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ABSTRACT 

 

Title: Investigation of Unsteady flow of Micropolar fluid over an Exponentially 

Stretching Sheet. 

 

This thesis presents the investigation of unsteady flow of micropolar fluid over an 

exponentially stretching sheet. A system of connected nonlinear partial differential equations 

is turned into nonlinear ordinary differential equations by employing similarity 

transformations. By using HAM technique, the series solution is obtained. A brief discussion, 

tabulation, and drawing of the physical parameters influencing the flow and heat transfer 

phenomena are provided. Temperature drops significantly because of unsteadiness, and fluid 

velocity reduces as the unsteadiness parameter increases. The velocity field is decreases when 

the micropolar parameter increases. On the other hand, as the micropolar parameter increases, 

the temperature rises. 
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CHAPTER 1 

INTRODUCTION 

1.1  Micropolar Fluid 

 

Micropolar fluids, which exhibit internal microstructural effects, allow for more complex 

behaviors. These fluids have degrees of freedom for both translation and rotation, enabling 

them to move and rotate independently. To account for these characteristics, the mathematical 

description of micropolar fluid dynamics incorporates additional factors, providing a more 

comprehensive understanding of fluid behavior. This approach is valuable in fields such as 

engineering, materials science, and fluid dynamics. In this study, thermodynamic principles 

are used as constraints to derive the field equations for density, velocity, and the microrotation 

vector. Additionally, equations for micropolar fluids are derived, addressing their response to 

micro rotational motions and spin inertia, as established by Eringen et al. [1]. 

Mathematical and computational models enhance the study of solar energy engineering in 

magnetic micropolar polymers. Shamshuddin et al. [2] revealed that material and 

suction/injection parameters reduce microrotation and velocity. Yasmin et al. [3] explored 

heat and mass transfer in a non-Newtonian micropolar fluid over a curved stretched sheet 

using magnetohydrodynamics, showing that magnetic field interactions affect temperature 

and concentration distribution. Mandal et al. [4] investigated the impact of radiation and 

velocity slip on the flow and melting heat transfer of a micropolar fluid, demonstrating that 

these factors significantly influence its properties. Patel et al. [5] used the Homotopy Analysis 

Method (HAM) to examine thermal radiation, chemical processes, and heat production in 

unsteady micropolar fluid flow, finding that micropolarity reduces velocity distribution, 

increases buoyant force, and raises temperatures. 

 The analysis investigated heat and mass transfer caused by slide impacts in a porous medium 

with permeable sheets on magnetohydrodynamic (MHD) micropolar fluids. Using MATLAB, 

the equations for concentration, heat, momentum, and microrotations were simplified. The 

findings, presented by Sharma et al. [6], demonstrate that micropolar fluids suppress 
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microrotation profiles while enhancing velocity and temperature profiles. Additionally, the 

thickness of the momentum boundary layer is reduced by magnetic and porosity 

characteristics. This work also examined the formation of entropy in stretchy sheets subjected 

to an unsteady flow of a reactive hydromagnetic micropolar fluid. Fatunmbi et al. [7] showed 

that velocity profiles are accelerated by micropolar material terms, whereas dimensionless 

concentration, temperature, and velocity profiles are degraded. Meenakumari et al. [8] 

explored Darcy-Forchheimer flow over a stretching surface by analyzing chemical reactions, 

heat radiation, activation energy, viscosity dissolution, Dufour, and Soret effects. The study 

concluded that heat radiation and Eckert numbers significantly increase temperature 

distribution. 

 

1.2  Stretching Sheet 

A stretching sheet is a flat surface over which a fluid flows, undergoing continuous elongation 

or contraction. Common industrial processes that use stretching sheets include extrusion, hot 

rolling, and polymer manufacturing. This research examines the flow of an incompressible 

second-order fluid past a stretched sheet. Rajagopal et al. [9] explored the impact of this 

phenomenon on polymer processing, specifically focusing on a polymer sheet that is 

continuously extruded from a die. Kumarane et al. [10] further investigated this topic, 

emphasizing mass flux and its effects on flow and streamlining patterns during 

incompressible viscous motion across a stretching sheet. 

The study examined heat transmission over a stretching sheet and the dual solution of the two-

dimensional Casson fluid magnetohydrodynamics flow under a homogeneous magnetic field. 

It focused on the effects of linear thermal radiation on these solutions, paying particular 

attention to steady and unsteady flows. Using partial differential equations and Maple 2015 

simulations, Hamid et al. [11] revealed positive eigenvalues and numerical stability for 

Casson fluid flow profiles, thereby developing dual solutions. Additionally, Srinivasulu et al. 

[12] investigated the behavior of Williamson nanofluid on a stretching surface in the presence 

of an aligned magnetic field. This was accomplished using partial differential equations and 

graphical depictions of parameter values. 

Using the Keller-box method and similarity transformation, Alzahrani et al. [13] investigated 

the effects of microparticle suspension on convective micropolar fluid flow over an 

impervious nonlinear stretching sheet. The study also analyzed a nonlinear mathematical 
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model of a liquid moving toward a micropolar stagnation point in a permeable, stretchable 

device, considering thermofluid factors affecting heat transmission, microrotation, reacting 

species profiles, and flow rate. The results indicated that increasing buoyancy, stretching 

velocity, permeability, magnetic field, viscous dissipation, and radiation all influence the 

micro-gyration of micropolar particles. Furthermore, the study by Ram et al. [14] 

demonstrated a growing reaction index for improved mass transfer. Additionally, the research 

examined the thermo-variation and flow phenomenon of a magnetized stretching sheet-

induced radiative nanofluid flow using graphene nanomaterial. The findings showed that the 

temperature profile and concentration increase with the Biot number. The accuracy of these 

results was confirmed by Ali et al. [15]. 

Saidulu et al. [16] investigated the effects of chemical processes and viscous dissipation on 

the transfer of heat and mass in the hydromagnetic flow of a micropolar fluid across a 

stretched sheet. The flow regime equations were solved numerically using MATLAB's built-

in bvp4c method. The findings indicated that velocities, temperatures, microrotations, and 

concentration functions are all influenced by magnetic fields. Magyari et al. [17] examined 

the similarity solutions for steady plane boundary layers on a continuously stretched surface 

with an exponential temperature distribution and extension. Nazar et al. [18] explained the 

constant laminar 2D boundary layer flow and heat transfer of an incompressible viscous fluid 

with thermal radiation over an exponentially stretched sheet. Additionally, Ishak et al. [19] 

described the impact of radiation on a viscous fluid's magnetohydrodynamic (MHD) boundary 

layer flow over an exponentially stretched sheet. 

 

1.3  Exponentially Stretching Sheet 

When a surface becomes longer or wider with increasing distance from a specific location, it 

is referred to as an exponentially extending sheet. The stretching of such a sheet can be 

described mathematically, where the extended dimension and a variable regulate the 

stretching rate. Exponentially stretched sheets serve as excellent models for examining 

boundary phenomena and optimizing production processes. They are widely used in many 

engineering and industrial processes, particularly in fluid flow and heat transfer 

investigations. The micropolar boundary-layer flow and heat transmission properties of an 

exponentially stretching heated sheet cooled by mixed convection flow were studied. This 

study examined how buoyancy and viscous dissipation influence the convective transport 
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within the boundary-layer region. Abd El-Aziz et al. [20] provided a graphical representation 

of the results. 

The thermal radiation and two-dimensional, laminar, stable, and incompressible third-grade 

viscoelastic micropolar fluid flow over an exponentially stretched sheet were studied, 

focusing on how thermophoresis and Brownian motion affect nanoparticle migration in 

nanofluids. Awan et al. [21] examined various physical parameters in terms of their impacts 

on non-dimensional concentrations, temperatures, velocities, microrotation, and induced 

magnetic field profiles using dimensionless linked ordinary differential equations (ODEs) and 

partial differential equations (PDEs). The unique microstructures of micropolar fluids make 

them valuable in industrial applications. For non-Newtonian liquids, Guedri et al. [22] 

developed a micropolar flow model using the Runge-Kutta-Fehlberg method, which showed 

that the distributions of temperature, concentration, and velocity all increase with the 

parameter values. 

Fatunmbi et al. [23] investigated the effects of buoyant force, radiation, and slip factors on the 

flow of a hydromagnetic dissipative micropolar fluid through an exponentially extending 

vertical sheet. The main parameters influencing the results include the coefficients of skin 

friction, temperature, velocity, and microrotation fields, which strongly correlate with existing 

literature. Larger parameter estimations were found to increase fluid velocity. Abbas et al. 

[24] studied the heat and mass transportation effects of a micropolar second-grade nanofluid 

on porous media over an exponentially stretched surface. In another study, Bakar et al. [25] 

examined heat transport, stagnation-point flow, and magnetohydrodynamics (MHD) in a 

micropolar fluid. They numerically solved ordinary differential equations using MATLAB 

software. The results demonstrated distinct phenomena between mixed convection and 

micropolar convection, with temperature distribution, angular velocity, and fluid velocity 

profiles rising with increasing radiation, magnetic, and buoyancy parameters. 

Abbas et al. [26] investigated the flow of second-grade micropolar nanofluid across an 

exponentially curved Riga sheet, taking into account the effects of slip. Siddique et al. [27] 

used the boundary layer approximation, lie symmetry approach, and the bvp4c scheme to 

formulate the governing equations. Additionally, the study highlighted the importance of 

chemical reactions, thermal radiation, and slip on the flow of magnetic second-grade fluids 

with nanoparticle dispersion. This research is relevant for bio-inspired fuel cells and the 

production of nanomaterials, utilizing a bio-convection model. 
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1.4  Unsteady Stretching Sheet 

A surface whose rate of stretching changes over time is called an unstable stretching sheet. 

Such surfaces are frequently modeled in fluid dynamics and heat transfer studies to 

understand transient phenomena that occur in boundary layer flows over time-varying 

surfaces. Time-dependent boundary conditions arise because the stretching function 

governing the sheet's motion changes mathematically with time. Unsteady stretching sheets 

are utilized in various industrial processes, such as coating, thin-film deposition, and polymer 

processing, where control mechanisms or process dynamics can alter the stretching rate. 

