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ABSTRACT 

 

Effort Estimation in Agile Software development Using Ensemble Learning Model 

 

In the domain of software development, effort estimating is an essential procedure that entails 

projecting the size and schedule of a particular project. It becomes necessary to create an 

estimate before beginning any software project. Obtaining the required approvals and 

evaluating the project depends on this preliminary assessment. The importance of this 

procedure cannot be emphasized since a project's success or failure is solely dependent on how 

precisely and accurately effort is estimated. There are various cost and effort methods and 

techniques. These techniques have been utilized to construct several effort estimation models 

that are used in the software development process in the traditional model. This research 

explores the application of ensemble learning techniques, specifically stacking, to enhance the 

accuracy of effort estimation in Agile environments. Stacking involves combining multiple 

diverse base estimators to create a meta-estimator that outperforms individual models. This 

study includes a crucial step for gathering datasets because old dataset size is small and old. 

The proposed approach is assessed using real-world Agile project datasets, proving the 

advantages of the stacking model over agile software development estimation techniques. 
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      CHAPTER 1 

 

     INTRODUCTION 

 

1.1  Overview 

The Software plays an essential role in our day-to-day life. It enhances our experience 

in various fields, such as healthcare, education, fitness and security. For instance, fitness apps 

play a key role in our well-being by motivating us to stay active and healthy, tracking our 

workouts and health data.  

 The software development life cycle contains several stages, such as requirement 

gathering, design, development, testing, and deployment. Every project needs to be followed 

carefully through each of these stages in order to succeed. In software development, accurate 

estimation is part of successful project management. Effort, cost, and time estimation are critical 

for managing software development projects. Software estimation involves predicting the size 

of the software product, how much work it will take to develop, setting up a project schedule, 

and estimating the overall cost of the project. It is widely regarded as the most critical and 

challenging task in project management, crucial for accurately forecasting expenses.  

Accurately estimating necessary resources and schedules is essential for achieving 

successful software development. [2][3]. It is widely acknowledged that almost 75% of 

overview of projects exceed their budget, time frame, or both, as indicated by the CHAOS 

immediate reports that repeatedly illustrate a decline in project success rates [85]. The most 

vital and intricate challenge in software development is to precisely anticipate the development 

cost, time, and efforts, enabling project managers, system analysts, and developers to make 

informed management decisions. Failure to do so can result in complete disaster. It is believed 

that substantial budget overruns occur solely due to inaccurate estimation 
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Software Development Effort Estimation (SDEE) is a crucial component of software 

management, which measures the effort to develop software. It entails calculating the quantity 

of work requires to complete a project as a whole or a specific task within it. Generating an 

incredibly accurate estimation is useful for developers when they are working on project. A 

project's success can be at risk if the estimates are inaccurate or unrealistic [1].  

Effort estimation predicts the amount of work required, measured in person-hours or 

person- days. Project managers can better plan workloads and prevent overworked teams by 

using this estimation by precisely calculating the amount of work needed for each activity 

through the use of effort estimate. Team members can allocate duties more fairly and prevent 

overloading by knowing the estimated person-hours or person-days required [86]. As a result, 

it is possible to have a balanced workload, the likelihood of burnout is decreased, and team 

morale and productivity are raised. 

Cost estimation calculates the total financial expenditure needed, including both direct 

(like labor and materials) and indirect costs (like overhead). This is essential for maintaining 

the project's financial viability and for developing precise budgets [87]. Time estimation 

predicts the duration needed to complete tasks or the entire project. Precise time estimation is 

essential as it has an immediate effect on work planning and sequencing, resource distribution, 

and project effectiveness in general. Time estimates that are unrealistic run the risk of missing 

deadlines, which can cause delays, higher expenses, and even project failure. Time estimation 

is therefore crucial for meeting stakeholder expectations and sustaining project momentum. 

Although every type of estimation focuses on different aspects of project management, they are 

all necessary for the project's success. In this research we calculate effort in terms of cost and 

time [87]. 

In the traditional waterfall approach, estimation is done at the beginning of the project. 

Teams make detailed plans and predictions about how long the project will take and how much 

it will cost, based on all the requirements known at that time. This method tries to predict 

everything upfront and is less flexible to changes once the project is underway. If something 

changes, it can disrupt the schedule and require re-estimating and adjusting the plans. On the other 

hand, agile methods estimate effort in a more flexible and ongoing way. Instead of planning 

everything at once, agile teams estimate the effort for each part of the project (called sprints or 
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iterations) as they go along. They use user stories, which describe what needs to be done from the 

user’s perspective. 

Agile allows for continuous feedback and adjustments, making it easier to handle changes 

and adapt to new information throughout the project. This approach is more flexible and 

responsive compared to the rigid planning of traditional methods. 

Machine learning, a subfield of artificial intelligence, employs algorithms to examine 

data and provide forecasts by identifying patterns and correlations within it. Machine learning 

algorithms are trained on software project data in the context of effort estimation to gain insight 

from past trends and enhance estimation precision. In the following section we will discuss 

detail of agile software development. 

1.1 Agile Software Development 

Agile is latest software development process. The terminology "agile development" 

refers to a variety of incremental and iterative software development technique. Agile is flexible 

and lightweight approach to software development unlike traditional software development, 

agile software development is the plan-driven strategies and embraces change.  

 

Agile emphasizes dividing the project into smaller, more manageable pieces called 

iterations or sprints. Agile's iterative appr enables ongoing feedback and prompt project 

modifications in response to emerging requirements or difficulties. Agile teams frequently 

collaborate closely, holding frequent meetings to discuss progress and resolve problems, such 

as daily stand-ups. Agile also prioritizes collaboration between the customer and the 

development team. Customers are involved throughout the process, to ensure that the final 

software fulfills their needs and expectations, as opposed to waiting till the conclusion of the 

project to deliver the final result.   

 

The Agile Manifesto highlights the key differences between Agile and plan-driven 

methodologies, with Agile being more flexible and responsive to change, making it better suited 

for dynamic project environments. Agile is founded on 12 key principles and values individuals 
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and interactions, working software, customer collaboration, and adaptability over strict 

processes, comprehensive documentation, contract negotiation, and following a plan [10] The 

Agile Manifesto emphasizes flexibility and responsiveness, contrasting with the rigidity of 

plan-driven methodologies. Agile promotes frequent reviews, retrospectives, and team 

ownership of deliverables, all of which help to create a transparent and accountable culture.  

Agile guarantees a quicker time to market and an earlier realization of commercial value 

by regularly releasing functional software. Agile values direct communication and collaboration 

over strict processes and tools, prioritizing working software over extensive documentation. Its 

favor’s close customer collaboration, accommodating changes instead of rigidly adhering to 

contracts. Agile teams adapt to change rather than strictly following predefined plans, working 

in short cycles to remain responsive [6]. These principles make Agile well-suited for dynamic 

and evolving project environments, focusing on delivering concrete results early and 

continuously. 

In contrast to traditional techniques, agile procedures establish a coherent and efficient 

project management framework by integrating user stories, story points, velocity, and the 

product backlog. Agile software development user or client necessities are taken in the form of 

user stories. User stories are short explanations of what a user expects a software product to 

achieve. These stories assist everyone on the team in quickly and easily understanding what 

users require from the product [11]. The brief description of user stories is described in chapter 

2 section 2.5.  

These user stories are then estimated using story points, in agile story points are a unit 

of measure used to estimate the relative size or complexity of user stories or tasks in a software 

development project. The story points are used to calculate velocity, a statistic that tracks how 

much work the team can finish in a sprint. This information is used to improve future planning 

and guarantee that workload expectations are reasonable. All of these elements are organized 

within the product backlog, a dynamic, prioritized list that guides the team’s focus on delivering 

high-value features. Through the integration of various methodologies, Agile establishes a 

flexible process where every phase builds upon the other, culminating in the successful 

completion of projects that satisfy user objectives. This contrasts with traditional approaches, 

which may find it difficult to adapt to changing demands. 
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1.3 Agile Estimation Workflow  

Agile project management uses the process of "agile estimation" to estimate the amount 

of work, time, or money needed to do a job or group of tasks. The main objective is to give 

teams a reasonable and comparable work estimate so they can efficiently schedule their sprints, 

releases, and project schedules in general [84]. There are six steps involved in the agile 

estimation that are explain in below section for example user stories, planning poker, story 

points, product backlog, velocity, re-estimation [44]. Figure 1.1 shows the Agile estimation 

workflow, illustrating the process of breaking down user stories and assigning effort using 

relative sizing techniques. It highlights collaboration between team members to ensure accurate 

and consistent estimates throughout the sprint planning.  

 

Figure 1.1: Agile Estimation Workflow 

In the first step , agile software development user or client necessities are taken in the 

form of user stories as described in section 1.2. User Stories are the items are estimate using 

planning poker, serving as the foundation for your estimation process. To estimate the effort 

required for each user story using planning poker is a collaborative and consensus-building 

technique. Team members select cards with estimated values to collectively allocate story 

points to user stories. The estimates are revealed simultaneously, prompted discussion if they 

vary significantly. This process keeps the team in sync with the necessary tasks and guarantees 

precise, consensus-driven estimations. This method ensures accurate, consensus-driven 

estimates and aligns the team on the work required. The estimates generated in planning poker 

become story points [12].  

In Agile, story points are a unit of measure used to estimate the relative size or 

complexity of user stories or tasks in a software development project. Unlike traditional time-

based estimates (e.g., hours or days), story points are a more abstract and relative measure that 

takes into account various factors, including complexity, effort, risk, and uncertainty. They help 
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prioritize work based on its level of challenge. Story points guide the prioritization of user 

stories in the product backlog, with higher points indicating more complex tasks [13]. In agile 

software development, velocity is a metric used to measure the amount of work a development 

team can accomplish within a specified time frame, typically a sprint. The product backlog is a 

dynamic list of all user stories and tasks, ordered by priority. It serves as the to-do list for the 

project. User stories from the product backlog are taken into sprints, forming the basis for 

measuring progress through velocity [14]. By tracking the quantity of work finished in each 

sprint, velocity assists the team in determining its capacity and organizing their upcoming 

assignments. 

 In Agile software development, there are two types of velocities: initial and final 

velocity. Initial velocity is measured when the project begins. However, as the project 

progresses, various factors such as frictional forces (Negative influences in project productivity) 

and dynamic forces (Unpredictable forces) can affect it and final velocity is then calculated 

using these considerations to provide a more accurate measure of the team's performance over 

time, [40] the brief description of these forces described in chapter 2 sections 2.5. Velocity 

informs the team's ability to handle work in upcoming sprints and influences the process of re-

evaluating and adjusting estimates [15]. Re-estimation involves adjusting story points based on 

new information, feedback, or changes in understanding, keeping estimates accurate. The 

results of re-estimation impact future user story estimation, creating a continuous feedback loop 

for improvement.  

In essence, the agile estimation workflow begins with identifying user stories, 

estimating them with planning poker, converting estimates into story points, prioritizing the 

product backlog, measuring progress through Velocity, and refining estimates through re-

estimation. These steps are interconnected, forming a cycle of continuous improvement in 

project planning and execution.The agile technique has been widely adopted in the software 

development industry in recent years. The main causes of project failure are inaccurate and 

lacking requirements. Estimating software involves forecasting the software product's size, 

required development efforts, project timelines, and projecting the final project cost. 

 Accurate cost estimation in project management is the most important and difficult 

assignment [4]. The agile technique asks team members to use their effort and level of difficulty 
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for the scrum rather than asking management to estimate the length. Technology teams use 

effort estimation to estimate how long it will take to develop a project or product, how many 

people they will require, and how much it might cost. The software development process 

depends on effort estimating because it enables teams to make sure a product is created and 

delivered on schedule. 

When estimating effort, we determine the order in which the tasks need to be finished 

in order to complete the project. Next, we determine how long each task will take in person-

hours or days. We get an estimate for the total activity by adding up the efforts of these separate 

tasks. Software is invisible, intangible, and complex, making it difficult to comprehend and 

predict its cost. Consequently, each estimation method employs a unique set of characteristics 

to estimate the software's cost. 

1.4 Effort Estimation through Machine learning 

For estimating effort, a variety of models are available, including non-algorithmic, 

algorithmic, and expert judgment techniques. Expert judgment is based on past projects with 

comparable parameters; if the parameters of the completed projects are almost the same as the 

present project, estimating the effort is easy [5]. Parametric techniques are used by algorithmic 

models, which make use of fixed-form formulas parameterized by past data. SLIM [7], 

Albrecht's Function Points [8], and COCOMO [6] are a few prominent algorithmic techniques. 

The shortcomings of algorithmic models have given rise to non-algorithmic models, which 

make use of machine learning and soft computing. Even though these models are available, new 

ones are always being created to get estimates that are closer to reality [9]. 

 

Machine learning approaches significantly improve effort estimation in agile software 

development by leveraging historical data to provide accurate and adaptable predictions. 

Machine learning models can analyze vast amounts of data to identify patterns and make 

predictions that traditional methods might miss These methods analyze complex project 

variables like team composition and task intricacies, enhancing estimation precision over 

traditional approaches. They also facilitate continuous improvement through iterative learning, 

ensuring estimates keep it up relevant as projects evolve. Additionally, machine learning 
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promotes transparency and consistency in estimation practices, fostering trust and informed 

decision-making among stakeholders [36]. Overall, these advancements optimize resource 

allocation and contribute to successful project outcomes in dynamic agile environments. 

 

Ensemble learning in machine learning involves combining multiple models to improve 

prediction performance. In effort estimation, methods like stacking use a variety of models such 

as decision trees or regression models together to generate more precise estimates [45]. This 

strategy reduces biases and variability inherent in individual models, resulting in reliable 

predictions that consider diverse project factors. 

Consequently, effort estimation processes software project data and forecasts resource 

needs using machine learning. In turn, ensemble learning improves this procedure by combining 

various models, guaranteeing more accurate forecasts for efficient project management and 

planning. 

1.5 Problem Statement 

 Software effort estimation is a significant part of software development, as the success 

of project depends upon accurate estimation. Accuracy of effort estimation becomes 

challenging because of the project size, complexity and uncertainty. Agile software 

development with its iterative and adaptive nature, introduces unique dynamics that make 

accurate estimation of software projects a challenging task. "Traditional effort estimation 

approaches [88] may not be reliable for accurate estimates, especially in an agile development 

environment. In recent years, machine learning techniques have gained prominence in software 

engineering, offering new opportunities for improving estimation practices. The growing 

prominence of machine learning techniques in software engineering, there is limited research 

[16][17] or exploration into the application of ensemble models specifically for effort estimation 

in Agile software development projects. Ensemble models, known for their ability to combine 

the strengths of multiple algorithms, could offer greater accuracy in predicting effort. Their 

capacity to adjust to intricate patterns in Agile projects emphasizes the necessity of more 

empirical research and validation. 
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1.6 Significance of the study 

Accurate software effort estimation and agile development are essential for figuring out 

the size and capability of the development team needed to finish a project successfully. Accurate 

estimates guarantee efficient resource allocation and timely completion of tasks, which directly 

impacts the quality and timeliness of the finished output. The estimating process is essential to 

the success of Agile projects since mistakes in these estimates have the potential to cause major 

project failures. While overestimating can result in wasteful resource use and longer project 

durations, underestimating can lead to missed deadlines, higher costs, and overworked team 

members. The project's outcome may be adversely affected by either scenario, which 

emphasizes how crucial it is to strike a balance through precise estimation. Precise 

approximations avert these problems, guaranteeing that projects stay on schedule and within 

budget.  

Accurate estimates improve project predictability, which is necessary for Agile 

development's efficient sprint planning and on-time delivery. Teams are better equipped to set 

realistic objectives, make consistent progress, and interact with stakeholders when they have 

faith in their estimations. This consistency helps to guarantee that expectations are met for the 

project and fosters stakeholder trust.In the end, precise effort assessment enables more informed 

decision-making at every stage of the project. Teams can make well-informed decisions 

regarding scope and priorities, effectively manage risks, and guarantee resource utilization. 

Agile teams can improve their chances of delivering high-quality work on schedule and 

achieving more successful project outcomes by improving estimation accuracy. 

1.7 Research Objective 

The following is the research objective: 

OBJ: To propose a model for effort estimation in agile software development using ensemble 

learning. 
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1.8 Research Questions 

The following questions has been considered in order to achieve these study goals: 

RQ: How to control the unnecessary packet flooding to reduce the energy consumption in the 

network initialization phase? 

 

 

1.9 Research Contribution 

What Precise predictions are essential for efficient planning, resource distribution, and 

on-time delivery in agile organizations. This study's primary objective was to use ensemble 

learning to increase accuracy in the context of Agile software development. In order to do this, 

we were aware of the constraints imposed by the modest size and lack of public accessibility to 

the current datasets. We made a concentrated effort to obtain more extensive and varied datasets 

directly from different software firms in order to address this problem. Our strategy 

concentrated on combining several machine learning models using the stacking method, 

utilizing their unique capabilities to create a more reliable and accurate prediction model. Our 

study's findings demonstrated a significant increase in estimation accuracy, proving the value 

of ensemble learning strategies in agile software development. By improving forecast reliability 

in Agile projects, this work helps to further the ongoing endeavor to improve project outcomes, 

resource management, and planning. 

1.10 Summary 

The chapter introduces the challenges in software development effort estimation, 

outlines the agile estimation workflow, identifies the problem, highlights the significance of 

accurate estimation, research objectives and research questions for further exploration. 
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CHAPTER 2 

 

  LITERATURE REVIEW 

2.1 Overview  

This chapter presents an overview of effort estimation models applicable to both 

traditional and agile software development methodologies. A wide range of estimation 

techniques has been introduced, including both conventional algorithmic models and modern 

learning-based approaches. As software projects grow increasingly complex, accurate effort 

estimation becomes a crucial element of successful project planning and execution. Inaccurate 

estimations often lead to project delays, cost overruns, and potential failures, underscoring the 

importance of reliable estimation methods in the software industry. The rapid evolution of 

software technologies has further emphasized the need for effective estimation practices. 

