-stroke aphasia. This method enabled a comparison of neural correlates especially 

important for inner speech, separating them from those required for overt speech and working 

memory. Lesions to the left pars opercularis in the inferior frontal gyrus (BA 44) and to the 

white matter close to the left supramarginal gyrus (BA 40) clearly influenced inner speech 

abilities, the study showed. These findings underline the function of several non-motor 

cognitive processes in inner speech within the left hemisphere and imply that inner speech is 

not only overt speech minus a motor component. 

The research also emphasizes the need of discriminating between various kinds of inner 

speech and suggests that activities requiring active monitoring, such rhyming and homophone 

judgments, can depend on "conscious inner speech," whilst other tasks might generate a less 

aware version. The study emphasizes how strongly the left inferior frontal gyrus—especially 

the pars opercularis—appears to be linked to the more conscious kind of inner speech. 

Moreover, the participation of white matter close to the left supramarginal gyrus points to a 

vital function for the dorsal language route in the processing of inner speech, generally 

connected with speech production and repetition. This path could move phonological codes 

from frontal to posterior brain locations of the left hemisphere. 

1.2 Motivation  

P300 (brain wave reaction to unexpected events), SSVEP (Steady-state visual evoked 

potentials), and motor imagery—thinking about physical actions—are the main foundations of 

current BCI systems. Although these methods have produced important progress in EEG-based 

BCIs, their practical relevance is clearly hampered. These approaches are often limited by poor 

response times, heavy user training requirements, and lack of long-term practicality. 

Researchers have started researching the speech-related paradigms—such as silent speech, 

imagined speech, and inner speech—that provide a more natural and straightforward way of 

engaging with gadgets in order to handle these problems. 
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A major obstacle in creating efficient inner speech decoding systems is obtaining 

accuracy and generalizability, particularly in situations where BCIs have to adjust to new users 

without much retraining. Many current techniques for inner speech decoding involve subject-

dependent approaches, customizing models to match individual brain patterns. This method 

limits the scalability and utility of BCIs in more general, real-world environments even when it 

can produce reasonable accuracy in a controlled environment. 

Given its ability to transform communication and control for people with extreme 

disabilities, a strong, subject-independent inner speech decoding system is especially needed. 

By means of developing models that enable BCIs to serve a larger population, therefore 

reducing the need for specific training and enabling more pragmatic uses. By means of analysis 

and comparison of several machine learning techniques meant to enhance subject-independent 

performance, this work intends to remove these constraints, opening the path for more efficient 

and user-friendly BCI systems. 

1.3 Problem Background  

The present research on inner speech decoding via EEG signals face several major 

complexities: 

i. Low Signal-to-Noise Ratio: Separating the weak brain signals linked with inner speech 

from the ambient noise complicates internal speech decoding. Low signal-to-noise ratio 

(SNR) occurs from the intrinsically weak character of these signals combined with 

interference from muscle activity, ocular motions, ambient influences, and the limits of 

existing EEG technology. This low SNR causes inaccurate detection and extraction of 

core speech patterns, therefore impeding the development of consistent decoding 

models. 

ii. Individual Variability: The inherent variations in how each person's brain produces 

these internal ideas create a major challenge in decoding inner speech. The brain 

processes connected with inner speech essentially differ greatly among individuals. 

Therefore, a model developed to identify the inner speech patterns of one individual 
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could not be useful for another. Inner speech generates such delicate brain signals, which 

makes it difficult to differentiate from the many other electrical processes recorded by 

EEG. Among the elements causing this difficulty are the naturally weak signals 

connected with inner speech, interference from many noise sources—including muscle 

and eye movements and ambient noise—and the intrinsic limits of EEG technology. 

Therefore, identifying the particular brain patterns connected to inner speech becomes 

quite difficult and slows down the creation of consistent decoding models capable of 

functioning among various people.  

iii. Limited Datasets: The significant variability in brain patterns and cognitive processes 

linked with inner speech makes constructing inner speech decoding models that 

consistently perform across multiple individuals problematic. This variation is produced 

by differences in brain shape, cognitive style, linguistic experience, and other personal 

characteristics. Therefore, a model performing well on one person's data could not be 

able to efficiently decode inner speech from another person, so restricting the general 

use of inner speech BCIs. 

Although several machine learning and deep learning techniques have been investigated 

for inner speech decoding, they usually find it difficult to reach both great accuracy and wide 

applicability among users. Most current research depends on subject-dependent methods, in 

which models are taught on data from particular users. Subject-dependent models frequently 

perform poorly and lack the capacity to generalize successfully to new users, therefore 

restricting their practical relevance even if they can occasionally attain modest accuracy inside 

controlled conditions. 

Development of subject-independent techniques that attain both great accuracy and 

generalizability is desperately needed to solve these difficulties. Subject-independent methods 

would improve the feasibility and scalability of inner speech BCIs by allowing models to 

decipher inner speech across varied persons without considerable retraining, hence opening 

new paths for real-world uses. 
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1.4 Problem Statement 

Current techniques for deciphering inner speech have significant limitations including 

their sensitivity to noise in EEG data, significant variation between individuals, and general 

lack of stability. These problems impede the development of dependable Brain-Computer 

Interface (BCI) systems that are easily flexible for use by a broad spectrum of people with 

communication or motor problems. Deep learning is a possibly strong solution to the difficulties 

of inner speech decoding since it has shown proven ability to extract complex patterns from 

raw data. Comparative analysis is required to evaluate whether deep learning models provide 

benefits over other machine learning approaches for subject-independent inner speech 

categorization, hence transcending the emphasis on deep learning architectures. The 

development of practical BCI systems depends on this kind of approach since it could minimize 

the need for laborious calibration for every user, so increasing the availability of BCIs to a 

greater population, particularly in cases of severe motor disabilities who might be unable to 

generate enough data for individualized model training. In an attempt to identify those with 

great accuracy and resilience in detecting inner speech from EEG data over a heterogeneous 

population, the present work examines numerous Machine learning models. This study will 

provide perceptive analysis to enable more readily available and practical BCI systems. This 

work intends to eventually impact the field of assistive technology by developing BCI systems 

that can empower more people without demanding large individual customizing. 

1.5 Research Questions 

1. RQ1: In a subject-independent setting, what machine learning and deep learning models 

and algorithms show the best accuracy in classifying inner speech from EEG signals? 

2. RQ2: What are the main determinants of the generalizability across participants between 

several methodologies of inner speech decoding? 

1.6 Aim of the Research 
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The main goal of this work is to investigate and compare many machine learning 

techniques for inner speech classification employing EEG data. This work aims to not only 

implement current machine learning methods but also objectively evaluate and compare a 

variety of machine learning approaches to identify which ones best fit to remove the difficulties 

in comprehending inner speech from EEG data. Researching a range of architectures, 

optimization techniques, and learning paradigms encompassed inside the framework of 

machine learning helps one to find approaches that are more accurate and resilient. By means 

of this comparison study, the research aims to not only pinpoint the most accurate models but 

also the most generalizable and strong tactics across a range of situations. This work suggests 

to create easily adaptable solutions using the non-invasive character of EEG in order to 

overcome some of the ethical and practical obstacles related with invasive techniques. The aim 

of this work is to identify different inner speech patterns by means of a range of mental 

commands manifested by different patterns of brain activity. Based on the results of the 

research, it is of great importance to reach subject-independent generalizability as both of which 

are absolutely required for the evolution of efficient BCI systems. To be sure that brain-

computer interfaces (BCI) offer consistent communication and control interfaces, great 

accuracy is needed. Furthermore, it is essential to give subject-independent generalizability a 

priority if we are to enable these systems to be quickly adopted and successful over an extensive 

population. Though the quest of both high accuracy and subject-independent generalizability 

poses a difficult situation, the development of BCI technology that is both relevant and 

accessible is vital. This work seeks to offer answers to both of these issues. This work offers 

fresh approaches and insights on inner speech decoding as well as a road map for next BCIs, 

helping to expand brain-computer interface technology. The application of effective techniques 

for decoding the complexity of the human mind would not only help to increase BCI system 

performance but also lead to the development of more sensible and user-friendly interfaces. By 

improving the availability of brain-computer interfaces (BCIs), our effort helps to close the 

difference between technical innovations and the people most likely to gain from them. The 

focus on the design of user-friendly interfaces highlights the need of users being able to control 

devices by using natural mental instructions instead of needing a great degree of mental effort 

or training. Ultimately, this study helps to create more accessible and understandable 

communication and control interfaces for those with severe disabilities as well as for others. 
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1.7 Research Objectives 

The following objectives will be pursued to achieve the research aim: 

i. Review various machine learning models against a deep learning model, focusing on 

methods that could achieve subject-independent generalizability. 

ii. Evaluate the performance of selected models using key metrics—such as accuracy, F1-

score, precision, and recall—within a subject-independent framework to assess their 

generalization capabilities. 

1.8 Scope of Research Work 

Since it lowers the requirement for time-consuming calibration of individual users, this 

study is especially targeted on subject-independent classification of inner speech, a vital feature 

for the practical implementation of BCI systems. Unlike subject dependent models, which 

might perform well in controlled situations but badly on new users, this work intends to develop 

approaches that can efficiently generalize among different people. Selected as a publicly 

available dataset especially for inner speech research, the Thinking Out Loud (TOL) dataset 

offers a useful tool for validating the proposed models. The carefully specified experimental 

methods and availability of the dataset make it perfect for a comparison of several classification 

techniques. The choice of machine learning and deep learning models was predicated on their 

general applicability in BCI research and their capacity for subject-independence performance. 

This study contrasts the ability of these models to efficiently decode inner speech signals in a 

subject independent way and their generalizing capacity across subjects, therefore determining 

their relative strengths and shortcomings. A strong assessment of the models' capacity to extend 

to unseen data from new subjects is obtained by use of a leave-one-subject-out cross-valuation 

method. This thorough testing approach guarantees that performance criteria fairly represent 

the efficiency of these approaches in a real-world environment and are not distorted by subject-

specific artifacts. This work mostly addresses model creation and evaluation; real-time BCI 

implementation is seen outside the purview of this work. This lets one concentrate on thorough 

offline study before entering more intricate real-time surroundings. Before advancing on to 

other datasets in the future, this stage of the research depends on a controlled environment for 
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comparing several models, which the restriction of one dataset offers. Beyond only evaluating 

model performance, this work seeks to offer understanding for next investigations on the 

possibilities of deep learning methods for subject-independent inner voice decoding. The study 

aims to further the field of inner voice BCIS and open the path for pragmatic uses of this 

technology by identifying exciting directions for next research. 

