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ABSTRACT 

 

Classification of Cardiovascular Diseases (CVDs) using Explainable AI (XAI) based on 

Phonocardiogram (PCG) Signals 

 

Cardiovascular diseases (CVDs) are among the leading causes of death worldwide, 

making early heart examination crucial. Analyzing heart sounds is one of the many key 

methods for diagnosing cardiac disorders. However, automated classification of heart sounds 

remains challenging. Phonocardiograms (PCGs) offer a non-invasive method for identifying 

CVDs by capturing continuous heart sounds, including murmurs. Recent advancements in 

artificial intelligence (AI) and machine learning (ML) have made it feasible to analyze large 

volumes of PCG data from cardiac cycles within a reasonable time frame. Researchers have 

leveraged these technologies in numerous case studies over the past few years to improve 

detection accuracy and reduce detection time. A comparatively recent shift in this regard is 

the focus on improving the interpretability and trustworthiness of these AI-driven diagnostic 

models, a field known as Explainable AI (XAI). XAI is crucial because it not only provides 

insights into how models make predictions but also fosters trust among clinicians and 

patients, ensuring that decisions are based on understandable and justifiable reasoning. This 

transparency is particularly important in healthcare, where the consequences of 

misinterpretations can be significant. This study focuses on feature extraction, classifier 

selection, and model interpretability for efficient XAI implementation. Three ML classifiers 

[Random Forest (RF), K-Nearest Neighbors (KNN), and Support Vector Machine (SVM)] 

are used to predict CVD risk. While all ML models demonstrated good prediction capability 

RF achieved the best performance with an accuracy of 93.82%, precision of 92.01%, recall of 

95.33%, specificity of 92.44%, and an F1 score of 93.64%. Besides critical predictors of 

long-term CVD risk and its impact on risk prediction are obtained using an explainable 

techniques for interpreting ML predictions. 

Keywords: Cardiovascular diseases; Phonocardiograms; Artificial Intelligence; 

Machine Learning; Explainable AI; Trustworthiness 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Cardiovascular Diseases (CVDs) 

 

Heart and blood vessel disorders are individually known as coronary heart disease, 

congenital heart disease, minor arterial disease, and as a collective called cardiovascular 

disease or CVD. Cardiac auscultation, commonly known as listening to the heart acoustics, is 

one of the processes used in diagnosing some of the cardiac ailments [1]. Most of these 

diseases are an interaction of lifestyle, the physical environment, and heredity factors 

including diet, lack of exercise, smoking, and excessive drinking. 

 

Figure 1.1 shows the subdivisions of CVD which include Atrial Fibrillation, Valvular 

Heart Disorder, Heart Failure, Congenital Heart Disorder, Cardiomyopathy, and CAD. Such 

representation vividly highlights the versatility of reconciling AI techniques in promoting the 

detection and handling of various forms of CVDs with enhanced diagnosis and favorable 

patient experiences. 
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Figure 1.1: Types of CVDs [2] 

 

1.1.1 Global Impact of CVDs 
 

CVDs account for the highest global mortality rates, but they remain significant in 

terms of diagnostic challenges, especially for resource-constrained facilities. CVDs are 

known to claim thirty-two percent of all global deaths, estimated to be around 17.9 million 

deaths taking place annually, to be precise [3]. Relatively in low and middle-income 

countries (LMICs) medical facilities and professional health care are limited this is why the 

toll of such diseases is super excessive [4]. Nevertheless, reaching a professional diagnosis is 

still impossible due to the patient-to-doctor ratios that may reach 50000: 1 in some regions, 

make a diagnosis through a mobile application or cloud.  [5], [6] 
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Figure 1.2: Mortality rate of CVD Globally [7] 

 

Figure 1.2 depicts how those risk factors that are modifiable and those that cannot be 

altered influence the ten-year prevalence of cardiovascular disease (CVD) and all-cause death 

based on geographical location as well as gender differences. Risk factors that can be 

changed or controlled are the type of foods eaten, exercise, smoking, and alcohol habits that 

can be altered in some way or another. In contrast, fixed risk factors which are also known as 

unchangeable or behavioral risk factors cannot be altered, they include age, gender, and 

genetic susceptibility. It also represents those well-established modifiable risk factors, as well 

as independent global and regional effects concerning North African and Middle Eastern 

nations, North American and Asian countries, Australians, and West Europeans. 
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1.1.2 Essential Need for Early and Accurate CVD Diagnosis 
 

The heart sounds and murmurs are small in amplitude and frequency signals making 

them nearly clinically inaudible. In modern clinical practice, doctors apply conventional 

systems like mechanical stethoscopes to auscultate heart sounds and murmurs. It results in 

rather low accuracy and, consequently, incorrect diagnoses are sometimes made. 

Additionally, conventional methods cannot capture the sounds as measured and are, 

therefore, highly dependent on the doctor’s abilities, which inevitably degrades over time. 

Solving this problem is urgent for the early diagnosis of pathologic changes in heart sounds. 

[8] 

 

LMIC healthcare centers are generally understaffed and underequipped to offer 

adequate evaluations for cardiovascular abnormalities, instead, the facilities may even be 

without a stethoscope. This dependence on auscultation, compounded by the qualitative 

difference in clinician’s experience, frequently results in either a failure to diagnose or a 

delay in the course of a correct diagnosis, as well as in an enhanced likelihood of adverse 

outcomes due to the necessary delay in the administration of accurate treatment. Hence, there 

is a dire need for new approaches that can improve diagnosis in LMICs, possibly by 

implementing the use of technological diagnostic tools and artificial intelligence to assist 

clinicians with their diagnostics and overall patient care. CVD Diagnostic methods are 

depicted in figure 1.3. 

 

Figure 1.3: CVD diagnostic methods 
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1.1.3 Traditional and AI-Based CVD Diagnostic Solutions 
 

The solutions for diagnosing CVDs have evolved significantly, moving from 

traditional clinical practices to advanced AI-based approaches. Traditional solutions like 

ECGs rely on clinician expertise and can be time-consuming and resource-intensive. In 

contrast, AI-based solutions use advanced algorithms and large datasets to improve accuracy, 

efficiency, and personalization. Integrating AI can enhance diagnostic precision, ease 

clinician workloads, and improve patient outcomes. [9] 

 

Table 1.1 describes the contrast between the conventional and the intelligent 

techniques for detecting CVDs. Conventional techniques are known methods used often in 

the clinic but issues like expense, and the requirement of special tools may constrain their 

usage. 

 

Table 1.1: Comparison of Traditional and AI-Based CVD Diagnostic Solutions 

Aspect Traditional Solutions AI-Based Solutions 

Method Names ECG, PCG, Clinical Assessments, 

Echocardiogram, Stress Tests, Cardiac 

catheterization 

ML & DL, AI for Image 

Analysis, Predictive Analytics 

Accuracy Dependent on clinician expertise and 

diagnostic tools 

High accuracy with large 

datasets  

Speed Time-consuming Faster data processing and real-

time analysis capabilities 

Cost 
 

Often high due to the need for specialized 

tests and equipment 
 

Initial setup can be costly, but 

operational costs may be lower 

Invasiveness Some methods are invasive  

(e.g., cardiac catheterization) 
 

Mostly non-invasive, relying on 

data analysis 

Data 

Requirements 
Relies on individual patient data and 

clinician judgment 
 

Requires large, high-quality 

datasets for training and 

validation 

Interpretability 
 

Generally well-understood and accepted 

in clinical practice 
 

Challenges in interpretability and 

transparency of AI models 
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On the other hand, AI-based methods offer several advantages, including higher 

accuracy and speed, reduced invasiveness, and the potential for more personalized care. ML 

algorithms and DL models can analyze large datasets to identify patterns and make 

predictions with high precision, often surpassing human capabilities. However, the 

implementation of AI in healthcare also presents challenges, such as the need for extensive 

high-quality data, issues with model interpretability, and the addition of AI tools into clinical 

workflows. 

 

1.1.4 Advantages of Unsegmented PCG in Clinical Diagnostics 
 

Depending on the type of interface PCG signals can be segmented or unsegmented. 

Segmented PCG is not favored despite its seemingly systematic representation of the heart 

sounds because of its impracticality in clinical situations as compared to unsegmented PCG. 

The segmentation methods commonly use synchronized ECG recordings that can be 

challenging to get particularly in dealing with newborns or in noisy environments. 

Sometimes, the signal might be quite noisy and fluctuate from one patient to another, and as a 

result, techniques such as envelope detection might fail to detect all the essential peaks of the 

heart sound or identify some of them as false ones. On the other hand, unsegmented PCG 

does not present with these problems and can thus sustain a steady monitoring of the heart 

conditions, hence an improved classification of these conditions using ML. Research [10] has 

revealed that the unsegmented PCG methods are more effective and accurate, which makes 

the method very useful in the diagnosis of cardiovascular diseases irrespective of groups of 

patients. The presented research employs unsegmented PCGs to eliminate the mentioned 

shortcomings.  
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1.1.5 Explainable AI (XAI) 
 

According to [11], it is the capacity to communicate the decision-making process of 

artificial intelligence (AI) to a wider range of end users in a way that is both clear and 

concise. XAI is defined as a collection of methods and approaches. The explainability of the 

model is of more relevance to data technologists or specialists. Physicians and medical 

professionals, however, are more focused on clinical inference and prediction. Interpretability 

is the other concept associated with explainability. The ability to explain an abstract idea is 

known as interpretability [12]. While interpretability refers to the model representation 

derived from the training data, explainability deals with the interpretation of predictions 

produced in the presence of renewed cases. [13] 

 

 

Figure 1.4: Explainable Artificial Intelligence Concept [14] 
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Figure 1.4 illustrates the distinction between traditional ML processes and XAI 

processes, emphasizing the need for transparency in AI systems. In today’s ML framework, 

training data is processed through an ML algorithm to produce a learned function, which then 

provides decisions or recommendations for users. However, this approach often leaves users 

questioning the rationale behind the outcomes, as there is no clear explanation of how the 

model arrived at its conclusions.[14] 

 

Whereas, the XAI framework is a new approach in ML that results in an explainable 

model. This model generates solutions or recommendations but has an explanation layer that 

explains why it concluded. Thus, the topic of how the conclusions were made is reflected by 

this extra degree of openness, which is helpful to the users to know the particulars of the 

process through which AI decisions are made so they can trust the result. The results of XAI 

are benefits like increased user confidence and its applicability to health care and other 

sectors due to the provision of brief and less complex explanations of the model’s results. 

 

1.1.6 The Importance of XAI in Medical Applications 

 

The value of XAI has gained widespread recognition in business and academics in 

recent years. The ML and DL model’s decision-making processes are difficult to understand 

due to their high level of complexity. These models are opaque black boxes that generate 

predictions based on incoming data but do not explain their logic [15]. Traditional ML 

models may have significant limitations due to their lack of interpretability and transparency, 

which can result in several issues and difficulties. 

 

Indeed, the difficulty of validating and establishing traditional ML models can be 

considered one of the major issues. This characteristic provides the models with a certain 

degree of opacity, which complicates the understanding of how they work and deliver results. 

Due to such issues, people may not be able to trust and understand how such models work 
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hence limiting their usage and dependency of such models. The inability of conventional ML 

models, along with their limitations, and the demand for accurate, explainable, and 

trustworthy models that are fairly developed and able to address the faults of unfair models 

are the causes of the XAI need. 

 

In the last few years, XAI solutions have gained prominence in understanding the 

foundation behind the decision-making procedure of the ML models mainly in the healthcare 

industry. Well-known techniques of SHAP (Shapley Additive explanations), LIME (Local 

Interpretable Model-agnostic Explanations), besides other comparable methodologies will be 

described in the background section of the literature review. 

 

1.2 Motivation 

 

It is observed in the above studies that the increasing prevalence and impact of CVD 

necessitate improved diagnostic methods. Traditional ECG-based techniques often miss 

mechanical abnormalities, while PCG offers additional insights into heart health. However, 

AI-based PCG classification, similar to several other classification techniques, raised the 

“black box” problem, meaning that little to no one can understand how the model made the 

decision, which is a severe issue with doctors and patients. This is important for XAI since it 

develops models that are easily explained and which help in building trust. However, 

classical stethoscopes, the quality of the used instrument, and human hearing perception are 

drawbacks of heart auscultation. This research will endeavor to enhance the optimality of up-

to-date solutions by making them stronger, more accessible, and easier to employ to improve 

diagnostic acuity and clinician acceptability. 
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1.3 Problem Statement  

 

Cardiovascular disease (CVD) is the leading cause of death worldwide, accounting 

for an estimated 17.9 million deaths in 2019. Early detection and treatment of CVD are 

essential for improving patient outcomes, but traditional screening methods are less efficient, 

subjective, and error-prone. A potential solution to this is to provide automated diagnosis [4]. 

