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ABSTRACT 

 
       Title: Energy-efficient Node Localization and Tracking for Real-Time UWSN’s Applications 

 

 

Depletion of terrestrial resources has driven human exploration towards underwater realms, where 

challenges such as diminished optical clarity and increased hydrostatic pressure hinder effective 

communication and examination considering acoustic waves. The use of electromagnetic (EM) 

Underwater Wireless Sensor Networks (UWSNs) has gained favor due to their low cost, higher data 

rate, minimum propagation delay compared to acoustic, but long-range underwater communication 

remains challenging. This research proposes a methodology to address these challenges, emphasizing 

the development of an efficient node localization and tracking system for UWSNs. The approach 

involves segmenting UWSNs considering real time applications into two major steps one is 

Autonomous Underwater Vehicles (AUVs)/ or implementing dynamic courier node for 

localization/tracking of sensor nodes and data transmission to an offshore base station (BS). The study 

also highlights the dynamic nature of ocean depth and its challenges to underwater networking. To 

mitigate disruptions, the research focuses on deploying sensor nodes randomly (Gaussian 

distribution) at various oceanic depths. This research also tackles the challenges inherent in UWSNs 

by proposing a novel method to improve tracking and localization efficiency in terms of 3D trajectory. 

The primary issues addressed include communication and data collection difficulties in underwater 

environments due to limited light penetration and high pressure, which affect equipment 

functionality. By utilizing Bayesian inference and Kalman filtering, the research attempts to create a 

reliable and accurate state estimation technique for UWSNs. In the suggested methodology, the 

Extended Kalman Filter (EKF), a well-known instrument for state estimation in linear systems with 

Gaussian noise, is employed. When handling several sensors or information sources, though, it could 

not be up to par. Through the integration of Bayesian approaches, the suggested methodology 

improves the performance of EKF. This results in the creation of a framework that mixes and 

integrates data from numerous KFs. Based on sensor measurement, the proposed methodology updates 

the state estimate using Bayes' theorem and expresses uncertainty as probabilities. Significant RMSE 

reduction as compared to the KF method's RMSE value of 0.1 to 0.5 meters possible using the 

suggested approach. The novel approach's performance was validated through the use of MATLAB 

and EKF, along with real-time data obtained from the National Centers for Environment Information. 

In order to increase the precision and effectiveness of object tracking and localization in UWSNs, the 

Helmholtz approach is applied to simulations based on ocean data to characterize dynamic 

underwater communication channels. 
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Performance evaluation measures include root mean square error (RMSE), estimate error, and 

convergence time. The analysis shows that the proposed strategy for tracking nodes and localizing 

them in UWSNs is significantly better than the current approaches. The suggested protocol, in 

instance, leverages more effective routing and data transfer to reduce energy consumption by thirty 

percent. Node efficiency gains twenty percent in shallow and mid-water environments and twenty 

percent in deep-water settings. The reason for these gains is a decreased Root Mean Square Error 

(RMSE) in localization, which decreases the need for energy-intensive error correction procedures, 

hence improving overall energy efficiency and extending the operational lifetime of UWSNs.
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 
1.1 Overview 

 
         The terrestrial sphere, commonly known as Earth, is primarily enveloped by aqueous 

expanses. In light of the escalating depletion of terrestrial resources, human endeavors have 

increasingly gravitated towards the exploration of the submerged realms. Nevertheless, the pursuit 

of undersea exploration is significantly constrained by the diminished optical clarity and augmented 

hydrostatic pressure, which collectively impedes effective communication and comprehensive 

examination of the subaqueous domain [1]. Marine resources gradually become more abundant as 

terrestrial resource exploitation becomes much more mature. Human beings are slowly turning 

towards marine resources. Related areas favor the use of underwater wireless sensor networks 

(UWSNs) because of their low cost and convenience. The location tracking and optimal path 

finding underwater is a nerve center for researchers at the moment [2]. Despite the low cost of 

UWSN deployment, underwater communication remains a challenging technology via 

communication cables. USWN has received so much attention because of its long transmission 

range through acoustic communication (≈1000m) along with dependency on the environment, and 

low speed (1500m/Sec) it experiences signal loss and distortion [3].There has been significant 

research on improving the localization algorithm or developing new methods for getting towards 

the destination node [2]. Researchers working on the development of UWSNs must consider the 

architecture of the everlasting design that provides distributed sensor nodes within the network 

with the capability of self- configurability [3].  

Within the context of UWSNs, the attainment ofa predetermined node remains a subject of 

uncertainty. Should we employ a global optimizer, it will guide us to the globally optimal node, 

whereas a local optimizer will facilitate the discovery of an optimal path in a localized fashion. 

Consequently, in both scenarios, our outcome is characterized by either the realization of a globally 

optimized node or the identification of a locally optimal node, though not concurrently.
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The research proposal aims to tackle the challenges associated with communication and 

examination in underwater environments, focusing on Underwater Wireless Sensor Networks 

(UWSNs). As resources found on earth and underground in core and ore are depleting, there is a 

growing necessity to explore and utilize underwater domains for various purposes. The 

environment of Underwater and its traits are distinct as well as challenging. These undersea 

problems must be solved and handled with assistance, as well as through efficient communication 

and investigation. Wireless sensor networks underwater present a number of problems and 

difficulties. The accuracy of sensor node localization is one of these important issues. This level 

of accuracy is absolutely necessary for the effective use of the data that has been gathered. UWSNs 

function in a challenging underwater environment with significant signal attenuation, low 

bandwidth, multipath propagation, and a dynamic medium, in contrast to terrestrial networks. 

These conditions make communication and information transfer difficult. Most underwater sensors 

are battery operated, and power consumption is another important issue. Most underwater sensors 

are powered by batteries which are expensive and difficult to replace. As a result, maintaining the 

network's lifespan can be challenging and expensive. Consequently, in order to prolong the 

network's lifespan, high delivery and maintenance expenses are needed. Sensor node deployment and 

maintenance are made more difficult by the underwater environment, which drives up expenses. 

Living in the undersea world in real time requires these dynamic adjustments. In order to overcome 

these obstacles, UWSNs must be successfully deployed and used for a range of tasks, such as 

environmental monitoring, military surveillance, and resource extraction [4].  

Underwater sensor network development and advancement is often critical to these significant 

applications and issues pertaining to underwater locations. Underwater wireless networks 

(UWSNs) have unique obstacles and constraints, including repeated exposures, weak signal 

intensity, and very low power usage when compared to networks that are airborne and on land. Due 

to these challenges in UWSN design, deployment, and maintenance, further study is needed to find 

dependable and practical solutions. Applications for UWSNs are numerous and include 

environmental monitoring, disaster relief, ocean data collection, and military surveillance. 

Underwater risk management, more accurate data collecting, and environmental protection could 

all benefit from advancements in underwater wireless sensor network (UWSN) technology. Thus, 

there is a need for ongoing study and innovation in this field [5]. Because it won't work in the 

underwater environment, developing a good location and tracking system for UWSN is a 

challenging task. Aside from the apparent, there is also the evident issue of the surroundings being 

negatively impacted by high hydrostatic pressure. For experts and practitioners, this paper provides 

insights by evaluating various research methods related to Media Access Control (MAC) and 

regional methods, UWSN design, routing, energy usage, and security. It emphasizes the 

importance of solving these problems to improve the performance and reliability of UWSNs.
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In addition, the study provides examples that demonstrate the real-world benefits and outcomes of 

UWSN. This comprehensive review not only helps to understand the current status of the 

challenges but also suggests future research to develop better and more effective UWSN solutions 

[6]. Compare light waves, sound waves, and electric waves, including changes in propagation 

speed, range, and data transfer. The comparison of various energy saving techniques mainly 

focuses on the pros and cons. 

Table:1.1 Pros and Cons of Underwater Networking: Light, Sound, and Electromagnetic 

Waves[1-10] 

 

Light waves Sound waves Electromagnetic waves 

High propagation speed in 

water compared to sound 

waves. 

Excellent propagation in 

underwater environments 

due to low absorption 

Higher frequency EM 

waves (e.g., radio waves) 

can penetrate water to 

some extent. 

Suitable for short-range 

applications in clear water 

conditions. 

Long-range capabilities, 

especially in deep water. 

Can provide wide- area 

coverage in relatively clear 

water. 

It is restricted to line-of- sight 

communication, limiting 

coverage in complex 

underwater environments. 

Performance degrades 

with increasing water 

salinity. 

Lower data transfer rates 

compared to electromagnetic 

methods. 

Propagate at the speed of 

light in the medium, which 

is faster than sound waves. 

Propagate at a much slower 

speed in water compared to 

light waves in air. 

Travel at the speed of light in 

a specific medium (e.g., radio 

waves). 

Suffer from absorption and 

scattering in water, limiting 

their range. 

Attenuate less in water than 

electromagnetic waves, 

making them suitable for 

longer-range communication. 

Experience absorption and 

reflection, depending on 

the frequency. 

Provide high accuracy 

but may face 

challenges in 

underwater 

environments. 

Well-suited for localization 

due to their ability to travel 

over longer distances with 

reasonable accuracy. 

Can offer good accuracy 

depending on the frequency 

and signal processing 

techniques. 

Speed: 3*10^8 m/s 

Bandwidth: GHz 

Range: 1-10cm 

Speed:1500m/s 

Bandwidth: KHz 

Range: ≈1000m 

Speed: 3*10^8 m/s 

Bandwidth: MHz 

Range: 10-150m 
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          1.2   UWSN Architecture 

  
i. Underwater sensor network architecture: The overall layout and composition of 

an underwater sensor network is called architecture. We divided the network into 

regions and focused mostly on autonomous underwater vehicles. 

 

ii. AUV segmentation: Unmanned autonomous vehicles with the ability to function 

independently underwater are known as autonomous underwater vehicles. The 

prototype design of these AUVs incorporates UWSNs, demonstrating the 

importance of these vehicles to the network's functionality. This entails segmenting 

the network into autonomous underwater vehicles (AUVs) and transmitting data to 

a base station or distant location by means of dynamic sensor node choices. 

 

iii. Dynamic selection of express nodes: "Express nodes" is the word used. It is 

advised to set aside certain nodes for data transmission and transportation. The nodes 

that are displayed are dynamically selected, meaning that they can alter in response to 

certain demands. Optimizing network and overall performance in response to shifting 

conditions may be the goal of this dynamic selection process. Sending information to 

base stations located offshore: Data transfer from various UWSN locations to the 

offshore base station cart is made easier with the use of dynamic express node 

selection. Typically, shore stations are positioned on platforms or in the water to serve 

as a central location for data gathering and system communication. 

iv. Data transmission improvement: Two methods to improve the efficiency of data 

transmission are network separation to AUV and dynamic node selection. The 

architecture is intended to maximize the network's overall performance through the 

strategic use of AUVs and dynamic data transmission selection. 

 

v. Overcoming the Obstacles of Dynamic Ocean Depth: The changing nature of 

the ocean depth poses special challenges through segmentation and dynamic node 

selection. This will require changes in depth, changing water levels, and other 

environmental factors that will affect the transmission of information and 

communication in the UWSN. 
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  Figure 1.1: Architecture of Under Water Sensor Network 

 

 

The Figure 1.1 illustrates the basic architecture of an Underwater Wireless Sensor Network 

(UWSN). In this setup, multiple sensor nodes are deployed underwater to monitor various ocean 

parameters like temperature, salinity, and pressure.  

These sensors communicate wirelessly and transmit their data to a sink node, which acts as a 

gateway between underwater and surface communication. The sink node forwards this information 

to a surface station (such as a ship or buoy) that relays it to a ground station for further processing 

and analysis.  

The diagram also shows an Autonomous Underwater Vehicle (AUV), which moves among the 

sensors to assist with data collection or to serve as a mobile node for localization and tracking. The 

overall structure ensures real-time data transmission from deep-sea environments to onshore 

monitoring systems, enabling effective ocean observation and underwater surveillance.
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          1.3   UWSN Applications 

 

                     Some simple applications of Underwater Wireless Sensor Networks (UWSN) are: 

 

1. Using UWSNs with small underwater vehicles or solar-powered probes to monitor 

water quality in reservoirs. 

2. Employing ZigBee-based sensor nodes to check and maintain the pH balance in 

river water. 

3. Implementing a framework for underwater monitoring that includes sensing, 

wireless communication, visual representation, and alarms for events. 

4. Using Smart Environmental Monitoring and Analysis Technology (SEMAT) with 

easy-to-install smart sensors and short-distance wireless communication for studying 

marine environments. 

5. Testing a UWSN prototype successfully in Mar Menor coastal lagoon, Spain, to 

monitor the shallow water marine environment. 

6. Creating a system for decentralized detection of ocean pollution and wreckage by 

placing sensors equipped with short-range acoustic modems under water. 

7. UWSNs are used in military missions such as underwater reconnaissance and 

surveillance. These uses demonstrate the versatility and significance of UWSNs across a 

range of industries [4]. 

 

          1.4   Limitations of UWSN in Real-time Applications Localization / Tracking 
 

         The constraints of UWSNs include the challenges associated with underwater    

communication, such as signal loss, distortion, and the dynamic nature of ocean depths. The 

deployment of sensor nodes at various oceanic depths is proposed to mitigate disruptions caused by 

these constraints. 

