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ABSTRACT 

 

 

Title: Exact Solutions for Oldroyd-B Fluid over an Oscillating Plate 

 

This thesis presents a comprehensive study of Oldroyd-B fluid over an oscillating plate. The 

primary focus is to analyze the steady-state, incompressible flow characteristics of an Oldroyd-

B fluid. The solutions for the velocity field 𝑢(𝑦, 𝑡) and shear stress 𝜏(𝑦, 𝑡) are investigated. 

The governing equations are solved by integral transforms (Fourier sine and Laplace 

transforms). Both the results of the velocity field 𝑢(𝑦, 𝑡) and shear stress 𝜏(𝑦, 𝑡) are written in 

terms of convolutions theorem, elementary functions, and simple integral forms, satisfying all 

initial and boundary conditions. The obtained solutions are graphically analyzed for the 

variations of interesting flow parameters by using Mathematica software It has been observed 

that, when we increase relaxation time parameter the velocity profile also increases while shear 

stress decreases. On the other hand, when we increase retardation time parameter, the velocity 

profile along with shear stress decreases from maximum values to zero values. Moreover, the 

similar solutions for Maxwell, second-grade, and Newtonian fluid performing the same 

motions, are also obtained. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

1.1 Oscillating plate 

An oscillating plate is a rigid layer that moves periodically, either rotating or oscillating 

back and forth, within a fluid. This motion generates oscillatory fluid movement around the 

plate. Understanding the relationship between surrounding fluid flows and solid structures is 

often achieved by studying oscillating plates. The oscillation of a plate can be characterized by 

variables such as frequency, amplitude, and the type of motion (e.g., translational or rotational). 

Researchers frequently use experimental methods and mathematical simulations to investigate 

the fluid-structure interactions associated with oscillating plates. These innovations are 

increasingly being applied across various fields. Sheikholeslami et al. [1] investigated the 

effects of radiation and heat generation on the rapid magnetohydrodynamic (MHD) movement 

of a reflective and conductive nanofluid passing over an oscillating vertical plate in a porous 

medium. Patel et al. [2] examined the MHD flow of a Casson fluid over an oscillating 

perpendicular plate in a rotational system, considering the effects of accelerating wall 

temperature, wall radiation, heat generation, Hall currents, and chemical reactions. Ali Abro et 

al. [3] presented a mathematical analysis of an oscillating plate and extended it to fractional 

Burgers' fluid flow with electrical conduction. Reyaz et al. [4] investigated the effects of radiant 

heat on the MHD flow of a Casson fluid near an oscillating vertical plate, providing insights 

into fractional derivatives. Endalew et al. [5] studied how energy and mass transfer properties 

influence isotropic, inflexible Casson fluid flow over an oscillating plate. Farooq et al. [6] 

examined on the energy and mass transfer dynamics of oscillating Maxwell nanofluid flows. 

Asmat et al. [7] investigated Stokes' second problem, analyzing the motion of a semi-infinite, 

viscous, and insoluble fluid driven by an oscillating flat plate. Oscillating plates are used in 

various applications within fluid mechanics. It generates shear and turbulence, which enhances 

mixing in fluids, improving homogeneity in chemical processes or food production. Oscillating 
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plates can increase heat transfer rates by disturbing the boundary layer, which enhances 

convective heat transfer. Oscillating plates can be used to study the movement and deposition 

of particles in water channels or rivers. [8-9] 

 

 

1.2 Maxwell Fluids 

  

Maxwell fluids are fundamental for understanding and predicting the behavior of 

materials that do not fall strictly into the categories of purely elastic solids or purely viscous 

liquids. They provide a framework for analyzing complex, time-dependent responses. Zhang 

et al. [10] investigated the transformation of Maxwell fluids under slip and no-slip conditions 

into standard Maxwell fluids. They demonstrated that viscous fluids move more slowly than 

Maxwell fluids, while ordinary fluids move faster than fractional fluids. Hsiao et al. [11] 

examined an improved parameter control approach to an energy conversion problem in an 

industrial manufacturing system with temperature insertion. They examined energy transfer 

from mass to heat at a stagnation point, alongside the combined effects of electrical MHD 

Ohmic heating and forced and free convection airflow in an incompressible Maxwell fluid. 

Asif et al. [12] studied the flow induced by the movement of a flat bottom plate under slip 

boundary conditions, focusing on clasped flows of an incompressible Maxwell fluid with a 

non-integer order derivative and a non-unique kernel. Hayat et al. [13] examined a simplified 

model of the homogeneous-heterogeneous process for Maxwell fluid flow over a stretched 

surface. Riaz et al. [14] studied the time-dependent magnetohydrodynamic (MHD) flow of a 

Maxwell fluid with Newtonian heating effects near a vertical plate, employing a comparative 

approach. For fractional-time derivatives, the Caputo (C), Caputo-Fabrizio (CF), and 

Atangana-Baleanu (ABC) models were used to describe the Maxwell fluid's behavior. Yang et 

al. [15] examined the flow and heat transfer characteristics of a double fractional Maxwell fluid 

using a second-order slip model. Liu et al. [16] investigated rigid, steady, and homogeneous 

liquid edge flow and heat transfer along an oscillating plate. Abdeljawad et al. [17] analyzed 

the effects of heat generation and absorption on time-dependent MHD Maxwell fluid flow near 

an infinite plate immersed in a porous medium, considering startup velocity and increasing 

temperature. Megahed et al. [18] theoretically examined the MHD steady flow of a non-

Newtonian Maxwell fluid driven by an elastic sheet placed within a porous medium under 

turbulent surface conditions. Asjad et al. [19] explored the unstable free convection flow of a 
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Maxwell fluid containing clay nanoparticles. Hanif et al. [20] investigated the two-dimensional 

boundary layer circulation and heat transfer of proportional Maxwell fluid with constant 

heating, presenting a novel Crank-Nicolson-based numerical algorithm. 

 

 

1.3  Oldroyd-B Fluids 

The Oldroyd-B fluid model is an essential framework in the study of viscoelastic fluids, 

providing tools to analyze and predict the flow behavior of materials with significant effects. 

It effectively captures the complex interplay between viscous and elastic properties. This 

concept was originally introduced by the British mathematician J.G. Oldroyd and is often used 

to describe the rheological properties of polymerized liquids or polymer solutions. Abbasi et 

al. [21] examined the Cattaneo-Christov heat transfer model for the flow of an incompressible 

Oldroyd-B fluid over a linearly stretched sheet in a two-dimensional stratified boundary layer. 

Their study included an analytical solution to boundary layer problems. Farooq et al. [22] 

investigated a computational framework to model the three-dimensional flow of Oldroyd-B 

fluids, incorporating the effects of Soret and Dufour numbers on combined convection. 

Elhanafy et al. [23] examined a normalized Galerkin least-squares finite element framework 

for digitally modeling Oldroyd-B viscoelastic fluids. Hafeez et al. [24] investigated the 

movement of Oldroyd-B fluids through a rotating disk, adopting the Cattaneo-Christov 

principles for mass and heat transfer. Shaqfeh et al. [25] studied detailed simulations and 

analyses of reduced polymer mixtures, emphasizing their behavior under Oldroyd-B flow 

dynamics. Khan et al. [26] studied the magnetohydrodynamic (MHD) flow of Oldroyd-B fluids 

over an oscillating disk, focusing on the regulation of heat and mass transfer. Awan et al. [27] 

examined the thermodynamic behavior of viscoelastic fluids, highlighting how delayed 

elasticity and stress onset can lead to relaxation and retardation phenomena. Their work 

specifically analyzed Oldroyd-B fluids under slip boundary conditions to better understand the 

distinctions between relaxation and retardation effects. Bashir et al. [28] investigated the 

behavior of a non-conducting, two-dimensional Oldroyd-B fluid flowing over a stretching 

sheet, including the formation of thermophoretic particles. Riaz et al. [29] examined the 

influence of external slip conditions on the flow of Oldroyd-B fluids over an infinitely 

stretching plate with consistent heating. Wang et al. [30] studied how an exponential basis 
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function approach modifies the hydrodynamic properties of fluids and its applicability in 

numerical simulations. 

 

1.4 Integral Transform 

Integral transforms are mathematical tools widely used in fluid mechanics to simplify 

complex equations and examine equations describing fluid dynamics. These transforms help 

express quantities in more manageable mathematical forms, enabling easier solutions to fluid 

flow problems. One of the most commonly used integral transforms in fluid mechanics is the 

Laplace transform. Additionally, other transforms, such as the Fourier transform, are also 

employed depending on the nature of the problem. Cotta et al. [31] examined the Generalized 

Integral Transform Technique (GITT), a hybrid numerical-analytical method designed to 

address flow problems involving mass and heat transfer. In another study, Cotta et al. [32] 

studied that fluid flow and transport in fractured porous media can be effectively resolved using 

GITT in conjunction with a single-domain reformulation approach and a coupled eigenvalue 

solution framework. Jafari et al. [33] investigated the importance of integral transforms in 

solving practical problems, showing that differential and integral equations can be reduced to 

simpler equations by selecting appropriate transforms. Mahfoud et al. [34] examined the effects 

of magnetic fields and buoyancy forces on vortex breakdown cycles in rotating electrically 

conducting fluids, utilizing GITT to analyze the phenomena. Cotta et al. [35] studied the 

application of GITT, illustrating that when combined with single-domain reformulation, it 

produces accurate, reliable, and cost-effective simulations for determining temperature 

distributions within a domain. 

 

 

1.5    Exact Solutions 

In fluid mechanics, the term "exact solutions" refers to analytical solutions of governing 

equations that describe the behavior of fluids. These solutions provide explicit computations 

for fluid motion under specific conditions, obtained through mathematical techniques such as 

integration, differentiation, and equation manipulation. Wang et al. [36] studied the oscillatory 

flow of a Maxwell fluid in an extended rectangular tube. They developed quantitative 
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computations for velocity profiles and phase distinctions, with a particular focus on analyzing 

the instabilities of the exact solutions. Jamil et al. [37] investigated the extended tackle 

approach to identify precise methods for characterizing complex and unstable 

magnetohydrodynamic (MHD) viscoelastic flow patterns within a porous medium. Murtaza et 

al. [38] studied the importance of exact solutions, noting that they serve as benchmarks for 

validating numerical and experimental results. Fetecau et al. [39] studied a detailed analysis to 

establish exact solutions for various unsteady flows of incompressible Upper-Convected 

Maxwell (UCM) fluids over a solid plate. Their study provided dimensionless formulations for 

velocity and stress fields. Baranovskii et al. [40] investigated the mechanical-to-thermal energy 

transfer in heat exchange equations. They derived new exact solutions for the longitudinal, 

non-isothermal flow of a second-grade fluid in a cylindrical duct with impermeable wall 

thicknesses. Their findings highlighted that atmospheric pressure imbalances, which are time-

invariant, drive the fluid motion, while various boundary conditions were imposed on the 

stream walls. 