Existing cardiovascular disease (CVD) models are less trustworthy because they are not 

explainable. This means that we cannot understand how the models make their predictions, 

which makes it difficult to trust their results.  

 

Moreover, the rapid emergence of new cardiovascular examination and treatment 

technologies is generating increasing amounts of data and information. This rapid 

technological advancement has made the work of cardiologists more demanding and 

highlighted the need for automated screening techniques that can provide cost-effective 

healthcare solutions without compromising patient well-being.  

 

1.4 Aim and Objectives  

 

Aim: To develop an XAI-based model for the classification of CVDs that can provide 

precise predictions while also being interpretable.  

Objectives: The primary objectives of this research are as follows:  

• To implement existing machine learning models for the automated classification 

of cardiovascular diseases from PCG data.  

• To integrate state-of-the-art explainability techniques into the AI models to 

generate interpretable results.  

• To evaluate the model’s performance in terms of accuracy, interpretability, and 

clinical relevance.  
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1.5 Scope of Research 

 

CVDs are truly a massive family of disorders that embrace mechanical and vascular 

diseases. This proposed research emphases on the use of XAI for the classification of these 

diseases using unsegmented PCG signals. It also includes building AI models that are 

explainable and capable of estimating the level of disease severity and distinguishing 

between various Cardiovascular diseases using the PCG data to improve diagnostic 

performance and decisions in cardiology. 

 

1.6 Sustainable Development Goals and Social Impact  

 

This research can contribute to SDG 3 (good health and well-being) as shown in 

Figure 1.5. It improves the accuracy and efficiency of CVD diagnosis through advanced AI 

techniques to address critical health challenges such as reducing mortality rates and 

enhancing healthcare outcomes for individuals affected by cardiovascular conditions.  

 

 
 

Figure 1.5: Sustainable Development Goals [16] 
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Furthermore, this research can contribute to SDG 9 (industry, innovation and 

infrastructure) by promoting innovation in health care through the construction of XAI 

models. Other significant advocacy was conducted by the WHF and other NGOs together 

with the WHO in framing the ideas of the national CVD strategies and in translating the 

global policy into actionable programs. At the core of these endeavors is the participation of 

stakeholders from communities vulnerable or at risk for CVDs, to ensure that progress in 

liberating global health contributes also to physical enhancements in the provision and 

utilization of care at the community and country level. [17]  

 

1.7 Dataset Description  

 

The dataset employed in the research performed within the context of the present 

proposal includes publicly available PCG recordings downloaded mainly from the 

PhysioNet/Challenge 2016 database [4]. This dataset is quite famous for designing and 

building self-driving systems for diagnosing abnormalities in the sound of the heart. It has a 

total of 4430 PCG recordings which are collected from 1072 subjects from different 

geographical regions and different recording conditions. This selection of the dataset offers a 

strong starting point for training the models and assessing the XAI models for the 

classification of CVDs. The dataset is presented in Table 1.2. 

 

Table 1.2: Statistics of the proposed dataset 

Database Total 

Samples 

Normal Abnormal 

PhysioNet 

Challenge 

2016  

3949 3290 659 
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1.8 Resource Requirement  

 

Python is employed in this research because of its versatility and popularity in 

machine learning and AI-related projects due to its handy libraries and frameworks. Google 

Colab, now a cloud-based environment, has enough computational and collaborative facilities 

that are required for developing and training large numbers of algorithms. It runs Python 

scripts, has live collaboration features, and is fully compatible with other Google products. In 

this research, Python along with Google Colab is used for cleaning the data, training the 

models, and assessing the efficacy of XAI models with Unsegmented PCG signals. Also, 

there is the use of the tool, Matplotlib/Seaborn in representing data as well as results in 

graphical presentation forms. 

 

1.9 Organizational Structure of Report  

 

Chapter 1 is the initial chapter and normally provides the reader with the background 

information on the matter at hand. This study discusses the application domains, project 

scope, research background, and certain necessities required for this investigation. In the 

second chapter, a thorough assessment of the literature is done, looking at previous studies 

and research in the area. The third chapter concentrates on the specifics of the software and 

model used in the research, as well as how it operates. This includes implementation specifics 

and algorithms. Chapter 4, which focuses on simulation validation, scientific achievements, 

and necessary output data is presented using flow charts, figures, and graphs. The research is 

concluded in Chapter 5 with a summary of the major discoveries and a discussion of any 

difficulties encountered. It also identifies locations in the field that could benefit from future 

upgrades. The references are provided at the end by IEEE format.  
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Overview 

 

This section covers thorough information about the ML and DL methods for 

classifying the heart sound where the data preprocess, feature extraction, and classification 

techniques are explored in detail. Furthermore, the research focuses on the nature of XAI to 

analyze unsegmented PCG data with improved results and diagnosis of CVDs. 

 

2.2 Background 

 

The examination of the heart structure accompanied by the classification of probable 

basic ideas of the pathology is crucial. This portion covers the explanations of normal and 

abnormal heart sounds, techniques in cardiac examining, auscultation, XAI, and the benefits 

of applying XAI in the interaction between AI, ML, and DL. 
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2.2.1 Anatomy of the Heart 
 

One essential organ that is necessary to the circulatory procedure is the human heart. 

It is in charge of blood circulation throughout the body. The heart’s structure consists of 

several chambers and valves that control blood flow.  

 

 
Figure 2.1: The pathway of blood flow through the heart [18] 

 

A specific pathway for blood flow through the heart is depicted in Figure 2.1. First, 

the deoxygenated blood enters the right atrium. After that, it arrives the right ventricle via the 

tricuspid valve. Blood is pushed from the right ventricle into the pulmonary arteries via the 

pulmonic valve. Through pulmonary veins, oxygenated blood is reverted to the heart through 

the left atrium. After that, it enters the left ventricle through the mitral valve. The oxygen-rich 

blood is then pumped by the left ventricle via the aortic valve and into the aorta, where it is 

distributed throughout the body.  
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2.2.2 Fundamental heart sounds 
 

The auditory sounds and murmurs caused by mechanical events of the heart valves 

and related vessels are recorded by phonocardiography (PCG) [19]. The auditory sensations 

of the valvular, muscle, vascular, and blood circulation provide the audible components of 

heart sound. Physicians can analyze and diagnose various cardiac problems with the use of 

the PCG signal, which offers crucial clinical information. The initial heart sound, S1, the 

systolic pause following the sound, the second heart sound, S2, and the diastolic pause 

following the sound S2 are the four main components of a typical cardiac PCG cycle. 

Systolic and diastolic interval segments may contain the other additional heart sounds, such 

as the heart murmurs, the fourth heart sound, and the third heart sound, S3. 

 

 
Figure 2.2: Illustrates PCG signal including heart sounds [19] 

  

Figure 2.2 shows a typical heartbeat cycle, highlighting the core heart sounds. S1 is 

generated as the mitral and tricuspid valves shut and is to be distinguished from the heartbeat 

which begins at S1. S2 is the end of heart sound this happens when the aortic and pulmonary 

valves close. S3 occurs in the early resting phase associated with the rapid filling of the 

ventricle. S4 is conducted in the rest phase occurring towards the end linked to atrial 

contraction. These sounds assist the doctors in identifying any heart complications by 

analyzing when they of and how they are produced. 
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2.2.3 Normal and Abnormal Heart Sounds 
 

It is very relevant to emphasize the significance of heart sounds in assessing the 

health conditions of the heart. That is because various sound patterns may indicate the state 

of the organ be it normal or abnormal. These sounds are related to the first and the second 

stages that is systole and diastole phases. Systole is the stage at which the heart chocks to 

push the blood out and diastole is the stage at which the heart muscles dilate to allow it to be 

filled with blood. Said murmurs that exist during these phases yield significant information 

on the cardiovascular disorder if any exists. 

 

 
Figure 2.3: Phonocardiogram from Normal and Abnormal heart sounds [20] 

 

Figure 2.3 shows Heart sound patterns of normal rhythmic sounds and abnormal 

activity due to diseases relating to the heart. The first row represents the normal heart sounds 

where regular “lub-dub” beats during the cardiac cycle [8]. The second row illustrates the 

aortic stenosis sound pattern and helps explain an increased, crescendo-decendo systolic   

murmur . The auscultatory findings for mitral regurgitation include the abnormal heart sound 

of mitral valve ineffectiveness which is presented in the third row. It is illustrated in the 

fourth row that aortic regurgitation causes a diastolic decrescendo murmur. The fifth row 

explains mitral stenosis that traces back to having a diastolic rumbling murmur with 
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presystolic accentuation. Last but not least, in the sixth row, the learned sound pattern is 

presented which relates to a ventricular septal defect head a pan systolic murmur. [20]  

 

Table 2.1 summarizes how normal and abnormal heart sounds be able to help identify 

different heart diseases. 

 

Table 2.1: Summary of Heart Sound Patterns and Associated Heart Diseases 

Sound 

Pattern 

Description Associated Disease 

A Normal heart sound None 

B High-pitched, mid-systolic Aortic Stenosis 

C High-pitched, holosystolic Mitral Regurgitation 

D High-pitched, early diastolic Aortic Regurgitation 

E Low-pitched, mid-diastolic Mitral Stenosis 

F Holosystolic, harsh Ventricular Septal Defect 

 

 
2.2.4 Cardiac Monitoring Techniques 
 

Cardiac monitoring techniques are crucial for assessing heart health. 

Electrocardiography (ECG) and Phonocardiography (PCG) are two primary methods used. 

ECG records electrical activity, showing the heart’s rhythm and detecting abnormalities like 

arrhythmias. In contrast, PCG captures heart sounds, providing information about valve 

function and abnormal blood flow. PCG is often considered superior to ECG in specific 

diagnostic scenarios because it directly detects mechanical aspects of heart function that 

electrical recordings may miss. This makes PCG invaluable for detailed assessment, 

especially in cases involving murmurs or structural heart issues. Integrating both techniques 

can provide comprehensive insights into cardiac health, guiding effective diagnosis and 

treatment strategies [21] . Figure 2.4 shows two graphs that represent normal heart activity. 
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The top graph is an ECG showing the electrical signals of the heart, while the bottom graph is 

a PCG showing the sounds the heart makes.  

 

 

 
Figure 2.4: Matching two cycles of the ECG with PCG signal [21] 

 

2.2.5 Segmented and Unsegmented PCGs 
 

Segmented PCGs are the actual heart sound recordings that had been preprocessed to 

isolate the segments of a record corresponding to a single heartbeat or a specific phase of the 

cardiac cycle. On the other hand, unsegmented PCGs are as recorded, raw heart sound signals 

without the segmentations. These unsegmented signals consist of all the sounds originating 

from the heart in a steady stream that does not divide into one or many beats, or segments of  

the cardiac cycle and all parts, including but not limited to the main ones, S1 and S2, or other 

noises or murmurs. 
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2.2.6 Auscultation 
 

Of all clinical applications of stethoscopes, auscultation is the most commonly used 

technique in distinguishing audible sounds of the heart. But listening to the echoes needs 

sharp eyes and the help of a cardiologist for proper auscultation [22]. A competent physician 

when performing auscultation results may be about 80% accurate. Hence, the development of 

a computer-aided diagnosis (CAD) tool for the assessment of cardiac signals that will assist 

in a more accurate prediction of cardiac ailments is required. [10] 

 

 
Figure 2.5: Positions for Monitoring PCGs [23] 

 

The illustration in Figure 2.5 [23] gives specific points on the chest where heart 

sounds are mostly heard when monitoring PCGs through the use of a stethoscope or an 

electronic sensor. These include the aortic area which is located at the right second intercostal 

space, the pulmonic area also referred to as the left second intercostal space, a tricuspid area 

located at the lower left sternal border and the mitral area which is typically the apical part of 

the heart, usually at left fifth intercostal space. These positions capture sounds for different 

valves thereby ensuring correct diagnosis of heart diseases. 
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2.2.7 The Role of Explainable AI in Auscultation 
 

Auscultation, or the act of listening to body sounds, especially the heart and lungs, is 

a centuries-old diagnostic technique. Auscultation has been one of the major diagnostic tools 

for heart and breath illnesses. Nowadays, with technological advancements, artificial 

intelligence (AI) has started playing an increasingly important role in enhancing the 

diagnostic applications of auscultation. The interpretation of PCGs and some other 

auscultatory data will be affected by ML and DL, which are among the AI’s constituents. 

However, as these models get complex, there is a need for more transparency and 

interpretability in them. This necessitates XAI, which provides understandable insights into 

the decision-making processes. 

 

2.2.8 Benefits of XAI 
 

XAI is useful because it can generate ML models that are transparent, 

comprehensible, and trustworthy for humans. This value can be utilized in diverse contexts 

and applications by offering several pluses and advantages. 