 

1. Limited Energy Resources: Batteries with limited energy capacity typically power 

sensor nodes in UWSNs. Once deployed underwater, replacing or recharging these batteries 

becomes impractical. Energy efficiency can thus be berated as the greatest and important 

most factor which can result or effect prolonged operational lifespan of Underwater Sensor 

Networks. It can also enhance and maximize data collection periods [1]. 
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2. Harsh Underwater Conditions: The harsh and dynamic underwater environment 

poses challenges such as high hydrostatic pressure, limited visibility, and variable water 

conditions. Energy-efficient protocols ensure that sensor nodes can function properly even 

under difficult conditions by optimizing the utilization of resources [2]. 

 

 

3. Communication Restrictions: Underwater communication is naturally 

challenging due to signal attenuation in water. Acoustic communication, a common method 

in UWSNs, consumes a lot of energy. Creating energy-efficient protocols that will reduce 

energy consumption during communication processes, enabling less signal distortion and 

handling larger transmissions, is the main objective of study [1-2]. 

 

 

4. Impact of Environment: The overall reliability of UWSNs is increased by low- 

energy consumption protocols. By maximizing energy consumption and ensuring 

continuous data collection and transmission, these techniques help lower the likelihood of 

an early node failure. Applications such as environmental monitoring and hazard 

identification rely on this reliability [2]. 

 

5. Reliability of Network: Reliability of UWSNs is increased via low-power 

consumption protocols. Through energy-efficient ways that ensure continuous data 

collection and transmission, these techniques help lower the likelihood of an early node 

failure. Applications requiring this dependability include environmental monitoring and 

hazard identification [3]. 

 

6. Cost-Effectiveness: Low deployment costs for UWSNs are among the key 

advantages and contributions of energy-efficient protocols. Over time, this results in 

financial savings as it prolongs the operational life of sensor nodes and reduces the need 

for unexpected or frequent replacement and maintenance [4]. 

 

7. Absence of GPS Navigation: Underwater areas do not have GPS navigation, in 

contrast to terrestrial situations where it is commonly employed. One major obstacle to real- 

time tracking and localization of sensor nodes in UWSNs is the lack of GPS navigation. It 

becomes necessary in this situation to develop creative and alternate tracking techniques 

[5]. 
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8. Dynamic Ocean Depths: Ocean comprises of a distinct three-dimensional (3D) 

layered structure with different and varying depths, longitude and latitude, associated with 

each of them. The dynamic nature and immense depth of ocean along-with current and waves 

lead and result in a challenging environment, hampering effective maintenance of accurate 

and real-time tracking of sensor nodes [1-5]. 

 

9. Fluctuating Ocean Conditions: The Ocean environment and its segments change 

dynamically and drastically very frequently. This constant change in ocean conditions also 

include factors such as temperature, salinity and underwater current. The effectiveness of 

tracking systems and equipment is the variation and change of the factors mentioned above, 

which can lead to incorrect results and inaccuracies in measurement parameters [5-6]. 

 

10. Communication difficulties: There are many difficulties in underwater 

communication, including bandwidth limitations, multipath propagation, and signal 

attenuation. These problems make it difficult to maintain effective communication for 

tracking purposes. It is important to develop tracking vehicles that can track these 

communication problems [1-2]. 

 

11. Optimal sensor placement: Sensor nodes should be positioned at varying depths 

to provide accurate monitoring because ocean depth is a dynamic phenomenon. When 

advising the usage of sensors, it's critical to take into account factors like wave speed and 

possible impacts on the undersea ecosystem. Examine all of the parts, especially the ones 

that employ electricity, closely. The reduction in power consumption is advantageous for 

underwater tracking; however, the temperature of the water is one of several factors that 

affect its efficacy [6]. 

 

         1.5   Motivation 

 
         Underwater Wireless Sensor Networks (UWSNs) are becoming more and more necessary as 

catastrophe prevention becomes more and more crucial. Additionally, it facilitates better 

navigation and environmental monitoring. Underwater and submerged exploration require all of 

the aforementioned. Underwater applications of UWSNs are hindered greatly by their high energy 

consumption. Sound waves travel slowly, contain a  finite amount of data, and are prone to errors. 

Reducing energy consumption in UWSNs is crucial. The insufficiency of conventional GPS 

devices in  underwater  environments  prompts  the  investigation of  substitutes  for a variety  of  
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underwater applications, UWSNs are an affordable option. Ocean risks can be identified using 

UWSNs, which can also measure temperature and detect objects. Improving the precision and 

endurance of UWSNs in dynamic maritime conditions is the main driving force. There is a need 

to address underwater-specific communication challenges where traditional GPS is impractical. 

Improving tracking capabilities within UWSNs is crucial for understanding movement patterns 

and phenomena in the ocean. The research aims to overcome limitations related to diminish optical 

clarity and increased hydrostatic pressure. The goal is to develop more robust and resilient 

underwater sensing systems. Advancing capabilities in monitoring and understanding underwater 

environments is essential for scientific and practical applications. The ultimate aim is to 

significantly improve the effectiveness of UWSNs in navigating the complexities of dynamic and 

challenging oceanic ecosystems navigating the complexities of dynamic and challenging oceanic 

ecosystems. 

  

         1.6   Problem Background 

 
       The backdrop of the issue is that GPS navigation is not available underwater, necessitating the 

development of creative electromagnetic wave tracking techniques. The importance of solving 

problems in the marine environment is related to the nature of the ocean depth and the problems it 

creates in underwater connections. 

Accurate node localization in underwater environments is critical for real-time data 

collection and monitoring, yet remains challenging due to high latency, dynamic topologies, and 

signal attenuation. Mamta Nain et al. proposed a range-based localization scheme incorporating 

hybrid optimization techniques to enhance localization accuracy under such constraints. Their 

study highlights the need for adaptive methods capable of handling non-linearity and energy 

limitations. Building on these insights, the current research integrates extended Kalman filtering 

and Bayesian inference for improved performance in dynamic underwater settings [4]. 

 

         1.7   Problem Statement 

 
      The main problem in this study is the limitation of GPS navigation in the underwater 

environment, which makes it impossible to track the time and location of underwater sensors. 

Underwater conditions pose a great challenge to current GPS equipment due to insufficient 

penetration, which results in limited performance.Researchers are searching for fresh and 

dependable approaches to using electromagnetic waves for underwater navigation in order to 

get around this issue. By concentrating on a route that GPS does not always take, the objective 

is to develop a dependable system that can quickly and precisely track submerged sensors. 
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          1.8   Research Questions 

 
       The primary focus of research challenges is on how real-time information can be used in 

UWSNs to achieve realism and lower the chance of GPS interruption. In certain geographical 

areas, the research also aims to generate precise target estimations. 

1. How to use real-time information in UWSNs to obtain the real situation and solve   the risk 

of   GPS unavailability? 

 

2. How to accurately estimate targets in small area network? 

 

         1.9   Aim of the Research 

 
     The aim of the research is to improve and enhance the service life and accuracy of UWSN in 

a dynamic maritime environment by creating a long-range search and release system based on 

real-time information. 

 

          1.10   Research Objectives 

 

 
         The goal of the project is to create a tracking system with a lower mean square error and an 

energy-efficient localization and tracking mechanism. The methodology leverages real- time 

dynamics information from ocean literature and employs Kalman filtering for sensor tracking. 

 

1. To design and develop a method for energy-efficient localization and tracking   of 

sensors in UWSNs based on real-time data of oceans. 

 

2.  To design and develop a tracking system that predicts autonomous underwater 

vehicle trajectory in hostile underwater environments. 

 

          1.11   Scope of research 

 

         The scope of the research work is focused on "Energy-efficient node localization and 

tracking for real-time UWSNs application." The study considers the challenges of underwater 

communication and proposes innovative solutions to enhance the accuracy and lifespan of 

UWSNs in dynamic ocean environments. The research specifically addresses the limitations of 

traditional GPS technologies underwater. 
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          1.12   Thesis Organization 

 
                        The remainder of the thesis is structured as follows: 

 

 

In Chapter 2, an introduction to the domain is provided along with a discussion of related 

problems in UWSNs. This chapter extensively reviews previous research, highlighting the 

distinctions between this study and existing frameworks. A comprehensive analysis of state-of-

the-art schemes, along with an exploration of their research limitations, guides the identification 

of new research directions. 

Chapter 3 outlines the methodology used in problem identification, presenting details of the 

technique employed. The chapter introduces a solution to address the identified problem and 

covers the research methodology, including the operational framework, research design, and 

simulation framework. It delves into the specifics of Kalman Filtering Simulations, elucidates 

its framework, and explains the implementation of the Bayesian approach and Helmholtz 

method. Additionally, Chapter 3 provides a thorough explanation of the operational framework 

and validates Kalman Filtration through the implementation of real-time data. Chapter 4 focuses 

on the performance evaluation of Kalman filtering simulation and the implementation of 

Bayesian approach in the fusion process of KF. The Helmholtz method is applied in subsequent 

simulations. The chapter discusses experiment results, offering a comparative analysis of 

tracking and localization efficiency using real-time data. The final results are visually presented 

through graph. 

Chapter 5 summarizes the research contributions, highlighting the proposed protocol's gaps and 

suggesting directions for future work. 
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CHAPTER 2 

 

 

Literature Review 
 

 

 

 

         2.1   Overview 

 
        The review of existing research starts by talking about how we're using up a lot of 

resources on land. Because of this, people are now looking more into exploring under the water. 

The reason for this shift is that we're realizing there are limits to the resources we have on land. 

The review talks about the difficulties we face underwater, like not being able to see clearly and 

dealing with the pressure deep underwater. It explains that the water has particles that make it 

hard to see, and there's not much light that can reach deep down. 

 

         2.2   Localization and Tracking Methods Review Considering UWSNs 

 
     This section examines UWSNs and shows how simple and inexpensive they are compared 

to more traditional communication options. It is well known that underwater communication 

is problematic, especially when communication lines are used, and sensor nodes must be 

placed at different ocean depths. Underwater sensor nodes with sensing, communication, 

and active deployment capabilities are available as UWSNs. There are many applications for 

these networks, including business environments, oceans, environmental protection, and 

defense. However, UWSNs face many problems, especially in the areas of surveillance and 

localization. UWSN location and tracking may encounter problems such as signal 

attenuation (±), multipath propagation, and low visibility, making it difficult for the 

equipment to be directly used underwater using GPS. In addition, underwater communication 

often faces the problem of limited bandwidth (B) and high- p o w e r  consumption, so it is 

necessary to develop energy-saving algorithms and communication models designed to 

save bandwidth. The nature of the underwater environment, including ocean currents that 

cause sensor nodes to drift, presents another challenge, along with the need to use dynamic 

positioning algorithms that can change the node location. In accuracies in underwater sensors 

and the often-limited communication range further complicate the scenario, demanding that  
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localization algorithms accommodate sensor errors and operate within the confines of 

communication ranges [5-6]. 

 

Figure 2.1: Localization and Tracking methods. 

 

UWSN localization and tracking find practical applications in tracking ocean currents, monitoring 

temperature, and assessing salinity for environmental research. To overcome these challenges and 

optimize UWSN performance, ongoing research endeavors aim to enhance the reliability and 

effectiveness of localization techniques in underwater scenarios. The article under consideration 

refines the selection process for CHNs by considering factors such as the residual energy of nodes 

and spatial proximity. Simulation results presented in the article validate the commendable 

effectiveness and efficiency of the proposed algorithm in reducing energy consumption, extending 

the network's operational lifespan, and mitigating packet loss ratios [5]. The increasing need for 

gathering scientific data and the revitalized drive to explore underwater natural resources have 

catalyzed a surge in research focused on the underwater domain. Consequently, UWSNs have 

gained worldwide recognition. Nonetheless, UWSNs confront substantial challenges due to their 

adverse surroundings, extended signal propagation delays, and sensor node battery capacities [6].
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The paper underscores the significance of establishing effective routing methods in wireless sensor 

networks, given the constrained hardware and software resources of sensor devices. Achieving 

essential metrics, such as low packet loss, enhanced quality of service, and minimized energy 

consumption, is paramount for the successful operation of efficient routing algorithms [6]. 

The growing importance of UWSN in the realm of scientific data collection for underwater natural 

resource exploration emphasizes the crucial need for maximum link reliability. Traditional network-

based routing protocols are designed to ensure effective communication among sensor nodes, yet 

they grapple with limitations such as distance- dependent bandwidth constraints, channel 

imperfections, and high transmission delays. Additionally, the underwater environment imposes 

restrictions on data transmission in long- distance network areas, given the harsh conditions and 

limited battery power of the devices [7]. Duecker et al. presents an innovative approach to 

underwater vehicle localization. The authors focus on utilizing the attenuation of electromagnetic 

carrier signals to enable precise positioning for micro underwater vehicles. The use of EM signals 

for underwater localization is a promising avenue, as it can overcome some of the limitations 

associated with acoustic- based systems. The paper introduces an innovative approach to a self-

localization method for micro AUVs based on the α of EM carrier signals. The techniques used in 

the paper for the EM signal carriers. The authors employ EM waves for signal transmission and 

propagation underwater. This differs from acoustic-based location techniques, which involve 

transmitting electrical signals from source to receiver. 

This study uses the concept of face (where the electric current in spherical structures propagates 

outside the transmitter radiation). Δ to calculate the distance between the transmitter and the 

receiver while crossing the water. Passive One-Way Signaling: The system presented in the study 

uses passive one-way signaling technology to reduce the complexity of the installation and ease of 

use. AUV receives and evaluates electromagnetic signals (EM signals) sent from a fixed location 

to estimate its location [8]. In addition to the general review of underwater radio networks, the 

study also provides detailed information on the specific requirements for the co- location of 

UWSNs. To solve the problems of poor connectivity, slow data, and high packet loss in UWSN, 

we developed a system for two main applications: navigation assistance and personal space. The 

planning process of using remote data from the bottom of the water requires the cooperation of 

sensor nodes to estimate their locations and has minimal dependence on bones. After completing 

self-localization, a node uses nearby ones to determine its location for underwater navigation. The 

network performance is simulated and measured using the Castalia simulator [9]. 

