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ABSTRACT 

Title: Crack Detection in Solar Panel Using B-Net Deep Learning Model 

Renewable energy is seen as an alternative to fossil fuel consumption to reduce environmental 

pollution. Solar energy is considered the most potential renewable energy source since it 

is economical and energy-efficient. Photovoltaic panels are susceptible to physical damage 

which can significantly decrease efficiency and lead to expensive repairs. Conventional 

methods are laborious and inclined to human error, emphasizing the need for automated 

systems. In this work, the B-Net model is developed to detect cracks in solar panels. It is 

based on a convolutional neural network architecture to enhance accuracy and effectiveness in 

identifying cracks under various lighting and weather conditions. An inclusive dataset 

containing cracked and non-cracked images of solar panels is employed to enable the B-Net 

model to learn differentiating features effectively. Findings indicate that the model attains 

high accuracy and precision in defect detection, better than traditional techniques. Moreover, 

the B-Net model’s performance metrics, such as accuracy, precision, recall, loss, and F1-

score, are analyzed to determine its effectiveness. This work contributes to the maintenance of 

solar systems and prepares the path for further enhancement in automated assessment 

technologies through deep learning models. The implications of this work extend beyond 

photovoltaic panel maintenance, offering comprehensive applicability to other fields requiring 

image-based crack detection. 
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CHAPTER 1 

 

INTRODUCTION 

1.1 Overview 

The inclined dependency on solar energy (SE) has needed the development of effective 

methods for inspecting and maintaining solar systems. One critical challenge is the extraction of 

defects, which can variously affect the performance and longevity of solar panels. Recent 

enhancements in deep learning, specifically convolutional neural networks (CNNs), are crucial 

in the automated extraction process. The following literature review is focused on traditional 

methodologies and their applications.   

1.2 Background and Motivation 

This study is motivated by the urgent need to reduce global warming using renewable 

energy (RE), particularly solar power. The industry's inclined growth spotlights the importance 

of maintaining maximum panel performance, which can be minimized due to undetected defects. 

1.2.1 Global Warming 

Global warming refers to increasing Earth's normal surface temperature due to human 

acts, mainly releasing greenhouse gases (GHG) from burning fossil fuels and deforestation. The 

rise of the average temperature of the earth’s surface due to the use of fossil fuels in factories, 

vehicles, and electricity production is known as global warming. The impact of N2O (nitrous 

oxide) was measured yearly from 1900 to 2100, with the help of a global averaged computer 

model. Nitrous oxide increased to 12.7 TgN/year from 1900 due to fossil fuels and global 

warming. It was increased temperature by 0.37 °C. To reduce the amount of N2O in the climate, 

large cut was required in N2O [1]. GMST (global mean surface temperature), GST (global 

surface temperature), ST (surface temperature), LSAT (land surface air temperature), and SST 

(sea surface temperature) are some of the most important indicators to analyze climate change in 

the globe. It also explains the uncertainty of climate change using land and marine components. 
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UL denotes the yearly uncertainty of the land component and the marine uncertainty is denoted 

by US. Then integrate total global annual uncertainty denoted by UG. Use formula (UG)2 = 

(0.29UL) 2 + (0.71US) 2, where 0.29 is land area and 0.71 is the area covered by water on the 

globe, respectively [2]. The surface temperature of Earth from 1900 to 2012 was used in [3] and 

they developed linear regression models that analyze temperature kinetics excluding continuous 

environmental changes due to human activities and developments. They selected four parts of the 

earth's surface: the tropical belt, northern, southern, and arctic. The linear regression indicates 

that with time mean sea surface temperature changes by 0.28 °C in the tropical belt the north of 

middle altitudes temperatures change by 0.36 °C. The main point in this study is that the 

warming occurs but not continuously [3]. Global warming due to human being development, 

industrialization, and other activities is one of the great scientific debates of that time. The study 

concluded that “global CO2 emissions must peak and then decline rapidly within the next five to 

10 years for the world to have a reasonable chance of avoiding the very worst impacts of climate 

change” [4].  The authors of [5] explain global warming increases linked to growing human 

activities and rise in greenhouse gases in the air. The findings in the study [6], describe how 

global warming increases more rapidly than the International Plant Protection Convention 

(IPCC) expected due to anthropogenic emissions shown in Figure 1.1. The temperature of the 

ocean and land both increased in the late 20th century. The expected global warming is 1.7 ± 0.1 

°C but the author's results show that it increases by 0.5 OC more than IPCC's expectation which 

is 2OC global warming in late 2020, which is twenty years earlier than expected.  

 

Figure 1.1: Ocean Average Temperature [6] 
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1.2.2 Importance of Solar Energy 

The climate is disturbed due to the continuous different practices of the USA and other 

countries. These practices threaten ecological and economic costs, as well as social disruption. 

To overcome this threat, greenhouse gas emissions from burning fossil fuels must be reduced in 

the coming decades. The solution is based on scientific consensus that led to the Kyoto Protocol 

and Framework Convention on Climate Change (FCCC). For this USA introduced policies that 

make sure the changes will not affect the economy. The role of the USA is significant in 

reducing GHG and CO2 emissions because it reduces large amounts of these gases. America 

reduced 14% less than 1900 levels in 2010 and targets downward emissions for climate 

protection. They decided to adopt more energy-efficient techniques with no or very low carbon 

reduction. Including transportation that has low fuel consumption, improved infrastructure for 

alternative transportation modes like biking, walking, and use of local transport instead of own 

cars. Also rapidly increases the renewable resources [7]. The bestseller book describes, 

“Drawdown: The Most Comprehensive Plan Ever Proposed to Reverse Global Warming, 

measures, models, and describes the 80 most substantive existing solutions to address climate 

change mitigation” describes several solutions at the level of households, individuals, and direct 

changing patterns of consumptions. Some researchers said that individual actions such as 

“behavioral wedges” play a significant role in reducing emissions. This book gives three main 

solutions one of which is to replace current technologies and practices up to 2050. It also gives 

thirty other actions to reduce emissions some of them for land management are reduced food 

waste, plant-rich diets, clean cook-stoves, composting, silvo-pasture, tropical staple trees, tree 

intercropping, farmland restoration, regenerative agriculture, managed grazing, improving rice 

cultivation, conservation agriculture, nutrient management, farmland irrigation. For 

transportation are electrical vehicles, ridesharing, mass transit, telepresence, hybrid cars, bicycle 

infrastructure, walkable cities, and electrical bicycles. For energy and materials, are methane 

digesters, LED lighting, household water saving, smart thermostats, household recycling and 

recycled paper, micro-wind, solar water, and rooftop solar. The author said the rooftop solar 

systems installed in households for providing energy make a great impact on reducing emissions 

and are estimated to contribute 6.88 percent of total electrical energy worldwide by 2050 which 

is nearly 3600 terawatts–hours (TWh) [8]. CO2 can be used as a natural working fluid. It 

introduced a new concept to tackle global warming and introduced a novel system called 
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supercritical CO2 Solar Rankine Cycle System (SRCS) consisting of a mechanical feed pump 

(thermally driven pump), solar collectors, heat exchangers, and a power generation turbine. The 

Rankine Cycle consists of flow-regulating elements, an evacuated tube solar collector, a gas & 

liquid heat exchanger, and turbines. It provides new techniques for future use of green energy 

resources and gives highly potential solutions [9]. The greenhouse effect (GHE) is stronger as 

needed and more heat is trapped as compared to heat escaping in space. This is the reason for 

global warming. These gases affect human beings, animals as well as nature. Due to that 

different diseases spread like hard to breathe, damaged lungs, irritated nose & eyes, asthma, and 

heightened sensitivity to allergies. Almost twenty-three million people in the USA suffered from 

respiratory issues or asthma in 2010. Human infections, dengue fever or break-bone fever, 

headache, bone and joint aches, rash, malaria, and 130 species of mosquitoes are some other 

effects and diseases. Climate change also threatens water like flooding, which happens 

frequently. Extreme weather also badly affects lives. To tackle this world need to increase 

planting and conserving forests or woodland. Also, sustainable development (SD) is needed like 

sustainable construction methods, dredging of waterways, efficient waste disposal and recycling 

methods, landscape architecture, and sustainable energy utilization [10]. Energy insecurity is a 

major problem for humans in this era. To address it 145 countries developed roadmaps and use 

technologies that depend on wind, water, and solar energy to 100% transitive by 2035. Also, the 

target is to use 80% sustainable energy by 2030. The use of hydrogen fuel-cell transportation 

should increase as compared to battery electric vehicles because it is costlier [11]. 

1.2.3 Growth of Solar Energy 

Due to global warming governments of several countries taking steps including 

increasing renewable energy sources, improving energy efficiency, and encouraging people to 

use sustainable resources. Different researchers define SD including Rees (1989), Pearce (1989), 

and Pezzey et al. (1989). Pezzey said, “SD might require that welfare is above some minimum 

level and that the growth is ecologically sustainable”. Rees (1989) said that “SD requires 

ecological diversity and productivity in developing regions”. Adams (1900) said, “SD is 

intensely synthetic, and the second characteristic is the apparent ease with which different ideas 

about development are grafted on”. The origin of SD is placed by Barbier in the 1970s. He 

suggests two standards the first is realizing the value of the “basic needs” approach to helping the 
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poor and the 2nd is that “real development” is not possible if we ignore the environment. There 

should be a balance between population growth and SD. Daly (1989), Barbier (1900), and 

Conway agree that “achieving a stable population is an essential pre-condition for a truly 

sustainable development” [12]. The researchers review similarities and differences in explaining 

or defining SD, technical methods, motivation, and process. They find that there are no 

universally accepted indicators based on compiling theories, influential in policy, analysis, and 

data collection. It suggests people in different areas should use different terminologies, data, and 

methods for measurement. They give a framework to enable distinguishing among targets, 

driving forces, goals, trends, indicators, and policy responses. They also highlight that continued 

research is necessary on critical limits, scales, aggregations, and thresholds [13]. The concept of 

sustainable energy development is multi-dimensional and varies in meaning depending on the 

context it is applied and the user’s perspective. The importance of energy in sustainable 

development was recognized in 1987. The concept of sustainable energy development became an 

international agenda when the United Nations set the goal of energy to achieve SD. To get 

affordable and reliable energy is integral to sustainable development. To reduce harmful effects, 

it is necessary to transform the current energy system [14]. Figure 1.2 shows the solar installation 

worldwide. 

 

          Figure 1.2: Installation of Solar System Worldwide [73] 
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1.2.4 Significance of Solar Energy and Maintenance for Optimal 

Performance 

Several governments promoted renewable energy resources in households and 

commercial uses to control climate change due to carbon emissions. One of the most used 

renewable energy resources is SE which is highly underutilized. The world, Australian continent 

has an excessive amount of solar radiation per square meter (sq.m) as compared to other 

continents. This study focuses on how to improve SE systems in Australia, the challenges of 

installing solar systems, and the benefits of using renewable energy systems. Studies show 

successfully transferring SE will make sure that it will make a remarkable contribution to 

electricity generation in Australia and the country will meet the demand for clean energy. Due to 

technological advancement and the increase in population world needs to generate more energy 

to fulfill its requirements. The need is to get reliable, everlasting, and cost-effective renewable 

resources to tackle the rising demand of the future. SE plays a vital role in getting long-term 

energy production that is freely available and managing concerns in energy crises. The solar 

industry is growing rapidly all over the world due to the increasing demand for electricity while 

the other resources are expensive and fossil fuels are limited and not reliable. SE has become a 

tool to enlarge the economic status of developing nations and develop the lives of numerous 

common people because it is cost-effective due to long research to advance its development. 

This energy is the finest option for the upcoming demand for energy and it is worthwhile in 

terms of capacity, availability, accessibility, and efficiency among other renewable energy 

resources. This study focuses on barriers to a better solar industry and discusses how to upgrade 

the solar industry, the world energy scenario, its applications, and fundamental concepts of solar 

energy to resolve the energy crisis [28]. The depletion of fossil fuels with time and unfavorable 

environmental effects drive the world toward clear, reliable, and sustainable forms of energy 

resources. The development to improve the performance of the solar industry has made it one of 

the best energy resources in the past couple of years. This study measures the threads, strengths, 

opportunities, and weaknesses of using solar systems. With the technological advancement, the 

cost of solar systems is also considered to be an opportunity to use it. Although there are some 

weaknesses and threads that exist to use SE for example energy storage requirements are a 

challenge, most of the problems are addressed with technology advancement [29]. Suitable 

maintenance maximizes the energy output and increases the lifespan of solar cells. Timely 
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repairing and inspection help to address and identify problems/issues before damage and ensure 

good performance [55]. 

1.2.5 Challenges in Manual Inspection and the Need for an Automated Crack 

Detection System 

There are various challenges connected with manual inspection methods and techniques 

that realize the need for automated detection systems to ensure accuracy and efficiency for solar 

energy production. The methods related to manual inspection are inclined to human error, time-

consuming, and labor-intensive. It leads to missed cracks, defects, and inconsistent results. In 

populated areas, manual inspection faces safety challenges, and it makes it difficult to understand 

and identify structural issues properly. This type of limitation increases cost and delays the work 

because inspectors visit sites repeatedly for assessment and to correct errors made during 

inspection [56, 57].  

1.3 Crack Detection in Solar Panel 

There are different types of cracks in photovoltaic modules that will be discussed in 

detail, the impacts of cracks in solar panels are mentioned and previous methods to cracks are 

exhibited in the below subheadings. 