 

Table 2.2: XAI Benefits 

Benefit Description 

Improved Decision-

Making 

Offers insights to enhance decision-

making 

Increased Trust and 

Acceptance 

Builds trust by making AI models clear 

and understandable 

Reduced Risks and 

Liabilities 

Addresses regulatory and ethical 

concerns, reducing risks. 
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The main advantages of XAI are explained in the table 2.2. It demonstrates how XAI 

lowers risks by addressing ethical and legal issues, enhances decision-making by providing 

insights, and fosters trust via transparency. 

 

2.2.9 Principles of Explainable Artificial Intelligence 
 

A collection of rules and suggestions known as XAI principles can be applied to the 

creation and application of transparent and understandable ML models. These guidelines can 

guarantee that XAI is applied responsibly and ethically while also offering insightful 

information and advantages across a range of fields and applications.  

 

 

Figure 2.6: Key Principles of Explainable AI (XAI) [24] 

 

Building trust in AI systems requires understanding the fundamental XAI principles, 

which are illustrated in Figure 2.6. Encouraging clarity and openness plus making sure 

stakeholders can comprehend the model’s decision-making processes are all part of 

transparency. To prevent discrimination based on race, religion, gender, disability, or 
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ethnicity, fairness focuses on making sure that model decisions are impartial and equal. 

Assessing and verifying the degree of trust that human users have in the AI system and 

promoting reliance on its results are two aspects of trust. To retain consistent and dependable 

performance even in the face of uncertainty or unforeseen circumstances, a model must be 

robust to changes in input data or parameter values. Sensitive user data is protected against 

data breaches and misuse according to privacy assurances. Interpretability is the process of 

giving people an easy-to-understand and valid explanation for the predictions and results of 

the models, hence facilitating AI-driven decision-making. When taken as a whole, these 

guidelines improve the AI system’s dependability, equity, and transparency, especially in 

vital applications like healthcare. [24] 

 

2.2.10  XAI Techniques 

 

It is crucial to classify the different XAI strategies according to how they provide 

interpretability to comprehend them. The various XAI strategies are broken down into 

transparent methods and post-hoc methods in Figure 2.7.  

 

Figure 2.7: Explainable AI Techniques [14] 
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The two primary categories for XAI techniques are Transparent Methods and Post-

Hoc Methods, as shown in Figure 2.7. Techniques that are naturally interpretable, such as 

decision trees, generalized additive models, k-nearest neighbors, rule-based approaches, 

Bayesian models, and linear/logistic regression, are examples of transparent methods. After 

the model is constructed, Post-Hoc methods which are separated into model-specific and 

model-agnostic approaches offer explanations. Model-specific techniques like rule-based 

learners, local explanations, feature relevance, and saliency maps are designed specifically 

for a given model to provide insights into its inner workings, whereas model-agnostic 

techniques like SHAP, LIME, Skater, ELI5, Shapash, and Dalex can be applied to any kind 

of model. 

 

2.2.11  The Integration of AI, ML, DL, and XAI 

 

It is essential to understand how concepts interrelate and overlap within the broader 

field of AI. The below figure visually represents these relationships.   

 

 

Figure 2.8: Relationship Between AI, ML, DL, and XAI  [25] 
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The ML functions as a specialized subset that creates algorithms for computers to 

learn from data, Figure 2.8 depicts the hierarchical and overlapping links between major 

concepts in AI, demonstrating how AI spans the broad subject of developing intelligent 

machines. DL is a subfield of ML that uses neural networks to process intricate pattern 

recognition problems. Additionally, it draws attention to XAI, which combines elements of 

ML and DL. The interconnectedness of AI, ML, DL, and XAI is emphasized by this tiered 

paradigm, which also highlights the significance of explainability in sophisticated AI models. 

 

2.3 Literature Review 

  

This portion reviews the literature on the methodologies used in the identification of 

cardiovascular diseases, with subtopics on machine learning, deep learning, and a 

combination of both. The real use of XAI techniques as they relate to CVDs is also 

examined, focusing on the significant role that XAI plays in enhancing model explainability 

and advancing clinical decision processes. 

 

2.3.1 Machine Learning Techniques  
 

Machine learning techniques were used in the study [10] for the classification of 

cardiac sounds to identify anomalies. The study highlights the need for early identification of 

heart disease, a major world health concern. The publicly available dataset Physionet/ 

Challenge 2016 was utilized by the researchers for determining heart abnormalities. Unlike 

conventional techniques, the method analyzes the whole raw PCG signal for feature 

extraction, omitting the segmentation stage. The main strategies used are classification and 

preprocessing by using unsegmented PCGs. This work primarily concentrates on removing 

the segmentation process for increased efficiency. During preprocessing, the raw PCG signal 

is directly analyzed using a variety of methods, including Power Spectral Density (PSD) to 

show power distribution across various frequencies. Mel-Frequency Cepstral Coefficients 

(MFCC) focusing on human perceivable frequencies, and Homomorphic Envelogram to 
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comprehend amplitude variations over time. The Ensemble Boosting method which is also 

known as AdaBoost is used for classification, many weak learners are combined into a 

stronger classifier for improved heart sound abnormality detection. This method demonstrates 

its promise for early disease detection and improved patient care with high accuracy and 

sensitivity for abnormal identification. However, trustworthiness was not established for 

these classifiers by the researchers.  

 

In the article [4] applications of machine learning are examined to label heart sounds. 

They are divided into two most important stages of the exploration which are classification 

and data preprocessing. During the preprocessing phase, all audio files are resampled to a 

standard frequency of 2 kHz (2000 Hz) to sustain equality between recordings. An automated 

process is involved for labeling and estimating quality, monitored by a manual accuracy 

check. Authors used Binary Logistic Regression which is the main method for classification. 

When there are two possible consequences this statistical method works well. To define 

normal and abnormal heart sound classes it examines features recovered from segmented 

heart sound recordings. Other classification strategies were discussed by the authors for 

further investigation, such as clustering techniques for organizing related recordings based on 

shared characteristics, Support Vector Machines (SVMs) for determining the best separation 

boundaries between classes, and Hidden Markov Models (HMMs) for detecting sequential 

patterns within the sounds.  

 

Researchers investigate the ML algorithms in the study  [26] for the identification of 

cardiac illness by using the Physionet dataset. The data set contains 2435 annotated heart 

sounds that are classified as normal or pathological by combining recordings from multiple 

sources. The vital part of research is preprocessing which is done on the heart sound 

recordings. The following steps were involved in the preprocessing, which are segmentation, 

fragmentation, peak identification, and noise reduction. These techniques eventually increase 

the precision of illness detection by cleaning and preparing the data for feature extraction. 

Support vector machines (SVM), Naive Bayes (NB), and Decision Trees (DT) were 

investigated by researchers. They test diverse feature sets, including short-term, long-term, 

and combination variants, that were taken from the preprocessed data. Interestingly, the 

outcomes display the classification correctness of all tested algorithms is significantly 

increased.  
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The focal issue of the literature review in the study  [27] is the classification of heart 

sound signals with the use of the dataset Physionet. It is a broad dataset with exceeding than 

2000 records of healthy people and heart disease patients. To access the recommended 

classification approach a subset of 409 heart sound recordings were chosen for the 

identification. The dataset is split into training and testing sets to provide a strong 

groundwork for evaluating the algorithms. 

 

Features were extracted with the help of wavelet scattering transform. In addition to 

recovering high-frequency data that would have been lost during low-pass filtering, this 

technique produces stable signal features. The produced scattering coefficients, are especially 

useful for the challenging task of classifying heart sounds because they offer elastic 

deformation stability and local translation invariance. The integrity of the signal 

characteristics, which are essential for precise classification, is preserved by using this 

method. 

 

To increase the categorization correctness and computational efficiency a ML method 

Twin Support Vector Machine (TWSVM) is used for classification. To address the high 

dimensionality of the feature vectors that are developed from the wavelet scattering transform 

this study uses Multidimensional Scaling (MDS) for dimensionality reduction. The 

combination of MDS and TWSVM is contrasted with other combinations, such as MDS and 

SVM, PCA and TWSVM, and PCA and SVM. According to the results, a combination of 

MDS and TWSVM achieves superior than the other techniques in relations of competitive 

running time and classification accuracy. This explains the worth of the recommended 

approach, which might be improved yet by growing the dataset and fine-tuning TWSVM 

settings in subsequent studies. 

 

The study [28]  presents a novel approach to heart sound categorization that does 

away with segmentation with PCGs. The study uses wavelet decomposition, which 

significantly increases the classification model’s accuracy to extract features from 

unsegmented PCG recordings. The research attains remarkable performance metrics utilizing 

the K-Nearest Neighbors (KNN)  classifier. Strong classification performance while cutting 

down on complexity and time for early detection and treatment of cardiovascular illnesses is 

delivered by this research. 
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To reduce high and low-frequency noise from the PCG signals a fourth-order 

Butterworth bandpass filter with cutoff frequencies of 25 Hz and 400 Hz is used for 

preprocessing. Likewise, a spike removal technique is applied, which entails partitioning the 

PCG recording into 500 ms intervals, determining the highest absolute amplitudes, and 

eliminating spikes according to predetermined standards. The dataset used in the study is the 

Physionet 2016 challenge, which is categorized into several subsets and designated as dataset 

‘A’ through dataset ‘F’, represented. There are 3240 recordings in all in this dataset, which 

represents actual situations that are experienced during auscultation. Using data segregation 

for classification the artificial neural network (ANN) model is tested with 15% of the data, 

validated with 15%, and trained with 70% of the data. 

 

The authors also intimated K-nearest neighbors (KNN) classifier to categorize heart 

sounds which is the foremost purpose of the effort. Using extracted features, offering high 

categorization accuracy rates the KNN method is used for unsegmented PCG recordings. The 

study also comprises the use of unsegmented feature-based decision tree classifier 

procedures, which produced results with 77% accuracy and sensitivity. KNN performed 

better in terms of accuracy and sensitivity as matched to other classification techniques such 

as ANN. It explains how well it can categorize unsegmented heart sound recordings to 

pinpoint cardiovascular diseases early on. 

 

Deep learning tactics are not covered in the study. The authors don’t use Explainable 

Artificial Intelligence (XAI) approaches. Enhancing the transparency and interpretability of 

the classification process could be achieved by incorporating XAI techniques like model-

agnostic interpretability approaches or feature importance analysis.  

 

2.3.2 Deep Learning Techniques  
 

In a study [1] authors used the Unidentified PCG recording dataset. Insufficient 

healthcare resources in low and middle-income nations are tackled. It also intimated deep 

learning techniques for automated heart sound categorization. To prevent the human feature 

engineering and segmentation that is frequently employed in conventional methods, the 
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advised approach pursues to automate feature extraction and classification. Preprocessing 

entails segmenting the raw signal into 6-second epochs for analysis and down sampling it to 

lower computational demands. Furthermore, a Savitzky-Golay filter is employed to cut high-

frequency interference extant in the stream. 

 

Distinctive natures of deep neural networks e.g. one-dimensional convolutional neural 

network (1D-CNN) and a five-layered feed-forward neural network (F-NN) are paralleled. 

With an accuracy of 85.65%, the F-NN model overtook the others and indicated that deep 

learning is feasible for real-time heart sound classification without the need for segmentation 

or manual feature engineering. This technique has the prospective to improve patient care in 

situations with limited resources by enabling early illness identification.  

 

The authors categorized heart sounds in the study [29], and spot anomalies by using 

deep learning techniques. It comprehends heart illness as a global health concern and 

emphasizes the prominence of observing heart function for preventative interventions. The 

publicly available dataset PhysioNet/Challenge 2016 is used for the classification of heart 

abnormalities. Researchers used a multi-step method called preprocessing and classification. 

The Discrete Wavelet Transform (DWT) approach is used for multi-resolution analysis of the 

raw PCG signals. In addition to lowering noise, this efficiently squeezes the data.  

 

Once removing noise the signal is then split into individual segments, each of which 

represents a diverse component, Segmentation is accomplished by examining the signal’s 

energy distribution and zero-crossing locations. Finally, Mel-scaled spectrograms and Mel-

frequency cepstral coefficients (MFCC) are used to extract relevant features from the 

segmented signal. By converting the signal from time domain into a visual depiction of the 

frequency content, these approaches effectively capture features that are pertinent to human 

hearing. Five layers feed-forward Deep Neural Network (DNN) a deep learning model is 

used in the study for the classification of Phonocardiograms. This joint approach of deep 

learning and signal processing methods demonstrates encouraging potential for analyzing and 

classifying PCG signals. Such improvements might contribute to the timely detection of heart 

abnormalities, paving the way for upgraded patient care. 
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In the context of telehealth, a deep convolutional autoencoder (DCA) to deal with 

phonocardiography is investigated in the work [30]. The Dalian University of Technology 

heart sounds database (DLUTHSDB), which includes recordings from both healthy 

individuals and patients, is the open-source dataset that the study uses from Physionet. This 

study also suggests a method for compressing cardiac coronagraph (PCG) information via 

Deep Canonical Correlation Analysis (DCA). The S1 and S2 heart sound segments are the 

central focus of the segmentation, overlapping windows, and normalization techniques used 

by the system to preprocess the PCG signals. The DCA, the system’s central component, 

compresses the signal before sending it to distant medical specialists. By gradually lowering 

the dimensionality of the signal representation in an encoder and then reconstructing the 

signal in a decoder, the DCA architecture accomplishes compression.  