Understanding heat transfer and fluid flow over unstable stretched sheets is crucial for 

predicting system behavior in dynamic situations and optimizing manufacturing operations. 

Abd El-Aziz et al. [28] examined the effect of radiation on heat and fluid flow over an 

unstable stretched surface. They found that when boundary layer equations were reduced to 

ordinary differential equations, it became evident that the rate of heat transfer increased as 

parameters rose, particularly for larger values of A and Pr. 

A stable upper branch solution was found for all parameter values when Khan et al. [29] 

investigated the buoyancy influence on heat transfer and flow in a hybrid micropolar 

nanofluid across a shrinking vertical flat plate. Using a homotopy analysis methodology and a 

PDE framework, the analysis explored the effects of nonlinear radiation on a mixed 

micropolar fluid. Kataria et al. [30] examined how different parameters affect the gradients of 

temperature, velocity, and concentration, noting a higher Nusselt number at elevated Prandtl 

number concentrations. Additionally, Abbas et al. [31] used mathematical models and 

numerical analysis to investigate magnetized micropolar fluid flow over a curved surface, 

revealing improved heat transmission, a decreased heat transfer rate, and a higher surface-

fluid fraction. 

 

1.5  Magnetohydrodynamics (MHD) 

Magnetohydrodynamics (MHD) is a branch of fluid dynamics that examines how electrically 

conducting fluids, such as electrolytes, liquid metals, and plasmas, behave when exposed to 

magnetic fields. In MHD, electric currents are generated due to interactions between fluid 

motion and the magnetic field, which in turn affect the fluid flow. Understanding the behavior 

of conducting fluids in magnetic fields is crucial for applications across various sectors, 
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including engineering, fusion research, geophysics, plasma physics, and astrophysics. Jang et 

al. [32] investigated the flow of electrically conductive liquids in electric and magnetic fields 

and introduced a novel micropump based on MHD principles. The Lorentz force drives the 

conductive fluid within the microchannel. The function of the micropump is evaluated using 

pressure head differences and flow rates, and bubble formation is observed. The experimental 

results are compared with theoretical predictions. 

Kumar et al. [33] investigated how fluid temperature increases with Eckert number, 

irradiation, and magnetic parameters in the context of magnetohydrodynamics (MHD) flow 

across a stretching sheet. The study explored the effects of viscous dissipation, heat 

generation, and slip conditions on MHD and micropolar fluid flow, as well as heat transfer 

over a stretching sheet. They found that an increase in the material parameter K reduced the 

velocity field. Abbas et al. [34] examined non-linear stretching sheets and mixed convection 

flow with micropolar fluid in a magnetic field, discovering that material characteristics and 

thermal radiation enhanced velocity profiles. Patal et al. [35] investigated inclined MHD 

micropolar fluid flow, revealing that the magnetic field induces surface friction and mass 

transfer, which leads to an increased Nusselt number and dual nature behavior. Additionally, 

Mahabaleshwar et al. [36] contributed to this field with further insights into these phenomena. 

Mishra et al. [37] investigated the influence of various factors on flow variables, specifically 

analyzing Williamson micropolar fluid flow through a non-linearly stretched sheet under 

high-temperature convection. Jawad et al. [38] studied the magnetohydrodynamic stagnation 

point flow of micropolar fluid using a numerical method that accounts for buoyancy forces, 

thermal radiation, electrical conductivity, and non-zero mass flux. Bejawada et al. [39] 

examined heat transfer in micropolar fluid flow using magnetohydrodynamics over a moving 

plate. They found that the friction coefficient increased with rising values of M and n, while 

velocity increased with higher values of β and Gr. 

 

1.6 Contribution to the Thesis 

In this thesis, a review study of Butt et al. [40] has been presented. Moreover, this study 

provides an extension to the review study by investigating how unsteady viscous fluids pass 

over an exponentially stretching sheet. Through the use of similarity transformations, the 

governing PDEs are transformed into a system of nonlinear differential equations, which are 

analytically solved by the homotopy analysis method (HAM). The tables and graphs are 
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created using the MATHEMATICA software. The results are displayed using tables and 

graphs. 

 

1.7 Thesis Organization 

The content of the thesis is briefly summarized in the information below: 

Chapter 1 is an introductory chapter that gives a quick analysis of the key ideas, a summary 

of the literature on micropolar fluids, the contributions made by the thesis, and how it is 

organized. 

Chapter 2 gives definitions, rules, and concepts that are vital to the execution of future 

work. On the last page of this chapter, there is a description of the homotopy analysis method. 

Chapter 3 provides a thorough analysis of the work done by Butt et al. [40] and simulates 

baseline work for comparison. 

Chapter 4 displays the extended work of Butt et al. [40]. The flow of unsteady flow of 

micropolar fluid over an exponentially stretching sheet is investigated. Homotopy analysis 

method is used to solve the governing similarity transformations. Graphs and tables are used 

to discuss the results for different parameters. 

Chapter 5 concludes this thesis and identifies the direction for further research. 

References A bibliography for this work is provided at the end. 
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CHAPTER 2 

                   BASIC DEFINITIONS AND EQUATIONS 

 

 

2.1 Fluid 

 

A fluid, which can be either a liquid or a gas, is a substance that cannot withstand shear 

forces. When an exterior force is applied, it will first slightly resist the external shearing force 

before continuing to move and change. Liquids, gases, and plasmas are some of its examples. 

 

2.2 Fluid Mechanics 

The area of applied mathematics that examines fluid dynamics, characteristics, and forces 

acting on them. There are two primary branches: 

 

2.2.1 Fluid Dynamics 

 

The area of fluid mechanics concerned with force and its impact on the characteristics of 

flowing fluids. Hydrodynamics and aerodynamics are examples of fluid dynamics. 

2.2.2 Fluid Statics 

 

The branch of fluid mechanics that deals with the description of properties of stationary 

fluids. Hydrostatic pressure, buoyancy and dam design are examples of fluid statics. 

 

 

 

ALL MarginS=2.5 

cm for FOR ALL 
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2.3 Types of Flow 

 

2.3.1 Steady Flow 

The term "steady flow" describes a fluid's characteristics being steady over time, such as a 

river's steady flow rate, guaranteeing that the water's characteristics don't alter. 

 

2.3.2 Unsteady Flow 

 

Unsteady flow is the term used to describe fluid characteristics that dynamically alter over 

time, producing abrupt variations in pressure and velocity that resemble a sudden river surge. 

 

2.3.3 Laminar Flow 

 

Laminar flow, which can occur in a variety of ways, is the ordered, smooth motion of 

molecules of fluid in small pipelines, frequently at high viscosity and low velocity. 

 

2.3.4 Turbulent Flow  

 

Large-diameter pipelines with turbulent flow are frequently studied using fluid dynamics 

analysis, which uses algorithms and numerical analysis to identify different types of flow and 

reduce energy loss. For example, oil and gas pipeline optimization. 

 

2.3.5 Incompressible Flow 

 

Fluid density stays constant in incompressible flow, meaning that volume doesn't change 

regardless of changes in pressure or temperature. For example, urban water distribution 

system.  

 

2.3.6 Compressible Flow 

 

Compressible flow, which is defined as a fluid's density changing as a result of pressure and 

temperature changes, is important for applications such as aerodynamics, which supersonic & 
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hypersonic flows, as well as other high-speed scenarios involving large pressure and speed 

changes. 

 

2.3.7 Transient Flow  

 

In the context of fluid dynamics, transient flow describes fluid motion in which variables such 

as pressure and velocity vary over time, representing dynamic shifts that occur under sudden 

system circumstances or startup events. It is essential to comprehend this for system stability 

and engineering prediction. For example, water hammer in pipeline system. 

 

2.4 Types of Fluid  

 

2.4.1 Newtonian Fluid 

 

The fluid that obeys the “Newton’s law of viscosity” refers to Newtonian fluids.  

Mathematically,  

                                                        

                            𝜏 ∝
𝑑𝑢

𝑑𝑦
 ,    or     𝜏 = 𝜇

𝑑𝑢

𝑑𝑦
 ,                                                               (2.1) 

where 𝜇 is the absolute or dynamic viscosity, also referred to as the proportionality constant, 

and 𝜏 is the shear stress applied to the fluid element. Navier-Stokes equations are used to 

represent the fluid's motion. The following relation is satisfied by the Cauchy stress tensor T 

for Newtonian fluids. 

                                                𝑻 = −𝑝𝑰 + 𝑨𝟏,                                                                      (2.2) 

where 𝑝 for hydrostatic pressure, 𝑰 stands for identity tensor, 𝑨𝟏 for first Rivlin-Ericksen 

tensor, and 𝜇 for fluid dynamic viscosity: 

                                         𝑨𝟏 = 𝑔𝑟𝑎𝑑𝑽 + (𝑔𝑟𝑎𝑑𝑽)𝑇,                                                           (2.3) 

where 𝑽 is the velocity. 

 

2.4.2 Non Newtonian Fluid 

 

The Fluid that doesn’t obey the “Newton’s law of viscosity” refers to non Newtonian fluid. 

Mathematically, 
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                                         Shear Stress = 𝑘 (
𝑑𝑽

𝑑𝑦
)
𝑛

, 𝑛 ≠ 1                                                  (2.4) 

where 𝑘 is consistency index and 𝑛 is the flow behavior index. 

 

2.5 Micropolar Fluids 

 

A micro-polar fluid is a kind of fluid that permits its constituent particles to have both 

translational and rotational degrees of freedom due to internal micro structural influences. 

Examples are biological fluids and colloidal suspensions, which display intricate behaviors 

not covered by traditional fluid dynamics. 

 

2.6 Heat Source 

 

A spacecraft's interior or exterior heat sources, such as internal electrical or propulsion 

systems, friction from moving elements, or sunlight, all contribute to the spacecraft's 

temperature rise. Gases, atmospheres, and planets are a few examples. 

The following lists the three important forms of heat flow: 

 

2.6.1 Convection 

 

Convection, a natural phenomenon that involves molecules moving from hot to cold, has a big 

impact on the weather, industrial processes, cookery, and climate in a lot of different ways. 