Various researchers have proposed diverse strategies to improve prediction accuracy, broadly 

classified into algorithmic, non-algorithmic, expert-driven, and machine learning-based 

methods. A dedicated section of this chapter reviews existing literature on effort estimation in 

agile software development. The literature review process involves examining and synthesizing 

previously published academic work relevant to the topic, providing insight into the structure, 

findings, and contributions of prior research. The focus here is on scholarly work related to 

“Effort Estimation in Agile,” highlighting the range of methodologies proposed for work 

estimation in agile environments. 

2.2 Effort Estimation in agile software development 

The manager determines a team member's workload capacity under the waterfall 

methodology by estimating the amount of time needed for each task and allocating work based 

on the team member's total time available. On the other hand, the Agile methodology 
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approaches the assessment of a team member's capacity in a very different way. First of all, it 

emphasizes teamwork by giving tasks to the entire group rather than to a single person. Second, 

it deviates significantly from the waterfall approach by not evaluating work in terms of time in 

order to maintain the self-organization that is crucial to the methodology's success [18]. Team 

members estimate their work using effort and complexity levels in Agile procedures. Teams are 

not required to estimate their work using a particular approach by the Agile Methodology. It 

does, however, discourage using time-based evaluation and instead promote the use of more 

abstract metrics to gauge effort. The Fibonacci sequence, t-shirt sizes, numerical sizing, and 

even dog breeds are examples of common estimating techniques. 

 It is important that the group comes to a consensus on the selected scale so that each 

member of the group feels at ease with its values. The team gets together during the Sprint 

Forecasting meeting to determine how much work will be needed on the tales in the backlog 

[19] These assessments are essential to the Product Owner's ability to efficiently prioritize 

backlog items and project releases according to the team's velocity. Establishing a safe and 

unbiased environment encourages more realistic and collaborative estimation outcomes. This 

makes a fair assessment of the jobs' difficulty necessary. This approach fosters trust within the 

team and supports more sustainable sprint planning over time. Thus, in order to avoid pressuring 

the team to underestimate their effort and take on extra work, it is recommended that the Product 

Owner refrain from watching the estimating process.  

Precautions should be taken to limit any effect on the estimation process, even when the 

team estimates between themselves. It is advised that each team member reveal their evaluations 

at the same time. The most widely recognized techniques for evaluating ASD are:   

• Expert Opinion 

• Analog 

• Disaggregation                          

Each of the above methods can be used independently, but for better results, they should 

be combined. 
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2.3 Effort Estimation Methods 

There are different effort estimation methods that are listed below: 

• Traditional methods 

• Algorithmic based method 

• Non-Algorithmic method 

• Learning based method 

      Figure 2.1 shows traditional software estimation methods, which include both algorithmic 

approaches like COCOMO and non-algorithmic techniques such as expert judgment. These 

methods rely on historical data, mathematical models, or human expertise to estimate cost, 

effort, and project duration. 

 

Figure 2.1: Effort Estimation Methods 
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2.4 Algorithmic Method 

This approach for estimating efforts relies on mathematical equations that utilize cost 

factors related to product, machine, and personnel. These factors and their adjustment 

parameters are derived from previous projects. This method requires tailoring data and input 

parameters to align with the specific development environment. Although this method is 

deemed more precise than other methods like estimation by analogy and expert opinion, it can 

be challenging to quantify all cost factors, and some are disregarded in certain software projects 

[20]. One major drawback of this method is the inconsistency of estimates, as studies have 

indicated variances of up to 85-610% between predicted and actual estimates While system 

calibration to the particular development environment might improve accuracy, these 

techniques still result in 50–100% mistakes, and calibration is regarded as an extra burden 

[21][22]. This approach has led to the development of several models, such as function point 

analysis (FPA), Putnam models, and COCOMO models. Algorithmic methods include the 

following: 

• Putnam model /Slim model 

• Functional point analysis 

• COCOMO Mode 

•  Communication Range: write briefly about it 

 

2.4.1  Putnam Model 

 A useful model known as the Putnam model was introduced by L. Putnam in 1970 [7]. 

The Rayleigh Curve Function is used by this model to calculate the time and effort required to 

develop a software project. Based on this paradigm, Putnam's company created a proprietary 

suite called SLIM.  

The equation 2.1 illustrates that software size is directly proportional to the cube root of 

effort and to the four-thirds power of development time, highlighting the non-linear relationship 

among these variables as identified in models like Putnam’s. This model's equation is: 
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𝑆 = 𝐸 × (𝐸𝑓𝑓𝑜𝑟𝑡)1/3𝑡𝑑4/3                         (2.1) 

In the given equation, "td" stands for delivery time, "E" for environmental 

considerations, "S" for product size expressed in ESLOC (Estimated Source Lines of Code), 

and "Effort" for the total development effort expressed in person-years in the given equation. 

where: 

'td' refers to the delivery time. 

'E' represents the environmental factor. 

'S' denotes the size of the product in ESLOC. 

'Effort' represents the overall development effort in person-years. As shown in Equation 

2.2, the total effort required for a project is modeled as a cubic function of development time, 

where 𝐷0 is a constant reflecting team dynamics or staffing rate. This equation emphasizes that 

even small increases in development time can lead to significantly higher effort, based on non-

linear project scaling models. Another important equation in this model: 

𝐸𝑓𝑓𝑜𝑟𝑡 = 𝐷0 × 𝑡3                                (2.2) 

Standalone software systems and other combinations fall in between these two 

extremes. The personnel build-up parameter, denoted by "𝐷0" in this case, might range from 8 

(for a new system with numerous interfaces) to 27 (for the reconstruction of an old system). A 

new software system usually takes more time and work to develop. During project planning, 

these differences have a big impact on scheduling and resource allocation tactics. Project 

managers can set more reasonable deadlines and expectations if they know where a system lies 

on this spectrum. On the other hand, because the code and logic of an existing software system 

have already been built, reconstructing it takes less time and effort. Systems with standalone 

software and various combinations lie in the middle of these two extremes. 
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2.4.2  Functional Point Analysis 

 As a result, he devised a new method to determine the size of software projects by 

linking it to the software's functionality. Albrecht believed that the measure of software size 

should be language- independent and relevant to software users. He aimed to quantify the 

software's functionality rather than relying on lines of code (LOC) as a measure [23]. 

• Inputs of the application 

• Outputs of the application 

• Provision for querying 

• Internal data storage 

• External Interfaces 

These attributes were platform-independent and applicable to most software 

applications. They were tangible and visible to clients. Albrecht presented his research findings 

in a paper at an IBM conference in 1979, introducing function point analysis (FPA) as an 

advanced estimation method to determine the dimensions of software applications, including 

size, effort, productivity, and defect density. 

Function point (FP) serves as the unit of measurement for determining the size of 

software applications. The software's functionality is categorized and identified based on the 

five attributes mentioned earlier in FPA. These functions are then evaluated for complexity 

(low, moderate, or high), and FP values are assigned accordingly. The total sum of FPs is further 

adjusted using 14 technical attributes. The cost of project development, in terms of hours or 

money, for a single unit is calculated based on data from previous projects [24]. 

Research explores various aspects of news content patterns and coverage, including 

photos [14], images, and videos across multiple news sources [25]. Methods exist to assess the 

impact of news content on digital social media platforms. The goal is to measure software 

functionality rather than relying solely on lines of code (LOC) as a metric. 



17 
 

 

2.4.3  COCOMO Model 

Software project size can be estimated using the mathematical model COCOMO, which 

was created by Barry Boehm [26]. Based on an analysis of 63 software development projects 

that made use of procedural languages and the Waterfall methodology, it was first implemented 

at TRW Aerospace in the 1970s. COCOMO II, which could estimate contemporary software 

development projects and procedures, was developed in the 1990s as a result of improvements 

made to COCOMO [27]. 

 To put it simply, COCOMO uses formulas to figure out how much a software 

development project will cost. After being modified to take into account the unique features of 

the current project, parameters are taken from previous project data. Three types of the original 

COCOMO model exist: basic, intermediate, and detailed COCOMO. 

Software Development Modes 

COCOMO categorizes software development projects into three different modes based 

on their complexity. While these modes utilize the same cost estimation relationship, they 

generate different cost estimates for projects of the same size. 

Organic Mode: The development team is well aware of and conversant with the issue 

at hand when working in the organic manner. A small development team can handle such tasks 

with ease because there is a wealth of data from past endeavors. 

Semi-detached Mode: The development team in this mode is made up of a mix of staff 

members with and without expertise. The group's knowledge of the ongoing initiative is 

somewhat restricted. 

Embedded Mode: The embedded mode encompasses software systems that are more 

complex and tightly integrated with hardware. Developing such projects requires a higher level 

of creativity and expertise. 
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COCOMO-II: This represents the latest version of Boehm's well-known COCOMO 

model, initially introduced in 2000. While the original COCOMO model has shown its 

effectiveness in conventional software engineering, it no longer fits the evolving landscape of 

software development practices. The primary objective behind the development of COCOMO 

II was to adapt to the modern software engineering techniques in use today. COCOMO-II is 

available in three primary variations: 

Application Composition Model: This model is designed to calculate the time and 

effort required for projects developed using modern RAD GUI builder tools. It's particularly 

useful for estimating resources needed for projects that involve the composition of applications. 

Prototype Model: This model comes into play during the initial phases of a project when 

the project's full architecture has not yet been finalized. It helps in estimating project costs and 

timelines before making final architectural decisions. This model relies on five scale variables, 

seven cost components, and function points (or lines of code when applicable), although it may 

be limited by a lack of sufficient early-stage data. 

Post-Architecture Model: As the project progresses and the upper-level design is 

completed, the COCOMO 2 model is used, offering the highest level of detail. This model 

incorporates new equations, updated line-counting methods, and additional cost drivers to 

provide a more accurate estimation of the resources required at this stage. As Equation 2.3 

illustrates, the effort required to complete a software development project is modeled as a 

function of the system’s size raised to an empirically derived exponent, and further adjusted by 

the cumulative impact of 17 distinct cost drivers. This formulation, originating from the 

COCOMO II model, allows for nuanced effort estimation that accounts for both scale-related 

and context-specific factors, thus improving prediction accuracy over simpler estimation 

techniques. 

𝐸𝑓𝑓𝑜𝑟𝑡 = (𝑃𝑒𝑟𝑠𝑜𝑛𝑀𝑜𝑛𝑡ℎ) = 𝐴 × (𝑆𝑖𝑧𝑒)𝐸 ×∏ 𝐸17
𝑖=1 𝑀𝑖      (2.3) 

In equation 'A' is a calibration factor. The organization's prior project data tends to be 

used to adjust it. The scale factor "E" is dependent on five factors. Team cohesiveness, 
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development flexibility, architecture and risk management, process presence, and process 

maturity are all included in this list. 

2.5 Non-Algorithmic Methods 

In a non-algorithmic model, past project experiences can be used, which is comparable 

to underestimating a project [88]. Non-algorithmic methods include the following: 

• Expert Opinion Method 

• Delphi Technique 

• Analogy 

• Top down  

• Bottom Up 

2.5.1 Expert Opinion Method 

 The accuracy of this approach relies heavily on historical data from completed projects 

and the experience of professionals within a relevant development environment. However, 

research conducted by VIGDER & KARK [28] has indicated that many cost estimators tend to 

avoid consulting previous projects because it's often challenging for experts to perceive how 

such knowledge can enhance estimate accuracy. When multiple expert opinions are considered, 

their estimates are typically combined using a weighted average. 

2.5.2  Delphi Technique 

 As per the insights of professionals, the Delphi technique stands out as one of the most 

renowned methods. It draws its name, "Oracle," from the ancient Greek prophet. In the Delphi 
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technique, expert opinions are collected and harmonized through a sequence of iterative 

dialogues, meetings, and surveys aimed at achieving a collective agreement within a group. 

Originally, RAND introduced this method in 1950 to predict the outcomes of combat 

scenarios [29]. However, it's worth noting that it might have connections to various other fields 

as well. The Delphi Technique initially lacked group discussions, but the Wideband Delphi 

method addressed this gap by incorporating group interactions, enhanced engagement, and 

communication during evaluation rounds [26]. It proves particularly valuable when empirical 

data is scarce, and estimations heavily rely on expert judgment. The effort estimation process 

in Delphi consists of the following phases: 

• Each expert receives product specification forms 

• Each expert receives product specification forms 

• The project manager convenes a group meeting where specialists deliberate on the 

project details 

• Experts complete the provided forms 

• A summary of the estimations is compiled and shared 

• To address areas with significant variations in expert opinions, a group discussion is 

arranged 

• Specialists revisit the forms for further input and refinement 

2.5.3  Analogy 

Shepperd has introduced another valuable and pragmatic approach for estimating 

software projects, referred to as "Estimation by analogy" in [28]. With this method, the initial 

step involves identifying and evaluating all past projects that closely resemble the current one 

[31]. 

This technique involves assessing the characteristics of the planned project before 

drawing comparisons with previously completed projects. Instead of selecting projects that are 

completely identical to the current one in every aspect [32], the cost of the current project is 
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determined by examining the cost of a comparable project that has already been successfully 

executed. 

2.5.4  Top down 

 Nonetheless, it's essential to acknowledge that top-down estimation tends to be less 

precise when compared to other cost estimation techniques, primarily because of the inherent 

uncertainty in project scope [33]. The notable shortcomings of this approach include the 

potential omission of lower-level system components and a lack of distinction for lower-level 

specialized issues. Consequently, top-down estimation is often not used as the final cost 

estimate but rather as a tool for project selection. Once a project is selected, other cost estimation 

techniques are typically employed to provide a more comprehensive assessment of the project's 

overall expenses. 

2.5.5  Bottom Up 

This approach involves assessing the cost of individual components and then 

aggregating these costs to arrive at the overall estimate for the system [34]. To initiate a bottom-

up estimation, it's essential to first break down the entire software product into various smaller 

work products or components. This can be achieved, for instance, by employing a work 

breakdown structure. 

2.6 Basic Terminologies for effort estimation in agile software 

development 

In this section, basic terminologies for effort estimation in agile software are explained 

below. 



22 
 

2.6.1  User Story Size 

 A user story is a succinct, plain-spoken statement of the system's business requirements 

that is supplied by the end user in agile software development. System requirements are defined 

at a high level, covering the "who," "what," and "why" questions. These user stories are usually 

brief enough to fit on a small notecard. In Agile development, a user story's size plays a critical 

role in the work estimation process [11]. This size is based on several criteria and has a 

substantial impact on the effort needed for a particular user narrative. 

• Atomic Large 

• Non-Atomic Medium 

• Non-Atomic Large 

• Atomic Medium 

• Small 

2.6.2  User Story Complexity 

 Complexities in user stories add uncertainty to the estimation process. In Agile 

Software Development (ASD), requirements are collected using user stories. Although effort 

estimation techniques primarily depend on user stories, many methods often neglect the specific 

characteristics of individual user stories. Each Story Complexity Factor is assigned a weight (1 

to 5), and the complexity of the User Story is then calculated using the following formula [44].  

Equation 2.4 shows that the total story complexity is computed as the weighted sum of twelve 

contributing factors, each representing a different dimension of complexity within a user story. 

The weights reflect the relative significance of each factor, allowing for a more granular and 

customized assessment of complexity in agile software projects[44]. 

𝑆𝑡𝑜𝑟𝑦 𝐶𝑜𝑚𝑦(SC) = ∑ (
12

𝑘=1
𝑆𝐶 ∗𝑊𝑒𝑖𝑔ℎ𝑡)                    (2.4) 

User Story Effort calculation: The effort needed for a specific story is figured out using 

two factors size and complexity and it's calculated using a simple formula. As shown in 
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Equation 2.5, the Effort Score (ES) is defined directly as the complexity value of a task or user 

story. This simplified relationship is useful in agile estimation practices, where complexity 

serves as a proxy for the effort required, enabling faster and more intuitive planning during 

sprint and backlog sessions[44]. 

𝐸𝑆 =  𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦                             (2.5) 

Efforts for the entire project will be summarized in all distinct stores. As illustrated in 

Equation 2.6, the cumulative effort score is obtained by summing the individual effort scores 

of all k user stories or tasks. This total provides a measure of the overall workload or complexity 

for a sprint, iteration, or project phase, supporting more accurate planning and resource 

allocation in agile project management. 

∑ (𝐸𝑆)𝑖𝑘
𝑖=1                                       (2.6) 

In this case, the effort for a single story is denoted by ES, while the effort for the entire 

project is denoted by E. A story point, which represents the quantity of work finished in a certain 

amount of time, serves as the unit of effort. 

2.6.3  Friction Forces 

 Newton's First Law states that any force hindering the movement of an object due to 

contact with other bodies is termed friction. Friction forces, according to this law, negatively 

influence project productivity by diminishing team velocity. While project managers or 

developers can mitigate these forces, complete elimination is not possible. Figure 2.2 depicts 

the various friction forces that can hinder progress in Agile projects, such as miscommunication, 

unclear requirements, and resistance to change, which affect team efficiency and project 

outcomes [44]. 
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                      Figure 2.2: Friction forces for agile projects 

In simpler terms, friction forces impede project progress, and although efforts can be 

made to reduce their impact, complete removal is not achievable. In software projects, friction 

forces are assigned weights ranging from a range of 1 to 3, where 3 represents the maximum 

intensity and 1 signifies moderate intensity[44]. As presented in Equation 2.7, the total 

functional requirements (FR) are calculated as the sum of 14 individual functional factor scores. 