 

The authors also conclude that a segment length of three seconds provides a good deal 

between signal quality and compression ratio. They were able to attain a 32-compression 

ratio with less than 5% PRD in the signal. They also investigate the system’s resilience to 

transmission failures and whether it can be used on devices with less processing capability. 

The outcomes demonstrate that when compared to conventional compression methods, the 

DCA method is more noise-resistant. 

 

In an article [31], researchers research automated heart sound classification using 

deep learning to improve cardiovascular disease (CVD) screening. Cardiovascular diseases 

(CVDs) are a commanding foundation of death internationally. Although traditional cardiac 

sound analysis has its value, it is subjective and demands a great deal of knowledge. The 

latest studies use automated screening methods for the classification of CVDs either rely on 

complex models or demonstrate inefficiencies. The study used two publicly available datasets 

for the classification of PCGs. The PhysioNet 2016 and  PASCAL 2011 to determine CVDs. 

However, this is problematic since there are differences in the methods used to collect and 

examine the data, as well as noise in the recordings. In order to overcome these issues, the 

writers use the short-time Fourier transform (STFT) to change the PCG signals into 

spectrograms. 

 

On the PhysioNet dataset, recommended CNN model performs admirably, 

outperforming previous techniques in accuracy and using less processing power. When the 
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datasets are combined, performance remains good. Transfer learning allows the model to 

attain good precision in heart sound classification even on the noisier PASCAL dataset. This 

study shows the possibility of transfer learning in conjunction with a custom CNN model that 

is less refined for the perseverance of CVD screening utilizing PCG data.  

 

An innovative deep learning method for automatic identification of phonocardiogram 

(PCG) signals is being studied in research [32]. To diagnose cardiac valve dysfunction with 

PCG analysis, these critical sounds must be identified early and accurately. Conventional 

techniques for FHS detection can be ineffective and time-consuming. 

 

The paper also suggests a time-frequency domain (TFD) deep neural network (DNN) 

method to challenge this problem. The PCG signals are altered into a time-frequency 

representation using the MGWST (Modified Gaussian window-based Stockwell Transform), 

which offers a more detailed understanding of the signal’s properties. The study practices a 

multi-step method to obtain vital attributes. Primary, the segmented heart sound issues are 

evaluated using the Shannon-Teager-Kaiser energy (STKE). These are then further refined 

through the application of smoothing and thresholding procedures. Ultimately, the segmented 

components are used to extract time-frequency Shannon entropy (TFDSE) characteristics. 

 

The occurrence or lack of FHS components in the PCG signal is then spontaneously 

categorized using a DNN architecture grounded on stacked autoencoders (SAEs). With 

noteworthy outcomes, the efficacy of this strategy is assessed on two publically accessible 

databases Database 1 is the Michigan Heart Sound and Murmur Database, and Database 2 is 

PhysioNet Computing in Cardiology Challenge 2016. The authors suggested that the deep 

learning strategy works better for FHS detection in PCG signals than current techniques. It 

also delivers an actual defined and efficient approach for PCG recording analysis, which 

allows the potential for real applications in the early association of cardiac disease. 
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2.3.3 Hybrid Techniques  
 

In direction to assist in the initial finding of heart disorders, the article [33] specifies a 

different approach for the categorization of heart sounds. The three primary chunks of the 

recommended method are the creation of the image, feature extraction using CNN models 

that have previously been trained (Alex Net, VGG16, and VGG19), and feature classification 

using an SVM classifier. Spectrogram pictures are produced for extracting features, from 

input heart sound waveforms. The frequency content of the signal is represented over time by 

spectrogram pictures, which are produced by means of Short Time Fourier Transform 

(STFT). The research leads that deep learning methods have the potential to recover cardiac 

disease recognition systems, as perceived by the improved performance observed in 

comparison to current methods. 

 

In the article [34]  to categorize heart sounds and subsequently spot malfunctions, 

insufficient different methods are applied. The Amalgamation of Machine Learning and 

Signal Processing is used. Numerous methods have been proposed and advanced by 

researchers to develop ways of heart sound classification, however in general they contain the 

preprocessing, segmentation, feature extraction, and classification stages. Some of these 

techniques have been examined for segmentation and classification, such as deep learning 

algorithms, Hidden Markov Models (HMMs), and Hidden Semi-Markov Models (HSMMs). 

The dataset is preprocessed by operating different preprocessing methods such as resampling, 

normalization, and filtering, alongside machine learning methods such as Support Vector 

Machines (SVM), K-Nearest Neighbors (KNN), and Decision Trees (DT) used for 

classification.  

 

Heart-related illnesses are the principal killers worldwide, and the importance of 

spotting, diagnosing, and treating them is well caught in the article [35]. Thus, there is a note 

that new approaches to automated methods of heart sound diagnosis imply segmentation of 

Phonocardiogram (PCG) signals that increase examination complexity and computational 

limitations. The paper is going to replace segmentation and assess the advantages and 

disadvantages of the proposed method for establishing short, unsegmented 5-second PCG 

recording data. It also focuses on a new method for heart sound classification applying a pre-
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trained convolutional neural network (CNN) model to the PhysioNet2016 challenge. Before 

feeding, the short PCG recordings, authors apply a preprocessing step called continuous 

wavelet transform (CWT), which creates 2D Scalo gram images out of the signals which are 

further employed in training and testing the CNN model. Such a method is advised to have 

rarer difficulties in relation of segmentation complexity but is also quantified to show good 

results linked to existing methods in the framework of heart sound classification. 

 

In a study [36]  researchers focus on the work to design machine learning algorithms 

to particularly advance the examination of unsegmented PCG signals for edge computing 

solutions in wearable healthcare devices. The study makes more use of computationally less 

complex classifiers such as SVMs, feed-forward NNs, and k-NNs that work well and are not 

overly complex. In this context, it emphasizes that the models that hinge on the segmentation 

algorithms or the classes of methods pointedly exhaust the resources. 

 

It also used the PhysioNet 2016 dataset, employing preprocessing techniques such as 

spike removal, noise reduction, normalization, and segmentation into 5-second frames, and 

utilizing classifiers like SVMs, NNs, and k-NN. A notable highlight of the study is its focus 

on classifiers that are suitable for resource-limited platforms, particularly underscoring NNs. 

The feasibility of implementing these trained classifiers on platforms like Raspberry Pi 4 or 

NVIDIA Jetson Nano is discussed, showcasing potential advancements in real-time 

monitoring and diagnostics of heart conditions through wearable technology. Overall, the 

findings propose promising implications for the swift utilization and scalability of diagnostic 

devices in the future healthcare landscape. 

 

The article [37] focuses on applying Deep Learning with Traditional ML methods to 

advance the results of Phonocardiogram (PCG) signal categorization. Thus, through the use 

of DL in extracting the features from unstructured data and ML in avoiding overfitting of the 

proposed deep hybrid models, the concept proved potential in identifying heart diseases at the 

initial stages. It expresses an architectural model including convolution layers, dropout 

layers, and fully connected layers, and thereafter the prediction classes are managed by 

Machine Learning classifiers. Using performance evaluation, it is possible to achieve better 

accuracy than using Deep Learning or Machine Learning only. The deep hybrid models 

possess computational gains and less time complexity and they do not require feature 
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engineering hence deep hybrid models could be very useful for the early detection of 

cardiovascular anomalies. However, those comprise plentiful limitations and wrap up 

important aspects of Explainable AI (XAI) that are not included in the study, such as the 

features by which the models make decisions. 

 

The dataset used in the work is the PhysioNet 2016, which consists of a large number 

of records of PCG, and this allows for the development of a solid framework for the 

advancement of the proposed models. The implementation of this dataset gives credit to the 

reliability of the results that are derived from the quality and the variety of datasets that will 

be used to build the models that will be generic to various patients. Due to the detailed 

annotation and validation of the proposed PhysioNet 2016 dataset, this dataset can be 

recommended for use in scientific work, due to this it is possible to check the effectiveness of 

the newly developed methodologies. 

 

The article’s findings validate that the collaboration of DL and Traditional ML 

methods can go an extensive way in producing monumental progress. The hybrid approach 

described in the study also helps to improve the classification and minimizes some of the 

shortcomings that exist when using each method independently. While on one hand Deep 

Learning does not require much preprocessing of raw data to extract features for the model, a 

problem that Traditional Machine Learning effectively solves is that of overfitting, which is 

prevalent in large models.  

 

However, it should be observed that there is no application of XAI techniques which 

is a limitation given the significant outcomes of the study. The concept of Explainable AI 

becomes vital in such areas as healthcare since the AI model must be easily understood by 

healthcare providers to gain their confidence and ensure that they embrace the technology. 

Without XAI, the deep hybrid models have the characteristics of a ‘black box,’ which 

provides minimal information regarding decision-making. This lack of transparency overly 

impacts the application of these models in real practice because clinicians may not be willing 

to work on a tool whose results they do not understand.  
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2.3.4 XAI Techniques for CVDs 
 

The audio databases used in the article [15], PhysioNet is a versatile set of records 

that captures the heart sound in clinical-nonclinical situations. However, this distribution is 

skewed, which means, there must be a larger sample of the normal heart sound than the 

abnormal ones. About this, and to improve the data for analysis, the authors used Mel-

Frequency Cepstral Coefficients (MFCCs) for feature extraction. These features express the 

spectral properties of the heart noises. For classification, the inclusion of a Classification 

Network using a CNN connected to an MLP is used in the study. This model yielded good 

results in discriminating between normal and abnormal sounds of the human heart. 

 

Moreover, the research does not only entail just classification but includes the use of 

Explainable AI (XAI) methods. SHAP (Shapley Additive explanations) and Occlusion maps 

are used to explain how the model views the data and how it comes to those conclusions. It is 

especially important as far as the medical field is concerned, where people do trust the AI 

models. 

 

In [38] the authors try to assess the deep learning models in detecting abnormal 

sounds from the PhysioNet database. Another important aspect that the study successfully 

grips is the class imbalance in the data set meanwhile windowing is used to get signal 

segments with one-second intervals but with overlap and then balancing is also done. Three 

deep learning frameworks are discussed composed of different parts for feature extraction 

and classification. One model employs a segmentation model that is pre-trained with a CNN 

together with the use of a CNN encoder and an MLP classifier. Another model has 

connections between the CNN encoder and MLP network but adds features obtained from the 

segmentation model as another channel of input. Last, a CNN-MLP network without 

segmentation inputs is created separately from the previous networks.  

 

This type of research focuses on the necessity of explainability in medical uses of AI. 

Using Shapley values, the analysis offers information on the influence of specific 

characteristics of the signal within the heart sounds on the decision made by the model 

regarding the existence of abnormalities. This tends to facilitate an understanding of how the 
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model’s decisions are arrived at. Also, occlusion maps are employed to depict areas of the 

heart sound signal that contain the most critical information for predictions. Last but not 

least, The performance of all the models is assessed with 10-fold cross-validation. 

 

The growing incidence of CVDs and its effects on public health have made the 

classification of these disorders an important field of study in topical years. Conventional 

methods for diagnosing CVDs, such as ECGs, concentrate on capturing the heart’s electrical 

activity. Nevertheless, there are situations where these techniques are unable to identify 

minute alterations in cardiac function and mechanical anomalies. This has increased interest 

in PCG, a complementary method that can offer further insights into heart health by 

recording the noises made by the heart. [21] 

 

Advancements in AI have further propelled the medical field, with ML techniques 

being applied to classify and diagnose CVDs. Though, one of the main challenges with AI-

based methods is the lack of transparency, often described as the "black box" problem, where 

the decision-making process is not easily understood. So there is a pressing need for XAI 

models in the medical domain. To address this issue, researchers have turned to XAI, which 

aims to make AI models more interpretable and their decisions more transparent. [15] 

 

A stethoscopy or heart auscultation is also individual of the widely used approaches 

for the diagnosis of heart diseases, which is very safe and inexpensive however, the 

effectiveness of this approach is predetermined by the individual characteristics of people’s 

hearing, the quality of stethoscopes, and physicians experience. In some pathological 

situations, the evaluation of essential heart sounds is masked by high-frequency murmur 

eventually making diagnosis difficult. Regarding this, physicians turn to computer-aided 

heart sound analysis (CAHSA) systems which assist in interpreting, auditioning, and 

visualizing intricate heart sound signals. [19] 

 

However, in the current state, there are some main issues related to the classification 

of CVDs using unsegmented PCG signals. Discontinuity of heart sounds, inter-subject 

differences and the formation of various physical noises from respiration and neighboring 

environmental sounds present an immense impact on the PCG analysis. Furthermore, the 
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classical methods of the segmentation of ECG signals might be significantly worse, for 

instance, in cases when children, especially newborns, are involved or when the background 

noise is high. To address these challenges, this research revolves around creating ML 

algorithms for the categorization of CVDs from unsegmented PCG signals and creating an 

XAI for these algorithms. 

