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ABSTRACT

Title: Topology of Equatorial Timelike Circular Orbits Around Kerr-like Black Holes

A topological approach has been successfully used to study the properties of the light ring

and null circular orbit in generic black hole spacetime. In this work, a detailed review of the

general framework is extended to investigate the topology of equatorial timelike circular orbits

(TCOs) around a generic asymmetric, stationary, asymptotically flat black hole spacetime. The

topological analysis of the Kerr black hole and Kerr-like black holes in a perfect fluid dark matter

(PFDM) background is conducted. It is found that the dynamics of test particles affected by

the gravitational field of the black hole are examined using a unique topological framework

developed for generic axisymmetric stationary, asymptotically flat black holes. Furthermore,

when the angular momentum is held constant, there are two possibilities: 1) the absence of

timelike circular orbits, or 2) the presence of TCOs occurring in pairs, with one stable and

one unstable. Additionally, the stable and unstable timelike circular orbits have positive and

negative winding numbers, respectively, and the radii of these circular orbits correspond to the

zero points of the constructed n vector field. Similar results are observed for black holes in a

PFDM background. However, for any fixed value of the particle parameter, the presence of

PFDM increases the radius of TCOs.
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CHAPTER 1

INTRODUCTION

1.1 General Relativity

In Newton’s theory of gravity, time is regarded as an absolute quantity, that is the same for

everyone, regardless of whether the observer is moving or stationary or whether the observer is

close to or far from a gravitational object. Newton’s in his theory of gravitation considered, the

arena of physics as a 3-dimensional space. Additionally, he considered gravity an attractive force

between objects, directly proportional to the product of their masses and inversely proportional

to the square of the distance between them. This relationship can be expressed mathematically

as follows:

F = G
m1m2

r2 , (1.1)

where m1, m2 represent the masses of the objects and G = 6.674×10−11Nm2kg−2 is a universal

gravitational constant. Newton provides the formula for gravitational force between objects, but

he did not explain the source of this force, such as how objects far apart can attract each other.

Newtonian mechanics work very effectively for objects moving at slow speeds and in weak

gravity regimes. Newton’s law of gravity is considered a law rather than a theory since it specifies

the force of gravity without going into the principles that explain it. The law of gravity applies to

all objects with mass in the universe. It controls the motion of heavenly bodies such as planets,

stars, and moons, as well as ordinary objects on Earth. While highly effective for many practical

purposes. However, this theory has significant limitations. It can not precisely account for the
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precession of Mercury’s orbit, relies on the problematic notion of instantaneous gravitational

effects, fails to fully incorporate the mathematical concept of similarity, (the indistinguishable

of gravitational and inertial weight), and diverges from observed behaviours under very strong

gravitational fields or at velocities approaching the speed of light.

In Einstein’s theory of gravitation, he suggested that time is not a universal quantity; it

depends on the observer’s velocity and location. An observer moving at a velocity close to

the speed of light experiences a significant difference in time compared to an observer at rest.

Similarly, an observer close to a strong gravitational object or field experiences a significant

difference in time compared to an observer far away from the gravitational object. Thus, in

his theory, Einstein considered 1-dimension of time and 3-dimensions of space, defining the

new concept of a single 4-dimensional continuum called spacetime. J. A Wheeler [1] defines

spacetime as "the arena of physics," which includes all events that occur at certain times and

locations in space. Mathematically, spacetime is a 4-dimensional manifold (M,g) that locally

resembles 4-dimensional Euclidean space, but globally it can be curved depending on the mass

distribution within it. The metric tensor gµν is used to represent spacetime geometric properties

and to define physical quantities and laws in it. Further, Einstein suggested that gravity is not

a force like other forces; rather, it arises as a consequence of spacetime curvature due to the

distribution of mass and energy. The distribution of mass (or energy), such as that of the Sun,

causes spacetime to curve. As a result, other bodies, such as Earth, do not move in their orbits

due to gravitational attraction, but instead follow the straightest possible (available) path through

the curved spacetime. J.A. Wheeler summarizes gravity as; "Space acts on matter, telling how to

move. In turn, matter reacts back on space, telling it how to curve" [1].

In 1915, Einstein presented his theory of gravitation which relates spacetime geometry to the

distribution of mass and energy through the Einstein field equations (EFEs), defined as: [1, 2]

Rµν −
1
2

gµνR+Λgµν =
8πG
c4 Tµν , (1.2)

where G is the gravitational constant, c is the speed of light, Λ is the cosmological constant, Rµν

is the Ricci tensor, R is the Ricci scalar, and Tµν is the energy-momentum tensor. He included

the cosmological constant Λ in field equations to model the Universe’s static nature. However,

in 1929, Edwin Hubble discovered that our Universe is expanding [3]. So, He excluded the Λ

term from EFEs and called the inclusion of this term the biggest blunder of his life. The recent

scientific data predicted that our Universe’s expansion is speeding [4]. This raises the idea of

a vacuum energy, sometimes known as dark energy. Later, a positive value of Λ is introduced
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to define the Universe’s acceleration, and the Λ term is considered as part of the energy-stress

tensor. Thus, the EFEs can be expressed as:

Rµν −
1
2

gµνR =
8πG
c4 Tµν . (1.3)

The left side of the equation represents spacetime geometry, whereas the right side represents

energy or matter distribution. Note that, here Ricci tensor Rµν and energy-momentum tensor

Tµν are symmetric tensors so, on changing the indices reduces the EFEs to ten non-linear second-

order coupled partial differential equations in ten functions (gµν) and ten functions (Tµν) of four

independent variables (xµ). Solving EFEs with a generalized metric is challenging because they

are coupled non-linear differential equations.

So, instead of obtaining a generic solution, we focus on physically relevant energy-momentum

tensors and make assumptions regarding spacetime symmetry. These assumptions reduce the

number of unknown functions (gµν) that can be effectively determined. Furthermore, the

equations can be simplified by selecting an appropriate energy-momentum tensor. Here are some

physically relevant energy-momentum tensors:

The energy-momentum tensor of the electromagnetic field is defined as

Tµν = Fµδ Fδ
ν − 1

4
gµνFδλ Fδλ , (1.4)

where Fµν is a skew-symmetric electromagnetic tensor, defined as

Fµν = ∂µAν −∂νAµ , (1.5)

Aµ = (−φ ,A) with a 4-electromagnetic potential. The remaining frame mass density ρ and the

isotropic pressure p can be used to characterize the tensor of energy-momentum for the perfect

fluid, which is represented as

Tµν = (ρ + p)uµuν − pgµν , (1.6)

where uµ indicates components of the fluid velocity. The simplest example is a vacuum with no

matter (Tµν = 0) everywhere.

The Minkowski spacetime of special relativity is characterized by maximum symmetry and

a vacuum situation, that is, (Tµν = 0). The line element (or interval) between the two o in this

space can be expressed as

ds2 =−c2dt2 +dx2 +dy2 +dz2. (1.7)

The Minkowski metric is a trivial solution to EFEs [1].
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1.2 Black Hole

A gravitational body’s escape velocity at a point in its gravitational field is defined as the

minimum velocity required for any (test) object to escape the body’s gravitational field. The

escape velocity, vesc, at every point P at the distance r from the gravitational body’s mass center

can be calculated using the following formula if M is the body’s mass.

Kinetic Energy+Gravitational Potential Energy = 0. (1.8)

The Kinetic energy (K.E) is the energy associated with an object’s motion and may be calculated

using the formula K.E =mv2, where "v" is the speed of the objects. Gravitational potential energy

(P.E) is an energy due to position. At the distance r from the mass center of the gravitational

body, it is given as P.E =−GMm/r. Thus, for the escape velocity we have

1
2

mv2
esc =

GMm
r

. (1.9)

Here the left-hand side of the above equation represents the kinetic energy and the right-hand

side represents the negative potential energy. Thus, the expression for the escape velocity of the

gravitational body can be obtained from the above equation which yields the result as [5].

vesc =

√
2GM

r
. (1.10)

This result shows that the escape velocity of any gravitational body at some point in its gravita-

tional field depends only on its mass M and the distance r from the body’s center of mass, but

not on the mass of the test object. Thus, we can say that the escape velocity of the gravitational

body is the same as that of a tiny test object and as well as massive test object. Furthermore,

at each location in the gravitational field, The gravitational body’s mass M squared deter-

mines the escape velocity vesc, which is inversely associated with the product of the square

root of the distance r from the center of mass. For reference, the escape velocity of Earth

(M = 6×1024 kg) at its surface (r = 6400 km) is (approximately) 11.186 km/s, while that of

the Sun (M = 1.9891×1030 kg) at its surface (r = 1.4×106 km) is 617.5 km/s. So, if we fire

any test object of any mass from the surface of Earth with an initial velocity of 11.186 km/s,

it will not return but escape Earth’s gravitational field. Note that, if altitude is gained from the

surface of Earth and fire the same object again, then it require less initial velocity to escape

from the gravitational field. This is because increasing r which will decrease the value of escape

velocity.
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In a letter to Henry Cavendish in 1784, John Michell proposed that dark stars with sufficient

mass and density might have an escape velocity at the surface greater than the speed of light,

resulting in the absence of light. Although these dark stars cannot be observed, they can be

recognized by their strong gravitational attraction on nearby objects [6]. In 1796, Marquis de

Laplace proposed the same idea in his book "The System of the World" [7, 8]. The above-

mentioned proposals for the existence of dark stars are based on the theory that light is composed

of particles and, therefore, can be attracted by gravity just like any other particle. Later on, it

was proposed that light is made up of waves, so there was no explanation for the bending of

light due to gravity. Therefore, at that period, the concept of dark stars remained neglected until

Einstein presented his general relativity theory. Gravity is defined by Einstein’s general theory

of relativity as a spacetime curvature that can change light’s course. In 1916, Karl Schwarzschild

proposed the first EFE solution, reopening the issue of the dark star, which was eventually termed

BH in 1969 by J. A. Wheeler [9].