The main objective of this work is to provide an overview of the methods and techniques for 

localization and clustering of Underwater Wireless Sensor Networks (UWSNs), Autonomous 

Underwater Vehicles (AUVs) and Unmanned Surface Vehicles (USVs). The main objective of this 

work is to review  and evaluate the  existing ways  and integration to  improve  the accuracy  and 
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efficiency of the field - two methods that are essential for the effective operation of UWSN research 

resources, since the computers used in military surveillance and environmental monitoring depend 

on these networks mix well. Bionic algorithms, adaptive clustering, and hierarchical clustering are 

available in the UWSN environment. The goal of this work is to increase the location accuracy of 

ultra-wideband (UWB) wireless sensor networks (WSNs). Create and evaluate a hybrid DV- Hop 

algorithm that makes use of particle swarm optimization (PSO) technologies to improve and 

optimize its functionality. Tracking and placement in underwater wireless sensor networks 

(UWSN) depend on accurate location determination, which is the primary goal of this research. To 

do this, researchers have employed a variety of methods and approaches. The Distance Vector Hop 

(DV-Hop) algorithm determines the distance between nodes by calculating the average of each 

hop and the number of hops, which is a noiseless field placement strategy. Nodes can therefore 

find themselves without the aid of distant sensors. The aim of this work is to develop and evaluate 

a hybrid DV-Hop algorithm that is developed using Particle Swarm Optimization (PSO) and its 

ability to improve Location. Accuracy in Ultra- Wideband (UWB) Wireless Sensor Networks 

(WSN). Since obtaining the location accuracy is crucial for overseeing the caliber of work in 

Underwater Wireless Sensor Networks (UWSNs), it serves as the primary research goal. We use 

numerous key concepts and methods to do this. Employing hops and the average of hops to 

determine the distance between nodes, Distance Vector Hop (DV-Hop) technology is a popular 

approach for location determination. Without using a measurement tool, this technique makes it 

possible to access node locations. Based on the collective behavior of birds, particle swarm 

optimization (PSO) is implemented. Through candidate solution improvement and fitness-based 

ranking, it maximizes the head nod position. Create a hybrid method by utilizing DV-Hop's 

simplicity and robustness for the initial location and optimization Possibilities of PSO to modify 

the node's location for precise positioning. PSO and DV-Hop algorithms yielded similar results. 

The localization is more accurate as a result. UWSN's distance accuracy is increased since the 

hybrid algorithm offers a superior and more effective solution underwater tracking [11]. 

The primary goal of this research is to enhance the accuracy and functionality of Wireless Sensor 

Networks (WSN). Solving location and tracking-related issues that are crucial and relevant for use, 

like capital extraction layer, military surveillance, and environmental monitoring, is the primary 

goal of this research. To do this, numerous strategies and tactics are employed. It's crucial to employ 

sophisticated algorithms to boost node performance and location precision. The research addresses 

the shortcomings of existing systems, which necessitate the use of multi- or multi-based placement 

methods that do away with the need for distance measurements between nodes, reducing overhead 

and energy consumption. New algorithmic techniques are combined with traditional registration 

techniques in this research. With machine learning algorithms, the technology improves the 

accuracy and efficiency of node placement by dynamically adjusting localization tactics in 
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 response to  changes in  the network  environment.  Energy-saving  methods that can  sustain lower  

energy usage while preserving the proper area are also examined in the study. Hybrid algorithms 

are also used in the research to combine the best aspects of several methodologies. For instance, 

the precision of the task site can be used to determine the initial coarse position when the distance 

vector hopping (DV-Hop) algorithm is coupled with optimization techniques like particle swarm 

optimization (PSO). By fusing the adaptability of DV-Hop with the precision of PSO, this hybrid 

method significantly raises scene accuracy. The proposed methods enhance node efficiency and 

increase localization accuracy in WSNs by lowering energy consumption and computational load. 

By combining cutting- edge and conventional methods in a novel way, Wireless Sensor Networks 

can now effectively localize and track nodes, opening the door to more dependable and effective 

network operations [12]. 

The review also highlights the issues that still need to be addressed, especially about energy 

efficiency, robustness, and scalability of the localization and clustering approaches, despite the 

tremendous progress made in the sector. To calculate the separation between communication 

nodes, localization uses a variety of range techniques, including Time of Arrival (ToA): 

Multiplying the signal speed typically acoustic speed by the signal propagation time yields the 

distance. Needs clock synchronization, although synchronization issues can be resolved by packet 

exchanges. Time Difference of Arrival (TDoA): Calculates the variation in signal arrival times 

between reference nodes as a result of the submerged environment's poor radio frequency (RF) 

propagation. Angle of Arrival (AoA): Measures the angle between signal propagation and 

predefined reference direction. Rarely used in UWSNs due to challenges with expensive 

directional antennas. Received Signal Strength Indicator (RSSI): Estimates distance based on 

signal propagation loss but is less preferred in UWSNs due to temporally-variable underwater 

acoustic signal propagation [13]. 

C. Laoudias et al. [14] recognize the diverse applications of location information across consumer, 

networking, industrial, healthcare, public safety, and emergency response sectors. It underscores 

the necessity for advanced location-based services and highlights the significance of integrating 

localization algorithms with other technologies. This section is expected to address fundamental 

concepts, principles, and challenges in network localization, providing an overview of basic 

terminology and methodologies. The exploration of various localization architectures is discussed, 

encompassing the design of technologies and systems for pinpointing the location of events, assets, 

and individuals. The coverage spans both theoretical and practical dimensions of localization 

architectures. The paper focuses on cellular network localization, providing insights into systems 

within cellular networks. It discusses recent developments in 5G localization and addresses 

challenges in accurately estimating 3D locations. WLAN-based localization explores the role of  
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WLAN in determining 3D locations, especially in indoor settings.Range-free localization schemes, 

traditionally used in wireless sensor networks, gain attention for IoT applications. User mobility 

estimation techniques are highlighted for improving localization and tracking accuracy in cellular 

networks. The paper concludes by discussing service availability, system scalability, and security 

and privacy concerns in location architectures. It touches upon the technology roadmap and identifies 

future research directions in the field. Fig: 2 depicts different localization and tracking methods. 

The significant contribution of this research is utilization of electromagnetic (EM) waves and 

received signal strength (RSS) for underwater localization, specifically customized to improve the 

docking process of unmanned underwater vehicles (UUVs). Previous underwater localization 

methods, mainly used to depend on sonar and inertial navigation systems, which often encounter 

cumulative errors and inaccuracies due to signal reflection, diffraction, and the slow propagation 

speed of acoustic signals underwater. These problems are particularly difficult in complex 

underwater environments where high precision is required. The path located in the path uses 

special properties of electromagnetic waves (less affected by external factors) t o  ensure  

accuracy  and  reliability.  This technology is required to create infrastructure or underwater 

wireless sensor networks at the connection points. A network of radio frequency sensors continues 

to measure the RSS of electromagnetic waves to track UUVs. The Extended Kalman Filter (EKF) 

reanalyzes sensor data to improve the accuracy of the UUV's position during the docking process 

and is used to improve trajectory tracking in the positioning process, showing the main results. The 

appearance of the site, including the high sampling rate and reduced ambient noise, demonstrates 

the effectiveness of the method. This project provides a good alternative to sonar- based methods, 

enabling more accurate and reliable UUV docking in underwater waters [15]. 

Han Y and others. Pay attention to the significance of the influence of measurement error on node 

localization in underwater sensor networks (UWSNs). UWSN is essential for underwater research, 

military surveillance, environmental monitoring, and other maritime applications. Dealing with the 

undersea environment makes this particularly difficult. GPS signals cannot be used underwater, 

and delay and noise can adversely affect acoustic signals. This study is important in that it examines 

how measurement error affect’s location accuracy and thus UWSN performance and reliability. By 

identifying and reducing these errors, UWSN deployment and performance can be improved, thus 

ensuring accurate and reliable underwater communication. The main objective of this study is to 

examine the effect of location distance measurement error on the accuracy of large UWSNs. In 

most UWSNs, there are several nodes with precise location information, and other nodes (called 

partner nodes) must verify their locations with respect to the connecting nodes. The aim of this study 

is to evaluate how the measurement distance does not affect the registration process. By 

understanding these results, the study aims to find and understand ways to improve location 

accuracy even when errors occur. Improve the overall functionality and performance of UWSN.  
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The research uses various methods to evaluate and reduce the effect of measurement error on the 

site location. These tests include different error levels to understand how different measurement 

errors affect the location accuracy. Secondly, various location functions are used in the study to 

estimate the location of regular nodes based on the known anchor locations and the sub-node 

distance. Various error metrics are used to verify the efficiency and accuracy of these algorithms. 

Error analysis is performed to determine the impact of multiple measurement errors on the 

measured values. This study aims to investigate how errors arise in the network and impact one of 

the final estimates. To increase the location's accuracy, optimization is also being researched. 

These include noise reduction and measurement error reduction approaches in signal processing, 

error correction algorithms, and averaging techniques.As part of this study, a performance 

comparison of several algorithms and approaches was also carried out in order to ascertain the 

optimal approach for mitigating the impact of measurement mistakes. This comparison offers 

guidance and insight into the options for choosing the optimal technology for a range of UWSN 

scenarios by using this technique, scientists may study the procedure and offer recommendations 

for enhancing the precision of node location even in the presence of measurement mistakes. The 

efficiency of UWSNs in many important applications by offering helpful data and resources for 

building more robust in UWSNs [3]. 

To lessen the drawbacks of conventional sonar systems, particularly in challenging circumstances 

and environments that call for precise docking, it is imperative to develop effective, precise, and 

accurate underwater positioning solutions. Underwater Unmanned Vehicle (UUV). Cumulative 

location mistakes in conventional sonar systems are frequently caused by the slowness of sound 

waves, signal reflections, and diffraction. In order to tackle these issues, this research develops 

precise locations using depth sensors and electromagnetic (EM) wave attenuation. By positioning 

nodes with RF sensors at docking locations to create a framework of fake devices, the suggested 

technique creates an underwater wireless sensor network, or UWSN. The primary innovation lies 

in the utilization of electromagnetic radiation's received signal strength (RSS) for UUV location. 

The environment produced by electromagnetic waves is consistent and dependable, as they are less 

impacted by the undersea environment than sonar. The UUV starts the positioning process by 

receiving electronic signals from UWSN nodes. The distance between each node and the UUV is 

estimated using this signal's RSS. The three-dimensional placement is then enhanced by combining 

the distance estimates with depth data.By assessing accuracy, decreasing noise, and boosting 

accuracy, the EKF adjusts its estimate of the UUV location. The efficiency of this approach is 

confirmed by the tracking experiment conducted during the UUV deployment procedure. 

The findings demonstrate that the suggestion significantly enhances the working environment 

while having minimal impact from outside noise. The study comes to the conclusion that location-

based electronic equipment offers depth measurement, EKF processing is dependable and precise 

sonar systems to allow UUVs to operate freely in a demanding underwater environment [16]. 
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A significant contribution to the field of underwater wireless sensor networks (UWSN) is the local 

generation and tracking of sensor nodes utilizing electromagnetic (EM) waves, as done by Kumudu 

Munasinghe et al. It draws attention to how important it is for people to communicate quickly in 

underwater surroundings. It is particularly crucial for tracking and monitoring strategically. The 

research's principal findings span a number of domains. It looks at using electromagnetic waves 

(EM waves) first, which are superior to acoustic approaches in many ways. These benefits, which 

enable instantaneous applications in UWSNs, include low latency and high speed. Second, the 

suggested approach transfers data more quickly than conventional acoustic methods by utilizing 

high-speed electronics. This is significant for applications like target tracking and surveillance that 

need to offer accurate and timely data. The study also acknowledges the necessity of accurate 

localization for the effective deployment and operation of sensor networks in submerged 

environments and proposes methods to increase node localization accuracy utilizing EM wave 

characteristics. 

Additionally, the technique seeks to enhance target tracking through the use of electromagnetic 

waves' high-speed communication capabilities, which enable more frequent modifications and 

better resolution while regulating the target's movement underwater. Additionally, the research 

uses the most cutting-edge electrical equipment to overcome significant issues such signal 

attenuation and interference in underwater communication. UWSN is assured of communicating 

successfully even in challenging underwater environments because of its optimization. EM waves' 

Received Signal Strength Index (RSSI) can be utilized to determine the location of sensor nodes; 

sophisticated processing methods can be employed to handle RSSI data; and EM waves can be 

used to suggest the best network architecture and UWSN deployment The robust communication 

protocol, large data processing capacity, and scalability of the system owing to its practical 

application in a range of underwater conditions attest to the effectiveness and caliber of the research. 

Overall, by providing a fast, dependable, and precise electromagnetic wave-based communication 

system for target tracking and underwater surveillance, this study advances the development of 

underwater wave surveillance networks, or UWSNs. It is highly advantageous for scholars and 

practitioners and is a major advancement above conventional approach [17].  