 

2.4 Summary  

 

The literature review is summarized in Table 2.3. The condition that is mainly 

covered is the ML and DL methods for heart sound classification. Sophisticated areas for 

further research are data preprocessing, features and extracting them, and classification. As 

for the methods, binary logistic regression, SVM, Random forest KNN, CNN, and DNN are 

used. These techniques are applied to datasets like PhysioNet/Challenge 2016 to enhance the 

classifier’s performance and distinguish between healthy and unhealthy heart sounds. From 

the analysis of the results obtained by employing the combination of the ML, the DL, and the 

XAI methods, future achievements regarding the diagnosis of heart diseases and the 

improvement of the treatment of patients, can be expected. 

 

Table 2.3: Summary of Literature Review 

 

Ref Preprocessing Dataset Classifier 

ML DL XAI 

[1] 

 

Down-sampling, Segmentation, 

Savitzky-Golay filter 

PCG recordings ✖ 

 

✔ 

 

✖ 

 

[10] Homomorphic Envelogram, Mel-

Frequency Cepstral Coefficients 

(MFCC), Power Spectral Density 

(PSD) 

2016 

PhysioNet/CinC 
✔ ✖ ✖ 
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[15] Mel-Frequency Cepstral 

Coefficients (MFCCs) 

PhysioNet Database ✖ ✔ ✔ 

[26] Noise Reduction 

Peak Detection 

Segmentation 

Fragmentation 

2016 

PhysioNet/CinC 
✔ ✖ ✖ 

[27] Wavelet Scattering Transform 

Low Pass Filter 

2016 

PhysioNet/CinC 
✔ ✖ ✖ 

[28] Filtering, 

Spike Removal 

2016 

PhysioNet/CinC 

✔ ✖ ✖ 

[29] Discrete Wavelet Transform 

(DWT), Segmentation, Mel-scaled 

power spectrogram, Mel frequency 

cepstral coefficients (MFCC) 

2016 

PhysioNet/CinC 
✖ ✔ ✖ 

[30] 

 

Normalization, 

Segmentation, 

Overlapping segmentation, 

Feature selection 

PhysioNet Dalian 

University of 

Technology heart 

sounds database 

(DLUTHSDB) 

✖ 

 

✔ 

 

✖ 

 

[31] 

 

Short-time Fourier transform 

(STFT) 

PASCAL, 

2016 

PhysioNet/CinC 

✖ ✔ ✖ 

[32] 

 

Modified Gaussian Window-based 

Stockwell Transform (MGWST) 

2016 

PhysioNet/CinC , 

Michigan heart 

sound and murmur 

database 

✖ ✔ ✖ 

[33] Spectrogram generation, Short Time 

Fourier Transform (STFT) 
 

Classifying Heart 

Sounds Challenge 

(CHSC) 

✔ ✔ ✖ 
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[34] Resampling, normalization, and 

elliptic filter, 

Bandpass filter 

2016 

PhysioNet/CinC 
✔ ✔ ✖ 

[35] Filtering 

Spike Removal 

Continuous Wavelet Transform 

(CWT) 

2016 

PhysioNet/CinC 
✔ ✔ ✖ 

[36] Spike removal, 

Noise reduction, 

Normalization 

2016 

PhysioNet/CinC 
✔ ✔ ✖ 

[37] Frame Division, 

Fourier Transform, 

Power Spectrum Calculation and 

Mel-Scale Filter Banks, 

Logarithmic Energy Summation, 

Mel-Frequency Cepstral 

Coefficients 

(MFCC) 

2016 

PhysioNet/CinC 
✔ ✔ ✖ 

[38] Windowing 

Data Balancing 

PhysioNet Database ✖ ✔ ✔ 

[39] Resampling, Data Labeling and 

Correction 

2016 

PhysioNet/CinC 
✔ ✖ ✖ 

 

It is observed in the above studies that substantial amounts of heart sound data are 

generated, posing a significant challenge for efficient analysis and classification. The 

foremost inspiration of the research is to inspect the CVDs using XAI based on unsegmented 

PCGs. 
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CHAPTER 3 

 

METHODOLOGY 

 

3.1 Overview 

 

This section offers a detailed approach to heart sound categorization, emphasizing the 

use of ML and XAI approaches on unsegmented PCG data. It describes the techniques used 

for feature extraction, classification algorithms, and data preprocessing. Furthermore, the 

description of integrating XAI techniques to improve model interpretability and transparency 

offers a thorough foundation for the analysis and validation of the suggested strategy that 

follows. 

 

3.2 Proposed Methodology 

 

Figure 3.1 depicts the recommended methodology. It involves the subsequent 

subtasks such as the publicly accessible PhysioNet 2016 dataset used and arranging it in a 

format that is suitable for additional processing constitutes the first stage. The dataset must 

next undergo the required preprocessing and noise reduction. Preprocessing is followed by 

feature extraction, which addresses class imbalance. The Random Forest classifier was 

initialized with 100 estimators and trained alongside support vector machines (SVM) and k-
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nearest neighbors (KNN) on the scaled training data. The performance of the classifiers was 

evaluated on the test set, using a confusion matrix to calculate key metrics such as accuracy, 

precision, recall, specificity, and F1 score, providing a comprehensive assessment of the 

model's effectiveness. Additionally, the transparency of the categorization process is 

enhanced by the usage of XAI techniques. This comprehensive approach ensures both good 

model performance and interpretability. 

 

 

Figure 3.1: Methodology 

 

3.3 Preprocessing of PCG Signals 

 

This is a vital step in the consideration of PCG signals as it prepares the raw data for 

more accurate and effective model development. The preprocessing of PCG signals is 

essential for ensuring accurate and reliable analysis. This process in the proposed research 

includes two main steps: signal denoising and handling class imbalance. 

 

Evaluation

Classification

Model Development

Features Extraction

Preprocessing (PCG Signals)
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3.3.1 Signal Denoising Using Butterworth Filter 

 

This study makes use of a Butterworth bandpass filter to improve physiological signal 

quality by lowering noise and keeping required signal components inside a given frequency 

range. Previous studies [31] show that primary heart sounds and murmurs lie in the frequency 

range of 20 to 400 Hz. As seen in Figure 3.2, a fourth-order Butterworth bandpass filter was 

applied with cut-off frequencies ranging from 20 to 400 Hz. This method efficiently 

suppresses noise artifacts while maintaining the retention of pertinent signal components in 

CVD classification, particularly in PCG signal analysis [40]. By restricting the passband to 

20 Hz to 400 Hz, the study concentrated on the crucial frequency components associated with 

cardiovascular signals, such as heart sounds and murmurs. 

 

 

Figure 3.2: Magnitude and Phase Response of the Butterworth filter [31] 

 

3.3.2 Handling Class Imbalance 
 

One of the critical challenges in the proposed dataset is class imbalance, where 

definite classes are underrepresented and paralleled to others. Initially, the dataset consisted 

of 659 instances labeled as patients and 3,290 instances labeled as healthy, highlighting a 
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significant class imbalance. This disparity could potentially bias the model towards the 

majority class during training and evaluation. 

 

To address this problem and consequently, fairly measure the performance of the 

constructed model, the identified research employed the Synthetic Minority Over-sampling 

Technique (SMOTE). Using the minority class (label 1), SMOTE was used to create 

synthetic samples by interpolating between instances, and this led to there being an equal 

amount of instances for both classes after SMOTE. To achieve this, after applying SMOTE 

the number of instances for both patients and healthy people was balanced to be 3290. 

 

Regarding SMOTE, this rebalancing strategy is significant as it decreases the model’s 

likelihood of being imbalanced in terms of the majority class. The incorporation of SMOTE 

into the preprocessing pipe has shown an appreciation towards dimensioning the work on the 

handling of class imbalance problems and enhancing the soundness of the model in its 

recommendation. 

 

  Thus, the proposed research integrates SMOTE with denoising methods in the 

preprocessing stage which will pave the way for the rest of the analysis and model 

formulation. This approach not only addresses the class imbalance issues but also leads to 

more accurate and robust solutions from the predictive models in healthcare data mining. 

 

3.4 Feature Extraction 

 

In this step, an overall 13 features were extracted as mentioned in table no. 3.1 below. 

These features reflect different kinds of moments from a statistical point of view concerning 

the signal and present relevant information as to different cardiovascular health parameters. 

The one employed in the suggested research study falls under the decision-making statistical 

feature extraction analysis that stands in the signal processing domain and is used to 

summarize the properties of various time-series data including the PCGs. 
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Table 3.1: Explanation of Statistical Features 

Feature Description 

Mean The average value of the signal 

Standard Deviation (Std) Shows how much the values vary from the mean 

Minimum (Min) The smallest value in the signal 

Maximum (Max) The highest value in the signal 

Median The middle value when the signal values are ordered 

25th Percentile (Q25) The value below which 25% of the data points fall 

75th Percentile (Q75) The value below which 75% of the data points fall 

Range The difference between the maximum and minimum values 

Skewness Measures if the values are more spread out on one side of the 

mean than the other 

Kurtosis Measures if the values are more peaked or flat compared to a 

normal distribution 

Centroid The center of the signals frequency components. 

Root Mean Square 

(RMS) 

The effective value of the signal, showing its power. 

Chroma STFT Analyzes the pitch classes in the signal, useful for 

identifying rhythms and patterns 

 

3.5 Model Development 

 

This step focuses on the creation and training of the ML classifiers relying on the 

PhysioNet 2016 data set. Important statistical characteristics from the dataset for training the 

several types of classifiers, namely, RF, SVM, and KNN. The proposed research supports the 

interaction of applying rigid feature extraction algorithms to maximize the dataset’s signal 

aspects. This approach empowers the classifiers to detect and interpret patterns that signify 

diverse health conditions effectively. Figure 3.3 outlines the algorithm underlying the model 

development process, whereas Figure 3.4 provides a flowchart representation of the overall 

workflow. 
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ML-Based Model Development and Classification Algorithm 
Step I: Initialization 

Loaded the PhysioNet 2016 dataset for CVD classification. 
Defined ML classifiers (Random Forest, SVM, KNN). 
Set extracted feature list: mean, standard deviation, minimum, maximum, 
median, quartiles, range, skewness, kurtosis, centroid, RMS, Chroma STFT. 

Step II: Feature Extraction 

For each data sample: 
Calculated statistical features to enhance dataset representation. 
Assigned extracted features to classifiers for further processing. 

Step III: Model Training 

For each classifier (RF, SVM, KNN): 
Trained classifiers with extracted features. 
Optimized hyperparameters (e.g., kernel for SVM, decision trees for RF). 
Stored trained model parameters for evaluation. 

 

Case 1: Model Performance Evaluation 

Step IV: Classification 

For each trained model: 
Classified PCG signals based on extracted features. 
Applied RF, SVM, KNN 

Step V: Model Selection and Evaluation 

Evaluated each classifier using metrics: 
Accuracy, precision, recall, specificity, F1 score. 
Selected the best-performing model based on evaluation scores. 

Case 2: Interpretability Analysis 

Step VI: Model Interpretability Analysis 

For the selected RF model: 
Applied SHAP values and LIME to explain feature impact and measure 
feature's influence in the decision-making process. 

 

Figure 3.3: Proposed ML-Based Model Development and Classification Algorithm 
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Figure 3.4: Workflow of the Model Development and Evaluation Process 

 

3.6 Classification  

 

In this step, the proposed research feeds the identified ML classifiers with the PCG 

signals to sort the signals based on the type of CVD. These classifiers are prepared by feeding 

the extracted features comprising of mean, standard deviation, minimum, maximum, median, 
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quartiles, range, skewness, kurtosis, centroid, RMS, and Chroma STFT to produce accurate 

and reliable results. 

 

Finally, various XAI techniques are added to explain the outcomes that are obtained 

through various ML classifiers. The last step is to apply SHAP and LIME to measure the 

influence of  features concerning the model’s decision-making process. Besides providing 

details on the omission and selection of features to classify, SHAP and LIME enable the 

visualization of how the particular features impacted the entire model classification decision. 

This makes the model’s decision to be more understandable, and the predictions more 

reliable and helpful to the clinicians because of compliance with clinical knowledge. 