Astrophysically, A black hole is considered to be the final stage/outcome in the gravitational

collapse of a large star. Initially, it was assumed that the BH solution of EFEs had no astrophysical

significance. In the 1920s, it was discovered that when a big star reaches the end of its life cycle,

the degenerate pressure of electrons prevents it from collapsing without nuclear fusion, leading

to its death as a white dwarf. In 1931, Subrahmanyam Chandrasekhar proposed that if a star’s

mass exceeds the Chandrasekhar limit (about 1.44 times the solar mass), degenerate electron

pressure is insufficient to avoid gravitational collapse [10]. Most scientists, including Arthur

Eddington, rejected his proposal. They believed in the existence of a mechanism capable of

avoiding total collapse [11].

It was discovered that if a star’s mass is greater than the Chandrasekhar limit, its collapse to

a point can be stopped by degenerate neutron pressure, resulting in the formation of a neutron

star [12]. In 1939, Albert Einstein argued that stars can’t shrink to zero size or for heavenly

objects have so intense gravity that light cannot escape from their surfaces [13]. In the same

year that Einstein rejected the existence of the BH, J. R. Oppenheimer and H. S. Snyder wrote

an essay on gravitational collapse, discussing how a BH can originate from gravitation collapse

[14]. However, the telescopes of the time were unable to discover any observable results. This

conclusion reopened the discussion over the existence of the BH.

The Quasars, or highly active galactic nuclei, were found in the 1950s. Initially, the process

causing these quasars was unknown. In 1964, Edwin Salpeter and Yakov Zel’dovich first
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postulated that quasars could black holes are powered by material dragged from surrounding

massive stars, known as accretion disks [15, 16]. In 1964, the Cygnus X-1 was discovered and

identified as the first BH [17]. In 1971, it was discovered that Cygnus X-1 had a large star

companion. Furthermore, researching its orbital motion revealed that its mass is greater than

that of the neutron star, leading to the conclusion that it is a stellar mass BH. This convinces

researchers in this field to believe in the presence of BH in our universe. Recent technological

advancements have enabled the identification of the LIGO/Virgo merger of two black holes

resulted in gravitational waves, leading to new paths in BH astrophysics [18, 19]. In 2019,

astronomers used the EHT (Event Horizon Telescope) to obtain the first picture of a massive BH

(6.5 billion times the solar mass) in the galaxy’s center M87 [20]. These discoveries confirm

the existence of black holes, as proposed by Newton and Einstein’s gravity theories. They also

provide an original viewpoint on the subject. Researchers will explore many elements of the

black hole.

A black hole is a massive gravitational object with so strong gravity that its escape velocity

is greater than the speed of light [1, 5]. Nothing, not even light, can escape the black hole’s

gravitational pull since its escape velocity is higher than the velocity of light. There exists a

surface in the spacetime of BHs where the escape velocity equals the speed of light (vesc = c).

While the escape velocity outside the surface is smaller (vesc < c), it is greater inside the surface

(vesc > c). The above equation demonstrates that the location of this surface can be found by

substituting vesc = c.

rs =
2GM

c2 . (1.11)

The black hole considers this surface to be its event horizon. The light inside this surface

loses its ability to escape, hence it is frequently called the boundary of the BHs. Events within

the black hole’s horizon have no impact on the outside world. The event horizon is a null

hypersurface in 4-dimensional BH spacetime, defined as any vector (v1) with components. A1

vector at a point p in spacetime assigns a real number v( f ) to each differentiable function f

defined on spacetime. On this surface, vα is a null vector (vµvµ = 0). Light emitted at this

surface remains on the surface.
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1.2.1 Static and Stationary Black Hole

A spacetime is considered stationary if it has a time-like Killing vector (∂ t). This indicates

that the metric components gµν are independent on t, and ∂gµν/∂ t = 0. A stationary spacetime

is static if its line element remains constant as the time coordinate changes from t → −t. A

spacetime is axisymmetric if its metric components don’t depend on the coordinate φ , the

azimuthal angle with concern to the symmetry axis, that is, ∂gµν/∂φ = 0, and remain invariant

upon the replacement of φ →−φ . To satisfy the following constraints, the spacetime must be

stationary and axisymmetric, with all metric components independent of t and φ and gtr = grφ =

gtφ = gtφ = 0.

1.2.2 Schwarzschild Black Hole

To find a solution, he examined the space-time vacuum around a spherically symmetric mass

M located at the origin. The Schwarzschild metric is a just approximation of the field of gravity

outside of spherical symmetric nonrotating sources like stars, planets, or static black holes BHs.

Mathematically, the Schwarzschild line element in spherical coordinates can be represented as

[1, 2].

ds2 =−
(

1− 2GM
c2r

)
(cdt)2 +

(
1− 2GM

c2r

)−1

dr2 + r2dθ
2 + r2 sin2

θdφ
2, (1.12)

where M is the mass of the gravitational source. In natural units (G = 1 = c), the line element of

the Schwarzschild BH can be expressed as

ds2 =−
(

1− 2GM
c2r

)
(cdt)2 +

(
1− 2GM

c2r

)−1

dr2 + r2dθ
2 + r2 sin2

θdφ
2. (1.13)

The metric components at r = 2M and r = 0, gµν showed unusual behaviour, as shown in the

equation above. The metric and spacetime are no longer well-defined when r = 0, as both metric

components at r = 2M,gtt = 0, and grr is infinite. The point r = 0 in the Schwarzschild spacetime

represents a critical (crushing) singularity, where the spacetime curvature becomes infinite, and

the principles of physics break down. The coordinate singularity at (r = 2M) can be eliminated

by choosing a suitable coordinate system. In Schwarzschild spacetime, r = 2M represents the

event horizon, a spherical surface that distinct two regions of spacetime: BH interior and exterior.

The event horizon is a null hypersurface, and the region within it is inappropriate to an outside
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observer. Eq. (1.11) and further analysis indicate that the escape velocity at this surface is equal

to the speed of light.

The Schwarzschild metric is only valid in the gravitational source spacetime where r > rs =

2M. Previously regarded to be a non-physical solution, Schwarzschild BH is now recognized as a

reality [1, 2]. The Schwarzschild solution is the static solution for EFEs because its components

are independent of time coordinates and the metric remains constant when t changes from

positive to negative (t → −t). In 1923, G. D. Birkho demonstrated that the Schwarzschild

solution is the only vacuum solution for EFEs that explains a spherically symmetric body’s

gravitational field [21]. This argument is known as Birkho’s theorem.

1.2.3 Reissner-Nordström Black Hole

The Reissner-Nordström black hole (RNBH) metric is a nonrotating, spherically symmetric

static black hole solution to the Einstein-Maxwell equations. It defines the spacetime geometry

of charged, nonrotating, spherical symmetric masses. The line element of the RNBH (in natural

units) for a gravitational mass M with an electric charge Q in spherical coordinates is [1, 2].

ds2 =−
(

1− 2M
r

− Q2

r2

)
dt2 +

(
1− 2M

r
− Q2

r2

)−1

dr2 + r2dθ
2 + r2 sin2

θdφ
2. (1.14)

The electromagnetic four-potential, which determines the electromagnetic field at every point in

space, can be expressed as

Aµ =

(
Q
r
,0,0,0

)
. (1.15)

The RNBH has two horizons (r±) called outer and inner horizons, which are located in spacetime

where grr = 0. Therefore, the RNBH horizons are situated at

r± = M±
√

M2 −Q2, (1.16)

where M ≤ Q. In M = Q, the line elements represent the extremal BH with a single horizon.

Furthermore, if Q > M, the line element Eq. (1.14) denotes an NS. The line element Eq. (1.14)

has an essential singularity at r = 0, although the metric is not well-defined.

The BH r± has coordinate singularities at its horizons. For zero charge (Q = 0), the RNBH

line element and other physical quantities are reduced to the Schwarzschild BH.
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1.2.4 Kerr Black Hole

Roy Kerr developed the vacuum solution for EFEs in 1963, which explains spacetime outside

of the spinning gravitational body. The Kerr BH is an axisymmetric, stationary solution. The

Kerr solution, which describes spacetime outside a rotating object, is defined by two parameters:

the angular momentum J and the mass M. The line element of the Kerr BH can be represented

as [1, 2].

ds2 =−
(

1− 2Mr
ρ

)
dt2 − 4Mar sin2

θ

ρ
dφdt +

ρ

∆
dr2 +ρdθ

2

+

(
r2 +a2 +

2Mra2 sin2
θ

ρ

)
sin2

θdφ
2, (1.17)

where

∆ = r2 −2Mr+a2, (1.18)

ρ = r2 +a2 cos2
θ , (1.19)

a =
J
M
. (1.20)

The Kerr BH has two horizons, interior horizon r− and exterior horizon r+. These horizons are

placed where grr ≡ ∆ = 0, resulting in

r± = M±
√

M2 −a2, (1.21)

with M ≥ a. If M = a, the two horizons r± of the Kerr BH merge, resulting in an extremal BH.