1.9 Thesis Organization 

Chapter 2: Focusing mostly on non-invasive approaches using electroencephalography 

(EEG), this chapter offers a thorough assessment of the body of current research related to inner 

speech decoding. The chapter will review the body of current studies on brain-computer 

interfaces (BCIs) and more especially, how inner speech is decoded using EEG. It will explore 

studies on imagined speech since these relate to inner speech and have similar underlying 

neurological mechanisms, so providing insightful analysis of decoding mental language 

processes. This evaluation will not only show the successes but also critically evaluate the limits 

of present methods and point up the research gaps this thesis seeks to solve. 

Chapter 3: Methodology: The methodological approach followed to create and evaluate 

models for inner speech classification is described in this chapter. It starts by going through the 

data collection methods including specifics on the experimental paradigm employed to produce 

inner speech and the EEG recording configuration. The chapter next covers data preparation 

methods including signal filtering, noise reduction, and artifact removal therefore clarifying the 

methods for cleaning the raw EEG data and getting it ready for analysis. It explains the 

justification for selecting particular preprocessing methods as well as the anticipated effect on 

the performance of the model. Moreover, this chapter will address the machine learning model 

design applied in this work. It offers precise architectural details including algorithm choice for 

the models. At last, it addresses the training process and evaluation criteria for measuring model 

performance thereby guaranteeing a strong, repeatable, and unambiguous technique. 

Chapter 4: Model Development: This chapter reviews the models meant for 

classification of inner speech. This addresses details on the layers, parameters, and activation 

mechanisms of every model. It also covers every model's training method including the loss 
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function, the optimization method, and strategies to raise the training quality. Moreover, what 

we covered in this chapter is the hyperparameter tuning method to offer every model the ideal 

configuration. It clarifies the ways of choosing the optimal model structure and the parameters. 

This all-encompassing method of creating models helps to clarify the process and promotes its 

repetition. 

Chapter 5: Performance Evaluation: With an especially focus on their performance in 

subject-independent scenarios, this chapter presents and analyzes the outcomes of assessing the 

presented models. It starts by summarizing the performance measures applied to assess the 

models, including accuracy, precision, recall and F1-score. It then offers a thorough 

examination of the findings backed by striking tables and figures. Moreover, in the framework 

of inner speech categorization, the chapter comprises comparison studies of the several models 

applied in this study to grasp their advantages and shortcomings. The generalizability of the 

model across several subjects will be the main emphasis of this assessment as well as whether 

the method can be applied to categorize inner speech across many people. The relevance of the 

findings and consequences for the field of BCI and inner speech decoding will also be discussed 

together with any difficulties that happened throughout the experiment, with particular attention 

to their effect on model performance. 

Chapter 6: Conclusion and Future Work: This chapter repeating the main contributions 

of the research to the field of inner speech decoding summarizes and contextualizes the 

significant conclusions of the thesis. It addresses the consequences of the findings, stressing 

their possible influence on the evolution of advanced BCI systems especially for those with 

speech problems. It then points out the limits of the study and talks on the need for more 

research in the field, suggesting particular areas where the present approach could be 

strengthened or improved. At last, it describes the possible future paths for this study, pointing 

up fresh directions to investigate and advice on next actions to advance the discipline of inner 

speech decoding. With the ultimate goal of creating strong, real-world applicable BCI systems 

for communication based on inner speech, these recommendations are meant to inspire 

additional research and growth in this field.



 

 

CHAPTER 2  

LITERATURE REVIEW  

2.1 Overview  

For Brain-Computer Interventions (BCIs), inner speech, the silent internal discourse we 

go through in our brain, has great natural and intuitive communication and control power. 

Accurately deciphering inner speech from the brain does, however, provide great difficulty. 

Low signal-to-noise ratios in recordings resulting from the delicate and complicated character 

of inner speech make it challenging to separate pertinent brain activity from background noise. 

The tiny amplitude of the brain signals connected with inner speech and the other types of noise 

present in EEG recordings such as muscular activity and ambient interference combine to 

produce this low signal to noise ratio. Moreover, individual variation in cognitive processes and 

brain patterns gives still another level of difficulty to the decoding work. Many elements might 

be blamed for this diversity, including variations in brain architecture, cognitive styles, and 

language experiences, which greatly hamper the evolution of generalizable models. 

Complicating these difficulties is the lack of publicly available datasets created especially for 

study on inner speech. There are just now two such datasets, both of which are somewhat recent. 

Lack of data hinders the possibility to build strong and generalizable models, thereby hindering 

field developments.  

With an emphasis on non-invasive methods employing electroencephalography (EEG), 

this literature review seeks to give an overview of the body of current study on inner speech 

decoding. The aim to make the technology more practical and accessible drives this focus on 

non-invasive approaches since it avoids the ethical and safety issues related with invasive 

techniques. The review will also cover pertinent studies on imagined speech, which shares 

similar neural mechanisms and can provide insightful analysis since inner speech datasets are 
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so rare. Particularly, imagined speech stimulates many of the same brain circuits as inner 

speech, so it is a useful arena for research providing complementing data and analysis. The 

review will start with looking at studies especially aimed at inner speech decoding with EEG. 

It will next look at research on imagined speech, stressing the relationships and its ramifications 

for developing inner voice decoding technologies. This method enables a more complete 

knowledge of the state of the art and aids in the identification of typical hazards requiring 

attention in next research projects. By means of this study, the review aims to pinpoint main 

obstacles, limits of current methods, and interesting future paths of research. This covers 

methodological problems with data collecting and evaluation in addition to technical ones 

related to inner speech. 

2.2 Inner speech decoding 

Inner speech decoding using EEG shows tremendous challenges because to the low 

signal-to-noise ratio, individual variation in brain pattern, and lack of publically available 

datasets. Notwithstanding these challenges, a number of studies have examined many 

approaches to classify inner speech using EEG data. Researchers in [5] investigated the 

implementation of compact convolutional neural network architecture, EEGNet, and obtained 

an average accuracy of 29% on the Thinking Out Loud dataset using a subject-dependent 

strategy. This result stresses the difficulty of correctly classifying inner speech even if it exceeds 

chance level skill. Another work [8] looked at using recurrent neural networks (RNNs), more 

notably Long Short-Term Memory (LSTM) and Bidirectional LSTM (BiLSTM) networks, for 

inner speech classification. Once more using a subject-dependent approach on the Thinking Out 

Loud dataset, they obtained accuracy of 30.4% with LSTM and 36.1% with BiLSTM. RNNs 

could help with inner speech decoding since they can find temporal links in EEG data. This 

implies that RNNs, with their ability to capture temporal dependencies in EEG data, may be 

beneficial for inner speech decoding. Furthermore, a study comparing different machine 

learning algorithms [7] found that a linear Support Vector Machine (SVM) achieved an average 

accuracy of 35% for subject-dependent approaches on the same dataset. These findings suggest 

that while traditional machine learning methods like SVMs can achieve reasonable accuracy.   
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Recently, new papers have emerged that utilize subject-independent approaches for 

EEG-based classification. Ng and Guan (2024) [18] made a noteworthy contribution with their 

meta-learning framework, which significantly increased subject-independent accuracy to 

31.15%. In 2025, Radwan et al. (2025) [19] proposed another innovative method that used an 

Extra Tree-based approach and showed a comparable subject-independent accuracy of 32%. 

Table 1: Comparison of different methods for inner speech decoding using EEG signals 

Id,Year Classes Dataset Classifier Indep Results (Accuracy) 

[5],2021 4 TOL EEGNet No 29% 
[6],2021 6 ISD iSpeech(CNN) Yes 35% (vowels), 29% (words) 

[7],2022 4 TOL SVM No 35% 

[8], 2022 4 TOL BiLSTM No 36.1% 

[18], 2024 4 TOL DeepConvNet Yes 31.15% 

[19],2025 4 TOL BruteExtraTree Yes 32% 

TOL = Thinking out loud dataset. ISD = Imagined speech dataset. Indep = Subject-

independent approach. 

2.3 Imagine speech  

A paper proposes a similar CNN-based iSpeech architecture and tests their model on 

imagined words and vowels. They observe that increasing the number of filters improves 

performance, but adding more layers does not help. They conduct extensive experiments and 

report an average accuracy of 35% for vowels and 29% for words classification for a subject-

independent approach on ISD dataset. They also perform a one-tailed paired t-test and claim 

that transfer learning does not make a statistically significant difference [6]. Cooney et al. [9] 

applied transfer learning to classify imagined speech. Using a subject-dependent approach, they 

achieved 35% accuracy for vowel classification. In a later paper [10], they used a CNN model 

for imagined speech and obtained 24.46% accuracy with a subject-independent approach. They 

also demonstrated the importance of hyperparameter tuning for training CNNs for imagined 

speech. A paper applied a deep belief network for imagined speech classification and achieved 

90% accuracy for consonant binary classification [11]. RF was also applied for imagined speech 

by [12]. They reported an accuracy of 18.5 for six word classification and 22.3 for vowel 

classification. 
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A paper proposed the Relevance Vector Machine (RVM) model. They tested the model 

on their own dataset and obtained 70% accuracy for three-class classification and 95% accuracy 

for binary classification using a subject-dependent approach [13]. The authors of [13] proposed 

SVM for imagined speech and tested their model using a subject-dependent approach. They 

reported an accuracy of 58.41 ± 11.45%. Recently, Agarwal et al. [15] proposed deep LSTM 

for imagined speech classification. They used their own dataset and trained their model on 

different frequency bands separately. They showed that the alpha band was able to recognize 

imagined speech better than other bands, followed by theta and delta bands. They reported an 

accuracy of 73% on five-class classification using a subject-independent approach. 

Table 2: Comparison of different methods for imagined speech decoding using EEG signals 

Id Classes Dataset Classifier Indep Results 

[9],2020 6 ISD CNN Yes 24% 

[10],2019 6 ISD CNN No 35.68% 

[12],2015 2 Other DBN Yes 90% (consonant) 

[12],2017 5 ISD RF No 22.3% (vowels), 18.5% (words) 

[13],2017 3 Other RVM No 95% (2), 70% (3) 

[14],2016 5 Other SVM No 58.41 ± 11.45% 

[15],2022 5 Other LSTM Yes 73% 

2.4  Research Gap and Directions 

The investigated deep learning models, CNNs and RNNs among others, show promise 

for classifying inner speech from EEG signals. Their capacity to understand intricate patterns 

from brain input clearly shows this promise; nonetheless, present uses have not completely 

exploited these features. For practical BCI uses, the stated accuracies—often ranging around 

30–35%—for subject dependent are far from perfect. Such accuracy degrees limit the utility of 

inner speech BCIs in real-world situations since they are insufficient for practical uses requiring 

dependable and exact decoding. Furthermore, most research has concentrated on subject-

dependent methods, therefore restricting the useful relevance of these models to new users. 

These approaches are challenging to scale for higher populations since each user depends on 

subject-dependent models and needs rigorous and time-consuming calibration. Thus, advancing 

inner speech decoding technology depends on the development of techniques that may attain 

better accuracy and generalize well among many individuals. The development of strong and 
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useful BCI systems that can be implemented in real-world environments depends first on this 

demand for both improved accuracy and generalizability among various users. In this thesis, 

we develop machine learning and deep learning models using a subject-independent approach. 