 

2.6.2 Conduction 

 

Heat is transferred through conduction, which mostly occurs in liquids and solids when 

electrons or molecules interact. Close-knit materials, such as frying pans with protected 

handles for improved conductivity, have the maximum efficacy. 

 

2.6.3 Mixed Convection 

 

A type of heat transfer in which fluid flow contains both forced and natural convection. 

Applications include electronic cooling systems and heat exchangers. 
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2.6.4 Forced Convection 

 

One sort of heat transfer known as forced convection occurs when an external device, such as 

a pump, forces a fluid to move through a channel or over a surface. This procedure, which 

speeds up fluid flow, is frequently employed in technical applications such as heating, 

cooling, and combustion engines. 

 

2.6.5 Free Convection 

 

Due to temperature changes, free convection, a kind of heat transport in fluids, is essential in 

applications in engineering like cooling structures, exchangers for heat, and electronic device 

performance. 

 

2.6.6 Radiation 

 

The term "radiation" describes the process by which heat is transferred by infrared radiation, 

which is energy that a material releases as electromagnetic radiation or particles. It can come 

from man-made sources like nuclear power plants and medical X-rays, or natural sources like 

cosmic radiation from space or radioactive materials. Elevated radiation exposure can cause 

harm to living organisms and raise the danger of radiation sickness and cancer. 

 

2.7 Thermal Conductivity 

 

Thermal conductivity is a property of a material that indicates how well it conducts heat. 

Mathematically, 

                                                             𝑘 =
𝑄×𝐿

𝐴×∆𝑇
.                                                                  (2.5) 

So,                                                      

                                    Thermal conductivity =
distance×heat

temprature gradient×area
 ,                           (2.6) 

where 𝑄 is the heat flow per unit time, 𝑘 stands for heat conductivity, ∆𝑇 for temperature 

difference, and 𝐴 is denoted for cross sectional area. 
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2.8 Thermal Diffusivity 

 

Thermal diffusivity is the product of density and specific heat capacity divided by thermal 

conductivity, and it measures how quickly heat diffuses through a material in relation to its 

heat storage capacity. Mathematically, 

                                                      𝛼 =
𝑘

𝜌𝑐𝑝
,                                                                            (2.7) 

where 𝜌 represents the density, 𝑐𝑝 is specific heat capacity and 𝑘 is thermal conductivity. 

 

2.9 Dimensionless Parameters 

 

2.9.1 Prandtl Number (Pr) 

 

The fluid viscosity, or Prandtl number, reveals the dominance of thermal diffusivity, while the 

thickness of the boundary layer is strongly influenced by momentum diffusivity. 

Mathematically, 

                                         prandtl number =
kinematic viscosity

thermal diffusivity
,                                           (2.8) 

or 

                                                    𝑝𝑟 =
𝜈

𝛼𝑓
=

𝜇

𝜌
𝑘

𝜌𝑐𝑝

=
𝜇𝑐𝑝

𝑘
,                                                         (2.9) 

where 𝑘 for thermal conductivity, 𝑐𝑝 for specific heat, 𝛼𝑓 for thermal diffusivity, 𝜈 is for 

kinematic viscosity. 

 

2.9.2 Eckert Number (Ec) 

The fluid's kinetic energy to enthalpy difference is expressed as a dimensionless number in 

fluid dynamics, known as the Eckert number. It is frequently used to find out how heat 

transfer affects fluid flow and to characterize compressible fluids, as those in supersonic flow. 

Mathematically, 

                                            𝐸𝑐 =
𝑢2

𝑐𝑝∆𝑇
,                                                                    (2.10) 

where 𝑐𝑝 is specific heat capacity,𝑢 is velocity for fluid, 𝑇 is the temperature of the fluid. 

 

2.9.3 Nusselt Number (Nu) 



14 

 

 

 

A dimensionless metric known as the Nusselt number is used to quantify the relationship 

between convective and conductive heat transfer across boundaries. Mathematically, 

                                         𝑁𝑢 =
ℎΔ𝑇

𝑘Δ𝑇/𝐿
=

ℎ𝐿

𝑘
 ,                                                           (2.11) 

where ℎ is connective heat transfer,  and 𝐿 is characteristic length.  

 

2.10 Unsteadiness Parameter 

 

In fluid dynamics, the unsteadiness parameter, which is usually stated as the ratio of 

characteristic time scales, such as frequency to flow velocity or length scale, assesses the 

relative importance of time-varying effects in relation to other flow characteristics. 

 

2.11 Skin friction Coefficient (𝑪𝒇) 

 

The type of friction produced when a fluid moves in relation to a solid surface is referred to as 

skin friction. Mathematically, 

                                         𝐶𝑓 =
𝜏𝑤

1

2
𝜌𝑈𝑤

2 ,                                                                     (2.12) 

where 𝜏𝑤 is the shear stress at the wall, 𝑈𝑤 is surface velocity, and 𝜌 represents density. 

 

2.12 Homotopy Analysis Method (HAM) 

 

The homotopy analysis methodology (HAM) is a useful technique for solving very nonlinear 

differential equations analytically. Since it guarantees the convergence of the intended 

solution, many academics accept this approach, which originated by Liao (1992). 

The differential equation can be used to demonstrate the HAM. 

                                     𝑁[�̂�(𝑥)] = 0,                                                                     (2.13) 

 where �̂�(𝑥) represents unknown function, 𝑥 is denoted for the independent variable, and 𝑁 is 

denoted for a nonlinear operator. The following is the equation for zeroth order deformation. 

 

                       (1 − 𝑟)ℒ[�̂�(𝑥; 𝑟) − 𝑤0(𝑥)] = 𝑟ℎ𝑁[�̂�(𝑥; 𝑟)].                                 (2.14) 



15 

 

 

 

Here 𝐿 is represented as auxiliary linear operator, the symbol for the embedding parameter is 

𝑟, and its values range from 0 to 1. �̂�(𝑥; 𝑟) is considered as unknown function, 𝑤0(𝑥) stands 

for initial approximation and ℎ is noted as non zero auxiliary parameter. 

Equation corresponding to 𝑟 = 0 and 𝑟 = 1 are as follows; 

                           �̂�(𝑥; 0) = 𝑤0(𝑥),      and              �̂�(𝑥; 1) = 𝑤(𝑥).                    (2.15) 

The ultimate solution 𝑟(𝑥) is obtained by converting 𝑟 from 0 to 1, which changes the 

solution �̂�(𝑥; 𝑟) from the initial approximation 𝑤0(𝑥). Taylor’s series expansion leads to the 

following expressions  

                          �̂�(𝑥; 𝑟) = 𝑤0(𝑥) + ∑ 𝑤𝑛(𝑥)𝑟
𝑛,    𝑤𝑛(𝑥) =

1

𝑛!

𝜕𝑛�̂�(𝑥;𝑟)

𝜕𝑟𝑛
|
𝑟=0

.∞
𝑛=1    (2.16) 

If 𝑟 = 1, then 

                                        𝑤(𝑥) = 𝑤0(𝑥) + ∑ 𝑤𝑛(𝑥)
∞
𝑛=1 .                                        (2.17) 

We get the following 𝑛 order deformation equation by dividing the resultant equation by 𝑛! 

and differentiating 𝑛 times the Zeroth order deformation equation with respect to 𝑟, and 

setting 𝑟 = 0, we obtain 

                                        ℒ[𝑤𝑛(𝑥) − 𝜒𝑛𝑤𝑛−1(𝑥)] = ℎℛ𝑛,                                     (2.18) 

                                         

                                                   ℛ𝑛(𝑥) =
1

(𝑛−1)!

𝜕𝑛𝑁[�̂�(𝑥;𝑟)]

𝜕𝑟𝑛
|
𝑟=0
,                                         (2.19) 

                                    

where  

                                           𝜒𝑛 = {  
0,        𝑛 ≤ 1
1,         𝑛 > 1

  .                                                  (2.20) 
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CHAPTER 3 

Study of Entropy Generation with Multi-slip Effects in MHD 

Unsteady Flow of Viscous Fluid past an Exponentially Stretching 

Sheet 

 

3.1 Introduction 

In this chapter, an exponentially stretched sheet is investigated for an unsteady hydromagnetic 

slip flow of viscous fluid. The governing partial differential equations are converted into a 

system of non-linear differential equations using adjacent similarity variables. These 

equations are then analytically solved using the homotopy analysis method (HAM). A brief 

discussion of the effects of the physical characteristics influencing the flow and transfer of 

heat phenomena are provided through tables and graphs. This chapter provides a detailed 

review of the research paper Butt et al. [40]. 

 

3.2 Geometry of the problem 

 

                                               

                                         

                                              Fig 3.1. Geometry of the problem 
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3.3 Mathematical Formulation: 

 

The incompressible, unsteady two dimensional flow of an electrically conducting viscous 

fluid is caused by an exponentially stretched surface, as seen in Fig. 3.1. The exponentially 

stretching surface is considered to be orientated along the 𝑥-axis, with the 𝑦-axis being 

normal to the surface. The region where 𝑦 ≥  0 is assumed to contain the viscous fluid. On 

the surface where 𝐵0 is the constant, a normal magnetic field with strength 𝐵(𝑥, 𝑡) =

𝐵0

√(1−𝑐𝑡)
𝑒𝑥/𝐿 is applied. In this case, 𝐿 stands for the characteristics length, and 𝑐 is the 

dimensional constant. Since the magnetic Reynolds number is low, the effects of the induced 

magnetic field are ignored. The surface temperature is maintained at 𝑇𝑤(𝑥)  = 𝑇∞ +

𝑇0

(1−𝑐𝑡)
𝑒𝑥/2𝐿 while the surface is stretched with the exponential velocity 𝑈𝑤(𝑥, 𝑡) =

𝑈0

((1−𝑐𝑡)
𝑒𝑥/𝐿. It is assumed that 𝑇∞ is the ambient temperature of the fluid. The existence of 

viscous and joule dissipation effects is assumed. The velocity pattern of the boundary layer 

flow is determined as follow:    

 

                                                         𝑽 = [𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦), 0].                                                   (3.1) 

The continuity, momentum and energy equations are given below; 

 