If a > M, there is no BH, and the line element Eq. (1.17) denotes an NS. The Kerr BH has an

essential singularity at ρ = 0, which is attainable for θ = π/2 and r = 0. This represents the

ring singularity in the equatorial plane. Unlike the Schwarzschild and RNBHs, the Kerr BH

line element is not invariant under t →−t translation, making it non-static. Furthermore, due

to the BH rotation, the Kerr BH spacetime is axisymmetric rather than spherically symmetric.

The rotation of the BH causes frame-dragging effects, which will be examined further in the

discussion.
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1.2.5 Kerr-Newman Black Hole

In 1965, Ezra T. Newman proposed the Kerr-Newman black hole (KNBH) solution, which

describes the geometry of spacetime outside a rotating charged object. The KNBH is character-

ized by three parameters: the object’s charge (Q), mass (M), and angular momentum (J). The

KNBH’s line element is [1, 2].

ds2 =−∆

ρ
[dt −asin2

θdφ ]2 +
ρ

∆
dr2 +ρdθ

2 +
sin2

θ

ρ
[(r2 +a2)dφ −adt]2, (1.22)

where

∆ = r2 −2Mr+Q2 +a2 and ρ = r2 +a2 cos2
θ . (1.23)

The electromagnetic field in spacetime is defined as the four-potential one− f orm/covector2.

Aµdxµ =−Qr
ρ
(dt −asin2

θdφ), (1.24)

The BH has two horizons that are genuine solutions to the problem.

r2 −2Mr+Q2 +a2 = 0, (1.25)

and are given by

r± = M±
√

M2 −Q2 −a2 with a2 +Q2 ≤ M2, (1.26)

By definition, one form maps vectors to real values.

If M2 < a2 +Q2, r± is not real, and the line element Eq. (1.22) denotes an NS. The KNBH

features an important ring singularity at ρ = 0, where θ = π/2.When the charge Q is zero, the

line element and other quantities are reduced to the Kerr BH. However, for zero rotation, the line

element of the RNBH can be successfully obtained.

1.2.6 Event Horizon

According to physics, a body’s mass and separation from its center of gravity define its

escape velocity at a given location. A spacetime boundary known as an event horizon occurs

when the escape velocity is greater than or equal to the speed of light. As light enters the event

horizon, it cannot exit the BH. Communication between observers inside and beyond the event

horizon is impossible, which prevents information from being shared.
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1.2.7 Light Ring

A photon sphere appears at a point on a BHs event horizon where the force of gravity is so

great that photons eliminated from the hole bend around it and return to their original location,

giving the appearance of a boomerang.

r =
3GM

c2 =
3rs

2
. (1.27)

1.2.8 Topological Number of Static Spheres

To determine W , the behaviour of vector φ at the boundary between the r − θ plane is

examined. A straightforward computation shows that the path of φ is upward at θ = φ and 0.

When r = rh, f (rh) = 0, and f (r > rh) > 0 are close to the horizon, φ is positive, indicating

that φ is moving rightward in the plane, independent of φ θ values. For an asymptotically flat

black hole with huge r, f (r) can easily approach zero. This suggests that φ is also moving to

the right. The whole parameter space boundary is represented by the closed rectangular loop.

The vector’s direction is indicated by the black arrows. Along the boundary, the direction of the

vector changes. A complete loop is not formed when the loop is turned counterclockwise. As a

result, obtaining the entire topological number is simple.

W = 0 = Σωi. (1.28)

Static spheres are always found in pairs for asymptotically flat, static, and spherically

symmetric BHs. Radially stable and unstable static spheres have winding numbers of w = 1 and

−1, respectively, and if one of them is radially stable, the other must be unstable. This conclusion

varies for naked singularities. The winding number of the ith zero point of φ is represented by

ωi.

1.2.9 The Number of Static Sphere

The number of static spheres refers to the count of distinct regions around a black hole where

objects can maintain a stationary position relative to the black hole rotation. These regions

can vary in stability with some being stable and others unstable. Determining the number of
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static spheres for a black hole provides universal information about its structure, independent of

specific space details [22].

1.2.10 Lagrangian Method for Geodesics

The geodesics in Euclidean space are straight lines with two comparable defining qualities,

the tangent vector, which always points in the same direction along the line, represents the

shortest path between two points. Geodesics can be defined in larger manifolds by generalizing

either characteristic. In a pseudo-Riemannian manifold, both non-null and null geodesics can

be defined by the fixed direction of their tangent vectors, while only non-null geodesics can

be defined by the extremal length. Therefore, the evidence is not valid for null geodesics.

Unfortunately, a variational approach can provide equations for affinely parameterized systems

geodesics, which is still valid for null geodesics. A system is described by a set of generalized

parameters xa in classical mechanics, which are factors of time t. These coordinates define a

space related to certain line elements.

ds2 = gabdxadxb. (1.29)

In classical mechanics, this is known as the system’s configuration space. The system’s

Lagrangian can be calculated by combining energies due to motion i.e. kinetic energy and due to

position that is potential energies.

L = T −V =
1
2

gabẋaẋb −V (x), (1.30)

here ẋ ≡ dxa/dt.

S =
∫ t f

ti
Ldt. (1.31)

The Euler-Lagrange equations determine the equations of motion for a stationary system with

little changes in the functions xa(t).

d
dt

(
∂L
∂ ẋa

)
− ∂L

∂xa = 0. (1.32)

The complete form of the equations of motion may appear less familiar.

ẍa +Γ
a
bcẋbẋc =−gab

∂bV. (1.33)
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These are the formulas for a geodesic that is affinely parameterized and has a force term on

its right side. The metric associations of the space of configuration are represented in this case

by the Γa
bc. According to Lagrange’s equations, free particles in the configuration space travel

along geodesics in the absence of forces. The ’Lagrangian’ in a pseudo-Riemannian manifold

may be studied to derive the mathematical equations for an affinely parameterized geodesic.

L = gabẋaẋb. (1.34)

The results of putting this Lagrangian into the Euler-Lagrange equations are ẋa = dxa

du , removing

the unnecessary factor 1
2 .

d
du

(
∂L
∂ ẋa

)
− ∂L

∂xa = 0. (1.35)

yields, as needed.

ẍa +Γ
a
bcẋbẋc = 0. (1.36)

This calculation applies to null and non-null geodesics, as it does not require ṡ ̸= 0. Euler-

Lagrange equations can generate geodesic equations and their connection coefficients can be

extracted from the latter. Consider using the first integral to solve the geodesic Eqs. (1.33). Null

geodesics have a simple first integral.

gabẋaẋb = 0. (1.37)

However, for non-null geodesics, if we choose the parameter u = s, then

| gabẋaẋb = 1 | . (1.38)

These findings can be instrumental in solving the geodesic equations. Establishing the equiva-

lence between the geodesic and Euler-Lagrange equations reveals a crucial insight: According to

Eq. (1.29), if the metric gab does not depend on a particular coordinate xd , then suggests that

∂L
∂ ẋd = gdbẋb = constant. (1.39)

Using the equation ẋb = tb, where t is the geodesics tangent vector, we may conclude that

td = constant. (1.40)

During an affinely parameterized geodesic, the dth covariant component td of the tangent vector

remains constant if the metric parameters gab are independent on the coordinate xd . This concept

comes up again and again while studying particle motion in the context of GR.
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CHAPTER 2

LITERATURE REVIEW

Newtonian gravitational theory, effectively explains the gravitational forces between bodies

and how objects move around or toward these bodies. Newton’s laws successfully provide the

equation of trajectories of slowly moving bodies in the weak gravitation field. The relationship

between gravity and objects trajectories in his gravitation theory. However, it does not explain

the relationship between the velocities of objects moving at speeds comparable to the speed of

light because, in his gravitational theory, he considers time as a universal quantity [23]. Einstein

explained that time is not a universal quantity as in the Newtonian theory of gravity. In 1905,

Einstein presented the theory of SR and addressed the concept of time dilation and length

contraction and how high velocities can affect time and space [5]. Furthermore, Newtonian

mechanics failed to accurately describe the orbit of Mercury around the Sun and the bending

of light by gravity. Einstein’s theory of GR resolved these issues presented in 1915 [1]. This

theory relates the spacetime curvature to the distribution of mass and energy, including planets

and stars, among other objects through a system of coupled differential equations known as

EFEs [5]. These equations explain how mass and energy cause spacetime to bend, which in

turn influences the motion of objects within this curved spacetime [24, 25]. This bending of

spacetime is what we experience as gravity. If the mass-energy distribution is known, the EFEs

provide information about the spacetime curvature and trajectories of other bodies in spacetime.

This theory also helps in understanding gravity on a cosmic scale [25]. They have been essential

in predicting and explaining phenomena such as BHs, GWs, and the expansion of the universe.

A BH is an astronomical object with such strong gravity that its escape velocity exceeds the
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speed of light [5, 25]. Because light cannot escape its gravitational pull, BHs cannot be observed

directly, which is why they were originally referred to as "dark stars" and later named "black

holes" [25]. The concept of a BH was first proposed by John Michell in 1783 and independently

by Marquis de Laplace in 1796 [7, 8]. Later, this idea was largely overlooked until Einstein

presented his theory of general relativity because before Einstein it was not clear how light

could be influenced by a gravitational field. Einstein provided a framework which explained that

light can be influenced by a gravitational field as it always follows straightest a possible path in

spacetime which can be curved due to the presence of gravitational objects. The first solution

of EFEs presented by Karl Schwarzschild in 1916, also predicted the mysterious object "Black

Hole".