2.5  Summary 

The present state of research on inner speech decoding has been explored in this survey 

of the literature, therefore stressing both the possibilities and difficulties of this technology. 

While challenges such low signal-to-noise ratios and high inter-subject variability make inner 

speech decoding a difficult and challenging task, the ability to use inner speech as a natural and 

intuitive control mechanism for BCIs offers an alternative to traditional methods that may be 

less user friendly. This motivates us to explore inner speech further to enhance lives of countless 

people. Although several deep learning and conventional machine learning approaches have 

shown encouraging outcomes especially in controlled environments achieving great accuracy 

and generalizability remains a major challenge. Often lacking performance levels required for 

real-world applications, current BCI systems based on inner speech often fail for new users as 

well. Further complicating the decoding effort are the lack of publicly accessible information 

and the natural variability of EEG signals. Training models that can broadly generalize well are 

quite challenging given the small scale and scope of current datasets. Furthermore, complicating 

models' capacity to capture generalizable features across users is the great variability in EEG 

signals. Nonetheless, continuous research with an eye toward fresh deep learning architectures, 

robust feature extraction methods, and contrastive learning approaches provide exciting paths 

to increase the performance and practicality of inner speech decoding systems. These novel 

deep learning architectures, feature extraction, and learning strategies give some promise that 

the performance of inner speech decoding systems will enhance in the future and are thus a 

focus of research.



 

 

CHAPTER 3 

METHODOLOGY  

3.1 Overview  

A major restriction of current inner speech decoding models, as the literature review 

emphasizes, is their limited generalizability over subjects. This restricts the applicability of 

these models greatly since models trained on data from one subject generally perform badly 

when applied to data from another. Since it would force new users to go through a very long 

and difficult model training or adaptation phase, this lack of generalization impedes the 

development of really user-friendly Brain-Computer Interface (BCIs). Moreover, this 

emphasizes a significant obstacle in the area to create more general models instead of subject 

dependent models. Especially, no previous study has concentrated on assessing these models 

with a strictly subject-independent method. Most research has either focused on data analysis 

inside a single subject or used subject-dependent approaches, therefore leaving a notable 

knowledge vacuum on how well these approaches operate in a more general environment. 

Given real-world BCI applications would demand models to perform effectively on new users 

with minimal prior data from these new users, this gap is very crucial to solve. For a long period, 

BCI research has been hampered by this lack of research in subject independent environments. 

This work fills up this void by means of a comparative study of several classification models 

especially inside a subject independent framework for inner speech decoding. This work intends 

to provide more robust and also more scalable approaches by concentrating on subject-

independent techniques. This study intends to offer a thorough and exhaustive study of several 

models by applying a strict evaluation technique. This exacting method will enable a better 

knowledge of several models and hence be beneficial in developing new and more accurate 

BCI systems. Understanding the relative performance and fit of several models for 

generalization across individuals is more important than attaining state-of- the-art accuracy. 
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Although great accuracy is crucial, the primary goal of this work is to present a clear comparison 

of several models and identify which ones show the best possibilities for practical application. 

By use of this unambiguous comparison, BCI practitioners will be able to select the optimum 

model based on the requirements of their particular application. Deep learning methods and 

conventional machine learning approaches coexist among the models chosen for this study. 

This spectrum of models has been chosen to provide a more comprehensive evaluation of many 

approaches, each with possible advantages and drawbacks. This wide spectrum of several 

machine learning and deep learning models provides a thorough comparison of conventional 

methods with state-of-the-art deep learning methodologies.  

Section 3.2 will go into great length on the dataset used for this study. This covers the 

data source, the features of the subjects, and the framework of the trials inside the dataset. It 

will also highlight the particular features of the dataset that fit for assessing subject independent 

approaches. Section 3.3 will go over the ideas and justification behind channel choice. The 

selection of a specific group of EEG channels and their significance in collecting pertinent brain 

activity for inner speech will be clarified in this section. It will also discuss additional channels 

that are less relevant for the categorization of inner speech and clarify why the selected channels 

are more so. Section 3.4 will explore triplet network architecture and contrastive learning 

technique development. This will clarify the special features of this network, including the way 

triplets are built and the training use of contrastive loss. The particular features of this network 

and the training procedure will be discussed in this part so that we have a quite clear knowledge 

of the model. At last, Section 3.5 will list the several classifiers together with the evaluation 

criteria applied to evaluate their performance especially in the subject-independent 

environment. This last part lists the models applied in this study together with the metrics 

utilized to give a fair comparison between the models. The particular measures being utilized 

will be the main emphasis of this part, which will also argue why these metrics fit for comparing 

models of inner speech decoding. 

3.2 Dataset 

The inner speech dataset Thinking Out Loud (TOL) [3] is the one utilized in this work. 

This dataset offers a special chance to investigate the brain activity linked with silently thinking 
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words, especially intended for inner speech research. It consists of a mean age of 34 ± 10 years, 

electroencephalography (EEG) recordings from 10 healthy participants—6 male and 4 female. 

Most importantly, none of these subjects had any prior knowledge of Brain Computer Interfaces 

(BCIs), so the dataset is perfect for analyzing the brain reactions of people fresh to such 

paradigms. Given that all participants spoke native Spanish, this helps to guarantee consistency 

in the language-related brain processes under investigation.  

Three separate phases, known as sessions, comprised data collecting; each included 

several experimental runs under several conditions. Participants in each session were given four 

Spanish words—arriba (up), "abajo" (down), "derecha" (right), and "izquierda" (left). These 

terms were selected not only for their unambiguous spatial connotations but also as a collection 

of commands that might find use in actual BCI systems. The participants were directed to 

silently picture pronouncing these words and to use their inner voice without any obvious 

articulation. Beginning each session with a 15-second baseline recording, participants were 

guided to relax and reduce movement, therefore serving a benchmark for comparison with task-

related activity.  

Every session consisted in three main runs covering three important criteria: a visualized 

condition, inner speech, and pronounced speech. The participants in the pronounced speech 

condition really said the words out, which let the examination of overt speech production 

possible. The main focus of this study is the inner speech condition, which had the participants 

silently picture using the target words. Participants in the visualized condition were asked to 

picture the word visually, including the appropriate arrow pointing in a given direction. Within 

a session, the sequence of runs was always the same: one run of pronounced speech then two 

runs of inner speech then two runs of the imagined condition. Between runs came a one-minute 

respite. Every participant finished over 200 trials in the first and second sessions; but, the 

number of trials in the third session changed depending on participants' level of exhaustion and 

will.  

The inner speech trials used a particular framework meant to produce the desired 

cognitive engagement. Originally showing at the middle of the screen, a white circle functioned 

as a cue for the beginning of the experiment and a fixation point. There was a 0.5 second 

presentation of this visual cue. Then a white triangle pointing in one of four directions—up, 
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down, right, or left—that matched the target phrase was shown for half a second. Participants 

were asked to silently visualize uttering the word again in their minds until the white circle 

turned blue just after the triangle vanished. Over this 2.5 second action period, the participants 

were supposed to do their designated assignment. The color shift of the circle marked the end 

of the task time; the participants were then advised to discontinue all task-related activities but 

to remain still with limited eye movement until the circle vanished to mark the conclusion of 

the trial. Eye blinks were to be controlled until the circle disappeared. The inter-trial rest interval 

ran from 1.5 to 2 seconds. A focus control system was used to guarantee participants' 

involvement and attention. Participants were prompted periodically to remember the direction 

of the last given signal for both visualized conditions and inner speech. They answered using 

keyboard arrows, and feedback was given following each answer to support task involvement 

and aid to reduce mistakes.  

Specifically selected for this study was the TOL dataset since it directly relates to inner 

speech decoding and is the only publicly accessible dataset created especially for this kind of 

investigation utilizing electroencephalography. Together with the baseline, the controlled 

experimental design of the dataset offers a useful and complete tool for assessing the 

performance of inner speech decoding models. Furthermore included are displayed conditions 

and the marked speech. Furthermore, the design of the trials—with their exact timings and 

inclusion of the attention-monitoring task—makes it a viable dataset for researching the subtle 

variations in inner speech and its possible use in BCI applications, particularly among native 

Spanish speakers. 

 

Figure 3.1 Thinking out loud dataset 
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3.3 Research Design and Development  

Evaluating the generalizability of many machine learning and deep learning models for 

inner speech categorization inside a subject-independent framework forms the main focus of 

the research design. A fundamental need for real-world BCI applications, this concentration on 

generalizability assesses the capacity of models to work effectively on new, unseen subjects. 

Given that many earlier research has depended on subject-specific models which are not 

relevant in real-world environments, that makes exploring the independent approach more 

crucial. The Thinking Out Loud (TOL) dataset has complete recordings from 128 channels, 

hence it was the source of the EEG data for this work. This dataset provides a useful, publicly 

available source for inner speech research, which helps us to evaluate our findings in line with 

others. This comprehensive and sophisticated dataset is ideal for doing research in this field 

since it features recordings of many inner speech circumstances. We chose a group of channels 

especially connected to language processing in the left hemisphere since not all channels 

equally support internal speech decoding. Existing research underlined in this choice that 

neurological correlates of language and speech are more strongly confined to parts of the left 

hemisphere. Furthermore, this channel choice lowers the number of input features, so lowering 

the computational cost as well. Based on earlier studies showing their role in language and inner 

speech processing, this channel choice concentrated on EEG channels identified with "D". 

These channels, typically located on the left hemisphere, are situated above areas of the brain 

known to be important for language processing, including regions such as Broca's and 

Wernicke's areas; this set lets us concentrate on particular domains most likely to be important 

for inner speech decoding.  

A bandpass filter was used to separate the alpha frequency band (8–12 Hz), which has 

been connected to cognitive activity including inner speech, therefore improving the data 

quality. Studies demonstrating that the alpha frequency band is more firmly linked with 

cognitive processes more especially, with regard to inner speech processing and language-

related activity led to the choice of the band. Less susceptibility of the alpha band to noise than 

other bands will also aid with model performance. This filtering concentrated the study on the 

most pertinent signal components and helped to quiet noise. We aim to reduce noise and 

highlight brain activity especially related to inner speech by restricting the data to a given range 

of frequencies, therefore enabling the models to more precisely detect relevant patterns. 
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Statistical features (mean, variance, skewness, kurtosis etc.) were obtained from the filtered 

signals for conventional machine learning models. These statistical qualities offer a complete 

picture of the time-domain attributes of the signal and can draw attention to significant traits 

the models can subsequently utilize to set apart different inner speech circumstances. 

3.3.1    Data Preprocessing 

Because of their great dimensionality and low signal-to- noise ratio, EEG signals must 

be handled by means of data preparation. The preprocessing actions carried out in this study 

build on the first preprocessing done by the authors of the Thinking Out Loud (TOL) dataset 

[3], which comprise essential measures to improve the signal quality and ready it for analysis. 