                                                  𝜵. 𝑽 =  0,                                                                            (3.2)    

    

                                      𝜌
𝑑𝑽

𝑑𝑡
+ 𝜌(𝑽 ∙ 𝛁)𝑽 = −𝜵𝛲 + 𝜇𝜵𝟐𝑽 + (𝑱 × 𝑩),                                   (3.3)   

 

                                                  ρcp
𝑑T

𝑑t
= −div𝐪 + 𝛕. 𝐋.                                                              (3.4) 

where 

                                                  𝒒 =  −𝑘𝑔𝑟𝑎𝑑𝑇.                                                                   (3.5) 

The Cauchy stress tensor 𝝉 is defined as; 

 

                                                    𝝉 =  − 𝑝𝑰 +  𝜇𝑨𝟏,                                                            (3.6) 

Where ρ is density of fluid, 𝑐𝑝 is specific heat capacity, 
𝑑

𝑑t
 is material derivative, 𝑳 is velocity 

gradient, 𝑰 is thermal conductivity, 𝒒 is heat flux, 𝑇 is fluid’s temperature, 𝑽 is velocity 

profile, and 𝑨𝟏 first Rivilin-Erickson tensor which is given by;   
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                                                       𝑨𝟏 = 𝑳 + 𝑳
𝑇 .                                                                   (3.7) 

From Eq. (3.1), we obtain   

 

𝑳 = 𝑔𝑟𝑎𝑑 𝑽 =

[
 
 
 
𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦
0

𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦
0

0 0 0]
 
 
 

  and  𝑳𝑇  = (𝑔𝑟𝑎𝑑 𝑽)𝑇 = [

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑥
0

𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑦
0

0 0 0

],                                (3.8)                                                                                                   

                               𝑨𝟏 =

[
 
 
 2

𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
0

𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦
2
𝜕𝑣

𝜕𝑦
0

0 0 0]
 
 
 

 .                                                    (3.9) 

The component form of governing equation is defined below;    

 

                                                          
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0,                                                                (3.10)      

   

                                           
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜈

𝜕2𝑢

𝜕𝑦2
−
𝜎𝐵0

2

𝜌
𝑢,                                             (3.11)   

  

                                  
𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝑘

𝜌𝑐𝑝

𝜕2𝑇

𝜕𝑦2
+

𝜈

𝑐𝑝
(
𝜕𝑢

𝜕𝑦
)
2

+
𝜎𝐵2

𝜌𝑐𝑝
𝑢2,                                 (3.12)   

 

The appropriate boundary conditions are; 

 

𝑢 = 𝑢𝑤(𝑥, 𝑡) =
𝑢0

(1−𝑐𝑡)
𝑒
𝑥

𝑙 + 𝛼
𝜕𝑢

𝜕𝑦
, 𝑣 = 0, 𝑇 = 𝑇𝑤(𝑥, 𝑡) = 𝑇∞ +

𝑇0

(1−𝑐𝑡)
𝑒
𝐴0𝑥

2𝐿  𝑎𝑡 𝑦 = 0,

𝑢 → 0, 𝑣 → 0, 𝑇 → 𝑇∞ 𝑎𝑠 𝑦 → ∞.
}     (3.13)  

 

Here, the velocity components in the (𝑥, 𝑦) directions are denoted by (𝑢, 𝑣),  respectively. 

The variables 𝑇, 𝜈, 𝜌, 𝑘, 𝜎, and 𝑐𝑝 denote the temperature, kinematic viscosity, conductivity, 

thermal conductivity, electrical conductivity and specific heat constant temperature, 

respectively. 𝑇0 is the reference temperature of fluid, while 𝑇∞ is the temperature for away 

from the surface. The hydrodynamic slip parameter is represented by 𝛼, 𝐴0 is the dimensional 

constant temperature, the reference velocity is 𝑈0 and 𝑐 is the constant with 𝑐𝑡 <  1 to 

indicate the reference temperature.The non-dimensionalized Eqs. (3.10)–(3.12) are solved 

using the set of similarity transformations that follow: 
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𝑢 =
𝑢0

1−𝑐𝑡
𝑒𝑥/𝐿𝑓′(𝜉), 𝑣 = −√

𝑈0

2𝐿(1−𝑐𝑡)
𝑒𝑥/2𝐿[𝑓(𝜉) + 𝜉𝑓′(𝜉)],

𝜉 = √
𝑈0𝑣

2𝜈(1−𝑐𝑡)
𝑒𝑥/2𝐿𝑦,                                       𝜃(𝜉) =

𝑇−𝑇∞

𝑇𝑤−𝑇∞
.
}
 

 

              (3.14) 

 

By substituting Eq. (3.14) into Eqs. (3.10)-(3.12), the continuity Eq. (3.10) is identically 

satisfied, and Eqs. (3.11) and (3.12) take the following form:  

 

                                    𝑓′′ + 𝑓𝑓′ − 2𝑓′
2
− 𝐴(𝜉𝑓′ + 2𝑓′) − 𝑀𝑓′ = 0,                                (3.15)   

 

                 𝜃′ + 𝑃𝑟𝑓𝜃′ − 𝐴0𝑃𝑟𝑓
′𝜃 − 𝐴𝑃𝑟(4𝜃 + 𝜉𝜃′) + 𝑃𝑟𝐸𝑐𝑓′′

2
+𝑀𝑃𝑟𝐸𝑐𝑓′

2
= 0.        (3.16)    

 

 After utilizing Eq. (3.14), the related boundary conditions have the following form;   

 

                                
𝑓(0) = 0, 𝑓′(0) = 1 + 𝛾𝑓′′(0), 𝜃(0) = 1,   

𝑓′(𝜉) → 0, 𝜃(𝜉) → 0 𝑎𝑠 𝜉 → ∞.
}                                         (3.17)    

  

 Here, 𝐴 =
𝐶𝐿𝑒−𝑋

𝑈0
 is the unsteadiness parameter, 𝑀 =

2𝜎𝐵0
2𝐿

𝜌𝑈0
 denotes the magnetic field 

parameter, 𝑋 =
𝑥

𝐿
 is the dimensionless parameter, 𝑃𝑟 =

𝑢𝐶𝑝

𝑘
is the prandtl number, 

𝛾 = 𝛼√
𝑈0𝑒𝑋

2𝑉𝐿(1−𝑐𝑡)
  is slip parameter, and 𝐸𝑐 =

𝑈𝑤
2

𝐶𝑝(𝑇𝑤−𝑇∞)
 is the Eckert number. The local 

Nusselt number 𝑁𝑢𝑥 and the skin friction coefficient 𝐶𝑓𝑥 are explained as:     

   

                                                   𝐶𝑓𝑥 =
𝜏𝑤|𝑦=𝑜

𝜌𝑢2𝑤
 ,       𝑁𝑢𝑥 =

𝑥𝑞𝑤|𝑦=𝑜

𝑘((𝑇𝑤−𝑇∞))
 ,                                 (3.18)    

  

where the heat flux 𝑞𝑤 at the surface and the shear stress 𝜏𝑤 are stated as       

                                              𝜏𝑤 = 𝜇 (
𝜕𝑢

𝜕𝑦
)|
𝑦=0

,  𝑞𝑤 = −𝑘 (
𝜕𝑇

𝜕𝑦
)|
𝑦=0

.                                  (3.19)     

  

The local Nusselt number 𝑁𝑢𝑥 and the dimensionless form of the skin friction coefficient 𝐶𝑓𝑥 

can be obtained by using Eq. (3.14) and putting Eq. (3.19) into Eq. (3.18):   
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                                                   𝑅𝑒𝑥
1/2𝐶𝑓𝑥 = 𝑓

′′(0), √
2

𝑋
𝑅𝑒𝑥

1/2𝑁𝑢𝑥 = −𝜃
,(0),                   (3.20)  

 

where 𝑅𝑒𝑥 =
𝑈𝑤𝑥

𝑣
 is the local Reynolds number. 

 

3.4 Solution Methodology  

 

3.4.1 Homotopy Analysis Method 

 

The homotopy analysis method (HAM) is an analytical methodology that is useful for solving 

high nonlinear equations. This technique has been used to solve fluid dynamics & heat 

transmission-related issues. Using the boundary conditions from Eq. (3.17), the HAM in this 

article solved Eqs. (3.15) and (3.16) by taking into account the subsequent linear operators 

with linear guesses; 

 

                                                  
𝑓0(𝜉) =

1

1+𝛾
(1 − 𝑒−𝜉),

𝜃0(𝜉) = 𝑒
−𝜉 .

}                                                          (3.21) 

 

and 

                                                         
ℒ𝑓(𝑓) =

𝑑3𝑓

𝑑𝜉𝑓
−
𝑑𝑓

𝑑𝜉
,

ℒ𝜃(𝜃) =
𝑑2𝜃

𝑑𝜉2
− 𝜃.

}                                                          (3.22) 

 

The following attributes belong to the operator mentioned above: 

 

                                              ℒ𝑓(𝐶1 + 𝐶2𝑒
𝜉 + 𝐶3𝑒

−𝜉) = 0,

                                                       ℒ𝜃(𝐶4𝑒
𝜉 + 𝐶5𝑒

−𝜉) = 0,
}                                                   (3.23) 

 

where 𝐶𝑗 ,𝑠, (𝑗 = 1,2, … 5) are arbitrary constants. 

 

The following is an expression for the zeroth order deformation problem: 
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                                        (1 − 𝑞)ℒ𝑓[�̅�(𝜉; 𝑞) − 𝑓0(𝜉)] = ℎ𝑓𝑞𝒩𝑓[�̅�(𝜉; 𝑞)],                             (3.24) 

 

                                (1 − 𝑞)ℒ𝜃[Θ̅(𝜉; 𝑞) − 𝜃0(𝜉)] = ℎ𝜃𝑞𝒩𝜃[�̅�(𝜉; 𝑞), Θ̅(𝜉; 𝑞)],                     (3.25) 

with 

 

                                    
�̅�(0; 𝑞) = 0,

𝜕𝐹(0;𝑞)

𝜕𝜉
= 1 + 𝛾

𝜕2�̅�(0;𝑞)

𝜕𝜉2
, Θ̅(0; 𝑞) = 1,

𝜕𝐹(∞;𝑞)

𝜕𝜉
= 0,   Θ̅(∞; 𝑞) = 0.