Each factor represents a specific aspect of the system's functional needs (e.g., inputs, outputs, 

interfaces), and their aggregation provides a quantitative measure of the system’s overall 

functional complexity.  Friction forces are calculated as: 

𝐹𝑅 = ∑ (𝐹𝐹)𝑖14
𝑖=1                                     (2.7) 
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Then, by adding up all of the friction forces, the total friction is determined. The entire 

sum of weights for all friction forces is obtained by dividing this sum by 42, with the maximum 

value of 3 for each force. This result is then multiplied by 3 to yield a score of 3, indicating the 

highest level of friction. 

In simpler terms, the intensity of friction in a project is determined by assigning weights 

to individual forces, summing them up, and normalizing the result to obtain a friction score. 

2.6.4  Dynamic Forces 

Unexpected and unpredictable events usually result from dynamic or variable forces. 

They may cause a project to stall, momentarily lowering momentum. They usually have a short-

term influence, even though they can have noticeable impacts. Dynamic or variable forces, to 

put it simply, are unforeseen circumstances that momentarily halt a project and impede its 

advancement [44]. 

As shown in Equation 2.8, the (DF) is determined by summing the values of nine 

contributing value factors, each representing a specific influence on the system's complexity or 

performance. Dynamic force DF calculated as 

𝐷𝐹 = ∑ (𝑉𝐹)𝑖9
𝑖=1                                  (2.8) 

Dynamic forces include expected team change, introduction to new tool, Vendor defect, 

Personal issues expected relocation, expected ambiguity in detail, expected delay in stakeholder 

response and team member responsibilities outside the project as shown in figure 2.3. 
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          Figure 2.3: Dynamic Forces for Agile Projects 

 

2.6.5  Deacceleration 

Deacceleration is the measure of how velocity decreases over time. In my scenario, it is 

calculated by multiplying Dynamic Forces (DF) by Friction Force (FR). In simpler terms, the 

slowdown in velocity is determined by the combined impact of Dynamic Forces and Friction 

Force. The final team velocity (V) is achieved by optimizing Vi, considering the decelerating 

effects of both Friction Forces and Dynamic Forces. In simpler terms, the team's ultimate speed 

is determined by fine-tuning Vi, considering the forces that slow down progress such as friction 

and dynamic factors [44]. As illustrated in Equation 2.9, the deacceleration factor is calculated 

as the reciprocal of the product of functional requirements and the degree of influence. This 

value reflects how increased system functionality and complexity can contribute to reduced 

development efficiency. As shown in Equation 2.10, the final velocity V is calculated by raising 

the initial velocity   to the power of the deacceleration factor The final velocity is calculated as: 
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𝐷𝑒𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =
1

𝐹𝑅∗𝐷𝐹
                         (2.9) 

As shown in Equation 2.10, the final velocity V is calculated by raising the initial 

velocity   to the power of the deacceleration factor the final velocity is calculated as: 

        𝑉 = (𝑉𝑖)𝐷           (2.10) 

 

2.6.6  Team Velocity 

Team velocity is determined by dividing the Total Unit of Effort by the sprint size. In 

simpler terms, it's a measure of how much work a team can complete in a single sprint, 

calculated by looking at the effort expended and the duration of the sprint[40]. As illustrated in 

Equation 2.11, team velocity is determined by dividing the total completed effort by the duration 

of the sprint. This metric serves as a key performance indicator in agile project management, 

enabling teams to forecast future work capacity, assess progress, and plan sprint backlogs more 

effectively. A stable or improving velocity over time reflects team maturity and process 

optimization. 

𝑇𝑒𝑎𝑚 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =
Unit of Effort Completed

𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑆𝑝𝑟𝑖𝑛𝑡
                 (2.11) 

 

2.6.7  Completion Time 

Completion Time (T) is calculated as the total time required to finish the entire project. 

In simpler terms, it represents the overall duration needed to complete the project from start to 

finish. As shown in Equation 2.12, the estimated time to complete a task or project is calculated 

by dividing the total effort by the team’s velocity. This provides a straightforward way to 

forecast completion time, assuming a constant team performance throughout the duration of the 
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work. As illustrated in Equation 2.13, time is estimated by summing the effort scores for all 

tasks and dividing the result by the deaccelerated velocity. This refined formula takes into 

account both the varying effort per item and the reduced team performance due to complexity 

or system influences, resulting in a more realistic estimation of development time. 

𝑇 =
𝐸

𝑉
𝑑𝑎𝑦𝑠                            (2.12) 

𝑇 =
∑ (𝑛
𝑖=1 𝐸𝑆)𝑖

(𝑉𝑖)𝐷
𝑑𝑎𝑦𝑠                  (2.13) 

To convert the time unit (T) from days to months, you divide it by the number of 

working days per week (WD). In simpler terms, the duration will be expressed in months instead 

of days, by dividing the total time by the number of working days per week. 

2.7 Learning Based Methods 

Learning-based approaches rely not on mathematical equations but on analytical 

comparisons and interpretations of past completed tasks [35]. These methods require access to 

knowledge about previous projects that share similarities with the one being estimated. 

Historical datasets play a pivotal role in the estimation process. Machine learning techniques 

are under the category of learning-based approaches and are further divided into supervised and 

unsupervised learning models. The following sections will have more information. 

2.7.1  Supervised Learning 

 In supervised learning, the machine undergoes learning under supervision, utilizing a 

model capable of making predictions based on labeled data. Labeled data signifies that the 

anticipated output is already known [36]. There are two primary categories within supervised 

learning. 

1. Regression 
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2. Classification 

Regression: In supervised learning, regression is a type of algorithm used for predicting 

continuous numerical values. In regression, a model is trained using input-output pairings from 

a dataset in which the output variable is either a real or continuous value. Regression analysis 

aims to identify the relationship between the input variables and the continuous output so that 

the model may predict results for previously unseen data [37]. Regression, to put it simply, 

helps one understand how input variables interact and help predict continuous outputs. A basic 

example is linear regression, which models the relationship between variables as a linear 

equation. Other regression algorithms, such as support vector regression or polynomial 

regression, may also be used, depending on how complex the data relationships are. 

Classification: Algorithms used to assign instances to specified classes or categories or 

forecast discrete categorical labels are referred to as classification in supervised learning. 

Training a model on a labeled dataset with an output variable that indicates a class or category 

is the aim of classification. The class of novel, unseen cases is then predicted by using this 

trained model. In order to predict the class membership of future samples, the algorithm 

analyzes patterns and correlations found in the input data throughout the classification process. 

Classification tasks are frequently used in image recognition (classifying objects to specified 

categories), sentiment analysis (classifying language as positive, negative, or neutral), and spam 

detection (classifying emails as spam or non-spam) [37]. Numerous classification algorithms 

are available, including logistic regression, decision trees, and support vector machines. 

2.7.2  Unsupervised Learning 

When an algorithm is given unlabeled data and instructed to find patterns, correlations, 

or structures on its own, the process is known as unsupervised learning. In contrast to supervised 

learning, the algorithm receives no predefined labels or target outputs to guide it. Rather, the 

program looks for hidden patterns or clusters by investigating the data's inherent structure. 

Unsupervised learning tasks are often categorized into two main types: 

1. Clustering 
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2. Association 

 

Clustering: In unsupervised learning, clustering is a technique that involves grouping 

similar data points together based on certain features or characteristics. Unlike supervised 

learning, where the algorithm is provided with labeled data and a specific target to predict, 

clustering algorithms work with unlabeled data and seek to uncover inherent patterns or 

structures within the dataset [38]. 

 Association: Association in unsupervised learning refers to the task of discovering 

interesting relationships or patterns in data without explicit labels. The primary goal of 

association analysis is to identify associations or correlations among variables within a dataset. 

This is particularly useful for finding hidden connections between different features or items 

[38]. 

 Various techniques fall under the umbrella of learning-based strategies, including 

artificial neural networks (ANN), fuzzy logic models, case-based reasoning, evolutionary 

computation, and combinational models, among others. Artificial neural networks (ANNs) are 

particularly valuable for understanding the intricate relationships between cost drivers and 

effort in effort estimation [35]. ANNs possess the capability to learn from historical data; they 

are trained using a dataset to provide suitable results. They are very good at managing 

uncertainty in software projects because of their capacity to generalize from intricate, nonlinear 

patterns. Additionally, when more pertinent data becomes available over time, ANNs can 

continuously enhance their predictions. These systems employ soft computing techniques, 

including feed-forward. 

Nonetheless, these soft computing techniques are typically employed alongside existing 

algorithmic methods to enhance the model, and this introduces a similar limitation as that seen 

in traditional algorithmic approaches. Interestingly, it has been noted that many learning-based 

techniques tend to yield more precise estimations when compared to conventional algorithmic 

methods. Multilayer perceptron’s, sigmoid functions, and back-propagation algorithms, to 

forecast effort. 
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2.8 Machine Learning Techniques 

2.8.1  Support Vector Regression 

 Discuss Physical Layer Issues found in literature. Support Vector Regression (SVR) is 

a machine learning technique employed for regression tasks. Its objective is to maximize the 

margin between the line or curve and the nearest data points (support vectors), thereby 

identifying the best-fitting model for the data. SVR excels in handling outliers, missing values, 

and data quality issues. 

If categorical variables are present, encode them (e.g., assign numerical values to labels 

such as "small," "medium," and "large"). Relationships between input features and output 

variables that are non-linear are modeled. This is made possible by the application of kernel 

functions, which enable SVR to identify intricate patterns in the data. When it comes to outliers, 

SVR is less susceptible than certain other regression techniques. Regularization parameters in 

SVR, like the cost parameter C, aid in preventing overfitting. The regularization parameter C 

and kernel parameters are examples of hyperparameters that greatly influence SVR 

performance. It can be difficult to find the ideal set of hyperparameters and may take a lot of 

tweaking. Even though SVR often handles outliers effectively, noisy data may cause it to 

perform poorly [39][40]. As presented in Equation 2.14, this linear equation represents a simple 

regression model where the predicted output Y is computed as a weighted sum of the input x, 

adjusted by a bias term b. This fundamental form is widely used in machine learning and 

statistical modeling to establish relationships between variables and to make predictions based 

on observed data. The equation of hyperplane as follows: 

𝑌 = 𝑤𝑥 + 𝑏      (2.14) 

As shown in Equation 2.15, this is a standard linear equation where the product of the 

input and its weight is adjusted by a bias term to produce a result a. As shown in Equation 2.16, 

the equation represents a linear relationship where the sum of the weighted input equals the 

negative of a value 𝑎. This form is often encountered in scenarios where the outcome represents 

a cost, loss, or deficit. It may also appear in classification models or regression problems where 
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directionality (positive or negative influence) of the result is significant. Then equation of 

descion boundary 

𝑤𝑥 + 𝑏 = +𝑎        (2.15) 

   𝑤𝑥 + 𝑏 = −𝑎                  (2.16) 

SVR calculates the separation between the hyperplane, or boundary line, and the best 

line that fits within that threshold value. Support vectors in SVR are the important data points 

on either side that are closest to this hyperplane. The boundary line in SVR must be defined 

using these Support Vectors.  

The figure 2.4 shows how SVM finds the best separating line (hyperplane) between two 

groups by using the closest points, called support vectors, to create the widest possible margin. 

 

 

Figure 2.4: Support Vector Regressor 
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2.8.2  Linear Regression 

A continuous result variable (dependent variable) can be predicted using linear 

regression, a statistical modeling approach, by taking into account one or more predictor factors 

(independent variables). It makes the assumption that the variables have a linear connection, 

meaning that variations in the predictor variables cause the result variable to change 

continuously. If the four basic criteria of linearity, independence, homoscedasticity, and 

normality are satisfied, linear regression is a simple and fundamental method that yields insights 

[41]. However, it might have trouble with problems like multicollinearity from highly correlated 

predictors and complex, nonlinear interactions between variables.  

The dependent variable, or output, is displayed on the Y- axis in linear regression, while 

the independent variable, or predictor, is represented on the X-axis. The graph shows how these 

variables are linearly correlated, with the blue line showing the closest- fitting straight line. 

With the goal of minimizing the distance between the line and the data points, the best-fit line 

in linear regression is determined using the traditional slope-intercept form. As illustrated in 

Equation 2.17, this is the equation for a simple linear regression model where the output is 

predicted based on a linear combination of the input. The parameter represents the model's 

intercept, while 𝛽 is the coefficient that defines how changes in the input affect the output. 

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖              (2.17) 

Where Xi is the independent variable, β_0 is the constant/intercept, β_1 is the 

slope/intercept and Yi is dependent variable. 

2.8.3  K- Nearest Neighbor Regressor 

 The K-Nearest Neighbors (KNN) Regressor is a non-parametric, instance-based 

supervised learning technique used for regression tasks. In contrast to conventional regression 

techniques, KNN Regressor makes predictions for new data points based on their closeness to 

current data points by using the training data without first learning a model. The method does 
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nothing more than store the training dataset during the training phase. This method identifies 

the k-nearest neighbors from the training set and uses that information to predict the target value 

for a new data point. A distance metric, like the Euclidean distance, is typically used to assess 

"neighborliness". In regression tasks, the weighted average of the target values of the new data 

point's k-nearest neighbors is frequently used to get the predicted value for the new data point. 

Usually, the weights are inversely correlated with the distance to the new site. The KNN 

Regressor is simple to use and comprehend. Regarding the underlying data distribution, it 

doesn't make any strong assumptions [42].  

The mathematical expression for a k-nearest neighbor (KNN) regressor entails 

predicting the target variable by computing the average or weighted average of the k-nearest 

neighbors. In certain instances, weighted averages may be employed, where closer neighbors 

exert more influence on the prediction compared to farther ones. The specific formula for 

calculating weights may vary depending on the implementation. As a non-parametric method, 

KNN does not make assumptions about the structure of the underlying data, allowing it to adapt 

to complex data relationship. KNN is applicable to jobs involving both classification and 

regression. Because of its adaptability, it can be used in a variety of issue domains.  

There's no formal training period. Since the model is the training data, it works well in 

online learning environments where the distribution of the data may fluctuate over time. 

Calculating the distances between each new data point and every point in the training set is a 

step in the KNN prediction process. The computing cost of this can be high, particularly for 

huge datasets. KNN is susceptible to data noise and outliers. Predictions can be greatly impacted 

by outliers, especially when a small number of k is used. The selection of a suitable value for k 

has a significant impact on the performance of KNN.  

2.8.4  Descion Tree 

 A supervised machine learning method for both regression and classification issues is 

the decision tree. Recursively dividing the dataset into subgroups according to the most 

significant feature at each node is how it operates. Until a halting condition is satisfied, like 

reaching a maximum depth or a particular purity level, this procedure keeps going. Because of 
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their ease of use, interpretability, and capacity to handle both numerical and categorical data, 

decision trees are frequently employed. 

The technique chooses the characteristic such as mean squared error for regression or 

Gini impurity for classification that best separates the data into subsets. The root node is this 

characteristic. Next, depending on the chosen features, the dataset is divided at each internal 

node to create branches that link to other nodes [43]. Until a halting condition is satisfied or a 

predetermined depth is reached, the process keeps going. At the terminal nodes, or leaves, 

predictions are formed according to the majority class (for classification) or mean value (for 

regression) of the cases in that leaf. Based on the values of the instance's features, the decision 

tree follows the path from the root node to a leaf node in order to provide predictions for a new 

instance.  

Decision trees are simple to comprehend and analyze since even non-experts may 

quickly grasp their visual form. They require little preprocessing to handle mixed numerical 

and categorical variables, and they may be applied to a variety of datasets with minimal 

presumptions about the distribution of the underlying data. Non-linear correlations and 

interactions between features can also be captured by decision trees. Nevertheless, decision 

trees can overfit, particularly if they are deep and pick up noise in the training set. They can 

also be unstable, with slight alterations in the data perhaps producing an entirely new tree. 

2.9 Ensemble Learning 

In machine learning, ensemble learning is like a collaborative approach. It uses a 

combination of techniques known as base learners or inducers to make decisions rather than 

depending on just one. These base learners are algorithms that build models, such as classifiers 

or regressors, by learning from labeled samples [45]. Ensemble learning involves integrating 

the attributes of multiple models to enhance prediction accuracy and resilience in supervised 

machine learning tasks. There are different techniques of ensemble learning. 

• Bagging 
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• Boosting 

• Stacking 

 

 A simple ensemble learning architecture comprises a set of diverse base models, each 

trained independently on a dataset. Three different models Model 1, Model 2, and Model 3 are 

being trained on the assigned training dataset. These models differ in nature, and some of their 

variations like decision trees or support vector machines offer distinct insights into the process 

of learning. Then the average of individual models was calculated. Based on the collective input 

data, every trained model offers a forecast. The final prediction has been calculated by 

combination the distinctive predictions of each of its base models, it is typically subject to an 

aggregation process [46]. Figure 2.5 shows the architecture of ensemble learning, where 

multiple base models are combined to improve predictive performance by leveraging their 

individual strengths through methods like bagging, boosting, or stacking. 

 

            Figure 2.5:  Architecture of ensemble learning 
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2.9.1  Boosting  

  In machine learning, boosting is a well-known ensemble learning technique where 

multiple weak learners (models that perform slightly better than random chance) are combined 

to form a strong learner. The objective underlying boosting is to train models sequentially, with 

each new model emphasizing data that prior models struggled to accurately identify. The key 

idea behind boosting is to focus on the mistakes made by the previous models and give more 

weight to the misclassified instances in the subsequent models [47]. The first phase in the 

boosting technique is to train the weak learner on the completion. This weak learner could be a 

simple model with little depth, such as a decision tree with limited length. After the first model 

is trained, the weights of the misclassified samples are raised. This means that the next 

inexperienced learner will focus more on the previously misclassified examples. 