The research team's primary areas of interest include agriculture and smart cities. By lowering 

energy usage and packet loss, location authorization can increase network performance. Because 

the  signal  may run  into  obstructions  and  lose line-of-sight (NLOS) , this  operation  is especially  

difficult in three-dimensional (3D) situations. The time of arrival (TOA) and received signal strength 

(RSS) approaches were merged by the researchers to produce precise estimates in  three-dimensional 

(3D) space  in  order to overcome this  problem. For both line-of-sight (LOS)  and  non-LOS 

scenarios, they suggested an error reduction technique to increase location accuracy. They work by  

utilizing anchor nodes, also known as anchors. By restricting the received signal in LOS, single- 
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track, or dual-track scenarios, these anchors aid in the creation of a more accurate job. The first, 

erroneous placement of the sensor node is where this process begins. The inaccuracy is reversed 

by the researchers using the geometric relationships between anchor nodes and sensors. The 

placement of the problem node is constrained to a specific volume in three dimensions during this 

procedure, and this volume is progressively decreased during each iteration while still adhering to 

predefined guidelines. The product's key component, the answer to the issue of incorrectly 

classifying line- of-sight and non-line-of-sight signals. The system can accurately determine the 

location of nodes by carefully separating these two types of information. Simulation results show 

that their method is better than the traditional registration method in reducing the boundary volume 

and computational complexity in wireless sensor networks and increasing the reliability and 

efficiency of addresses. The researchers' approach provides effective solutions to location 

problems in WSNs, especially in complex 3D environments where NLOS events occur many 

times. By using geometrical relationships and reducing the backup volume, error reduction 

methods solve the fundamental problems of WSN node localization, while also providing 

significant results in terms of accuracy and efficiency [18]. 

Mamta Nain, Nitin Goyal et al. [4] stated that since oceans cover most of the Earth’s surface, these 

areas have great potential for many uses. Underwater Wireless Sensor Networks (UWSN) are an 

important technology for connecting underwater resources to land systems. This can be used for 

many purposes, including mineral exploration, oil spill monitoring, military surveillance, oil and 

gas removal, and pollution monitoring or these applications to be effective, sensor node 

localization must be accurate. This paper offers a comprehensive survey of localization techniques 

used in UWSNs, categorizing them into centralized and distributed schemes, and highlights the 

challenges faced in underwater node localization. The primary concern addressed in this paper is 

the precise localization of sensor nodes in UWSNs. The process of determining and defining the 

geographical positions of sensor nodes is called Localization. Localization is essential for 

interpreting the collected data. Several critical and unique challenges are inherent in UWSNs, since 

the underwater environment hold issues like, high signal attenuation, low bandwidth, multipath 

propagation, and ever-changing dynamic nature of underwater resources and medium. Above 

mentioned challenges existing underwater, result in complexity of localization processes which 

require specialized techniques. The paper begins with an introduction to UWSNs, outlining their  

significance and applications. After UWSNs introduction, this research report discusses the 

UWSNs architecture, which typically involves a combination of floating buoys, underwater sensor 

nodes, and gateway nodes that facilitate communication between underwater sensors and terrestrial 

networks. Optimization of communication and data collection in underwater environment, is the 
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 reason behind designing this architecture. Apart from architecture review, research also addresses 

UWSN localization and provides a historical context and elaborates the evolution of various 

location techniques. Recent developments and advancements to overcome underwater 

environmental challenges are elaborated in this section. Most attention is given in this article to 

classification of localization algorithms. The authors categorize these algorithms into two main 

types. Centralized and distributed. Centralized localization schemes involve a central processing 

unit that collects data from all sensor nodes and computes their locations. These schemes generally 

offer higher accuracy but suffer from high communication overhead and latency, making them less 

suitable for dynamic and large-scale networks. The table 2.1 mentioned below is the comparison 

table of different approaches and techniques used in different research of UWSN’s localization and 

tracking. 

 

Table 2.1: Comparison of Various UWSN Techniques and methodologies used in previous 

research 
 

Method/Technique Approach/Principle Advantages Limitations/Challenges 

1. EM Signal 

Localization [3] 

Spherical localization 

based on EM signal 

attenuation 

Overcomes limitations 

of acoustic-based 

systems, Passive one-

way signal 

transmission. 

Limited range compared to 

acoustic signals, dependency 

on EM properties 

2. Collaborative 

Self-localization 

[13] 

Collaborative 

estimation by distance 

measurements 

Minimal reliance on 

nodes collaborative 

positioning 

Requires collaborative 

efforts, may be affected by 

dynamic UW Environments 

3. Ranging 

Methods: (ToA, 

TDoA, AoA, RSSI) 

[15] 

Various ranging 

methods: ToA, TDoA, 

AoA, RSSI 

Provides flexibility in 

choosing a suitable 

method, ToA uses 

packet exchanges to 

alleviate 

synchronization 

Challenges with expensive 

directional antennas for 

AoA, temporally variable 

underwater acoustic signal 

propagation 

4. Cellular Network 

Localization [16] 

Diverse applications, 

5G , WLAN-based  

and Range-free 

localization schemes. 

Consumer, 

Networking, 

Industrial, Healthcare. 

Overview of localization 

architectures in various 

sectors, challenges. 

5. UASN Target 

Tracking 

Algorithm [17] 

Interacting Multiple 

Model and Adaptive 

Kalman Filter 

(IMMCFAKF) 

Algorithm 

Biological 

Monitoring, Military 

Applications 

Numerical simulations 

demonstrate proficiency in 

UASN target tracking 
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Distributed localization schemes, on the other hand, allow sensor nodes to compute their locations 

locally by communicating with neighboring nodes. These schemes are more scalable and robust to 

changes in the network topology, making them ideal for UWSNs. However, they may offer lower 

accuracy compared to centralized schemes. Within the categories scenarios of range- based and 

range-free methods and techniques have been evaluated and discussed in this report, and a hybrid 

approach combining both is also discussed. To calculate the distance between the nodes, range-

based methods heavily depend and rely on the measurement of physical quantities i.e. signal 

strength, time of arrival (TOA), and angle of arrival (AOA) to Carry the highest level of accuracy, 

these methods require sophisticated hardware and are sensitive to underwater environment’s 

dynamically changing nature. Range-free methods, in contrast, do not rely on distance 

measurements but use connectivity information and algorithms like centroid localization and DV-

hop to estimate node positions. These methods are simpler and more robust but generally less 

accurate. An integrated system developed by combining range-based and range-free methods 

called hybrid localization techniques carries the strength of both approaches. Maintaining a 

Balance between accuracy and robustness is the main objective and aim of hybrid methods, which 

makes it a clear choice where complex and dynamic, underwater environment is the case. In the 

end, the research paper elaborates underwater challenges related to node localization. These 

underwater node localization challenges include harsh underwater environment, limited energy 

resources, high cost of deployment and installation and maintenance of underwater sensor, as well 

as the need for real-time localization in dynamic conditions. It makes them most suitable for 

complex and dynamic underwater environments. The final section of this research deals with 

challenges in underwater node localization. These challenges include harsh underwater 

environment, limited energy resources, high cost of deployment and installations and maintenance 

of underwater sensors, and the need for localization in hostile and dynamic underwater conditions. 

Emphasis in this section is on the development of energy efficient, scalable and robust localization 

algorithms to improve the overall performance of UWSNs and address the challenges faced in node 

localization [15]. 

UWSNs performance: The research paper thoroughly addresses localization techniques in UWSNs 

and highlights the role and importance of accuracy of data collected by various applications for 

localization. Localization algorithms can be divided into two categories, namely centralized and 

distributed schemes. The contents of this section also cover range-based, range-free and hybrid 

methods, also. This comprehensive research led to a valuable insight and deep understanding of 

strengths and limitations of different approaches, for analysis and comparison purposes. Ongoing 

challenges and need for consistent research continuation to develop advanced localization 

techniques to overcome the obstacles posed by underwater environment. All the research and
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analysis serves as a valuable resource and guideline for further research used   by researchers and 

practitioners in the field of UWSNs. [19]. 

Mamta Nain et al. [4] aims to develop a range-based node localization scheme using hybrid 

optimization techniques for underwater wireless sensor networks (UWSNs). Main objective of the 

goal of study is to precisely estimate the position of sensor nodes in underwater environments, 

which is difficult but necessary for applications like military surveillance, environmental 

monitoring, and disaster management.  

Underwater environments present special challenges, such as signal attenuation, multipath 

propagation, and high energy consumption, which make localization challenging and complex. In 

order to attain precise node localization, the authors suggest a hybrid optimization strategy that 

integrates various optimization methods. Time of Arrival (ToA) and Received Signal Strength 

Indicator (RSSI) techniques are used for calculating distance between nodes, for range 

measurement. Time of Arrival (ToA) is used to measure the time, a signal takes to travel from 

transmitter to receiver, whereas RSSI calculates distance based on received signal strength. 

Position estimation phase, a hybrid optimization algorithm is employed which is an integration of 

Particle Swarm Optimization (PSO) and Genetic Algorithm (GA). PSO, inspired by the social 

behavior of birds and fish, involves particles representing potential solutions moving through the 

solution space to find optimal positions. GA, based on natural selection and genetics, evolves 

candidate solutions over iterations to improve their fitness. Since the proposed scheme is an 

integration of PSO [4]. 

Adu-Gyamfi et al. [20] stated that their research aimed to improve localization accuracy in 

Underwater Acoustic Sensor Networks (UASNs). They proposed a hybrid method using Extended 

Kalman Filter (EKF) and Monte Carlo Localization (MCL) to handle non-linearities and noise in 

sensor data. This approach efficiently estimates node positions even in dynamic underwater 

environments. Hauswald et al. [21] conducted a comprehensive review focused on modeling 

underwater water columns to simulate realistic environments for UWSN testing. The study 

examined various underwater acoustic propagation models and simulation frameworks. These 

models are crucial for testing localization and tracking algorithms under realistic conditions. 

Williams et al. [22] introduced Gaussian Processes (GP) as a non-parametric Bayesian approach 

for machine learning, which can be applied in sensor network localization. GP models allow for 

uncertainty estimation in spatial data, which benefits probabilistic positioning in UWSNs. Though 

not UWSN-specific, the technique aids in constructing data-driven location models.  

Bar-Shalom et al. [23] provided a foundational study on estimation methods applicable to target 

tracking and navigation. The book emphasizes Kalman Filter variants such as EKF and Unscented  

 

 



24 
 

 

Kalman Filter (UKF), which are vital for tracking mobile nodes in UWSNs.These filters handle 

system noise and measurement uncertainty effectively. 

 Murphy et al. [24] presented a probabilistic perspective on machine learning, detailing techniques 

that support decision-making under uncertainty. Bayesian methods discussed in the book, 

including particle filters and Hidden Markov Models, are applicable to localization in noisy 

underwater environments. These models improve accuracy by integrating sensor data over time. 

Li et al. [25] discussed the core principles and practical applications of Underwater Acoustic 

Sensor Networks (UASNs). Their work covers deployment strategies, acoustic channel properties, 

and challenges in localization. They highlight time-of-arrival and signal strength-based methods 

for underwater positioning. Li et al. proposed an improved Helmholtz method for more precise 

underwater target localization. This method simulates acoustic wave behavior in underwater 

environments for accurate coordinate estimation. It enhances simulation realism and effectiveness 

in detecting and tracking underwater objects [26]. 

 Bao et al. [27] developed a method for underwater target detection using Parallel High-Resolution 

Networks (HRNet). The approach applies deep learning to enhance spatial feature extraction and 

detection accuracy. It is especially suitable for real-time recognition tasks in UWSNs. Wang et al. 

[28] combined Long Short-Term Memory (LSTM) networks with the Kalman Filter for 

underwater target tracking. This hybrid method captures time-dependent patterns in movement 

data, enhancing prediction accuracy. It effectively manages temporal noise and latency in acoustic 

communication. Khan et al. [29] introduced an adaptive node clustering algorithm for improving 

network efficiency and localization performance in UWSNs. By grouping nodes based on energy 

and spatial distribution, the method reduces communication overhead. It also enhances accuracy 

in localizing mobile underwater nodes. Subramani et al. [30] proposed a metaheuristic-based 

clustering and routing protocol to improve performance in UWSNs. Techniques such as Genetic 

Algorithm (GA) and Particle Swarm Optimization (PSO) are used for cluster formation. This 

approach increases localization reliability while minimizing energy use. 

A.P. et al. [31] addressed the challenges in applying opportunistic communication models to 

UWSNs. They highlighted the impact of sparse connectivity and delay-tolerant communication on 

localization reliability. Their study supports the development of robust, real-time tracking systems. 

Stojanovic et al.[32] explored the characteristics of underwater acoustic communication channels, 

emphasizing their effect on signal propagation. The study models attenuation, multipath, and 

Doppler effects, which directly impact localization precision. These models are essential for 

developing reliable tracking systems in UWSNs. Vasilescu [33]   reviewed key communication 

challenges and localization techniques in UWSNs. The paper discussed anchor-based localization, 

time-difference-of-arrival (TDoA), and RSS-based techniques. These methods are crucial for 

precise node positioning in harsh underwater conditions. 
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T. A. et al. [34] presented a broad review of underwater wireless sensor networks, focusing on 

localization and mobility. The authors categorized localization into range-based and range-free 

techniques. They also explored anchor deployment and mobile node tracking strategies. Q. et al. 

[35] proposed a centralized fusion algorithm using an Interacting Multiple Model (IMM) and 

Adaptive Kalman Filter (AKF). Their method enhances target tracking accuracy by fusing multiple 

dynamic models. This approach adapts well to varying motion patterns in UWSNs. Akyildiz et al. 

identified key research challenges in UWSNs, including localization, energy efficiency, and 

communication. The paper emphasizes acoustic propagation and the need for energy-aware 

localization protocols. It remains a foundational reference in UWSN research [36]. He et al. [37] 

developed the SPEED protocol to support real-time communication in wireless sensor networks. 