1.3.1 Types of Cracks in Solar Panels 

Photovoltaic (PV) modules are especially susceptible to cracks that can seriously affect 

both the lifespan and the panels' efficiency. These cracks can often be divided into two groups: 

macro cracks and microcracks. Microcracks are minute fractures, usually measured in 

millimeters or less, frequently happening during production or due to mechanical stress during 

setup and use. They could be invisible at first, but they can cause a slow drop in solar cells' 

electrical conductivity, which lowers their efficiency. Numerous elements, including mechanical 

loads, heat cycling, and harsh weather like hail or deep snow, can cause these microcracks to 

form. They are especially dangerous since they may eventually result in more serious problems 

like hot spots, which can reduce the efficiency and performance of solar modules and potentially 

cause the failure of cells. On the other side, macrocracks are easy to find due larger size as 

compared to microcracks and have a significant effect on the performance of modules. 

Macrocracks derange the electrical pathways in cells. Due to cracks, there are power losses and 
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failure of modules. These cracks are made due to intense or strong weather conditions, improper 

handling, and installation errors. Both types of cracks are not good for solar panels leading to a 

decrease the power output and escalating the cost of maintenance [59]. Several methods are used 

to identify and extract cracks in solar panels like infrared thermography and electroluminescence 

(EL) images. It is used to identify microcracks because EL imaging can visualize the electrical 

pathways and activities of solar modules and can find hidden cracks that are different from to 

seen with a standard visual inspection [60]. Different types of cracks in solar panels are shown in 

Figure 1.3. 

 
Figure 1.3: Different Cracks in Solar Panel [76] 
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1.3.2 Impacts of Cracks in Solar Panel Efficiency and Lifespan 

The Sun is an illimitable source of energy that can fulfill all the energy requirements of 

human beings. The direct way to generate electricity from solar energy is by using photovoltaic 

cells and the indirect way is by using concentrated solar power. The efficiency of cells is nearly 

34.1% in multi-junction cells. Concentrated solar technologies are also efficient in generating 

electricity has a promising future as well because it has energy storage capability and high 

capacity. The SE is also used in agriculture for irrigation. It has applications to power motor 

vehicles and other uses like cooking and space heating. The most advanced practicability for the 

SE is transmitting electrical energy from space to Earth using a satellite power station via 

microwave beams. The most serious challenge of using SE is that it is unavailable all year due to 

its high capital cost. This study discusses storage-related, economic, technical, and 

environmental challenges. Nowadays one of the major technologies is photovoltaic panel 

installation, worldwide for energy production. Effective cost is one of the reasons for spreading 

installation of photovoltaic (PV) systems in domestic and industrial use. With the increasing use 

challenges are also created for manufacturers and customers, especially the quality of 

photovoltaic cells during service lifetime to withstand environmental conditions. Thus quality of 

the panels is a crucial aspect. Developing cracks on panels should be considered before installing 

PV power plants. Due to cracks, there is a chance of loss of energy during the operational phase. 

There are different cases of these micro-cracks with different shapes, sizes, and orientations [30]. 

The effect of micro-cracks on PV cells and the loss of energy generation due to micro-cracks are 

described in [31]. The author uses data taken from several projects in Jordan and explains the 

effect of micro-cracks on energy loss. Also gives an indicator that identifies what helps someone 

to decide whether to change a faulty panel or not. 

Figure 1.4 contains two graphs (a) and (b), which show the analysis of output power and 

efficiency of solar cells. They demonstrate the impact of diagonal cracks on solar cell outcomes. 

Graph (a) illustrates the power output over time, cracks minimize the performance relative to the 

theoretical maximum. Graph (b) analyzes this reduction in performance as the number of 

defective cells increases. The analysis with the help of these graphs shows the negative effect of 

cracks on solar panel performance [72].  
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Figure 1.4 Cracks Reduce Efficiency of Panels [72] 

 

1.3.3 Current Methods for Crack Detection on Different Surface Excluding 

Solar Panels 

There are several methods to find cracks on PV panels before discussing cracks, and the 

different nature (shapes and size) of cracks on panels; we will discuss general methods to find 

cracks on different surfaces. The authors of [32] use a sampling method to find or identify cracks 

on 2D / 3D acoustic waveguides. The sampling methods are the factorization method and the 

linear sampling method. Here model version is used for these sampling methods. It shows if 

someone deduced or knows the type of boundary condition (BC) that truly applies to the cracks 

then it is easy to formulate a sampling method for that BC to ensure the effectiveness of the 

method. With the use of 2D examples, the need for such type of adoption is proved numerically 

and theoretically. Study shows factorization method is also can be applied in a waveguide with 
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similar data used in the linear sampling method. The identification of cracks or multi-cracks in 

beams, the inverse method, and natural frequency-based forward methods are proposed in [33]. 

The definition of natural frequency drops is simply explained by forward methods. The author 

uses the local flexibility model of the cracks approach and determines the ratio between natural 

frequencies from un-crack and multi-crack beams. The non-linear crack effect is not considered 

in this approach that can be neglected when there are no excessive cracks. Also, they have 

expressions that can identify the connection between the natural frequency drop and the crack 

depth. The natural frequency ratio is used to verify the efficiency of these methods, acquired 

from the finite element package. The natural frequency ratio is also used for validation of the 

crack detection methodology. The method presented in this study expresses that the depth ratio 

of cracks and locations is successfully predicted. There are two types of damage to concrete 

structures: cracks and cavities. They can reduce tightness and lord-bearing of structure that can 

be failures in construction structure. Uncontrolled or excessive cracks in the structure may 

weaken the resistance and corrosion. Moreover, structural cracking can badly affect its artistic, 

and in verse cases it is dangerous for people who live in such buildings [33]. They deeply review 

the development of damages and the formation of cracks in the structure of concrete surfaces. 

This study focuses on the characteristics of basic types, the initial cause of cracking, an overview 

of used methods for detecting the shape cracks or microcracks, and diagnosing. There are eight 

specific criteria for finding types of cracks on concrete surfaces [34]. To find cracks in highly 

heated exposure on concrete surfaces local binarization method is used. Using the local 

binarization algorithm, the greyscale images of a surface cross-section were binarized. Then the 

isolated cracks were drawn out to examine area, length, and width. The local binarization method 

uses real images of surfaces of high temperature and cross-section area to examine the 

effectiveness. Some cracks that were not detected can be found using different parameters [35]. 

1.3.4 Current Methods for Crack Detection in Solar Panels 

The new framework to identify and distinguish cracks on panels is used in [36]. Previous 

techniques used for crack detection are less efficient with high cost, a lot of computational time, 

and low precision. Due to these flaws, the author introduces utilizing optimization techniques 

depending on segmentation. In this segmentation process, the cracks have been found and then 

optimization algorithms were run to discover the crack pixels. This article claims that the method 
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can find complete cracks with low computational cost and high accuracy. For crack detection on 

the surface of solar cells, they introduce an automated inspection system ground on an image 

processing approach. The Particle Swarm Optimization algorithm (PSO) is the leading 

component of his proposed method for the detection of cracks in solar cells. Fuzzy logic is also 

used to find some features, especially bus bars, and cracks, and will classify damaged products 

and cracks based on the location of bus bars. The given method can give good results based on 

the PSO, using an automated inspection system. The extraction of cracks is difficult due to the 

uneven and complex texture background of images of solar panels [37]. The method is proposed 

that uses a combination of morphologic features and image texture to find cracks. Firstly, the 

Laplace pyramid decomposition method and linear filter are used to suppress the multi-scale 

details and background texture. Secondly, use the modulus maximum method to extract the 

edges of images. Finally, the Improved Fuzzy c-Mean clustering (FCM) was used to extract 

cracks by a combination of the texture and morphologic features of images. Also, an improved 

region growth algorithm is used to find reasonable and accurate results for the identification of 

cracks. It is helpful to promote the use of solar systems in more industries [38].  In the PV 

system, the most critical component is PV cells. The focal objective of this study is to review the 

impact of microcracks and cracks on the electrical efficiency of silicon solar cells and list the 

famous techniques to determine cracks. There are different degradation modes in PV modules 

like yellowing, delamination, bubbles, cracks in the cell, defects in the anti-reflective coating, 

and burnt cells. The author checks the behavior of cracks and cells using different tests involving 

mechanical load tests, strength tests, humidity freeze tests, and thermal cycling tests. This paper 

describes that during manufacturing various tools are used for defect detection. In this section, 

cross-section techniques and non-destructive techniques (NDT) are described. Some NDTs 

are dark lock-in thermography (DLIT), induction thermography, illuminated lock-in 

thermography (ILIT), Electroluminescence, photoluminescence (PL), quantitative lock-in carrier 

graphic (LIC), and some others [39]. The innovative parameter extraction method for different 

types of solar modules was instituted on the Adaptive Differential Evolution Technique. The 

single-diode model is used for cracks and parameter extraction. The objective function is used to 

reduce variance (ADET) between measured and estimated values. The results found from the 

adaptive differential evolution technique are compared with other techniques that are genetic 

algorithm (GA), organic and inorganic solar cells (OIC), chaos particle swam optimization 
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(CPSO), and simulated annealing (SA). Lastly, ADPT was validated with different solar modules 

like polycrystalline, thin film, and mono-crystalline. The proposed method gives satisfactory 

results. One of the powerful extraction methods is EL images, which gives us elevated-

resolution images of solar cells. In this paper, 46000 EL images are taken from solar modules 

with various defects. Using these images, they identify and quantify various types of defects 

involving series resistant related issues as well as giant recombination regions. They give a 

method that finds statistical parameters using histograms of solar cell images and employs them 

as feature descriptors. After that, they trained Machine Learning (ML) Algorithms using 

descriptors [40]. Figure 1.5 shows different fault identification techniques using raw images to 

find faults on the surfaces. 

 

Figure 1.5: Traditional Defect Identification Techniques [41] 
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1.4 Artificial Intelligence and Crack Detection 

Artificial Intelligence (AI) plays a crucial role in different fields, especially in deep 

learning to inspect and extract cracks in solar panels which are discussed in the following 

paragraphs.     

1.4.1 Artificial Intelligence and Its Applications 

AI is a wide-ranging field that is encircled by several methods and techniques that help 

machines present intelligent behavior. AI has many applications in various domains like 

manufacturing, finance, transportation, chat-bots, video games, self-driving cars, robotics, 

education, virtual assistant, healthcare, computer visions, machine learning, market, space 

exploration, automated grading, customer services, financial services, fraud detection, and 

google deep mind. One of the best applications of AI is natural language processing (NLP), 

which helps machines to understand, clarify, and then generate human language. Let’s talk about 

computer vision, it enables machines to recognize and process videos and images like a human. 

Predicted analysis uses machine learning algorithms to compel predictions depending on data. In 

robotics, artificial intelligence trains machines to enable automated decision-making and control. 

Techniques or methods like convolutional neural networks, machine learning, and deep learning 

are helpful in the advancement of AI applications [61]. Figure 1.6 shows the main branches of 

AI.  

 

Figure 1.6: Branches of AI [75] 
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1.4.2 Potential of AI Methods for Automated Crack Detection in solar panel 

The AI techniques for automated crack detection in solar panels have acquired 

remarkable concentration in the last few years. It is observed that solar panels are defense-less 

against defects and cracks due to several reasons including diverse environmental conditions 

such as variation in temperature from night to day, wind loadings, freezing, atmospheric pressure 

load, humidity, manufacturing issues, and transportation. Traditional techniques to find cracks 

depend on manual inspection and image processing techniques, these methods are time-

consuming and make errors. AI approaches have the potential to tackle these shortcomings and 

limitations by using automated systems and enhancing accuracy.  

There are a lot of studies conducted on utilizing AI techniques for crack detection in solar 

panels. Some of them are Deitsch et al. (2019) introduce a deep learning method for the detection 

of cracks in solar panels using convolutional neural networks. In 2021, Hu et al. proposed a 

method for an automated system for crack detection in solar cells using a combination of support 

vector machines (SVMs) and image processing. These studies are evidence of the potential of 

automated systems using AI methods to improve accuracy and efficiency for the detection of 

cracks in solar modules. These techniques are very helpful in the maintenance and control of 

solar energy systems [62]. 

 

1.4.3 Traditional ML Algorithms for Crack Detection in Solar Panel 

The solution to the energy crisis is only renewable energy resources because they do not 

reduce harmful gases that increase the temperature of the world and damage the ozone layer 

reason of the increasing radiation coming from the sun is harmful to humans. The main 

renewable energy resource that is used for the production of electricity is solar panel energy. The 

author uses a deep learning algorithm to classify cracked and non-cracked images. The method 

provided in it is designed on different modules including pre-processing, amplification, feature 

computation, crack segmentation, and classification. The dataset is pre-processed with deghost 

(smoothing) using an adaptive filter and then uses the cumulative enhancement (CE) method to 

improve pixels of silicon solar module images. Cumulative enhancement computes external 

features to enhance solar cell images. Then Improved AlexNet (IAN) model classifier is used for 
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classification with external features. The morphological algorithm plays an important role in 

segmentation and enables to finding of single and multiple microcracks. It improved the energy 

production level [42]. ML and image processing are frequently used for detecting faults in solar 

cells. The old methods cannot give accurate results because the segmentation uses fixed 

equations and the latter methods learn disordered non-linear features. These features are complex 

for the human mind to operate. The author employs Support Vector Machines for the 

identification of micro-cracks solar panels. This study proposed an Image Processing 

Technique to instruct the support vector machine model and perform segmentation on 

electroluminescence images – dataset. This dataset contains 2624 images that are used for 

classification. This proposed study gives results of 91.079%, 87.289%, 96.314%, and 94.678% 

for accuracy, precision, recall, and F1 score respectively [43].  