Astronomically, A black hole forms when a massive star collapses under its gravity at the

end of its life cycle [26]. Recent advancements in astronomical measurements and observational

data strongly support the presence of supermassive BHs at the centres of these galaxies [18, 27].

Recently, astronomers captured the first image of a supermassive BH at the centre of our

galaxy, the Milky Way [18, 27, 28]. This achievement, made possible by an international team of

researchers known as the Event Horizon Telescope (EHT) collaboration, utilized a global network

of radio telescopes [27, 28]. These findings provide compelling evidence for the existence of

BHs at the centres of most galaxies. Therefore, studying the physics of black holes is important

because they are important for understanding the structure of galaxies and the universe as a

whole.

To study the motion of stars around compact objects like BHs, we have required the un-

derstanding of circular orbits around these objects [18, 29]. So, for that purpose, the timelike

circular orbits (a path that is moving forward in time without escaping ) around these objects and

their stability analysis is a subject of interest [11]. The circular geodesics in a rotating charged

the BH in the presence of PFDM has been studied in Ref. [30]. In the rotating BH spacetime,

two kinds of circular orbits can be studied: the timelike and null orbits. For a timelike orbit,

both charged and neutral particles are considered and the effective potentials are in further detail.

The results show how the particle’s energy E, angular momentum L, and effective potential Veff

are affected by the BHs charge Q, spin a, and PFDM parameter α . Furthermore, the Penrose

process is examined to comprehend how negatively charged particles in the ergosphere could

induce an energy gain for external particles. Recently, timeline circular orbits and their stability

analysis have been done using topological classes [31, 32, 33]. The topological classes depend
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on the energy of the object to perform the stability analysis of the timelike circular orbit [34].

The circular orbits, if they exist always appear in pairs with constant angular momentum if

they exist. Also like cyclical cycles, both unstable and stable times have positive or negative

winding numbers [35]. Static spheres around black holes are regions where objects can remain

still relative to BH rotation. They can be stable or unstable and their number provides universal

information about BH structures [35].

Topology helps us to understand LRs that revolve around BHs. By calculating the topological

charge it was observed that LRs can be well-defined [29, 36] and are related to the decay time

of BHs and the formation of black shadows. The EHT collaboration [11, 37] and the Virgo

collaboration [36] have just released fresh observations, which can be understood by topology

approaches. The light ring is located at the vector’s zero point, according to Gunha Berti’s 2017

discovery of a unique vector that takes zero geodesics into account. Therefore, the winding

numbers of zero points provide us with some relevant topological results in vector space. Using

topological methods, we find that in a fixed space solid and an axially symmetrically balanced

the topological value of the LRs, and the ultracompact object will be zero. All LRs are missing.

This means that if LRs are present, they should appear in small pairs. Furthermore, if one LR

is stable, it follows that the other must be unstable [38, 39]. The study was expanded later

by adding the BH backgrounds [29]. For any rotating experience, the belief state is, that a

desk-bound, asymptotically, axisymmetric, flat 4-dimensional spacetime of a BH has at least

one universal LR off the horizon. Other associated problems which include angular movement

stability have been discussed in references [31, 34]. At a positive cost of the dilatonic parameter,

a topological segment transition was observed for the DM spacetime and the Schwarzschild

DM BH [40]. We can combine this with the topological current map theory of Duan’s [40]

and extend the analysis of BHs to the non-rotating condition [35]. The topological charge was

studied in the sense of inner structure, the phenomenon of bifurcation. Previous studies on the

Dyonic black hole solution [33] have shown that many photon circles exist. The PSs, which are

LRs’ equivalents in spacetime with spherical symmetry. This presents an opportunity to test the

nontrivial topological argument. It is our observation that the topological charge, independent of

the other parameters, is always −1. Accordingly, regular PSs are always greater than unusual

PSs. The topological charge remains unaffected by the spin of the black hole. The research led

us to create an approach to topological BH thermodynamics [41].
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CHAPTER 3

TOPOLOGY OF TIMELIKE CIRCULAR AROUND ROTATING

BLACK HOLE

This chapter is devoted to studying the topology of a timelike equatorial circular orbit around

a rotating black hole, as described in the Ref. [11]. For this study, a generic axisymmetric,

stationary, asymptotically flat BH will be considered. A topological analysis of circular orbits

in the spacetime will be conducted. Topology analysis (based on topological numbers) is a

useful technique for analyzing the stability of circular orbits around black holes and compact

objects. The topological analysis of LRs or null circular orbits (NCOs) has been extensively

studied to investigate their properties [36, 29]. However, unlike the light ring, the circumference

of the equatorial TCO depends on the angular momentum l and energy E of the test particles.

It is shown that the energy and angular momentum of the test particles do not influence the

asymptotic behaviour of the n-vector field at the zero points, which correspond to equatorial

TCOs.

3.1 Circular Geodesics and Effective Potential

To investigate the topological analysis of LRs and TCOs consider the general stationary,

axisymmetric, asymptotically flat BH spacetime. A 4-dimensional BH is called stationary if all

the metric components gµν are independent of the t it is called axisymmetric if components are
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independent of φ coordinate. It is called asymptotically flat if the metric components gµν →±1

whenever r → ∞. Furthermore, the spacetime has a north-south pole symmetry. Due to this

symmetry, the motion of a circular orbit can only occur within the equatorial plane. The generic

metric with these conditions can be written as [11]

ds2 = gttdt2 +grrdr2 +gθθ dθ
2 +gφφ dφ

2 +2gtφ dtdφ , (3.1)

with the metric signature (−,+,+,+). This metric can describe most of the known BHs. The

BH horizon r = rh (where (grr)
−1 = 0) divides the whole region of spacetime into; the interior

0 ≤ r < rh, and; the exterior rh < r < ∞. Here assumed that grr, gθθ , and gφφ are positive (> 0)

with det(−g)> 0 outside the horizon (rh < r < ∞) and For simplicity, we denote:

B(r,θ)≡ g2
tφ −gttgφφ > 0, (3.2)

which is zero at the horizon that is, B(rh,θ) = 0. This notation helps in the coming discussion of

particle motion.

The Hamiltonian approach will be used to study the topology of TCOs of a test particle

around the generic black holes, which requires the Lagrangian of the test particle. The Lagrangian

can describe the test particle’s motion under metric Eq. (3.1) and is given as;

L =
1
2

gµν ẋµ ẋν =
1
2

µ
2, (3.3)

where the dot represents the derivative with respect to the affine parameter, while the spacelike,

null, and timelike path are represented by µ2 = −1, 0, and 1, respectively. The conjugate

momenta are computed as follows

πµ =
∂L
∂ ẋµ

= gµν ẋν . (3.4)

As a result, the Hamiltonian approach for the test particles is as follows

H = πµ ẋµ −L. (3.5)

Using the metric components Eq. (3.5), the Hamiltonian takes the following form

H =
1
2
(
gtt ṫ2 +grr ṙ2 +gθθ θ̇

2 +gφφ φ̇
2 +2gtφ ṫφ̇

)
=−1

2
µ

2. (3.6)

or

grr ṙ2 +gtt ṫ2 +gθθ θ̇
2 +gφφ φ̇

2 +2gtφ ṫφ̇ +µ
2 = 0. (3.7)
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The above equation can be considered as it has two terms that can be represented by the potential

energy term V and kinetic energy term K as [42, 43].

K = gθθ θ̇
2 +grr ṙ2, (3.8)

V = gφφ φ̇
2 +2gtφ ṫφ̇ +gtt ṫ2 +µ

2. (3.9)

As a result, the Eq. (3.7) becomes

V +K = 0. (3.10)

It is important to note that, the kinetic energy is non-negative that is K ≥ 0, and is zero only

when ṙ = θ̇ = 0 and in this case the particle’s motion is defined the effective potential only. As

the metric components gµν and hence the Lagrangian are independent of t and φ coordinates,

therefore there exist two constant of motions; the energy E, and orbital angular momentum l of

test particles along each geodesic. They can be defined in terms of the corresponding two Killing

vectors, ψµ and ξ µ , as follows

−E = gtφ φ̇ +gtt ṫ = gµνuµ
ξ

ν , (3.11)

l = gφφ φ̇ +gtφ ṫ = gµνuµ
ψ

ν , (3.12)

Here uµ indicates the geodesic tangent vectors define as uµ = (ṫ, ṙ, θ̇ , φ̇). By solving these two

given equations, one can be obtained

ṫ =
1
B
(gφφ E +gtφ l), (3.13)

φ̇ =− 1
B
(gtφ E +gtt l). (3.14)

Now eliminating ṫ and φ̇ from an effective potential (3.9) takes the form,

V = gφφ φ̇
2 +2gtφ ṫφ̇ +gtt ṫ2 +µ

2. (3.15)

or it can be written as

V = gtt

[
1
B
(Egφφ + lgtφ )

]2

−2gtφ

[
1
B

(
Egφφ + lgtφ

)][ 1
B
(Egtφ + lgtt)

]
+ gφφ

[
−1
B

(Egtφ + lgtt)

]2

+µ
2, (3.16)

Taking B2 common from Eq. (3.16)

V =
1

B2

[
E2gφφ (gφφ gtt −g2

tφ )+2Elgtφ (−g2
tφ +gφφ gtt)+ l2gtt(−g2

tφ +gφφ gtt)