 

1.6    Contributions to the Thesis 

This thesis includes an overview of Abro et al. [42] has been introduced, followed by 

an expansion of the flow assessment by using Oldroyd-B fluid on an oscillating plate with 

Dirichlet boundary conditions. The main focus is to find an exact solution by using integral 

transforms (Fourier sine and Laplace transforms). The mathematical software Mathematica is 

utilized to construct graphs that explain the numerical outcomes. The impact of dimensionless 

elements is examined thoroughly. 

 

 

1.7    Thesis Organization 

An overview of the thesis's main points is given in the following: 

 

 Chapter 1 provides an introduction to the thesis and presents a summary of the main 

concepts and the research involved. 
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Chapter 2 provides some fundamental definitions, which are used during the research. 

 

Chapter 3 provides a review work of Abro et al. [42]. 

 

Chapter 4 is the extended work of Abro et al. [42]. In this, we consider unsteady, 

incompressible Oldroyd-B fluid lies over an infinite flat plate. The solution of velocity field 

and shear stress are obtained from integral transforms. 

 

Chapter 5 gives a summary of the entire research work and the potential future research 

applications.  

 

References the Appendix includes a compilation of sources examined during the course of this 

thesis. 
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CHAPTER  2 

BASIC DEFINITIONS  

2.1 Fluid Mechanics 

 Examination of the movement of fluids, which is the study of how liquids behave when 

they are moving or at rest, as well as how fluids interact with solids or other fluids at boundaries, 

is known as fluid mechanics. [41] 

 

2.2     Fluid 

Anything that has no shape and can flow is called a fluid. It is a state of matter that can 

be identified by its capacity to change shape and adopt the form of its surroundings. Both gases 

and liquids are considered fluids. [41] 

 

2.3     Flow 

The movement or motion of a fluid is referred to as flow in fluid mechanics. Various 

forms of flow are defined as follows. 

 

2.3.1 Steady/unsteady Flow 

When there is steady flow, the fluid's velocity never changes over time; when there is 

unsteady flow, the velocity varies. Unsteady flow is exemplified by flow around an oscillating 
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airfoil or beginning flow within a channel, while laminar flow within a station at a constant 

rate is termed as steady flow. 
 

 

2.3.2     Laminar / Turbulent Flow 

Smooth, clearly defined streamlines and organized movement of fluids are features of 

laminar flow, such as raindrops, pollen, and blood cells in plasma. On the other hand, chaotic 

and irregular motion, frequently accompanied by swirling vortices, characterizes turbulent flow. 

Typical examples of turbulent flow are seen in blood circulation through arteries and the 

transportation of oil in pipelines, flow through pumps then turbines, and the wake created by 

boats. 

 

2.3.3    Compressible / Incompressible Flow 

When a fluid's density is greatly impacted by changes in temperature and pressure, 

compressible flow takes place, such as shaving cream, oxygen cylinders, pump, etc. 

Incompressible flow is a kind of fluid flow where the fluid's density either stays almost constant 

or barely changes while the fluid is moving such that minimal density changes occur in 

incompressible flows. Oil, honey, and water are examples of incompressible flow.  

 

2.4     Stress 

Fluid stress can be characterized as the force per unit area exerted an opposing direction 

to a small surface element within the fluid. 

 

                                                 Stress =
୊୭୰ୡୣ

୅୰ୣୟ
 .                                                           (2.1) 

It is measured in N𝑚ିଶ or in SI system and has dimensions [ 
ெ

௅்మ ] . 

 

2.4.1     Shear Stress 

In fluid mechanics, the force imparted to a liquid per unit area is known as shear stress 
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which is parallel to a specific surface. It symbolizes a fluid's internal resistance to deformation 

in the presence of parallel forces. There is no shear stress in a fluid when it is at rest. [41] 

 

2.5     Viscosity 

A liquid has internal resistance to flow when it moves. This resistance to shear or flow 

is measured by viscosity. Simply, it indicates how "thick" or "sticky" a fluid is, or how easily 

it can flow. Two ways to characterize viscosity are as follows: 

 

2.5.1     Dynamic Viscosity 

Absolute viscosity (𝜇), sometimes known as dynamic viscosity, is a measurement of 

the proportion of shear stress to velocity gradient i.e., 

 

                                               𝜇 =
ୗ୦ୣୟ୰ ୗ୲୰ୣୱୱ

୚ୣ୪୭ୡ୧୲୷ ୥୰ୟୢ୧ୣ୬୲
 .                                                  (2.2) 

 

The dynamic viscosity is measured in  
ே௦

௠మ  or kg / m.s (SI. System) and the relevant dimensions 

are mentioned to be [
ெ

௅்
]. 

 

2.5.2    Kinematic Viscosity 

The relationship among density and total viscosity be shown using kinematic viscosity. 

It can be expressed as, 

 

                                             ν =
ஜ

஡
 .                                                                          (2.3)                                 

It has units of  
௠మ

௦
  and the dimensions are [

𝐿2

𝑇
] 
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2.6    Newtonian Fluid 

A liquid is referred to as Newtonian when its viscosity doesn't change regardless of the 

shear stress applied to it. The viscosity law of Newton is followed, arguing that the shear rate 

of the fluid is exactly proportional to its shear stress. Mostly gases, water, and air are some 

examples of Newtonian fluids. [41] 

 

2.7     Non-Newtonian Fluid 

It states that in a fluid, the shear rate and the shear stress are directly correlated. The 

connection among shear stress and shear rate is more complicated in non-Newtonian fluids, 

and the viscosity can change depending on the applied stress or the rate of deformation. Some 

examples are blood, ketchup, and toothpaste. [41] 

 

2.8     Viscoelastic Fluids  

Materials that possess both flexible and sticky qualities are called viscoelastic fluids. In 

contrast to materials that are only viscous (like flows) or purely elastic (like solids), viscoelastic 

fluids exhibit both characteristics and respond to applied stress or deformation in a manner that 

varies over time. The primary categories of viscoelastic fluids are: 

 

2.8.1    Maxwell Fluids 

A Maxwell fluid is the simplest model viscoelastic material showing the properties of 

a typical liquid. On the long timescale, it shows viscous flow, but there is also extra elastic 

resistance to quick deformations.  
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2.8.2    Oldroyd-B Fluids 

Viscoelastic behavior takes on a more sophisticated and universal form in the Oldroyd-

B model. It has components that are both elastic and viscous, as well as a parameter that 

describes the material's retardation time. When describing the rheological structure of specific 

polymer compounds and polymer approaches, the Oldroyd-B model is widely used. 

 

2.9   Rheological Behavior  

In order to understand how materials flow and deform, rheology analyzes how their 

mechanical characteristics change in response to different forces, strains, and deformation rates. 

 

 

2.10    Relaxation/ Retardation Time Parameter 

Relaxation time can refer to the time it takes for a fluid to return in its equilibrium flow 

state after being disturbed. Relaxation time typically refers to the time it takes for stress to relax 

under a constant strain (a measure of how stress decreases over time), while retardation time 

focuses on the strain's time-dependent improvement under persistent stress. Although they 

characterize different features of the time-dependent response, both parameters are essential 

for understanding the viscoelastic behavior of materials. 

 

2.11    Laplace Transform 

Laplace transforms are used in the study of fluid dynamics to simplify the solution of 

linear ordinary and partial differential equations by converting them into algebraic equations. 

The Laplace transform  ℒ{𝑓(𝑡)} of a function 𝑓(𝑡) is demarcated as: 

 

 

                                          ℒ{𝑓(𝑡)} = 𝐹(𝑠) = ∫ 𝑒ି௦௧ஶ

଴
 𝑓(𝑡)𝑑𝑡.                                         (2.4) 
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The inverse Laplace transform is defined as: 

 

                                            ℒିଵ{𝐹(𝑠)} =  𝑓(𝑡) =  
ଵ

ଶగἱ
∫ 𝑒௦௧𝐹(𝑠)

ஶ

଴
𝑑𝑠.                                           (2.5) 

 

2.12     Fourier Sine Transform 

A function defined on the interval [0, ∞) can be transformed mathematically into an 

appropriate function in the domain of frequency via the Fourier Sine Transform. The Fourier 

sine transform ℱ௦(𝜉) of the function 𝑓(𝑥) is well-defined by means of: 

 

                                       ℱ௦ (𝜉) = ට
ଶ

గ
  ∫ 𝑠𝑖𝑛(𝜉𝑥)

ஶ

଴
𝑓(𝑥)𝑑𝑥,                                              (2.6) 

 

to recover the original function 𝑓(𝑥) from its Fourier sine transform ℱ௦ (𝜉), we use the inverse 

Fourier sine transform, which is given by: 

 

                                           𝑓(𝑥) =  ℱ௦
ିଵ{ℱ௦ (𝜉)} =  ට

ଶ

గ
  ∫ ℱ௦ (𝜉)𝑠𝑖𝑛(𝜉𝑥)

ஶ

଴
𝑑𝜉.                 (2.7)     

        

Choices of Integral Transforms: 

1. Fourier Transform 

o Use Case: For analyzing functions with infinite or periodic domains. 

o Domain: (−∞,∞) 

o Best for: Frequency domain analysis. 

2. Laplace Transform 

o Use Case: For functions defined on [0,∞). 

o Domain: [0,∞) 

o Best for: Solving ODEs/PDEs with initial conditions. 

3. Fourier Sine and Cosine Transforms 

o Use Case: For functions defined on [0, ∞). 

o Domain: [0,∞). 

o Best for: Boundary value problems. 
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2.13     Heaviside Function 

Step modifications to pressure, velocity, or other liquid-related quantities are frequently 

represented by the Heaviside function in fluid mechanics. In other words, at 𝑡 = 0, the step 

function 𝑢(𝑡) "turns on", a changeover from 0 to 1. As a mathematical tool, it describes events 

like the abrupt start or stop of a fluid flow by expressing abrupt changes in conditions at a 

specific time. 