}                          (3.26) 

 

In this case, 𝑞𝜖[0, 1] indicates the embedding parameter associated with the deformation 

mappings �̅�(𝜉; 𝑞), Θ̅(𝜉; 𝑞) that continuously deform from 𝑓0(𝜉), 𝜃0(𝜉) to 𝑓(𝜉), 𝜃(𝜉) when 𝑞 

varies from 0 to 1. The convergence control parameters are represented by ℎ𝑓 and ℎ𝜃. 

The following defines the non-linear operators: 

 

                           𝒩𝑓[�̅�(𝜉; 𝑞)] =
𝜕3�̅�(𝜉;𝑞)

𝜕𝜉3
+ �̅�(𝜉; 𝑞)

𝜕2�̅�(𝜉;𝑞)

𝜕𝜉2
− 2(

𝜕𝐹(𝜉;𝑞)

𝜕𝜉
)2

                                                      −𝐴 (𝜉
𝜕2𝐹(𝜉;𝑞)

𝜕𝜉2
+ 2

𝜕𝐹(𝜉;𝑞)

𝜕𝜉
) − 𝑀

𝜕𝐹(𝜉;𝑞)

𝜕𝜉
,
}                           (3.27) 

 

𝒩𝜃[�̅�(𝜉; 𝑞), Θ̅(𝜉; 𝑞)] =
𝜕2Θ̅(𝜉;𝑞)

𝜕𝜉2
+ 𝑃𝑟�̅�(𝜉; 𝑞)

𝜕Θ̅(𝜉;𝑞)

𝜕𝜉
− 𝐴𝜊𝑃𝑟

𝐹(𝜉;𝑞)

𝜕𝜉
Θ̅(𝜉; 𝑞)

−𝐴𝑃𝑟 (4Θ̅(𝜉; 𝑞) + 𝜉
𝜕Θ̅(𝜉;𝑞)

𝜕𝜉
) + 𝑃𝑟𝐸𝑐 (

𝜕2�̅�(𝜉;𝑞)

𝜕𝜉2
)
2

+𝑀𝑃𝑟𝐸𝑐 (
𝜕𝐹(𝜉;𝑞)

𝜕𝜉
) ,2

}                    (3.28) 

 

The remaining procedure specifics are available in the literature. The following can be 

expressed as an infinite series to represent the solution of the differential Eqs. (3.15) and 

(3.16) with the constraints on the boundaries of Eq. (3.17): 

 

                                                               𝑓(𝜉) = 𝑓0(𝜉) + ∑ 𝑓𝑚(𝜉),
∞
𝑚=1

                                                                  𝜃(𝜉) = 𝜃0(𝜉)∑ 𝜃𝑚(𝜉),
∞
𝑚=1

}                                     (3.29) 

 

It is evident from the preceding process that the convergence control parameters ℎ𝑓 and ℎ𝜃, 

which are contained in the series solutions indicated in Eq. (3.29), can be adjusted to regulate 

how quickly the series solutions converge. In order to ensure that these series solutions 

rapidly converge, the ideal values of ℎ𝑓 and ℎ𝜃 were employed. 
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3.5 Convergence of Solution 

 

The convergence rate was significantly increased by using a Padé approximation on the series 

solutions produced by the homotopy method. For the [𝑚/𝑚] homotopy Padé approximation, 

Table. 3.1 exhibits the convergence of the numerical values of −𝑓′′(0) and −𝜃′(0) when 

ℎ𝑓 = −0.314784, ℎ𝜃 = −0.398461, 𝑀 =  1.0, 𝛾 =  0.5, 𝐴 =  1.0, 𝐴0  =  0.5, 𝑃𝑟 =  1.0, 

𝐸𝑐 =  0.2. It is evident that at the [15/15] homotopy Padé approximation, the convergence 

of the series solutions of Eq. (3.29) was reached up to five decimal places. 

 

Table 3.1. 

 

Convergence table for the [𝑚/𝑚] homotopy Padé approximation of −𝑓′′(0) and −𝜃′(0) 

when ℎ𝑓 = −0.314784, ℎ𝜃 = −0.398461, 𝑀 =  1.0, 𝛾 =  0.5, 𝐴 =  1.0, 𝐴0  =  0.5, 𝑃𝑟 =

 1.0, 𝐸𝑐 =  0.2. 

 

 

[𝒎/𝒎] −𝒇′′(𝟎) −𝜽′(𝟎) 

[2/2] 0.9551736 1.916137 

[4/4] 0.9590946 1.929443 

[6/6] 0.9591626 1.929032 

[8/8] 0.9591697 1.929027 

[10/10] 0.9592271 1.929035 

[12/12] 0.9592056 1.929040 

[14/14] 0.9592039 1.929043 

[16/16] 0.9592037 1.929044 

[18/18] 0.9592037 1.929044 

[20/20] 0.9592037 1.929044 
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3.6 Results and Discussion: 

Under limited circumstances, the solutions to the nonlinear ordinary differential Eqs. (3.15) 

and (3.16) with the boundary restrictions of Eq. (3.17) were compared to the body of exciting 

literature. Table. 3.2 was created in order to compare the numerical values of −𝜃′(0) with 

those that were stated for various values of 𝑃𝑟 and 𝑀 when 𝛾 =  0.0, 𝐴 =  0.0, 𝐴0 =  1.0, 

𝐸𝑐 =  0.0, by Magyari and Keller [17], El-Aziz [20], Nazar [18], and Ishak [19]. It was 

observed that the HAM in the current investigation was in consistent accord with the 

literature. The purpose of Table. 3.2 was to observe how the factors 𝛾, 𝑀, and 𝐴 affected the 

dimensionless skin friction coefficient −𝑓′′(0). 

Fig. 3.2a–c explains how the parameters 𝑀, 𝛾, and 𝐴 affect the velocity profile 𝑓′(𝜉). 

Velocity 𝑓′(𝜉) decreased as a result of the strong Lorentz force opposing the fluid's motion as 

the strength of the magnetic field parameter 𝑀 raised. In addition, the velocity 𝑓′(𝜉) 

decreased with increasing distance 𝜉 and reached a maximum value at the exponentially 

stretched surface for fixed 𝑀. Asymptotically, the velocity was zero in the far away regime. 

Fig. 3.2.b. illustrates how the slip parameter 𝛾 affects the fluid velocity 𝑓′(𝜉). As the slip 

parameter 𝛾 increased, there was a corresponding decrease in velocity, which was consistent 

with the observed physical phenomenon. For modification in the unsteadiness parameter 𝐴, 

the velocity profile 𝑓′(𝜉) is plotted against 𝜉 in Fig. 3.2.c. The graph makes clear that a 

decrease in velocity 𝑓′(𝜉) follows an increase in the unsteadiness parameter 𝐴. Thus, the 

momentum boundary layer thickness was less affected by the unsteadiness parameter 𝐴. The 

temperature distribution 𝜃(𝜉) is displayed against different flow parameters in Figs. 3.3. and 

3.4. Variations in the magnetic field parameter 𝑀 have an effect on 𝜃(𝜉), as seen in Fig. 3.3a. 

The temperature 𝜃(𝜉) rises as the value of 𝑀 increases because the resistive force grows 

stronger. As a function of the slip parameter 𝛾, Fig. 3.3.b. plots the temperature distribution 

𝜃(𝜉). The fluid temperature was seen to increase with increasing  

values of  𝛾. The behaviour of the fluid temperature is shown in Fig.3.3.c. by the manipulation 

of the unsteadiness parameter 𝐴 values. Increasing the values of 𝐴 resulted in a notable 

decrease in temperature. Fig. 3.4.a. shows how the temperature exponent 𝐴0 affect 𝜃(𝜉). As 

the value of 𝐴0  increased, there was a minute boost in fluid temperature. On the other hand, 

this boost was negligible in comparison to the temperature variation for other flow 

parameters. The effects of 𝑃𝑟 on the temperature distribution 𝜃(𝜉) are shown in Fig. 3.4.b. A 

growing 𝑃𝑟 value was associated with a decrease in the thickness of the thermal boundary 
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layer. However, Fig. 3.4.c. demonstrates that as 𝐸𝑐 values increased, the effect of viscous 

dissipation were amplified, leading to an increase in fluid temperature. 

 

 Table 3.2: Comparison of current values of −𝜃′(0) for variations in the Prandtl number 𝑃𝑟 

and the magnetic field parameter 𝑀 when 𝛾 = 0.0, 𝐴 = 0.0, 𝐴0 = 1.0, 𝐸𝑐 = 0.0 with those 

given by Ishak [19],  Nazar [18], El-Aziz [20], and Magyari and Keller [17]. 

 

M Pr −𝜽′(𝟎) 

Magyari 

and Keller 

[17] 

−𝜽′(𝟎) 

E1-Aziz 

[20] 

−𝜽′(𝟎) 

Bidin and 

Nazar [18] 

−𝜽′(𝟎) 

Anuar Ishak 

[19] 

Present 

−𝜽′(𝟎) 

HAM 

0.0 1.0 0.954782 0.954785 0.9548 0.9548 0.95478 

 2.0   1.4714 1.4715 1.47146 

 3.0 1.869075 1.869072  1.8691 1.86907 

 5.0 2.500135 2.500132  2.5001 2.50012 

 10.0 3.660379 3.660372  3.6604 3.66027 

1.0 1.0    0.8611 0.86109 

 

 

 

 

 

 



25 

 

 

                   

      Fig. 3.2. a. Effect of the magnetic field parameter 𝑀 on the velocity profile 𝑓′(𝜉). 

 

 

                   

          Fig 3.2. b. Effect of slip parameter 𝛾 on velocity profile 𝑓 ′(𝜉). 
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      Fig. 3.2. c. Effect of unsteadiness parameter 𝐴 on velocity profile 𝑓′(𝜉).  

 

 

                   

 Fig. 3.3. a. Effects of the unsteadiness parameter 𝐴 on the 𝜃(𝜉). 
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       Fig. 3.3. b. Effects of the magnetic field parameter 𝑀 on the 𝜃(𝜉). 