These phases, together with the additional preprocessing done in this work, comprise channel 

selection, frequency filtering, statistical feature extraction, and other pertinent processes 

described below. 

3.3.1 Initial Preprocessing by the TOL Dataset Authors 

The data examined in this work derived from the preparation pipeline created by the 

TOL dataset creators. This pipeline consisted in several important phases: 

i. Data Loading: Stored as.bdf files, the raw data was imported containing continuous 

EEG, external electrode signals, and related event markers. 

ii. Event Verification and Adjustment: The raw data underwent a review for correct event 

tagging. The authors found missing tags and suggested a fix to guarantee exact event 

markers in the data and a whole flow of events. 

iii. Re-referencing: Re-referencing the data to channels EXG1 and EXG2, respectively, 

placed on the left and right earlobes, respectively. This method minimized common-

mode voltage and line noise by first generating a virtual channel from the average of the 

two EXG channels then subtracting from all other channels. 
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iv. Digital Filtering: The data was fed a zero-phase bandpass finite impulse response (FIR) 

filter. The lower and upper cut frequencies were set to 0.5 and 100 Hz, respectively; a 

notch filter at 50 Hz was used to eliminate line noise. 

v. Epoching and Downsampling: A factor of four down sampled the continuous data to 

provide a final sampling rate of 256 Hz. The data were then split into 4.5-second epochs 

matching every trial, running from the start of the concentration period to the end of the 

relaxation period. 

vi. Independent Component Analysis (ICA): ICA helped to reduce artifacts on the EEG 

channels. Using correlation with the exterior (EXG) channels, the scientists found and 

cut out sources related to blinks, eye movements, and mouth motions. The final dataset 

was produced by rebuilding the data after artifact elimination. 

vii. Electromyography (EMG) Monitoring: ICA worked to clear artifacts from the EEG 

channels. The researchers identified and removed sources connected to blinks, eye 

movements, and mouth motions by means of correlation with the outside (EXG) 

channels. Rebuilding the data following artifact removal generated the final dataset. 

viii. Ad-hoc Corrections: Based on participant comments, the writers additionally made ad 

hoc corrections— for example one person's condition markers were changed. 

3.3.2  Further Preprocessing for this Research 

Following the TOL dataset authors' initial preparation, the following actions were taken 

especially for this study: 

3.3.1.1    Channel Selection 

Analysis focused on EEG channels mostly derived from the left hemisphere, especially 

those beginning with the label "D. The selected channels are: 

[D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15, D16, D17, D18, D19, D20,  

D21, D22, D23, D24, D25, D26, D27, D28, D29, D30, D31, D32] 
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Based on their claimed participation in language processing more especially, inner 

speech these channels were selected in line with past studies [16]. 

3.3.1.2    Frequency Filtering 

 The alpha frequency band (8–12 Hz) was isolated using a bandpass filter; this band is 

well-known to be connected with cognitive processes including inner speech [15]. Lower and 

upper frequency cutoffs at 8 Hz and 12 Hz respectively were used in filtering. This frequency 

spectrum was chosen to reduce pointless background noise and improve pertinent signal 

components. 

3.3.1.3    Feature Extraction 

A complete collection of statistical features was obtained from the filtered EEG signals 

for conventional machine learning models. Computed for every channel separately, these 

features behave as condensed depictions of the EEG signal properties. We extracted the 

following: 

Basic Statistical Measures 

i. Mean: (central tendency) The mean of an EEG signal is its average amplitude across a 

specific time interval. It is sensitive to variations in total signal power and offers a 

baseline level estimate of the signal. 

ii. Standard deviation: (signal variability) The standard deviation gauges the dispersion or 

spread of the EEG signal about its mean. It shows the degree of variation in the signal 

and represents its frequency of fluctuations. 

iii. Variance: (spread of the signal) The square of the standard deviation is variance. It 

likewise gauges signal dispersion, but unlike standard deviation it is more sensitive to 

outliers. Variance helps one measure data signal variability. 
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iv. Minimum and maximum values: These characteristics record within a time window the 

lowest and maximum amplitude values. They help to identify excessive signal changes 

or artifacts and give knowledge of the signal limits inside every window. 

v. Range: (peak-to-peak amplitude) The range of the EEG signal is its difference from 

maximum to least value. This provides the signal's overall amplitude fluctuation over a 

given time interval. 

Signal Shape Descriptors 

i. Skewness: (measure of signal asymmetry) Skewness estimates the signal distribution's 

asymmetry around its mean. A positive skew shows a longer tail towards higher 

amplitudes; a negative skew shows a longer tail towards lower amplitudes. One can 

evaluate signal asymmetry by means of skewness. 

ii. Kurtosis: (measure of signal peakedness) Kurtosis gauges the signal distribution's 

"peakedness." Reduced kurtosis denotes a flatter distribution; higher kurtosis predicts a 

sharp peak and heavy tails. Kurtosis aids in signal change identification in the tail and 

peak areas. 

iii. Root Mean Square (RMS): (signal magnitude) RMS is the mean's square root of the 

squared signal values. Reflecting both its average and fluctuation, it is a gauge of the 

total signal magnitude and hence of signal power. 

Temporal Features 

i. Mean absolute difference: (signal roughness) In a time series, the mean absolute 

difference—the average absolute difference between successive signal values—is It 

offers a gauging of the signal's roughness or instantaneous variations across time. 

ii. Indices of minimum and maximum values: (temporal localization of extrema) These 

characteristics give the time indices within a certain period where the minimum and 

highest signal values occur. This metric can show particular moments in the EEG signal 

when significant events or changes occur. 

Wavelet Features 
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The Discrete Wavelet Transform (DWT) is a mathematical technique that analyzes the 

EEG signal in both the time and frequency domains simultaneously. Unlike traditional methods, 

it decomposes the signal into different frequency bands at various resolutions, which is ideal 

for capturing the transient, non-stationary characteristics of brain signals. The DWT provides a 

detailed view of how signal properties change over time, capturing features that are often 

missed by other methods. 

For each channel and at each level of decomposition, we compute the following statistical 

features from the wavelet coefficients: 

i. Mean, Standard Deviation, and Variance: These measure the central tendency, spread, 

and overall energy of the signal within a specific frequency band. They provide 

insights into the power and variability of different EEG rhythms (e.g., Alpha, Beta). 

ii. Minimum, Maximum, and Range: These values identify the most extreme amplitudes 

within a frequency band, helping to detect significant, brief events or spikes in the 

signal. 

iii. Mean Absolute Value: This acts as a robust measure of the average energy of the 

signal coefficients, which is useful for quantifying the overall magnitude of the signal 

within a given frequency range. 

iv. Skewness and Kurtosis: These describe the shape of the signal's distribution within 

each frequency band. Skewness shows if the signal's power is concentrated towards 

higher or lower amplitudes, while kurtosis indicates the presence of sharp, "peaky" 

events. 

v. Root Mean Square (RMS): This is a key measure of the overall signal magnitude or 

power within a specific frequency band. It is a more robust indicator of signal strength 

than the simple mean. 

By extracting these features from the wavelet coefficients, we create a rich, multi-scale 

representation of the EEG data that captures subtle, time-localized patterns crucial for accurate 

inner speech classification. 

 

These properties were computed over all EEG channels to produce a rich feature vector 

spanning both temporal dynamics and amplitude traits of the signals. These characteristics 
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taken together offer a multi-dimensional representation of the EEG data, which lets the machine 

learning models discover discriminative patterns for inner speech classification. Adding other 

features, such as wavelets, could increase the feature dimension and potentially decrease model 

accuracy, making it more likely to overfit to noise. 

3.3.2  Models For comparison 

Four models were selected under a subject-independent framework to evaluate their 

decoding of inner speech from EEG signals. 

3.3.2.1    Linear SVM with Statistical Features 

Inner speech categorization started from a baseline model, a Support Vector Machine 

(SVM) with a linear kernel. Aimed to identify an ideal decision boundary for classification 

problems, SVMs are a kind of supervised learning method. Regarding a linear SVM, the 

decision boundary is a hyperplane. Statistical features are input for this model. Extracted from 

the preprocessed EEG data, these characteristics form the input for the SVM and help the model 

to identify several inner speech states. The efficiency of a simple, interpretable method in 

separating inner speech categories among participants was assessed using a linear SVM model. 

Starting with a linear SVM offers a clear, understandable approach for comparison with more 

intricate models. Since it lets one better grasp the extra advantages of more complicated models, 

its simplicity makes it an excellent benchmark for more advanced methods. Relying on 

statistical features collected from EEG data to describe the signal patterns connected with inner 

speech, the linear kernel helps the model to classify data by determining the ideal hyperplane 

separating the classes in a high-dimensional space. Though its name suggests otherwise, the 

linear kernel will not be useful if the classes cannot be separated in the input space by a straight 

line (in 2D) or a plane (in higher dimensions). Generally speaking, the SVM will next look for 

the best hyperplane in a higher-dimensional feature space where the data might be linearly 

separable. Particularly the linear kernel only performs as expected when an initial input space 

allows a linear separation. The SVM seeks to identify the plane with the biggest margin, 
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therefore the greatest distance from the closest point to the decision plane. Whether basic linear 

bounds are sufficient for subject-independent generalization in inner speech categorization is 

judged against this baseline. Building alternative models starts from the fact that a linear SVM 

can reach decent performance for subject-independent categorization. Furthermore, this can 

imply that subject-independent interior speech decoding might not call for highly sophisticated 

models. 

3.3.2.2    SVM with Different Kernels 

We investigated whether a nonlinear decision boundary might improve model 

performance using an SVM with several kernels. Although a linear kernel performs well for 

linearly separable data, it might not be sufficient in more complicated relationships between 

classes. For these non-linear interactions, non-linear kernels can perhaps find improved 

decision bounds. Apart from the linear kernel, many nonlinear kernels—such as radial basis 

function (RBF), polyn (poly), and sigmoid—were tested to evaluate their capacity to represent 

the more complicated, maybe nonlinear interactions inside EEG data. These kernels are chosen 

since their various qualities could be useful in the classification of EEG signals. This is so since 

simple linear decision limits cannot readily separate brain activity in EEG signals. Non-linear 

interactions in these signals are rather widespread. These nonlinear kernels let the SVM convert 

the data into a higher-dimensional feature space in which separating classes according to 

intricate patterns could be simpler. This mapping to a higher-dimensional space is implicit and 

accomplished by means of a "kernel trick," therefore enabling us to employ higher dimensional 

mappings without explicitly computing them. This is advantageous computationally since other 

computing costs would be much higher. Modeling complex, non-linear interactions in the data 

calls for the RBF kernel. Datasets marked by polynomial relationships between variables suited 

for the polynomial kernel. Sometimes the sigmoid kernel is used since it quite resembles the 

activation function of a neural network. 