 

 

2.14     Oscillatory Flows 

When fluid properties, like density, pressure, or velocity, move in predictable and 

periodic ways around a central or equilibrium state, it's referred to as oscillation in fluid 

dynamics.  Fluids can exhibit oscillatory flow patterns, particularly when there are recurring 

modifications to the boundary conditions or outside forces. Two instances are the oscillating 

motion in reciprocating pumps and the oscillatory flow in pipes. 

 

2.15    Equation of Continuity 

A key idea in fluid dynamics is the continuity equation, which explains how mass is 

conserved in fluid that moves. According to this, the rate of mass flow into any given fluid 

volume must equal the rate of mass flow out of that volume, plus any net mass buildup within 

the volume, for a fluid to be considered incompressible. In mathematics, the point of divergence 

of the motion of a fluid field is commonly employed to express the continuity equation. For an 

incompressible fluid in three dimensions, the continuity equation can be written as: 

 

                                                  𝜵. 𝑽 = 0,                                                                     (2.8) 

 

where 𝑽 is the viscosity of the fluid. 
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2.16    Momentum Equation 

This equation shows implies the system's total momentum will constantly be conserved 

because it is physically tied to the law of conservation of momentum. When considering an 

incompressible fluid, the equation can be expressed as follows: 

 

                                               𝜌
ௗ𝑽

ௗ௧
= 𝑑𝑖𝑣 𝝉 + 𝜌𝒃 ,                                                     (2.7) 

 

where 𝜌 relates to density, 𝑽 is velocity, 𝝉 defines the Cauchy stress tensor, 𝜌𝒃 refers to body 

force per unit area. 
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CHAPTER 3 

     Exact Solutions for Maxwell Fluid over an Oscillating Plane  

3.1 Introduction 

 This chapter contains the precise solutions for Maxwell fluid over an oscillating plate 

are observed. The solutions for the Maxwell fluid's velocity field 𝑢(𝑦, 𝑡) and the shear stress 

𝜏(𝑦, 𝑡) using integral transforms (Laplace and Fourier Sine transforms), solutions are found. 

All initial and boundary conditions are satisfied by the formulas for the shear stress 𝜏(𝑦, 𝑡)  and 

the velocity field 𝑢(𝑦, 𝑡). The results are graphically displayed, and the influence of various 

parameters is discussed. Further, the result under the limiting conditions is found to be in good 

agreement with the existing one.  This chapter provides a detailed review of the research paper 

[42].  

3.2 Mathematical Formulation 

Consider the area that lies over the surface of a plate that is perpendicular to y −axis is 

filled with an incompressible Maxwell fluid. The fluid is at rest when  𝑡 ≤ 0, and the surface 

of the plate is suddenly caused to a constant velocity 𝑈 in its own plane at 𝑡 =  0ା. The fluid is 

moved slowly and gradually above the plate as a result of the tangential shear stress.  For the 

Maxwell liquid over a fluctuating plate, the outcomes are found by solving the differential 

equations that govern via the integral changes approach (Fourier sine and Laplace transform). 

The Cauchy’s stress tensor in a Maxwell fluid is of the following form;  

 

 𝑻 = −𝑝𝑰 + 𝑺,    𝑺 + 𝜆ଵ
஽𝑺

஽௧
= 𝜇𝑨𝟏 ,                                                   (3.1) 
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in which T stands for the stress tensor of Cauchy, −pI symbolizes the unidentified spherical 

stress, the extra stress tensor is denoted by S, relaxation time is represented by 𝜆ଵ, the viscosity 

is denoted by 𝜇 , the first Rivlin-Ericksen tensor is 𝑨𝟏  and 
஽

஽௧
  stands upper convective 

derivative is defined as. 

 

                                                    
஽𝑺

஽௧
=

ௗ𝑺

ௗ௧
 − 𝑳𝑺 − 𝑺𝑳𝑻,                                                           (3.2) 

where 

 

                                               𝑳 = (𝑔𝑟𝑎𝑑 𝑽)   𝑎𝑛𝑑      𝑳𝑻  = (𝑔𝑟𝑎𝑑 𝑽)𝑻 ,                                 (3.3) 

      

and 

 

                                               𝑨𝟏 = 𝑔𝑟𝑎𝑑 𝑽 + (𝑔𝑟𝑎𝑑 𝑽)𝑻 = 𝑳 +  𝑳𝑻.                                     (3.4) 

 

For incompressible movement, the constitutive equations are defined as follows, 

 

                                                      𝑑𝑖𝑣. 𝑽 = 0,                                                                         (3.5) 

 

and 

 

                                                    𝜌
ௗ𝑽

ௗ௧
= 𝑑𝑖𝑣. 𝝉 + 𝜌𝒃 .                                                             (3.6) 

 

Assuming that a velocity field 𝑽 and a specific type of extra stress tensor 𝑺, 

 

                                                    

                                                  𝑽 = 𝑽(𝑦, 𝑡) = 𝑢(𝑦, 𝑡)ἲ   ,      𝑺 = 𝑺(𝑦, 𝑡),                             (3.7) 

 

 

Using Eq.(3.7)ୟ  into Eqs. (3.3) − (3.4), we have 

 



 
 

 

          17 

                                        𝑳 = ቎
0

డ௨

డ௬
0

0 0 0
0 0 0

቏     𝑎𝑛𝑑   𝑳𝑻  = ቎

0 0 0
డ௨

డ௬
0 0

0 0 0

቏,                                       (3.8) 

and 

 

                                        𝑨𝟏  =   ቎
0

డ௨

డ௬
0

0 0 0
0 0 0

቏ + ቎

0 0 0
డ௨

డ௬
0 0

0 0 0

቏ =

⎣
⎢
⎢
⎡ 0

డ௨

డ௬
0

డ௨

డ௬
0 0

0 0 0⎦
⎥
⎥
⎤
.                       (3.9) 

 

Suppose that the fluid is at rest at 𝑡 = 0, and then, 

 

                                                 𝑢(𝑦, 0) = 0,        𝑠(𝑦, 0) = 0.                                               (3.10) 

 

 Therefore, Eq. (3.2) becomes 

 

                           
஽𝑺

஽௧
=   

⎣
⎢
⎢
⎢
⎡

డ

డ௧
𝑆௫௫  − 2𝑆௫௬  

డ௨

డ௬

డ

డ௧
𝑆௫௬  − 𝑆௬௬  

డ௨

డ௬

డ

డ௧
𝑆௫௭  − 𝑆௬௭  

డ௨

డ௬

డ

డ௧
𝑆௬௫  − 𝑆௬௬  

డ௨

డ௬

డ

డ௧
𝑆௬௬  

డ

డ௧
𝑆௬௭  

డ

డ௧
𝑆௭௫  − 𝑆௭௬  

డ௨

డ௬

డ

డ௧
𝑆௭௬  

డ

డ௧
𝑆௭௭  ⎦

⎥
⎥
⎥
⎤

,            (3.11) 

 

Since  𝑆௫௫  = 𝑆௬௬  =  𝑆௭௭  =  𝑆௫௭  =  0, so that, 

 

                                            
஽𝑺

஽௧
=   ൦

−2𝑆௫௬  
డ௨

డ௬

డ

డ௧
𝑆௫௬  0

డ

డ௧
𝑆௬௫ 0 0

0 0 0

൪.                                                  (3.12) 

 

Eq. (3.1)௕ becomes. 

 

                          ൥
0 𝑆௫௬ 0

𝑆௬௫ 0 0

0 0 0

൩ + 𝜆ଵ  ൦

−2𝑆௫௬ 
డ௨

డ௬

డ

డ௧
𝑆௫௬ 0

డ

డ௧
𝑆௬௫ 0 0

0 0 0

൪ = 𝜇 

⎣
⎢
⎢
⎡ 0

డ௨

డ௬
0

డ௨

డ௬
0 0

0 0 0⎦
⎥
⎥
⎤
.            (3.13) 

 

By using Eq. (3.13) into Eq. (3.1)ୟ and keeping in mind the Eq. (3.10), we get 
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                                          ቀ1 + 𝜆ଵ
డ

డ௧
ቁ 𝜏(𝑦, 𝑡) = 𝜇

డ௨ (௬,௧)

డ௬
.                                                       (3.14) 

 

When there is no body force, the linear momentum balance Eq. (3.6)  decreases to 
 

 

                                            
డఛ(௬,௧)

డ௧
 −

డ௣

డ௫
 = 𝜌

డ௨(௬,௧)

డ௧
 .                                                             (3.15) 

 

By eliminating 𝜏 among (3.14) and (3.15), we get 
 

                             ቀ1 + 𝜆ଵ
డ

డ௧
ቁ

డ௨

డ௧
= −

ଵ

ఘ
ቀ1 + 𝜆ଵ

డ

డ௧
ቁ

డ௣

డ௫
+ 𝜈

  డమ  ௨(௬,௧)

డమ௬
;       𝑦, 𝑡 > 0,              (3.16) 

 

in which 𝜈 =
ఓ

ఘ
   is a kinematic viscosity. The governing partial differential Eq. (3.16)for an 

incompressible Maxwell fluid executing the same movement when there's no distinction in 

pressure. 

 

                                             ቀ1 + 𝜆ଵ
డ

డ௧
ቁ

డ௨

డ௧
= 𝜈

డమ௨

డమ௬
 .                                                               (3.17) 

 

As defined, the initial and boundary conditions are; 

 

I.C                                𝑢(𝑦, 0) =
డ௨(௬,଴)

డ௧
 = 0, 𝑎𝑛𝑑  𝜏(𝑦, 0) = 0,    𝑦 > 0,                            (3.18) 

 

B. C                              𝑢(0, 𝑡) = 𝑈𝐻(𝑡)𝑠𝑖𝑛𝜔𝑡    𝑜𝑟   𝑈𝐻(𝑡)𝑐𝑜𝑠𝜔𝑡  𝑡 ≥ 0,                              (3.19) 

 

and 

  

                                     𝑢(𝑦, 𝑡),   
డ௨(௬,௧)

డ௬
→ 0 𝑎𝑠 𝑦 → ∞  𝑎𝑛𝑑      𝑡 > 0,                               (3.20) 

 

here, 𝐻(𝑡) represents the Heaviside function. 
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3.3      Calculation of the Velocity Field 

3.3.1    Case −𝑰 ∶ 𝑼𝑯(𝒕)𝒔𝒊𝒏𝝎𝒕 

To find the solution to governing Eq. (3.17)  and keeping in mind initial and boundary 

conditions (3.18), (3.19)௔  and (3.20), the Fourier sine transform in relation to the spatial 

variable is applied. Thus, multiplying Eq.(3.17)  by ඥ2/𝜋 𝑠𝑖𝑛(𝑦 ξ), integrating the result 

from 0 to ∞ with respect to 𝑦, we obtain. 