 

3.6.1 Model Selection  
 

It is an important part of this research and aims at the elaborate comparison of several 

ML algorithms to identify the better-performing model for the classification of CVDs. The 

algorithms that were regarded are RF, SVM, and KNN classifiers. 

 

Due to the classifier’s power to correctly categorize data by finding the hyperplane 

that best differentiates the various classes, the SVM algorithm is selected. This process also 

requires changing some parameters like the kernel function and the regularization to boost the 

classification and minimize overfitting. Due to the random training samples and features, and 

the ability to acquire higher accuracy and low variance with multiple decision trees, RF is 

adopted for its ensemble learning. Tuning of the parameters is performed to enhance the 

predictor’s accuracy and minimize the issue of overfitting. K-Nearest Neighbors (KNN) is 

employed because of its decision-making and easy explanation process. It focuses on the 

improvement of neighbors as well as distance measures for the successful classification of its 

result. 
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3.6.2 Model Interpretability  

 

Throughout the given work, model interpretability is one of the main objectives and is 

attained through the use of explainability methods including SHAP (Shapley Additive 

explanations) and LIME (Local Interpretable Model-agnostic explanations). These techniques 

are also central in enlightening one on the preconditions for classification choices. Thus, by 

providing more definite estimates, clinicians and researchers can get a better understanding 

and trust the predictive power of the ML models used. It is an important phase in the 

proposed work, where only ML techniques are used for the proper classification of CVDs. 

 

In the proposed research, it will be therefore important to adopt techniques from the 

explainability of machine learning to improve understanding of the results by the models and 

increase confidence. In particular, the SHAP technique is used to explain the Random Forest 

classifier’s decision further to well-interpret the results. The SHAP values point out the 

contribution each feature has to the model predictions, something that is very useful to 

clinicians and researchers. This approach enhances interpretability and can be utilized to 

explain an ML model’s outputs concerning CVD classification. 

 

3.7 Model Evaluation  

 

In this step, the effectiveness and reliability of the developed models for classifying 

CVDs using XAI based on PCGs are rigorously assessed. Various metrics and analyses are 

employed to ensure the models meet the desired standards of different parameters against 

potential biases or errors. 

 



 

  

49 

3.7.1 Performance Evaluation Metrics  

 

They are widely used forms of measures that can aid in quantitatively evaluating the 

efficiency of the generated models in CVD classification. Various measurements like 

accuracy, precision, recall, specificity, and F1 Score were calculated to measure the model’s 

predictive efficiency and its uttermost performance. The aforementioned metrics give 

information regarding the possibility of the distinct classification of different cardiovascular 

conditions with the help of PCG signals and, therefore, aid in decision-making regarding the 

further improvement and enhancement of the models. 

 

 

3.7.2 Interpretability Analysis  

 

Regarding the choice of interpretability analysis, it is worth emphasizing that 

Interpretability analysis is to assess how well the applied XAI techniques help in 

understanding the models decision-making process. Concerning model interpretation, this 

analysis uses methods like  SHAP and LIME. This section focuses on providing an improved 

understanding of model interpretability and offering information about the AI-based 

diagnostic instruments for CVDs that would satisfy medical practitioners and meet all the 

regulatory necessities. 

 
 

 

 

 

 



 

  

50 

 

CHAPTER 4 

 

 SIMULATION RESULTS AND DISCUSSION 

 

4.1 Overview 

 

As for the results of the simulation based on the use of ML classifiers on the 

PhysioNet 2016 dataset, this part provides a detailed discussion of the findings. Strictly 

discuss, the performance comparison of the used classifiers, RF, KNN, and SVM, is also a 

part of it. In addition, the ways to improve the interpretability of the model are described 

through the use of the SHAP (Shapley Additive explanations) and LIME (Local Interpretable 

Model-agnostic explanations). LIME and SHAP were chosen because they effectively 

explain machine learning models, especially in healthcare. LIME gives clear, detailed 

insights into individual predictions, helping clinicians understand specific cases. SHAP 

provides a consistent view of how each feature impacts predictions based on solid theory. 

Both tools are well-documented and widely used, making them reliable choices for enhancing 

trust and transparency in model interpretations. 

 

4.2 Experimental Setup 

 

The proposed study employed the PhysioNet 2016 dataset, which consists of both 

healthy and unhealthy phonocardiogram (PCG) signals. The dataset originally contained 659 
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instances labeled as patients and 3,290 instances labeled as healthy, highlighting a significant 

class imbalance. To mitigate this issue, we implemented the Synthetic Minority Over-

sampling Technique (SMOTE), which balanced the classes by creating synthetic samples for 

the minority class, resulting in an equal number of instances for both categories after 

preprocessing. The preprocessing steps included signal denoising using a fourth-order 

Butterworth bandpass filter, ensuring the retention of critical frequency components between 

20 Hz and 400 Hz. 

 

For model development, we utilized various machine learning classifiers, specifically 

Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Random Forest (RF). 

The classifiers were trained using the extracted statistical features from the PCG signals, 

which included metrics such as mean, standard deviation, and skewness, among others. The 

model performance was evaluated using accuracy, precision, recall, specificity, and F1 score. 

All simulations were conducted using Python with libraries such as scikit-learn and 

imbalanced-learn on the Apple MacBook Air. Table 4.1 summarizes the key simulation 

parameters used in this study. 

Table 4.1: Simulation Parameters 

Parameter Value 

Dataset Physionet 2016 Dataset 
Original Number of Samples 3949 (659 patients, 3290 healthy) 

Post-SMOTE Samples 3290 (balanced for both classes) 

Feature Extraction Method Statistical Feature Extraction 

Signal Denoising Method Butterworth bandpass filter (20-400 HZ) 

Train-Test Split 85% Training, 15% Testing 

SVM Kernel Polynomial 

KNN Neighbors 5 

Random Forest Estimators 100 

Standardization Method StandardScaler 

Evaluation Metrics Accuracy, Precision, Recall, Specificity, F1 Score 

Software Used Python, Scikit-learn, imbalanced-learn 

Hardware Apple MacBook Air 
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4.3 Classification Results 

 

The major Machine Learning classifiers which are prevalently used are assessed 

based on their efficiency. 

 

4.3.1 Random Forest (RF) 

 

The RF classifier achieved an accuracy of 93.82%, precision of 92.01%, recall of 

95.33%, specificity of 92.44%, and an F1 score of 93.64%. These results indicate that the RF 

model performs exceptionally well in classifying heart sounds, balancing both precision and 

recall effectively. 

 

4.3.1.1  Confusion Matrix Analysis of RF Classifier 
 

It is possible to assess the performance of the RF classifier using a confusion matrix 

in detail. The confusion matrix offers an understanding of the efficiency of the classifier as it 

gives the exact number of correct and wrong predictions regarding classes. As for the 

confusion matrix of the RF classifier of this study, it is presented in Figure 4.1. 
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Figure 4.1: CM of RF Classifier 

 

The metrics representing the confusion matrix to the RF classifier concerning the 

classification of CVDs are shown in Table 4.2. It gives the number of TP, TN, FP, and FN 

that would enable the RF model to show how nicely it can differentiate between positive and 

negative CVD patients. The percentage of each component is calculated by using Equation 

4.2 to Equation 4.5. 

 

Total =   𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁   (4. 1)  

Total =   449 + 477 + 39 + 22 

Total =   987 

TP% =   ,-
,./01

 ×	 100    (4. 2) 

TP% =   445
567

 ×	 100 = 45.49 % 

TN% =   ,8
,./01

 ×	 100    (4. 3) 

TN% =   447
567

 ×	 100 = 48.33 % 
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FP% =   9-
,./01

 ×	 100    (4. 4) 

FP% =   :5
567

 ×	 100 = 3.95 % 

FN% =   98
,./01

 ×	 100    (4. 5) 

FP% =   ;;
567

 ×	 100 = 2.23 % 

 

Table 4.2: Breakdown of the (RF) Confusion Matrix 

Category Description Percentage 

(%) 

TP Actual cases positive (CVDs), correctly 

predicted positive by the model 

45.49 

TN Actual cases negative (no CVDs), correctly 

predicted negative by the model 

48.33 

FP Actual cases negative, mistakenly predicted 

positive by the model 

3.95 

FN Actual cases positive, mistakenly predicted 

negative by the model 

2.23 

 

Metrics Derived from the Confusion Matrix (RF) 

From the confusion matrix, several important performance metrics such as accuracy, 

precision, recall, F1 score, and specificity are derived for the RF classifier as shown in 

Equation 4.6 to Equation 4.9 [41] and Equation 4.10 [10].  

Accuracy: The overall correctness of the model 

Accuracy =   ,-<,8
,-<,8<9-<98

     (4. 6) 
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   =  445<477
445<477<:5<;;

 = 0.9382 

Precision: The amount of correct positive predictions 

 Precision =  ,-
,-<9-

                ( 4. 7) 

    =  445
445<:5

 = 0.9201 

Recall: The number of actual positives that are accurately identified 

 Recall  =  ,-
,-<98

                   (4. 8) 

 = 445
445<;;

 = 0.9533 

F1 Score: The harmonic mean of precision and recall 

 F1 Score = 2 ×	 -=>?@A@.B	×	C>?011
-=>?@A@.B<	C>?011

      (4. 9) 

   = 2 × D.5;DF	×	D.5G::
D.5;DF	<	D.5G::

 = 0.9364 

Specificity: The amount of actual negatives that are accurately identified 

 Specificity =  ,8
,8<9-

                  (4. 10) 

     =  477
477<:5

 = 0.9244 

 

These metrics collectively indicate that the RF classifier performs exceptionally well 

in distinguishing between the presence and absence of CVDs using PCGs. The high 

precision, recall, and F1 score signify the model’s robustness, formulating it a trustworthy 

tool for clinical diagnostics. 
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4.3.2 K-Nearest Neighbours (KNN) 

 

The KNN classifier yielded an accuracy of 86.52%, precision of 82.50%, recall of 

91.08%, specificity of 82.36%, and an F1 score of 86.58%. While slightly lower than RF, 

KNN still demonstrates a strong performance, particularly in the recall, which indicates its 

effectiveness in identifying positive cases. 

 

4.3.2.1  Confusion Matrix Analysis of KNN Classifier 

 

The performance of the KNN classifier can be evaluated using the confusion matrix 

as shown in Figure 4.2. 

 

 
Figure 4.2: CM of KNN 
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Table 4.3 presents the metrics of the KNN classifier for the classification of CVDs. It 

details the counts of TP, TN, FP, and FN, illustrating how effectively the KNN model 

distinguishes between positive and negative CVD cases. The percentage of individually 

component is regarded by applying Equation 4.2 to Equation 4.5. 
  

Total =   429 + 425 + 91 + 42 = 987 

TP% =   4;5
567

 ×	 100 = 43.45 % 

TN% =   4;G
567

 ×	 100 = 43.07 % 

FP% =   5F
567

 ×	 100 = 9.22 % 

FP% =   4;
567

 ×	 100 = 4.25 % 

 
Table 4.3: Breakdown of the (KNN) Confusion Matrix 

 

Category Percentage            

(%) 

TP 43.45 

TN 43.07 

FP 9.22 

FN 4.25 

 

Metrics Derived from the Confusion Matrix (KNN) 

From the confusion matrix in Figure 4.2, we can derive several important 

performance metrics for the KNN classifier by using Equation 4.6 to Equation 4.10: 

Accuracy =     4;5<4;G
4;5<4;G<5F<4;

  =  0.8652 
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Precision =    4;5
4;5<5F

 = 0.8250 

 Recall =       4;5
4;5<4;

 = 0.9108 

 F1 Score =   2 ×  D.6;GD	×	D.5FD6
D.6;GD<	D.5FD6

 = 0.8658 

Specificity =  4;G
4;G<5F

 = 0.8236 

 

These metrics provide an inclusive evaluation of the KNN classifier performance in 

classifying CVDs using PCGs. While the model demonstrates good accuracy and recall, 

indicating its capability to identify both positive and negative cases effectively, there is room 

for improvement in reducing false positives and false negatives to enhance diagnostic 

accuracy. 

 

4.3.3 Support Vector Machine (SVM) 
 

This classifier resulted in an accuracy of 77.81%, precision of 75.40%, recall of 

79.41%, specificity of 76.36%, and an F1 score of 77.35%. Although SVM showed the 

lowest performance among the three classifiers, it provides a baseline for comparison and 

highlights areas for potential improvement. 

 

4.3.3.1  Confusion Matrix Analysis of SVM Classifier 

 

The performance of the SVM classifier can be evaluated using the confusion matrix 

as shown in Figure 4.3. 
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Figure 4.3: CM (SVM) 

 

Table 4.4 presents the metrics of the SVM classifier for the classification of CVDs. It 

details the counts of TP, TN, FP, and FN, illustrating how effectively the SVM model 

distinguishes between positive and negative CVD cases. It is considered by using a 

percentage of individually component by employing Equation 4.2 to Equation 4.5.  