3.3.2.3    LightGBM 
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Using its advanced tree-based ensemble learning powers, LightGBM was applied as a 

gradient boosting framework for inner speech classification. It use decision trees, gradient 

boosting is a machine learning technique whereby an ensemble of models is created whereby 

each next model is taught to correct the mistakes committed by its predecessors. This model 

was selected especially for its capacity to keep computational efficiency while managing the 

high-dimensional, noisy character of EEG inputs. This qualifies for EEG signal processing 

where a fast-running time is advantageous considering the high dimensionality and intrinsic 

noise commonly found in EEG signals. The framework uses a chain of decision trees, with each 

next tree concentrated on fixing the prediction mistakes of its predecessor, hence generating a 

strong ensemble model. Gradient boosting is based mostly on this sequential method. Every 

new tree aims to fix the mistakes of the past to enhance general performance. 

Two key technical innovations of LightGBM make it particularly suitable for EEG-

based inner speech classification: 

Leaf-wise tree growth strategy, This, in the statistical data obtained from EEG signals, 

helps to find patterns more quickly. Particularly with high-dimensional data, LightGBM 

produces trees by prioritizing the leaf split that results in the biggest reduction in the loss 

function, unlike conventional approaches that grow trees level by level, therefore improving 

the learning process. 

Histogram-based splitting mechanism, therefore, when processing high-dimensional 

EEG data, greatly lowers computing cost and memory use. This method approximates splits 

during training by grouping numerical feature values into bins, therefore enabling significantly 

quicker and more memory efficient training. 

Although LightGBM's sophisticated tree structure might enable it to detect more 

complicated patterns than linear models, its gradient boosting framework features built-in 

regularization algorithms to assist reduce overfitting to subject-specific noise. Particularly 

crucial when working with noisy data, like in the case of EEG recordings, regularization is a 

method used to guarantee that intricate models do not overfit the training data and generalize 

well on new and unexplored data. This balance between model complexity and regularization 

makes it especially pertinent for subject-independent classification problems, in which the 
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objective is to find consistent inner speech patterns among many people. Real-world BCI 

applications depend on the models being employed across fresh subjects, hence this regularity 

helps them to be utilized. 

Using LightGBM's ability to effectively manage different feature distributions and 

scales, training of the model made use of the retrieved statistical characteristics from the 

preprocessed EEGs. Given that EEG features vary widely, this effective handling of various 

feature distributions aids with noisy data. This method offers a good framework for strong 

cross-subject inner speech classification by combining the interpretability of conventional 

statistical features with the strong pattern recognition capacity of gradient boosting. Therefore, 

we obtain a computationally effective and strong approach to classify interior speech over 

several individuals by aggregating gradient boosting with feature extraction techniques. 

3.3.2.4    CNN with Triplet Loss (Triplet Network) 

Leveraging its capacity to automatically extract hierarchical spatiotemporal features 

from EEG signals, a convolutional neural network (CNN) architecture was applied as a deep 

learning approach for inner speech classification. CNNs often struggle to detect subtle class 

differences, especially in EEG data where high individual variability and low signal-to-noise 

ratios complicate feature extraction. Although their convolutional layers excel in pattern 

recognition.  

 

 We improved CNN architecture using a triplet network structure to get beyond these 

constraints. This method runs three parallel instances of the same CNN to process triplets of 

input samples: an anchor sample, a positive sample (same class as anchor), and a negative 

sample (different class). Triplet loss defined as is used for network training. 

𝐿 = ∑𝑁
𝑖=1 (0, ||𝑓(𝑥𝑖

𝑎) − 𝑓(𝑥𝑖
𝑝)||

2

− ||𝑓(𝑥𝑖
𝑎) − 𝑓(𝑥𝑖

𝑛)||
2

+ 𝛼)     (3.1) 
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f(x) is the CNN embedding function; alphaα is a margin value deciding the necessary 

separation between positive and negative pairings. By reducing the distance between samples 

of the same class and hence optimizing the embedding space, this loss function maximizes the 

distance between samples of different classes. Through relative distances instead of absolute 

feature values, the triplet network emphasizes learning class-discriminative patterns that 

generalize well across subjects. 

Emphasizing relational learning, the triplet network solves two important problems in 

EEG-based inner speech classification. First of all, it improves subject independence by 

concentrating on the links between samples, therefore enabling the network to capture 

generalizable properties not unique to any one person. Second, by focusing on the most 

pertinent discriminative features and therefore lowering the effect of subject-specific 

fluctuations, it maximizes the embedding space for class separation. Consequently, the 

embedding space of the network gets more strong, allowing one to keep good classification 

over several subjects. 

Over traditional CNNs, this architecture has significant benefits. The relationship-based 

learning method of the triplet network not only increases generalization over subjects but also 

strengthens resistance to individual variances in EEG patterns. Moreover, the organized 

embedding space offers more flexibility, therefore facilitating the inclusion of new classes or 

subjects without considerable retraining. Focusing on relative distances helps the triplet 

network also better manage the high noise levels inherent in EEG data, therefore supporting 

more accurate inner speech classification. All things considered, the resultant embedding space 

proves flexible for a variety of BCI uses and offers a strong basis for subject-independent inner 

speech classification, hence separating different mental states. The capacity of the model to 

learn generalizable features makes it especially appropriate for real-world situations, when 

consistent cross-subject performance is crucial. 
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Figure 3.2 Overview of the proposed EEG signal classification model. 

3.4 Evaluation Metrics and Experimental Setup 

Every model's performance was evaluated by means of accuracy, F1-score, precision, 

and recall. These measures offer a whole picture of the models' classification performance by 

considering both the general accuracy and the balance of accurate classifications among 

categories. 

3.4.1    Subject-Independent Evaluation 

A subject independent evaluation system was used to objectively assess the 

generalizability of every model across people. This method shows that the models are not only 

picking subject-specific patterns but rather are catching consistent and representative traits 

among many distinct people. In this protocol, data from one subject is held out exclusively for 

testing, while data from all other subjects is used for training. This procedure is repeated for 
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each subject in a leave-one-subject-out cross-validation framework, providing a comprehensive 

measure of the model’s ability to generalize to new subjects.  

The great inter-subject heterogeneity in EEG signals makes the leave-one-subject-out 

approach especially appropriate for EEG-based inner speech classification. Each model is 

tested on entirely unprocessed data by training on all but one topic, therefore imitating a genuine 

situation whereby the model would have to extend to new users. This assessment system offers 

a precise evaluation of every model's resilience and emphasizes its advantages and drawbacks 

in managing the intricate and subtle changes in inner speech EEG signals among individuals. 

To quantify performance, several key evaluation metrics were employed: 

i. Accuracy: Measures the overall correctness of classifications, providing a 

straightforward assessment of each model’s effectiveness. However, accuracy alone 

may not be enough if classes are not balanced. 

ii. F1-Score: Combining recall with accuracy into a single figure this statistic offers a fair 

evaluation of performance. It is well appropriate for examining EEG data, where 

datasets could be skewed or classification limits may be subtle. The F1-score highlights 

the precision-recall balance of the model, which is vital for handling EEG inputs 

possibly contaminated with noise or artifacts. 

iii. Precision: This statistic shows among all the cases the model finds that belong to a given 

class the proportion of correctly classified ones. When reducing false positives is a top 

goal in EEG classification, precision is very crucial. 

iv. Recall: This statistic compares the proportion of accurately found instances of a class 

to all the actual instances of that class. Even with some noise present, high recall is 

necessary to guarantee that the model detects as many actual cases of inner speech as 

feasible. 

These measures offer a multi-dimensional assessment of every model, therefore 

enabling a sophisticated comparison across subject-independent conditions. Analyzing the 

trade-offs between precision, recall, and F1-score helps the research to find models that provide 

consistent and dependable performance in the demanding setting of cross-subject inner speech 

decoding. 
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3.4.2    Experimental Setup 

This work used a combination of Python's powerful machine learning and deep learning 

tools in order to implement and assess every model. Python was selected for research 

and development mostly because of its simplicity and broad ecosystem of scientific and 

machine learning libraries, which make it a usually used tool. Important instruments and 

sources included: 

i. scikit-learn: A cornerstone library for machine learning tasks in Python, scikit-learn was 

utilized for implementing traditional machine learning models (e.g., SVM, LightGBM) 

and performing tasks such as cross-validation and grid search. It offers a complete 

collection of methods for dimensionality reduction, preprocessing, classification, 

regression, clustering, and model selection. scikit-learn's broad functionality facilitated 

efficient model training, evaluation, and comparison. Its user-friendly interface makes 

it easy to train, test, and compare various machine learning models, which facilitated 

the comparison of traditional machine learning methods. 

ii. PyTorch: This library is used extensively for deep learning research and development 

and has great flexibility. Employed for the deep learning model (CNN with triplet loss) 

due to its flexibility and extensive support for custom architectures. Unlike many other 

libraries, Pytorch makes it easy to define custom models with various loss functions, 

and has the ability to use dynamic computational graphs. Triplet network structure 

implementation was made possible by PyTorch, together with GPU acceleration to 

maximize training times. Pytorch's adaptability and processing capacity fit for 

developing and training deep learning models with intricate architectures and loss 

functions. Models can thus be taught faster as well. 

iii. Optuna: Applied for hyperparameter tuning across all models, Optuna's capacity to do 

automated, effective optimization searches enabled the identification of the optimal 

parameters for every model, hence improving their subject-independent performance. 

Designed to quickly optimize even vast search areas of hyperparameters, Optuna's 

optimization algorithm makes the process of hyperparameter optimization fast, 

efficient, and simple to use. 

iv. MNE-Python: Designed especially for neurophysiological data including EEG and 

MEG data, this open source package MNE was first utilized for data preparation 

including channel selection and filtering in an open-source toolkit for processing EEG 
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data. It provides various tools unique for EEG processing that simplify processing. 

MNE's customized tools provide preprocessing capabilities catered especially for 

neuroimaging data and helped simplify EEG data management. MNE's pre-processing 

tools are particularly meant for neurophysiological data and simplify analysis on this 

kind of data. 

3.5     Summary 

Emphasizing cross-subject generalizability, this chapter addressed the method for a 

comparative analysis of models aiming at reaching subject-independent inner speech 

classification using EEG signals. The method covered in this chapter provides a rigorous 

framework to assess multiple classification models and their ability to generalize to new and 

unseen individuals. Preprocessing steps included selecting left-hemisphere EEG channels, 

bandpass filtering the alpha frequency band, and compiling statistical data. The choice of 

channel was motivated by the established language processing role of the left hemisphere. 

Bandpass filtering helped the study to focus the alpha band. These methods enable to reduce 

noise and assist in feature extraction and categorization. Four models, Linear SVM, SVM with 

RBF kernel, LightGBM, and CNN with triplet loss were investigated using a leave-one-subject-

out cross-valuation technique, which tested each model's performance over unseen individuals. 