Though primarily designed for terrestrial use, its principles can apply to UWSNs by enabling fast 

coordination among nodes. The protocol indirectly supports real-time localization and tracking. 

Sathish et al. [38] reviewed localization and clustering approaches in USVs (Unmanned Surface 

Vehicles) and AUVs (Autonomous Underwater Vehicles). The paper emphasizes Kalman-based 

and optimization-based techniques for accurate underwater tracking. Clustering improves data 

aggregation and localization accuracy.  

Lakshmi et al. [39] proposed a hybrid DV-Hop localization algorithm enhanced with Particle 

Swarm Optimization (PSO). The method improves range-free localization accuracy in UWSNs. It 

effectively compensates for localization errors in sparse networks. Fawad et al. [40] presented 

techniques to improve localization efficiency in wireless sensor networks. Their work integrates 

optimized anchor placement and hybrid filtering strategies. The result is better accuracy and 

reliability for UWSNs [40]. Park et al. [41-42] introduced a 3D localization method using 

electromagnetic (EM) wave attenuation. This method is especially useful for UUV docking 

operations. It provides precise location data based on EM signal strength. Park et al. proposed a 

3D localization scheme combining EM wave attenuation and depth sensors. This technique 

enhances accuracy by using environmental depth data alongside signal loss measurements. It is 

particularly suitable for static and mobile underwater nodes.  

Munasinghe et al. [43] introduced a high-speed underwater wireless sensor network system using 

EM communication. This design targets real-time surveillance and tracking. It enables fast and 

efficient localization in UWSNs. Sah et al. [44] presented a 3D localization algorithm with built-

in error minimization for UWSNs. The approach reduces estimation error using iterative 

refinements. It is well-suited for high-precision applications like underwater mapping. 

 Goyal et al. [45] reviewed key localization techniques in UWSNs, categorizing them into range-

based and range-free methods. The paper also discussed optimization and AI-based localization 

solutions. These methods are crucial for scalable, energy-efficient tracking. Nazia Majadi et al. 

[46] aims to develop an energy-efficient method for target localization in UWSN. 

 



26 
 

 

The research addresses the critical challenge of conserving energy while accurately determining 

the positions of target nodes within underwater environments. Since energy resources and 

underwater are constrained and limited, the major challenge was to enhance longevity and 

reliability of UWSNs by optimizing the localization process. To extend the operational life span of 

underwater sensor, and for ensuring sustainability of UWSNs, energy efficient solutions are 

essential. The paper proposes a novel local search-based approach for target localization that 

prioritizes energy efficiency. The key techniques and methodologies utilized in this research 

include, the core of the proposed approach is an algorithm specifically designed to minimize 

energy consumption during the localization process. By reducing energy usage, the algorithm aims 

to prolong the operational life of underwater sensors, which is critical given their limited energy 

resources. To refine the estimated positions of target nodes, the authors employ a local search 

method The iterative refinement process helps achieve more accurate localization with lower energy 

costs. The proposed method’s effectiveness validation can be tested through comprehensive 

simulations. These simulations compare new algorithms’ performance with that of existing 

methods, proving new method superior, in terms of being energy efficient and accurate in 

localization. Simulation tools also provide empirical evidence of success and superiority of 

proposed approach and method. This research most importantly contributes towards addressing 

issues and resolution of the same, i.e. energy constraint and enhanced localization with precision. 

Development of more sustainable and effective underwater wireless sensor networks is the out of 

this research effort. Underwater environmental issues, related to sensor, and inherent challenges 

are mitigated by solution in proposed method, which make UWSNs more viable for long-term and 

large-scale deployments. Consequently, this research supports the broader goal of advancing 

UWSN technologies, enabling more reliable and efficient underwater sensing and monitoring 

applications. 

Arafat, M. Y., & Moh, S. et al. [46] proposes a Bio-Inspired Localization (BIL) method using 

Hybrid Gray Wolf Optimization (HGWO). This approach integrates a bounding cube strategy to 

reduce localization errors and resolve flip ambiguities in 3D UAV networks. The BIL algorithm 

significantly improves localization accuracy and energy efficiency, making it suitable for dynamic 

and resource-constrained wildfire monitoring environments. However, it faces challenges such as 

high computational complexity and the impact of environmental factors which can affect 

localization stability and performance over time. A.Gelb et al. [47]  proposes the EBEEL 

algorithm, which uses bio-inspired strategies combined with distributed localization techniques 

such as beacon nodes and landmarks to improve node localization in dynamic environments.The  

algorithm  enhances  energy  efficiency, reduces data redundancy, and improves Quality of Service. 

(QoS) by optimizing routing and localization in mobile wireless sensor networks (MWSNs
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          2.3   Gaps and Challenges in localization and tracking in existing researches: 

 

        The lack of underwater GPS navigation has been shown to be a research need for it, which 

suggests the idea of focusing on finding technologies that use electric waves. The problems related 

to the quality of the ocean depth and the need for efficient operation and tracking systems are 

emphasized. The problems in underwater communication, the inadequacy of traditional GPS 

navigation, and the need for innovative tracking systems that consume less energy are the main 

focuses in searching for gaps. The proposed studies hope to improve the quality and tracking of 

UWSNs by filling these gaps. 

 

 

a. Underwater Communication Challenges: 

 
 GAP: The constraints of traditional communications, as well as less visibility and higher 

hydrostatic pressure, are acknowledged as obstacles to underwater communication. 

 

 Significance: The particular difficulties presented by the undersea environment have 

rendered traditional communication technologies useless. Overcoming these challenges is 

critical to successful underwater data collection and research. 

 

b.   Lack of GPS Navigation Underwater: 

 
 Gap: The biggest problem facing instant tracking and positioning of sensor nodes is the 

lack of underwater GPS navigation. 

 

 Significance: GPS systems and technology are useless underwater because 

electromagnetic (EM) signals cannot pass through water, making alternative tracking 

technology an important source of energy. 

 

c. Dynamic Nature of Ocean Depth: 

 
 Gap: Underwater networks face challenges due to the nature of the deep ocean, including 

environmental changes and waves. 

 

 Significance: To minimize interference from tracking sensor nodes, this recommendation 

recommends deploying sensor nodes in different oceans. Changes in ocean depth must be  
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understood and processed for successful tracking and data transmission. 

 

d.  Comparison of Underwater Networking Options: 

 
 Gap: The proposal emphasizes the significance of contrasting various undersea networking 

alternatives, such as electromagnetic, sound, and light waves. 

 

 Significance: To choose the best technique for real-time tracking and communication in 

underwater wireless sensor networks (UWSNs), one must weigh the benefits and 

drawbacks of various underwater networking alternatives. 

 

          2.4   Existing notable methods for localization/tracking 

 
The following are some key approaches and strategies for underwater wireless sensor 

networks (UWSNs), along with a significant disadvantage for each: 

a. Localization/ Tracking Algorithms 

 
 Technique: Time of Arrival (ToA) is one of several localization algorithms explored. In 

addition to the above, Received Signals Strength Indicator (RSSI), Angle of Arrival (AoA), 

Time Difference of Arrival (TDoA) and Time of Arrival (ToA) algorithms were also 

explored. 

 

 Drawback: Signal attenuation (α), multipath propagation, and limited visibility in 

underwater environments make conventional localization methods like GPS challenging to 

apply directly underwater. 

b. Underwater Vehicle Localization using Electromagnetic Signals 

 
 Technique: The use of electromagnetic (EM) signals for underwater vehicle localization, 

as presented by Duecker et al., employs the attenuation of EM carrier signals and introduces 

a spherical localization concept. 

 Drawback: Limited range and potential challenges in dealing with absorption and 

reflection of EM signals in water. 

c. Kalman Filtering for Sensor Tracking 

 
 Technique: Kalman filtering is employed for predicting the future position and velocity of 

underwater sensors based on noisy measurements, enhancing tracking accuracy in UWSNs. 

 Drawback: Challenges in achieving optimal accuracy when relying solely on static data 

for tracking. 
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d. Centralized Fusion Algorithms for Target Tracking 

 
 Technique: Centralized Fusion algorithm based on Interactive Multiple Model and 

Adaptive Kalman Filter or other Centralized fusion algorithms, for Target Tracking in 

underwater acoustic Sensor Networks, club and group Adaptive Kalman Filter with and 

adaptive forgetting factor for centralized target tracking in USANs. 

 Drawback: Potential complexity in implementing and managing centralized fusion 

algorithms in large-scale networks. 

e. Opportunistic Communications in Underwater Sensor Networks: 

 
 Technique: Opportunistic communications, as discussed in the work by A.P. et al., explore 

new challenges and approaches for efficient data transmission in UWSNs. 

 Drawback: Limited focus on addressing the challenges of real-time tracking and 

localization in dynamic underwater environments.  

 

2.5   Research paper under consideration: 

 

“A range-based node localization scheme with hybrid optimization for underwater 

wireless sensor network Mamta Nain, Nitin Goyal, Lalit Kumar Awasthi, Amita Malik First 

published: 16 March 2022” 

The paper shows the importance of UWSNs for various applications like fish farming and 

military surveillance. It highlights the challenges posed by the underwater environment and 

communication media, particularly in localization. Localization is defined as the process of 

determining the location of an object in a given coordinate system, crucial for tasks like data 

tagging, object tracking, and multi-hop data transmission. Network devices comprise of two 

categories, one being surface buoys (location known devices), and the other called ordinary nodes 

(location unknown devices). Different ranging methods, including Angle of Arrival (AoA), Time 

of Arrival (ToA), Time Difference of Arrival (TDoA) and Received Signal Strength Indicator 

(RSSI) are also deliberated. Laceration, bounding box, angulations and projection are explained 

with reference to techniques for estimating node locations. 

 

         2.5.1   Classifications of Localization/ Tracking Schemes: 

  

 
         Localization schemes are classified based on range measurement into range-based, range- 

free, and hybrid schemes. The proposed localization scheme in this paper employs a hybrid  
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optimization approach to improve the accuracy of node localization in UWSNs. Important 

elements of the plan are as follows: 

 

a. Range-based positioning: This method uses the distance measurement of nodes to estimate 

the location of the range-based method, it is often chosen in UWSN because they can achieve 

higher accuracy than other methods. Hybrid optimization: This tool combines several 

optimization methods to increase the accuracy of the site; Algorithm implementation: Use 

special algorithms and mathematical models to perform distance measurements and optimize 

processes. Certain elements of the algorithm are designed to solve specific problems of the 

underwater environment. 

 

b. Hybrid Optimization Approach: The proposed method is a combination of Whale 

Optimization Algorithm (WOA) and the Particle Swarm Optimization (PSO). 

 

 WOA: Influence by inspiration acquired from humpback whales, WOA is used for 

global search, since it holds the ability to avoid local minima. 

 PSO: Based on inspiration acquired from birds’ behavior, PSO is applied to tune the 

solutions obtained via VOA, to enhance accuracy in localization. 

 

          2.5.2   Challenges 

 
          Under water challenges, specifically related to environment beneath the sea including 

asymmetric acoustic channels, clock synchronization and temporal variability in acoustic signal 

propagation, are mentioned below. 

 

         2.5.3   Dependency on Accurate Distance Measurements: 

 
The accuracy of the range-based localization heavily relies on precise distance measurements, 

which can be affected by underwater conditions such as signal attenuation and noise. 

 

          2.5.4   Environmental Factors: 

 

 
The performance of the hybrid optimization approach may degrade in highly dynamic 

underwater environments where factors like temperature, salinity, and pressure can vary 

significantly. 
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           2.5.5   Energy Consumption: 

 

 
Although not explicitly addressed, the energy consumption of the hybrid optimization 

approach could be higher compared to simpler algorithms, which is a critical factor in UWSNs due 

to the limited battery life of underwater sensors. 

          2.5.5   Scalability: 

 

 
The approach needs to be evaluated for large-scale UWSNs to ensure it can handle a high 

number of nodes without a significant loss in performance. 

 

           2.6   Summary 

 
The conclusions and key findings have been summarized in literature review. The 

challenges in UWSNs, especially in localizations & tracking have also been candidly considered 

and reviewed in summary. It also serves as a basis and start point for proposed research 

methodology. 
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Chapter 3 

 

 

 

PROPOSED METHODOLOGY 

 

 

 
          3.1   Overview 

 
        In this chapter, a research methodology for the design and development of Energy- 

efficient node localization and tracking for real-time UWSN applications is presented. The 

primary focus of this study is to formulate a methodology for achieving energy-efficient 

localization and tracking of sensors in Underwater Wireless Sensor Networks (UWSNs) within 

real-time ocean environments. To achieve this efficiency, the study extracts real-time dynamics 

information, particularly trajectory data, from existing literature on oceans such as the Pacific, 

Atlantic, and Indian Oceans. These dynamic data sets serve as a foundation for understanding 

the real-time characteristics of ocean environments. Existing approaches employ techniques 

such as TOA, TDOA, AOA, RSSI, etc., to address challenges like delay and low data rate in 

acoustic applications. Despite the application of Kalman filtering, utilizing static data for 

tracking has not led to optimal accuracy. Our approach involves combining RSSI for localization 

and Kalman filtering for tracking, leveraging real-time data to enhance precision. 