 

Total =   374 + 394 + 122 + 97 = 987 

TP% =   :74
567

 ×	 100 = 37.89 % 

TN% =   :54
567

 ×	 100 = 39.93 % 

FP% =   F;;
567

 ×	 100 = 12.36 % 

FP% =   57
567

 ×	 100 = 9.83 % 
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Table 4.4: Breakdown of the (SVM) Confusion Matrix 

 

Category Percentage            

(%) 

TP 37.89 

TN 39.93 

FP 12.36 

FN 9.83 

 

Metrics Derived from the Confusion Matrix (SVM) 

From the confusion matrix in Figure 4.3, we can derive several important 

performance metrics for the SVM classifier by using Equation 4.6 to Equation 4.10: 

 

Accuracy =        :74<:54
:74<:54<F;;<57

 = 0.7781 

Precision  =        :74
:74<F;;

 =  0.7540 

 Recall  =           :74
:74<57

 =  0.7941 

 F1 Score =  2 ×			 D.7G4D	×	D.754F
D.7G4D<	D.754F

  =  0.7735 

           Specificity =      :54
:54<57

 = 0.7636 

 

These metrics provide a broad evaluation of the SVM classifier performance in 

classifying CVDs using PCGs. The model demonstrates moderate accuracy, precision, recall, 

specificity, and F1 score, indicating its potential utility in clinical applications but also 

highlighting areas for improvement in diagnostic accuracy, especially in reducing false 

positives and false negatives. 
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4.4 Comparison of Classifier Performance 
 

The performance metrics of the three classifiers are summarized in Table 4.5. RF 

outperformed both KNN and SVM in all metrics, making it the most robust classifier for this 

dataset. KNN showed commendable performance, particularly in the recall, whereas SVM 

lagged in most metrics but still provided valuable insights. 

 

Table 4.5: Performance Comparison of RF, KNN, SVM 

 

Classifier Accuracy 

(%) 

Precision 

(%) 

Recall     

(%) 

Specificity 

(%) 

F1 Score 

(%) 

RF 93.82 92.01 95.33 92.44 93.64 

KNN 86.52 82.50 91.08 82.36 86.58 

SVM 77.81 75.40 79.41 76.36 77.35 

 

4.5 Model Interpretability 
 

Model interpretability is crucial for accepting the decision-making process of machine 

learning models, especially in clinical settings. SHAP and LIME values were utilized to 

interpret the results of the best-performing model, RF, by determining the impact of each 

feature on the model’s predictions. A dependency graph is a visual representation that 

illustrates the relationships between different variables or features within a dataset. Each node 

in the graph represents a variable, while directed edges indicate dependencies or influences 

between them. In the context of machine learning, particularly in interpretability methods like 

SHAP and LIME, dependency graphs help us understand how specific features interact with 

each other and contribute to model predictions. By analyzing these dependencies, researchers 

can gain insights into the underlying mechanisms driving the model's decisions, which is 

particularly important in high-stakes fields such as healthcare. 
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4.5.1 SHAP Analysis 
 

It provides a unified measure of feature importance, enabling detailed insights into 

how individual features influence the model’s predictions. Figures 4.4 through figure 4.20 

display the summary plot, dependence plot, Bar plot, Waterfall plot, and force plot, 

respectively. 

 

4.5.1.1  SHAP Summary Plot 
 

In this plot, features are ranked by their average SHAP values showing the most 

important features at the top and the least important ones at the bottom. This helps to 

understand the impact of each feature on the model’s predictions. [42] 

 

 

Figure 4.4: Summary Plot 

 

Figure 4.4 demonstrates the impact of various features on the model’s prediction, 

visualizing both the magnitude and direction of their effects. The x-axis represents the SHAP 
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values, which quantify the influence of each feature on the model output, ranging 

approximately from -0.3 to 0.2. The y-axis lists the features under consideration, such as rms, 

centroid, std, and q25. The spread of the dots along the x-axis indicates the variance in the 

impact of each feature. The most significant feature lies at the top of all features in this study 

‘std’ is the most significant feature. The feature ‘rms’ exhibits a wide spread of SHAP values, 

suggesting it has also a significant and varied influence on the model’s predictions. The color 

coding of the dots indicates low or high feature values. Blue dots indicate low feature values 

and red dots indicate high feature values. It also reveals the relationship between the feature 

values and their SHAP values. High rms values or red dots are generally associated with 

positive SHAP values, indicating that higher rms values increase the model’s prediction. 

 

Similarly, the feature std shows that low values (blue dots) tend to have negative SHAP 

values, thus reducing the prediction, whereas high values (red dots) increase the prediction. 

Features such as q25 and q75 also demonstrate this trend, where higher values push the 

prediction higher. In contrast, the feature min has SHAP values close to zero, representing a 

minimal impact on the model’s predictions compared to other features. Furthermore, features 

like kurtosis and mean display a balanced spread of SHAP values, with high values 

significantly contributing to positive predictions. The chroma_stft feature similarly shows 

that high values increase the model output, while low values decrease it. Features such as 

rms, std, q25, and q75 are shown to have substantial impacts, as indicated by the broad 

spread and color gradation of their SHAP values. This analysis is crucial for understanding 

the underlying mechanisms of the model, ensuring transparency, and validating that the 

model's behavior aligns with domain knowledge. 

 

4.5.1.2  SHAP Dependence Plot 

 

Unlike  summary plots, dependence plots show the relationship between a specific feature 

and the predicted outcome for each instance within the data. This analysis is performed for 

multiple reasons and is not limited to gaining more granular information and validating the 

importance of the feature being analyzed by confirming or challenging the findings from the 

SHAP summary plots or other global feature importance measures. [42] 
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Figure 4.5: Dependence Plot (Mean) 

 

Figure 4.6: Dependence Plot (Centriod) 
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Figure 4.7: Dependence Plot (rms) 

 

Figure 4.8: Dependence Plot (std) 
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Figure 4.9: Dependence Plot (q25) 

 

 

Figure 4.10: Dependence Plot (q75) 
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Figure 4.11: Dependence Plot (Skewness) 

 

 

 
Figure 4.12: Dependence Plot (Kurtosis) 
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Figure 4.13: Dependence Plot (Range) 

 

 

Figure 4.14: Dependence Plot (Median) 
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Figure 4.15: Dependence Plot (Max) 

 

 
Figure 4.16: Dependence Plot (Min) 
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Figure 4.17: Dependence Plot (Croma_stft) 

 

The analysis of the SHAP dependence plot as shown in Figure 4.5 to Figure 4.17  

reveals several key insights into the relationship between the features 'mean' and 'chroma_stft' 

and their impact on the model predictions. From Figure 4.5 to Figure 4.17, the x-axis 

represents the mean feature values, while the y-axis shows the SHAP values for the mean 

feature. The color gradient indicates the values of features, with blue representing lower 

values and red representing higher values. There is a noticeable trend where lower mean 

values tend to have negative SHAP values, implying a decrease in the model’s prediction. As 

the mean values increase, the SHAP values generally move towards zero or slightly positive, 

indicating a neutral or mildly positive impact on the prediction. This suggests that higher 

mean values are associated with either no change or a slight increase in the likelihood of the 

predicted outcome. 

 

From Figure 4.5 to Figure 4.17, the opaqueness of dots also underlines the 

interdependence of characteristics, for example in the case of figure (a) ‘mean’ and 

‘chroma_stft’. Representing the higher feature values there are red dots which are located at 
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the higher means, whereas, the lower feature values are depicted by the blue dots which are 

spread out and hence have lower means. This pattern suggests that higher values of 

‘chroma_stft’ occur where the ‘mean’ feature is also higher and it can be thought that this 

helps to positively alter the model’s prediction. 

 

Looking at the location measures, the majority of data points are closely grouped 

around the mid-point or mean value of 0.55 to 0.65 where the SHAP values are near zero. 

Based on this clustering, we can infer that within the range of mean values, the feature 

contributes a minimal extent to causing modification in the model’s prediction, and perhaps 

possesses a threshold value. This threshold effect could suggest that within this range the 

‘mean’ feature is not effective in changing the output of model and thus should be explored 

in detail. In totality, these observations are rather beneficial when determining how the 

features interconnect or how a certain feature impacts the model’s prediction about others. 

 

4.5.1.3  SHAP BAR Plot 
 

It is a type of visualization that reveals features contribution in the machine learning 

model. Here, each bar in the plot corresponds to a feature, and the length of each bar signifies 

how much of the model’s decision was influenced by the respective feature. The below plot 

is useful in model interpretability, as it sorts features by the mean absolute SHAP value hence 

it is easy to understand the model decisions. 

 

Figure 4.18: Bar Plot 
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The bar plot shown in Figure 4.18 illustrates the average absolute SHAP values for 

various features, thereby indicating their overall importance in the model’s prediction. The x-

axis represents the mean of the absolute SHAP values for each feature and the y-axis lists the 

features analyzed, including rms, centroid, std, and others. Key observations from this figure 

include the ranking of feature importance, with the rms feature having the highest mean 

absolute SHAP value, suggesting it has the most significant impact on the model predictions. 

The centroid and std features also show high mean absolute SHAP values, highlighting their 

importance in influencing the model’s decisions. Features such as q25, skewness, and q75 

follow, demonstrating moderate impacts on the model output. The magnitude of impact is 

particularly notable for rms, which has an average absolute SHAP value of approximately 

0.07, signifying its strong influence on predicted outcomes.  

 

The centroid feature is most impactful with an average absolute SHAP of the feature 

value around 0.06, which similarly indicates a very significant impact on prediction. The 

decreasing effect is observed for such features as std and q25, as mean absolute SHAP values 

are approximately 0.05 and 0.04, respectively. The mean absolute SHAP of range and stft 

features is comparatively minor, thus, implies range, stft, and mean are the features with the 

least impact on the model. For the selected features, their mean absolute SHAP values are 

approximately equal to 0.01 to 0.02, suggesting minimal impact. This bar plot can efficiently 

prioritize the features with the highest mean values and sort the features based on their 

contribution to the model’s prediction since the higher the value, the more the feature affects 

its prediction This bar plot shows that rms, centroid, and std are the most influential features, 

whereas, mean, chroma_stft, and range are less important. This visualization is necessary for 

the analysis of which features are the most influential in the making of the final decision and 

for the exclusion of the situations that a data scientist may consider undesired from the 

model’s decision process. 

 

From the SHAP summary plot, it is noticed that the features with the largest decision 

importance are std, centroid, q25, and rms. This means these features play a significant role 

in the identified model when considering how and to what extent they impact the results. On 

the other hand, the SHAP bar plot orders the features from rms, to followed by centroid, std, 

and q25. This derives a conclusion that rms is the most influential feature based on its 

signification on the average influence of the model. 
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Others are the attributes that are identified in the model such as impact and variability, 

which relates to the contribution made by a feature to the model prediction, as indicated by 

SHAP values. The larger the SHAP value, the higher the contribution or impact on the 

prediction. In summary plots, those features with high influence are often listed first to 

indicate the importance of those features in the model’s evaluation. Variability, on the other 

hand, can be understood as the variability of SHAP values for a certain feature within all the 

predictions. This implies that the feature has a large average causal effect on the predictions 

but with large variation in this effect implying that the variability or how this effect changes 

from instance to instance is important in prediction. 

 

The distinctions between these plots result from the fact that they each denote a 

different variable. The summary plot also assesses the impact and variability and is wider in 

its perspective. The bar plot is based only on the impact concept which separates it into only 

the average influence of each feature and gives a basic ranking. Both plots are useful the 

summary plot provides details of the feature importance sequentially and thus provides more 

details, on the other hand, the bar plot straightforwardly depicts the ranking. 

  

4.5.1.4  SHAP Waterfall plot 
 

It is beneficial as it shows how each feature value affects the model’s prediction in 

this instance, giving one good insight into how the model arrived at such a decision. 

 

Figure 4.19: Waterfall Plot 
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Figure 4.19 shows the features involved in the breakdown of the particular instance 

prediction. The plot’s starting point is the expected value (E[f(x)]) of 0. 504, which represents 

the average model output across all samples in the dataset. Every single point in the plot is 

associated with an effect of one of the features on the model’s outcome. The features are 

labeled at the y-axis beginning from min, croma_stft, kurtosis, and others. The actual values 

of these features for the instance are indicated beside the feature names (e. g., 0. 076 for the 

min feature). 

 

The horizontal bars in Figure 4.19 represent the contribution of each feature to the 

prediction, with the length and direction of the bars indicating the magnitude and direction of 

the contribution. Blue bars signify negative contributions, pushing the prediction lower, while 

red bars indicate positive contributions, pushing the prediction higher. For this instance, the 

feature 'min' with a value of 0.076 decreases the prediction by 0.13 units. Similarly, 

'croma_stft' with a value of 0.377 decreases the prediction by 0.07 units, and 'kurtosis' with a 

value of -0.109 decreases it by 0.06 units. Other features such as 'rms', 'q75', 'skewness', 'std', 

and 'max' also decrease the prediction by varying amounts. The 'median' feature with a value 

of 0.298 slightly increases the prediction by 0.02 units, while four other features collectively 

have a negligible effect on the prediction. 