]
+µ

2,(3.17)



20

or

V =− 1
B

(
E2gφφ +2Elgtφ + l2gtt

)
+µ

2. (3.18)

This precisely reduces the potential of the photon for µ2 = 0. The effective potential can also be

expressed as;

V =−
l2gφφ

B

(
E2

l2 +
2Egtφ

lgφφ

+
gtt

gφφ

)
+µ

2, (3.19)

or

V =
−lgφφ

B

(
E
l
−H+

)(
E
l
−H−

)
+µ

2, (3.20)

where H± is just affected by the BH metric and stated by

H± =
−gtφ ±

√
B

gφφ

. (3.21)

3.2 Topology of Light Rings

In this section, the topology of the light rings around the rotating BH will be discussed. For

that purpose, we define effective potential Eq. (3.20) for photon and set µ2 = 0. In this case, the

potential and its derivative vanish everywhere, that is, V = ∂rV = 0, therefore, we can write(
E
l
−H+

)(
E
l
−H−

)
= 0, (3.22)

which gives

H± =
E
l
. (3.23)

These results are consistent for LRs [42, 43]. The angular momentum’s l and energy E of a

photon are constant. Thus, we can express it as follows

∂H±
∂ r

= 0. (3.24)

The Eq. (3.24) must be solved to get the radius rLR of the LR (sometimes called as photon

sphere) for a stationary spherical BH. It can be seen that [see Eq. (3.21)], rLR is independent of
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photon characteristics and it is related to the structure of the BH only, just like the black hole’s

horizon. Thus, the energy angular momentum ratio for photons orbiting along the LR is given by

E
l
= H±(rLR). (3.25)

Now, to discuss the topology of the LR, the n vector field is defined as [29].

ν =

(
∂rH±√

grr
,

∂θ H±√
gθθ

)
. (3.26)

This can be determined by computing the winding number of n vector field. The universal

properties of a light ring in a BHs surroundings can be determined by analyzing the asymptotic

behaviour of n vector field at the boundary, considering all regions (r,θ). The main advantage

of this approach is that H± remains unaffected by the photon’s energy or angular momentum.

However, for TCOs, the situation becomes more complicated due to the existence of µ2 the

additional term in Eq. (3.20). Consequently, the next section will provide a detailed analysis of

this scenario.

3.2.1 Timelike Circular Orbits

A TCO is a stable path taken by a massive object around a massive body that allows the

object to experience proper time while maintaining a constant distance from the center mass. To

discuss the topology of TCOs, It can be re-express as the effective potential Eq. (3.18) in the

following way

V =−
gφφ

B

(
E2 +

2Elgtφ

gφφ

+
l2gtt +Bµ2

gφφ

)
, (3.27)

which can also be expressed as

V =−
gφφ

B
(E − e1)(E − e2), (3.28)

where e1 and e2 are define as

e1,2 =
−lgtφ ±

√
B
√

l2 +µ2gφφ

gφφ

(3.29)

This results shows that TCOs with V = 0 determine the test particle’s energy as

E = e1,2. (3.30)
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For BH gφφ > 0 and B ≡ g2
tφ −gttgφφ > 0, can be easily proved that

e2 <
gtφ

gφφ

(|l|− l). (3.31)

For e2 < 0 is easily obtained for l ≥ 0 and 0 >−2lgtφ/gφφ > e2 for l < 0 because of negative

gtφ . As a result, the value of e2 is negative for each value of l, so we ignore this case and only

consider the case of e1. Now in this case, the conditions we are V = ∂rV = 0 which determine

the conditions for TCO as follows

E = e1, (3.32)

∂re1 = 0. (3.33)

As compared to the LR, ∂re1, in this case, depends on both energy E and the test particle’s

angular momentum l, suggesting that the topology for the TCO cannot be constructed as for

the photon light ring. However, similar to that of a photon light ring solving Eq. (3.32), we can

determine the radius of the TCO if the angular momentum l is known. The angular momentum

l does not influence the existence of a solution to the equation. After calculating the TCO’s

radius and putting it into Eq. (3.32), the test particle’s energy can be determined. Here angular

momentum values that maintain the asymptotic behaviour of ∂re1 at the boundary of the (r,θ)

plane for the global topology. To deal with this, the vector field φ = (φ θ ,φ r), similar to the

vector used for photons as in Ref. [29] can be defined as +

φ
θ =

∂θ e1√
gθθ

, φ
r =

∂re1√
grr

. (3.34)

Here the upper indexes are used to be consistent with the notations of [44]. It is clear that the

expected value is θ = π/2, with the TCO represented by φ = 0. The analysis of the asymp-

totic behaviour of φ in the (r,θ) plane boundary illustrates the importance of the topological

construction for the TCO.

The terms g0
tt ,g

0
ρρ , and b0 are constant, and n is a natural number. One must have n ≥ 2 given

C2 smooth and symmetry at the axis [45]. Using these into Eq. (3.29), yield the result

e1 ∼

√
−g0

tt l2ρ2 +
√

−g0
tt µ

2ρ3

ρ2 . (3.35)

At dominant order in ρ , we have gθθ dθ 2 ∼ gρρdρ2.

φ
θ ∼−sign

(
dρ

dθ

)
|l|
√
−go

tt

ρ2 ∼ sign
(

dρ

dθ

)
∂ρe1, (3.36)
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φ
θ ∼−sign

(
dρ

dθ

)
(−go

tt)
1
4 µ2

2ρ
3
2

∼ sign
(

dρ

dθ

)
∂ρe1, (3.37)

representing the non-vanishing and vanishing angular momentum l cases respectively. As a

result, φ θ diverges when ρ → 0, and its behaviour at small ρ does not depend on the angular

momentum. When this is paired with ρ−1 ∼ φ r, we obtain φ r < φ θ . This suggests the line

vector moves vertically between θ = 0,π . Additionally, it is noted that the vector points outward

at θ = 0 and π , with dρ

dθ
being positive as θ → 0 and negative as θ → π . (ii) Horizon limit: The

objective is to analyze the behaviour of the vector φ as r approaches rh. According to Ref. [29],

a local radial point x exists near the BH horizon, where x = 0 and gxx = 1. The function can be

analyzed in closeness to the horizon.

gφφ ⋍ gH
φφ +O(x2) ω ⋍ ωH +O(x2), (3.38)

B ⋍ gH
φφ k2x2, gtφ ⋍−ωHgH

φφ , gtt ⋍ ω
2
HgH

φφ , (3.39)

If the black hole’s surface gravity is represented by κ , and the parameter ω =−gtφ/gφφ expand-

ing in the terms of x, gH
φφ

and ωH provide the dominating contributions at leading order gives the

result

∂xe1 ⋍ κ

√
l2

gH
φφ

+µ2 +O(x). (3.40)

By applying the relation (1/
√

grr)(∂/∂ r)=(1/
√

gxx)(∂/∂x), one can obtain

φ
r =

∂re1√
grr

⋍ κ

√
l2

gH
φφ

+µ2. (3.41)

For a non-extremal BH with positive surface gravity κ > 0, φ r is positive. The direction of

vector field π near the horizon, its component πθ in angular direction θ will required. However,

regardless of whether φ θ is positive or negative, the vector φ should be oriented to the right,

possibly with a slight inclination.

(iii) Asymptotic limit: The vector’s behaviour at infinity will now be examined. At long

distances, spacetime typically becomes flat in standard spherical dimensions.

gtφ ⋍−O

(
1
r

)
, gφφ ⋍ r2 sin2

θ +O(1), (3.42)

gtt ⋍−1+
2M
r

+O

(
1
r2

)
, grr ⋍ 1+

2M
r

+O

(
1
r2

)
. (3.43)
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In asymptotically flat spacetime, the parameter M is a positive quantity signifying the mass of

the black hole. Therefore, we have

φ
r ⋍

M
√

µ2

r2 +O

(
1
r3

)
, (3.44)

which has a positive but small value at equatorial plane θ = π/2. The exact value of φ θ

can therefore be ignored. The vector φ indicates the horizon limit, which points towards the

right. Finally, our method demonstrates that the angular momentum l of the test particle does

not influence the behaviour of the vector φ at the boundary of the (r,θ) plane. This implies that

creating a topology for huge particle TCOs in such a situation might be possible.

3.3 Local and Global Typologies

This study explores the local and global topological properties of TCOs by analyzing the

behaviour of φ as it approaches the boundary of the (r,φ) plane. Additionally, it analyzes the

topological structures of the ISCO and MSCO.

3.3.1 Global Property

The zero points of the vector field φ correspond to the locations of TCOs is demonstrated.

One can compute the topological number W using the method described in [44] which suggested

that for TCOs, the topological number is defined as

W =
∫

Σ

jod2x. (3.45)

for the TCOs in a certain area Σ within the (r,θ) plane and jo is the zeroth component of the

topological current defined as:

jµ =
1
2

ε
µν

εab
∂na

∂xnu
∂nb

xρ
, (3.46)

with xo = t being a time control parameter the unit vectors na = (nr,nφ ) = (φ θ/|φ |,φ r/|φ |)

and xµ are the spacetime coordinates. As expected, that parameter can be used to study the

evolution of zero points. Furthermore, additional particle or BH properties may be used as
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Figure 3.1: The parameter space Σ on the (r,θ) plane is enclosed by the contour C = L1 ∪L2 = ∂Σ, as depicted

in Fig. 3.1. The right and left sections of the contour are represented by L1 and L2, highlighted in red and blue,

respectively. The black arrows denote the estimated values of the vector φ along the boundary.

control parameters. For a definition to be appropriate, zero points must not cross the (r,φ)

plane’s boundary while the control parameter is finite.