 

         
డ௨ೞ(క,௧)

డ௧
+ 𝜆ଵ  

డమ  ௨ೞ(క,௧)

డమ௧
= −𝜈𝜉ଶ 𝑢௦(𝜉, 𝑡) +  ට2

𝜋ൗ  𝜈𝜉𝑈𝐻𝑠𝑖𝑛𝜔𝑡,                         (3.21) 

 

where  𝑢௦(𝜉, 𝑡)  is the Fourier sine transform of  𝑢(𝑦, 𝑡), and it must satisfy the following 

conditions. 

 

                                  𝑢௦(𝜉, 0) =
డ ௨ೞ  (క,଴)

డ௧
= 0,      𝜉 > 0.                                                       (3.22) 

 

Moreover, using the Laplace transformation on Eq. (3.21)  and using the initial 

condition (3.22), we find that; 

 

                                       ū௦(𝜉, 𝑞) = ට2
𝜋ൗ   

௎ఔకఠ

(௤మ ାఠమ)[ఒభ௤మା௤ାఔకమ]
  .                                            (3.23) 

 

Now, we modify Eq. (3.23) in the following form. 

 

                                     ū௦(𝜉, 𝑞) =
௎ఠ

క
ට2

𝜋ൗ  ቄ
ଵ

(௤మାఠమ)
−

௤(ଵାఒభ௤)

(௤మାఠమ)[ఒభ௤మା௤ାఔకమ]
ቅ.                       (3.24) 

 

By using inverse Fourier sine transform, Eq. (3.24), becomes, 

 

                             ū௦(𝑦, 𝑞) =
ଶ௎ఠ

గ
∫

௦௜௡(௬క)

క

ஶ

଴
ቂ

ଵ

(௤మାఠమ)
−

௤(ଵାఒభ௤)

(௤మାఠమ)[ఒభ௤మା௤ାఔ మ]
 ቃ 𝑑𝜉,                  (3.25) 
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Now, inverting Eq. (3.25) by means of Laplace transform, we have 

 

                        𝑢௦(𝑦, 𝑡) = 𝑈𝐻(𝑡) 𝑠𝑖𝑛 𝜔𝑡 −
ଶ௎ (௧)ఠ

గఒభ(௤భି௤మ)
∫ ∫

௦௜௡(௬క)

క

௧

଴

ஶ

଴
𝑐𝑜𝑠 𝜔(𝑡 − 𝑢) ×

                                                   {(1 + 𝜆ଵ𝑞ଵ)𝑒௤భೠ − (1 + 𝜆ଵ𝑞ଶ)𝑒௤మೠ )}𝑑𝜉𝑑𝑢,                                 (3.26) 

 

where, 

                                           𝑞ଵ, 𝑞ଶ =  −
(ଵ)±ඥଵ  ିସఒభ(ఔకమ ) 

ଶఒ
,                                                          (3.27) 

 

are the roots of  𝜆ଵ𝑞ଶ + 𝑞 + 𝜈𝜉ଶ  = 0. 

 

 

3.3.2    Case −𝑰𝑰 ∶ 𝑼𝑯(𝒕)𝒄𝒐𝒔𝝎𝒕 

To find the solution to governing Eq. (3.17)  and keeping in mind initial and boundary 

conditions (3.18), (3.19)𝑏 and (3.20), the Fourier sine transform in relation to the spatial 

variable is applied. Thus, multiplying Eq.(3.17) by ඥ2/𝜋 𝑠𝑖𝑛(𝑦ξ), integrating the outcome 

from 0 to ∞ with respect to 𝑦, we obtain; 

 

          
డ௨ೞ(క,௧)

డ௧
+ 𝜆ଵ  

డమ  ௨ೞ(క,௧)

డమ௧
= −𝜈𝜉ଶ 𝑢௦(𝜉, 𝑡) +  ට2

𝜋ൗ  𝜈𝜉𝑈𝐻𝑐𝑜𝑠𝜔𝑡,                        (3.28) 

 

where  𝑢௦(𝜉, 𝑡)  is the Fourier sine transform of  𝑢(𝑦, 𝑡), and it must satisfy the following 

conditions; 

 

                                       𝑢௦(𝜉, 0) =
డ ௨ೞ  (క,଴)

డ௧
= 0,      𝜉 > 0.                                                  (3.29) 

 

Moreover, applying the Laplace transform on Eq. (3.28)  and by means of the initial 

condition (3.18), we find that; 

 

                                    ū௦(𝜉, 𝑞) = ට2
𝜋ൗ   

௎ఔక௤

(௤మ ାఠమ)[ఒభ௤మା௤ାఔకమ]
 .                                                (3.30) 
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Now, we modify Eq. (3.30) in the following form; 

 

                                     ū௦(𝜉, 𝑞) =
௎௤

క
ට2

𝜋ൗ  ቄ
ଵ

(௤మାఠమ)
−

௤(ଵାఒభ௤)

(௤మାఠమ)[ఒభ௤మା௤ାఔకమ]
ቅ.                         (3.31) 

 

By using the inverse Fourier sine transform, Eq. (3.31) becomes, 

 

                                 ū௦(𝑦, 𝑞) =
ଶ௎௤

గ
∫

௦௜௡(௬క)

క

ஶ

଴
ቂ

ଵ

(௤మାఠమ)
−

௤(ଵାఒభ௤)

(௤మାఠమ)[ఒభ௤మା௤ାఔకమ]
 ቃ 𝑑𝜉.            (3.32) 

 

Inverting Eq. (3.32) by means of Laplace transform, we have 

 

                                 𝑢௖(𝑦, 𝑡) = 𝑈𝐻(𝑡) 𝑐𝑜𝑠 𝜔𝑡 −
ଶ௎ு(௧)ఠ

గఒభ(௤భି௤మ)
∫ ∫

௦௜௡(௬క)

Ɛ

௧

଴

ஶ

଴
𝑠𝑖𝑛 𝜔(𝑡 − 𝑢) ×

                                                        {(1 + 𝜆ଵ𝑞ଵ)𝑒௤భೠ − (1 + 𝜆ଵ𝑞ଶ)𝑒௤మೠ )}𝑑𝜉𝑑𝑢.                            (3.33) 

 

where, 𝑞ଵ and 𝑞ଶ are the same given in Eq. (3.27). 

 

       

3.4    Calculations of the Shear Stress 

3.4.1    Case −𝑰 ∶ 𝑼𝑯(𝒕)𝒔𝒊𝒏𝝎𝒕 

By applying the Laplace transform to the Eq. (3.14), we get 

 

                             𝜏̅(𝑦, 𝑞) =
ఓ

(ଵାఒభ௤)
 
డ௨ഥ(௬,௤)

డ௬
,                                                                  (3.34) 

 

where Laplace transform of  𝜏(𝑦, 𝑡) is  𝜏̅(𝑦, 𝑞). Now, differentiate Eq. (3.25) w.r.t  ‘𝑦', we 

obtain 

 

                        
డ௨ഥ(௬,௤)

డ௬
=

ଶ௎ఠ

గ
∫ 𝑐𝑜𝑠(𝑦𝜉)

ஶ

଴
ቂ

ଵ

(௤మାఠమ)
−

௤(ଵାఒభ௤)

(௤మାఠమ)[ఒభ௤మା௤ାఔకమ]
 ቃ 𝑑𝜉.                      (3.35) 
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Using Eq. (3.35) into Eq. (3.34), we get 

 

                 𝜏̅(𝑦, 𝑞) =
ఓ

(ଵାఒభ௤)
ቂ

ଶ௎ఠ

గ
∫ 𝑐𝑜𝑠(𝑦𝜉)

ஶ

଴
ቄ

ଵ

(௤మାఠమ)
−

௤(ଵାఒభ௤)

(௤మାఠమ)[ఒభ௤మା௤ାఔకమ]
ቅ 𝑑𝜉ቃ,            (3.36) 

 

and after simplification above Eq. (3.36) becomes 

 

                  𝜏̅(𝑦, 𝑞) =
ଶ௎ఠఓ

గ
∫ 𝑐𝑜𝑠(𝑦𝜉)

ஶ

଴
ቂ

ଵ

(௤మାఠమ)(ଵାఒభ௤)
−

௤

(௤మାఠమ)[ఒభ௤మା௤ାఔకమ]
 ቃ 𝑑𝜉.             (3.37) 

 

 Applying the inverse Laplace transform to Eq. (3.37), we get 

 

        𝜏௦ (𝑦, 𝑡) = −
ଶ௎ு(௧)ఠఓ

గఒభ(௤భି௤మ)
∫ ∫ 𝑐𝑜𝑠(𝑦𝜉) 𝑐𝑜𝑠𝜔(𝑡 −  𝑢) (𝑒௤భೠ − 𝑒௤మೠ )𝑑𝜉𝑑𝑢

௧

଴

ஶ

଴
.                 (3.38) 

 

 

3.4.2    Case −𝑰𝑰 ∶ 𝑼𝑯(𝒕) 𝒄𝒐𝒔 𝝎𝒕 

Similarly, differentiate Eq. (3.32)  w.r.t y, we get 

 

                        
డ௨ഥ(௬,௤)

డ௬
=

ଶ௎௤

గ
∫ 𝑐𝑜𝑠(𝑦𝜉)

ஶ

଴
ቂ

ଵ

(௤మାఠమ)
−

௤(ଵାఒభ௤)

(௤మାఠమ)[ఒభ௤మା௤ାఔకమ]
 ቃ 𝑑𝜉.                   (3.39) 

 

Substitute above Eq. (3.39) into Eq. (3.34), we obtain 

 

                  𝜏̅(𝑦, 𝑞) =
ఓ

(ଵାఒభ௤)
ቂ

ଶ௎௤

గ
∫ 𝑐𝑜𝑠(𝑦𝜉)

ஶ

଴
ቄ

ଵ

(௤మାఠమ)
−

௤(ଵାఒభ௤)

(௤మାఠమ)[ఒభ௤మା௤ାఔకమ]
ቅ 𝑑𝜉ቃ.           (3.40)     

 

 After simplification Eq. (3.40) becomes 

 

                     𝜏̅(𝑦, 𝑞) =
ଶ௎௤ఓ

గ
∫ 𝑐𝑜𝑠(𝑦𝜉)

ஶ

଴
ቂ

ଵ

(௤మାఠమ)(ଵାఒభ௤)
−

௤

(௤మାఠమ)[ఒభ௤మା௤ାఔకమ]
 ቃ 𝑑𝜉.          (3.41) 

 

Finally, applying inverse Laplace transform to Eq. (3.41), we get 
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      𝜏௖ (𝑦, 𝑡) = −
ଶ௎ு(௧)ఠఓ

గఒభ(௤భି௤మ)
∫ ∫ 𝑐𝑜𝑠(𝑦𝜉) 𝑠𝑖𝑛𝜔(𝑡 −  𝑢)

௧

଴

ஶ

଴
(𝑒௤భೠ − 𝑒௤మೠ )𝑑𝜉𝑑𝑢.                  (3.42) 

 

                       

3.5     Limiting Case: A Newtonian Fluid ( 𝝀𝟏 → 𝟎 ) 

When evaluating the limit  𝜆ଵ → 0 into Eqs.(3.26), (3.33), (3.38) and (3.42), we obtain a 

similar solution of velocity field and shear stress for Newtonian fluid [42]. 