Most importantly for practical uses, this testing method was chosen particularly to assess each 

model's ability to detect EEG signals across individuals and provides a way to measure how 

successfully the trained model may be transferred to a new person. Using accuracy, F1-score, 

precision, recall, and other performance indicators, every model's performance in identifying 

inner speech was completely assessed. These values provide a full picture of the model; 

accuracy indicates the general efficacy of the model; F1-score is a harmonic mean of precision 

and recall; and precision and recall disclose the balance between positive and negative classes. 

This approach reveals the relative advantages and limitations of any strategy for BCI 

applications since it offers a robust platform for assessing and comparing model performance 

in upcoming chapters. By precisely applying the method covered in this chapter, this study 

prepares the stage for deeper investigation of every model. Furthermore, these results can offer 

perceptive study of the trade-offs inherent in every approach and which would be better suitable 

for pragmatic BCI applications.



 

 

CHAPTER 4  

MODEL DEVELOPMENT 

4.1 Overview 

The evolution and use of the models assessed for inner speech classification inside a 

subject-independent framework is discussed in this chapter. Since it explores in great detail 

how the models were constructed, applied, and trained for this research, this chapter is an 

essential component of the thesis. With both conventional machine learning techniques and a 

deep learning model included in the comparison, every model was selected for their capacity to 

generalize across individuals. Particularly in subject independent settings, the models in this 

study are meant to evaluate the variations in performance among several kinds of models. 

Starting with an examination of the architecture and training method for every model including 

the Linear SVM, SVM with RBF kernel, LightGBM, and CNN with triplet loss in this chapter. 

While the training procedure is crucial for how these models will learn, the architecture details 

how each model is built is also important. This work mostly uses CNN with triplet loss built in 

PyTorch as the main deep learning method. PyTorch is applied since it offers the adaptability 

to define and train the deep learning models. The CNN with triplet loss is selected since it offers 

a better way to learn features across many participants and it is hypothesised to be able to better 

capture non-linear correlations in EEG signals. Furthermore, hyperparameter tuning methods 

are applied for performance optimization of every model, including Optuna. Model 

development depends on hyperparameter tweaking since the outcomes of a model can be much 

influenced by different model parameters. 

4.2 Model Architectures 
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Different models used for comparison in explained below. 

4.2.1    Linear SVM  

Linear Support Vector Machines (SVMs) offer a powerful approach to binary 

classification by identifying an optimal hyperplane that effectively segregates data points in a 

high-dimensional feature space. The fundamental principle behind linear SVMs lies in their 

ability to maximize the margin between classes while maintaining accurate classification. 

In the basic linear SVM setup, each data point 𝑥𝑖 ∈ 𝑅𝑑    is represented as a d-

dimensional feature vector, with corresponding labels 𝑦𝑖   ∈ {−1,   + 1}.  The SVM aims to 

discover a hyperplane defined by the equation: 

               𝑤𝑇𝑥 + 𝑏 = 0      (4.1) 

where w is the normal vector to the hyperplane and b is the bias term. The 

classification decision is made based on the sign of the linear function: 

𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏         (4.2) 

To find this optimal hyperplane, the following optimization problem is solved: 

1

2
 |𝑤|2

      (4.3) 

subject to: 

𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1, ∀𝑖           (4.4) 
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This formulation ensures maximum margin separation between classes while correctly 

classifying the training data. In practice, to handle non-perfectly separable data, the soft-margin 

SVM introduces slack variables 𝜉𝑖 and a regularization parameter C: 

𝑖 𝑚𝑖𝑧𝑒𝑤,𝑏,𝜉(1/2)||𝑤||
2

+ 𝐶 ∗ 𝛴𝑖=1
𝑛 𝜉𝑖         (4.5) 

subject to: 

𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖,  𝜉𝑖 ≥ 0, ∀𝑖    (4.6) 

The statistical features used as input to linear SVMs typically undergo preprocessing 

steps such as: 

i. Standardization: Scaling features to zero mean and unit variance 

ii. Normalization: Scaling feature vectors to unit norm  

Linear SVMs excel particularly in high-dimensional spaces where data is linearly 

separable or nearly linearly separable. This property has made them especially valuable in text 

classification, bioinformatics, and image recognition tasks where the input space is naturally 

high-dimensional. The generalization error bound for SVMs depends on the margin rather than 

the dimensionality of the feature space, making them particularly resistant to overfitting in high-

dimensional scenarios. 

The computational efficiency of linear SVMs, coupled with their strong theoretical 

foundations in statistical learning theory, has led to their widespread adoption in various 

applications. Their performance is particularly noteworthy when: 

i. The feature space dimensionality is high relative to the number of training samples 

ii. The classes exhibit approximately linear separation in the feature space 

iii. Robust generalization is required for unseen data 
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Modern implementations of linear SVMs often employ efficient optimization 

techniques such as sequential minimal optimization (SMO) or coordinate descent methods, 

making them practical for large-scale learning tasks while maintaining their theoretical 

guarantees of finding the globally optimal solution. 

4.2.2    SVM with RBF Kernel 

The RBF kernel expands the capabilities of SVMs by implicitly mapping input data into 

a higher-dimensional, and theoretically infinite, feature space. The RBF kernel between two 

points x and x' is defined as:  

𝐾(𝑥, 𝑥′) =𝑒𝑥𝑝 𝑒𝑥𝑝 (−𝛾||𝑥 − 𝑥′||
2

)      (4.7) 

Where γ is a parameter that controls the width of the Gaussian function. Through this 

mapping, the SVM can effectively learn nonlinear decision boundaries in the original input 

space, with the kernel trick ensuring computational feasibility.  

Because brain activity patterns are naturally nonlinear, the RBF kernel should be more 

helpful for classification of EEG signals. Nonlinear decision limits help to better capture the 

complicated temporal and spatial correlations that can show in EEG signals. Particularly when 

handling motor imagery and event related potential classification tasks.  

The effectiveness of RBF-SVMs in EEG classification stems from their ability to: 

i. Model complex, non-linear patterns within the EEG features. 

ii. Deal with the inherent inconsistency and variability common in EEG data. 

iii. Perform well and generalize to new data even with small EEG training datasets. 

Besides the RBF kernel, the study also explored other non-linear kernel options.  
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i. Polynomial Kernel: The polynomial kernel is defined as K𝐾(𝑥, 𝑥′) = (𝑥𝑇𝑥′ + 𝑐)𝑑, 

where c is a constant and d is the degree of the polynomial. This kernel enables the 

support vector machine to learn polynomial form non-linear relationships. An essential 

hyperparameter that must be maximized is the degree, d, of the polynomial. The linear 

kernel replaces the polynomial kernel when d= 1.  

ii. Sigmoid Kernel: The sigmoid kernel is defined as K(x, x') = tanh(αxTx' + c), where α is 

a scaling factor and c is a constant offset. This kernel can also be interpreted as a two-

layer neural network. However, its performance varies a lot and is highly dependent on 

data distribution.  

With their particular mathematical formulations, each of these kernels enables the SVM 

to map the data to several high dimensional spaces where classes may be linearly separated in 

that new space. Computed efficiently, this is a substitute for explicitly determining a non-linear 

decision boundary. 

4.2.3    LightGBM 

LightGBM, introduced by Microsoft Research (Ke et al., 2017) [17], is a high-

performance gradient boosting framework specifically designed to address the computational 

and memory limitations of traditional gradient boosting methods, particularly when dealing 

with large, high-dimensional datasets [17]. At its core, LightGBM integrates two novel 

techniques: "Gradient-based One-Side Sampling" (GOSS) and "Exclusive Feature Bundling" 

(EFB), which work synergistically to drastically reduce training times while maintaining, and 

often improving, model accuracy. 

LightGBM operates as an ensemble method, constructing decision trees sequentially. 

Each tree in the sequence attempts to correct the errors of its predecessors by fitting the negative 

gradients (also known as residuals) of the loss function. Typical of gradient boosting, this 

iterative method lets a powerful predictive model be developed. LightGBM is unique in that it 

uses a leaf-wise, best-first tree development method. LightGBM expands the tree by splitting 

the leaf node that produces the maximum information gain, unlike conventional level-wise 

development when all nodes at a particular level are split before advancing to the next level. 
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This method produces asymmetric trees that can efficiently capture complicated patterns and 

nonlinearities in the data, hence maybe producing a more accurate and efficient model. It also 

lets LightGBM create deeper trees without raising memory consumption as much as in a level-

wise method. 

By selecting data instances depending on their gradients, the Gradient-based One-Side 

picking (GOSS) method maximizes the training process even more. Data examples with higher 

gradients, that is, under-trained instances have a more important influence on the computation 

of information gain, as Ke et al. (2017) underline [17]. GOSS solves this by maintaining all 

data instances with higher gradients and doing random sampling on instances with modest 

gradients, hence lowering the number of data examples needed for training without appreciably 

compromising the accuracy of information gain estimate. GOSS uses a constant multiplier to 

these sampled examples when computing the information gain in order to minimize the bias 

produced by the smaller gradient reduced sampling of instances. This ensures that these 

instances still have influence on the model, preserving the original data distribution to a large 

extent. 

Apart from GOSS, LightGBM uses the Exclusive Feature Bundling (EFB) method, 

which bundles mutually exclusive features into single composite features thereby addressing 

the problem of high feature dimensionality. Ke et al. (2017) [17] claim that many of the 

elements used in practical applications are sparse that is, they hardly simultaneously take non-

zero values. EFB essentially lowers the dimensionality of the data without appreciable 

information loss by integrating these unique properties. This is done by building the bundles 

such that features can live in several bins inside the bundle. For instance, a unified feature 

bundle can be produced whereby the values of each original feature remain identifiable by 

adding an offset to the original values of the features. The NP-hardness of optimally dividing 

features into the least number of bundles is emphasized in this work together with a greedy 

method to generate the feature bundles. LightGBM is especially suited for handling sparse 

datasets, including those typically encountered in EEG data, since this decrease in 

dimensionality results in a notable decrease in memory consumption. 

LightGBM is well fit for EEG classification applications where high-dimensional and 

often sparse data is the norm thanks to these efficiency gains. Ke et al. (2017) show that 
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LightGBM has great advantages; it uses less memory because of its optimal data management 

and use of GOSS and EFB, and it provides notably faster training speeds than conventional 

GBDT approaches. Moreover, it efficiently uses the natural sparsity of EEG characteristics by 

means of EFB, therefore minimizing needless processing. Additionally supported by 

LightGBM are parallel and GPU computation, offering a scalable and memory-efficient 

approach fit for subject-independent inner speech categorization. LightGBM particularly fits 

high-dimensional, large-scale datasets like the EEG recordings utilized in this work since the 

tree-learning and split-finding procedure is also quite highly optimized. 