The angular momentum l of the particle is utilized as a control parameter in this analysis. A

brief explanation regarding the selection of energy will also be provided. After performing some

calculations, the result corresponds to the findings in [44].

W =
N

∑
n=1

wn. (3.47)

In the Σ region, this denotes W is the total winding number across all zero points. As xµ occurs

clockwise around the closed curve ∂Σ, count the number of loops generated by the vector x in

the vector field φ to find the topological charge of the Σ area.

W =
1

2π

∮
C

εabnadnb =
1

2π

∮
C

dΩ. (3.48)

The symbol Ω represents a change in vector direction. The entire parameter space is bounded by

the curve C = ∂Σ, which illustrates the global topological properties.This closed curve can be

divided into two distinct segments, L2 and L1, resulting in C = L2 ∪L1. Fig. (3.1), the vector

disregards all angles, pointing exterior at θ = 0 and π , and to the right at r = ∞ and rh. Easily

obtained from the asymptotic behaviour of φ .
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W =
1

2π

∫
L1

dΩ+
1

2π

∫
L2

dΩ, (3.49)

=
1

2π
× (−π)+

1
2π

× (π) = 0. (3.50)

This suggests that the TCO’s total topological number is zero. The result is universal, unaf-

fected by the BHs spin or the angular momentum of the massive test particle. This remarkable

result indicates that, in 4-dimensional stationary, asymptotically flat black holes, axisymmetric,

TCOs with a given angular momentum consistently appear in pairs. Unlike the LR, which pos-

sesses a topological number of −1, implying the presence of at least one LR. This characteristic

is distinctly different. For TCOs, the overall topological number disappears at θ = 0 and π ,

where the vector φ points outside. As shown in Fig. 3.7(a), even if the vector φ is directed inside

at θ = 0 and π , the topological number can still vanish despite the presence of North-South pole

Z2 symmetry. The topological number W remains 0 even after the vector φ changes direction.

However, removing the Z2 symmetry allows for a more thorough exploration of the complete

topological number. We further demonstrate these two possible scenarios, when Z2 symmetry is

broken, as illustrated in Figs. 3.7(b). Remarkably, we still observe

W = 0. (3.51)

In both scenarios where Z2 symmetry is either present or absent, the result W = 0 consistently

applies.

3.3.2 Stability and Local Property

As stated before, it is verified that the TCOs have a zero global topological number. They

might disappear or show up in pairs. The TCOs are dependent on the characteristics of the BH

as well as the test particle, compared to the light ring, which symbolizes the intrinsic structure

of spacetime. At some levels of angular momentum and energy, the TCOs may occur, but not

at others. The local topological charge and stability of the TCOs are the main topics of this

subsection. Since the energy and angular momentum of each of the TCOs are interconnected,

they must satisfy the requirements stated in Eqs. (3.32) and (3.33) at any given radius rt . From

Eq. (3.33), the angular momentum can be solved as [46].

l± =
gtφ+gφφ Ω±√

β±
|rt , (3.52)
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where

Ω± =
−ǵtφ ±

√
C

ǵφφ

, (3.53)

β± =−gφφ Ω
2
±−2gtφ Ω±−gtt , (3.54)

C = (ǵtφ )
2 − ǵtt ǵφφ . (3.55)

The prime represents the derivative of the radial coordinates. The energy can be obtained by

substituting the angular momentum l into equation (3.32).

E± =−
gtt +gtφ Ω±√

β±
|rt . (3.56)

Using Eq. (3.28), we’ve

∂ 2V
∂ r2 =

(e1 − e2)gφφ

√
grr

B
∂φ r

∂ r
, (3.57)

E = e1. (3.58)

Using Eq. (3.28), we obtain the results for the TCOs. The coefficient of variation is positive

if e2 < 0. That makes it simple to know.

∂ 2V
∂ r2 |rt > 0(< 0)⇒ ∂φ r

∂ r
> 0(< 0)|rt . (3.59)

Fig. 3.3 illustrates the direction of the vector φ along the contours, indicating two zero points

at r2 and r1. The values of ∂ 2V/∂ 2r2 indicate stability, with positive values corresponding to

stable TCOs and negative values to unstable TCOs. To assess the radial stability of the timelike

circular orbits for φr, By using this Eq. (3.59). Assuming r1 < r2, Fig. 3.3 shows two TCOs at r1

and r2. We can determine φr by observing its asymptotic behaviour at the infinity and horizon.

The values of φr are negative (r1,r2) and positive (rh,r1)∪ (r2,+∞). the ∂φ r/∂ r is positive near

r = r2 and negative near r = r1. It shows that for r1, the TCO is unstable, and it is stable at r2.

We want to take a brief look at local stability concerning the angle. Only equatorial the TCO with

θ = π/2 are examined. As Section 3.1 shows, the vector’s central limit at θ = 0, and π is not

impacted by the presence of l. Furthermore, we found that TCOs had the same vertical stability

as LRs Refs. [29, 31] demonstrate that TCOs are vertically stable. After assessing TCO stability,

we need to analyze the winding numbers of the two TCOs. Examine the component φ r of the
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vector φ , also referred to as nr. The sign of the unit vector n changes at r2 and r1 as shown in Fig.

3.3. The vector’s direction is also indicated. The winding numbers of 1 and −1 are determined

by the change in vector direction at the zero points r2 and r1, respectively. Hence, stable TCOs

are associated with positive winding numbers, whereas unstable TCOs have negative winding

numbers. However, the overall winding number cancels out to zero.

3.3.3 Bifurcation Point and MSCO

The stable or unstable TCO is indicated by positive or negative winding numbers, where

∂ 2V/∂ r2 > 0 or < 0. There is another critical case between the two mentioned cases with

∂ 2V/∂ r2 = 0, corresponding to the Kerr-like BH ISCO or MSCO. Distinctions between the

MSCO and the ISCO for hairy BHs and ultracompact objects, respectively, are given in Ref-

erences [46, 47, 48]. By using a sequence of stable TCOs, the MSCO stands for the stable

TCO with the shortest radius that may be extended to spatial infinity. In Eq (3.55), the ISCO,

represented by C = 0, is a small-radius stable TCO. For Kerr BHs and Schwarzschild, the MSCO

and ISCO are the same. However, boson stars, proca stars, rotating hairy black holes, or nothing

from them. This follows the procedure described in Ref. [46] to prevent misunderstandings.

Usually, the MSCO is described as

V = 0,
∂ 2V
∂ r2 = 0

∂V
∂ r

= 0. (3.60)

The first criterion is satisfied by setting E = e1, which depends on the angular momentum

l and radius rt of the TCOs. The second equation, when solved, provides the radius rt . Con-

sequently, we represent the result as r = rt(l). Since the radius of TCO orbits varies with l,

angular momentum acts as a control parameter. The third criterion can be determined through

a straightforward calculation, which involves finding when ∂ 2V/∂ r2 = 0 or ∂φ/∂ r2 = 0. This

results in:

dl
drt

= 0. (3.61)

The Duan’s topological current theory addresses this point (l∗,r∗t ). The MSCO associated point

(t) represents one type of bifurcation. In this region, the angular momentum can be extended.

l − l∗ =
1
2

d2l
dr2

t
(rt − r∗t)

2 +O(rt − r∗t)
3. (3.62)
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Two branches solutions on the rt − l plane result from this equation. When d2l
dr2

t
> 0. If l > l∗, the

two branch solutions are present, otherwise they are not. The bifurcation point can be classified

as either created or annihilated [49]. Let us focus on the MSCO’s topological number. Take

the BP2 branch, depicted as the blue curve in Fig. (3.9), which demonstrates the presence of

two TCOs at high angular momentum and the absence of the TCOs at low angular momentum.

This suggests that the point BP2 is produced. The TCOs with large radii are stable, while those

with small radii are unstable for a fixed angular momentum, corresponding to positive and

negative winding numbers w = −1 and w = 1, respectively. Consequently, the higher branch

has a positive one, while the lower branch has a negative winding number. The branches, with

both positive and negative slopes corresponding to ∂ 2V/∂ r2 > 0 and < 0, are visible and have

winding numbers w =−1 and 1, respectively. For large angular momentum l, the higher branch

exhibits ∂ 2V/∂ r2 > 0, while the lower branch shows ∂ 2V/∂ r2 < 0. As the angular momentum

drops, this behaviour occurs. But the pattern alters after BP2 is reached. The two branches

merged, leaving a single MSCO with ∂ 2V
∂ r2 = 0 leaves. The MSCO might be considered a degraded

timelike circular orbit. The MSCO breaks into two TCOs with w = 1 and w =−1, respectively,

for angular momentum that is somewhat more than BP2. Under the assumption that ∂ 2V
∂ r2 > 0

and < 0, w =+1 and −1 correspond to this. w =+1 or −1 are not accepted by the MSCO for
∂ 2V
∂ r2 = 0. Consequently, w = 0 must exist in the MSCO. The result is identical to that of Ref [44].

The MSCO’s topological charge disappears. This can be further verified by analyzing the change

in vector direction around the closed loop, as illustrated in Figs. 4.4(a) and 4.4(c).