 

 

              𝑈ௌே  = 𝑈𝐻(𝑡) 𝑠𝑖𝑛 𝜔𝑡 −
ଶ௎ு(௧)ఠ

గ
∫ ∫

௦௜௡(௬క)

క

௧

଴

ஶ

଴
𝑐𝑜𝑠 𝜔(𝑡 − 𝑢) 𝑒ିఔకమ

𝑑𝜉𝑑𝑢,     (3.43) 

     

 

             𝑈஼ே  = 𝑈𝐻(𝑡) 𝑐𝑜𝑠 𝜔𝑡 −
ଶ௎ு(௧)ఠ

గ
∫ ∫

௦௜௡(௬క)

క

௧

଴

ஶ

଴
𝑠𝑖𝑛 𝜔(𝑡 − 𝑢) 𝑒ିఔకమ

𝑑𝜉𝑑𝑢,     (3.44) 

 

 

               𝜏ௌே (𝑦, 𝑡) = −
ଶ௎ (௧)ఠఓ

గ
∫ ∫ 𝑐𝑜𝑠(𝑦𝜉) 𝑐𝑜𝑠𝜔(𝑡 − 𝑢)

௧

଴

ஶ

଴
 𝑒ିఔకమ

𝑑𝜉𝑑𝑢,             (3.45) 

 

and   

                 𝜏஼ே  (𝑦, 𝑡) = −
ଶ௎ு(௧)ఠఓ

గ
∫ ∫ 𝑐𝑜𝑠(𝑦𝜉) 𝑠𝑖𝑛𝜔(𝑡 −  𝑢)

௧

଴

ஶ

଴
 𝑒ିఔకమ

𝑑𝜉𝑑𝑢.           (3.46) 
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3.6     Results and Discussions 

To produce comprehensive graphical results pertaining to the problem, numerous 

computer calculations have been carried out. The solutions for an oscillating flow of an 

incompressible Maxwell fluid across a flat plate are provided in this chapter. The movement in 

the fluid is caused by plate oscillation.  For the Maxwell fluid across an oscillating plate, using 

integral transform techniques (Fourier sine and Laplace transforms), the governing partial 

differential equations are solved to find the solution. These results fulfill all initial and 

boundary conditions. When 𝜆ଵ →0 executing the comparable motion, the generic Solutions for 

the motion of a Newtonian fluid are simplified and made more specific. Detailed graphs are 

used to demonstrate the numerical findings for the velocity profile 𝑢(𝑦, 𝑡)   and the 

accompanying shear stress 𝜏(𝑦, 𝑡) are plotted in Figures 3.1 − 3.4. We examine these findings 

in relation to the variations of the time parameter t , frequency 𝜔, relaxation time parameter 𝜆ଵ, 

and kinematic viscosity 𝜈.  

Figure 3.1 shows the influence of different values of time 𝑡  for 𝑡 = 0.1, 0.2, 0.3 and 0.5 on 

velocity profile obtained in Eq.  (3.26)  and corresponding shear stress of Eq. (3.38), 

respectively. In both cases, velocity profile and shear stress increase with respect to time 𝑡 from 

maximum values to zero values. Figure 3.2 shows the influence of relaxation time 

parameter at 𝜆ଵ = 1.0, 1.5, 2.0 and 4.0 on velocity profile and shear stress correspondingly. 

Shear stress and the velocity profile both reduce from maximum values to zero values in both 

situations. For viscoelasticity, the relaxation time has a point where the fluid's motion intersects. 

Figure 3.3  shows the influence of kinematic viscosity 𝜈  at different values of 𝜈 i.e. 𝜈 =

0.1, 0.2, 0.3 and 0.4 on the velocity profile and shear stress respectively. In both cases, velocity 

profile and shear stress increases from maximum values to zero values and clearly satisfies 

boundary conditions. It should be observed that, with regard to kinematic viscosity v, the fluid's 

velocity field is increasing function along with the shear stress.  Figure 3.4 shows the influence 

of the frequency parameter 𝜔 for 𝜔 = 1.0, 1.1, 1.3 and 1.5 on the velocity profile and shear 

stress respectively. It should be noted that velocity profile along with shear stress is an 

increasing function.
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Fig. 𝟑. 𝟏. Profile of the velocity field 𝑢௦(𝑦, 𝑡) and the shear stress 𝜏௦(𝑦, 𝑡) for 𝑈 = 1, 𝜈 = 2, 

𝜆ଵ = 2, 𝜔 = 5 and diverse values 𝑡. 

 

    

 

Fig. 𝟑. 𝟐. Profile of the velocity field 𝑢௦(𝑦, 𝑡) and the shear stress 𝜏௦(𝑦, 𝑡) for 𝑈 = 1, 𝜈 = 2, 

𝑡 = 1, 𝜔 = 5 and diverse values 𝜆ଵ.  
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Fig. 𝟑. 𝟑. Profile of the velocity field 𝑢௦(𝑦, 𝑡) and the shear stress 𝜏௦(𝑦, 𝑡)  for 𝑈 = 1, 𝜆ଵ = 2, 

𝑡 = 2, 𝜔 = 2 and changed values of  𝜈.  

 

  
 

 

Fig. 𝟑. 𝟒. The profile of the velocity field 𝑢௦(𝑦, 𝑡) and the shear stress 𝜏௦(𝑦, 𝑡) for 𝑈 = 1, 𝜆ଵ =

2, 𝑡 = 2, 𝜈 = 0.63 as well as dissimilar values of  𝜔. 
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CHAPTER 4 

Exact Solutions for Oldroyd-B Fluid over an Oscillating Plate  

4.1 Introduction 

In this chapter, the exact solutions for Oldroyd-B fluid over an oscillating plate is 

observed. The solutions for the velocity field 𝑢(𝑦, 𝑡)  and the shear stress 𝜏(𝑦, 𝑡)   for the 

Oldroyd-B fluid are derived using integral transforms, specifically Fourier sine and Laplace 

transforms. The terms 𝜏(𝑦, 𝑡) for shear stress and  𝑢(𝑦, 𝑡) for the velocity field, fulfill each and 

every initial and boundary conditions. To represent different physical scenarios, we created 

graphical representations using various combinations of variables. After collecting and 

examining the data, we conducted a comparative analysis to understand the results better. This 

analysis showed that our findings align well with the results of previous research, confirming 

the validity and reliability of the study. 

 
 

4.2 Geometry of the Problem                                                                                                                               

                                                                   𝒚                                                                                                                             

                                                                       

 

 

                                                                                                                                                  𝒙  

 

                         𝑢 (0, 𝑡)  = 𝑈 𝐻(𝑡)𝑠𝑖𝑛𝜔𝑡 or 𝑢 (0, 𝑡)  = 𝑈 𝐻(𝑡)𝑐𝑜𝑠𝜔𝑡 

                                             Fig 4.1: Geometry of the problem 
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4.3 Mathematical Formulation  

 Suppose the area that lies over the surface of a plate that is perpendicular to 𝑦 −axis is 

filled with an incompressible Oldroyd-B fluid. The liquid is at rest when  𝑡 ≤ 0, and the surface 

of the plate is suddenly caused by a constant velocity 𝑈 in its own plane at 𝑡 =  0ା. The liquid 

is transferred slowly and gradually above the plate as a result of shear stress. For the Oldroyd-

B fluid over a fluctuating plate, the outcomes are found by solving the differential equations 

that govern via the integral changes approach (Fourier sine and Laplace transform). The 

Cauchy’s stress tensor in an Oldroyd-B fluid  is of the following form;  

  

 

                              𝑻 = −𝑝𝑰 + 𝑺,    𝑺 + 𝜆ଵ  
஽𝑺

஽௧
= 𝜇𝑨𝟏 + 𝜇𝜆ଶ  

஽𝑨𝟏

஽௧
,                                   (4.1)    

 

in which T is the Cauchy stress tensor, −pI represents the unknown spherical stress, S is the 

extra stress tensor, 𝜆ଵ is the relaxation time, 𝜆ଶ is the retardation time, 𝜇 is the viscosity, 𝑨𝟏 is 

the first Rivlin Ericksen tensor and 
஽

஽௧
  is upper convective derivative defined below 

 

                                    
஽𝑺

஽௧
=

ௗ𝑺

ௗ௧
 − 𝑳𝑺 − 𝑺𝑳𝑻,                                                                    (4.2) 

 

where 

 

                                  𝑳 = (𝑔𝑟𝑎𝑑 𝑽)   𝑎𝑛𝑑      𝑳𝑻  = (𝑔𝑟𝑎𝑑 𝑽)𝑻,                                      (4.3) 

 

and 

 

                                      𝑨𝟏 = 𝑔𝑟𝑎𝑑 𝑽 + (𝑔𝑟𝑎𝑑 𝑽)𝑻 = 𝑳 +  𝑳𝑻.                                     (4.4)   

 

The flow with incompressible constitutive equations are defined as  

 

                                                𝑑𝑖𝑣. 𝑽 = 0,                                                                         (4.5) 

and 

                                            𝜌
ௗ𝑽

ௗ௧
= 𝑑𝑖𝑣. 𝝉 + 𝜌𝒃.                                                               (4.6) 
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Assuming that a velocity field 𝑽 and an extra stress tensor 𝑺 of a particular method,  

 