4.2.4    CNN with Triplet Loss 

Building upon the foundational concepts introduced in Section 3.3.2.4, this section 

details our implementation of a CNN-based triplet network for EEG signal classification. The 

triplet network was chosen as a deep learning approach to help classify inner speech as it is 

particularly good at learning embeddings that can separate different classes. Unlike many other 

methods which classify classes directly, triplet networks learn a mapping function that can map 

input signals into an embedding space that can then be used for classification. The architecture 

employs three identical CNN branches that share weights, processing triplets of input samples 

simultaneously: an anchor sample, a positive sample (same class as anchor), and a negative 

sample (different class). Each branch of the network has the same architecture, which means 

the parameters are shared which makes training much more efficient. The three inputs to the 

network are called the "anchor", "positive" and "negative" sample. 

The CNN architecture begins with an input layer that accepts EEG signals formatted as 

2D arrays (channels × time points), applying batch normalization to standardize the input 

distribution. This batch normalization step is useful for standardizing inputs and results in faster 

training times. The feature extraction stage consists of three consecutive convolutional blocks. 

Each block implements a 2D convolution with a 3x3 kernel size, followed by batch 

normalization and ReLU activation. This feature extraction stage extracts information from the 

input data using filters. Batch normalization and ReLU activation are common techniques in 

deep learning to ensure that networks are trained better. A MaxPooling operation (2x2) reduces 

the spatial dimensions, while a dropout rate of 0.5 helps prevent overfitting. The max pooling 
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operation is important for reducing the size of each feature map, which decreases computational 

costs. Dropout is a way to help prevent overfitting, a common problem in deep learning. The 

final embedding layer flattens the extracted features and processes them through a dense layer 

to produce 128-dimensional embeddings, which are then L2-normalized to ensure uniform 

scaling. This dense layer maps the features from the convolutional layers to a final 128 

dimensional embedding space, and L2-normalization ensures that the values are of unit length, 

which improves model performance. 

The network is trained using triplet loss, defined mathematically as 

𝐿𝑡𝑟𝑖𝑝𝑙𝑒𝑡 = (||𝑓(𝑥𝑎) − 𝑓(𝑥𝑝)||
2

2

− ||𝑓(𝑥𝑎) − 𝑓(𝑥𝑛)||
2

2
+ 𝛼, 0)     (4.8) 

where f(x) represents the CNN embedding function, α is the margin parameter (set 

to 0.2), and ||⋅||2 denotes the L2 norm. The triplet loss aims to ensure that the distance 

between embeddings of samples from the same class (anchor and positive) is small, and the 

distance between embeddings of samples from different classes (anchor and negative) is 

large. This loss function optimizes the embedding space by enforcing the constraint 

effectively pushing same-class samples closer together while separating different-class 

samples. The α parameter is important because it provides a separation between the classes 

and ensures that model is not overconfident. The goal is to ensure the same class samples 

are closer than a margin, α, to the different class samples. 

To enhance the network's learning efficiency, we implement hard triplet mining. This 

approach selects the most challenging triplets within each batch by identifying positive samples 

with maximum distance from the anchor and negative samples with minimum distance from 

the anchor. This approach is better than random selection of the positive and negative samples 

because it allows the model to learn from the hardest examples which significantly increases 

the learning speed of the model. This strategy ensures that the network focuses on the most 

informative examples during training, leading to more robust feature learning. 



44 

 

 

For EEG-based inner speech classification, the produced embedding space exhibits 

numerous important features. Independent of subject identification. Learning a certain 

embedding space helps the network to better cluster related inner speech patterns while keeping 

constant distances between many patterns. Moreover, subject-specific features are eliminated 

from the embedding space by learning the embeddings using the triplet loss, hence enabling 

improved generalization among subjects. Particularly useful for cross-subject generalization, 

the architecture may acquire discriminative features via relative distances instead of absolute 

patterns. This is a significant benefit over conventional classification methods since the 

emphasis is on the relative class similarities rather than the absolute characteristics of the 

samples. This increases the model's resilience against personal fluctuations in EEG signals. 

4.3 Training Process 

Every model's training schedule was intended to guarantee strong performance and 

subject-independent generalization. This comprised a robust subject-independent testing 

framework, cross-valuation inside the training set, and hyperparameter optimization with 

Optuna. The particular training protocols followed for every model will be covered in the 

sections that follow. 

4.3.1     Linear SVM Training Process 

A leave-one-subject-out cross-validation method and Optuna, a tool for hyperparameter 

adjustment, were used to train the Linear SVM. For hyperparameter tuning, Optuna was 

employed to optimize the regularization parameter C, the penalty type (l1 or l2), and the dual 

formulation (when using the l2 penalty). The C parameter was explored in the range of 1e-3 to 

1e3, as this parameter controls the regularization strength, and a higher value means the 

classifier will aim to minimize misclassification, while a lower value means the classifier will 

aim to maximize the margin. The penalty parameter specified the norm used in the penalization, 

where the L1 norm produces sparse parameters, and the L2 norm produces less sparse solutions. 

The dual parameter specifies whether to use the dual form or the primal form, and this parameter 
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is only relevant when the penalty parameter is l2. The hyperparameter search was performed 

using an inner stratified k-fold cross-validation strategy within the training set, using five folds 

to ensure the model's ability to generalize well on unseen data. The objective function was set 

to maximize the F1 score on the inner validation set. For the training process, for each subject 

in the dataset, the data from that subject was held out for testing, while the data from all 

remaining subjects was used for training. The training data was standardized using 

StandardScaler. After hyperparameter optimization, the best hyperparameters were used to train 

a final model on the entire training set, which was then evaluated on the held-out test set. The 

trained Linear SVM was evaluated using the following metrics: accuracy, precision, recall and 

F1 score. 

4.3.2     SVM with Non-Linear Kernels Training Process 

The SVM with non-linear kernels was trained using a combination of Optuna for 

hyperparameter tuning and a leave-one-subject-out cross-validation approach. This section also 

uses a stratified k-fold cross-validation strategy, and the performance metrics are the same as 

in the Linear SVM section above. For hyperparameter tuning, Optuna was used to optimize the 

hyperparameters of the SVM with non-linear kernels, namely, the regularization parameter C, 

the kernel (linear, poly, RBF, or sigmoid), the kernel coefficient gamma, the polynomial kernel 

degree degree and the coefficient for poly or sigmoid kernels, coef0. The C parameter was 

explored with a log scale between 1e-3 and 10, and this parameter controls the regularization 

strength, with smaller values meaning higher regularization. The gamma parameter was 

explored with a log scale between 1e-4 and 1, and it determines the kernel width or the influence 

of each data point. The kernel parameter specifies the kernel to use, with linear, poly, rbf, and 

sigmoid all being tested. The degree parameter is relevant only for polynomial kernels and 

specifies the degree of the polynomial. The coef0 parameter is relevant for the poly and sigmoid 

kernels and determines the bias of the kernel. The hyperparameter optimization strategy is the 

same as that used for the Linear SVM. The training and testing process was exactly the same 

as described for the Linear SVM method, where the data from each subject was held out for 

testing, while the remaining subjects were used for training. 
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4.3.3     LightGBM Training Process 

The LightGBM model was trained using Optuna for hyperparameter optimization and 

the same leave-one-subject-out cross-validation approach used for the other models. For 

hyperparameter tuning, the following key parameters were optimized using Optuna: the number 

of leaves, num_leaves for the tree which were optimized with values between 10 and 150; the 

learning rate, learning_rate which was optimized with a log scale from 1e-4 to 1; the 

feature_fraction and bagging_fraction which controlled the number of features and samples to 

be used to prevent overfitting; and the lambda_l1 and lambda_l2 parameters which controlled 

L1 and L2 regularization. The hyperparameter tuning procedure is the same as described above. 

For the training process, the process was exactly the same as described for the SVM methods 

above, where the data from each subject was held out for testing, while the remaining subjects 

were used for training. This detailed training process allows a comprehensive and fair 

comparison between the different models, while also ensuring optimal performance from each. 

4.3.4    CNN with Triplet Loss Training Process 

The CNN with triplet loss was trained using a combination of Optuna for 

hyperparameter tuning, a leave-one-subject-out cross-validation approach, and a hard triplet 

mining strategy. For hyperparameter tuning, Optuna was used to optimize the hyperparameters 

of the CNN with triplet loss, which includes the number of filters, num_filters for the 

convolution layers which were tested from 50 to 200, the kernel size of convolutional layer, 

kernel_size which was tested between 3 and 7, the size of the fully connected layer, fc_size, 

which was tested between 30 and 120, the dropout rate which was explored between 0.1 and 

0.5, the learning rate, lr, for the model which was explored using a log scale from 1e-5 to 1e-3, 

the margin for the triplet loss which was explored from 0.5 to 2.0 and the parameter p for the 

loss function which was explored from 1 to 5. Furthermore, the regularization parameter C for 

the final SVM classifier was optimized using Optuna, exploring a range from 0.1 to 50.0 with 

log scaling. The model was trained using a Stratified K-Fold Cross-validation strategy (with 

k=3) on the training set, leaving out the data for the test subject, and the optimization process 

used the F1 score as the primary metric, as is the same for the other methods. For the training 

procedure, for each subject in the dataset, the data from that subject was held out for testing, 
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while the data from all remaining subjects was used for training. The EEG data was converted 

to PyTorch tensors and loaded onto the GPU. Hard triplet mining was performed on the data 

using a HardestTripletSelector in order to only pick the hardest triplets for training, using a 

margin. Then the model was trained using a custom train_triplet_network2 function. After the 

triplet network was trained, features were extracted using the embedding network, and these 

features were then used to train an SVM classifier with a RBF kernel. The SVM classifier was 

trained using the optimal regularization parameter C found during hyperparameter tuning. The 

model's performance on the test set was evaluated using the same metrics as the other models: 

accuracy, precision, recall, and F1 score. 

4.4 Summary 

This part described the training technique used to maximize and assess the performance 

of every model in a framework independent of subjects. Optuna was used to tweak 

hyperparameters for every model using LightGBM, SVM, and CNN models gaining from 

tailored parameter searches to improve classification accuracy. Cross-valuation was done inside 

the training set, one-fold reserved for validation during the tuning phase, therefore preserving 

a strict and objective approach. Using data from n−1 individuals, each model was trained and 

evaluated on the remaining subject in a leave-one-subject-out framework therefore providing a 

strong estimate of subject-independent performance. This method enabled a thorough 

assessment of the efficacy of every model in inner speech classification, therefore stressing 

their respective advantages and drawbacks for different people.