3.4 Timelike Circular Orbit and Topology in Kerr Black Hole

The topological structure for TCOs in a general BH environment in the previous section.

Here, we utilize this framework to investigate the spacetime features of the Kerr BH [50]. This

will help us to understand the particular characteristics of a specific example.
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3.4.1 Effective Potential of a Kerr Black Hole

The line element of the Kerr BH spacetime is given as

ds2 =− ∆

ρ2

(
dt −asin2

θdφ
)2

+
ρ2

∆
dr2 +ρ

2dθ
2 +

sin2
θ

ρ2

[
adt − (r2 +a2)dφ

]2
. (3.63)

where

ρ
2 = r2 +a2 cos2

θ , (3.64)

∆ = r2 −2Mr+a2. (3.65)

The BH horizons can be determined by solving the equation ∆ = 0.

r± = M±
√

M2 −a2. (3.66)

The parameters must satisfy a ≤ M for the BH. From Eq. (3.28), we can obtained e1,2 for Kerr

BH background as

e1,2=
2laMr± cscθρ

√
∆
(
sin2

θ(r2 +a2)2 −∆a2 sin4+l2ρ2
)

(r2 +a2)2 −∆a2 sin2
θ

, (3.67)

where µ2 = 1 has been chosen for simplicity. These results simplify to θ = π/2 on the

equatorial plane.

e1,2=
2laMr± r

√
∆((r2 +a2)2 + r2l2 −∆a2)

(r2 +a2)2 −∆a2 . (3.68)

It can be observed that the typical behaviour of the potential in Fig. 3.4-3.6 for a BH with

M = 1 and a = 0.98. As shown in Fig. 3.4 (a), for fixed energy E and l = −4.5, there are

two extremal positions. There is one point with E = 0.9691 and E = 0.99776. For any curve,

there is exactly one point V = ∂rV = 0. These represent the regions where the radial velocity

of surrounding particles is zero, indicating two TCOs for l = −4.5. Similarly, Fig. 3.4(b)

shows two extreme points for a lower energy value when the angular momentum is increased

to l =−4.2209. As the energy increases, these two extremal points converge at the black dot

for energy E = 0.9620, satisfying the condition ∂rV = 0. As expected, the MSCO is shown by

the black dot. It is significant that this MSCO precisely matches the ISCO for the Kerr BH is

particularly remarkable. There will be no extreme point when the energy exceeds 0.9620. In Fig.

3.5, it illustrates the effective potentials for l =−4 and l = 1.5, respectively.
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Figure 3.2: Changes in the direction of the vector φ at θ = 0 and π .

The angular momenta display similar patterns, even though their signs are opposite. The

absence of extremal points, regardless of energy changes, suggests that TCOs are not present in

these cases. The effective potential is given in Fig. 3.5 for l = 1.6827. a similar pattern to that

shown in Fig. 3.6 (a). The MSCO exists for particular values of E, l, and a.

Fig. 3.6 (a) shows two TCOs for l = 1.7, denoted by black dots. These display the stan-

dard behaviour associated with the effective potential. Consequently, by adjusting the angular

momentum, we can observe either two TCOs, a single MSCO, or the absence of any TCOs.
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Figure 3.3: This shows how the vector π is represented along the contours that surround the two zero points at r1

and r2.

3.4.2 Asymptotic Behaviours and Vector

The vector’s zero points match the above-depicted timelike circular orbits. The aim is to

investigate whether the vector’s asymptotic behaviour in the context of a Kerr BH is consistent

with the general case described in Section II. The complex procedure will not be analyzed here,

but it is possible to create the vector using Eq. (3.34). Upon approaching θ = 0, the subsequent

behaviour of the vector is

φ
r =

∂re1√
grr

, (3.69)

φ
r(θ → 0) =

(a2(M+ r)− l +(−3M+ r)r2)

(r2 +a2)
5
2

θ
−1 +

2l
√

∆aM(−3r2 +a2)

(r2 +a2)
7
2

+O(θ), (3.70)

φ
θ =

∂θ e1√
gθθ

, (3.71)

φ
θ (θ → 0) =

−l
√

∆

(r2 +a2)
3
2

θ
−2

+

√
∆(3a6 +(−2l2 +9r2)a4 +a2r(9r3 − l2(r+12M))+ r4(3r2 + l2))

6l(r2 +a2)
7
2

+O(θ),

(3.72)
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Moreover, nearly θ = π , we’ve

φ
r(θ → π) =

l(a2(r+M)+ r2(−3M+ r))

(a2 + r2)
5
2

(θ −π)−1 +
2l
√

∆aM(3r2 +a2)

(r2 +a2)
7
2

+O(θ −π),

(3.73)

φ
θ (θ → π) =−

√
∆(3a6 +a4(9r2 −2l2)+a2r(9r3 − l2(12M+ r))+ r4(l2 +3r2))

6l(a2 + r2)
7
2

+
l
√

∆(θ −π)−2

(a2 + r2)
3
2

+O(θ −π), (3.74)

φ
θ (θ → π) =

l
√

∆

(r2 +a2)
3
2
(θ −π)−2 (3.75)

−
[√

∆(3a6 +(−2l2 +9r2)a4 + ra2(9r3 − l2(r+12M))+ r4(3r2 + l2))
]

6l(r2 +a2)
7
2

+O(θ −π).

As a result, the vector’s direction argφ = arctan(φ θ/φ r) when θ = π and θ = 0 is

argφ(θ → 0)∼ arctan(−θ
−2)∼ arctan

(
−l

√
∆

(a2 + r2)
3
2

θ
−2

)
=

−π

2
, (3.76)

argφ(θ → π)∼ arctan(θ−2)∼ arctan

(
l
√

∆

(a2 + r2)
3
2

θ
−2

)
=

π

2
. (3.77)

As a result, the vector’s position is downward at θ = 0 and upward at θ = π . we can further

extend the vector at large r on the equatorial plane, which gives

φ
r(θ =

π

2
,r → ∞) =

M
r2 − l2

r3 +O
(

1
r4

)
. (3.78)

The modest positive parameter ∈= r−rh is denoted near the horizon. The vector is then expanded

near the horizon to give us

φ
r(θ =

π

2
,∈→ 0) =

√
(−a2 +M2)(M2 + l2)(M−

√
−a2 +M2)

4M2a2 +O(∈
1
2 ). (3.79)

The positive nature of the zero-order is important. At both the horizon and large values of r, the

vector points to the right, as φ θ (θ = π/2) = 0. For example, when a is zero, we find that

φ
r(θ =

π

2
,r → r+) =

1
4M

√
l2

4M2 +1. (3.80)

The position of the unit vector n for M = 1, l = 1.5 , and a = 0.98 is illustrated in Fig. 4.4 with

gH
φφ

= 4M2 and κ = 1/4M, the Schwarzschild BH yields the exact result given in Eq. (3.41). The
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Eq. (3.41) gives the specific result. In conclusion, the previously discussed general framework

matches the asymptotic behaviour of the vector in the Kerr BH scenario. This indicates that the

total number of timelike circular orbits in the Kerr BH background is necessarily 0.

Here, findings is briefly summarize, as the process is similar. The topological number W is

zero for prograde and retrograde TCOs when E ∈ (0,1). However, W =−1 arises for energies

greater than one, specifically at E = 1. This change occurs because, as energy exceeds E = 1, the

positions of vectors φ r
1,2 at a large distance r shift. For both directions of rotation, a topological

phase transition occurs at E = 1. Particles with E < 1 have finite velocities and cannot reach

infinity in an asymptotically flat spacetime, whereas particles with E > 1 can move to infinity,

making limited orbits unobservable. At E = 1, particles can theoretically remain at rest at infinity.

The energy E = 1 separates particles that are unable to move freely at infinity. It determines

the existence of bounded orbits. The topological analysis indicates that the topological phase

transition occurring at E = 1 effectively describes this physical feature.

Fig.3.9 (a) and 3.10 (b) display the results for Kerr BH with M = 1 and a = 0.98. These

figures show the evolution of the TCO radius as a function of the control parameter for both

prograde and retrograde scenarios. In retrograde cases, where E < 0.96, no TCO branches

are present,resulting in a total topological number of zero. Two branches, one with a positive

winding number and the other with a negative winding number, emerge from BP1 at E = 0.96. A

similar phenomenon is seen in the prograde near BP2 at E = 0.77. Around the locations of BP1

and BP2, the following conditions hold

d2E
dr2

t
= 0.7631 and 0.0018. (3.81)

Thus, each of these bifurcation points can be considered a created point. The bifurcation points

in Fig. 3.9 correspond to BP1 and BP2. Both positive winding number branches move towards

infinity rt → ∞ as energy approaches one. As predicted, the total topological number remains

constant at zero. When the energy exceeds one, there is only one branch for each clockwise

direction, both having a winding number of w =−1. Consequently, the topological number W is

−1 in these cases. These observations, with W transitioning from 0 to −1, highlight a topological

phase transition occurring at E = 1. It is important to note that the winding number values

are related to the TCO’s stability. As demonstrated, TCOs with negative winding numbers are

unstable; even minor disturbances can lead particles away from their orbits. Thus, only unstable