                                         𝑽 = 𝑽(𝑦, 𝑡) = 𝑢(𝑦, 𝑡)ἲ,         𝑺 = 𝑺(𝑦, 𝑡).                                 (4.7) 

 

Using Eq. (4.7)௔ into Eqs. (4.3)  −  (4.4), we have 

 

                                       𝑳 = ቎
0

డ௨

డ௬
0

0 0 0
0 0 0

቏     and   𝑳𝑻  = ቎

0 0 0
డ௨

డ௬
0 0

0 0 0

቏,                            (4.8) 

 

and 

                                     𝑨𝟏  =   ቎
0

డ௨

డ௬
0

0 0 0
0 0 0

቏ + ቎

0 0 0
డ௨

డ௬
0 0

0 0 0

቏ =

⎣
⎢
⎢
⎡ 0

డ௨

డ௬
0

డ௨

డ௬
0 0

0 0 0⎦
⎥
⎥
⎤
.                  (4.9) 

 

Suppose that the fluid is at rest at 𝑡 = 0, and then, 

 

                                            𝑢(𝑦, 0) = 0,            𝑆(𝑦, 0) = 0.                                            (4.10) 

 

Therefore, Eq. (4.2) becomes 

 

                              
஽𝑺

஽௧
=   

⎣
⎢
⎢
⎢
⎡

డ

డ௧
𝑆௫௫  − 𝑆௫௬  

డ௨

డ௬

డ

డ௧
𝑆௫௬  − 𝑆௬௬  

డ௨

డ௬

డ

డ௧
𝑆௫௭  − 𝑆௬௭  

డ௨

డ௬

డ

డ௧
𝑆௬௫  − 𝑆௬௬  

డ௨

డ௬

డ

డ௧
𝑆௬௬

డ

డ௧
𝑆௬௭  

డ

డ௧
𝑆௭௫  − 𝑆௭௬  

డ௨

డ௬

డ

డ௧
𝑆௭௬  

డ

డ௧
𝑆௭௭  ⎦

⎥
⎥
⎥
⎤

.      (4.11) 

 

Since 𝑆௫௫  = 𝑆௬௬  =  𝑆௭௭  =  𝑆௫௭  =  0, so that, 

 

                                     
஽𝑺

஽௧
=   ൦

−2𝑆௫௬  
డ௨

డ௬

డ

డ௧
𝑆௫௬ 0

డ

డ௧
𝑆௬௫  0 0

0 0 0

൪.                                                   (4.12) 
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Eq. (4.1)ୠ becomes; 

 

൥

0 𝑆௫௬ 0

𝑆௬௫ 0 0

0 0 0

൩ + 𝜆ଵ

⎣
⎢
⎢
⎢
⎡−2𝑆௫௬  

𝜕𝑢

𝜕𝑦

𝜕

𝜕𝑡
𝑆௫௬  0

𝜕

𝜕𝑡
𝑆௬௫  0 0

0 0 0⎦
⎥
⎥
⎥
⎤

= 𝜇

⎣
⎢
⎢
⎢
⎡ 0

𝜕𝑢

𝜕𝑦
0

𝜕𝑢

𝜕𝑦
0 0

0 0 0⎦
⎥
⎥
⎥
⎤

+ 𝜇𝜆ଶ

⎣
⎢
⎢
⎢
⎢
⎡ 0

𝜕ଶ𝑢

𝜕𝑦𝜕𝑡
0

𝜕ଶ𝑢

𝜕𝑦𝜕𝑡
0 0

0 0 0⎦
⎥
⎥
⎥
⎥
⎤

. 

                                                                                                                                          (4.13) 
 

By using Eq. (4.13) into Eq. (4.1)ୟ and keeping in mind the Eq. (4.10), we get 

 
 

                                  ቀ1 + 𝜆ଵ
డ

డ௧
ቁ 𝜏(𝑦, 𝑡) = 𝜇 ቀ1 + 𝜆ଶ

డ

డ௧
ቁ

డ௨ (௬,௧)

డ௬
 .                                   (4.14) 

 
 

When there is no body force, The state of balance of Eq. (4.6) linear momentum reduces to 

 

                                          
డఛ(௬,௧)

డ௬
 −

డ௣

డ௫
 = 𝜌

డ௨(௬,௧)

డ௧
.                                                          (4.15) 

 

By eliminating 𝜏 among Eqs. (4.14) and (4.15), we get 

 
 

                  ቀ1 + 𝜆ଵ
డ

డ௧
ቁ

డ௨

డ௧
= −

ଵ

ఘ
ቀ1 + 𝜆ଵ

డ

డ௧
ቁ

డ௣

డ௫
+ 𝜈 ቀ1 + 𝜆ଶ

డ

డ௧
ቁ

  డమ  ௨(௬,௧)

డమ௬
; 𝑦, 𝑡 > 0,       (4.16) 

 

in which 𝜈 =
ఓ

ఘ
, a kinematic viscosity. The governing partial differential Eq.(4.16)for an 

incompressible Oldroyd-B fluid executing the same motion in the absence of a pressure 

gradient; 
 

                                         ቀ1 + 𝜆ଵ
డ

డ௧
ቁ

డ௨

డ௧
= 𝜈 ቀ1 + 𝜆ଶ

డ

డ௧
ቁ

డమ௨

డమ௬
 .                                         (4.17) 

 

The initial and boundary conditions are defined as: 

 

I.C                          𝑢(𝑦, 0) =
డ௨(௬,଴)

డ௧
= 0, and  𝜏(𝑦, 0) = 0,    𝑦 > 0,                            (4.18) 

 

B.C                          𝑢(0, 𝑡) = 𝑈𝐻(𝑡)𝑠𝑖𝑛𝜔𝑡    𝑜𝑟   𝑈𝐻(𝑡)𝑐𝑜𝑠𝜔𝑡  𝑡 ≥ 0,                          (4.19) 
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and 

                                     𝑢(𝑦, 𝑡) ,   
డ௨(௬,௧)

డ௬
→ 0 𝑎𝑠 𝑦 → ∞  𝑎𝑛𝑑  𝑡 > 0,                               (4.20) 

 

where 𝐻(𝑡) represents the Heaviside function. 

 

 

4.4      Calculation of the Velocity Field 

4.4.1    Case −𝑰 ∶ 𝑼𝑯(𝒕)𝒔𝒊𝒏𝝎𝒕 

To find the solution to governing Eq.(4.17) and considering the initial and boundary conditions 

(4.18), (4.19)௔  and (4.20), the Fourier sine transform in relation to the spatial variable is 

applied. Thus, multiplying Eq.(4.17) by ඥ2/𝜋 𝑠𝑖𝑛(𝑦ξ), integrating the result from  0 to ∞ 

with respect to y, we obtain; 

 

   
డ௨ೞ(క,௧)

డ௧
+ 𝜆ଵ  

డమ  ௨ೞ(క,௧)

డమ௧
= −𝜈𝜉ଶ 𝑢௦(𝜉, 𝑡) +  ට2

𝜋ൗ  𝜈𝜉𝑈𝐻𝑠𝑖𝑛𝜔𝑡 − 𝜈𝜉ଶ𝜆ଶ
డ

డ௧
𝑢௦(Ɛ, 𝑡) +

                                                     ට2
𝜋ൗ 𝜉𝑈𝜆ଶ

డ

డ௧
𝐻(𝑡)𝑠𝑖𝑛𝜔𝑡,                                                    (4.21) 

 

where 𝑢௦(𝜉, t)  is the Fourier sine transform of 𝑢(𝑦, 𝑡) , and it must satisfy the following 

conditions; 

 

                                     𝑢௦(𝜉, 0) =
డ ௨ೞ  (క,଴)

డ௧
= 0,       𝜉 > 0.                                               (4.22) 

 

Moreover, applying the Laplace transform on Eq. (4.21) and applying the initial condition 

(4.22) in, we find that; 

 

ū௦(𝜉, 𝑞) = ට2
𝜋ൗ  ቄ

௎ఔకఠ

(௤మ ାఠమ)[ఒభ௤మା௤(ଵାఔకమఒమ )ାఔకమ]
+

௎ఔక௤ఒమ

(௤మ ାఠమ)[ఒభ௤మା௤(ଵାఔకమఒమ )ାఔకమ]
ቅ.           (4.23) 

 

Now, we modify Eq. (4.23) in the following form; 
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                  ū௦(𝜉, 𝑞) =
௎ఠ

క
ට2

𝜋ൗ  ቄ
ଵ

(௤మାఠమ)
−

ఒభ௤మା஺ఒమ௤

(௤మାఠమ)[ఒభ௤మା௤((ଵାఔకమఒమ )ାఔకమ]
ቅ,                     (4.24) 

 

where 

                                            𝐴 = ቂ1 + (1 −
ଵ

ఠ
)𝜈𝜉ଶቃ. 

 

By using the inverse Fourier transform, Eq. (4.24)  becomes, 

 

                      ū௦(𝑦, 𝑞) =
ଶ௎ఠ

గ
∫

௦௜௡(௬క)

క

ஶ

଴
ቂ

ଵ

(௤మାఠమ)
−

ఒభ௤మା஺ఒమ௤

(௤మାఠమ)[ఒభ௤మା௤((ଵାఔకమఒమ )ାఔకమ]
 ቃ.            (4.25) 

 

Now, inverting Eq. (4.25) by means of Laplace transform, we have 

 

                     𝑢௦(𝑦, 𝑡) = 𝑈𝐻(𝑡) 𝑠𝑖𝑛 𝜔𝑡 −
ଶ௎ு(௧)ఠ

గఒభ(௤భି௤మ)
∫ ∫

௦௜௡(௬క)

క

௧

଴

ஶ

଴
𝑐𝑜𝑠 𝜔(𝑡 − 𝑢) ×

                                                     {(𝜆ଵ𝑞ଵ + 𝐴𝜆ଶ)𝑒௤భೠ − (𝜆ଵ𝑞ଶ + 𝐴𝜆ଶ)𝑒௤మೠ )}𝑑𝜉𝑑𝑢,               (4.26) 
 

where 

                                        𝑞ଵ, 𝑞ଶ =  
(ିଵିఒమఔక)±ඥ(ଵାఒమఔక)మ ିସఒభఔకమ   

ଶఒభ
,                                      (4.27) 

 

are the roots of the algebraic expression 𝜆ଵ𝑞ଶ + 𝑞(1 + 𝜈𝜉ଶ𝜆ଶ ) + 𝜈𝜉ଶ  = 0. 