Former methods face complexity in EL images and due to limitations in datasets, it is 

difficult to label faults during the extraction process. To solve this issue, the study proposed a 

method that combined image processing with an evolutionary algorithm, deep clustering, deep 

learning, and transfer learning (TL) technologies. It can help to label the images according to 

their faults and defects automatically besides increasing in dataset size. Firstly, the study 

proposed feature extractor depends on deep learning and classifier for defects. Secondly, use a 

deep clustering algorithm for the classification of unlabeled defects and keep them separately to 

upgrade the given dataset lacking any human intervention. Thirdly, TL is used to train the 

classifier. Finally, the model can identify defects with high accuracy [44]. An automated solar 

module crack extraction tool based on a convolutional neural network for classification using EL 

images was introduced. The system is introduced named Electroluminescence Smart Inspection 

System (ELSIS). The CNNs for ELSIS are based on InceptionV3 architecture. This deep-

learning model was trained on more than 6000 EL images. This trained model gives 98% results 

when tested on a large dataset consisting of 3000 images. This ELSIS helps in building satellites 

with power budgets [45].  

An automated system uses EL images that split into cells and detect boundaries of cells 

using projections on the y and x axes. The regions containing faults are extracted using Hough 

Transform together with mathematical morphology. Cell boundaries are removed carefully then 

approximately 25 features are determined focusing on statistical characteristics and geometry of 
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regions of their pixel values. Lastly, using a Support Vector Machine and Random Forest 

Algorithm (RFA) features are mapped. The dataset contains 982 EL images taken in the evening 

light. Here 47244 cells or 753 images were evaluated as faulty. The found results use data in 6 

series, with a recall of 0.274 and an accuracy of 0.997 using SVM [46]. The micro-crack 

detection method based on the ResNet model on multi-crystalline solar cells was developed. To 

get accurate geometry information, a feature fusion method is created that aggregates strong and 

low-level features. This technique gives an accuracy of 99.11%. It also trains fault detectors 

based on MK-MMD using transfer learning. In the past few years, deep learning techniques have 

opened new directions in the accuracy of learning and detection of useful information from many 

applications that mainly depend on images like the electroluminescence technique [47]. This 

work is based on a review of some research paper that depends on deep learning techniques 

related to the failures in SE in the past couple of years. It also compared hybrid learning and 

deep learning models and found out some important advantages and disadvantages of each 

research separately so it provides an overview that helps in the development of this field [48].  

The combination of long-term and short-term deep features methods for micro-cracks 

detection is proposed to resolve the problem of poor generality of difficult-designed features. 

There are two types of ML-based methods, (1) prior knowledge-based method and (2) current 

viewing knowledge-based method. The ability of these methods is limited and large-scale 

annotation of images or datasets is inefficient. A stacked denoising auto-encoder is applied to 

input images to find short-term deep features that represent current information. The prior 

knowledge is represented by long-term deep features that learn from a huge number of natural 

images that they see in convolutional neural networks. It concluded that the performance is better 

in a combination of long-term and short-term deep features as compared to alone. The efficiency 

of the proposed method is greater in shallow learning-based methods and the proposed method 

easily finds different kinds of micro cracks [49]. An automated system, the Vesselness algorithm 

uses EL images of polycrystalline solar cells was adopted. The provided method magnifies crack 

segmentation; the algorithm gives very fine results in a given database compared to the three 

approaches. The author shows segmentation code publically it helpful for further research and 

use as a reference algorithm for polycrystalline solar modules. ML algorithms for cracks are 

shown in Figure 1.7. 
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Figure 1.7: ML Algorithms for Crack Detection in Solar Panels [74] 

1.4.4 Role of Deep Learning Approach in Crack Detection in Solar Panel 

In the recent past, deep learning approaches become encouraging alternatives for 

automated crack extraction in PV modules. The review of deep learning methods like recurrent 

neural networks (RNN), artificial neural networks (ANN), CNN, and some others that are used 

in the extraction of cracks in solar modules. This review discusses the limitations and challenges 

of traditional methods to find cracks in PV cells. It explores that RNN and CNN are very suitable 

for image-based tasks for crack detection. The author examines various deep learning algorithms 

and techniques that have already been proposed for the detection of cracks in solar panels 

including ensemble methods, single-task learning and multi-task learning approaches, and 

transfer learning. Also, it discusses datasets that are used in analyzing deep learning algorithms 

and models. It compared performance together with computational efficiency, sensitivity, 

accuracy, and specificity of different deep learning models. Finally, it concluded that 

optimization methods and deep learning architectures are crucial to increase efficiency and 
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performance. Nowadays silicon solar modules are popular in the market to generate electrical 

energy from sunlight. The micro-cracks that are inherent in silicon modules can reduce 

efficiency [51]. The convolutional neural network models to identify and classify microcracks in 

silicon solar modules are discussed in [52]. The total number of images used was 3951, and they 

are categorized into different groups, including mono-cracked, poly-corroded, poly-good, mono-

good, and poly-cracked. Dense-Net, VGG-16, ResNet50, and VGG-19 are used as pre-trained 

models of convolutional neural networks for the classification of images where 20% of the data 

is for testing and 80% is for training. Results show that VGG-19 gives better accuracy as 

compared to other pre-trained models and overall accuracy is 98.44%. That accuracy is more 

than the other model. Hence it concluded that VGG-19 is the best option among other pre-trained 

model for classifying EL images of solar panels. Using this we ensure the better performance of 

silicon PV modules. 

1.4.5 Limitation of Traditional Methods of Image Processing Algorithms for 

Crack Detection 

There are several limitations in traditional methods and conventional image processing 

algorithms (IPA) for the detection of cracks in solar panels that can slow down their reliability 

and effectiveness. These methods are based on manual feature extraction and predefined 

thresholds. These methods are not generalized across various conditions and different types of 

input images. Also, the performance and efficiency of these algorithms and methods can be 

remarkably affected by occlusions, noise, misdetections, weather conditions, and lighting 

variations. In certain algorithms, one of the considerable limitations is the long processing time 

or huge computational cost. It was found that some algorithms or networks take 16 seconds 

approximately to find cracks in an image of resolution 6000 x 4000 pixels, which is impractical 

for real-time applications [63]. 

Moreover, traditional algorithms or methods struggle and face complex crack patterns 

that need manual extreme tuning to get sufficient results. These manual preprocessing steps, like 

filtering and smoothing, can initiate inconsistency and biases in the process of extracting. 

Additionally, several traditional methods cannot precede new types of materials or cracks. It is 

limiting their capability in diverse scenarios. Current studies have focused on these challenges 

and suggest that while conventional methods help extract cracks modern techniques like machine 
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learning and deep learning can give you outperformed results. These advanced techniques can 

automatically learn features from images and enhance the accuracy of detection in various 

conditions [64]. 

1.5 Convolutional Neural Networks 

Convolutional neural networks are a specialized type of deep learning architecture used 

for images. CNNs consist of fully connected layers, convolutional layers, multiple layers, and 

pooling layers. When an image is used as input, convolutional layers apply learnable filters that 

extract features at different scales. Pooling layers are used to shorten the geometrical dimensions 

of the feature maps. Finally, fully connected layers are used to perform classification based on 

learnable features [57]. 

1.5.1 CNN for Image Classification and Segmentation 

CNN has a lot of dominance for image classification and segmentation tasks. CNNs are 

used to detect features of images regardless of image position. Make image features 

robust/strong enough for translations. The CNN learned features at multiple levels of 

detachments/distractions from low features including edges and shapes to high-level features 

including image parts and entire images. The weights used in convolutional filters at different 

locations, decrease parameters and boost accuracy. There is no need for manual feature 

engineering for performing classification and segmentation tasks in CNNs [58]. The 

classification of CNN is shown in Figure 1.8. 

 

Figure 1.8: CNN for Image Classification [77] 
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1.5.2 Application of CNN in Various Domains 

CNNs used in various domains like image classification, crack detection, semantic 

segmentation, and medical image analysis. They have achieved ultra-modern performance on 

standard input image classification data, for example, ImageNet. For object detection tasks they 

are one of the best options. It can identify multiple objects in an input image. Another area where 

convolutional neural networks perform significantly is semantic segmentation where they 

perform pixel-wise classification and give or assign a class label to each pixel in an input image. 

It also does a great job in medical image analysis. It is used in disease diagnosis, tumor detection, 

organ segmentation, and various medical imaging tasks. Among these above uses of CNNs, 

researchers did a lot of work in crack detection based on it. It is used for automatic crack 

detection in objects and images of infrastructure, roads, and some other concrete structures. It 

used trained labeled input images of non-crack and cracked areas or surfaces. It can accurately 

and efficiently identify the location and presence of cracks [57]. Applications of convolutional 

neural networks are shown in Figure 1.9. 

 

Figure 1.9: Applications of CNN [78] 
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1.6 CNN-Based Technique for Crack Detection 

The CNN is a dominant deep-learning technique for a vast range of applications. It is 

used in semantic segmentation, image classification, and object detection. This architecture in 

[53] is created as an automated system to extract features from given raw images and remove the 

need for physical feature engineering. There are different components in CNN architecture 

including pooling layers, activation (ReLU) layers, fully connected layers, and convolution 

layers. In convolutional layers, there are learnable filters applied to input images and find out 

features together with shapes and edges. The pooling layers decrease the geometrical dimensions 

of the feature map. The activation function introduced nonlinearity properties. The fully 

connected layers present high-level reasoning based on identified features. The background of 

deep learning architectures in [54] started with LeNet (1998), which depends on handwritten 

digit acknowledgment tasks. In 2012, AlexNet was proposed as a milestone by achieving highly 

developed results in ImageNet's large-scale visual recognition challenges. When ReLU 

activation layers and dropouts are used in AlexNet, the benefits of increased network width and 

depth are demonstrated. After AlexNet different CNN architectures are proposed to increase 

efficiency and performance. Some of them are ZFNet (2013): to imagine features learned by 

layers and see the inner workings of CNN, VGGNet (2014) explains that when they increase 

depth 3x3 filters the performance increases rapidly, GoogleLeNet (2014) allows multi-scale 

processing in a single network and also introduce inception module. ResNet (2015) uses skip 

connections to reduce or remove gradient problems in deep neural networks (multiple layers) and 

it also trains networks with a huge number of layers, DenseNet (2016) creates dense connections 

in different layers and encourages to reuse of features and also reduces parameters. 

The more recent, developers focused on developing more lightweight and efficient CNN 

architectures that are suitable to insert in different devices, especially in mobile. Some of them 

are MobileNet (2017) is reduces the cost of computations and several parameters because it uses 

separable convolutions, Xception (2017) is an extension of architecture named Inception and it 

uses separable convolutions, ShuffleNet (2017) gives high efficiency because it uses channel 

shuffling and group convolutions, EfficientNet (2019) can measure resolution, depth, and width 

because it use compound coefficient, and RegNet (2020) is designing networks for balancing 

efficiency, performance and proposed by Facebook. These models are marked as milestones for 

convolutional neural networks in the development of computer innovation. Some techniques 
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improve the generalization and transparency of CNN like self-supervised learning, attention 

mechanism, and capsule networks. These architectures achieved significant development in past 

years. These achievements are due to some innovative ideas including group convolutions, 

depth, resolution and width scaling, and skip connections. As research continues, it will shape, 

improve, and luminous the future of architecture [55]. Table 1.1 shows the CNN architectures. 

CNN 

architecture 

Year of 

Lunch 

Name of 

Developer 
Improvement 

LeNet 1998 Yann LeCun Convolutional and Pooling Layers 

AlexNet 2012 
Alex 

Krizhevsky 

Use eight layers, ReLU activation 

function, and dropouts 

ZFNet 2013 
Mathew Zelier 

& Rob Fergus 
Improve AlexNet with deeper layers 

GoogLeNet 

(Inception) 
2014 Google Introduce Inception Modules 

VGGNet 2014 Oxford 
Use 3x3 convolutional filters and 16-19 

layers. 

ResNet 2015 
Kaiming 

(Microsoft) 

Utilize an intense network with 152 

layers and introduce residual 

connection. 

DenseNet 2016 Gao Huang 
Enhance gradient flow by connecting 

layers. 

Xception 2017 
François 

Chollet 

Use separable convolutions to minimize 

complexity. 

MobileNet 2017 Google 

It also uses separable convolutions to 

decrease model size, designed for 

mobile applications. 

EfficientNet 2019 Google AI Use the compound scaling method 

RegNet 2020 Facebook AI 
Deploy a systematic design process to 

make effective architecture. 

 

Table 1.1 CNN Architectures [55] 
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1.6.1 Limitations and Challenges of the Current CNN-Based Approach 

Convolutional neural networks have remarkable performance in crack detection 

meanwhile several challenges and limitations remain. One of the greatest challenges is the 

requirement of the huge labeled dataset to train CNN models efficiently. Currently, we have 

many datasets but they are limited in size and not diverse. Due to this someone faces poor 

generalization and over-fitting to unknown data. Moreover, these algorithms are computationally 

intensive. It required sizeable or huge memory and processing power. It can slow down 

algorithm development in real-time applications. The sensitivity of these networks is another 

limitation that can variously affect detection accuracy on variations in input data like occlusion, 

lighting, and noise. Researchers found that models with high results in a controlled environment 

will not give good accuracy in real-world scenarios, where conditions are unknown or less 

predictable. A study in [65] explains that traditional neural algorithms struggle to find details 

about crack patterns. Additionally, the nature of deep learning algorithms makes it difficult to 

understand how they make decisions. The following table shows the accuracy and trainable 

number of parameters. Table 1.2 shows the accuracies of the most used CNN architecture using 

the dataset of [71]. 