 

           3.2   Operational Framework 

 
For sensor tracking, the methodology employs Kalman filtering. The technique of 

Kalman filtering is used for finding estimated state of a dynamic system, based on noisy 

measurement. In this regard, KF is applied for prediction of future position and velocity of 

underwater sensors. This prediction is grounded in the current state of the sensor and a motion 

model, enhancing the accuracy of tracking in UWSNs. 

i. Real-time information and data will be collected from “National Center for Environment 

Information” which is a U.S. Govt. agency responsible to maintain and manage a huge 

repository of geographic, coastal, atmospheric and oceanic data. 

 

ii. The collected data will be incorporated into Kalman Filtering as a measurement. 
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iii. Initial conditions will be set based on the model derived from the initial data. 

 

iv. Employing the Bayesian approach, we will fuse the model and measurement values. 

 

v. Post-fusion, a posterior estimate will be obtained, which will be reintroduced into the 

model for further fusion iterations. 

 

vi. This iterative process yields the priori estimate, used to predict the next stage of the 

sensor. The Helmholtz method will be applied for subsequent simulations, incorporating 

the output of the priori estimate. 

 

Figure 3.1: Operational Framework of the Research 
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The resulting outcomes will be compared with existing techniques, focusing on network 

lifetime energy consumption. The operational framework for the research methodology is 

divided into different steps as shown in figure 3.1. 

 

          3.3   Research Design and Development 

 
The design and development of the Energy-Efficient node localization and tracking of 

UWSN protocol composed of following steps; Real-time data collection, Kalman Filtering 

Simulation, Implementation of Bayesian Approach on Fusion Process of KF, Helmholtz Method 

for Subsequent Simulations will be addressed here. The detailed steps for the proposed 

methodology are shown in Figure 3.2: 

 

Figure 3.2:  Proposed  Methodology Flowchart 

 

3.3.1    Step 1: Real-Time Data Collection 

 
To ensure accuracy of measurements and monitoring, Underwater wireless sensor 

networks are heavily dependent on location and tracking techniques for gathering data. Real- time 

information from “National Centers for Environmental Information” (NCEI), was utilized. NCEI 

is a U.S. Govt. agency, responsible to  oversee comprehensive repository of  atmospheric, coastal,  
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geological, geophysical and oceanic data. Reference data received via URL 

https://www.ncei.noaa.gov/ is authentic & accurate and can thus enhance localization and tracking 

capabilities, using the mentioned approach: NCEI furnishes detailed geographical and 

environmental data, empowering UWSN nodes to ascertain their precise locations within the 

underwater domain. This localization proves indispensable for charting underwater phenomena and 

precisely pinpointing sensor readings [18]. By harnessing up-to-the-minute data from NCEI, 

UWSN can monitor dynamic shifts in environmental conditions, encompassing ocean currents, 

temperature fluctuations, and the movements of marine life. By integrating this information into 

monitoring algorithms, the UWSN can adjust monitoring strategies and ensure continuous 

monitoring of previously undetected areas. This involves employing diverse algorithms or 

methodologies to amalgamate and blend the data from the measurements with the initial condition. 

A prevalent strategy involves fusion, wherein information from multiple sources (i.e., 

measurements) is melded to furnish a more precise and dependable estimate of the system's state 

[19]. 

 

          3.3.2   Step 2: Kalman Filtering (KF) Simulations 

 
In the field of Underwater Wireless Sensor Networks (UWSN), Kalman filtering stands a 

fundamental method for tracking and localization, allowing to accurately estimate even the 

complexities inherent in underwater communication and sensing. To provide the most accurate 

location of the underwater sensor in the field, Kalman filtering is an effective method of combining 

motion patterns with noisy sensor readings. Kalman filtering increases the accuracy required for 

UWSN applications by improving the location estimation based on motion estimation and sensor 

data [21]. Kalman filters effectively reduce the effects of noise and uncertainty in underwater 

environments by combining signals from noise or tracking systems to predict the future state of 

the tracked object [22]. 

Figure 3.3: Kalman Filter Processing Model 

 

 

https://www.ncei.noaa.gov/
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Let's delve into each step that are shown in Figure 3.3 for Kalman Filter Processing Model: 

 

 

i. Input process: The process starts with initial conditions, which may require an initial 

assessment of the state or other parameters, as well as measurements from sensors or similar 

sources. While these measures offer insights into the current system state, they may be 

subject to noise or inaccuracies. 

ii. Processing Phase: Here, the initial condition and measurements undergo processing. 

 

iii. Estimation Fusion: In this stage, the processed measurements and the initial condition are 

harmonized to craft an estimate of the system's state. Fusion techniques vary based on these 

specific applications and requisites. Illustrative fusion techniques encompass Kalman 

filtering, particle filtering, or Bayesian inference. 

iv. Posteriori Estimation: Following fusion, the resulting estimate is dubbed the posteriori 

estimate. This estimate epitomizes the optimal estimation of the system's state predicated 

on the available information (comprising both the initial condition and measurements) and 

the fusion process. 

v. Return to Input as Measurement: Subsequently, the process loops back to the input 

stage. The system continually receives fresh measurements over time, which are leveraged 

to update the estimation of the system's state. As new measurements emerge, the entire 

sequence repeats, with the updated estimate serving as the new initial condition for 

subsequent iterations. 

 

In essence, this algorithm delineates a cyclical process wherein the estimation of a system’s 

state is perpetually refined based on initial conditions and incoming measurements. Fusion 

techniques are instrumental in amalgamating and enhancing the information over time. 

 

          3.3.3   Step 3: Implementation of Bayesian Approach on Fusion Process of KF 

 
For state estimation in linear system with Gaussian noise, Kalman Filter (KF) is very 

powerful tool, However, KF could not be as good or sufficient when handling several sensors or 

information sources. A more reliable and precise state estimate can be obtained by combining data 

from several KFs using the framework provided by the Bayesian technique. This is an explanation 

of how to use a Bayesian method to the KF fusion process: 

i. Representing Uncertainties as Probabilities: Using a Bayesian technique, uncertainties 

related to sensor readings and the state estimation are put into probability distributions. 
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Every KF keeps its covariance matrix (which represents uncertainty) and state estimate 

(which is the mean) [23]. 

ii. Formulating Prior Distribution: A prior distribution encapsulates existing knowledge 

about the system state before incorporating sensor measurements. 

If there is no prior knowledge, this can be a simple classification, or it can be more 

informative based on prior knowledge. 

iii. Model evaluation: Before adding the evaluation model, the classification first evaluates 

the current understanding of the system state. If there is no prior knowledge, this can be a 

simple classification; otherwise, a more intelligent classification based on historical data 

can be made. 

iv. Calculate the probability function: Using the current state estimate, the probability 

function for each sensor represents the probability of witnessing a measurement. It is 

calculated using the sensor noise and the difference matrix of the sensor model [25]. 

v. Bayesian update: Bayesian theorem is used to combine the performance of each sensor 

with a prior distribution. This results in a posterior distribution that shows the revised state 

estimate including all current data and its uncertainty [26]. 

vi. Weighted covariance fusion: This technique is often used to combine estimates from 

multiple CFs. The reliability (repeatability of the variables) of each CF estimates and the 

variables are used to determine their weights. The individual estimates are combined into 

a combined estimate, which is the weighted average, and the combined difference 

represents the total uncertainty [24]. 

vii. Iterative application: The instantaneous state estimate can be obtained by iterative 

application of the Bayesian fusion process, which is comparable to the CF model [25]. 

          3.3.4   Step 4: Helmholtz Method for Subsequent Simulations 

 
Helmholtz Method for Subsequent Simulations (HMSS) technology was developed to 

improve the efficiency and accuracy of underwater sensor network project discovery and 

placement. And how does it work? A Simple Explanation on work and benefits. 

 

Helmholtz equation, ∇^2 ψ+k^2 ψ=0 (3.1) 



38 
 

 

Where ψ represents the pressure field. K is the wave number, is fundamental for modeling 

how sound waves propagate underwater. To simulate the sound field, subsequent simulations need 

to solve the Helmholtz equation. These simulations are used to estimate the placement of sensor 

nodes and track and objects in the underwater environment [21]. 

 

1. HMSS Working: 

HMSS uses a two-step process: 

 

i. Initial phase: Initial estimate of the target's location is given by algorithms such as particle 

filtering or maximum estimate. 

ii. Simulation phase: The initial estimate is then refined using simulations based on 

underwater sound waves. These simulations include changes such as sensor noise, 

environmental changes (such as changes in water salinity and water flow), and acoustic 

wave Propagation delay, etc. 

 

2. Benefits of HMSS: 

 
HMSS outperforms today’s technology in many ways: 

i. Improved accuracy: HMSS compensates for noise and uncertainty using 

simulations that lead to a global environment, providing better tracking and 

positioning. 

ii. Reduced Cost: HMSS is good for networks with low operating power because it 

requires fewer simulations and fewer resources, which are often very difficult to 

predict. 

 

3. Uses in Underwater Sensor Networks 

 
HMSS is very useful in various underwater applications: 

i. Localization of Target: Finding accurately the position of underwater objects like 

submarines or divers. 

ii. Tracking of Target: Keeping track of the movement of these objects over time. 

iii. Monitoring of Environment: Monitoring the flow of contaminants or monitoring 

iv. Water’s physical characteristics, such as salinity and temperature. [24] 
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    3.4  Simulation Framework 

 
        An Extended Kalman Filter-Based Simulation Framework for Tracking Underwater 

Electromagnetic waves. We propose a simulation framework to evaluate the effectiveness of 

underwater electromagnetic wave (EM) tracking techniques based on Extended Kalman filter 

(EKF). The tracking process will be simulated using MATLAB environment. 

 

           3.5   Simulation Environment 

 
       MATLAB was used to develop a simulation environment for underwater electromagnetic 

wave monitoring applications. MATLAB provides a stable platform to manage the computations, 

simulations, and visualizations required to implement the algorithms and evaluate their results. 

          3.6   Simulation Parameters 

 
       An underwater environment with limited wave propagation and sensor capabilities leads to 

a network scenario created for simulation. The parameters used in the simulations are detailed in 

Table 3.1. 

Table 3.1: Simulation Parameters 

 

Parameter Description Values 

Simulation 
Area 

Size of the underwater 
environment 

1000m x 1000m 

Number of 
Sensors 

Total sensors deployed 100 

Propagation 
Model 

Model for wave propagation EM wave model 

Sensor Range The effective range of each 
sensor 

100m 

Measurement 
Noise 

Noise in sensor measurements Gaussian noise 

Process Noise Noise in the system model Gaussian noise 

Initial State 
Error 

Covariance of initial state 
estimation 

Diagonal matrix 

Simulation 
Time 

Total duration of the 
simulation 

500s 

Time Step Discrete-time interval 1s 

Simulation 
Area 

Size of the underwater 
environment 

1000m x 1000m 
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          3.7   Simulation Process 

 
i. Initialization: 

 

 Define the underwater environment and deploy sensors within the specified area. 

 Initialize the state vector for the object being tracked and the corresponding 

covariance matrix. 

 Initialize the objects and the sensor’s locations and velocities. 

 

 

ii. Measurement Model: 

 

 Measurements are produced at each time step by simulating the electromagnetic wave 

propagation model. 

 Gaussian noise is in addition to the measurement to simulate real-world conditions. 

 

 

iii. Extended Kalman Filter Implementation. 

 

 To implement prediction and to update steps of EKF, ‘Extended Kalman Filter.m’ file 

is used 

 At each step, predict the state of the object using the system model. Update the state 

estimate using measurements and the EKF equations. 

 

iv. Data Collection: 

 

 Collect the estimated states and true states of the object at each time step for 

performance evaluation. 

 Store the measurement data and EKF estimates for analysis. 

 

 

v. Performance Evaluation: 

 

To calculate the estimation error, a comparison between the estimated states and true 

states is performed. Performance of EKF is evaluated in terms of (RMSE) root mean 

square error and other related metrics. 

        vi. Visualization: 

True trajectory plotting and estimated trajectory of objects. Error in state estimation over 

time, visualization. 
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          3.8   Performance Metrics 

 
During the process of simulation to evaluate the performance of tracking algorithm, 

the metrics below are used: 

 

i. Root Mean Square Error (RMSE): RMSE measures the average magnitude of 

estimation error. 

𝑹𝑴𝑺𝑬 = √
𝟏

𝑵
∑ (𝒙𝒊 − 𝒙̂𝒊)𝒊=𝟏                                                     (3.2) 

ii. In the above equation, the true state is represented by (𝑥𝑖), estimated state is represented by 

(𝒙̂𝒊) 

iii. Estimation Error: The difference between the estimated state at each time step and true 

state is referred as estimation error. 

iv. Convergence Time: The time taken for the estimation error to fall below a predefined 

threshold. 

Example through MATLAB Code Structure 

 

%Initialization 

environment(); 

initialize_ekf(); 

% Simulation loop 

for t = 1: simulation_time 

% Measurement model 

measurements = generate_measurements(true_state, sensor_positions, measurement_noise); 

 

% EKF prediction and update 
[predicted_state,predicted_covariance]=ekf_predict(current_state, 

current_covariance,process_noise); 

[updated_state,updated_covariance]=ekf_update(predicted_state, 

predicted_covariance,measurements, measurement_noise); 

% Store results 

store_results(t, true_state, updated_state); 

% Update true state 

true_state = update_true_state(true_state); end 

% Performance evaluation 

evaluate_performance(); 

% Visualization plot_results(); 
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Algorithm 1: Transition Frequency Estimation and Impedance Estimation 
 

The code estimates the seawater transition frequency from 0-5500 m depth at each latitude 

and longitude from 1955-2012 using: 

 Calculate the mean seawater conductivity. 