Subsequent weak learners are trained on a modified dataset, focusing on misclassified 

cases. This process repeats until a stopping criterion is met. The final strong model is formed 

by combining the predictions of all weak learners, with more weight given to accurate models. 

Figure 2.6 illustrates the boosting technique, where sequential models correct previous errors 

to improve prediction accuracy. 

 

Figure 2.6: Ensemble learning technique boosting 
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2.9.2  Bagging  

 By merging predictions from several models trained on various subsets of the training 

data, an ensemble learning technique known as "bagging," short for Bootstrap Aggregating, is 

intended to improve the stability and precision of machine learning models. This method uses 

techniques similar to regression averaging and classification voting to aggregate predictions. 

Through bagging which is especially useful for less accurate learners many models are trained 

on different data subsets and their outputs are combined to reduce prediction variation [47]. 

This idea is expanded upon by Random Forest, a bagging variation, which randomly selects 

features at every stage of the decision tree building process [47]. Random Forest assesses every 

feature for split decisions, in contrast to conventional decision trees. Because bagging operates 

in parallel by nature, it can take advantage of parallel processing capabilities. Concurrent model 

training is made possible by the independent training of each base model on distinct subsets of 

data. Bagging is a good choice for effective computational scaling during training because of 

this parallelization [48]. Figure 2.7 illustrates the bagging ensemble learning technique, where 

multiple models are trained independently on different data subsets and their predictions are 

averaged to improve accuracy and reduce variance. 

 

Figure 2.7 Ensemble learning technique Bagging 
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2.9.3  Stacking  

 Stacked Generalization, also known as Stacking, is an ensemble learning strategy that 

includes training a model to aggregate the predictions of numerous base models. Instead of 

merely averaging or voting on individual model predictions, stacking constructs a meta-model 

that takes into account the strengths and shortcomings of the basic models.  

The main concept is to figure out how to best integrate the forecasts of the base models 

to increase overall performance [49] Here’s a detailed description of how stacking works. On 

the training dataset, numerous distinct base models are trained. To ensure diversity, these 

models can be of various sorts or trained with various algorithms. Each base model generates 

predictions using the same set of instances. The training dataset is split into two parts, with one 

section dedicated to training the base models and the other serving as a reserved set. Figure 2.8 

illustrates the Stacking ensemble learning technique, where multiple base learners are trained 

independently and their outputs are combined by a meta-learner to improve overall prediction 

accuracy. 

          

Figure 2.8: Ensemble learning technique Stacking 
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 Predictions from each base model have been obtained by utilizing the k-cross 

validation. These predictions become the meta-model's input features. The training of a meta-

model (alternatively referred to as a blender or combiner) involves utilizing the predictions 

derived from the k-fold cross- validation of the base models. In the final prediction, the base 

models have utilized the predictions as input features Cross-validation can be used during the 

stacking process to mitigate issues.  

The dataset is separated into numerous folds in cross-validation, and stacking is 

conducted iteratively on distinct training and validation sets to measure the model's 

generalization performance. Stacking is a versatile ensemble technique that may be used to 

solve a variety of machine-learning problems, such as classification and regression. Figure 2.8 

illustrates the stacking ensemble learning technique, where multiple models are trained and their 

predictions are combined by a meta-learner to enhance overall performance. 

2.10 Data Augmentation 

Data augmentation is a technique used in data science and machine learning to add 

slightly modified copies of preexisting data points to the dataset in order to artificially increase 

it. This method seeks to improve machine learning models' robustness and performance, 

particularly when the initial dataset is small or lacking diversity. Depending on the type of data 

image, text, audio, or tabular different techniques for data augmentation are used [50]. 

One significant issue with software effort estimation is the lack of data availability. 

Obtaining data can be costly and time-consuming, which leaves firms with few training 

instances. Creating fictitious projects based on finished ones turns out to be a useful strategy to 

lessen this problem. These fictitious projects are made to be sufficiently tiny to enable 

reasonable adjustments to the real project values while maintaining their essential features. 

They should be significant enough to add new items to the dataset and make significant 

contributions at the same time [51]. Each project is replicated to create two new records, which 

are then added to the dataset by adding random noise values to the effort and velocity 

characteristics. Although the noise level is carefully managed to prevent data disruption, it is 

high enough to set new records. With only little modifications, this strategy guarantees that 
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small projects stay small and medium-sized projects stay medium-sized. As shown in Equation 

2.18, the modified effort is calculated by adjusting the base effort E using a percentage 𝑅. The 

term (100+R) indicates an increase or decrease in effort, based on the adjustment factor. If 𝑅 is 

positive, the effort increases, while a negative R would reduce the effort required. The following 

equation is being used to generate the noise: 

𝐸𝑚
𝐸×(100+𝑅)

100
                           (2.18) 

𝐸𝑚 represents the modified effort, while E stands for the original total effort for the 

project, and R denotes a random value selected from the range (-5, 5), excluding R=0. A similar 

equation was used for velocity, incorporating a random value up to a maximum of 5% of the 

original feature. 

2.11 Related Work  

In this section, effort estimation in agile software development is discussed, including 

traditional effort estimation techniques as well as various machine learning-based methods and 

algorithms identified through survey-based analysis. 

2.11.1 Effort Estimation in Agile Software Development 

A hybrid effort estimation approach for agile software development was presented to 

guarantee effective project results in terms of time, scope, and cost [52]. The Zia dataset [2], 

which consists of 21 projects from six software houses, was used by the model. For Agile 

projects, like Scrum, it used a story point strategy in conjunction with the k-Nearest Neighbors 

(KNN) machine learning technique to predict project completion time and overall cost. Metrics 

such as R-squared, Root Mean Square Error (RMSE), and Mean Magnitude Relative Error 

(MMRE) were used to assess the model's performance. The study came to the conclusion that 

better and more competitive estimations for agile projects are produced by the hybrid effort 

estimation model, which combines the story point technique with the KNN algorithm. 
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Estimating how much work is needed for software projects is a challenging task in 

project management, especially because software development is always changing. Over the 

past few decades, various techniques, such as algorithmic models, non-algorithmic models, and 

machine learning methods, have been developed to estimate software development costs. To 

enhance accuracy, machine learning approaches were combined with other models by Sharma 

& and Chaudhary [53]. They compared agile and traditional development using neural networks 

(NN) and genetic algorithms (GA). The estimation is carried out on the Zia dataset [2] using 

story points and a GitHub dataset using lines of code. They found that machine learning 

approaches, particularly neural networks and genetic algorithms, provided the smallest error 

and highest accuracy when predicting effort values. They made a comparison with previous 

works, based on mean magnitude relative error, and concluded that the dataset with story points 

yielded the best results, followed by projects with lines of code. 

Many software businesses face challenges in managing and estimating agile projects, 

leading to high failure rates. Accurately estimating the effort and cost of a project is crucial for 

its success. The COCOMO (Constructive Cost Model) was introduced by Kumar & and Singh 

[54] in 2023 as a method for more precise cost estimation of software projects. COCOMO II, a 

specific version of this model, was highlighted for its benefits in easy data calculations. The 

Nave Bayes method machine learning technique was used for accurate predictions. The SEERA 

dataset was used to test the proposed system's performance. Overall, they conclude that 

COCOMO II, combined with machine learning methods, provides a reliable and accurate 

approach for estimating effort, and cost, and predicting the success or failure of software 

projects. 

Artificial intelligence methods were employed by Bilgaiyan [55] to address the effort 

estimation problem (EEP) in Agile Software Development (ASD). They utilized a dataset 

comprising details on 21 ASD-based projects from six different software companies. This 

dataset is three-dimensional, specifically based on agile methodologies, including user stories, 

the project's initial pace, and the work required to complete the project within the designated 

sprint size. MATLAB was used to simulate the neural network models. The researchers used 

MATLAB to determine the estimated time and cost figures for the selected neural networks. 

They employed two forms of artificial neural networks: feedforward back-propagation and 

Elman neural networks. 
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Efficient approximations have always been difficult. A fuzzy logic model for effort 

estimation in Agile Software Development (ASD) was presented [56]. They monitored project 

metrics in datasheets from different sectors, including the total number of flaws found prior to 

project delivery, the project objectives, and the total number of defects found. Using fuzzy logic, 

the estimation of agile development effort was calculated in MATLAB. They used a fuzzy 

method to determine the project size rather than an exact figure. They used the Min Max 

Formula to calculate the output effort utilizing the fuzzy logic structure (Max-Min/Max-v). User 

stories, teamwork, and complexity are the model's three main estimating criteria. They came to 

the conclusion that user stories offer a rough approximation of developer feedback. While it 

may not be completely accurate, it can reduce the risk of uncertainty, which could otherwise 

waste significant time and resources. They conclude that user stories provide an estimated 

amount of developer feedback. Although it won't be completely correct, it can lessen the chance 

of doubt, which could waste a lot of time and resources. 

Traditional methods of cost estimate don't produce the best outcomes for agile 

development. A cost estimation methodology was put up by Sharma & and Chaudhary [57]. A 

multiple regression model was suggested. The Zia dataset [2] was used. The 21 projects in the 

dataset come from 6 software houses. The time of the agile development is the dependent 

variable in the dataset, together with the independent variable’s velocity, effort, friction product, 

initial velocity, and initial velocity. The decision trees, stochastic gradient boosting, and random 

forest models are examined and contrasted with the multiple regression models. They 

discovered a link between dependent and independent factors in their research. The effort has 

the strongest link with the development time, as seen by the correlation values. To determine 

the amount of effort needed for agile software development, three multiple linear regression 

models were created utilizing the dataset's variables. The three models consist of two linear 

models and one polynomial model. To compare the outcomes, the MMRE (Mean Magnitude 

Relative Error) was utilized. The error rate of the suggested work is lower (0.099%) than that 

of the earlier effort. 

The common challenge in agile software development is accurately estimating the effort 

required for tasks. Unlike traditional (plan-driven) methods, agile lacks standard metrics for 

effort prediction. A Bayesian network model [59] was proposed specifically designed for agile 

methods. The model is simple, small, and requires easily gathered inputs, ensuring it doesn't 
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compromise agility. It can be applied early in the planning stage. The data was collected from 

the completed agile project of one company. In their study, the model predicts task effort. They 

use MMR and MMRE evaluation metrics for the prediction of effort. This model provides good 

accuracy on misclassified value Pred (m=25) within 25% tolerance. Additionally, they conclude 

that this model can be applied as early in the planning process as possible and has no practical 

influence on agility. 

The story point approach (SPA), an empirical technique for assessing effort in agile 

software development, was first presented by Satapathy & Rath [18]. Their study used machine 

learning approaches like decision trees (DT), random forests (RF), and stochastic gradient 

boosting (SGB) to increase the prediction accuracy of effort estimate. To evaluate these 

methodologies' performance, a comparison was made with the current approaches. It was 

investigated whether the Scrum model's widely used SPA might be used to estimate work in 

agile software development. Using the Zia dataset as a focus, DT, SGB, and RF approaches 

were used to further refine the SPA results in order to increase accuracy [2]. The results showed 

that SGB performed better than the other machine learning methods that were examined. To 

expand on the approach, the paper also suggested investigating other machine learning methods 

on datasets relevant to SPA, such as Extreme Learning Machines and Bayesian Networks. 

Overall, the study recommended using machine learning to obtain improved prediction 

accuracy and emphasized the significance of precise effort estimation in agile software 

development. 

The current corpus of literature on software development effort estimation has primarily 

concentrated on traditional projects; agile programs have received relatively less attention, 

especially when it comes to project-level effort estimation. Story points and team velocity are 

two important variables frequently taken into account when estimating work for agile projects. 

An improved software effort estimation model using support vector regression (SVR) optimized 

using the grid search method (GS) was presented [60]. Story points and velocity are inputs into 

the model. Using leave-one-out cross-validation, they applied their proposed model to 21 past 

agile software projects [2]. Based on Pred (0.25), MMRE, and MdMRE measures, the findings 

show that their strategy improves the performance of the SVR technique, surpassing a number 

of recent approaches published in the literature. Deep Belief Network (DBN) and Antlion 

Optimization (ALO) were used by [61].to forecast effort in software development scenarios that 



45 
 

 

are both agile and non-agile. When their suggested DBN-ALO method was used on datasets 

from the two development methodologies, it produced better outcomes for a number of 

evaluation parameters. In order to handle uncertainty, the study provides an effort prediction 

interval that allows project managers to estimate effort within a range as opposed to a single 

figure.  

The DBN-ALO approach entailed establishing the DBN structure, normalizing the data, 

and optimizing weights using ALO. Statistical validation verified its effectiveness in both non-

agile and agile development techniques. Using the DBN-ALO technique, this study offers a 

comprehensive analysis of effort estimation in both non-agile and agile software development. 

In comparison with other approaches, the suggested method performs better and adds an effort 

prediction interval to improve the flexibility of the estimate. 

Eduardo Rodríguez Sánchez, Eduardo Filemón Vázquez Santacruz, and Humberto 

Cervantes Maceda developed a hybrid model to improve effort and cost estimation in Agile 

software development [90]. The proposed model integrates algorithmic regression techniques 

with ensemble methods, including decision trees, random forests, and AdaBoost, using labeled 

historical data and story points to predict project completion time (in days) and cost (in Pakistani 

Rupees). The researchers emphasized the importance of data discretization to enhance the 

accuracy of predictions. The study utilized a dataset comprising 21 Agile software development 

projects from six software houses in Pakistan. Key features of the dataset included story points, 

team velocity, sprint duration, and team salaries. To address the dataset's limited size, synthetic 

data augmentation techniques were applied, expanding the dataset to 42 entries for training. The 

model’s performance was evaluated using 10-fold cross-validation. The results demonstrated 

that the hybrid model achieved high prediction accuracy, with the bootstrap aggregation 

ensemble (bagging) approach outperforming individual techniques. Labeled data significantly 

improved the Mean Magnitude of Relative Error (MMRE) and prediction accuracy (Pred(x)) 

for both time and cost estimations. Among individual methods, the decision tree algorithm 

delivered the best performance, achieving the highest accuracy and R² values. In conclusion, 

the study highlights the value of combining machine learning ensembles and data discretization 

for improving effort and cost estimations in Agile projects. The proposed approach reduced 

prediction deviations and enhanced estimation reliability. Future research could explore 
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expanding datasets and employing advanced machine learning techniques, such as deep 

learning, to further refine the model’s predictive capabilities. 

The DBN-ALO approach entailed establishing the DBN structure, normalizing the data, 

and optimizing weights using ALO. Statistical validation verified its effectiveness in both non-

agile and agile development techniques. Using the DBN-ALO technique, this study offers   

comprehensive analysis of effort estimation in both non-agile and agile software development. 

In comparison with other approaches, the suggested method performs better and adds an effort 

prediction interval to improve the flexibility of estimate.  

2.11.2  Effort Estimation for Agile Software development using stacking 

ensemble Model 

 Onkar Malgonde and Kaushal Chari a model for agile software development that 

focuses on accurately predicting the effort required for tasks (stories) during the development 

process [58]. This approach addresses the critical challenge of effort estimation in agile projects, 

enabling better planning and execution. They tested seven different algorithms including 

support vector machines, ridge regression, artificial neural networks, K-nearest neighbors, 

decision trees, linear regression, and Bayesian networks, for predicting story effort but found 

that none consistently outperformed the others across their dataset of 423 stories. Despite their 

testing, neither approach consistently outperformed the others. They used an ensemble-based 

technique to forecast the work as a result, including data from 24 software development projects 

for their analysis. The performance of the model was evaluated using Mean Balanced Error 

(MBE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) metrics, to ensure 

accurate and reliable assessment. Several limitations were identified, including the reliance on 

a homogeneous dataset from a single organization and the exclusion of factors such as scrum 

master performance due to the absence of relevant data. Additionally, the model faced 

challenges in predicting cross-project outcomes for initial sprints because of insufficient prior 

data. Despite these limitations, the ensemble-based technique outperformed other methods by 

combining the strengths of multiple models, leading to more accurate effort estimation. 
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Zaineb Sakhrawi and Asma Sellami developed the model to address the challenge of 

accurately estimating the effort required for Scrum projects focused on software enhancement 

tasks [92]. These projects' frequent demand changes frequently lead to planning challenges, 

overestimations, or underestimations, which can cause delays and inefficient use of resources. 

The accuracy required for trustworthy projections is frequently lacking in conventional 

techniques like Planning Poker or individual machine learning models. Three machine learning 

techniques Decision Tree Regression, Linear Support Vector Regression, and Random Forest 

Regression were combined to create a stacking ensemble model in order to address this issue. 

The COSMIC Functional Size Measurement (FSM) approach, which offers a consistent and 

trustworthy means of determining the functional size of software improvements, is a crucial 

input for this model. Dataset derived from real-world scrum projects. A 70-30 ratio was used 

for training and testing the model using actual Scrum project data. Accuracy was measured 

using Mean Absolute Error (MAE), Mean Square Error (MSE), and Root Mean Square Error 

(RMSE) evaluation metrics. The stacking ensemble model performed well, with an MAE of 

0.206, an MSE of 0.406, and an RMSE of 0.595, compared to other machine learning methods. 

To further enhance the process's practicality, a web-based application named "ERWebApp" was 

developed. With the help of this application, which automates effort estimating, development 

teams, product owners, and Scrum masters can enter project details, determine functional sizes, 

and rapidly get precise effort estimates. The program improves project planning and saves time 

by streamlining the estimation process. In addition to increasing estimation accuracy, this 

method offers a simple way to manage effort estimating in dynamic Scrum environments, with 

potential for further development and wider use. 