 

 

              

          Fig. 3.3. c. Effects of the slip parameter 𝛾 on the 𝜃(𝜉). 
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     Fig. 3.4. a. Effects of the Prandtl number 𝑃𝑟 on the 𝜃(𝜉). 

 

 

               

      Fig. 3.4. b. Effects of the Eckert number 𝐸𝑐 on the 𝜃(𝜉). 
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       Fig. 3.4. c. Effects of the temperature exponent 𝐴0 on the 𝜃(𝜉). 
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CHAPTER 4 

Investigation of Unsteady Flow of Micropolar Fluid over an 

Exponentially Stretching Sheet 

4.1 Introduction 

The unsteady hydromagnetic flow of a micropolar fluid over an exponentially stretched sheet 

is investigated in this work. The homotopy analysis method (HAM) is utilized to solve the 

system of non-linear differential equations that arises from the governing partial differential 

equations based on the related similarity variables. A brief explanation of the physical 

characteristics impacting the flow and transfer of heat phenomena is given using tables and 

figures. A comparison with the published literature serves as validation for the current study.  

 

4.2 Mathematical Formulation 

 

The Micropolar fluid phenomenon is considered when an incompressible fluid with viscosity 

is flowing over a sheet that is being stretched exponentially in 𝑥  direction. Applying a normal 

magnetic field with strength 𝐵(𝑥, 𝑡) =
𝐵°

√(1−𝑐𝑡)
𝑒𝑥/𝐿 on the surface where 𝐵0 is the stable. 

Here, L denotes the length and c denotes the dimensional constant. Because of the magnetic 

Reynolds number is minimal the effects of the induced magnetic field are ignored. While the 

surface is being extended with an exponential velocity 𝑈𝑤(𝑥, 𝑡) =
𝑈°

(1−𝑐𝑡)
𝑒𝑥/𝐿, the surface 

temperature is kept at 𝑇𝑤(𝑥)  = 𝑇∞ +
𝑇°

(1−𝑐𝑡)
𝑒𝑥/2𝐿. The ambient temperature of the fluid is 

taken to be 𝑇∞. The entire treatment is based on boundary layer assumptions. The velocity 

pattern of the boundary layer flow can be shown as follows:   
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                                                          𝑽 = [𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦), 0].                                                 (4.1)     

 

The equations of motion for micropolar unsteady flow defined as below;     

 

                                                                       𝛁. 𝑽 = 0 ,                                                              (4.2)  

 

                𝜌
𝑑𝑉

𝑑𝑡
+ 𝜌(𝑽 ∙ 𝛁)𝑽 = −𝜵𝛲 + 𝜅(𝛁 × 𝐍) − (𝜇 + 𝜅)𝜵 × (𝜵 × 𝑽) + (𝑱 × 𝑩) ,           (4.3)  

 

          𝜌𝑗
𝑑𝑁

𝑑𝑡
+ 𝜌𝑗(𝑽. 𝜵)𝑵 = (𝛼 + 𝛽 + 𝛾)𝜵(𝜵.𝑵) − γ𝜵 × (𝜵 × 𝑵) + 𝜅(𝜵. 𝐕) − 2𝜅𝑵 ,       (4.4)  

 

                                                      ρcp
𝑑T

𝑑t
= −div𝐪 + 𝛕. 𝐋 ,                                                         (4.5) 

where                                                                                                                                         

                                                          𝒒 =  −𝑘𝑔𝑟𝑎𝑑𝑇 .                                                                 (4.6)  

 

The Cauchy stress tensor 𝝉 is defined as:      

                                                         𝝉 = − 𝑝𝑰 +  𝜇𝑨𝟏 ,                                                         (4.7)  

 

In this ρ is density of fluid, 𝑐𝑝 is specific heat capacity, 
𝑑

𝑑𝑡
 is material derivative, 𝐋 is velocity 

gradient, 𝑘 is thermal conductivity, 𝑞 is heat flux, 𝑇 is the fluid temperature, 𝑉 is velocity 

profile, 𝑗 is electric current density and 𝑨𝟏 first Rivilin-Erickson tensor which is given by:                    

                                                                                                 

                                                      𝑨𝟏 = 𝑳 + 𝑳𝑇 .                                                                  (4.8) 

Using Eq. (4.1), we obtain    

                                                                                                                                  

                  𝑳 = 𝑔𝑟𝑎𝑑 𝑽 =

[
 
 
 
𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦
0

𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦
0

0 0 0]
 
 
 

 and 𝑳𝑇  = (𝑔𝑟𝑎𝑑 𝑽)𝑇 = [

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑥
0

𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑦
0

0 0 0

],                  (4.9)  

 

                                                       𝑨𝟏 =

[
 
 
 2

𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
0

𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦
2
𝜕𝑣

𝜕𝑦
0

0 0 0]
 
 
 

 .                                            (4.10)  
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The component form of governing equation is defined below; 

 

                                               
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 ,                                                             (4.11) 

 

                        
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= (

𝜇+𝜅

𝜌
)
𝜕2𝑢

𝜕𝑦2
+

𝑘

𝜌

𝜕𝑁

𝜕𝑦
−
𝜎𝐵0

2

𝜌
𝑢 ,                              (4.12) 

 

                       𝜌𝑗 (
𝜕𝑁

𝜕𝑡
+ 𝑢

𝜕𝑁

𝜕𝑥
+ 𝑣

𝜕𝑁

𝜕𝑦
) = 𝛾∗

𝜕2𝑁

𝜕𝑦2
− 𝑘 (2𝑁 +

𝜕𝑢

𝜕𝑦
) ,                            (4.13) 

 

                            
𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2
+ (

𝜇+𝜅

𝜌𝑐𝑝
) (

𝜕𝑢

𝜕𝑦
)
2

.                                    (4.14) 

 

The appropriate boundary conditions are;  

 

              

𝑢 = 𝑢𝑤(𝑥, 𝑡) =
𝑈0

(1−𝑐𝑡)
𝑒
𝑥

𝐿, 𝑣 = 0, 𝑇 = 𝑇𝑤(𝑥, 𝑡) = 𝑇∞ +
𝑇0

(1−𝑐𝑡)2
𝑒
𝑛𝑥

2𝐿  𝑎𝑡 𝑦 = 0,

𝑁 = −𝑛0 (
𝜕𝑢

𝜕𝑦
) , 𝑎𝑡 𝑦 = 0,

𝑢 → 0,𝑁 → 0, 𝑇 → 𝑇∞ 𝑎𝑡 𝑦 → ∞, }
 
 

 
 

    (4.15) 

 

Here, the velocity components in the (𝑥, 𝑦) directions are denoted by (𝑢, 𝑣), respectively. The 

variables 𝑇, N, j, 𝜌, 𝑘, 𝜎 and 𝑐𝑝 denotes temperature, micro-rotation vector, micro inertia, 

fluids density, thermal conductivity, electrical conductivity and specific heat at constant 

pressure, respectively. 𝑇∞ is the temperature for away from the surface, while 𝑇0 is the 

reference temperature. The reference velocity is 𝑈0 and 𝑐 is the constant with 𝑐𝑡 <  1. 

 

The non dimensionalised Eqs. (4.11)-(4.14) are solved using these similarity transformations; 

 

𝑢 =
𝑈0

1−𝑐𝑡
𝑒𝑥/𝐿𝑓′(𝜉), 𝑣 = −√

𝑈0𝜈

2𝐿(1−𝑐𝑡)
𝑒𝑥/2𝐿[𝑓(𝜉) + 𝜉𝑓′(𝜉)],   𝜉 = √

𝑈0

2𝜈(1−𝑐𝑡)
𝑒𝑥/2𝐿𝑦,

 𝑁 =
𝑈0

(1−𝑐𝑡)
√

𝑈0

2𝜈𝐿(1−𝑐𝑡)
𝑒3𝑥/2𝐿ℎ(𝜉),                             𝜃(𝜉) =

𝑇−𝑇∞

𝑇𝑤−𝑇∞
.

}
 

 

      (4.16) 

 

By substituting Eq. (4.16) into Eqs. (4.11)-(4.14), the continuity Eq. (4.11) is identically 

satisfied, and Eqs. (4.12), (4.13) and (4.14) take the following form:    
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                                     𝑓′′′ + 𝑓𝑓′′ − 2𝑓′
2
− 𝐴(𝜉𝑓′′ + 2𝑓′) + 𝑘ℎ′ −𝑀𝑓′ = 0,                 (4.17)  

                

                    (1 +
𝑘

2
) ℎ′′ − 𝐴 [

3

2
ℎ +

1

2
𝜉ℎ′] − 3𝑓′ℎ + 𝑓ℎ′ + 𝑘𝐴1[2ℎ + 𝑓

′′] = 0,                  (4.18)  

 

  

                     𝜃′′ + 𝑃𝑟[𝑓𝜃′ − 𝑓′𝜃] − 𝐴𝑃𝑟[4𝜃 + 𝜉𝜃′] + (1 + 𝑘)𝑃𝑟𝐸𝑐𝑓′′
2
= 0,                   (4.19)  

 

After applying Eq. (4.16) the related boundary conditions are  

 

                                 
𝑓(0) = 0, 𝑓′(0) = 1, ℎ(0) = −𝑁0𝑓

′′(0), 𝜃(0) = 1,   

𝑓′(𝜉) → 0, ℎ(𝜉) → 0, 𝜃(𝜉) → 0 𝑎𝑠 𝜉 → ∞.
}                         (4.20) 

 

 Here, 𝐴 =
𝐶𝐿𝑒−𝑋

𝑈0
 is the unsteadiness parameter, 𝑀 =

2𝜎𝐵0
2𝐿

𝜌𝑈0
 denotes the magnetic field 

parameter, 𝑋 =
𝑥

𝐿
 is the dimensionless parameter, 𝑃𝑟 =

𝑢𝐶𝑝

𝑘
 is the prandtl number, 𝛾 =

𝛼√
𝑈0𝑒𝑋

2𝑉𝐿(1−𝑐𝑡)
  is slip parameter, and 𝐸𝑐 =

𝑈𝑤
2

𝐶𝑝(𝑇𝑤−𝑇∞)
 is the Eckert number and 𝐴1 =

𝐶𝐿𝑒−𝑋(1−𝑐𝑡)