 

 

4.4.2    Case −𝑰𝑰 ∶ 𝑼𝑯(𝒕)𝒄𝒐𝒔𝝎𝒕 

To find the solution of governing Eq.(4.17) and taking into account both the initial and 

boundary conditions (4.18) , (4.19)b  and (4.20) , the spatial variable is taken into 

consideration while applying the Fourier sine transform. Thus, multiplying Eq. (4.17)  by 

ඥ2/𝜋 𝑠𝑖𝑛(𝑦ξ), integrating the result from 0 to ∞ with respect to 𝑦, we obtain; 

 

𝜕𝑢௦(𝜉, 𝑡)

𝜕𝑡
+  𝜆ଵ  

𝜕ଶ  𝑢௦(𝜉, 𝑡)

𝜕ଶ𝑡
= −𝜈𝜉ଶ 𝑢௦(𝜉, 𝑡) + ට2

𝜋ൗ  𝜈𝜉𝑈𝐻𝑐𝑜𝑠𝜔𝑡 −  𝜈𝜉ଶ𝜆ଶ

𝜕

𝜕𝑡
𝑢௦(𝜉, 𝑡) 

   +ට2
𝜋ൗ 𝜉𝑈𝜆ଶ

డ

డ௧
𝐻(𝑡)𝑐𝑜𝑠𝜔𝑡,           (4.28) 
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where  𝑢௦(𝜉, 𝑡)  is the Fourier sine transform of 𝑢(𝑦, 𝑡), and it must satisfy the following 

conditions; 

                                     𝑢௦(𝜉, 0) =
డ ௨ೞ  (క,଴)

డ௧
= 0,       𝜉 > 0.                                              (4.29) 

 

Moreover, applying the Laplace transform on Eq. (4.28) and keeping the initial condition 

(4.18) in mind, we find that; 

 

     ū௦(𝜉, 𝑞) = ට2
𝜋ൗ  ቄ

௎ఔక௤

(௤మ ାఠమ)[ఒభ௤మା௤(ଵାఔకమఒమ )ାఔకమ]
+

௎ఔకఠఒమ

(௤మ ାఠమ)[ఒభ௤మା௤(ଵାఔకమఒమ )ାఔకమ]
ቅ.     (4.30) 

 

Now, we modify Eq. (4.30) in the following form; 

 

                        ū௦(𝜉, 𝑞) =
௎௤

క
ට2

𝜋ൗ  ቄ
ଵ

(௤మାఠమ)
−

ఒభ௤మା஺ఒమ௤

(௤మାఠమ)[ఒభ௤మା௤((ଵାఔకమఒమ )ାఔకమ]
ቅ,                (4.31) 

 

where 

                                            𝐴 = ቂ1 + (1 −
ଵ

ఠ
)𝜈𝜉ଶቃ. 

 

By using inverse Fourier sine transform, Eq. (4.31) becomes, 

 

                        ū௦(𝑦, 𝑞) =
ଶ௎௤

గ
∫

௦௜௡(௬క)

Ɛ

ஶ

଴
ቂ

ଵ

(௤మାఠమ)
−

ఒభ௤మା஺ఒమ௤

(௤మାఠమ)[ఒభ௤మା௤((ଵାఔకమఒమ )ାఔకమ]
 ቃ.        (4.32) 

 

Now, inverting Eq. (4.32) by means of Laplace transform, 

 

                       𝑢௖(𝑦, 𝑡) = 𝑈𝐻(𝑡) 𝑐𝑜𝑠 𝜔𝑡 −
ଶ௎ு(௧)ఠ

గఒభ(௤భି௤మ)
∫ ∫

௦௜௡(௬క)

క

௧

଴

ஶ

଴
𝑠𝑖𝑛 𝜔(𝑡 − 𝑢) ×

                                         {(𝜆ଵ𝑞ଵ + 𝐴𝜆ଶ)𝑒௤భೠ − (𝜆ଵ𝑞ଶ + 𝐴𝜆ଶ)𝑒௤మೠ )}𝑑𝜉𝑑𝑢,                              (4.33) 

 

where,  𝑞ଵ and 𝑞ଶ are the same given in Eq. (4.27). 
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4.5    Calculations of the Shear Stress 

4.5.1    Case−𝑰 ∶ 𝑼𝑯(𝒕)𝒔𝒊𝒏𝝎𝒕 

By applying Laplace transform to the Eq. (4.14), we get 

 

                              𝜏̅(𝑦, 𝑞) = 𝜇 ቂ
(ଵାఒమ௤)

(ଵାఒభ௤)
ቃ 

డ௨ഥ(௬,௤)

డ௬
,                                                       (4.34)     

 

where Laplace transform of  τ(y, t) is  τത(y, q). Now, differentiate Eq. (4.25) w.r.t y,we obtain 

 

             
డ௨ഥ(௬,௤)

డ௬
 =

ଶ௎ఠ

గ
∫ 𝑐𝑜𝑠(𝑦𝜉)

ஶ

଴
ቂ

ଵ

(௤మାఠమ)
−

ఒభ௤మା(ଵା஻ఒమ)௤

(௤మାఠమ)[ఒభ௤మା௤((ଵାఔకమఒమ )ାఔకమ]
 ቃ 𝑑𝜉,              (4.35) 

 

where, 

                                              𝐵 = ቀ1 −
ଵ

ఠ
𝜈𝜉ଶቁ. 

 

Using Eq. (4.35) in Eq. (4.34), we get 

 

 𝜏̅(𝑦, 𝑞) = 𝜇 ቂ
(ଵାఒమ௤)

(ଵାఒభ௤)
ቃ ቂ

ଶ௎

గ
∫ 𝑐𝑜𝑠(𝑦𝜉)

ஶ

଴
ቄ

ଵ

(௤మାఠమ)
−

ఒభ௤మା(ଵା஻ఒమ)௤

(௤మାఠమ)[ఒభ௤మା௤((ଵାఔకమఒమ )ାఔకమ]
ቅ 𝑑𝜉ቃ,   (4.36) 

 

and after simplification above Eq.  (4.36) becomes 

 

                𝜏̅(𝑦, 𝑞) =
ଶ௎ఠఓ

ఒభగ
∫ 𝑐𝑜𝑠(𝑦𝜉)

ஶ

଴
ቂ

(ଵାఒమ௤)

(ଵାఒభ௤)
ቃ ቂ

ଵ

(௤మାఠమ)
−

ఒభ௤మା(ଵା஻ఒమ)௤

(௤మାఠమ)(௤ି௤భ)(௤ି௤మ)
 ቃ 𝑑𝜉.         (4.37) 

 

Applying the inverse Laplace transform to Eq. (4.37), we get 

 

    𝜏௦ (𝑦, 𝑡) = −
ଶ௎ு(௧)ఠఓ

గఒభ
∫ ∫ 𝑐𝑜𝑠(𝑦𝜉)[𝑐𝑜𝑠𝜔(𝑡 − 𝑢)

௧

଴

ஶ

଴
+ 𝜆ଶ(𝛿(𝑡 − 𝑢) − 𝜔𝑠𝑖𝑛𝜔(𝑡 − 𝑢))] ×

                     ൥
஻௘

షೠ
ഊభ ఒభఒమ

(ଵା௤భఒభ)(ଵା௤భఒమ)
+

௘
೜

భೠ (ଵାఒభ௤భା஺ఒమ)

(௤భି௤మ)(ଵାఒభ௤భ)
−

௘
೜

మೠ (ଵାఒభ௤మା஺ఒమ)

(௤భି௤మ)(ଵାఒభ௤మ)
൩ 𝑑𝜉𝑑𝑢.                      (4.38) 
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4.5.2    Case -II∶  𝑼𝑯(𝒕) 𝒄𝒐𝒔 𝝎𝒕 

Similarly, differentiate Eq. (4.32) w.r.t  ′𝑦', we get 

 

 

                       
డ௨ഥ(௬,௤)

డ௬
 =

ଶ௎

గ
∫ 𝑐𝑜𝑠(𝑦𝜉)

ஶ

଴
ቂ

ଵ

(௤మାఠమ)
−

ఒభ௤మା(ଵା஻ఒమ)௤

(௤మାఠమ)[ఒభ௤మା௤((ଵାఔకమఒమ )ାఔకమ]
 ቃ 𝑑𝜉, (4.39) 

 

where, 

                                          𝐵 = ቀ1 −
ଵ

ఠ
𝜈𝜉ଶቁ. 

 

And substitute above Eq. (4.39) into Eq. (4.34), we obtain 

 

 𝜏̅(𝑦, 𝑞) = 𝜇 ቂ
(ଵାఒమ௤)

(ଵାఒభ௤)
ቃ ቂ

ଶ௎

గ
∫ 𝑐𝑜𝑠(𝑦𝜉)

ஶ

଴
ቄ

ଵ

(௤మାఠమ)
−

ఒభ௤మା(ଵା஻ఒమ)௤

(௤మାఠమ)[ఒభ௤మା௤((ଵାఔకమఒమ )ାఔకమ]
ቅ 𝑑𝜉ቃ. (4.40) 

 

After simplification Eq. (4.40) becomes 

 

            𝜏̅(𝑦, 𝑞) =
ଶ௎௤ఓ

ఒభగ
∫ 𝑐𝑜𝑠(𝑦𝜉)

ஶ

଴
ቂ

(ଵାఒమ௤)

(ଵାఒభ௤)
ቃ ቂ

ଵ

(௤మାఠమ)
−

ఒభ௤మା(ଵା஻ఒమ)௤

(௤మାఠమ)(௤ି௤భ)(௤ି௤మ)
 ቃ 𝑑𝜉.           (4.41) 

 

Finally, applying the inverse Laplace transform to Eq. (4.41), we get 

 

     𝜏௖ (𝑦, 𝑡) = −
ଶ௎ு(௧)ఠఓ

గఒభ
∫ ∫ 𝑐𝑜𝑠(𝑦𝜉)[𝑠𝑖𝑛𝜔(𝑡 −  𝑢)

௧

଴

ஶ

଴
+ 𝜆ଶ(𝛿(𝑡 − 𝑢) − 𝜔𝑠𝑖𝑛𝜔(𝑡 − 𝑢))] ×

                       ൥
஻௘

షೠ
ഊభ ఒభఒమ

(ଵା௤భఒభ)(ଵା௤భఒమ)
+  

௘
೜భೠ (ଵାఒభ௤భା஺ఒమ)

(௤భି௤మ)(ଵାఒభ௤భ)
−

௘
೜మೠ (ଵାఒభ௤మା஻ఒమ)

(௤భି௤మ)(ଵାఒభ௤మ)
൩ 𝑑𝜉𝑑𝑢.                 (4.42) 
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4.6     Limiting Case: A Newtonian Fluid (𝝀𝟏 → 𝟎, 𝝀𝟐 → 𝟎 ) 

Taking the limit  𝜆ଵ → 0  and  𝜆ଶ → 0  into Eqs. (4.26), (4.33), (4.38) and (4.42), we obtain 

a similar solution of velocity field and hear stress for Newtonian fluid [40]. 