2.11.3  Effort estimation for traditional software development 

 In software development, effort estimation is critical since precise forecasts are 

necessary to ensure project success. Accurately estimating work has become more challenging 

since the introduction of agile software development. An innovative method to improve the 

accuracy of predicting agile software effort was presented by Khuat & Thi, My Hanh [62], who 

used an Artificial Neural Network (ANN) optimized with the Fireworks Algorithm (FWA). 

This approach was evaluated in comparison to other optimization algorithms in order to 

determine how well FWA optimized the weights and biases of the ANN. It was tested against 
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a variety of neural networks and a regression model. The study focuses on the story point 

approach for estimating agile software effort, using project velocity and total story points as 

inputs to train the artificial neural network. By tweaking the settings of the ANN, FWA and LM 

(perhaps referring to Levenberg-Marquardt) were able to achieve gains in accuracy. 

Experiments show that FWA, as opposed to algorithms like DABC, TLBO, and TLBABC, 

significantly improves ANN accuracy. Additionally, compared to other ANN types evaluated, 

such as General Regression, Probabilistic, GMDH Polynomial, and Cascade Correlation neural 

networks, the suggested ANN performs better. When compared to other neural network types 

and different methods, the solution that combines ANN and FWA with agile software effort 

prediction demonstrates improved accuracy overall. 

In today's software development world, estimating effort accurately is critical to project 

success. Though numerous studies have suggested approaches to increase accuracy, accurate 

effort assessment is still difficult, especially for agile projects. A new method for predicting 

effort in agile software projects based on team velocity and story points was presented by T. T. 

Khuat & Le [63].  

Swarm optimization approaches, such as a hybrid algorithm that combines the 

advantages of particle swarm optimization (PSO) and artificial bee colony (ABC), were used to 

optimize the formula's parameters. The outcomes of the experiments showed that the suggested 

strategies performed better in terms of prediction accuracy than methods from previous 

research. Swarm algorithms were used to optimize the new formula, which produced 

encouraging results. The hybrid ABC-PSO algorithm outperformed the individual ABC and 

PSO algorithms in terms of effectiveness across a range of evaluation criteria. Furthermore, the 

new hybrid method outperformed other kinds of artificial neural networks (ANNs) that were 

employed in previous research. A model was proposed [22] for software development effort 

estimation. In their study, they applied the algorithm to three datasets (ISBSG R8, Tukutuku, 

and COCOMO). In their study, they compared a random forest (RF) with a regression tree (RT). 

They used performance metrics Mean Relative Error (MRE), Mean Magnitude Relative Error 

(MMRE), and Median Magnitude of Relative Error (MdMRE) as evaluation criteria for effort 

prediction. Among the two techniques concluded that the RF model outperforms than RT model 

in terms of MMRE and it made slightly a higher MdMRE (0.67) than the RT model (0.52). 

They conclude that random forest is an effective method for estimating effort. 
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A software effort estimation approach was presented by Suresh Kumar and Behera [64] 

and was used with the Desharnais and COCOMO'81 datasets. A variety of machine-learning 

approaches were used in this model, such as the backpropagation algorithm on a feed-forward 

neural network, random forest (RF), neural network (NN), support vector machine (SVM), and 

k- nearest neighbors (KNN). They implemented the backpropagation algorithm on the feed-

forward neural network using Python and the Orange data mining tool for data visualization 

and comparison of different approaches. By measuring the mean magnitude of the relative error, 

they evaluated how accurate their predictions were, and they came to the conclusion that 

backpropagation produced reasonably accurate forecasts when compared to other techniques. 

They added to their work [65] by putting out a different model that made use of the gradient-

boosting regressor method. 

Using gradient boosting regression, this technique first determines the difference 

between the current prediction and the known accurate target value. Next, it trains a weak model 

that maps features to that residual. Using the COCOMO'81 and CHINA datasets, they 

implemented this strategy with the goal of enhancing estimate accuracy through machine 

learning techniques, using gradient boosting regression, this technique first determines the 

difference between the current prediction and the known accurate target value. Next, it trains a 

weak model that maps features to that residual.  

Using the COCOMO'81 and CHINA datasets, they implemented this strategy with the 

goal of enhancing estimate accuracy through machine learning techniques, using gradient 

boosting regression, this technique first determines the difference between the current 

prediction and the known accurate target value. Next, it trains a weak model that maps features 

to that residual. Using the COCOMO'81 and CHINA datasets, they implemented this strategy 

with the goal of enhancing estimate accuracy through machine learning techniques, (MSE), root 

mean square error (RMSE), and R-squared were used to assess the regression algorithms. Using 

the COCOMO'81 and CHINA datasets, the gradient boosting regressor model showed its 

efficacy with accuracy rates of 98% and 93%, respectively. When comparing the two datasets, 

the findings showed that this method performed noticeably better than any other regression 

models. 
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A model for estimating software effort with different machine learning techniques was 

presented [66]. The NASA dataset, which includes information on 60 programs, was used in 

the study. They used k-nearest neighbors (KNN), Elman Neural Networks (ENN), and Cascade 

Neural Networks (CNN) to predict effort. Three criteria were used to evaluate the models: Root 

Mean Square Error (RMSE), Balanced Relative Error (BRE), and Mean Magnitude of Relative 

Error (MMRE). The findings demonstrated that, in comparison to Elman Neural Networks and 

Cascade Neural Networks, the k-nearest neighbor approach generated a more accurate 

estimation, anticipating almost 85% of the real cost of the target. 

In today's software engineering challenges, accurately estimating the cost remains a 

significant problem, especially during the maintenance phase of the software development life 

cycle. To address this, optimization algorithms, specifically metaheuristic approaches, are 

employed to reduce effort and errors. Singh [67] focused on enhancing the meeting rate of the 

Differential Evolution (DE) algorithm, a metaheuristic approach, to improve accuracy in the 

semidetached model. They used the NASA 63 dataset in the study. The proposed algorithm, 

named Enhance- Based Differential Evolution (EABMO), introduces new mutation strategies 

to optimize parameters more effectively. EABMO demonstrates superior results compared to 

semidetached model-based DE, Genetic Algorithm (GA), and Particle Swarm Optimization 

(PSO) algorithms. They used MRE, VAF, MMRE, MSE, Pred, and Convergence for 

performance evaluation. They concluded that the algorithm reduces the number of fitness 

evaluations and improves convergence rates through an enhanced adaption-based mutation 

operator. The proposed approach proves effective across various projects, with minimal 

drawbacks observed only in very high KLOC (kilo lines of code) scenarios.  

One of the most difficult tasks for machine learning researchers is still estimating 

program effort. The Differential Evolution (DE) algorithm was used with the COCOMO II and 

COCOMO models [68] to estimate software effort. For their analysis, they used COCOMO'81 

and NASA's 1993 records. The Mean Magnitude of Relative Error (MMRE) was assessed in 

the study as a benchmark. When compared to traditional algorithmic models such as COCOMO 

II and COCOMO, the DE method improved the accuracy of software effort estimation by 

efficiently optimizing parameter values. 
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Finding the most precise machine learning techniques for software development effort 

estimation was made easier in [69]. They contrasted the performance of ensemble techniques 

with individual methods and assessed the effectiveness of machine learning-based accuracy 

metrics. Using measures such as Mean Magnitude Error (MMRE) and PRED, their study 

evaluated the accuracy performance of 28 selected studies (14 ensembles and 14 individual 

approaches). The authors came to the conclusion that group approaches regularly performed 

better than individual ones. Ensemble strategies outperform other methods because they may 

accurately estimate effort by utilizing a well-balanced combination of rules and processes. 

Estimating the cost of developing software is crucial in the software development 

process. People need to know how much time and resources will be required for a project. There 

are various methods to estimate costs, such as parametric and non-parametric approaches. 

Parametric methods are commonly used but may struggle with handling precise data accurately. 

To address this, different advanced techniques like machine learning and evolutionary 

algorithms have been applied to optimize the parameters of software cost estimation models. 

However, achieving accurate cost estimation remains a challenge. A model was presented [70] 

in which they optimized parameters in the popular Constructive Cost Model II (COCOMO-II) 

by using the Flower Pollination Algorithm (FPA). Their suggested model was tested against the 

Bat algorithm and COCOMO II utilizing data from the Turkish software sector. Two of the 

evaluation criteria were MD and MMRE. The study found that in measures like Manhattan 

distance and mean magnitude of relative errors, the Flower Pollination Algorithm fared better 

than previous methods like the Bat algorithm and the original COCOMO-II. This improvement 

is essential because precise cost estimation helps managers and engineers plan software projects 

more efficiently. 

Software Cost Estimation SCE is critical in software development, and classic 

approaches such as the Constructive Cost Model (COCOMO) have been utilized since the 

1980s. COCOMO is available at three levels: basic, intermediate, and detailed, with each level 

taking into account more project attributes. However, its precision is restricted due to issues 

such as cost driver loss. Khalifelu & and Gharehchopogh [71] proposed a model for software 

cost prediction by using different data mining techniques. Linear Regression (LR), Artificial 

Neural Networks (ANN), Support Vector Regression (SVR), and k-nearest Neighbors (K-NN) 

are among the data mining approaches examined in this study. The study trains and tests these 
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techniques on NASA project data to improve estimation accuracy. When COCOMO and data 

mining techniques are compared, the latter frequently produces more accurate results. 

A hybrid model that combines the cuckoo search and harmony search algorithms was 

presented [72] with the goal of optimizing the four coefficients of COCOMO-II and improving 

the precision of effort and time development estimates for software projects. Using metrics like 

Magnitude of Relative Error (MRE) and Magnitude of Relative Error (MMRE), the suggested 

method was assessed using the NASA 93 dataset. According to experimental findings, the 

hybrid model performs better at estimating software project effort and time development than 

both COCOMO-II and the standalone cuckoo search method. In comparison to applying the 

COCOMO and cuckoo search algorithms independently, the suggested method specifically 

obtains a 54.04% improvement in effort estimation MMRE and a 0.68% improvement in time 

development MMRE. Within the software industry, meeting deadlines, budgetary constraints, 

and quality standards for project completion is a top priority. But current software projects are 

dynamic, which makes work and cost estimation difficult. In order to estimate software projects, 

Patra & Rajnish [73] presented an empirical interpolation model and compared it with the 

COCOMO model. Numerous cost considerations and COCOMO-based calculations were used 

in this comparison. Two empirically derived constants (a, b) based on historical data from 

NASA programs plus an independent variable (KLOC) make up the equation of the empirical 

interpolation model. Metrics including MMRE, RMSE, and PRED were used to evaluate the 

model's performance, and COCOMO was used to compare it with varying scale factor values. 

The findings show that compared to the COCOMO model, the interpolation approach offers 

more accurate effort estimates, fulfilling the demands of today's dynamic software industry. 

It's important to estimate software development expenses, and a number of models, 

including fuzzy logic and neural networks, have been created to help with this task. A software 

development cost estimation model utilizing the Artificial Neural Network-Cuckoo 

Optimization Algorithm (ANN-COA) was presented [74]. This model uses the ISBSG dataset 

and combines the cuckoo optimization approach with neural network predictions. According to 

their research, the ANN-COA model outperforms other well-known methods for software cost 

prediction, making it one of the Neural Network category's best predictors. 
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For project planning to be effective, software development cost estimation is crucial. A 

model for software cost assessment utilizing a variety of machine learning algorithms was 

presented [75]. In their work, they used two publicly available datasets, Usp05-ft and Usp05, to 

test 13 machine learning methods. The outcomes showed how accurately machine learning 

techniques can forecast software expenses. The analysis showed that Kstar, REPTree, Additive 

Regression, and Random Forest performed best with the Usp05 dataset, whereas Random Forest 

produced the best results with the Usp05-ft dataset. On the other hand, with the first dataset, the 

ZeroR approach produced the worst results, while the Multilayer Perceptron, IBk, and Linear 

Regression methods did not fare well with the second dataset. 

Agile software development is popular in industries, replacing traditional methods, but 

accurately estimating effort remains a challenge. The Story Point Approach (SPA), a 

mathematical method, is used to enhance effort prediction accuracy. Various neural networks 

(GRNN, PNN, GMDH, Cascade-Correlation) were employed in [61], considering story points 

and project velocity for initial effort estimation. The results are optimized using these networks, 

with the cascade network showing superior performance. The study, conducted in MATLAB, 

suggests extending the approach with additional machine learning techniques like Stochastic 

Gradient Boosting and Random Forest combined with SPA.The problem of work estimating in 

agile software projects was addressed by Kamal Tipu & Zia [2], who emphasized the 

importance of precise estimates for project success. Their study presents a model designed for 

agile approaches that bases estimation on User Stories. This approach is made to take into 

account the unique qualities of Agile, such adaption and iteration. Based on MMRE and PRED 

(n) metrics, it demonstrated good estimation accuracy when calibrated using empirical data 

from 21 software projects. Although the concept is workable and feasible, it still has certain 

shortcomings, and more improvements should improve its functionality. 

2.11.4  Effort estimation for traditional software development using stacking 

ensemble model 

 G. Priya Varshini and K. Anitha Kumari developed a model to address the critical 

challenge of estimating effort in software development projects [89]. The research examined 

various machine learning and deep learning approaches, including individual models and 
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ensemble techniques that combine multiple methods for improved accuracy. A variety of 

ensemble techniques were examined, including averaging, weighted averaging, bagging, 

boosting, and stacking. The research focused on stacking models that combined support vector 

machines, random forests, decision trees, and generalized linear models. In this research for 

estimating effort, the researcher utilized datasets from Albrecht, China, Desharnais, Kemmerer, 

Kitchenham, Maxwell, and COCOMO'81. The comparison involved various machine learning 

models, including Random Forest, SVM, Decision Tree, Neural Network, and Deep Neural 

Network (DNN). Performance was assessed using metrics such as R-squared, RMSE, and 

MAE. The research showed that stacking, especially when used with random forests, produced 

better outcomes than single model approaches and other ensemble methods, proving to be more 

predictive. 

 Suyash Shukla and Sandeep Kumar explored innovative approaches to tackle the 

persistent challenge of accurately estimating effort in software development projects [93]. 

Traditional estimation techniques, such as expert judgment, Lines of Code (LOC), and Function 

Point (FP) methods, often struggle to meet the demands of modern software development 

environments due to issues like code reuse, evolving methodologies, and data heterogeneity. 

The study used stacking ensemble methods with models like SVM, MLP, and GLM to improve 

effort estimation in software development. The ISBSG dataset was divided into four subsets 

based on productivity levels to handle data differences and outliers. Metrics like MAE, RMSE, 

and MBRE showed that stacking models performed better than individual models and 

traditional methods like MLR and fuzzy logic, reducing errors by up to 40.79%. Despite its 

success, the research noted limitations, such as relying on one dataset and the need to explore 

new sizing measures, leaving room for further improvement. 

G. Priya Varshini and K. Anitha Kumari introduced two advanced techniques for 

software effort estimation: a stacked ensemble model and a hybrid model combining Principal 

Component Regression (PCR) with Multivariate Adaptive Regression Splines (MARS) [94]. 

They utilized seven benchmark datasets, including COCOMO81, Desharnais, China, and 

others, to tackle issues like multicollinearity and non-linear relationships. The stacked ensemble 

model featured eight base learners, with PCR as the super learner, while the hybrid model 

combined PCR for dimensionality reduction and MARS for non-linear relationships. The 

models were evaluated using metrics such as MAE, RMSE, and R-Squared. The stacked 



55 
 

 

ensemble model achieved the highest prediction accuracy, and the hybrid model offered 

comparable results with reduced computational time. Despite its strengths, the study faced 

challenges like the complexity of implementation and computational costs. The study also 

highlighted that the findings were derived from benchmark datasets, emphasizing the need for 

further validation using real-world data. Additionally, it pointed out the model's reliance on 

dataset-specific tuning, which may impact its ability to generalize across different software 

projects. 

 P. Sampath Kumar and R. Venkatesan proposed a stacking ensemble model to improve 

software effort estimation accuracy [96]. Using the ISBSG dataset, the study addressed the 

limitations of traditional methods, including subjectivity and bias. The model combined three 

base learners linear Regression, Random Forest Regression, and Neural Networks with a 

Support Vector Regressor as the meta-learner. Comprehensive preprocessing reduced the 

dataset to 12 significant features, ensuring better correlation between variables. The model was 

evaluated using metrics such as MAE, MMRE, and PRED, achieving superior results (e.g., 

MAE = 0.11, MMRE = 0.10, PRED (0.25) = 0.925). While demonstrating high accuracy, the 

study acknowledged challenges like computational costs and dataset-specific tuning, 

emphasizing the need for further validation with real-world project data. This approach 

highlights the potential of ensemble learning in enhancing the reliability of software effort 

estimation. 

2.12  Literature Review Analysis 

 Much work has been done in the field of Agile software development research to 

improve the precision of project effort and cost prediction. By putting forth a variety of models 

that frequently combine conventional approaches with machine learning strategies, like neural 

networks and ensemble methods, researchers are attempting to improve these estimations. 

Datasets like Zia, SEERA, and NASA are frequently utilized to validate and compare these 

models, enabling a full analysis and comparison of various methodologies. Many machine 

learning techniques, such a neural network, evolutionary algorithms, support vector regression 

(SVR), and ensemble techniques, are being investigated in an effort to improve accuracy by 
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learning from past data trends. In this field of study, comparison analyses of various algorithms, 

models, and methodologies are common.  