Model(Author) 
Accuracy 

(Top-1) 

Number of 

Parameters 
Key Features 

Faster R-CNN 

(Ren et al.,2015) 
42% 134M Region-based CNN 

Inception-v3 

(Szegedy et al.,2016) 
78.8% 24M Multi-scale Feature Extraction 

DenseNet-264 

(Huang et al.,2017) 
77.9% 34M Dense Connectivity 

NASNet-A 

(Zoph et al.,2018)) 
82.7% 89M 

Utilize normal and reduction cells 

for scalable image recognition 

EfficientNet-B7 

(Tan et al.,2019) 
84.3% 66M Scalable Architecture 

 

Table 1.2 Accuracies of Some CNN Architectures [71] 
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1.6.2 Motivation for Developing Novel CNN Architecture for Crack Detection 

Due to several limitations of recent CNN-based models, there is a need for developing 

novel models pointedly modified for crack detection. A new model can address the problems of 

data scarcity by using techniques like TL. It supports pre-trained models on huge datasets to 

enhance performance on small-size specific domain datasets. That approach helps improve 

detection accuracy and precision and decreases the need for huge labeled datasets. Moreover, the 

novel convolutional neural network merged with advanced and developed pre-processing 

techniques to improve the quality of the image and reduce lighting diversity the effect of 

developing an innovative CNN model can increase the trust and use in real-time applications. 

The new ultra-modern architecture be will more acceptable to practitioners and engineers when 

the mechanism of the model is easy to understand and explainable allowing predictable 

decisions. Therefore, these motivations spotlight the potential of improving methodologies of 

crack detection through novel CNN models that tackle current challenges [65]. 

1.7 Non-CNN-based Techniques for Crack Detection 

There are lots of studies about non-CNN-based techniques for crack detection depending 

on several traditional image processing methods. These approaches in [66] include tree 

structures. This model expresses the geometry and topology of crack patterns. Genetic 

programming is used in image processing algorithms for the automatic generation of images. 

Image filters like Wiener filters, Gaussian, and median are used for reduction in noise and 

improvement of crack features. Moreover, the beam-let transform is used as a tool for multi-scale 

geometric analysis for the detection of cracks. Meanwhile, in unmanned aerial systems (UAS), 

some cameras are useful for automated inspections. The Shi-Tomasi algorithm also helps in 

finding corners and helps in extracting crack features [65]. 

1.7.1 Limitation of Non CNN-Based Methods in Terms of Accuracy and 

Robustness 

There are several limitations in traditional methods, despite their successes, in terms of 

robustness and accuracy. Achieving high accuracy is one of the big challenges for non-CNN-

based techniques. Some other challenges are also characterized such as crack orientations, 

background noise, and diverse lighting conditions. These techniques are also sensitive to some 

factors including contrast and image resolution, ruling inefficient performance. Additionally, 
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traditional techniques tend to be tuned for specific datasets. It is challenging for them to tackle 

new scenarios [66]. 

1.7.2 Comparison of CNN-Based and Non CNN-Based Techniques for Crack 

Detection 

The CNNs appear as powerful tools for extracting cracks and give outperformance results 

as compared to traditional image processing techniques. CNN-based methods exhibit ultra-

modern performance, achieving an F1-Scoof re more than 90% in crack extraction tasks. They 

demonstrate greater validity against background clusters, variation in light, and crack 

appearance. CNN models with the help of sufficient training data can generalize well to new 

input datasets in real-world scenarios. Moreover, well-trained CNN models enable quick 

identification of cracks in real time. However, there are flaws in CNN-based architectures. They 

need huge datasets for training, which increases computational costs and is time-consuming. 

Additionally, it is complicated to understand the model’s predictions. Also, CNN models needed 

powerful hardware such as GPUs and significant computational resources [66]. 
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CHAPTER 2 

 

BASIC CONCEPTS AND DEFINITIONS 

 

2.1 Overview 

In this context of defect extraction in solar panels, it is necessary to understand the 

various fundamental concepts and definitions that support the research. This chapter figures out 

key elements exhibiting a framework for grasping the methodologies deployed.  

2.2 Renewable Energy 

Renewable energy is energy obtained from natural resources refilled on a human span. 

There are various natural resources such as biomass, sunlight, geothermal heat, wind, and water. 

The popular types of renewable energy are wind power, hydropower, and solar energy. Over the 

last few years, renewable energy become cost-effective and more efficient, and a significant 

increase in its adoption over all the world [67]. Figure 2.1 shows the types of renewable energy 

[79]. 

 

Figure 2.1: Types of Renewable Energy [79] 
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2.3 Solar Energy 

SE can be defined as the heat and light diffused by the sun that can be controlled using 

several technologies to generate electricity. There are two main types of SE, passive solar 

energy; which involves the e direct use of sunlight despite using any mechanical device, and 

active solar energy which uses technologies such as solar thermal systems and PV systems, to 

convert sunlight into usable energy [67]. Figure 2.2 shows the production of SE. 

 

Figure 2.2: Solar Energy [80] 

2.4 Photovoltaic System 

The photovoltaic system is a technology that can convert sunlight into electric current 

with the help of semiconductor material (silicon). When the light of the sun arrives at the PV 

cells, it accelerates the electrons, generating electricity. PV systems play a xc significant role in 

to shift toward renewable resources. It can be used for small-scale (residential) to large-scale 

(farm) to supply electricity [67]. Figure 2.3 shows the pipeline of SE into electric energy. 

 

Figure 2.3: PV System [81] 
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2.5 Cracks in Solar Panel 

There are several factors that cracks can occur in solar panels such as thermal stress, 

manufacturing defects, mechanical impacts, transportation, or environmental conditions. These 

cracks badly on the performance of solar panels. It is necessary to check and address cracks in 

solar panels to ensure the efficiency and performance of solar systems [67]. The number of 

cracks in solar panels is denoted by C. 

2.6 Effects of Cracks in Solar Panel 

There are various adverse effects of cracks in solar panels, such as increasing the risk of 

further damage, reducing the lifetime of PV systems, safety risks, and reduced energy outputs. It 

can disturb the flow of current in the solar panel leading to reduced efficiency and increased 

operational costs. Moreover, if timely it will not be addressed, it allows or absorbs moisture to 

enter into the panel which increases the safety risk. Regular maintenance is important for optimal 

performance [67].  

2.7 Image Processing 

Image processing is associated with the set of computational techniques employed to 

examine, enhance, compress, and reconstruct images. It includes transforming images into digital 

format and executing several algorithms to collect useful information and enhance the visual 

quality. This process involves various stages: image learning, analysis, manipulation, and output. 

Image processing is used in several fields including industrial robotics, astronomy, remote 

sensing, and medicine which makes it important in modern technologies and data analysis [68]. 

Image processing is shown in Figure 2.4. 

 

Figure 2.4: Image Processing [82] 
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2.7.1 Image Enhancement Techniques 

It is a method used to elevate the visual appearance of an image that is suitable for 

analysis. These improvements can significantly enhance the understandability the of image. It 

has wide applications in satellite photography and medical imaging. Common image 

enhancement techniques are contrast and adjusting brightness, improving edges to make features 

clearer, and applying filters to reduce noise [68]. Image enhancement is denoted by Ω(x). 

Several image enhancements are shown in Figure 2.5.  

 

Figure 2.5: Image Enhancement Techniques [83] 

 

2.7.2 Image Representation 

This technique involves encoding the visual information contained in the image. This 

visual information can be analyzed and processed by computers. Image representation 

particularly includes defining the image as a 2-dimensional array of pixels. Here, each single 

pixel is referred to as intensity and color. Several representation methods, including RGBA, 

grayscale, and RGB, provide different types of color information and details, helping in further 

analysis tasks and processing [68].  
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2.8 Neural Networks (NNs) 

A NN is a computational model motivated by the patterns of biological neural networks 

in the human brain. It is based on interconnected neurons (nodes) arranged in layers including an 

input layer, several dense or hidden layers, and an output layer [68]. The number of neurons is 

denoted by µ(x). General NN is shown in Figure 2.6. 

 

Figure 2.6: Neural Networks [84] 

2.9 Convolutional Neural Networks (CNNs) 

CNN is a feed-forward neural network that uses filter optimization for feature 

engineering. It is a category of ML model; particularly CNN which is a type of deep learning 

algorithm that is quite suitable for inspecting visual data [69]. 

Application: CNNs are used in image and video recognition, financial time series, 

recommendation systems, brain-computer interference, image classification, natural language 

processing, image segmentation, and medical images. 

Architecture: It creates feature maps by using filters or share-weight convolution kernels. These 

filters slide along input features to produce translation-equivariant responses. 

Inspection: Convolutional neural networks are inspired by biological processes. It is similar to 

the connectivity patterns in the human brain's visual cortex. 
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Pre-Processing: It is commonly used to prepare input data in computer vision. Pre-processing is 

directly influencing the outcome or performance of ML models. 

Overfitting: Regularization techniques such as skipped connections, weight decay, dropouts, 

etc., help prevent overfitting by discipline parameters in the training of models [68]. Figure 2.7 

shows the CNN architecture [69]. 

 

Figure 2.7: CNN Architecture [85] 

 

2.10 Key Components of Convolutional Neural Networks 

The key components of CNNs depend on several layers such as convolutional, dense, 

pooling, dropout, activation, and fully connected layers. 

2.10.1 Convolutional Layer 

It is a fundamental building block in convolutional neural networks. Convolutional 

layers are based on a set of learnable filters that have small responsive fields despite that they 

extend to the full depth of the input image. These filters are convolved over the height and width 

of the input volume when the input image is forward pass. It computes the dot product of the 

input and entire filters at any position during the forward pass and constructs two-dimensional 

activation maps of those filters. This network acquires information from filters that are activated 

when they extract any specific type of feature from any position of the input [69]. The number of 

convolutional layers is denoted by η. Figure 2.8 shows the convolutional layer. 
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Figure 2.8: Convolutional Layer [78] 

2.10.2 Pooling Layer 

Pooling layers carry out filtering operations along width and height dimensions and 

reduce the volume of the input image. There are different types of pooling such as max pooling, 

global max pooling, average pooling, and global average pooling. Max pooling provides the 

maximum value of output and it converts input image into parts or sets of non-overlapping 

rectangles. The pooling layers introduce translation invariance to the network [69]. It is denoted 

by λ. Figure 2.9 shows the extraction in the pooling layer.  

 

Figure 2.9: Extraction in Pooling Layer [78] 

 

2.10.3 Fully Connected Layer 

Fully connected layers, connect layer in the network. It connects every neuron in one 

layer to every neuron in another layer. CNN works as a traditional multilayer perceptron that 
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uses features for the classification of input images into different classes [69]. Fully connected 

layers are shown in Figure 2.10. 

 

Figure 2.10: Fully Connected Layers [78] 

2.10.4 Dropout Layer 

The dropout layer is used to avoid overfitting by randomly deactivating an area of 

inputs at the time of each training update. This pushes the network to learn more features that are 

helpful in conjunction [69]. Figure 2.11 shows the dropout on hidden layer. 

 

Figure 2.11: Dropout on Hidden Layer [69] 

2.10.5 Batch Normalization Layer 

To enhance the stability and performance of the neural networks, a technique is used 

called batch normalization. It normalizes the inputs to each layer. The batch normalization layer 
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reduces training time, provides higher learning rates, and the network becomes more robust to 

initialization [69]. 

2.10.6 Activation Layer (ReLU) 

It applies an element-wise activation function. The example activation layer is the 

max⁡(0, 𝑥) rectifier function also called rectified linear unit (ReLU). It used to be located after 

fully connected and convolutional layers and denoted by R(x) [69]. 

2.11 Key Concepts in CNNs 

The key concepts in CNNs involve feature mapping, stride, and padding. These are 

crucial for understanding how convolutional neural networks operate and how CNN transforms 

input data into meaningful outputs [54]. 

2.11.1 Feature Mapping 

It refers to applying convolutional kernels (filters) to input data that helps the mod 

extract specific patterns (features) in data. Each single filter is developed to capture particular 

characteristics including texture and edges, by executing a dot product between the input data 

and the filter at several dimensional locations. Feature maps are important because they enable 

the model to learn and understand the hierarchical representation of input data [54]. 

2.11.2 Stride and Padding 

Stride is associated with several pixels in filters by which it moves across the input 

data. A stride means a filter moves one or two pixels simultaneously. By adjusting the stride, it 

affects the size of the feature map. The larger strides provide a smaller feature map in the 

convolutional process.  

Padding includes additional pixels across the input data before executing 

convolutional operations. This is proceeded to control the structural dimensions of output 

(feature map). Padding ensures that essential features are not lost a maintained in the 

dimensionality of output [69]. Figure 2.12 shows the stride and feature mapping. 
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Figure 2.12: Stride and Feature Map [78] 

2.11.3 Trainable Parameters 

Trainable parameters consist of weights and biases. It is associated with convolutional 

layers and fully connected layers. To reduce the loss function, trainable parameters are adjusted 

while training of model. They enable the model to learn from the data [69]. The number of 

trainable parameters is denoted by γ.   