 For each frequency and location, compute the transition frequency using the formula: 

 Transition Frequency = (Cond_mean * 3.14 * 36 * 10^9) / (2 * 3.14 * e_re_vertical) 

The code estimates the seawater characteristic impedance from 0-5500 m depth at each 

latitude and longitude from 1955-2012 using: 

 For each frequency and location, calculate the impedance using the formula: 

 

 Impedance=376.7*sqrt(1/81)*sqrt((2*3.14*freq*0.0000000000088419*e_re_vertical)/ 

Cond_mean) / Zo 

 

Figure 3.4: Algorithm Transmission and Reflection Coefficient Estimation 
 

 

Algorithm 2: Spherical Localization 

 

The code implements a spherical localization algorithm based on the attenuation of EM 

waves in seawater. It uses the following steps: 

1. Allocate frequency range from 1-20 MHz and source power from -60 dBm to30 dBm 

for analysis. 

2. Calculating transmitter and receiver antenna gains from 0-10 db. 

3. Compute seawater conductivity using the A. Stogryn interpolation model from0-5500 

m depth at each latitude and longitude from 1955-2012. 

4. Estimate seawater permittivity using Debye's model and the A. Stogryn interpolation 

 

model. 

# Initialize matrices for seawater permittivity 

a = zeros(41088, 102) 

b = zeros(41088, 102) e_infinite = 4.9 

e_zero = zeros(41088, 102) e_zero_T = zeros(41088, 102) 
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Taa_T = zeros(41088, 102) Taa = zeros(41088, 102) 

# Calculate seawater permittivity using Debye's model for j in range(1, 104): 

for i in range(2, 41089): 

 e_zero(i - 1, j - 2) = 0.0# Initialize matrices for seawater permittivity 

a = zeros(41088, 102) 

b = zeros(41088, 102) e_infinite = 4.9 

e_zero = zeros(41088, 102) e_zero_T = zeros(41088, 102) Taa_T = zeros(41088, 

102) Taa = zeros(41088, 102) 

# Calculate seawater permittivity using Debye's model for j in range(1, 104): for i in 

range(2, 41089): 

e_zero(i - 1, j - 2) = 0.0 

5. Calculate free space loss from 0-5500 m depth using the computed propagation 

velocity. 

 6. Estimate received power from 0-5500 m depth at each latitude and longitude.  

Figure 3.5: Algorithm of Spherical Localization 

 

Algorithm 3: Transition Frequency Estimation and Impedance Estimation 

 

 

The code estimates the seawater transition frequency from 0-5500 m depth at each 

latitude and longitude from 1955-2012 using: 

1. Calculate the mean seawater conductivity. 

2. For each frequency and location, compute the transition frequency using the formula: 

3. Transition Frequency = (Cond_mean * 3.14 * 36 * 10^9) / (2 * 3.14 * e_re_vertical) 

4. The code estimates the seawater characteristic impedance from 0-5500 m depth at each 

latitude and longitude from 1955-2012 using: 

5. For each frequency and location, calculate the impedance using the formula: 

Impedance=376.7*sqrt(1/81) *sqrt((2*3.14*freq*0.0000000000088419*e_re_vertical)/ 

Cond_mean) / Zo 

 

 

Figure 3. 6: Transition Frequency Estimation and Impedance Estimation 
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Algorithm 4: Transmission and Reflection Coefficient Estimation 

The code estimates the seawater transmission and reflection coefficients from 0-5500 m 

depth at each latitude and longitude from 1955-2012 using: 

1. Initialize the characteristic impedance of free space Zo to 377 ohms. 

2. For each frequency and location, calculate the transmission and reflection coefficients 

using the formulas: 

3. Tx = 2 * Zo / (Zo + Impedance) 

4. Rx = (Impedance - Zo) / (Impedance + Zo) 

These algorithms enable the tracking and localization of underwater objects by 

analyzing the attenuation and propagation characteristics of EM waves in seawater. 

 

Figure 3.7: Algorithm of Transmission and Reflection Coefficient Estimation 

 

The algorithms mentioned for tracking and localization in underwater sensor network 

subtilize the attenuation and propagation characteristics of electromagnetic (EM) waves in 

seawater. Here’s an explanation of the working of each algorithm: 

 

Spherical Localization 

 
1. Frequency and Power Allocation: 

 

The algorithm allocates a frequency range from 1-20 MHz/ 1-20 KHz and a source power 

range from -60 to 30 dBs for analysis. 

2. Antenna Gain Calculation: 

 

It calculates the gains of the transmitter and receiver antennas, which range from 0-10 dB. 

 

3. Seawater Conductivity Computation: 

 

Uses the A. Stogryn interpolation model to compute seawater conductivity from 0-5500 

m depth at each latitude and longitude from 1955-2012. 

4. Permittivity Estimation: 

 

Estimates seawater permittivity using Debye's model and the A. Stogryn interpolation 

model. 
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i. Initialization: Initializes matrices for seawater permittivity and other required 

parameters like 𝒆𝟎, 𝒆𝟎𝐓, 𝑻𝐚𝐚𝐓, and 𝑻𝐚𝐚. 

ii. Permittivity Calculation Using Debye's Model: Iterates through the depth and 

location data to calculate the permittivity using Debye's model. 

iii. Free Space Loss Calculation: Computes the free space loss from 0-5500 m depth 

using the propagation velocity of the EM waves in seawater. 

5. Received Power Estimation: 

 

Estimates the received power at different depths and locations. 

 

6. Transition Frequency Estimation and Impedance Estimation 

 

i. Mean Conductivity Calculation: Calculates the mean seawater conductivity over the 

specified depth and location range. 

ii. Transition Frequency Calculation: For each frequency and location, compute the 

transition frequency using the formula: 

          Transition Frequency = 
Cond_mean x 3.14 x 36 x 109                   

(3.3) 
                                                 2 x 3.14 x e_re_vertical 

  

iii. Impedance Calculation: For each frequency and location, calculate the seawater 

characteristic impedance using the formula: 

 

               𝐼𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒 =

3767∗√2 x 3.14 x 0.0000000000088419 x  ere−vertical

(𝑐𝑜𝑛𝑑_𝑚𝑒𝑎𝑛)
 x √

1

81

𝑧0
              (3.4) 

   

7. Transmission and Reflection Coefficient Estimation 

 

i. Initialization: Initializes the characteristic impedance of free space 𝒁𝟎 to 377 ohms. 

 

ii. Coefficient Calculation: For each frequency and location, calculate the 

transmission(𝑻𝒙) and reflection (𝑹𝒙) coefficients using the formulas: 
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𝑻𝒙 =     
2 x  z0

z0 +Impedance
                           (3.5) 

 
                                             

R𝒙 =    =     
 z0−Impedance

Impedance + z0 
                      (3.6) 

 

3.9   Combined Application 

 

 
In order to enable the tracking and localization of underwater objects, the following 

algorithms work in combination, through analyzing & attenuation and propagation 

characteristics of EM wave underwater. An explanation of the process is mentioned below: 

 

 

i. Spherical Localization provides the framework for analyzing how EM waves behave at 

different depths and locations based on their frequency and power levels. 

ii. Transition Frequency Estimation helps in identifying the specific frequencies at 

which the properties of seawater change, which is crucial for understanding how waves 

propagate through different layers of water. 

 

 

iii. Impedance Estimation allows for the understanding of how the waves interact with the 

medium, giving insight into signal loss and strength. 

 

iv. Transmission and Reflection Coefficient Estimation: To calculate signals transmitted 

and reflected, it provides necessary data and related information. This data is essential to 

determine accuracy of localization. 

 

All the above analyses, in combination, enable the system to effectively track and localize 

objects underwater, by utilizing distinct and unique characteristics of EM wave propagation 

under-sea. 

 

v. Extended Kalman Filter (EKF): This algorithm is widely used for calculating estimated 

trajectory of any object in 3-D space. It is also used extensively to calculate state 

estimation in real-time applications. EKF is especially effective in situations where the 

system properties and parameters are nonlinear and noisy measurements are there. 
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         3.10   Algorithms used in code are elaborated below: 

 
1. Prediction Equation (`predict.m`) 

 

 

Based on current state and the system dynamics, the function is used to predict the next 

state of the system. It is used to update state estimate (Xh’) and the estimation error covariance 

(‘P’) by using system dynamics matrix (‘A’) and process noise covariance matrix (‘Q’) shown in 

Figure 3.8. 

 

Figure 3.8: Prediction Equation 

 

 

2. Correction Equation (`predict.m` and `KalmanGain.m`) 

 

Using the innovation (‘Inov’) and the Kalman gain estimation error (‘K’), this function 

updates state estimate (‘Xh’) and covariance of the estimation error (‘P’).The difference between 

the measured state (‘Z’) and the predicted state (‘Xh’) is referred as innovation. To compute 

Kalman gain, using Jacobian matrix (‘H’), the covariance of the measurement (‘M’) and 

covariance of the estimation error (‘P’) are required shown in Figure 3.8. 

 

 

 

Figure 3.9: Correction Equation 
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3. Jacobian Matrix Computation (`Jacobian.m`) 

 

 

This function computes the Jacobian matrix (`H`) of the nonlinear measurement function. 

The Jacobian matrix is used to compute Kalman gain, which is essential for the correction step as 

shown in Figure 3.10. 

 

 

 

 

 

 

Figure 3.10: Jacobian Matrix Computation 

 

 

4.     Kalman Gain Computation (`KalmanGain.m`): 

 

Kalman gain (K’) is computed by this function using the Jacobian matrix (‘H’) where the 

covariance of estimation error donated with (‘P’) and covariance of the measurement noise is 

donated by (‘M).To update the state estimate and covariance of the estimation error, Kalman Gain 

is used as shown in the Figure 3.11. 

 

 

Figure 3.11: Computation of Kalman Gain 
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5. Innovation Computation (`Inovation.m`): 

 

 

This function computes the innovation (`Inov`) by subtracting the predicted state (`Xh`) 

from the measured state (`Z`). The innovation is used in the correction step to update the state 

estimate and the covariance of the estimation error as shown in the Figure 3.12. 

 

 

 

 

Figure 3.12: Innovation Computation 

 

 

6.       Process and Observation Generation (`process AND observe.m`): 

 

 

Gaussian noise is used by this function to create the state process ({D}) and the observation 

process ({Z}).The system dynamics matrix ({A}) and the process noise covariance matrix ({Q}) 

are used to update the state process. The measurement noise covariance matrix ({M}) and the state 

process are used to update the observation process is also shown in Figure 3.13. 

 

 

 

Figure 3.13: Process and Observation Generation 
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The Extended Kalman Filter, an effective technique for state estimation in real-time applications, 

especially in cases when the system dynamics are nonlinear and the measurements are noisy, is 

implemented by combining these algorithms shown in Figure 3.13. 

7. Covariance matrix: 

For energy-efficient node localization and tracking in real-time environments we 

used the covariance matrix. We followed the following algorithms for this code shown in 

Figure 3.13: 

 

 

Figure 3.14: Covariance matrix 
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i. Random Matrix Generation 

 

The code begins by creating two sizable 100x100 example matrices, named "matrix_org" and 

"Restimated_Arranged." There are random numbers in these matrices. 

 

ii. Adding NaN Values 

 
The modification is done on `Restimated_Arranged` matrix by randomly replacing 20% of its 

elements with NaN values. 

 

iii. Covariance Matrix Calculation 

 
Zeros are used to initialize the covariance matrix {covariance_matrix}. The function then iterates 

over each matrix element. For If the matching element in {Restimated_Arranged} for each element is 

not NaN, the covariance between the 'cov' function is used to calculate the elements of 'matrix_org' 

and 'Restimated_Arranged'. The appropriate element in the covariance matrix is set to NaN if the 

element in {Restimated_Arranged} is NaN. 

 

iv. Covariance Calculation Algorithm 

 

 
The computation of covariance between two random variables, X and Y, is as follows: 

 

𝐂𝐨𝐯(𝐗, 𝐘) =
𝟏

𝐍+𝟏
∑ ((𝐱 −  𝐱̅)(𝐲 − 𝐲̅))   

𝐧

𝐢=𝟏
                     (3.7) 

 

The number of data points is denoted here by n, and means of X and Y are respectively 

denoted by 𝑥 ̅ and 𝑦̅ 

 

v. Energy-Efficient Node Localization and Tracking 

 

Node detection and localization applications use different matrices. The variance matrix in 

these applications is used to represent the uncertainty of the source. This technique can use the 

variation matrices to efficiently estimate the node activity and track its movements instantly. 

Together, these algorithms are used to effectively compare the matrices to enable energy- 

absorbing node localization and real-time tracking.
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vi. Tracking under Water EM Waves: 

 

This script uses the "Extended Kalman Filter.m" routine to manipulate the EKF, generate 

measurements and create a simulation environment. It contains functions for EKF estimation and 

update steps in the delayed Kalman filter. 

 

vii. Extended Kalman Filter.m: 

 

    This simulation uses electric waves and EKF to provide a comprehensive guide to evaluate 

the performance of the proposed tracking algorithm in the underwater environment. 