 

 

CHAPTER 5  

Results and Discussion 

5.1 Overview 

The results of a comparison study of the models created for inner speech categorization 

from EEG data are covered in Chapter 5. To evaluate generalizability, performance assessment 

was done under a suite of metrics accuracy, F1-score, precision, and recall all within a subject-

independent perspective. An explanation of the quantitative results is offered in a discussion 

section after their presentation. This part emphasizes the advantages, drawbacks, and possible 

consequences of every model especially for applications in subject-independent BCI. As 

discussed in Chapter 2, other papers used subject-dependent approaches, so accuracy for a 

subject-independent approach will be lower.  

5.2 Results and Analysis  

Figure 5.1 presents the subject-wise classification results using a Linear Support Vector 

Machine (SVM) with statistical features extracted from inner speech EEG data. The results 

show considerable variation in accuracy across subjects when evaluated using leave-one-

subject-out cross-validation, reflecting the inherent inter-subject variability in EEG patterns 

during inner speech production. The model achieved an average accuracy of 26.5% across all 

subjects. 

The exploration of different kernel functions in SVM, as shown in Figure 5.2, yielded 

an average accuracy of 25.50%, performing marginally worse than the linear SVM. Despite 
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the theoretical advantage of non-linear kernels in capturing complex decision boundaries, their 

performance did not surpass that of the linear kernel in this context. This outcome may be due 

to the high noise-to-signal ratio typical in EEG data, which can hinder the ability of non-linear 

kernels to generalize effectively and may lead to overfitting. These results suggest that the 

benefits of non-linear kernels are not realized in this application, possibly because the noise in 

the data masks the underlying non-linear relationships. 

LightGBM achieved an average accuracy of 26.5%, exactly the same as linear SVM. 

This indicates that tree-based ensemble methods may be somewhat more effective at capturing 

complex patterns in the data than kernelize SVM. LightGBM's gradient boosting framework 

allows it to handle non-linear relationships and may offer some robustness to noise. However, 

given the small increase in accuracy, we must be cautious in drawing strong conclusions about 

its advantage over SVM methods. 

With an average accuracy of 26.8%, the triplet network design using a CNN was the 

most effective. When compared to the alternative approaches, this is an incremental step 

forward. This shows that deep learning methods, which construct representations from raw EEG 

data, could be better able to capture discriminative features than conventional feature 

engineering methods. One possible explanation for its performance could be the combination 

of the CNN's capability to learn hierarchical features and the triplet network's ability to learn 

an embedding space that highlights similarities and differences across classes. To completely 

evaluate deep learning's potential in this setting, more research with more datasets may be 

required, but the gain is noticeable. 

Table 5.1: Linear SVM results 

Subject Accuracy Precision Recall F1 Score 

1 0.210 0.210 0.201 0.200 

2 0.292 0.292 0.288 0.287 

3 0.267 0.267 0.269 0.263 

4 0.287 0.287 0.283 0.279 

5 0.254 0.254 0.255 0.251 

6 0.310 0.310 0.308 0.304 

7 0.242 0.242 0.240 0.238 

8 0.280 0.280 0.279 0.273 

9 0.288 0.287 0.279 0.279 

10 0.221 0.221 0.217 0.221 
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Average 0.265 0.265 0.262 0.259 

 

Table 5.2: SVM with RBF results 

Subject Accuracy Precision Recall F1 Score 

1 0.285 0.285 0.290 0.278 

2 0.258 0.258 0.260 0.247 

3 0.283 0.283 0.283 0.278 

4 0.242 0.242 0.237 0.234 

5 0.254 0.254 0.243 0.240 

6 0.301 0.302 0.318 0.292 

7 0.233 0.233 0.238 0.229 

8 0.205 0.205 0.191 0.195 

9 0.250 0.250 0.250 0.238 

10 0.233 0.233 0.237 0.231 

Average 0.255 0.255 0.255 0.246 

 

 

Table 5.3: LightGBM results 

Subject Accuracy Precision Recall F1 Score 

1 0.280 0.280 0.279 0.277 

2 0.308 0.308 0.309 0.307 

3 0.288 0.288 0.273 0.272 

4 0.271 0.271 0.266 0.268 

5 0.246 0.246 0.245 0.245 

6 0.282 0.282 0.286 0.282 

7 0.254 0.254 0.254 0.254 

8 0.240 0.240 0.261 0.231 

9 0.250 0.250 0.252 0.250 

10 0.225 0.225 0.227 0.220 

Average 0.265 0.265 0.265 0.261 

 

 

Table 5.4: Triplet network results 

Subject Accuracy Precision Recall F1 Score 

1 0.280 0.280 0.307 0.254 

2 0.300 0.300 0.315 0.293 

3 0.244 0.244 0.241 0.239 

4 0.237 0.237 0.237 0.195 

5 0.308 0.308 0.307 0.304 

6 0.245 0.245 0.239 0.240 
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7 0.283 0.283 0.274 0.273 

8 0.280 0.280 0.277 0.266 

9 0.258 0.258 0.287 0.211 

10 0.250 0.250 0.264 0.232 

Average 0.268 0.268 0.274 0.2507 

 

 

Table 5.5: Comparison of models accuracy 

Subject Linear SVC SVM LightGBM Triplet Network 

1 0.210 0.285 0.280 0.280 

2 0.292 0.258 0.308 0.300 

3 0.267 0.283 0.288 0.244 

4 0.287 0.242 0.271 0.237 

5 0.254 0.254 0.246 0.308 

6 0.310 0.301 0.282 0.245 

7 0.242 0.233 0.254 0.283 

8 0.280 0.205 0.240 0.280 

9 0.288 0.250 0.250 0.258 

10 0.221 0.233 0.225 0.250 

Average 0.265 0.255 0.265 0.268 

 

The confusion matrix for Subject 1 is shown in Figure 6.1. This matrix's tendency to 

classify instances as "down" more often than other categories indicates a blatant bias in the 

model's predictions. On the other hand, the confusion matrix for Subject 4 in Figure 6.2 exhibits 

a distinct predictive pattern. The model shows a significant bias toward "up" predictions for 

this subject. The sharp disparity in these results between Subjects 1 and 4 reveals a high level 

of inter-subject variability, suggesting that the model's functionality and particular biases vary 

from person to person. 
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Figure 5.1 Confusion matrix for subject 1 when predicted using triplet embedding with 

SVC  classifier 
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Figure 5.2 Confusion matrix for subject 4 when predicted using triplet embedding with 

SVC classifier 

 

5.3 Discussion 

In contrast to earlier research that mostly focused on subject-dependent approaches in 

order to test the models' capacity for generalization, this study evaluated models for a subject-

independent approach.. Deep learning techniques improved accuracy from 25.5% to 26.8% 

compared to typical machine learning methods, suggesting that representation learning and 

non-linear modeling may play a significant role in inner speech EEG classification. The 

advantages are small, but they show that more advanced models could be able to provide even 

smaller ones. Based on these findings, it seems that expanding our focus beyond classic feature 

engineering techniques and investigating more complex neural network topologies could lead 

to better classification performance in the future. Another possible solution is to make use of 

bigger and more varied datasets. 

5.3.1 Determinants of Generalizability 

Our subject-independent evaluation's findings point to two main issues that restrict the 

generalizability of the model for inner speech classification: the low signal-to-noise ratio (SNR) 

present in EEG data and high inter-subject variability. 
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The comparatively low average accuracy across all models is primarily caused by the 

substantial inter-subject variability. Each model's performance varied significantly between 

subjects, as Table 7 illustrates. For instance, the accuracy of the SVM with the RBF kernel was 

0.205 for Subject 8, but 0.285 for Subject 1. The clear predictive biases seen in the confusion 

matrices for Subjects 1 and 4 (Figures 6.1 and 6.2) further support this, showing that a model's 

particular failure modes can differ significantly from person to person. This implies that 

learning a common, reliable representation of inner speech signals across a diverse population 

is difficult for a single, one-size-fits-all model. Furthermore, the low SNR typical of non-

invasive EEG recordings proved to be a significant obstacle. It can be challenging for models 

to capture discriminative features because this noise can obscure the subtle, underlying brain 

signals associated with inner speech. Our discovery that non-linear SVM kernels did not 

perform better than the linear kernel raises the possibility that the noise-to-signal ratio of the 

data may limit these intricate models' capacity to generalize, possibly resulting in overfitting on 

noise instead of the actual signal. The slight improvements observed with more sophisticated 

models, such as the triplet network, demonstrate that although deep learning can start to address 

this issue, it still remains a critical hurdle. 

 

 

5.4 Summary 

In this section, we examined various models for subject-agnostic EEG-based inner 

speech classification. An average accuracy of 26.8% was achieved by the convolutional neural 

network (CNN) that utilized triplet loss, highlighting the promise of deep learning and 

representation learning in the field of inner voice classification. With accuracies of 25.5% and 

26.5%, respectively, traditional machine learning methods like Linear SVM and LightGBM 

demonstrated their effectiveness in managing noise and variability in EEG data. Despite 

LightGBM's minor performance advantage in capturing complicated patterns, non-linear SVMs 

were not able to surpass the linear kernel owing to the high noise-to-signal ratio. Further 
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investigation into deep learning methods and data gathering tactics for BCI applications is 

necessary, as the results indicate that more complex structures and bigger, more varied datasets 

may lead to slight gains in classification performance.



 

 

CHAPTER  6 

CONCLUSION AND FUTURE WORK 

6.1 Overview  

Classification of subject-independent inner speech using EEG signals was the main 

focus of this research. The goal was to compare the generalizability of deep learning 

approaches, especially a CNN with triplet loss, against that of more conventional machine 

learning models, such as SVM and LightGBM, using a subject-independent approach. The 

study's overarching goal was to promote the development of reliable brain-computer interface 

(BCI) systems capable of decoding inner speech, so as to address the challenges posed by inter-

subject variability and the large noise-to-signal ratio that characterize EEG data. 

6.2 Summary 

This study has made the following contributions: 

i. Compared a deep learning model (CNN with triplet loss) against more conventional 

machine learning models (Linear SVM, SVM with RBF, and LightGBM) for inner 

speech categorization that is independent of the subject.   

ii. Demonstrated the marginal superiority of deep learning approaches in generalizing 

across subjects, with the CNN and triplet loss architecture achieving the highest average 

accuracy of 26.8% across subjects. 

iii. Highlighted the limitations of traditional feature engineering and non-linear kernels for 

noisy and highly variable EEG data, providing evidence for the potential of 

representation learning in BCI applications. 
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6.3 Future Work  

Drawing from the insights gained in this study, future research should emphasize deep 

learning approaches, with a particular focus on investigating methods for learning improved 

representations and testing out new architectures. Collecting more extensive and varied datasets 

should be a priority, as this would facilitate the use of advanced techniques like transfer learning 

and the training of cutting-edge models such as transformers. Furthermore, tackling the inherent 

noise in EEG signals is still a significant hurdle; future endeavors should concentrate on 

creating effective noise-reduction techniques to enhance signal quality and boost model 

performance. These steps will not only bolster subject-independent inner speech classification 

but also progress the field of brain-computer interfaces more generally. 
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