2.11.4 Types of Trainable Parameters 

Biases: There are several filters in convolutional layers. In each filter, there is a bias 

term. This attaches an additional parameter for each filter, which helps the model fit the data 

better. Weights: In the convolutional layer (conv), each filter has some weights that are learned 

at the time of training. The number of weights is found by the size of the filter and the number of 

input channels [69]. Consider if conv has a filter of size 4 × 4, denoted by ξ(x), and receives 

input from a layer with 4 channels then the number of weights, denoted by ψ(x), for one filter 

should be:   

4 × 4 × 4 = 64 

2.11.5 Calculation of Trainable Parameters 

Total trainable parameters can be calculated using the formula: 
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𝑇𝑜𝑡𝑎𝑙⁡𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = (𝑓𝑖𝑙𝑡𝑒𝑟⁡ℎ𝑒𝑖𝑔ℎ𝑡 × 𝑓𝑖𝑙𝑡𝑒𝑟⁡𝑤𝑖𝑑𝑡ℎ × 𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑖𝑛𝑝𝑢𝑡⁡𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 + 1) 

Where +1 takes the bias term for each filter [69]. 

For example, a convolutional layer has: 

𝐼𝑛𝑝𝑢𝑡⁡𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 = 3⁡(𝑅𝐺𝐵⁡𝑖𝑚𝑎𝑔𝑒𝑠) 

𝑁𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = 2 

𝐹𝑖𝑙𝑡𝑒𝑟⁡𝑠𝑖𝑧𝑒 = 3 × 3 

Then 

𝑇𝑜𝑡𝑎𝑙⁡𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = (3 × 3 × 3 + 1) × 2 = 27 + 1 = 28 

Where total parameters are denoted by £. 

 

2.12 Famous CNN Architectures 

CNN architectures have spread significantly since their foundation, to increase 

performance on difficult tasks. Some of the famous CNN architectures are given below: 

2.12.1 AlexNet 

In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hiwere developed “AlexNet” 

in the field of computer vision. AlexNet remarkably outperformed other models in the ImageNet 

Large Scale Visual Recognition Challenge (ILSVRC-2012) competition. It acquired top-5 error 

rate of 15.3%. AlexNet used overlapping pooling, ReLU activation function, and dropouts to 

reduce overfitting [54]. The architecture of AlexNet is shown in Figure 2.12. 

 

Figure 2.13: Architecture of AlexNet [86] 
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2.12.2 Improved AlexNet 

The researchers continue to enhance the AlexNet architecture, after its remarkable 

performance and introduced Improved AlexNet. In this architecture researcher used batch 

normalization which is helpful to accelerate the training process and enhance the performance. 

This version is also called “AlexNet with Batch Normalization” [54]. The architecture of the 

improved AlexNet is shown in Figure 2.14. 

 

Figure 2.14: Architecture of Improved AlexNet [87] 

2.12.3 VGG19 

In 2014, VGG19 architecture was developed by Karen Simonyan and Andrew 

Zisserman. It is developed with 19 layers which exhibit the importance of depth that helps to 

achieve good performance. VGG19 architecture used 2x2 pooling and 3x3 convolutions 

throughout the network. In the ILSVRC 2014 competition, it achieved a top-5 error rate of 7.5% 

[54]. The architecture of VGG19 is shown in Figure 2.15.  

 

Figure 2.15: Architecture of VGG19 [88] 
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2.12.4 ResNet50 

In 2015, ResNet50 was developed by Kaimin He et al. It won the ILSVRC 2015 with a 

50-layer Residual Network. In ResNet50 there is extensive use of batch normalization and 

featured with special skip connections. It is one of the modern CN models and is widely used by 

researchers [54]. Figure 2.16 shows the architecture of ResNet50.  

 

Figure 2.16: Architecture of ResNet50 [89] 

2.13 Transfer Learning 

It is an ML technique, in it a model trained on one task can be reused for other tasks. This 

technique enables the model to become a master of the r new tasks based on its previous 

knowledge and also allows a training model despite having limited data. In TL several 

approaches are used by researchers on their requirements, these approaches are inductive transfer 

learning (ITL), unsupervised transfer learning (UTL), and transductive transfer learning (TTL) 

[70]. Transfer learning is shown in Figure 2.17. 

 

Figure 2.17: Transfer Learning [90] 



40 
 

 
 

2.14 Accuracy 

Accuracy is a metric that measures the portion of correct/exact predictions made by the 

model over the whole dataset. Accuracy is calculated as the ratio of the sum of true negatives 

(TN) and true positives (TP) to the total number of samples. Accuracy is useful but sometimes it 

misleads when classes are imbalanced. The formula for accuracy is given below [90]: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝐶𝑜𝑟𝑟𝑒𝑐𝑡⁡𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙⁡𝑁𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
                                      (1) 

2.15 Precision 

The precision is defined as the ratio of true positives to the sum of false positives (FP) 

and true positives (TP). When precision is high it indicates that a model has low FP rates. It is 

important in situations where the cost of FP is high. It identifies the accuracy of positive 

predictions of the model [90]. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
                                           (2) 

2.16 Recall 

It measures the ability of the model to find all relevant positive instances. The recall is 

also known as true positive rate or sensitivity. Recall is calculated as a ratio of TP to the sum of 

FN and TP. When recall is high it indicates the model is good at capturing actual positive cases 

[90]. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒⁡𝑁𝑒𝑔𝑖𝑡𝑖𝑣𝑒𝑠
                                                  (3) 

2.17 F1-Score 

F1-Score is also known as F-measure. It is a performance metric for estimating the 

effectiveness of binary classification models. F1-score is crucial in scenarios where the class is 

imbalanced. When the F1-score is high it indicates that the performance of the model is good 

[90]. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                                      (4) 
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CHAPTER 3 

 

FAULT DETECTION AND COMPUTATION OF 

POWER IN PV CELLS USING DEEP-LEARNING 

3.1 Overview 

The authors of the review work [91] use a novel approach for finding and extracting 

faults in PV modules. This paper addresses the crucial issue of cracks or fault detection in solar 

panel modules. These faults can significantly impact the reliability and efficiency of PV cells. 

The effects of cracks and faults are various like reduced performance, reduced lifespan of the 

solar system, damaged connections or wires, danger of fire hazards, and risk of injuries from 

broken glass. The review work used four different models such as U-Net, Attention U-Net, 

LinkNet, and Feature Pyramid Network (FPN) to identify cracks in PV cells. Also, ensemble 

learning is used to combine the results of these four models for improved accuracy. The authors 

of this paper aim to improve the extraction of various faults including deep cracks and 

microcracks, using deep learning techniques. The workflow is shown in Figure 3.1 [91]. 

 

 

Figure 3.1: Workflow of Review Work [91] 
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3.2 Key Contributions 

The key contributions of Sohail et al. (2023) are focused on the application and 

understanding of DL methodology, how cracks impact output, and the use of ensemble learning.  

3.2.1 Deep Learning Methodology 

The authors provide a sufficient deep-learning framework for extracting several types of 

cracks on PV cells. It involves distinguishing between deep cracks and microcracks that are 

essential for assessing the structural integrity of PV solar cells. 

3.2.2 Impact on Power Output 

The researcher interrogates how these cracks affect the power output of solar modules. 

They spotlight the existence of faults that lead to a reduction in the performance and efficiency 

of solar systems. It also highlights the need to extract cracks timely to maintain the longevity and 

performance of PV cells. 

3.2.3 Model Evaluation 

They employed several deep learning models, like convolutional neural networks (CNN), 

to distinguish the types of faults based on EL images of solar cells. The models used are 

evaluated using metrics such as F1-score and accuracy to ensure good performance. 

3.3 Methodology 

The methodology outlines the techniques and steps used in this work, such as data 

collection, model training, loss function, ensemble learning, performance metrics, and power 

analysis.  

3.3.1 Data Collection 

EL images were used to train the four deep-learning models. The dataset is based on 

images of solar cells with different types of cracks such as deep cracks and microcracks. These 

images are used as ground truth for testing and training of models. This dataset is complex for 

training the models to understand and distinguish cracks effectively. 
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3.3.2 Model Training 

The authors tested different architectures such as U-Net, Attention U-Net, Feature 

Pyramid Networks (FPN), and LinkNet model, to find out the most effective model for crack 

extraction in solar modules. These selected models are giving effective results in image 

segmentation and classification tasks. Standard techniques are used in training these deep 

learning models including gradient descent and backpropagation. Hyperparameter tuning and 

data augmentation techniques are also used to optimize models for crack classification accuracy. 

3.3.3 Loss Functions 

The loss function optimizes the model and produces improved segmentation results. This 

work used different loss functions on trained models and selected the best result. Two loss 

functions used in the study are categorical Cross-Entropy loss function and focal loss function 

mathematically mentioned below: 

𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙⁡𝐶𝑟𝑜𝑠𝑠 − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦⁡𝐿𝑜𝑠𝑠 = −∑𝑎𝑖

𝑛

𝑖=1

log
𝑒𝑠𝑝

∑ 𝑒𝑠𝑝𝑛
𝑖

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5) 

𝐹𝑜𝑐𝑎𝑙⁡𝐿𝑜𝑠𝑠 = −∝𝑡 (1 − 𝑃𝑡)
𝛾 log𝑝𝑡 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(6) 

 

3.3.4 Ensemble Learning (EL) 

An ensemble learning approach is used to integrate the results of these four deep 

learning models. EL aims to enhance the overall accuracy of fault classification as compared to 

individual models. The author implements the weight average ensemble method to strengthen the 

mIoU of these four models. The outcome of these four trained models is gathered as: 

𝑦 =
𝑤𝑢 × 𝑓𝑢 +𝑤𝑙 × 𝑓𝑙 +𝑤𝑓 × 𝑓𝑓 +𝑤𝐴𝑢 × 𝑓𝐴𝑢

𝑤𝑢 +𝑤𝑙 +𝑤𝑓 +𝑤𝐴𝑢
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(7) 

Where 𝑤𝐴𝑢, 𝑤𝑓 ,⁡𝑤𝑙, and 𝑤𝑢 represent weights of attention U-Net, FPN, LinkNet, and U-

Net. The value of weights for models are 𝑤𝐴𝑢 = 0.5, 𝑤𝑓 = 0.1, 𝑤𝑙 = 0.1, and 𝑤𝑢 = 0.3. Here 

𝑓𝐴𝑢 , 𝑓𝑓 , 𝑓𝑙, and 𝑓𝑢 are predictions of models. 𝑦 represents the final prediction. 
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3.3.5 Performance Metrics 

These CNN models are evaluated depending on their ability to accurately and effectively 

detect faults and predict performance degradation. Also, determine a comprehensive view of 

their effectiveness. The performance of the ensemble approach and models is evaluated using 

different metrics such as F1-score. The performance metrics and plots are shown in Table 3.1 

and Figure 3.2 respectively. 

Accuracy Precision Recall F1-Score mIoU 

97.96% 97.95% 97.92% 58.33% 54.19% 

Table 3.1 Performance Metrics of Base Paper 

 

Figure 3.2: Performance of Review Work 
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3.3.6 Power Analysis 

This research not only works on crack classification; it also investigates the effect of 

cracks on the power output capability of solar modules. In addition, it analyzes the relationship 

between power degradation and crack size of PV cells. It found that larger deep cracks can lose 

more power as compared to smaller cracks. 

3.4 Key Finding 

This section summarizes the key findings, particularly focusing on three areas: fault 

identification from images of solar panels, power efficiency to analyze the impact of faults, and 

ensemble learning to combine the different ML models and enhance the performance of the 

model.  

3.4.1 Fault identification 

The models used in the study effectively extract and classify various types of cracks in 

solar cells such as deep cracks and microcracks. The models are trained on a dataset of 

electroluminescence images and show high accuracy in extracting cracks. These models can 

classify between microcracks hardness and orientation. It provides a detailed analysis of the 

structural integrity of the solar modules. This level of crack identification is important for 

understanding the impact of faults and cracks on power generation and overall solar system 

performance. 

3.4.2 Power Efficiency Analysis 

In the base paper, the key finding is that the power generation efficiency is inversely 

related to the severity of cracks in solar cells. It reveals that deep and larger cracks are directly 

proportional to power losses. By assessing the relationship between power degradation and crack 

size, the study provides significant insights into the effects of cracks on solar system 

performance. This analysis can guide maintenance strategies and also help to optimize power 

generation output under defective conditions. 

3.4.3 Enhancement Using EL 

This research discusses the potential of employing ensemble learning techniques to 

enhance the accuracy of crack detection in solar cells. The ensemble learning approach combines 
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the predictions of four deep learning models including U-Net, Attention U-Net, LinkNet, and 

FPN, and outperforms as compared to individual models in distinguishing crack types. The EL 

approach leverages the strengths of several architectures to develop a more reliable crack 

detection system. It enhanced the performance and efficiency of solar panel monitoring systems. 

3.5 Summary 

The detections and outcomes of this paper highlight the importance of deep learning 

techniques for the worthwhile monitoring and maintenance of solar systems. By enhancing the 

crack detection capabilities, this method can help improve the efficiency and reliability of PV 

systems. This base paper provides us comprehensive understanding, contributions, and 

significance of deep learning models in the fields of fault extraction in PV system and renewable 

energy. 

The base paper shows a comprehensive methodology by applying an ensemble technique, 

a combination of four deep learning models, and power generation analysis, for detecting cracks 

in solar panels. It also assesses the impact on solar system performance. The performance metric 

and dataset depending on EL images ensure the reliability and robustness of this approach. 