𝑈0
 

is a dimensionless parameter. The local Nusselt number 𝑁𝑢𝑥 and the skin friction coefficient 

𝐶𝑓𝑥 are described as:   

 

                                𝐶𝑓𝑥 =
𝜏𝑤|𝑦=𝑜

𝜌𝑢2𝑤
 ,               𝑁𝑢𝑥 =

𝑥𝑞𝑤|𝑦=𝑜

𝑘((𝑇𝑤−𝑇∞))
 ,                                         (4.21)  

 

where the heat flux 𝑞𝑤 at the surface and the shear stress 𝜏𝑤 are explained as: 

 

                             𝜏𝑤 = [(𝜇 + 𝑘)) (
𝜕𝑢

𝜕𝑦
) + 𝑘𝑁]|

𝑦=0
,                𝑞𝑤 = −𝑘 (

𝜕𝑇

𝜕𝑦
)|
𝑦=0

.             (4.22)  

 

The local Nusselt number 𝑁𝑢𝑥 and the dimensionless form of the skin friction coefficient 𝐶𝑓𝑥 

can be retrieved by using Eq. (4.16) and putting Eq. (4.22) into Eq. (4.21): 

 

             𝑅𝑒𝑥
1/2𝐶𝑓𝑥 = [1 + (1 − 𝑁0)𝐾]𝑓

′′(0),              √
2

𝑋
𝑅𝑒𝑥

1/2𝑁𝑢𝑥 = −𝜃 ,(0),             (4.23) 
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where 𝑅𝑒𝑥 =
𝑈𝑤𝑥

𝑣
 is the local Reynolds number. 

4.3 Homotopic Solution 

The HAM is an analytical methodology that is useful for solving high nonlinear equations. 

This technique has been used to solve heat transport and fluid dynamics problems. The 

homotopy analysis method in this article solved Eqs. (4.17), (4.18) and (4.19) by considering 

the following linear operators with linear guesses, using the boundary conditions from Eq. 

(4.20): 

 

                             

𝑓0(𝜉) =
1

1+𝛾
(1 − 𝑒−𝜉),

ℎ0(𝜉) = 𝑛0𝑒
−𝜉 ,

𝜃0(𝜉) = 𝑒
−𝜉 .

}                                                            (4.24) 

and 

                                   

ℒ𝑓(𝑓) =
𝑑3𝑓

𝑑𝜉3
−
𝑑𝑓

𝑑𝜉
,

ℒℎ(ℎ) =
𝑑2ℎ

𝑑𝜉2
− ℎ,

ℒ𝜃(𝜃) =
𝑑2𝜃

𝑑𝜉2
− 𝜃. }

 
 

 
 

                                                             (4.25) 

 

The following attributes belong to the operator mentioned above: 

                                     

 ℒ𝑓(𝑆1 + 𝑆2𝑒
𝜉 + 𝑆3𝑒

−𝜉) = 0,

ℒℎ(𝑆4𝑒
𝜉 + 𝑆5𝑒

−𝜉) = 0,

ℒ𝜃(𝑆6𝑒
𝜉 + 𝑆7𝑒

−𝜉) = 0,

}                                                      (4.26)   

 

where 𝑆𝑟
,, (𝑟 = 1,2, …7) are arbitrary constants. 

The problem of zeroth order deformation can be expressed as follows: 

 

                             (1 − 𝑞)ℒ𝑓[�̅�(𝜉; 𝑞) − 𝑓0(𝜉)] = ℎ𝑓𝒩𝑓[�̅�(𝜉; 𝑞)],                                     (4.27) 

 

                   (1 − 𝑞)ℒℎ[𝐻(𝜉; 𝑞) − ℎ0(𝜉)] = ℎℎ𝒩ℎ[�̅�(𝜉; 𝑞), �̅�(𝜉; 𝑞)],                                (4.28) 

 

                   (1 − 𝑞)ℒ𝜃[Θ̅(𝜉; 𝑞) − 𝜃0(𝜉)] = ℎ𝜃𝒩𝜃[�̅�(𝜉; 𝑞), Θ̅(𝜉; 𝑞)],                                (4.29) 

with 
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�̅�(0; 𝑞) = 0,

𝜕𝐹(0;𝑞)

𝜕𝜉
= 1, �̅�(0; 𝑞) = −𝑛

𝜕2�̅�(0;𝑞)

𝜕𝜉2
, Θ̅(0; 𝑞) = 1,

𝜕𝐹(∞;𝑞)

𝜕𝜉
= 0, �̅�(∞; 𝑞) = 0, Θ̅(∞; 𝑞) = 0.

}                      (4.30) 

In this case, 𝑞𝜖[0, 1] indicates the embedding parameter associated with the deformation 

mappings �̅�(𝜉; 𝑞), �̅�(𝜉; 𝑞), Θ̅(𝜉; 𝑞) that continuously deform from 𝑓0(𝜉), ℎ0(𝜉), 𝜃0(𝜉) to 

𝑓(𝜉), ℎ(𝜉), 𝜃(𝜉) when 𝑞 varies from 0 to 1. The convergence control parameters are 

represented by ℎ𝑓, ℎℎ and ℎ𝜃. 

 

The following defines the nonlinear operators: 

 

                              
𝒩𝑓[�̅�(𝜉; 𝑞)] =

𝜕3�̅�(𝜉;𝑞)

𝜕𝜉3
+ �̅�(𝜉; 𝑞)

𝜕2�̅�(𝜉;𝑞)

𝜕𝜉2
− 2(

𝜕𝐹(𝜉;𝑞)

𝜕𝜉
)2

 −𝐴 (𝜉
𝜕2𝐹(𝜉;𝑞)

𝜕𝜉2
+ 2

𝜕𝐹(𝜉;𝑞)

𝜕𝜉
) − 𝑀

𝜕𝐹(𝜉;𝑞)

𝜕𝜉
,

}                         (4.31) 

 

𝒩ℎ[�̅�(𝜉; 𝑞), �̅�(𝜉; 𝑞)] = (1 +
𝑘

2
)
𝜕2�̅�(𝜉;𝑞)

𝜕𝜉2
− 𝐴 [

3

2
�̅�(𝜉; 𝑞) +

1

2
𝜉
𝜕�̅�(𝜉;𝑞)

𝜕𝜉
] − 3

𝜕𝐹(𝜉;𝑞)

𝜕𝜉
�̅�(𝜉; 𝑞)

+�̅�(𝜉; 𝑞)
𝜕�̅�(𝜉;𝑞)

𝜕𝜉
+ 𝐴1𝑘 (2�̅�(𝜉; 𝑞) +

𝜕2�̅�(𝜉;𝑞)

𝜕𝜉2
) ,

}                    

                                                                                                                                             (4.32) 

𝒩𝜃[�̅�(𝜉; 𝑞), Θ̅(𝜉; 𝑞)] =
𝜕2Θ̅(𝜉;𝑞)

𝜕𝜉2
+ 𝑃𝑟�̅�(𝜉; 𝑞)

𝜕Θ̅(𝜉;𝑞)

𝜕𝜉
− 𝐴𝜊𝑃𝑟

𝐹(𝜉;𝑞)

𝜕𝜉
Θ̅(𝜉; 𝑞)

−𝐴𝑃𝑟 (4Θ̅(𝜉; 𝑞) + 𝜉
𝜕Θ̅(𝜉;𝑞)

𝜕𝜉
) + 𝑃𝑟𝐸𝑐 (

𝜕2�̅�(𝜉;𝑞)

𝜕𝜉2
)
2

+𝑀𝑃𝑟𝐸𝑐 (
𝜕𝐹(𝜉;𝑞)

𝜕𝜉
) ,2

}                     (4.33) 

 

The literature has the remaining procedure details. With the limitations on the bounds of Eq. 

(4.20), the solution of the differential Eqs. (4.17), (4.18) and (4.19) can be represented as an 

infinite series as follows: 

 

                                         

𝑓(𝜉) = 𝑓0(𝜉) + ∑ 𝑓𝑚(𝜉),
∞
𝑚=1

ℎ(𝜉) = ℎ0(𝜉) + ∑ ℎ𝑚(𝜉),
∞
𝑚=1

𝜃(𝜉) = 𝜃0(𝜉) + ∑ 𝜃𝑚(𝜉).
∞
𝑚=1

}                                                 (4.34)     

   

The above procedure makes it clear that the series solutions listed in Eq. (4.34) have 

convergence control parameters, ℎ𝑓 ,  ℎℎ and ℎ𝜃 that can be used to to control rate of 

convergence of the series solutions.  
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4.4 Results and Discussions 

This part aims to investigate the continuing effects of several parameters related to 

temperature, velocity, and micro rotation curve fields. Fig.4.1. exhibit the h curve which give 

the ranges of −0.1 < ℎ𝑓 < −0.5, −0.2 < ℎℎ < −0.5, and −0.2 < ℎ𝜃 < −0.5.  

Fig.4.2. explains the effects of variation of 𝑀 on velocity profile 𝑓′(𝜉) which displays that the 

Lorentz force becomes stronger as the magnetic field parameter 𝑀 is increased, obstructing 

the fluid's motion and resulting in a decrease in velocity 𝑓′(𝜉). Furthermore, for a fixed 𝑀, 

the velocity 𝑓′(𝜉) decreases with increasing distance 𝜉 and becomes asymptotically zero in 

the distant regime. Fig.4.3. demonstrates the impact of variation of 𝑀 on temperature 

distribution 𝜃(𝜉). It is quite evident from the figure that the resistive force becomes greater as 

the value of 𝑀 increases which consequently results in grow in the temperature 𝜃(𝜉). Fig.4.4. 

depicts the variation of  magnetic field parameter 𝑀 on microrotation profile ℎ(𝜉). An 

increase in the microrotation profile ℎ(𝜉) is seen with increase in the value of 𝑀.   