In this research, comparisons of different algorithms, models, or techniques are 

common. Model performance is widely assessed using evaluation measures such as Mean 

Magnitude Relative Error (MMRE), Root Mean Square Error (RMSE), and R-squared. To 

ensure model resilience across diverse contexts, datasets from various sources, including 

industrial initiatives and publicly available datasets, are employed. Some studies highlight the 

shortcomings of classic models, such as COCOMO, in evaluating effort and cost in Agile 

contexts. As more effective alternatives, machine learning techniques, particularly ensemble 

methods, are proposed. Scholar aims to increase the precision of effort and cost estimation in 

Agile software development. 

Researchers test novel combinations of classical and machine learning methodologies, 

using a variety of datasets and optimization algorithms. Despite advances, the dynamic nature 

of Agile projects continues to be a difficulty, emphasizing the need for an adaptive and Agile-

friendly estimation model. Table 3.1 provides a summary of the literature review analysis, 

highlighting key studies, their methodologies, findings, and contributions relevant to the 

research topic. It offers a comparative view to identify gaps and trends in existing work. 

Table 2.1: Literature review analysis 

Sr # Ref & 

Year 

Dataset Technique/Method Accuracy/Limitations  

1 [48] 

2019 

503 stories, 24 

projects 

Developed an ensemble-based model 

combining algorithms like Ridge 

Regression, ANN, SVM, Decision Trees, 

and KNN. Using feature selection to 

improve predictions. Blocked cross-

validation was applied to keep the sequence 

of sprints intact. Stacking ensemble model 

was developed by combining three ML 

techniques Decision Tree Regression 

(DTRegr), Linear Support Vector 

Data was from a single university, so the results 

may not generalize to other organizations. Didn’t 

include factors like scrum master performance.  
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Regression (Linear SVR), and Random 

Forest Regression (RFR). Functional size is 

measured using the COSMIC FSM method 

as the primary independent variable. 

2 [92] 

2022 

Private 

industrial 

dataset from 

scrum projects 

Stacking ensemble model was developed 

by combining three ML techniques 

Decision Tree Regression (DTRegr), 

Linear Support Vector Regression 

(LinearSVR), and Random Forest 

Regression (RFR). Functional size is 

measured using the COSMIC FSM method 

as the primary independent variable. 

Small size and private access restrict 

generalizability. It includes only numerical 

attributes, excluding potentially important 

categorical variables. Functional size measurement 

relies solely on COSMIC FSM, potentially 

overlooking other factors. 

3 [54] 

2023 

SEERA 

dataset 

COCOMO II model combined with Nave 

Bayes algorithm to estimate effort. 

Stacking ensemble model was developed 

by combining three ML techniques 

Decision Tree Regression (DTRegr), 

Linear Support Vector Regression 

(LinearSVR), and Random Forest 

Regression (RFR). Functional size is 

measured using the COSMIC FSM method 

as the primary independent variable. 

Model is limited to the scope of the dataset, which 

focuses on Sudan-based projects. Model assumes 

specific conditions and may not fit agile workflows 

perfectly. 

4 [55] 

2023 

Dataset from 

21 agile 

software 

projects across 

6 software 

houses 

The study applied artificial neural networks 

(ANNs) to predict effort estimation in agile 

software development. Data was 

normalized, split into training and 

validation sets, and processed using 

MATLAB's Neural Network Toolbox. 

Proposed models may not perform as effectively on 

heterogeneous datasets from different software 

development methods. 

5 [52] 

2022 

Dataset of 21 

projects from 6 

software 

houses 

 A hybrid model was used that Combined 

linear regression and k-Nearest Neighbors 

(KNN) to estimate project effort, time, and 

cost based on analogy. 

The dataset size was small and the proposed 

approach may not perform well for datasets with 

high-dimensional data or large variations in 

features 

6 [61] 

2019 

Agile and non-

agile datasets 

from 

PROMISE 

repository 

Deep Belief Network (DBN) with Antlion 

Optimization (ALO) were used 

Complexity of combining DBN and ALO; 

performance depends on hyperparameter tuning. 

7 [60] 21 agile Support Vector Regression (SVR) Limited dataset (only 21 projects), assumes normal 
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2018 
software 

projects 

optimized with grid search method (GS). 

Leave-One-Out Cross-Validation 

(LOOCV) was applied to validate the 

model. 

distribution, computational overhead of Grid 

Search for large datasets. Model performance was 

improved in terms of Pred (0.25), MMRE, and 

MdMRE. 

8 [63] 

2018 

Story points 

and team 

velocity data 

from agile 

projects 

Particle Swarm Optimization (PSO), 

 Artificial Bee Colony (ABC), ABC-PSO 

were used to estimate the effort. 

Requires historical data; hybrid methods may be 

computationally intensive 

9 [18] 

2017 

COCOMO’81

and 

Desharnais 

datasets 

Decision Tree (DT), Stochastic Gradient 

Boosting (SGB), Random Forest (RF) were 

used. 

Results are dataset-dependent, potential overfitting 

with neural networks, limited to specific datasets 

 

2.14  Summary 

 This chapter provides a comprehensive overview of various effort estimation methods, 

including algorithmic models, learning-based techniques, and expert opinion-based approaches. 

Special attention is given to effort estimation within agile software development, highlighting 

key terminologies and concepts essential to understanding estimation in agile contexts. The 

chapter also explores the application of machine learning techniques, such as ensemble learning 

and data augmentation, emphasizing their role in enhancing estimation accuracy. Despite the 

advancements in estimation methodologies, the inherently dynamic and iterative nature of agile 

projects continues to pose challenges, underscoring the need for adaptive, agile-friendly 

estimation models. 

A detailed review of the literature is presented, focusing on effort and cost estimation in 

agile software development. Numerous researchers have proposed a variety of models and 

methodologies, many of which leverage advanced machine learning approaches. Studies 

involving experiments with deep learning and machine learning techniques are examined, 

providing insight into current trends and outcomes in this area. Both traditional and agile 

software development estimation models have been the subject of extensive academic 

investigation. This ongoing need drives researchers to explore hybrid models that combine 
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traditional and modern techniques. Incorporating domain-specific features has also shown 

promise in improving prediction performance. Additionally, cross-project learning is emerging 

as a valuable approach for enhancing generalization in estimation models. However, despite the 

breadth of existing research, there remains a significant need for further enhancement and 

refinement of machine learning models to improve the accuracy and adaptability of effort 

estimation practices. 
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CHAPTER 3 

  

RESEARCH METHODOLOGY AND PROPOSED 

FRAMEWORK 

3.1 Overview 

 This chapter's main goal is to outline the research techniques or protocols applied in this 

work, with a particular emphasis on examining effort estimate in the field of artificial 

intelligence. The proposed approach for conducting this research will be discussed, along with 

detailing the experimental stage and the practical performance throughout the study. 

Additionally, the evaluation metrics used to assess the results will be addressed. 

Precisely anticipating the development cost, time, and effort constitutes the most 

challenging and crucial task in software development. Without such anticipation, wise 

management decisions that could prevent total failure would be unattainable for project 

managers, system analysts, and developers. It is widely believed that significant overruns occur 

only due to faulty estimation. 

3.2 Research Methodology for Effort Estimation   

Any process, collection of guidelines, or set of ideas that provide guiding principles for 

comprehending and utilizing particular techniques or procedures to address issues in a particular 

field is referred to as a methodology. The first stage in this study is to precisely define the 

research problem [77]. The procedures listed below, which are expanded upon in the following 

sections, are how the research addressed and resolved this discovered problem after that. 
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As shown in Figure 3.1, the overall research process is organized into four sequential 

phases: Problem Formulation, Dataset Preparation, Experiment, and Results. Each phase builds 

upon the previous one, starting from defining the research problem to collecting and validating 

data, implementing the experiment, and ultimately deriving the results. 

 

 Figure 3.1: Research Methodology for Effort Estimation 

Problem Formulation: The chosen subject of study is effort estimation for agile 

software development, with a focus on the importance of precise estimations in improving the 

chance of delivering high-quality projects on schedule. Several research publications have been 

regularly evaluated after the subject domain was chosen to find research gaps. Various research 

approaches and methodologies were employed in the literature papers, with the primary focus 

being on effort estimation for agile software development. After studying the research papers, 
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it is noted that there exists a research gap in the effort estimation for agile software development 

using artificial intelligence, especially ensemble learning. 

Dataset Preparation: After problem identification, the next step involves dataset 

preparation. In Section 3.5.1, this step is further elaborated upon by the outlined steps for dataset 

collection. Then collected data has been validated through experts. 

Experiment: In the next step, after data collection, the research progresses towards 

experimenting to address the mentioned research problem. An ensemble learning technique, 

stacking, has been proposed to address the research gap. After the experiment was performed, 

the results were calculated using evaluation metrics. 

Results: In the last step, after completing the experiment, all the results were evaluated 

according to the evaluation metrics. 

3.3 A Proposed Approach: Stacking Model 

In the realm of software development, precisely estimating effort for Agile projects 

remains a significant challenge. Unlike traditional models, Agile development's iterative and 

adaptive nature introduces unique dynamics that can affect estimation accuracy. Despite various 

techniques such as algorithmic, AI-based, and expert opinion approaches being applied to effort 

estimation in traditional models, their effectiveness in the Agile context is not well-explored. 

To address this gap, an ensemble-based technique which is the stacking model, is proposed to 

address this gap, as shown in Figure 3.2. 

Ensemble learning is like a collaborative approach, it uses a combination of techniques 

known as base learners or inducers to make decisions rather than depending on just one as 

explain in chapter 2 section 5. Ensemble learning comprises three techniques: bagging, 

boosting, and stacking. Bagging trains multiple instances of the same model on different data 

subsets and averages their predictions. Boosting sequentially trains weak learners, focusing 

more on misclassified instances. Stacking combines model predictions by training a meta-
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model on their outputs, weighing predictions based on performance. Ensemble methods are 

currently being successfully applied to solve pattern classification and regression problems. In 

agile software development effort estimation, stacking is more effective than bagging and 

boosting because it combines multiple diverse models, capturing complex relationships in the 

data. 

 Stacking uses a meta-model to integrate predictions from various base models, 

providing more accurate and robust results. Stacking is a powerful ensemble learning technique 

that combines predictions from multiple different models to make the final prediction. Unlike 

bagging, which averages predictions from similar models to reduce variance, or boosting, which 

sequentially focuses on correcting errors to reduce bias, stacking uses diverse models to capture 

their individual strengths. The meta-model learns how to best combine these predictions, 

making stacking highly flexible and capable of delivering better performance, especially for 

complex problems with large datasets [95]. However, it requires careful tuning and is 

computationally more intensive, but its ability to blend different algorithms often makes it the 

go-to choice for advanced predictive modeling. Overall, stacking's flexibility and ability to 

reduce bias and variance make it a better choice for effort estimation in dynamic environments 

[47][49]. 

 In the context of agile development, the stacking model when combined with a meta-

model shows to be an effective and flexible approach that offers an in-depth answer to the issues 

related to effort estimate. The primary goal of the proposed approach is to boost accuracy in 

terms of cost and time in Agile projects. This helps in capturing diverse patterns in the data that 

a single model might miss. Some models may perform better with categorical data, while others 

excel with numerical data. Stacking ensures that the advantages of both are utilized. In the 

proposed approach, an ensemble is constructed by employing Support Vector Regression 

(SVR), K-Nearest Neighbors (KNN) Regressor, and Decision Tree as the base.  

These machine-learning models were employed based on their demonstrated 

effectiveness in achieving favorable outcomes, as indicated by the literature review. Different 

combinations were utilized, in the placement of the meta-model, to explore various 

arrangements. The results are observed as good when the combination involves linear 

regression as a model. Each of these models brings unique strengths to the ensemble, capturing 



64 
 

different aspects of the underlying data patterns. For example, SVR optimizes the margin 

between the data points and the hyperplane in addition to fitting the model as closely to the data 

as feasible,[40] KNN is good in capturing neighborhood patterns and dependencies, Decision 

trees, on the other hand, are useful for locating important splits in the data and for partitioning 

the feature space [78]. The meta-model, in this case, is Linear Using this combination, we test 

the model and using evaluation metrics we test the accuracy of the model. Ensemble methods 

have been successfully applied for solving pattern classification and regression tasks. We used 

stacking technique in the work. 

 Stacking enhances overall model accuracy by mixing predictions from different base 

models. The ensemble model can benefit from the individual models' capabilities by stacking 

them, since each base model may be particularly good at capturing certain features or patterns 

in the data. Regression, which combines the predictions of the base models to improve 

performance. This approach not only improves the performance of the model but also reduces 

the possibility of overfitting, which is a serious problem, particularly when   working with noisy 

or small datasets. To increase the size of dataset we also used data augmentation technique. 

Before data augmentation, small datasets were typically handled using techniques like cross-

validation and simple data splitting. While these methods helped evaluate model performance, 

they didn’t address the core issue of limited data. Cross-validation used the same data for 

training and testing but these often lacked the diversity needed for more accurate predictions 

[51].  

Data augmentation is the process of creating modified versions of preexisting data 

samples in order to artificially enlarge a dataset. Its goal is to increase the dataset's 

unpredictability and diversity in order to possibly improve machine learning models' 

performance and ability to generalize. This method works especially well for tasks like object 

detection, natural language processing, and image categorization. In the context of agile 

development, the stacking model when combined with a meta- model shows to be an effective 

and flexible approach that offers an in-depth answer to the issues related to effort estimate. The 

primary goal of the proposed approach is to enhance accuracy in terms of cost and time in agile 

projects. As shown in Figure 3.2, the proposed approach begins by dividing the dataset into 

training data (80%) and testing data (20%). Multiple machine learning models including SVR, 

Decision Tree, KNN Regressor, and Linear Regression—are trained using the training set. The 



65 
 

 

models are then tested, and their performance is evaluated using specific evaluation metrics to 

determine accuracy and effectiveness. 

 

 

 

 Figure 3.2: Proposed Approach for Effort Estimation in Agile Software Development 

3.4 Data Collection 

The current dataset was inadequate and out of date, due to this reason, new data is being 

collected. A thorough questionnaire has been created to collect the dataset needed for agile 

project effort estimation. The questions were carefully chosen to cover all the important features 

that are important for effort estimation for agile software development, such as the sprint size, 

team salary, work days, actual time, actual cost user stories, etc. To create a meaningful dataset 

a Zia’s dataset [2][90] is used as a reference.  To collect dataset information, we follow several 

steps that are described as follows.  
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3.4.1  Target Software House 

 The utilization of LinkedIn helped us in the identification of companies. The platform 

aids in identifying potential participants who offer valuable insights into agile software 

development in Pakistan. By perusing LinkedIn, profiles and details of various software houses 

can be easily accessible, simplifying the process of selecting suitable ones for the study. This 

step is crucial as it facilitates connections with companies actively engaged in software 

development. 

3.4.2  Identify Software metrics 

 Discuss data link layer issues found in literature. In the data collection step for effort 

estimation in agile software development, software metrics play a pivotal role in providing 

valuable insights into various aspects of the development process. One crucial set of metrics 

includes those related to user story size, sprint size, actual time, and actual cost etc. User story 

size metrics offer a granular understanding of the scope and complexity of individual features 

or functionalities within the software. By quantifying user story size through techniques like 

story points or relative sizing, teams can effectively gauge the effort required for 

implementation, allowing for more accurate resource allocation and sprint planning. Sprint size 

metrics capture the volume of work undertaken within each iteration of development, providing 

a measure of team velocity and progress. Then a proactive approach is taken, involving on-site 

visits to various software houses.  

During these visits, the questionnaire was handed to them, accompanied by a document 

that explained each attribute. The importance of this face-to-face interaction lies in ensuring 

that everyone comprehends the inquiries. All efforts are made to guarantee the acquisition of 

necessary information, with personal explanations and responses provided during the visits. 

This hands-on approach was about making sure we had a clear and complete set of responses 

for our study on agile software development in Pakistan. 
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3.4.3  Response Validation 

Data validation is a procedure used to ensure that the collected information is truthful 

and reliable [79]. Preventing the processing or storing of unsuitable or inaccurate data is its 

main goal. This includes checking the data for mistakes, validating it against predetermined 

formats or restrictions, and confirming its dependability in a particular setting. Initially, 49 

responses were obtained from the queried software companies. The results were validated by 

two experts in the field: Muhammad Sheheryar Nasir Khan, a Scrum Master with 4 years of 

experience at Join App Studio, and Muhammad Qasim, a Product Manager at Garana.com with 

over 5 years of experience. Both experts thoroughly reviewed the dataset. Their expertise helped 

validate the data, ensuring that the 47 responses deemed valid were trustworthy for further 

analysis. Following a thorough verification process to ensure data is correct, it is ascertained 

that 47 of those responses have been deemed good and accurate. 

3.4.4  Data Analysis 

 The process of modifying and analyzing data to glean insightful information that 

supports well-informed decision-making is known as data analysis. [80]. It's like trying to find 

the most important pieces of information that will help us learn and understand results. In this 

context, the mathematical aspect is deemed essential, as it contributes to enhancing the dataset's 

quality. By using formulas, we made sure that` all the information followed the same rules and 

was accurate. Several formulas, which are outlined in Chapter 2, (Equations 2.11, 2.12, 2.13, 

2.14, 2.15, 2.16, 2.17), are used in the computation of datasets. After getting responses from 47 

projects, we did some math and looked closely at the important details. By doing this, we found 

out the main things that matter for a computer program to learn from the data. 

3.5 Experiment 

In this section, the entire process of experimentation as depicted in Figure 4.8, will be 

discussed. Initially, the dataset was collected because the size of the old dataset was small. Then 
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the data preprocessing has been performed to identify labels and features. After data 

preprocessing the data has been moved forward for the split data into training and testing sets. 