In this article, there are some limitations firstly, the authors use four different models and 

then use the ensemble method to enhance the result. It takes more time and increases the 

computational cost. Secondly, four models train a large number of hyper-parameters as 

compared to a single model. It makes the process of classification very slow. Thirdly, the dataset 

is not diverse and does not include images captured in varying lighting effects and environmental 

conditions. Fourthly, integrating these models into a real-time inspection system is challenging 

because of processing speed and always needs more data than is feasible in the practice. 
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CHAPTER 4 

 

 Crack Detection in Solar Panel Using B-Net Deep 

Learning Model  

4.1 Overview 
In this proposed work we designed the new B-Net Model for identifying cracks in solar 

panel using deep learning techniques. This work aims to enhance the performance and the 

accurate detection of cracks in solar panels. The vital contribution of research is to develop a 

model that can find cracks in varying lighting and weather conditions. This research plays a role 

in a safe and clean environment and helps to reduce global warming. The architecture and 

methodology involving various stages are given below in the methodology section.  

4.2 Problem Statement 
The use of solar systems has increased rapidly worldwide due to the shortage of clean 

and renewable energy resources. The issue is to detect cracks in solar panels. We aim to address 

the challenge of identifying and locating cracks in solar panel surfaces. The problem of cracks 

badly reduces the performance of solar panels, leading to reduced energy production. The 

objective is to make a reliable and efficient crack detection system using convolutional neural 

network architecture particularly, deep learning models, to ensure the optimal functioning of 

solar panels and enhance their longevity.  

The first objective is to check the ability of the proposed B-Net algorithm to detect cracks 

on PV modules under varying environmental conditions, including changes in lighting and 

weather, and evaluate how these conditions impact the algorithm's accuracy in crack detection. 

Secondly, to compare the accuracy and efficiency between the B-Net model and traditional 

methods for crack detection on PV modules, to determine the relative effectiveness and 

practicality of each approach in real-world applications. 

4.3 Methodology 
The section on methodology for the proposed work has several crucial steps. It starts with 

dataset preparation. 



48 
 

 
 

4.3.1 Dataset Preparation 
We collect high-resolution images of PV panels. It ensures that these images are diverse, 

including both non-crack and cracked panels. To remove any low-quality and corrupted images, 

the cleaning process is implemented throughout the dataset. It ensures that only high-quality 

images are used in the training and validation process. Moreover, all images are standardized to a 

uniform resolution such as 224x224, 512x512, and 1024x1024, etc. We use consistent color 

space that is RGB (red, green, blue) for effective model training. 

4.3.2 Data Collection and Annotation 
This research represents a collection of datasets of solar panels (cracked and non-

cracked) from Pakistan and additionally, from the Kaggle website then these datasets merged. In 

our data set, we take 3007 RGB images. It consists of 1431 images of non-crack or clear panels 

and 1571 images of crack panels. These images are passed through the annotation process by 

using efficient tools. The annotation process precisely labels the type, presence, and structural 

geometry of cracks. The dataset collection is shown in Table 4.1. 

Dataset Number of Images 

Cracked 1576 

Non-Cracked 1431 

Total 3007 

 

Table 4.1: Dataset Collection 

 

4.3.3 Train/Validation/Test Set Split 
To assess model performance, we established a well-defined train/validation/test set to 

split as subsets for the dataset. The dataset is divided into three subsets for example 60, 70, and 

80 percent for training, 20, 15, and 10 percent for validation, and 20, 15, and 10 percent for tests 

respectively. This hierarchal approach ensured the representation of three classes of each subset. 

This approach enables the model to learn and understand effectively. It also allows neutral 

performance assessment. The training subset is used to train our B-Net model, the validation 
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subset is used to tune hyper-parameters and observe performance to mitigate overfitting, and the 

test subset is used for output or final evaluation. This output result shows the capability of the 

model to detect cracks for new unseen data. By employing this methodology, the proposed work 

objective is to develop a strong B-Net model that can correctly detect cracks in solar panels and 

contribute to the reliability and longevity of solar systems. 

4.4 Proposed B-Net Model 
B-Net Convolutional Neural Network architecture is designed to improve image 

processing tasks, specifically for crack detection in solar panels, aiming to optimize solar energy 

systems. We develop an innovative deep-learning model, to distinguish cracked and non-cracked 

solar panel images. It builds upon the fundamental principle of traditional CNNs and uses 

advanced techniques like batch normalization, and dropout layers. The model contains five 

convolutional layers, five pooling layers, and a dense layer. This layout aims to produce high 

output in crack extraction. It decreases the number of parameters and aims to keep low 

computational costs. B-Net architecture is characterized by its modules and depth, enabling it to 

understand complex patterns from huge datasets and maintain computational efficiency. This 

architecture consists of input layers, flattened, dense layers, and output layers. The architecture 

of B-Net is shown in Figure 4.1. (author own created figure) 

 

Figure 4.1: Architecture of B-Net (Proposed Model) 

4.5 Training Environment, Tools, and Settings 

This step describes the technical environment, tools, and settings deployed to train the 

model. It ensures the efficiency and reproducibility in B-Net model development. These are 
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carefully selected to enhance the model's training process. The model uses fine-tuning hyper-

parameters, GPU acceleration, and essential libraries for efficient training, ensuring reliable 

performance and high accuracy on classification tasks. Python was used because of its extensive 

tools and libraries for ML and DL. Table 4.2 shows the tools used in training the proposed 

model. Table 4.2 shows the environment and tools used in the proposed work. 

Environment and Tools 

Hardware Intel Core i5 (GPU), 6th Generation 

Operating System Window 10 

Programming Language Python 3.12.3 (64-bit) 

Deep Learning Framework TensorFlow 2.15.0 

Integrated Development Environment 

(IDE) 
Google Colab 

Table 4.2 Tools Used in Proposed Work 

Table 4.3 shows settings, performance metrics, and splitting of the dataset used in the 

proposed model to make it efficient. Data augmentation was used to improve the performance of 

B-Net. Evaluation metrics such as accuracy, precision, recall, and F1-score ensured the 

effectiveness of the model.  

Settings Values 

Data Augmentation Method Applied 

Total Dataset 3007 RGB Images 

Splitting of Dataset Training (80%) + Test (20%) Split 

Evaluation Metrics Accuracy, Precision, Recall, F1-Score 

Table 4.3 Settings, Performance Metrics, Dataset Split 
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Hyper-Parameter tuning is a crucial step during training. In this procedure, we optimize 

the training parameters and architecture of the model to obtain the finest performance. Some 

hyper-parameters are learning rate, batch size, number of epochs, and dropouts. In the proposed 

B-Net model different values of these parameters are used while the best results are achieved, 

shown in Table 4.4. 

Hyper-Parameter Values 

Learning Rate 0.0001 

Batch Size 64 

Loss Function Binary Cross Entropy 

Optimizer Adam (Adaptive Moment Estimation) 

Number of Epochs 100 

Early Stopping Applied 

Activation Function Sigmoid 

Dropout Rate 0.025 

Pooling Size 2 x 2 

Number of Layers 

(convolutional + fully connected) 
5+ 1 = 6 

Table 4.4 Hyper-Parameters and Values 

4.5.1 Work Flow of Proposed Work 

The workflow of the proposed model is shown in Figure 4.2. The diagram represents the 

process of dataset preparation, training, and testing of the convolutional neural network B-Net 

model for crack detection on images of solar panels. The workflow illustrates the pipeline from 

data preparation to the final evaluation. The B-Net learns from labeled images of cracked and 
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non-crack solar panels in the training phase, and then the model’s performance is validated using 

the testing dataset.  

 

Figure 4.2: Work Flow of Proposed Work 



53 
 

 
 

4.5.2 Loss Function and Optimization Algorithm 

The model's training starts with choosing the suitable loss function and optimization 

algorithm. These two are important for guiding the model’s learning process. The loss function 

measures the difference between the actual labels and the predicted outputs. It provides feedback 

to the model in the training procedure. We use binary cross-entropy as a loss function because 

our dataset has two classes. Binary cross-entropy is one of the best options for binary 

classification tasks. Further, it is extended into categorical cross-entropy. 

𝐵𝑖𝑛𝑎𝑟𝑦⁡𝐶𝑟𝑜𝑠𝑠 − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −[𝐲 ⋅ 𝑙𝑜𝑔(𝒚̂) + (𝟏 − 𝐲) ⋅ 𝑙𝑜𝑔(𝟏 − 𝒚̂)]⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡  (8) 

Where, 

𝑦̂ ∈ (0,1) is the predicted probability of each class and 𝑦 = {0,1} is the true class label. 

Optimization Algorithm: 

Optimization algorithms are employed to minimize the loss function. In it, we adjust the 

model’s weights. We use Adam (Adaptive Moment Estimation) as an optimization algorithm in 

the proposed B-Net model. We preferred it because of its adaptive learning rate capability. It is 

helpful to converge faster. It is efficient for training models because this algorithm composites 

the benefits of both momentum and root mean square propagation optimization algorithms. 

Adam works well for large and complex datasets. It has some cons, as it leads to overfitting in 

some cases when hyper-parameters do not tune well. 

4.5.3 Early Stopping and Model Selection 

Early stopping monitors the model's performance during training on the validation dataset 

and finishes the training when the model’s performance degrades. It shows that the model does 

not generalize the dataset, but it memorizes the training data. We use the following parameter in 

this step, shown in Table 4.5. 

Patience Mode Restore_best_weight Monitor 

10 Minimum True val_loss 

 

Table 4.5 Early Stopping and Values 
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4.5.4 Data Augmentation Techniques 

Data augmentation techniques are used to enhance the model’s generalization capability. 

It also reduces overfitting during the training of the model. There are several data augmentation 

techniques. It includes real-time data augmentation applied using an image data generator in 

keras, rotation range up to 30 degrees, width and height shifts up to 30% of image size, shear 

transformation of range 0.3, zoom range by the factor of 0.3, and horizontal flip to mirrored 

images and fill mode used to handle blank area created due to transformation of images. It helps 

the model to understand and recognize cracks from various perspectives and angles. These are 

used to enhance the model and help it understand and learn more generalized features. 

4.6 Results and Analysis 

This section demonstrates the findings and insights from testing different models on the 

given dataset. The comparison of performance metrics, including accuracy, precision, recall, and 

F1-score, shows the effectiveness of each model. This analysis helps to understand the 

weaknesses and strengths of different models.    

4.6.1 Pre-Trained Models 

The following pre-trained models are commonly used and have good performance 

metrics. In this research, we trained these models on our dataset and observed accuracy, 

precision, recall, F1-score, and loss results. 

1. MobiNet-V2 

MobiNet-V2 provides moderate performance with an accuracy of approximately 52% in 

the classification task. The precision and recall are equal to 51.75%, showing a consistent level 

of performance. F1-score is 51.7470896244049%. However, the high loss of 7.5897 

demonstrates that the model struggles to learn and understand from the given training dataset. 

This combination of high loss and moderate accuracy indicates that MobiNetV2 may not be 

reliably differentiated between the two classes. This shows the limits of overall effectiveness on 

datasets with images captured in diverse lighting and weather conditions. 

2. ResNet50 

It provides strong performance, achieving an accuracy of 80% in the classification task. It 

exhibits consistent balance throughout evaluation metrics, all achieving 80%, demonstrating that 
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the model effectively differentiated between positive and negative cases. Moreover, the 

ResNet50 model has a loss value of 0.4506, which is very low comparatively, indicating that the 

model effectively learned from the given dataset. ResNet50's solid performance metrics exhibit 

that it is a competitive option in several classification scenarios. 

3. Inception_V3 

Inception_V3 exhibits an accuracy of approximately 51%. This model also shows 

consistent behavior across evaluation metrics. It provides a high loss of 8.1797, indicating that it 

may struggle to learn from the training dataset. This combination of high loss and low accuracy 

demonstrates that overall effectiveness is limited across datasets that have images captured in 

diverse lighting and weather conditions.  

4. VGG16 

VGG16 model attains an accuracy of 47%, which shows that the model correctly learns 

and identifies only 47% from training data. The result is mirrored across the performance 

metrics, showing the consistency of the model. It has a loss of 0.8637, exhibiting that the model 

may not learn from given training data because low loss is correlated to high performance.     

4.7 Experimental Results of B-Net Architecture 

In this step, we analyze the impact of changing values of different hyper-parameters on 

the performance of the B-Net architecture. 

ID 
Image 

Size 

Dense 

Layers 
Dropouts 

Accurac

y (%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

1 128 512+1024 Nil 87.15 87.15278 87.15278 87.1527791023254 

2 256 512+1024 Nil 91.67 91.66667 91.66667 91.6666686534881 

3 512 512+1024 Nil 91.67 91.66667 91.66667 91.6666686534881 

4 512 512+1024 0.025 94.44 94.44 94.44 94.4444417953491 

Table 4.6 Results Based on Different Image Size 

Table 4.6 provides the results of experiments conducted to assess the performance of the 

B-Net model under varying hyper-parameters, assigned a unique ID or Model No. We change 

image size while other components are set constant or unchanged, such as batch size of 64, 

epochs 32, convolutional layers 5, dense layers 2 (512+1024), and dropouts, while changing 
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image size provides specific accuracy, precision, recall, and F1-score. The training, validation, 

and test sets are 80%, 10%, and 10% same for further tables. 

Analysis of the table or data shows that Model 1, with image size 128 (pixels), acquires 

an accuracy of 87.15%, Model 2 and Model 3 achieve identical accuracy of 91.67% with image 

sizes 256 and 512, and Model 4 provides superior accuracy of 94.44% utilizing image size 512. 