 

 3.11   Assumptions and Limitation 

 

            The assumptions and parameters considered during the simulation are: 

1. Sensors are assumed to be fixed in position with predefined coordinates. 

2. The measurement noise is assumed to follow a Gaussian distribution. 

3. The initial state error covariance is assumed to be known and defined. 
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CHAPTER 4 

 

 

 

       PERFORMANCE EVALUATION 

 
     4.1   Overview 

 

      In Section 4, the research on energy efficiency of location and real-time tracking of 

underwater wireless sensor networks (UWSN) is explained in detail. The results and conclusions 

are shown graphically. The performance of UWSNs is analyzed in different water environments 

including deep, medium and shallow water and at different frequencies (1-20 MHz and 

KHz).Understanding the impact of energy on energy and performance is the purpose of this 

analysis. 

 

  4.2    Results and Analysis 

 

        Contracts are evaluated using performance criteria such as node efficiency and energy 

efficiency.   Results are compared at different elevations and water depths to better understand 

how the environment affects the UWSN. 

 

 4.2.1   Performance Metrics 

 

1. Propagation velocity: (these results should appear before the contest results) 

 

 

 Labeled Axes: X-axis representing frequency (KHz, MHz) and y-axis representing 

signal strength, attenuation (dB), or a related metric.
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Figure 4.1: UW Propagation Velocity vs Number of Occurrences 

 

Propagation at KHz vs. MHz and Energy Efficiency: 

 

i. Lower frequencies (KHz): Generally, propagate farther underwater with less attenuation 

compared to higher frequencies (MHz). This is because lower frequencies experience less 

scattering and absorption from water molecules and suspended particles. 

ii. Higher frequencies (MHz): Offer greater bandwidth for transmitting information but are 

subjected to higher attenuation over longer distances. They might require more energy to 

transmit the same signal over the same distance due to the need to overcome signal 

weakening. 

2. Energy Efficiency Considerations in UWSNs: 

 

i.   For node localization and tracking in UWSNs, achieving a 

balance between communication range and energy consumption 

is crucial. 

ii. Using lower frequencies (KHz) can ensure wider signal coverage 

but might require more time to transmit data due to lower 

bandwidth. 

iii. Higher frequencies (MHz) can transmit data faster but may 

necessitate more frequent transmissions or higher signal strength 

(more energy) to maintain communication range due to 

attenuation shown in Figure 4.1. 
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 4.2.2   Covariance measurement 

 

Figure 4.2: Covariance vs Number of Occurrences @ 1-20 MHz 

 
 

 

 

Figure 4.3: Covariance vs Number of Occurrences @ 1-20 KHz 
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4.2.3    Energy Consumption 

 
Energy consumption is a critical factor in UWSNs due to the limited battery 

life of underwater nodes. The ratio of successful data transmissions to total energy 

consumed measures node efficiency. The efficiency of nodes varies with changes in 

water depth and frequency. The research results indicate that energy consumption 

varies significantly with water depth and frequency. The following figures depict 

energy consumption and node efficiency across different scenarios. 

 

 

Figure 4.4: Minimum RMSE Deep Water @ 1-20 MHz 

 

 

Figure 4.4 depicts the results of the existing scheme RBNLS used for 

localization and tracking. RBNLS (Range-based node localization scheme) uses 

the PSO-CSO algorithm to minimize localization error. The graph shows that as 

we go deeper concerning 1-20MHz, the root mean square will be higher, 
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More energy is consumed, and the efficiency of node localization is 

compromised as we move down in deep water with frequency @ 1-20 KHz. 

 

 

 

 

Figure 4.5: Minimum RMSE in Mid Water @ 1-20 KHz 

 

Figure 4.5 depicts the results of the tracking and localization root mean square 

error for the UWSN while using real-time data and the EKF technique shows 

considerable variations as we move in mid-water @ 1-20 KHz. A high root 

mean square error (RMSE) indicates poor localization accuracy, which would 

likely result in higher energy consumption since more frequent communication, 

error correction, and wasteful routing must occur. Such in mid water the 

network's overall energy efficiency may suffer in underwater situations. 
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Figure 4.6: Minimum RMSE in Mid Water @ 1-20 MHz 

 

Figure 4.6 depicts root mean square error (RMSE) indicating that node 

localization at frequencies ranging from 1 to 20 MHz at mid-water depths gives 

relatively low error rates. The fact that the RMSE is smaller suggests that certain 

frequency ranges are useful for precise localization, which enhances energy 

efficiency by reducing the amount of energy to fix localization errors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.7: Minimum RMSE in Shallow Water @ 1-20 KHz 
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According to the result shown in , Figure 4.7 shows the Root Mean Square Error 

in shallow water @1-20 KHz, Compared to the mid-water situation, the RMSE 

in shallow water for the 1–20 KHz frequency range is greater, suggesting less 

precise tracking and localization, a greater RMSE could results in a higher 

energy usage. 

 

 

 Figure 4.8: Minimum RMSE in Shallow Water @ 1-20 MHz 

 
 

Figure 4.8 shows that the Root mean square error (RMSE) in shallow water with a 

frequency range of 1-20 MHz is higher than in mid-water but lower than in the 1-20 KHz 

range. Though it is still better than the lower frequency range in shallow water, the 

increased RMSE compared to mid-water indicates some inefficiency in energy expense, 

even though localizations more precise than at lower frequencies. 
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Figure 4.9: Minimum RMSE in Deep Water @ 1-20 MHz 

 

According to the result shown in, Figure 4.9 shows the performance after application of 

Kalman filtration on Localization and tracking techniques which show Minimum Mean 

Square Error. It means that in deep water Mean square error is reduced in Mega Hertz .so 

for less energy consumption performance is better in deep water 1-20 MHz, Whereas if 

we have enough energy we can also go for Mid water. 

 

The analysis of figures for Figure (4.5 to 4.9) depicts 3D localization in terms of 

underwater environment (Latitude/Longitude and Depth) along with the Trajectory of 

AUV and MMSE for multiple depths with different frequencies. Results clearly show 

that for lower depths MMSE comparatively higher than deep oceans .Similarly if we see 

the 3D trajectory of AUV it seems that for most of the part it is deviating from reference 

point of defines track in underwater monitoring .If we have multiple sensor nodes 

deployed and UWSN is built than AUV will be guided to follow a track to collect or 

transmit information from shallow to mid water and deep oceans.MM SE varies from 0-

1.This deviation also can be clearly seen in X,Y and Z positions in ocean. Additionally, 

nodes in deeper water consume more energy compared to those in shallower regions, 

primarily due to increased pressure and propagation loss.  
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Mid and shallow waters exhibit higher node efficiency compared to deep waters, 

attributable to less signal attenuation and lower propagation losses. 

 

Figures 4.1 to 4.3 displayed above demonstrate the fact that covariance values normally 

increase with the number of occurrences in both frequency ranges. It declares that 

covariance is positively correlated with the number of measurements, reflecting the fact 

that the covariance is more significant when larger number of data points are available. 

 

i. Frequency Effect: Significantly higher values of covariance are associated 

with 1-20 MHz range compared to 1-20 KHz. This fact proves that at higher 

frequencies, covariance is more pronounced, this could be advantageous for 

energy-efficient node localization and tracking in UWSNS applications. 

ii. KHz and MHz Comparison: Higher covariance values are normally at 

higher frequencies (1-20 MHz) than those at lower frequencies (1-20 KHz). 

This means that higher frequencies work better for energy efficiency analysis 

and monitoring in UWSNS applications. 

 

4.3   Implications for Energy-Efficient Node Localization and Tracking 

 
      In terms of energy efficiency and tracking in UWSNS applications, the detection of 

different frequencies has important implications: 

 

i. Efficiency of Energy: This is crucial for energy-efficient UWSNS 

applications since it will enable more precise and effective 

tracking and placement. 

 

ii. Selection of Frequency: The results show that higher frequencies 

(1-20 MHz) may work better for energy tracking and localization. 

This helps in selecting the frequency used by the UWSNS 

application, allowing for more efficient use. 

iii. Strategies of Data Collection: Variable analysis can direct data 

collecting in UWSNS applications. To improve tracking and 

localization, for instance, more data collected at higher frequencies 

(1–20 MHz) may result in more varied estimations. 

 



63 
 

 

4.4     Comparative Analysis 

 
     In order to reveal the advantages of the process in terms of work and energy 

consumption, its performance was compared with the existing process. The main 

points of comparative decision making are listed below. 

 

1. Consumption of Energy: 30% reduced Energy Consumption is shown in the 

Thanks to improved routing and a more energy-efficient data transmission 

mechanism, the suggested protocol is superior to previous protocols. 

2. Efficiency of Node: Nodes can have an efficiency of up to 20% in shallow 

and medium water. Deep space water's efficiency rose by 25% as a result of 

applying this solution. 

 

            Table 4.1: Comparative Analysis Table: UWSNs Protocols vs Proposed Scheme 

 

Sr# Authors / 

Journal / 

Year 

Protocol / 

Method 

Propagation 

Velocity 

Covariance MMSE  Comparison with 

Proposed Scheme 

1 Duecker 

et al. 

(2017), 

Sensors 

EM-based 

spherical 

localization 

Low to 

moderate 

(limited by 

EM range) 

Moderate Moderate 

(via passive 

one-way 

signal) 

Limited range 

and dependency 

on EM 

properties, but 

simpler setup 

2 Mamta 

Nain et 

al. 

(2022), 

Wiley 

Hybrid PSO 

+ GA for 

Range-Based 

Localization 

Moderate 

(us 

es TOA + 

RSSI) 

Moderate Improved 

over 

standalone 

PSO or GA 

Higher accuracy 

in dynamic 

UWSN but 

energy 

consumption not 

emphasized 

3 Nazia 

Majadi et 

al. 

(2016), 

IEEE 

Energy-

efficient 

local search-

based 

localization 

Static data 

usability 

Lower 

covariance 

(due to 

focused 

area) 

Improved 

MMSE 

(shown via 

simulations) 

Good energy 

efficiency, lacks 

real-time 

dynamic data 

adaptation 

4 Proposed 

Scheme  

EKF + 

Bayesian 

Fusion + 

Real-time 

Data + 

Helmholtz 

Frequency-

dependent: 

KHz offers 

low 

attenuation, 

MHz faster 

speed 

Optimized 

via 

iterative 

KF method 

Lower 

MMSE 

shown in 

RMSE plot 

Superior 

accuracy, real-

time adaptability, 

covariance 

tracking 
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4.5    Overall Analysis: 

 
      The UWSN energy-saving protocol's performance testing and simulation results 

are shown in this section. The findings demonstrate how well the plan lowers ship 

energy usage and enhances operation over a range of underwater locations and 

frequencies. In order to guarantee UWSN's steady and extended functioning in 

aviation applications, this upgrade is crucial. 
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                CHAPTER 5 

  

 

CONCLUSION AND FUTURE WORK 

 

 
 5.1    Overview 

 
         This section examines the results and future directions. The main purpose of this 

study is to monitor the tracking and localization problem, reduce the frame error, and 

improve the tracking and localization performance. Evaluate the effectiveness of the 

scheme. The results are compared with similar services in terms of performance 

measurement. 

 

 

 5.2    Conclusion 

 
          Main purpose of this study was to address the tracking and localization problem in 

underwater environment, reduce the MMSE, and improve the tracking and localization 

performance and evaluate the effectiveness of the scheme. Simulations results are compared with 

existing scheme in terms of MMSE and 3D trajectory of sensor nodes. In this research we 

developed an energy-efficient tracking and positioning system for sensor noes at any instant 

considering IOUT. Deploying IOUT using unmanned underwater vehicles (AUVs) and using 

preferred sensor power for data transmission are two important improvements. To improve the 

tracking accuracy, the study also combines Bayesian fusion, Kalman filtering, and instantaneous 

data collection. The proposed technique for energy-efficient location and real-time tracking in 

IOUT shows good results compared to existing method by reducing MMSE varies from 0-2 

considering Shallow Ocean for mid- water MMSE varies from 0-1.8.and for deeper oceans MMSE 

varies from 0-1. This deviation also can be clearly seen in X, Y and Z positions in ocean. Results 

clearly  states  that for existing  method based on Kalman filter and for  proposed  methodology 
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 considering shallow and mid-water MMSE is higher respectively and for deep oceans MMSE is 

less and 3D localization and tracking using sensor node is much better and suitable for dynamic 

underwater environment considering sensor node. 

 

5.3   Future Work 
 

 

      Based on this research and the new directions opened, the capacity and performance of 

the UWSN will be improved in the future. 

 

i. Advanced Sensor Integration: To improve the accuracy of localization and 

tracking, more advanced sensors and technologies, built on Artificial Intelligence 

Based pattern recognition and multispectral imaging may be developed. 

ii. Adaptive Algorithms: More adaptive and dynamic algorithms, can be developed 

to handle in real-time-varying underwater conditions, and environmental factors, 

which would lead to the robustness of UWSNs. Machine learning techniques 

could be benefited from, to predict and adapt to environmental changes. 

iii. Scalability Studies: Expanding the scope of this research to larger-scale networks 

will help assess the scalability of the proposed system. Investigating the effects of 

increased node density and extended operational areas is crucial for real-world 

applications. 

iv. Energy Harvesting Techniques: Utilization of underwater currents and thermal 

gradients, can bring in sustainable power solutions for UWSNs. Energy harvesting 

methods would reduce dependency on battery replacement. 

v. Enhanced Security: Data encryption and secure communication protocols, will 

handle security issues and concern, and protect sensitive information in military 

and commercial applications. 

vi. Field Testing: Underwater field tests in dynamic and ever changing environment 

will validate practical application of the proposed systems and explore potential 

improvements. 

 

As mentioned above, if research community leads further in the same direction advancements and 

development of state-of-the-art devices related to wireless sensor networks, in a foreseeable near 

future. 
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