Ensemble learning techniques are then set up, and the subsequent step involves model 

prediction. Finally, the results have been assessed using evaluation metrics. Figure 3.3 

illustrates the sequential steps followed in the effort estimation experiment. 

 

Figure 3.3: Experiment steps for effort estimation 

3.5.1 Dataset Preparation 

In order to build a structured dataset, fit for analysis or machine learning model training, 

raw data must be gathered, cleaned, formatted, and arranged. The effort estimator for agile 

software development is tested, trained, and assessed using a variety of datasets obtained from 

different software companies. These datasets have been carefully selected to be used in the 

training and evaluation of machine learning algorithms, with an emphasis on ensemble learning 

methods, for the purpose of estimating agile software effort. 

To conduct the entire experiment, firstly, the dataset is collected, and subsequently, 

dataset is validated. The dataset shows details of 47 software development projects, including 

effort spent, team size, actual time taken, and estimated costs. Each project has multiple data 

points for different aspects like effort for different tasks (Efforts), estimated and actual time for 

each sprint (Sprint Size, Work days), and team salary and costs (Team Salary, Actual Time, 

Estimated Time, Actual Amount, Estimated Amount). Lowercasing, stop word removal, 

stemming and lemmatization, data cleaning, and data filtering are examples of data preparation 

procedures. Data cleaning and filtering were performed to ensure the dataset's quality and 

relevance. 
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One important stage in data preparation is identifying and removing undesirable or 

irrelevant data points from the dataset. This is referred to as data cleansing or data filtering. 

Outliers, duplicates, and instances that do not add meaning to the analysis or model training are 

examples of unwanted data. 

3.5.2 Feature Selection 

A crucial stage in machine learning and data analysis is feature selection, which focuses 

on locating and selecting the most relevant features (or variables) from a dataset. The objective 

of this procedure is to optimize computational complexity or improve model performance. 

Feature selection plays a crucial role in the field of effort estimation for agile software 

development by identifying the significant elements that influence the effort required to 

complete tasks or projects related to software development. To refine and optimize our dataset 

for subsequent analyses, we directed a thorough correlation analysis to explore the relationships 

among the various features. The primary objective was to identify and exclude redundant or 

highly correlated features that could potentially introduce multicollinearity issues and hinder 

the accuracy of our predictive models. This step is crucial in enhancing the efficiency and 

interpretability of our dataset, ensuring that only relevant and non-redundant variables 

contribute to the subsequent analyses.  

The correlation analysis was employed to evaluate the strength and way of relationships 

between pairs of features, allowing us to make informed decisions about feature selection and 

streamline the dataset for further investigation. So far, we have conducted a comprehensive 

correlation analysis on our dataset to gain insights into the interdependencies among different 

features. "Efforts" and "Actual Time" have a very strong positive relationship. Likewise, there 

is a significant positive association between "Actual Amount" and "Actual Time”. This means 

that when the actual time spent on a project increases, the actual amount of work completed 

also tends to increase. Increased velocity might result in completing more work within the same 

timeframe, resulting in a positive correlation with the actual amount of work done and similarly 

for effort. We ensure that future research or machine learning models will be based on a more 

accurate and representative dataset by carefully removing extraneous items from the dataset. 
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Improving the reliability and robustness of data is a critical function of data cleaning, which 

increases the overall efficacy of modeling or analytical operations. 

Data Discretization: Since labeling lays the groundwork for project analysis, it is 

crucial. For instance, the model can forecast the estimated time and cost for small, medium, and 

big projects by classifying them according to size. Managers can investigate different scenario 

is for every project thanks to this capacity. After the labels were first assigned (small = S, 

medium = M, and big = L), the dataset was encoded into integers so that machine learning 

algorithms could be trained on it. To put it simply, labeling data improves the model's capacity 

to offer more in-depth understanding of possible variances in project costs and schedules. The 

convention used is:                                                                                                                          

    0=Large =L, 1=Medium=M, 2=Small=S 

3.6 Correlation Analysis 

In machine learning, correlation analysis is a method used for feature selection. It 

comprises examining how the target variable (also known as the dependent variable or outcome) 

and input features (also known as independent variables or predictors) relate to one another. 

The goal of correlation analysis in this context is to identify which features have the strongest 

relationship with the target variable [81]. The full dataset is tested, but the findings are not 

sufficient, thus correlation analysis is used to determine the direction and strength of 

correlations between feature pairs. This analytical method simplifies the dataset for more 

research and helps to make well-informed feature selection judgments. A statistical technique 

called correlation analysis is used to determine whether or not there are relationships between 

variables or datasets. Its main goal is to determine whether relationships exist and to measure 

how strong those relationships are. 

 Features like effort, initial velocity, deceleration, ultimate velocity, actual cost, actual 

time, and expected time are all included in the dataset that is being examined. Notably, effort, 

initial velocity, actual time, and actual cost are found to be strongly correlated. The 

accompanying picture provides a visual representation of the correlation analysis results. Strong 



71 
 

 

connections between effort, initial velocity, actual time, and actual cost can be expressed in 

passive form. The feature effort has a strong correlation with Actual time spent also tends to 

increase. Effort has negative correlation with Sprint Size (-0.52), meaning that projects with 

higher effort tend to have smaller sprint sizes. There is no significant correlation with other 

features.  

Initial velocity has a moderate positive correlation with work days (0.40), suggesting 

that projects with higher initial velocity tend to have more work days. Initial velocity has 

negative correlation with Sprint-Size (-0.47) and Actual-Amount (-0.80). There is no significant 

correlation with other features. Sprint-Size has a moderate negative correlation with Efforts (-

0.52), Initial-Velocity (-0.47), and Actual-Time (-0.40). There is no significant correlation with 

other features.  

Sprint size has a negative correlation with V (-0.40). There is no significant correlation 

with other features. Actual-Amount has a positive correlation with Team-Salary (0.62) and 

negative correlation with Initial-Velocity (-0.80). There is no significant correlation with other 

features. Figure 3.4 presents the correlation heatmap, illustrating the relationships between 

different variables in the dataset. Darker colors indicate stronger positive or negative 

correlations. 

 

 

 

Figure 3.4: Correlation Analysis of features 
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3.7 Evaluation Metrics 

Mean Magnitude Error (MME), Mean Absolute Error (MAE), and Mean Relative Error 

(MRE) are commonly used metrics in the context of evaluating the performance of models, 

especially in regression tasks [82]. In Ordinary Least Squares (OLS), model fitness in 

regression-based models is assessed using the sum of squared errors. For regression models, 

two relevant function errors are the Mean Squared Error (MSE) and RMSE. The R2 score are 

commonly found in literature reviews as benchmarks for evaluating model performance. 

 

Mean Absolute Error (MAE) is a commonly used metric to measure the accuracy of a 

predictive model. It calculates the average of the absolute differences between the actual values 

and the predicted values. In simple terms, it tells you how far the predictions are from the true 

outcomes, on average [60].  

 

R² Score measures how well the predicted values from a model approximate the actual 

data points. It indicates the proportion of the variance in the dependent variable that is 

predictable from the independent variables. Equation 4.1 shows that the coefficient of 

determination is equal to one minus the ratio of the model’s residual sum of squares to the total 

sum of squares. 

𝑅2 =
∑ (𝑦𝑖−𝑦𝑖̂)
𝑛
𝑖=1

∑ (𝑦𝑖−𝑦𝑖̂)
𝑛
𝑖=1 2

                                      (4.1) 

Root Mean Square Error, or RMSE for short, is a commonly used regression analysis 

metric to evaluate the precision of prediction models. It measures the typical size of errors in a 

dataset between expected and actual values. The square root of the average of the squared 

discrepancies between the expected and actual values is used to compute the root mean square 

error, or RMSE. With lower values indicating greater model performance, RMSE offers a clear 

indication of how well a model's predictions match the actual data. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)2
𝑛
𝑖=1                         (4.2) 
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The equation 4.3 equation defines the Mean Absolute Error (MAE), which measures the 

average magnitude of the errors between predicted and actual values, without considering their 

direction. It provides an overall indication of how close predictions are to the actual outcomes. 

 

The formula for MAE is:  

𝑀𝐴𝐸 =
1

𝑛
∑ | 𝑦𝑖 − 𝑦𝑖̂
𝑛
𝑖=1 |                                                (4.3) 

y is real data and 𝑦  is the prediction.  

3.8 Summary 

This chapter describes the suggested strategy for addressing the research problem and 

achieving the goals while also examining the research methodology. It also describes the 

experimental procedures used in this investigation. Furthermore, this chapter provides a detailed 

explanation of the methodological framework, including the rationale for choosing specific 

techniques and tools. The experimental procedures are also elaborated upon, offering insight 

into how data was collected, processed, and analyzed to derive meaningful results. Through this 

comprehensive overview, the chapter ensures a clear understanding of the overall research 

design and execution. 
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CHAPTER 4 

  RESULTS 

4.1 Overview  

This chapter presents the results derived from an experiment involving a model trained 

using ensemble learning techniques, specifically stacking, applied to a dataset sourced from the 

software industry. The outcomes are assessed using standard evaluation metrics commonly used 

in literature for effort estimation in agile software development, namely R2-Score, mean 

absolute error, and mean relative error. The research primarily aims to enhance the accuracy of 

effort estimation in agile software development.  

4.2 Results for effort estimation in agile software development 

An ensemble-based effort estimate model is proposed that incorporates the ideas of 

ensemble learning and allows for the simultaneous use of various methodologies. As described 

in detail in Chapter 2, Section 4, the ensemble technique known as stacking is chosen for 

implementation. Correlation analysis is conducted on the dataset, focusing on the features 

selection for effort estimation as described in Chapter 4. After selecting features, we utilized 

data augmentation techniques to expand the dataset size because it was initially small. This step 

was essential for improving the reliability of our model and ensuring more precise estimations. 

This section describes the results of our model with correlation analysis, without correlation 

analysis results, results with data augmentation and results without data augmentation. We used 

a dataset that we composed from the software industry. The features of the data set are effort, 

initial velocity, deacceleration, final velocity, actual cost and actual time.  
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These features are input of the model and predicted outputs are predicted time and 

predicated cost. As already discussed, data discretization of features in Chapter 4 section 4.3.2. 

Similarly, here data discretization for class labels is performed. In the classification of classes, 

they are categorized into small, medium, and large. Small classes are referred to as being labeled 

small, medium classes are characterized as being classified as medium-sized, and large classes 

are described as being designated as large. This method ensures that classes are accurately 

categorized based on their respective sizes. The agile project is classified into three groups 

small, large and medium and we have effort size, cost size and time size group as discussed in 

chapter 4 section 3.5.2. Table 4.1 presents the classification of projects according to labels, 

showing the distribution of time, cost, and effort for small, medium, and large projects. 

Table 4.1: Classification of projects according to labels 

Label Small Medium Large 

Time 37 5 5 

Cost 5 35 7 

Effort 25 12 10 

 

The Figure 4.1 shows the classification of projects according to effort, cost and time in 

different color combinations. 

     

            Figure 4.1: Classification of projects according to effort, cost and time  
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4.2.1 Results of ensemble model without data augmentation technique 

Table 4.2 below presents the results generated from ensemble model. We utilized three 

evaluation metrics: R2-Score, MAE, and RMSE, as described in Chapter 3, Section 3.7. The 

overall performance of our model demonstrates improvement, particularly in terms of the R2-

score evaluation metric. 

 

Table 4.2: Result of Ensemble Model Without Data Augmentation Techniques 

Parameter R2-Score MAE RMSE 

Time 90 0.341 2.56 

Cost 97 0.38 0.180 

 

 

As illustrated in the table, our model achieves 90% accuracy in terms of time estimation 

and 97% accuracy in terms of cost estimation. The table provides a comprehensive breakdown 

of different evaluation metric values for effort estimation in agile software development using 

the ensemble-based stacking model for both cost and time. This outcome underscores the 

effectiveness of our model in accurately estimating effort in agile software development 

projects, enhancing both time and cost estimation accuracy. 

4.2.2 Results of ensemble model with data augmentation technique 

 Data augmentation is a machine learning and data science technique that involves 

making slightly altered copies of preexisting data points in order to artificially enhance the size 

of a dataset. As mentioned in Chapter 2, Section 5, the goal of this method is to improve the 

robustness and performance of machine learning models, especially in situations when the 

amount or diversity of the original dataset may be restricted. Following the expansion of the 

dataset, there were 77 total projects instead of just 47. There was a total of 77 submissions for 
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the project, of which 54 synthetic projects (about 70%) were used for training and 23 projects 

(30%) had their genuine values set aside for testing. Table 4.3 shows the results of the stacking 

model with the data augmentation technique, presenting the R² score, MAE, and RMSE values 

for both time and cost parameters. 

 

 Table 4.3: Result of Stacking Model with Data Augmentation 

Technique 

Parameter R2-Score MAE RMSE 

Time 91.51 0.312 0.020 

Cost 98 0.35 0.170 

  

The table demonstrates that our model attains a 90% accuracy rate for time estimation 

and a 97% accuracy rate for cost estimation. The result emphasizes the efficacy of our model 

in precisely predicting effort in agile software development projects, thereby improving 

accuracy in both time and cost estimation. Figure 4.2 illustrates the predicted cost, where the x-

axis epitomizes the predicted cost and the y-axis represents the actual cost. The diagonal line 

represents a perfect fit, where the predicted cost aligns precisely with the actual cost. 

Throughout the graph, scattered data points are observed, with potential clusters towards the 

bottom left and top right corners. 

 

  Figure 4.2: Ensemble model prediction for cost 
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Towards the top of the figure 4.2 as shown in below, a notable instance occurs where 

the predicted value is approximately 0.9 million PKR, while the actual value is 0.8 million PKR. 

Conversely, towards the bottom of the graph, there is a data point where the actual cost is 3.7 

million PKR, closely matched by the predicted cost of 3.9 million PKR. 

These observations provide insights into the performance of our model, indicating areas 

where the predictions closely align with the actual values and areas where there may be 

discrepancies. 

 

  Figure 4.2: Ensemble model prediction for cost 

Figure 4.3 illustrates the comparison between predicted and actual time using our 

stacking model. Each point on the graph represents a specific data instance, with the x-axis 

indicating the predicted time and the y-axis showing the actual time. At the top of the graph, 

there is a data point where both the actual time and the predicted time are 80 days, indicating a 

close alignment between our model's prediction and the ground truth. Conversely, towards the 

bottom of the graph, there is another data point where the actual time is 750 days, while our 

stacking model predicts 690 days. 
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These observations provide a detailed view of the performance of our stacking model in 

estimating time for agile software development projects. While some predictions closely match 

the actual time, there are instances where there may be deviations, highlighting areas for further 

refinement and improvement in our model. 

 

 

Figure 4.3: Ensemble model prediction for time 

 When it comes to completion time prediction, the stacking model performs better than 

the others; comparable outcomes are seen when estimating total cost. In machine learning and 

data science, data augmentation is the process of creating altered versions of preexisting data 

points in order to artificially extend the dataset. This method seeks to improve machine learning 

models' robustness and performance, particularly when the size or diversity of the original 

dataset is limited. 

4.2.3 Results of regression model 

 The regression model was applied to estimate effort in Agile software development 

using a dataset expanded through data augmentation techniques. Data augmentation was 

employed to increase the diversity and volume of the original dataset, thereby enhancing the 
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model's learning capability and generalization. The augmented dataset consisted of 77 Agile 

software projects, where 54 synthetic entries (approximately 70%) were used for training and 

23 real project entries (30%) were reserved for testing and evaluation. Regression models are 

widely adopted in the fields of predictive analytics and software engineering due to their 

straightforward structure, computational efficiency, and interpretability. These models are 

effective in capturing linear relationships between input features and target variables, making 

them suitable for many practical applications.  

In this context, the regression model was used to predict both time and cost efforts 

required for Agile software projects. The model demonstrated a solid performance, achieving 

an R² score of 83% for time estimation and 78% for cost estimation. These results indicate that 

the regression model was able to effectively learn from the training data and generate reasonable 

predictions on unseen real project data. The Mean Absolute Error (MAE) and Root Mean 

Squared Error (RMSE) values further support its capability to estimate effort with acceptable 

accuracy. Table 4.4 presents the results of the regression model, highlighting its performance 

metrics and predictive accuracy based on the evaluated dataset. 

   

Table 4.4: Result of regression model 

Parameter R2-Score MAE RMSE 

Time 83 0.56 0.48 

Cost 78 0.51 0.040 

 

It is important to note that while Agile environments are often characterized by rapid 

changes, evolving requirements, and non-linear development processes, the regression model 

still managed to deliver consistent and informative outputs. This highlights its potential as a 

practical tool for organizations seeking a balance between predictive accuracy and model 

transparency. The regression model provides a reliable and interpretable framework for 

estimating time and cost in Agile projects, particularly when working with structured datasets 

and when a clear understanding of feature impact is desired. 
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4.3 Comparison of Stacking Model 

 This section discusses the comparison of stacking model with data augmentation 

technique and without data augmentation technique and comparison of results between 

correlation analysis and without correlation analysis. 

4.3.1 Comparison of stacking model with and without data augmentation  

 In this section, a comparison is made between with and without the augmentation 

technique. Table 4.5 presents a comparison between the Stacking Model and the Stacking 

Model enhanced with a data augmentation technique. The results indicate that the application 

of data augmentation slightly improved the model's performance. 