This indicates a correlation between model accuracy and image size. Moreover, adding a dropout 

layer of 0.025 rate in Model 4 significantly improves accuracy to prevent overfitting. Thus, the 

table is a helpful resource for comparing the efficiency of several B-Net architectures and hyper-

parameters in a given task and explains the impact of various factors on model performance. 

ID 
Image 

Size 

Dense 

Layers 
Dropouts 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

5 256 2048 0.025 89.93056 89.93056 89.93056 89.9305582046508 

6 256 2048 0.0025 90.27778 90.27778 90.27778 90.2777791023254 

7 256 2048 0.001 92.01389 92.01389 92.01389 92.0138895511627 

8 256 2048 0.0001 94.09722 94.09722 94.09722 94.097226858139 

9 256 2048 0.005 94.44444 94.44444 94.44444 94.4444417953491 

10 512 2048 0.005 93.06 93.06 93.06 93.0555582046508 

Table 4.7 Results Based on Different Dropouts 

Table 4.7 provides the results of experiments conducted to assess the performance of the 

B-Net model under varying hyper-parameters. Each row includes key parameters such as image 

size, batch size, epochs, convolutional and dense layers, dropout rates, accuracy, precision, 

recall, and F1-score in percentage. In the above table, all tests except the last one utilize image 

size 256 (pixel), while the last one uses 512. A consistent 32 epochs, batch size 64, five 

convolutional layers, and 2048 dense units deployed for feature extraction were maintained 

throughout all experiments.   

The results show that the dropout rate critically impacts the performance of the model. 

By decreasing the dropout rate from 0.025 to 0.0001, the accuracy significantly increases. It 

reveals that decreasing the dropout rate allows the model to effectively prevent the loss of 

important features. The greatest accuracy of 94.44% was attained with a 0.005 dropout rate (ID 

9). Noticeably, the model utilized an image size of 512 pixels (ID 10) and achieved an accuracy 
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of 93.06%, a minor lower than small image size tests, which shows that larger images contain 

more detail and introduce complexity that impacts the learning efficiency.   

ID 
Image 

Size 

Batch 

Size 
Dropouts 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

11 512 16 0.025 50.00 0 0 Nan 

12 512 32 0.025 93.4 93.4 93.4 93.4027791023254 

13 512 64 0.4 57.29167 57.29167 57.29167 57.2916686534881 

14 256 64 0.1 92.36111 92.36111 92.36111 92.36111 

15 512 64 0.05 93.40278 93.40278 93.40278 93.4027791023254 

16 512 64 0.025 95.13889 95.13889 95.13889 95.1388895511627 

17 512 64 0.015 90.625 90.625 90.625 90.625 

18 512 64 0.005 90.27778 90.27778 90.27778 90.2777791023254 

19 512 128 0.025 92.36 92.36 92.36 92.3611044883728 

Table 4.8 Results Based on Different Batch Size and Dropouts 

Table 4.8 provides the results of experiments conducted to assess the performance of the 

B-Net model under varying hyper-parameters. Each row includes key parameters such as image 

size, batch size, epochs, convolutional and dense layers, dropout rates, accuracy, precision, 

recall, and F1-score in percentage. In the above table, all tests utilize image size 512 (pixel), 

while the ID 14 uses 256. Batch sizes vary from 16, 32, 64, and 128. A consistent 32 epochs, five 

convolutional layers, and 1024 dense units deployed for feature extraction were maintained 

throughout all experiments.  

Analysis shows significant volatility in model performance. Interestingly, ID 11 reveals 

poor performance, which is only 50% accuracy. This is because of a low batch size of 16 

combined with a high dropout rate of 0.025, which minimizes effective learning. On the other 

hand, ID 12 provides high performance with an accuracy of 93.4%, which shows that a larger 

batch size of 32 can increase effective learning. ID 13 achieved a low accuracy of 57.29% with a 

higher dropout rate of 0.4 and poor recall and precision score, demonstrating that a higher 

dropout rate can lead to a negative impact on model performance. ID 16 achieved the best 
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performance with an accuracy of 95.14%, precision, recall, and F1-score attained around 95%, 

demonstrating that this configuration is highly effective for classification tasks. Further, ID 14 

provides good results with an accuracy of about 92.36%, showing that strong performance can be 

attained even if a small image size is used with appropriately tuned hyper-parameters. Changes 

in batch size critically influence model performance, showing that increasing the batch size from 

16 to 32 significantly enhances accuracy. For instance, larger batch sizes do not always achieve 

high results, batch size 128 (ID 19) attains approximately 92.36% accuracy, in contrast, batch 

size 64 (IDs 14 and 15) achieves high accuracies.  

ID 
Image 

Size 

Batch 

Size 

Dense 

Layers 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 
F1-score 

20 256 64 1024 92.355 92.355 92.355 92.355 

21 256 128 1024 93.40278 93.40278 93.40278 93.4027791023254 

22 256 256 1024 90.27778 90.27778 90.27778 90.2777791023254 

23 512 32 1024 90.97 90.97 90.97 90.97 

24 512 64 1024 93.4 93.4 93.4 93.4 

Table 4.9 Results Based on Different Image Size and Batch Size 

In Table 4.9, the model is tested on two image sizes, 256 and 512 pixels, with batch sizes 

from 32 to 256. A consistent 32 epochs, five convolutional layers, and 1024 dense units deployed 

for feature extraction were maintained throughout all experiments. No dropouts were used to 

simplify the architecture. Also, the risk of overfitting is increased. The model's accuracy, 

precision, recall, and F1-score varied between 90.28% to 93.40%. ID 21 achieved higher 

accuracy with batch size 128 and image size 256. ID 22 provides lower accuracy with batch size 

256 and image size 256. This shows that smaller batch size improves model performance after 

potential tuning.   

ID 
Convolutional 

Layers 

Dense 

Layers 
Dropouts 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 
F1-score 

25 4 2048 0.00001 91.31944 91.31944 91.3194 91.319441795 

26 3 2048 0.00001 92.01389 92.01389 92.0138 92.013889551 

27 3 1024 0.00001 92.01389 92.01389 92.0138 92.013889551 

28 3 
512 + 

1024 
0.00001 93.40278 93.40278 93.4027 93.4027791023 

Table 4.10 Results Based on Different Convolutional and Dense Layers 
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All tests are processed with a consistent 256 image size, 32 epochs, and 64 batch size. 

Convolutional layers varied from 3 to 4 for feature extraction. The dense units differ, such as 

1024, 2048, and 512+1024. We employed a low dropout rate of 0.00001 across the model to 

prevent overfitting and maintain learning flexibility. The model's accuracy, precision, recall, and 

F1-score varied between 91.32% to 93.40%. ID 28 achieved higher accuracy with a combination 

of dense units 512+1024 and three convolutional layers. This demonstrates that variations in 

dense units and some convolutional layers significantly impact model performance. Table 4.10 

shows a suitable combination of dense layers can improve the model performance. 

ID 
Train+ 

Test 
Epochs 

Dense 

Layers 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

29 80+20 32 512+1024 94.44444 94.44444 94.44444 94.4444417953491 

30 80+20 32 512+1024 88.88889 88.88889 88.88889 88.8888895511627 

31 80+20 32 512+1024 93.40278 93.40278 93.40278 93.4027791023254 

32 80+20 32 
256+512 

+1024 
90.27778 90.27778 90.27778 90.2777791023254 

33 80+20 32 2048 90.97222 90.97222 90.97222 90.9722208976745 

34 80+20 32 1024 90.625 90.625 90.625 90.625 

35 80+20 32 1024 98.26389 98.26389 98.26389 98.2638895511627 

36 80+20 70 1024 92.01389 92.01389 92.01389 92.0138895511627 

37 80+20 100 1024 94.09722 94.09722 94.09722 94.097226858139 

38 80+20 500 1024 94.79167 94.79167 94.79167 94.7916686534881 

39 
70+20 

+10 
32 1024 86.11111 86.11111 86.11111 86.1111104488372 

40 60+40 32 1024 90.27778 90.27778 90.27778 90.2777791023254 

41 
70+10 

+20 
32 1024 91.31944 91.31944 91.31944 91.3194417953491 

Table 4.11 Results Based on Different Dense Layer and Data Splits 

All models tested on image size 512 except IDs 29 and 30, which use 256, consistent 

convolutional layers five except IDs 29 and 30, which use three, and consistent dataset split 10% 

test sample, 10% validation sample, and 80% training sample. Epochs vary from 32 to 500, 

improving learning and maximizing the risk of overfitting. The dense layers vary in the model, 

such as 1024, 2048, 512+1024, and 256+512+1024. Dropout varies from 0.00001 to 0.025; IDs 

29 and 30 utilize 0.00001, and the rest use 0.025, preventing overfitting and under fitting while 
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excessively high can reduce learning. All tests were processed on a batch size of 64, as shown in 

Table 4.11. 

The model's accuracy, precision, recall, and F1-score varied between 86.11% to 98.26%. 

ID 35 achieved higher accuracy with a single dense layer of 1024, an image size of 512, and 5 

convolutional layers, while ID 36 provided lower accuracy. It demonstrated that deep networks 

often provide better accuracy, and other hyper-parameters also play a significant role in 

evaluating model effectiveness. All tests/experiments and analyses show valuable information 

for practitioners who want to optimize their convolutional neural network architectures by tuning 

hyper-parameters and balancing complexity. 

ID 
Image 

Size 

Dense 

Layers 
Dropouts 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

4 512 512+1024 0.025 94.44 94.44 94.44 94.4444417953491 

8 256 2048 0.0001 94.09722 94.09722 94.09722 94.097226858139 

9 256 2048 0.005 94.44444 94.44444 94.44444 94.4444417953491 

16 512 1024 0.025 95.13889 95.13889 95.13889 95.1388895511627 

28 256 512+1024 0.00001 93.40278 93.40278 93.40278 93.4027791023254 

29 256 512+1024 0.00001 94.44444 94.44444 94.44444 94.4444417953491 

35 512 1024 0.025 98.26389 98.26389 98.26389 98.2638895511627 

37 512 1024 0.025 94.09722 94.09722 94.09722 94.097226858139 

38 512 1024 0.025 94.79167 94.79167 94.79167 94.7916686534881 

Table 4.12 Important Results 

These are important results of the B-Net model during tuning hyper-parameters shown in 

Table 4.12. The accuracy of the model varies from 93.40% to 98.26%. During changes, it 

provides approximately 94%; after proper and suitable tuning, it gives more than 98% accuracy. 

The highest accuracy was achieved with an image size of 512 pixels, a dense layer of 1024, a 

dropout rate of 0.025, and five convolutional layers with 16, 64, 8, 16, and 64 filters. This 

analysis demonstrates that a suitable image size and dense layer can significantly improve 

performance. 
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4.8 Performance Metrics of B-Net Model 

Among the above results, the highest performance is mentioned in Table 4.13, which 

shows that accuracy can be enhanced with proper hypermeter tuning and annotation techniques. 

Accuracy Precision Recall F1-score 

98.26% 98.264% 98.26% 98.263889% 

Table 4.13 Performance Metrics of B-Net Model 

4.8.1 Accuracy 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                                                    Eq. (1) 

 

The line chart in Figure 4.3 represents the proposed model's training and validation 

accuracy over the different epochs. The x-axis depicts the epochs, which are iterations of training 

the B-Net on the dataset. The y-axis shows the model's accuracy. The range of accuracy is from 

0 to 1. The value 1 illustrates perfect accuracy. The blue line represents the accuracy of the 

training dataset, and the orange line represents the accuracy of the validation dataset. 

 

Figure 4.3: Accuracy of B-Net 
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4.8.2 Precision 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
                               Eq. (2) 

 

Figure 4.4 illustrates the proposed model's training and validation precision over the 

different epochs. The x-axis represents the epochs, which are iterations of training the B-Net on 

the dataset. The y-axis presents the model's precision. The range of precision is from 0 to 1. The 

value 1 shows perfect precision. The blue line illustrates the precision of the training dataset, and 

the orange line illustrates the precision of the validation dataset. 

 
Figure 4.4: Precision of B-Net 

 

4.8.3 Recall 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒⁡𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
                                   Eq. (3) 

 

The line chart shows the proposed model's training and validation recall. The x-axis 

represents the epochs, which are iterations of training the model on the dataset. The y-axis 

represents the model's recall. The blue line shows the recall of the training dataset, and the 

orange line shows the recall of the validation dataset. Shown in Figure 4.5. 
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Figure 4.5: Recall of B-Net 

4.8.4 Loss 

Figure 4.6 indicates the proposed model's training and validation loss across several 

epochs. The x-axis illustrates the epochs and the y-axis illustrates the loss value of the proposed 

model, ranging from 0 to 1. The value 1 shows low performance and 0 shows perfect 

performance. The blue line represents the loss of the training dataset, and the orange line 

represents the loss of the validation dataset. 

 
Figure 4.6: Loss of B-Net 
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4.9 Confusion Matrix 

The confusion matrix of the proposed B-Net model for crack detection shows how well 

the model differentiates between ‘Non-Crack’ and ‘Crack’ panels. Figure 4.7 shows the results 

for each element of this matrix. 

 

Figure 4.7: Confusion Matrix for Crack Detection 

True Negative: The value of the top left element of the matrix is 0.983. The B-Net correctly 

predicts ‘Non-Crack’ when a crack is absent on the panel. The prediction occurred 98.3% of the 

time.  

False Positive: The value of the top right element is 0.017 showing the B-Net predicted ‘Crack’ 

when there wasn’t a crack on the panel. This happened 1.7% of the time. 

False Negative: The bottom left element is 0.018. The B-Net predicted ‘Non-Crack’ when the 

panel had a crack. This occurred 1.8% of the time. 