 

4.5.1.5  SHAP Force Plot  
 

It enables us to observe the contribution of features to the model’s prediction for a 

given observation. This makes it ideal for explaining to someone how the suggested model 

came to the conclusion that it did for a particular observation. [43] 

 

Figure 4.20: Force Plot 
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The binary target is to find the contribution of each feature to the classification of 

CVDs. In Figure 4.20, the bold 0.05 is the model score. The model predicts 1 when the scores 

are higher and 0 when the scores are lower. The elements that were crucial in generating the 

forecast for the suggested study are displayed in red and blue, where red stands for features 

that increased the model's score and blue for those that decreased it. Features that had more of 

an impact on the score are located closer to the dividing boundary between red and blue, and 

the size of that impact is represented by the size of the bar. 

 

The above simulation results underscore the effectiveness of the RF classifier in heart 

sound classification, outperforming KNN and SVM. The integration of SHAP values further 

enhances the interpretability of the model, making it more valuable in a clinical context. 

These findings contribute to the broader understanding of ML applications in CVD 

diagnostics. 

 

4.5.2 LIME Analysis 
 

Local Interpretable model-agnostic explanations which is abbreviated as LIME. 

Unlike attending to the global explanation for the entire population or sample, LIME offers a 

localized explanation of the model’s prediction for a given instance [24]. Feature importance 

achieves the goal of explaining how specific features affect individual prediction, which in 

turn, helps to better understand the model’s behavior on an instance-by-instance basis. LIME 

was chosen for its ability to provide localized explanations for individual predictions, making 

it particularly useful for understanding complex models in the context of clinical data. The 

LIME feature importance bar plot and other visualizations help identify which features most 

significantly impact a specific prediction, allowing practitioners to interpret the model’s 

behavior on a case-by-case basis. This level of detail is crucial for validating model 

decisions, as it helps clinicians understand the rationale behind predictions and enhances trust 

in the model's outputs. 

 

 Figure 4.21 through Figure 4.26  show the LIME feature importance bar plot, feature 

importance, feature weights plot, cumulative feature importance plot and, feature importance 

heatmap. 
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4.5.2.1  Feature Importance Bar Plot 
 

The feature importance bar plot is a visualization created by LIME that illustrates the 

contributions of the features for a particular prediction. 

 

 

Figure 4.21: Local Explanation for Class Abnormal 

 

The LIME bar plot in Figure 4.21 gives a local interpretation to the specific prediction 

that has been classified as Abnormal. X-axis shows the partial contribution or the influence of 

the features towards the predictions made with the magnitude as well as sign of the features. 

This is manifested in that a result having a green bar pushes the prediction towards the 

Abnormal class, while a result having a red bar will push the  result towards the Normal 

class. Thus, the features are ranked along the Y-axis according to the obtained contribution 

values where the features with the highest contribution value are placed in the upper part of 

the ranking. For instance, the centroid feature (-0.18<centroid≤0.29) has a maximum positive 

contribution of approximately 0.057. So it has a  powerful impact on the model’s decision to 

classify the instance as Abnormal. On the other hand, the maximum value feature (0.03< 

max≤ 0.78) holds the overall maximum negative attribute contribution of roughly negative 

0.02 shows an inclination toward a Normal class. 
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Figure 4.22: Prediction Probabilities 

 

Above Figure 4.22 contains three main pieces of information from left to right: a 

description of the model results, the values of contribution, and the actual value of each of the 

characteristics in the model. For the instance being Abnormal, the element has a score of 0.97 

and, the score is 0.03 for being Normal. The features increasing the chances of the prototype 

to be classified as Abnormal are shown in orange on the right, while the features that 

decrease this probability and move the prototype closer to Normal, are shown in blue on the 

left. For instance, range of centroid feature of Abnormal  is (-0. 18≤ centroid ≤0. 29), and the 

standard deviation of Abnormal is (-0. 05 < std ≤ 0. 64) has shown the values of potential 

outcome for Abnormal in positive correlation, while the maximum value of Abnormal is (0. 

03 ≤ max ≤ 0. 78) and Median has proven in negative correlation.  

 

4.5.2.2  Local Model Explanations-Feature importance 
 

The Figure 4.23 represents the feature importance in regard to a particular instance. 

The x-axis  present the importance values of each feature, which show how relevant each 

feature is to the given instance and the model’s prediction in particular. The features are 

listed along y-axis in the model. Regarding the importance of features the ‘centroid’ has the 
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highest importance value of approximately 0.06, making it, therefore, closely associated with 

the function of providing the most crucial input in the model’s decision making for this type 

of instance. ‘rms’ and ‘std’ are also considered to be quite vital, with importance levels 

estimated at 0.04 and slightly less than 0.04, respectively. Features including ‘skewness’, 

‘q75’, ‘kurtosis’, as well as ‘chroma_stft’ have comparatively smaller importance values 

meaning that they play a smaller role in the prediction of the model. Next, the importance of 

the features ‘min’ and ‘max’ is very low, which indicates that they have almost minimal 

influence on the decision. 

 

 

 
Figure 4.23: Feature Importance for Instance 

 
 

4.5.2.3  Feature Weights Plot 
 

The feature importance plot shown in Figure 4.24 highlights information on which 

features are used to arrive at a certain decision by the classifier within the local model 

explanation. The x-axis of the plot represents feature weights, which denote the contribution 

made by each of the used features toward the model’s decision. A positive value of weight 

depicts that the feature has a positive contribution and hence it increases the prediction and 

the ‘y’ axis illustrates the features of the instance being explained along with their 



 

  

79 

corresponding feature values. The length of the individual bars represents the contribution of 

the identified feature to the model’s outcome. When feature bars are longer, it implies that the 

affect or impact of such feature either positive or negative is stronger in making the decision.  

 

 
Figure 4.24: Feature Weights 

 

The plot shows that the ‘centroid’ feature actually has a weight of about 0.06 

increases the model prediction. Next to this, the ‘rms’ and ‘std’ features also substantially 

contribute positive values. The ‘range’ feature on the other hand has a positive contribution 

but to a lower magnitude. Other aspects locate the bar at close to zero or slightly negative, 

which are ‘skewness’, ‘q75’, ‘kurtosis’, ‘chroma_stft’ and ‘min’. Significantly, the ‘max’ 

feature has a slightly negative effect on the prediction. 

 

4.5.2.4  Cumulative Feature Importance Plot 
 

It allows the decision maker to get an idea of which parameters are most significant 

and how they collectively affect the model’s decision. 
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Figure 4.25: Cumulative Feature Importance(LIME) 

 

Understanding of each feature contribution to the model’s overall decision is shown 

in the cumulative feature importance plot in Figure 4.25, calculated by the LIME technique. 

On the horizontal axis there are listed features, and on the vertical axis  the cumulative 

importance, which sums up the feature’s contribution one by one. It continues to rise steep 

which stands for as the number of important features increase, where the first few and most 

sensitive are ‘centroid’, ‘rms’, and ‘std’ as they significantly affect the model. With 

subsequent features the graph begins to flatten which implies that the features such as ‘q75’, 

‘chroma_stft’, ‘max’ do not carry as much importance and have less influence to the 

prediction.  

 

4.5.2.5  Feature Importance Heatmap 
 

The heatmap can be used to summarize the level of contribution that each feature has 

made to the model’s decision-making across different instances of a set and can be used to 

give insights of the model’s behavior. 
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Figure 4.26: Feature Importance Heatmap 

 

The heatmap given in Figure 4.26 represents the feature importance that signifies the 

concerning features affect the model for different samples in a influencing manner in the 

dataset. The horizontal line of labels indicate the name of the features, such as ‘rms’, ‘std’, 

‘centroid’, other, while the vertical line of labels represents the samples ranging from 0 to 96. 

Thus, each cell in the heatmap reflects the feature importance of a specific sample and colors 

range from dark blue to the yellow color. A dark blue color means strong negative influence, 

light yellow means  strong positive influence whereas the middle shade means intermediate 

influence. For example, the feature rms > 0.65  regularly exhibits light yellow cells, meaning 

that it has a very positive effect on the predictions of numerous samples. On the other hand, 

other feature such as skewness <= -0.34 may paint the cells with dark blue showing how the 

item had a negative influence to some samples on the predictions.  
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4.6 Summary 

 

This chapter described and discussed the simulation for the classification of heart 

sounds using the PhysioNet 2016 dataset. Based on the findings, the performance of the 

Random Forest (RF) classifier demonstrated exceptional accuracy and reliability in 

classifying heart sounds, with metrics such as a 93.82% accuracy and an F1 score of 93.64%. 

The detailed analysis of the RF classifier using confusion matrices provided a clear 

understanding of its predictive capabilities. Additionally, the use of SHAP and LIME 

enhanced model interpretability by revealing how individual features contribute to 

predictions. These tools allowed for a comprehensive exploration of feature importance, 

ultimately supporting better clinical decision-making through enhanced transparency and 

understanding of the model’s behavior. 
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CHAPTER 5 

 

 CONCLUSION AND FUTURE DIRECTIONS 

 

This chapter integrates the conclusions of the study concerning the application of XAI 

to classify CVD employing unsegmented PCG signals. It elaborates on the employment and 

importance of the SHAP and LIME in the improvement of the interpretability and 

performance of the specific RF classifier model. Besides, the chapter also qualities a 

discussion of the limitations of this research and the identified avenues for future research. 

 

5.1 Conclusion 

 

When adopting machine learning in clinical applications, correct classification and 

interpretability are standard, although because of the lack of large datasets in similar 

categories, efficient use of resources is compulsory. Thus, this work demonstrates the 

potential of XAI techniques as a promising direction in solving the problems of classifier 

efficiency and interpretability. This implies that the current study is concerned with model 

interpretability and the design of the features for extracting the XAI of CVD classification in 

patients using unsegmented PCGs. 

  

As part of attempting an efficient classification, a comparative analysis of Random 

Forest (RF), Support Vector Machine (SVM), and K Nearest Neighbors (KNN) methods was 

computed. Regarding the problem of feature extraction and model assessment, the introduced 
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problem was explained, and statistical features were extracted for classification. The RF 

model interpretability was then improved using SHAP and LIME. Simulation results 

demonstrate that RF has better performance over SVM and KNN classifiers to demonstrate 

and enhance the organizational performance, thus providing a better increase in the 

classification accuracy, precision, recall, specificity, and F1 score. 

 

Finally, the study results reveal that SHAP and LIME interpretability assessment 

enables the researcher to understand the RF model’s decision-making mechanisms, and, 

therefore, the predictions made can be explained. Therefore, it is concluded that the 

integration of SHAP and LIME with RF can provide enhanced performance with increased 

interpretability in the classification of CVDs adopting unsegmented PCGs concerning other 

classifiers lacking explainability. 

 

5.2 Contributions and Significance 

 

As a result, each of the studies conducted earlier has a gap in which the application of 

XAI techniques in the classification of CVD has not been given due attention. Therefore, the 

application of XAI, especially SHAP and LIME in improving the trustworthiness and 

accuracy of ML classifiers such as Random Forest in the PhysioNet 2016 could be deemed as 

a relevant and important area of study in the present-day research agenda. CVD classification 

is one of the most important problems because it describes a large amount of information, 

which can stably affect the situation with patients and clinical decisions. Thus, this research 

could be useful in the categorization of CVDs. 
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5.3 Limitations and Scope of Future Work 

 

1. This research formulated the classification problem for the first time in this manner, 

focusing on the PhysioNet 2016 dataset. For the sake of simplicity, only statistical 

features were extracted and analyzed. Future work can explore the impact of 

incorporating additional types of features, such as frequency domain features, to 

increase the model’s performance. 

2. The scalability of the ML classifiers and the SHAP-based interpretability approach 

needs to be further investigated in larger datasets with higher dimensions. As the 

number of features increases, the computational complexity of training the classifier 

and generating SHAP values may become a bottleneck in terms of computational 

resources and processing time. 

3. While this research focused on a specific type of CVDs, future research should 

investigate the applicability of the proposed methods to other types of biomedical 

signals with different characteristics.  

4. In this research, the focus was on classification performance and interpretability. In 

future research, we can explore hybrid approaches for the classification of CVDs. 

Future work could involve integrating traditional ML methods with DL techniques to 

leverage the strengths of each approach. 

5. In the future we can apply the same research framework to combined datasets, such as 

PhysioNet 2016 and PASCAL, to potentially enhance the model’s effectiveness and 

generalizability in the classification of CVDs. 
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