 

 

          𝑈ௌே  =   𝑈𝐻(𝑡) 𝑠𝑖𝑛 𝜔𝑡 −
ଶ௎ு(௧)ఠ

గ
∫ ∫

௦௜௡(௬క)

Ɛ

௧

଴

ஶ

଴
𝑐𝑜𝑠 𝜔(𝑡 − 𝑢) 𝑒ିఔకమ

𝑑𝜉𝑑𝑢,       (4.43) 

 

 

          𝑈஼ே  =   𝑈𝐻(𝑡) 𝑐𝑜𝑠 𝜔𝑡 −
ଶ௎ு(௧)ఠ

గ
∫ ∫

௦௜௡(௬క)

Ɛ

௧

଴

ஶ

଴
𝑠𝑖𝑛 𝜔(𝑡 − 𝑢) 𝑒ିఔకమ

𝑑𝜉𝑑𝑢,       (4.44) 

 

 

           𝜏ௌே (𝑦, 𝑡) = −
ଶ௎ (௧)ఠఓ

గ
∫ ∫ 𝑐𝑜𝑠(𝑦𝜉) 𝑐𝑜𝑠𝜔(𝑡 − 𝑢)

௧

଴
 𝑒ିఔకమஶ

଴
𝑑𝜉𝑑𝑢,                 (4.45) 

 

and 

 

               𝜏஼ே  (𝑦, 𝑡) = −
ଶ௎ு(௧)ఠఓ

గ
∫ ∫ 𝑐𝑜𝑠(𝑦𝜉) 𝑠𝑖𝑛𝜔(𝑡 − 𝑢)

௧

଴

ஶ

଴
 𝑒ିఔకమ

𝑑𝜉𝑑𝑢.              (4.46) 
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4.7    Results and Discussions 

In this section, we provide solutions for an oscillating Oldroyd-B flow of an 

incompressible fluid over a flat plat. Due to plate oscillation causes motion in the fluid.  For 

the Oldroyd-B fluid across an oscillating plate, the solutions are obtained by applying integral 

transform techniques to solve the governing partial differential equations. These results fulfill 

each and every initial and boundary conditions. When 𝜆ଵ →0 and   𝜆ଶ → 0 executing the 

comparable motion, for the motion of the Newtonian fluid, the general solutions are simplified 

and specified. The numerical results for velocity field 𝑢(𝑦, 𝑡) and shear stress 𝜏(𝑦, 𝑡)  are 

illustrated through plots in Figures 4.2 − 4.6 . We analyze these results in relation to the 

variations of the time parameter t, frequency ω, relaxation time parameter 𝜆ଵ , retardation time 

parameter 𝜆ଶ and kinematic viscosity 𝜈.  

Figure 4.2 shows the influence of different values of time 𝑡  for 𝑡 = 0.1, 0.2, 0.3 𝑎𝑛𝑑 0.5 on 

velocity profile obtained in Eq.  (4.26)  and corresponding shear stress of Eq. (4.38) 

respectively. Velocity profile along with shear stress is a function that increases with respect 

to time t from maximum values to zero values.  Figure  4.3 shows the influence of relaxation 

time parameter at 𝜆ଵ = 2 at different values of retardation time parameter 𝜆ଶ  for 𝜆ଶ =

0.5, 1.0, 1.5 and 2.0 on velocity profile and shear stress, respectively.  Shear stress and the 

velocity profile both drop from maximum values to zero values in both situations. Figure 4.4  

shows the influence of retardation time parameter 𝜆ଶ = 2 at different values of relaxation time 

parameter 𝜆ଵ for  𝜆ଵ = 0.5, 1.0, 1.5 and 2.0 on velocity profile and shear stress respectively. 

Velocity profile decreases from maximum values to zero values while shear stress increases 

from maximum values to zero values. Figure 4.5 shows the influence of kinematic viscosity ν 

at different values of  ν i. e  𝜈 = 0.1, 0.2, 0.3 and 0.4  on velocity profile and shear stress 

respectively. In both cases, velocity profile and shear stress increases from maximum values to 

zero values and clearly satisfy boundary conditions. It is observed that, in relation to kinematic 

viscosity 𝜈, the fluid's velocity field is increasing function along with the shear stress. Figure 

4.6 shows the influence of frequency parameter 𝜔 for 𝜔 = 1.0, 1.1, 1.3 and 1.5 on profile of 

velocity along with shear stress. It’s observed that the profile of velocity along with shear stress 

is decreasing function along with frequency 𝜔. 
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Fig. 4.2. Profile of the velocity field 𝑢௦(𝑦, 𝑡) and the shear stress 𝜏௦(𝑦, 𝑡)  for 𝑈 = 1, 𝜈 = 2, 

𝜆ଵ = 2, 𝜆ଶ = 1, 𝜔 = 5 and various points of 𝑡. 

 
 

  

 

Fig.4.3. Profile of velocity field 𝑢௦(𝑦, 𝑡) and the shear stress 𝜏௦(𝑦, 𝑡)  for 𝑈 = 1, 𝜈 = 2, 𝑡 = 1, 

𝜔 = 5, 𝜆ଵ = 2 and various values of 𝜆ଶ . 
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Fig. 𝟒. 𝟒. Profile of the velocity field uୱ(y, t) and the shear stress τୱ(y, t) for 𝑈 = 1, 𝜈 = 2,    

𝑡 = 1, 𝜔 = 5, 𝜆ଶ = 2 and various points of 𝜆ଵ. 

 
 

   

 

Fig.4.5. The velocity profile 𝑢௦(𝑦, 𝑡)  and shear stress 𝜏௦(𝑦, 𝑡) for 𝑈 = 1, 𝜆ଵ = 2, 𝜆ଶ = 1, 𝑡 =

2, 𝜔 = 2 and various  𝜈. 
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Fig. 𝟒.6. The velocity field Profile 𝑢௦(𝑦, 𝑡)  and shear stress 𝜏௦(𝑦, 𝑡) for 𝑈 = 1, 𝑡 = 2, 𝜆ଵ = 2,  

𝜆ଶ = 1, 𝜈 = 0.63 and various points of  𝜔. 
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CHAPTER 5  

CONCLUSION AND FUTURE WORK  

5.1     Conclusion 

We outline the key findings, discuss our contributions, and suggest directions for future 

research arising from this study. This research work aims to determine the exact solutions for 

sine and cosine boundary oscillations in a non-Newtonian fluid, as well as for the oscillating 

flow over a plate. In chapter three, the unsteady flows of an incompressible Maxwell fluid are 

analyzed, while chapter four extends this analysis to the Oldroyd-B fluid flowing over an 

oscillating plate. The Oldroyd-B model is a constitutive framework used to characterize 

viscoelastic fluids and can indeed predict phenomena related to relaxation and retardation times. 

Moreover, the velocity profile and corresponding shear stress for sine and cosine oscillations 

have been determined using integral transforms. These solutions conform to the specified initial 

and boundary conditions. The graphical results for the profile of velocity and associated shear 

stress over an oscillating plate, along with a comparison between Maxwell and Oldroyd-B 

fluids, highlight various interesting aspects of the results for different parameters. The general 

solutions are simplified and specified for the motion of a Newtonian fluid by eliminating the 

relaxation/retardation time parameter. This section summarizes the conclusions and 

suggestions derived from the study discussed in the preceding chapters.   

 

We have provided exact solutions for sine and cosine oscillations over a plate of an 

incompressible upper convected Maxwell fluid in chapter 3. The infinite Fourier sine and 

Laplace transforms are employed to solve the governing equation and obtain the velocity and 

corresponding shear stress. The solution of the problem satisfies all initial and boundary 

conditions. For the boundary's sine and cosine oscillations, graphs have been made. The 

profiles of velocity and shear stress of the fluid are functions of increasing amplitude 𝜔  and 
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time 𝑡 , respectively. The point of intersection in the fluid's motion for viscoelasticity is 

influenced by the relaxation time 𝜆ଵ. Keep in mind that as the kinematic viscosity 𝜈 increases, 

both the fluid's velocity field and shear stress also increase. The fluid motion exhibits 

oscillatory effects with varying values of 𝑦 . 

 

In Chapter 4, we present the exact solutions for the Oldroyd-B fluid flowing across an 

oscillating plate that is incompressible and unstable. The purpose of this paper is to provide 

exact solutions for the velocity field and shear stress associated with the oscillating flows of an 

Oldroyd-B fluid over a flat plate. The motion is generated by the oscillation of the plate. These 

solutions can be expressed as both steady-state and transient components, obtained using the 

Fourier sine and Laplace transforms. The solution to the problem meets all initial and boundary 

conditions. It has been observed that the velocity field and shear stress of the fluid increase 

with time 𝑡 and decrease with amplitude 𝜔. The relaxation time 𝜆ଵ and the retardation time 𝜆ଶ 

influence the point of intersection in the fluid's motion for viscoelasticity. It should be noted 

that as the kinematic viscosity ν increases, both the velocity field of the fluid and the shear 

stress exhibit an increase. As the value of 𝑦 varies, the effect on the fluid motion becomes 

oscillatory, showing changes in the fluid's behaviour depending on the position along 𝑦. 

 

 

5.2    Future Work 

In this thesis, we have presented a significant solution for the oscillation of plates with 

technical relevance to certain non-Newtonian fluids. Additionally, this study highlights the 

significant irregular characteristics of transient behavior in non-Newtonian fluids. Potential 

future developments and possible extensions to the existing energy equation involve exploring 

the effects of temperature on the Oldroyd-B parameters. However, analytical solutions for the 

velocity field and temperature profile of an Oldroyd-B fluid can also be derived when 

considering the influence of permeable media and physical forces, such as pressure gradients 

or external forces. We anticipate that this work will be valuable for analyzing more complex 

problems and will provide a foundation for various scientific and industrial applications. 
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