True Positive: The bottom right element is 0.982. The B-Net correctly predicted ‘Crack’ when 

the panel had a crack. This happened 98.2% of the time. The proposed model exhibits high 

accuracy and low misclassification rate in both directions. 
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4.10 Comparison Across Training and Testing Dataset 

Here the proposed model is examined during the training and testing dataset which shows 

how well the model is performed during training and testing. The results in Table 4.14 show that 

B-Net trained very well on a given dataset. 

Model Dataset Accuracy Precision Recall F1-Score 

B-Net 

Training 0.9934157 0.9934157 0.9934157 0.993415725 

Testing 0.9826389 0.9826389 0.9826389 0.9826388955 

Difference 0.0107768 0.0107768 0.0107768 0.0107768295 

Table 4.14 Performance of B-Net across Training and Testing Dataset 

Figure 4.8 shows that B-Net is trained very well on a given dataset as compared to a 

testing dataset with slight differences between them. The low difference shows that proposed 

predictions are outperforming.  

 

Figure 4.8: Performance of B-Net on Training and Testing Dataset 
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4.11 Comparison to Other Models 

Table 4.15 compares the performance of the B-Net model to other CNN models, showing 

the proposed model performs better.   

Models Accuracy Precision Recall F1-score Loss 

MobiNet-V2 0.5174709 0.5174709 0.5174709 0.517470896244049 7.5897 

ResNet 0.8 0.8 0.8 0.800000071525573 0.4506 

Inception_V3 0.50748754 0.50748754 0.50748754 0.507487535476684 8.1797 

VGG16 0.47254574 0.47254574 0.47254574 0.472545742988586 0.8637 

Proposed B-

Net 
0.9826389 0.9826389 0.9826389 0.982638895511627 0.0374 

Table 4.15: Comparison to Other Models 

4.11.1 Comparison of Accuracies 

The bar chart compares the accuracy models for the given dataset. The compared models 

are MobiNet_v2, ResNet, Inception_v3, VGG16, and the proposed B-Net. VGG16 shows the 

lowest accuracy, and B-Net attained the highest accuracy. This demonstrates that the proposed 

model outperforms the other models on the given dataset shown in Figure 4.7.   

 

Figure 4.9: Accuracy Comparison 
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4.11.2 Comparison of F1-Scores 

The bar chart compares different models' F1 scores. In this analysis, MobiNet_v2 has a 

moderate score, ResNet has a higher score, Inception_v3 is slightly lower than ResNet, VGG16 

has a low F1 Score, and the B-Net outperforms all the other models shown in Figure 4.10. 

 
Figure 4.10: F1-Score Comparison 

4.11.3 Comparison of Precisions 

Figure 4.11 compares the precision of models. This comparison shows that the B-Net 

model outperformed the other models, exhibiting that it correctly identifies positive cases.  

 
Figure 4.11: Precision Comparison 
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4.11.4 Comparison of Recalls 

Figure 4.12 explains a recall comparison of models. In this analysis, VGG16 has a lower 

recall, and the proposed model outperforms all the other models, suggesting that it correctly 

predicted positive instances. 

 
Figure 4.12: Recall Comparison 

4.11.5 Comparison of Loss 

Figure 4.13 compares the loss values of the models and shows that Inception_v3 is 

performing lowest and the B-Net outperformed other models. The high loss shows the low 

performance of the model. 

 

Figure 4.13: Loss Comparison 



69 
 

 
 

4.11.6 Comparison of Computational Cost 

In this step, the proposed model is compared with other CNN models for computation 

cost, which illustrates the B-Net model trained a lower number of parameters than other models 

with the same dataset shown in Table 4.16. 

Model Number of Parameters (millions) 

ResNet 21.3 

Inception_V3 22.07 

VGG16 17.93 

MobiNet-V2 2.42 

B-Net 12.8 

Table 4.16 Comparison of Computational Cost 
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CHAPTER 5 

 

 CONCLUSIONS & FUTURE WORK  

 

5.1 Conclusions 

In our research, we have exhibited the capacity of the B-Net deep learning model for 

impressive crack detection in solar panels. Proper training and evaluation provide promising 

results in effectively identifying defects that could slow down the output of SE systems. This 

section summarizes the important findings from the study. We highlight the potential of the 

proposed architecture compared to traditional methods. 

The B-Net model was trained and assessed on a diverse dataset of PV panel images 

containing different conditions and types of panels. The results show that B-Net reached an 

overall accuracy of 98.26% on the test set, with recall and precision metrics indicating the 

model’s ability to detect cracks accurately. Moreover, the F1-score further evaluates the B-Net 

performance in finding defects within the images. The qualitative assessment indicated that the 

model effectively extracted both large and small cracks encompassing different orientations. It 

shows the model’s adaptability and robustness. The effectiveness of the B-Net was emphasized 

by its capability to generalize encompassing different types of panels, lighting effects, and 

varying environmental conditions. It achieved high extraction rates even under varying and 

challenging circumstances, like different weather conditions and illumination. Additionally, the 

integration of state-of-the-art architectural features, including data augmentation techniques, 

provides impressive performance. The qualitative analysis shows that the model not only finds 

visible cracks but also spotlights the areas where cracks could exist. It gives valuable awareness 

to maintenance teams. The traditional methods depend on simple algorithms and human 

expertise that would fail to observe narrow cracks and be affected by environmental factors. On 

the other hand, the B-Net model permits for automated inspections. It can proceed with large 

sizes of images faster while cutting back on human errors. The comparison illustrates that the 

proposed model outperformed these traditional methods in speed and detection accuracy. It 
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makes the model a more reliable solution for real-world automated monitoring systems for solar 

panels. This research demonstrates that significant enhancements were made possible by using 

CNN deep learning technologies such as the B-Net model. 

The key contributions to the field are the focus on the novelty of the approach and the 

impact of this research on the maintenance and monitoring of solar panels. These contributions 

illustrate the practical value and highlight the advancement in SE technologies enabled by this 

research. The B-Net model presents a novel approach that uses modern CNN architectures 

developed for image analysis. B-Net employs deep learning for automated inspection systems 

and accurately identifies cracks. The techniques used in B-Net architecture such as data 

augmentation make the model adaptable to several critical circumstances. This innovative 

approach makes an efficient and smooth monitoring process and minimizes the dependency on 

human experts. So it reduces errors related to manual assessments. 

The execution of the B-Net has an important role in PV panel inspection and maintenance 

practices. The model provides an automated solution for crack identification and enables a 

proactive approach to early detection for maintenance strategies. It prevents costly repairs and 

saves from critical damages. Regular inspection facilitated by the proposed model can boost 

energy output. It ensured that solar panels operate at maximum production. The undetected 

cracks decrease performance and magnify energy losses. Additionally, the capability to integrate 

B-Net into current monitoring systems improves operational effectiveness, enabling immediate 

judgment of panel health, and accommodating decision-making concerning maintenance. In this 

work, the research conducted opens the door for the comprehensive field of deep learning 

applications in crack extraction in various industries. By showing the efficiency of CNNs such as 

B-Net in detecting defects in panels, this research concretes the way for parallel methodologies 

to be employed in other contexts, like infrastructural monitoring, environmental inspections, and 

manufacturing quality control. The findings highlight the flexibility of deep learning techniques 

in automated crack detection processes. It can enhance efficiency and accuracy in contrast to 

conventional methods. This advancement improves operational efficiency across specific fields 

and encourages embracing AI-driven solutions in sectors where early crack identification is 

crucial for performance and safety. 
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5.2 Limitations 

This section outlines the limitations of the work, focusing on challenges in data collection 

and model training, and problems related to robustness and generalization. It also suggests areas 

for future improvements. This research has made significant steps in developing the proposed 

model, but various constraints or limitations were encountered during the research process. One 

of the primary limitations was the accessibility of high-resolution labeled images or datasets for 

testing and training the B-Net model. The images or dataset employed in this study may not 

completely present the diversity of photovoltaic panel conditions such as types of panels, diverse 

defect types, and environmental factor influences. Moreover, time constraints bound the process 

of experimentation on several architectures and tuning of hyper-parameters that could optimize 

performance. 

There are a lot of challenges during data collection in this research. Achieving a 

comprehensive dataset that has a large variety of crack types and conditions needed broad efforts 

in sourcing images from various installations and ensuring correct labeling by professionals. We 

collect images from sites including NUML, Pvt Ltd corporations, and residential areas. It is a 

tough task due to security policies, safety concerns, and documentation or permission letter 

requirements. We captured images in varying lighting like morning, noon, and evening, and 

different environmental conditions like sunny, cloudy, and rainy days which is time-consuming 

and needs more resources making it a difficult task. Additionally, the B-Net training process 

faced challenges due to diverse data which unstable the loss rate of the model. It is also a plus 

point that data is diverse and can provide good performance on test datasets. Another challenge 

is overfitting, especially due to the limited number of images in varying conditions. The data 

augmentation techniques improve the training set but there remains a risk that the model may not 

be robust and generalize properly on other images that are not a part of the training distribution. 

The generalization ability of the proposed model is internally limited due to the dataset 

on which it was trained. On the other hand, B-Net provides good results and performs well on 

the test set. The model efficiency may vary when employed to various solar panel types or 

changing environmental factors that were not part of the training data. Furthermore, unusual 

lighting scenarios and extreme weather conditions may badly affect extraction accuracy, 

increasing the number of false positives or false negatives. 
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5.3 Future Work 

Future research in this field of defect identification using CNN, particularly deep learning 

should devote effort to increasing the size of the dataset or using more images that include a 

more diverse range of crack characteristics, panel types, and environmental conditions. This can 

be achieved through the cooperation of solar energy providers to collect real-world data from 

several installations, improving the model’s capability to generalize throughout various 

scenarios. Furthermore, collaborating momentary data, like images taken over time, could 

provide a clear and immediate understanding of defect progression and enable predictive 

maintenance schemes. Further research can also find out the integration of sensor data such as 

humidity, temperature, light intensity, etc. with image analysis to enhance extraction accuracy 

and detailed understanding of cracks. 

There are various avenues for enhancing the B-Net itself. One potential improvement is 

executing ultra-modern techniques such as transfer learning, which we use in this research. In 

transfer learning, pre-trained models are used after being fine-tuned for particular tasks like 

defect detection. So, B-Net can also be reused for another task after potential improvement. 

Moreover, deploying ensemble methods that unite multiple models, to achieve better results by 

employing a broader range of numerous features and minimize the rate of misclassifications. 

While using several models in the ensemble method trainable parameters and computational cost 

increase. Hyper-parameter optimization using automated techniques such as Bayesian 

optimization could be used to improve model efficiency. 

The proposed model has provided promising results while using other deep-learning 

architectures may show valuable results in their efficiency for defect identification tasks. Models 

like MobiNet-v3, VGG16, VGG19, ResNet, Inception-v2, AlexNet, Improved AlexNet, and 

Improved ResNet, etc. could provide dominance in terms of computational efficiency and 

accuracy. Comparing B-Net and other architectures could help to determine weaknesses and 

strengths and be helpful for future model development customized especially for crack 

identification in solar panels. 

The B-Net model introduced in this research can be extended beyond defect extraction in 

solar panels to find other types of cracks in different renewable energy technologies. This 
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approach could be employed to find faults in battery systems in SE storage solutions, wind 

turbine blades, and structural problems in hydropower installations. By expanding the scope of 

this study to add various types of faults throughout renewable energy technologies, the ability to 

enhance operational efficiency and maintenance practices can be effectively improved. It is also 

helpful to the overall sustainability of renewable energy systems. 

 

5.4 Final Thoughts 

Ongoing research in solar panel maintenance is crucial as the demand for and use of 

renewable energy continues to grow or extend globally. SE is a key player in the direction of 

sustainable energy systems. It also realized that the efficiency and longevity of solar panels is 

most important. This work effort focuses on modern inspection techniques, like deploying CNN 

models such as B-Net that can improve the capability to address and extract defects early. This 

proactive technique reduces maintenance costs and downtime and boosts energy output. It also 

plays a vital role in reliable energy supply. Progress in this field will be necessary to achieve the 

growing energy requirements and demands. It minimized the environmental impact due to 

conventional energy sources. 

AI performs transformative contributions or functions in sustainable energy solutions. AI 

enhances several processes throughout the energy sector. Recent research highlighted that AI 

technologies can upgrade renewable energy predictions, enhance grid management, and allow 

timely maintenance of energy systems. By observing huge amounts of data from operational 

systems and sensors, AI can extract patterns that brief better decision-making. This ability 

strengthens operational effectiveness and assists the integration of renewable sources into present 

terminals and grids. It makes them more durable, flexible, and versatile to fluctuations in demand 

and supply. The alliance between renewable energy and AI is essential for enhancement in the 

direction of a sustainable future. 

The future of solar energy systems and inspection methods is suspended for impressive 

advancements through progress in ML and AI. As renewable energy use spreads rapidly, we can 

look for smarter solar panels integrated with self-diagnostic ability that use AI algorithms to 

forecast and estimate maintenance needs and enhance performance depending on real-time data. 
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Moreover, combining AI with IoT (internet of things) such as gadgets, sensors, appliances, and 

other machines that share and gather across the Internet, will facilitate uninterrupted 

communication among monitoring systems and solar panels, enabling automated adjustments to 

magnify efficiency under varying conditions. This vision incorporates advancement in crack 

detection and enhanced overall management of PV energy systems, speeding up the adoption of 

solar systems worldwide, and contributing to a sustainable energy perspective. 
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