Fig.4.5. illustrates the impact of Prandtl number 𝑃𝑟 on temperature profile 𝜃(𝜉). It 

demonstrates how 𝑃𝑟 affects the temperature distribution 𝜃(𝜉). A rise in the value of 𝑃𝑟 is 

associated with a decrease in the thickness of the thermal boundary layer. Fig.4.6. shows that 

the temperature distribution 𝜃(𝜉) effects enhance when the value of Eckert number 𝐸𝑐 is 

increased. An augmentation in fluid temperature 𝜃(𝜉) is caused by increase in Eckert 

number 𝐸𝑐. Fig. 4.7. represents the effects of unsteadiness parameter 𝐴 on velocity profile 

𝑓 ′(𝜉). The impact of increasing 𝐴 results in decrease in fluid velocity. 

 By adjusting the values of the unsteadiness parameter 𝐴, Fig.4.8. shows how the fluid 

temperature 𝜃(𝜉) behaves. Increasing the values of 𝐴 results in a notable decrease in 

temperature profile. Fig.4.9. shows an increase in microrotation profile ℎ(𝜉) with an increase 

in micropolar parameter 𝐾. The effects of the micropolar parameter 𝐾 on the velocity profile 

𝑓′(𝜉) are depicted here in Fig.4.10. This figure demonstrates that 𝑓′(𝜉) increases with 

increase in the value of 𝐾. Furthermore, as  𝐾 rises, the boundary layer thickness also 

enhances. Fig. 4.11. shows the impact of the micropolar parameter 𝐾 on the temperature 

profile 𝜃(𝜉). The boundary layer's thickness increases together with 𝐾. Fig.4.12. indicates 

variation of micropolar parameter 𝐾 on microrotation profile ℎ(𝜉). Higher the values of 

micropolar parameter 𝐾 also causes increase in microrotation profile ℎ(𝜉).   
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Fig.4.13. is plotted to display the effects of variation in 𝑁0 on velocity profile 𝑓′(𝜉). As the 

value of 𝑁0 increases, a decrease in velocity profile 𝑓′(𝜉) is noticed. Fig. 4.14. shows the 

effects of microrotation parameter 𝑁0 on temperature distribution 𝜃(𝜉). It is observed that 

raising the value microrotation parameter 𝑁0 led to a corresponding rise in 𝜃(𝜉). An increase 

in microrotation profile ℎ(𝜉) is witnessed with an increase in microrotanion parameter 𝑁0 as 

shown in Fig. 4.15. The impact of change in dimensionless parameter 𝐴1 on temperature 

distribution 𝜃(𝜉) is displayed in Fig.4.16. For higher values of the unsteadiness parameter 𝐴1, 

the temperature distribution 𝜃(𝜉) is also high.  

The purpose of Table. 4.1. is to display the effects of the parameters 𝐾,  𝐴, and 𝑀 on the 

dimensionless skin friction coefficient −[1 + (1 − 𝑁0)𝐾]𝑓
′′(0) using HAM method. This 

demonstrates that an increase in the value of 𝑀,𝐾 and 𝐴 increases the skin friction coefficient 

at the surface. For various values of the parameters 𝐾, 𝑀, 𝐴, 𝐴1, and 𝑁0, the values of  ℎ′(0) 

were determined using the HAM technique, as shown in Table. 4.2. which determined that the 

parameters 𝑀, 𝐴, 𝑁0 increases and 𝐴1 and 𝐾 decreases. In Table. 4.3. the values of −𝜃 ′(0) 

were found using the HAM approach for different values of the parameters 𝐾, 𝑀, 𝐴, 𝑃𝑟, 𝐸𝑐, 

𝑁0, and 𝐴1. The value of −𝜃 ′(0) increases the microrotation parameter 𝑁0, the unsteadiness 

parameter 𝐴, and the Prandtl number 𝑃𝑟. Conversely, there was a decrease in the effect on 

−𝜃 ′(0) when the parameters 𝑀,𝐾, 𝐴1  and 𝐸𝑐 were increased. 

 

Table. 4.1. Numerical values of  −[1 + (1 − 𝑁0)𝐾]𝑓
′′(0) that were obtained by the HAM for 

variation in the values of magnetic field parameter 𝑀, the unsteadiness parameter 𝐴, and the 

micropolar parameter 𝐾. 

        

            𝑲  𝑨  𝑴 −[𝟏 + (𝟏 −𝑵𝟎)𝑲]𝒇
′′(𝟎) 

1.0 1.0 1.0 2.40988 

  2.0 2.66933 

  3.0 2.996539 

1.0 0.5 1.0 2.409883 

 1.0  2.6794335 

 1.5  2.9216325 

0.5 0.5 1.0 2.0082362 

1.0   2.2377615 

1.5   2.38975275 
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Table. 4.2. Numerical ideals of ℎ′(0) that were obtained by the homotopy analysis technique 

(HAM) for variation in the values of micropolar parameter 𝐾, the magnetic field parameter 𝑀, 

and the unsteadiness parameter 𝐴, the dimensionless parameter 𝐴1, and microrotation 

parameter 𝑁0. 

 𝑲  𝑴  𝑨  𝑨𝟏  𝑵𝟎 𝒉′(𝟎) 

1.0 1.0 1.0 1.0 1.0 1.640265 

    2.0 1.77182 

    3.0 2.274809 

1.0 1.0 1.0 1.0 1.0 1.1357827 

   2.0  0.1989345 

   3.0  0.2228381 

1.0 1.0 0.5 1.0 1.0 1.740472 

  1.0   2.381722 

  1.5   3.083988 

1.0 1.0 0.5 1.0 1.0 1.422461 

 2.0    1.740472 

 3.0    2.164271 

0.5 1.0 1.0 1.0 1.0 1.083988 

1.0     0.994930 

1.5     0.549571 
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Table. 4.3. Numerical values of −𝜃′(0) that were obtained by the HAM technique for 

variation in the values of micropolar parameter 𝐾, the magnetic field parameter 𝑀, and the 

unsteadiness parameter 𝐴, the dimensionless parameter 𝐴1, and microrotation parameter 𝑁0, 

the Prandtl number 𝑃𝑟, and the Eckert number 𝐸𝑐. 

𝑲 𝑴 𝑨 𝑨𝟏 𝑵𝟎 𝑷𝒓 𝑬𝒄 −𝜽′(𝟎) 

1.0  1.0 1.0 1.0 1.0 1.0 1.0 1.715985 

      2.0 1.447973 

      3.0 1.035826 

1.0 1.0 1.0 1.0 1.0 0.7 1.0 1.571012 

     1.0  1.715985 

     2.0  2.314394 

1.0 1.0 1.0 1.0 1.0 0.7 1.0 1.571012 

    2.0   2.291414 

    3.0   3.035826 

1.0 1.0 1.0 1.0 1.0 0.7 1.0 1.135782 

   2.0    0.655063 

   3.0    0.458196 

1.0 1.0 0.5 1.0 1.0 0.7 1.0 1.509092 

  1.0     1.980355 

  1.5     2.356859 

1.0 1.0 0.5 1.0 1.0 0.7 1.0 2.307341 

 2.0      1.509092 

 3.0      1.426114 

0.5 1.0 0.5 1.0 1.0 0.7 1.0 2.35685 9 

1.0       1.475677 

1.5       1.445671 
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                                                        Fig.4.1. The h curve graph 

                 

                                          Fig.4.2. Variation of 𝑀 on 𝑓 ′(𝜉). 
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                                               Fig.4.3. Variation of 𝑀 on 𝜃(𝜉). 

 

 

                       

                                                  Fig.4.4. Variation of 𝑀 on ℎ(𝜉). 
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                                           Fig.4.5. Variation of  𝑃𝑟 on 𝜃(𝜉).             

                       

                                                    Fig.4.6. Variation of  𝐸𝑐 on 𝜃(𝜉).               
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                                              Fig.4.7. Variation of 𝐴 on 𝑓 ′(𝜉).                

                              

                                                    Fig.4.8. Variation of 𝐴 on 𝜃(𝜉). 
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                                                   Fig.4.9. Variation of 𝐴 on ℎ(𝜉). 

                    

                                                      Fig.4.10. Variation of 𝐾 on 𝑓 ′(𝜉).         
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                                                       Fig.4.11. Variation of 𝐾 on 𝜃(𝜉).                

                  

                                                   Fig.4.12. Variation of 𝐾 on ℎ(𝜉).         
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                                                     Fig.4.13. Variation of 𝑁0 on 𝑓 ′(𝜉).                

                  

                                                     Fig.4.14. Variation of 𝑁0 on 𝜃(𝜉).                
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                                                  Fig.4.15. Variation of 𝑁0 on ℎ(𝜉).                

                  

                                                    Fig.4.16. Variation of 𝐴1 on 𝜃(𝜉).                
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

5.1 Conclusions 

We have investigated the unsteady flow of micropolar fluid over an exponentially stretching 

sheet. Using the similarity transformations the system of nonlinear partial differential 

equations converted into nonlinear ordinary differential equations. The HAM technique is 

used to solve the issue, and the results are briefly reviewed. The unsteady stretched surface, 

causes the flow behavior. The primary findings are described below: 

 The velocity profile 𝑓 ′ is decreasing function of 𝑀,𝐴,𝑁0 and increasing function of 𝐾. 

 The temperature profile has increasing effect on 𝐸𝑐,𝑀, 𝐴1, 𝑁0 and 𝐾. 

 An increase in 𝑃𝑟 and 𝐴 lowers the temperature as well as the thickness of the thermal 

boundary layer. 

 When 𝑁0, 𝑀, 𝐴 and 𝐾 is raised, the microrotation profile also increased. 

 The skin friction coefficient values decrease as the boundary parameter values 

increase. 

 

5.2 Future Work  

Future research could explore various interesting directions in the area of unsteady flow of 

micropolar fluid across an exponentially stretched sheet. Initially, the research can be 

extended to investigate the behaviors and properties of various different types of fluids under 

diverse conditions. Furthermore, a deeper analysis of the flow behavior under various 

parameter conditions would be possible by investigating numerical simulations using 

advanced computational techniques like the Finite Element Method (FEM). Finally, in order 

to confirm the model's accuracy and applicability in real-world situations, experimental 

validation of theoretical predictions is important. 
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