 

Table 4.5: Comparison of Stacking Model with and without data augmentation technique 

Model R2-Score MAE RMSE 

Stacking Model Time: 90 Time: 0.341 Time: 0.020 

Cost: 97 Cost: 0.38 Cost: 0.180 

Stacking Model with 

data augmentation 

Technique 

Time: 91.51 Time: 0.312 Time: 0.020 

Cost: 98 Cost: 0.35 Cost: 0.170 

 

 

Stacking Model without data augmentation technique: The stacking model's R-squared 

score is 90, meaning that 90% of the variance in the dependent variable (target) can be explained 

by the independent variables (features) in the model. The average absolute error, which displays 

the average difference between the predicted and actual values, is 0.341. The dispersion of 

errors between the anticipated and actual values is measured by the RMSE (root mean square 

error) of 0.020 for the stacking model. Stacking Model with data augmentation technique. The 

R-squared score for the Stacking Model with data augmentation technique is 91.51. This 
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indicates that this model explains 91.51% of the variance in the target variable, which is slightly 

higher than the for this model is 0.020, this suggests that despite the slightly lower MAE, the 

spread of errors around the actual values remains similar between the two models. Both models 

have high R-squared scores, indicating good explanatory power. The model with the data 

augmentation technique performs well as the values shown in Table 4.5.  

4.3.2 Comparison of stacking model with and without correlation analysis  

 In this section, a comparison is made between the dataset without correlation analysis 

and the dataset with correlation analysis. Table 4.6 provides a comparison between the Stacking 

Model trained with a Correlation Analysis Dataset and the model trained without correlation 

analysis. The results show that incorporating correlation analysis significantly improved model 

performance. 

 

Table 4.6: Comparison of results without correlation analysis and with 

correlation analysis  

Model R2-Score MAE RMSE 

Stacking Model 

With Correlation 

Analysis Dataset 

Time: 90 Time: 0.341 Time: 0.020 

Cost: 97 Cost: 0.38 Cost: 0.0.180 

Stacking Model 

without 

Correlation 

Analysis Dataset 

Time: 85 Time: 1.65 Time: 0.026 

Cost: 93 Cost: 1.68 Cost: 0.0220 

 

  

RMSE is slightly lower for the Stacking Model with a Correlation Analysis Dataset 

(0.020) compared to the Stacking Model without a Correlation Analysis Dataset (0.026). This 

suggests that the model without correlation analysis makes predictions that are, on average, 

closer to the actual values. 
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4.4 Comparison of Results with Predictions in the Literature 

 This section discusses the comparison of various techniques with each other. The 

comparison was conducted to validate and benchmark our research against existing studies in 

the time and cost prediction. Such comparisons are essential to understand how our proposed 

approach performs relative to established methods, identify its strengths, and assess areas where 

it brings improvements. The studies [90] and [52] were chosen for comparison based on clear 

and relevant criteria, both studies focus on predicting time and cost in projects, which directly 

aligns with the goals of our research. These studies present their findings using widely 

recognized metrics R2-Score, Mean Absolute Error (MAE), and Root Mean Squared Error 

(RMSE) for meaningful comparison.  

The first baseline paper, [90], demonstrates strong performance in predicting Time, as 

evidenced by its high R2-Score, indicating that the model effectively explains the variance in 

time-related data. However, its performance in predicting Cost is less reliable, with high RMSE 

and MAE values. These metrics suggest that the model struggles to accurately predict cost, 

resulting in larger errors and reduced precision for this variable. The second baseline paper, 

[52], exhibits moderate performance across all metrics While it does not achieve exceptional 

results in any particular area, it also does not fall short in any of the evaluated categories. Its 

performance is generally in the mid-range, indicating that it delivers adequate outcomes, but 

there is potential for improvement in certain areas.  

Our research project is really good at predicting Time and Cost. The model has high R²-

scores, which means it explains most of the changes in these two factors. This means our model 

is accurate and works well for forecasting Time and Cost, making it reliable for practical use. 

This comparison highlights the superior performance of our model in terms of both precision 

and consistency. The findings demonstrate its potential applicability in real-world project 

management scenarios. This strong predictive capability adds value to the overall efficiency of 

project evaluations. The comparison clearly shows that our model performs competitively with, 

and in some cases outperforms, existing approaches. This reinforces the effectiveness of our 

methodology in accurately predicting Time and Cost. Table 4.7 presents a comparison of the 

results from our research project with previous studies documented in the literature. 
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Table 4.7: Comparison of Results with Predictions in the Literature 

Author R2-Score MAE RMSE 

[90] Time: 95 Time: N/A Time: 2.4 

Cost: 91 Cost: N/A Cost: 51,37 

[52] Time: 0.94 Time: N/A Time: 0.053 

Cost: 0.94 Cost: N/A Cost: 0.0546 

Our Research 

Project 

Time: 0.91 Time:0.312 Time: 0.020 

Cost: 0.98 Cost: 0.35 Cost: 0.170 

 

4.5 Comparison of Stacking Model with Regression Model 

 A comparative evaluation explores the performance of the stacking model against the 

regression model developed in this research. This internal comparison highlights the predictive 

capability of the ensemble-based stacking model in contrast to a traditional regression approach 

within the context of Agile effort estimation. Both models rely on the same augmented dataset 

consisting of 77 Agile software projects. The dataset includes 54 synthetic entries for training 

and 23 real entries for testing. Standard evaluation metrics R² Score, Mean Absolute Error 

(MAE), and Root Mean Squared Error (RMSE) serve to assess model effectiveness in 

predicting both time and cost.  

The regression model, recognized for its simplicity and interpretability, delivers 

moderate accuracy levels. Results indicate 83% R² for time prediction and 78% for cost. MAE 

and RMSE values reflect a reasonable level of precision but show a tendency toward larger 

errors, particularly in cost estimation. On the other hand, the stacking model demonstrates 

superior predictive power. Achieving an R² score of 91.51% for time and 98% for cost, the 

model maintains lower MAE and RMSE values across both parameters. Its ensemble learning 

structure enables it to capture more complex patterns and nonlinear relationships in the dataset. 
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This comparison illustrates the stacking model's effectiveness in Agile software effort 

estimation. By leveraging multiple learning algorithms, the ensemble approach adapts more 

efficiently to the complexities of project data. The stacking model consistently delivers higher 

accuracy and lower error rates, making it a strong candidate for real-world applications where 

precise forecasting is critical. Table 4.8 shows a comparison between the Stacking model and 

the regression model, illustrating differences in prediction accuracy and overall performance. 

 

Table 4.8: Comparison of Stacking model with regression model 

Model R2-Score MAE RMSE 

   Regression model 
           Time: 83 Time: 0.56 Time: 0.040 

           Cost: 78 Cost: 0.51 Cost: 0.048 

Stacking Model Time: 91 Time: 0.312 Time: 0.020 

Cost: 98 Cost: 0.35 Cost: 0.170 

 

 

4.6 Threat to Validity 

 In research, threats to validity are crucial considerations as they impact the accuracy, 

reliability, and generalizability of the results [91]. 

Internal Validity: Internal validity refers to the extent to which a study establishes a 

reliable cause-and-effect relationship between the independent and dependent variables [91]. 

To ensure internal validity, the features used in this study were carefully chosen based on their 

importance, as highlighted in previous research studies [90] and [2]. These studies identified 

key factors that significantly influence project outcomes like cost and time, providing a reliable 

basis for feature selection. By relying on these findings, we ensured that the chosen features are 

relevant and impactful, reducing the risk of missing important variables. In addition, we 

performed rigorous data validation to maintain accuracy and consistency throughout the 



86 
 

analysis. This included handling missing values, identifying and addressing outliers, and 

ensuring the dataset was free from errors or inconsistencies. By carefully selecting relevant 

features and thoroughly validating the data, the study ensures reliable and trustworthy results. 

External Validity: External validity refers to how well the findings of a study can be 

applied or generalized to different contexts, populations, or settings beyond the specific 

conditions of the research [91]. To ensure the external validity of this research, the findings 

were designed to be applicable across different agile software development contexts. The study 

focused on collecting datasets from various industries and project types to ensure diversity and 

representativity. This approach supported the generalizability of the results to a wide range of 

real-world scenarios. Additionally, the research utilized data augmentation techniques, creating 

simulated datasets that replicated various project settings. Validate the model on unseen data or 

real-world projects from industries or organizations that were not part of the initial dataset. This 

step ensures the model performs reliably outside the training conditions.  

 

4.7 Summary 

 The examination of the research findings is covered in this chapter. Correlation analysis 

is performed on the dataset, and data augmentation techniques are employed to increase the 

dataset size. A comparison is made between the results obtained with correlation analysis, those 

without correlation analysis, and those with data augmentation but without feature selection. 

Various metrics are being utilized for evaluation purposes, and the outcomes are presented in 

the form of graphs. At the last of chapter threats to validity are also discuss



87 
 

 

CHAPTER 5 

CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

This research aimed to address the ongoing challenges associated with effort estimation 

in Agile software development an essential yet complex task that, when miscalculated, often 

results in budget overruns, time delays, and overall project inefficiencies. Traditional estimation 

techniques, while valuable in structured development environments, frequently fall short in 

capturing the iterative and dynamic nature of Agile projects. This gap underscores the need for 

more adaptive and intelligent estimation models. 

To address this issue, the study introduced an ensemble learning approach specifically, 

the stacking technique to improve prediction accuracy. The experimental phase involved 

compiling a dataset specific to Agile software projects and evaluating the model's performance 

using multiple evaluation metrics. The results demonstrated that the stacking model 

outperformed traditional estimation approaches in terms of accuracy and consistency. 

Specifically, the model achieved 97% accuracy in estimating cost and 90% accuracy in 

estimating time, marking a significant improvement in prediction reliability. 

These findings highlight the effectiveness of ensemble learning techniques in improving 

the precision of effort estimations. The use of stacking allows for the integration of multiple 

predictive models, leveraging their combined strengths while minimizing individual 

weaknesses. This contributes meaningfully to the growing body of knowledge surrounding 

machine learning applications in Agile software development. The results also reinforce the 

broader idea that the more intelligent and data-informed the estimation approach, the more 

realistic and dependable the outcomes will be. 
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Moreover, the study reinforced the broader idea that the more intelligent and data-

informed the estimation approach, the more realistic and dependable the outcomes will be. By 

incorporating diverse models, it becomes possible to reflect the multifaceted nature of Agile 

projects and produce more nuanced estimations. The results also emphasize the importance of 

continuous learning and model refinement, suggesting that as more data becomes available 

from completed projects, the models can be retrained to improve their accuracy and adapt to 

emerging trends in Agile development practices. 

Furthermore, the study suggests that incorporating more granular and context-specific 

project details such as team dynamics, historical data, and risk-handling strategies could further 

enhance prediction accuracy. By using smarter, adaptive models that are able to learn from 

diverse project environments, effort estimation in Agile settings can become more precise and 

robust, ultimately leading to better decision-making and project success. 

5.2 Future Direction 

Although the current research has demonstrated the effectiveness of stacking models for 

effort estimation in Agile environments, there remains considerable scope for future 

enhancements. One key area for improvement is the inclusion of richer project-related data. 

Integrating detailed information about project management practices, such as how teams 

respond to changes in requirements, manage unexpected delays, or address technical obstacles, 

could significantly enhance the realism and accuracy of effort predictions. 

For instance, incorporating data on previous risk incidents and their mitigation strategies 

would allow models to learn from historical challenges and better anticipate similar issues in 

new projects. This approach could help build more robust predictive systems that adapt not only 

to project size and scope but also to organizational behavior and team resilience under varying 

circumstances. 

Additionally, future work could explore the adaptation of the proposed model to a wider 

range of Agile methodologies. While this research focused on a general Agile framework, 

methodologies like Kanban, Extreme Programming (XP), and lean each have unique practices 

and workflows that may influence estimation needs. Developing flexible models that can 
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accommodate these methodological differences would extend the applicability of the research 

and ensure broader relevance across Agile implementations. 

Moreover, the study suggests that the development of real-time prediction models, 

capable of continuously updating based on live project data, would be a valuable contribution 

to Agile project management. By incorporating real-time data feeds on project progress, team 

performance, and external factors such as market conditions, a dynamic prediction model could 

provide ongoing effort estimations throughout the lifecycle of a project. This would allow teams 

to make timely adjustments to their strategies and avoid the costly consequences of 

misestimations that are often discovered too late in the process. 

Finally, collaboration with industry practitioners to validate these models in real-world 

settings will be crucial for further refinement and fine-tuning. Although the study’s 

experimental results are promising, applying the models in real-world Agile projects will 

provide valuable insights into their practicality, adaptability, and scalability. This collaboration 

will not only help enhance the model’s accuracy but also ensure its usability in different 

organizational contexts. By combining academic rigor with practical application, the research 

can contribute to the adoption of machine learning-based estimation techniques within the 

software development industry, ultimately leading to more efficient project management and 

successful outcomes. 

In conclusion, while the current research has laid a strong foundation for using ensemble 

learning models in Agile effort estimation, future efforts should focus on enriching the data 

used, adapting the models to various Agile methodologies, and integrating real-time predictive 

capabilities to further enhance the accuracy and adaptability of these models in dynamic project 

environments. 
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APPENDIX A 

QUESTIONNAIRE 

 

 

 

Respected Participant,  

 

I'm a research student in NUML University, Islamabad. My research topic is effort 

estimation in agile software development using Machine Learning. For this research, I proposed 

a model that will automatically estimate the software effort for the software projects. To train 

the ML model, I need software project information from the Pakistani software industry. The 

attributes (needed for this research) and their brief description are described in the attached 

document. You can provide the information of your projects by filling the form in the google 

form in the link below: Software development effort estimation (SDEE) is a crucial component 

of software management, which measures the effort of developing software. The process of 

estimation of software involves predicting the size of the software product, necessary 

development efforts, project schedules, and an estimation of the project's final cost. The 

information of attachment: 

https://docs.google.com/forms/d/1eoHdrT7oy0d2zNTu8hCHJV-

4bp7cDni6Qdfu29FD8bw/edit?usp=drivesdk 

Effort estimation in agile software development: 

During effort estimation, we determine the order in which the various tasks must be 

carried out to finish the project. Calculate the amount of time (in person-hours or days) needed 

to finish each task. Software effort estimation provides accurate estimates about the software 

development team or the size of the team. Budgeting, risk analysis, and project planning are 

just a few of the uses for effort estimation. Additionally, it aids in determining the resources 

that must be allocated to the project and their efficiency. This study helps to prioritize and 

categorize development projects according to the overall business plan. The effort estimation 

process is very critical because the success or failure of a project depends entirely on effort 

estimation. The attributes of effort estimation dataset are described below. 
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Sprint Size: Team needs to able to get user stories done/time required to complete any 

user story 

Initial Velocity: Amount of effort completed per unit of time. There are some factors 

that may affect the velocity. These factors are friction forces and dynamic forces.  

Friction forces: Friction forces are those negative forces that have negative impact on 

project productivity. They reduce team velocity. These forces may reduce by project manager 

or developer but cannot be eliminated. 

Category Factors 

Product Factor Product nature, product category, product usage, product 

performance & quality, product development complexity. 

Project Factor Project Constraints, Project Characteristics, Project Management, 

Risk Management 

People Factor Personal Expertise, Tool Expertise, Tool Availability 

Process Factor Process Maturity & stability 

 

Dynamic forces: dynamic forces are often unexpected and unpredictable. these forces 

may cause project decelerate and cause loss of velocity. The following Dynamic Forces are 

selected that affect estimation process. Expected Team Changes, Introduction of New Tools, 

Vendor’s Defect, Team member’s responsibilities outside the project, Personal Issues, 

Expected Delay in Stakeholder response, Expected Ambiguity in Details, Expected Changes in 

environment, Expected Relocation. 
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Deceleration: Negative rate of change of velocity. Hence my case deceleration is the 

product of friction and dynamic forces and its effect team velocity 

Final Velocity: Since Team velocity is deaccelerated by Friction Forces and Dynamic 

Forces. Thus, the final team velocity (V) is obtained by optimizing Vi as under 

Deacceleration 𝐷 =1/(𝐹𝑅∗𝐷𝐹) V 

The final velocity is calculated as 

𝑉 = (𝑉𝑖)D 

Actual Time: After the completion project we determined the time, the team invest 

Actual cost: After the completion project we determined the cost 

I am very thankful to you if you fill this form and it will help me in my research. 
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SR.

NO 

Question Response data 

Section 1: General Project questions 

1 What is your organization name?  

2 What was project name?  

3 What was project ID? (Not Compulsory)  

    Section 2: Project Scope and effort 

4 
What was the number of user stories for completion whole project? 

 

5 what was unit of effort completed in sprint?  

Section 3: Time and cost consideration 

6 what was sprint size?  

7 How many work days was in a month?  

8 
How much salary were required for team per month? (Approximately) 

 

Section 4: Project challenges and influences 

9 
what was the friction forces that affect the project regarding project, 

product, process, personal aspect?  

10 

 

what was the dynamic forces that affect project? 
 

Section 5: Project timeline and budget 

11. 
what was the actual time period in which you complete the project? 

 

12 
what was the actual cost/budget when you start the project? 
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APPENDIX B 

 

Software Houses Information 

SR.NO Software House 

Name 

Employe

e Size 

Domain 

1 Ninesol 

Technologies 

201-500  Android IOS 

application 

2 Funsol 

Technologies 

201-500 Android IOS 

application 

3 Join App studio 51-200 Android IOS 

application 

4 Netsol 

Technologies 

1001-

5000 

Client Base 

and Mobile 

application 

5 Autoadvisors.com 11-50 Web 

applications 

6 Emumba 201-500 Web 

applications 

7 Graana.com 501-1000 Web 

applications 

8 9D technologies 51-200 Android IOS 

application 

9 Techinn 360 10-5 Web 

applications 

10 Beta Angels 11-50 Android IOS 

application 

11 Funtash 

Technologies 

51-200 Web 

applications 
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