TCOs exist for particles with E > 1. While the TCOs provide limited insight into astronomical

visible effects, they help in understanding the overall structure of TCOs in BH environments.
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Fig.3.9 (b) and 3.10 (b) illustrate the topological number W for prograde and retrograde

scenarios, respectively. In all cases where E < 1, the topological number remains constant at

zero, regardless of the presence of a bifurcation point. The topological number shifts to −1

when E exceeds 1, marking a topological phase transition at E = 1. In the preceding section,

we particularly consider the value a = 0.98. It is important to examine whether the mass and

spin of the BH influence the phase transition and topological structure. While variations in mass

and spin affect the coefficients in vector expansions, they don’t alter the asymptotic behaviours,

as discussed in Section 3.4.2. As a result, the mass and spin of the BH don’t affect the overall

topological number. However, the positions of TCOs and MSCOs will change. The behaviour

of φ r at infinity determines the topological transition of phases at E = 1 and is constant for any

mass or spin of the BH.
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Figure 3.4: The behaviour of the effective potential V with respect to r is plotted for BH a = 0.98, M = 1 and

and various values of l and E. (a) The figure is potted for l =−4.5, and different values of E = 0.9650, 0.9691,

0.9750, 0.9850 which shows for these two particular values of E there are two TCOs whose radius are represented

by black dots (their radii are approximately r = 3.4666 and r = 7.7074). (b) This figure is plotted for l =−4.2209,

and different values of E = 0.9450, 0.9500, 0.9620, 0.9700, and 0.9800. It shows that for specific values of angular

momentum, the two mentioned TCOs merge into a single orbit, known as the MSCO, with a radius represented by a

black dot (approximately r = 8.2027).
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Figure 3.5: The behaviour of the effective potential V with respect to r is plotted for BH a = 0.98, M = 1, and

various values of l and E. (a) The figure is potted for l =−4.0, and different values of E = 0.9450, 0.9500, 0.9620,

0.9700 and 0.9800. (b) This figure is plotted for l = 1.5, and different values of E = 0.6500, 0.7000, 0.7500,

0.8000, and 0.8500.
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Figure 3.6: The behaviour of the effective potential V with respect to r is plotted for BH a = 0.98, M = 1, α = 0.8

and and various values of l and E. (a) The figure is potted for l = 1.6827, and different values of E = 0.7500,

0.7600, 0.7661, 0.7700 and 0.7800 (b) This figure is plotted for l = 1.9, and different values of E = 0..8100, 0.8210,

0.8300, 0.8474, and 0.8600.
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Figure 3.7: Changes in the direction of the vector φ at θ = 0 and π .
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Figure 3.8: (a) The blue arrows represent the direction of unit vector n for M = 1, a = 0.98, and l = 1.5. (b) The

red arrows represent the direction of the unit vector field n for M = 1, a = 0.98, and l = 1.9.
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(a)

(b)

Figure 3.9: (a) The evolution of the radius rt of the TCO is plotted against the energy E. The BP1 represents the

bifurcation point, where the upper branch, denoted by +, corresponds to a positive winding number, while the lower

branch, denoted by −, corresponds to negative winding numbers. (b) This shows the topological number W relating

to the TCOs as a function of E.
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(a)

(b)

Figure 3.10: (a) The evolution of the radius rt of the TCO is plotted against the energy E. The BP2 represents the

bifurcation point, where the upper branch, denoted by +, corresponds to a positive winding number, while the lower

branch, denoted by −, corresponds to negative winding numbers. (b) This shows the topological number W relating

to the TCOs as a function of E.
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CHAPTER 4

TOPOLOGY OF TIMELIKE CIRCULAR ORBIT IN

KERR-LIKE BLACK HOLE IN PERFECT FLUID DARK

MATTER BACKGROUND

This chapter will discuss the topology of equatorial timelike circular orbits around a Kerr-like

black hole in the perfect fluid dark matter (PFDM) background. Considering dark matter in

black hole studies is crucial for a better understanding of the universe, as it is believed to play a

critical role in galaxy formation and constitutes a significant portion of the universe. Therefore,

examining the background is important for the topological study of circular orbits around black

holes. The Kerr-like black hole in the PFDM background generalizes various black holes, and

the results obtained can be reduced to previously known results.

4.1 Dark Matter

Dark matter is an elusive and mysterious component of the universe, remaining one of the

most fascinating subjects in modern physics. Unlike conventional (visible) matter such as stars

and planets [51], dark matter is difficult to detect because it does not emit, absorb, or reflect light

or electromagnetic waves, making it invisible to current detection methods. Dark matter cannot

simply be clouds of regular matter without stars, as this would result in detectable particles.

It is not antimatter because it does not emit gamma rays in interactions with regular matter.
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Additionally, unlike black holes, dark matter does not interact with its surroundings in ways that

would be noticeable through small-scale phenomena.

Astrophysical observations have shown that dark matter is believed to make up about 27% of

the universe’s energy-mass content. Its gravitational effects are essential for understanding the

formation and behaviour of galaxies, yet its true nature continues to puzzle scientists. Galaxies

cannot exist in their current form without a significant portion of dark matter [52, 53]. This is

because the gravitational attraction of visible matter is insufficient to keep stars tightly bound

within galaxies. Without some form of invisible matter, stars would be more widely distributed

throughout the galaxy. Dark matter is present both within and around us. Evidence for dark

matter includes gravitational lensing and mass localization during galaxy collisions [54], as

well as the large-scale structure of the universe [55]. Recent research has revealed that weakly

interacting massive particles, are a leading candidate for dark matter [56]. Modifications to

gravitational theories have been proposed. According to theoretical models and observations, the

universe is composed of 68% dark energy, 27% dark matter, and 5% normal matter [51, 57].

4.2 Kerr-Like Black Holes in PFDM Background

The study of the BHs in the dark matter background environment is crucial, as dark matter is

essential for the formation of most galaxies. The static BH in a PFDM background was studied

by Li and Yang [58]. Their model is based on a single parameter, α , and matches a particular case

first examined by Kiselev [59]. Specifically, they presented a logarithmic dependence to explain

the asymptotic rotation curves for dark matter at great distances that is, in the halo-dominated

region, in terms of the fundamental field. The lack of any proposed connection between dark

matter and other fields, such as the dark energy field, could be a potential limitation of this model.

A more comprehensive scenario, involving a mixture of more complex fields and additional dark

matter properties, might be considered. A new Kerr BH solution incorporating dark matter effects

has recently been published [58]. This solution requires modifications to the BHs ergosphere

structure, among other things, as it alters the Kerr metric due to the presence of dark matter

encoded by PFDM. Additionally, it allows for the investigation of the impact of PFDM on

various astrophysical issues. The Kerr BH in a PFDM background has recently been used to

study the black hole’s emission rate [60], the shadow of the BH [61], and the detection angle.
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The Kerr-like BH in a PFDM background has been studied in detail, including how it can be

differentiated from a naked singularity in Ref. [62].

The line element of the Kerr-like BH in the PFDM background can be written as [50].

ds2 =−

(
1−

2Mr−αr ln
( r

α

)
ρ

)
dt2 +

ρ

∆
dr2 −2asin2

θ

(
2Mr−αr ln

( r
α

)
ρ

)
dtdφ

+ ρdθ
2 + sin2

θ

(
r2 +a2 + sin2

θa2 2rM−αr ln
( r

α

)
ρ

)
dφ

2, (4.1)

where

∆ = r2 −2Mr+a2 +αr ln
( r

α

)
, (4.2)

ρ = r2 +a2 cos2
θ . (4.3)

Here, α is the PFDM parameter, and a and M are the BH’s mass and angular momentum per

unit mass parameters. Note that, in the presence of PFDM and the additional parameter, α , in

the horizon equation ∆ = 0, the location of the horizon differs from that of the Kerr BH. Thus,

the black hole’s size is affected by the PFDM parameter. However, PFDM does not change the

number of horizons; like the Kerr black hole, the Kerr-like black hole in a PFDM background

has two horizons: the inner horizon, r−, and the outer (event) horizon, r+. A detailed analysis of

the horizons of the Kerr-like black hole in the PFDM background has been conducted in Ref

[62]. The horizon equation can be solved to get the BH horizons;

∆ = r2 −2Mr+a2 +αr ln
(

r
|α|

)
= 0. (4.4)

It should be noted that there can be one, two, or no solutions to (4.4), depending on the parameters

a and α chosen. The line element Eq. (4.1) in each example denotes NS, extremal BH, or BH

with interior (r−) and exterior (r+) horizons, respectively. The PFDM stress-energy tensor

diag[−ρ, pr, pθ , pφ ] can be written as [50].

−ρ = pr =
rα

8πρ2 , pθ = pφ =
αr

8πρ2

(
r− ρ

2r

)
. (4.5)

Using the Komar integrals the total BH mass MT inside the surface of radius r = r0, and the

associated angular JT around a rotational axis are given by [62].

MT = M−
α ln

(
r0
|α|

)
2ar0

[
ar0 +(r2

0 +a2) tan−1
(

a
r0

)]
, (4.6)

JT = J+
α

4a2r0

[
(r2

0 +a2)2 tan−1
(

a
r0

)
−ar0(r2

0 +a2)−2a3r0 ln
(

r0

|α|

)]
. (4.7)
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4.3 Topology of Equatorial Timelike Circular Orbits Around Kerr-Like Black

PFDM Background

To discuss, the topology for TCOs in Kerr-like BHs in PFDM we continue our discussion

as in chapter 3. For that purpose, we define the n vector field and then discuss its asymptotic

behaviour at the boundary and near the poles θ = 0,π . To define the n vector field we use Eq.

(3.34). The required quantity B for the topological analysis of TCOs in this case takes the form

B = ∆sin2
θ , (4.8)

The quantities e1,2 [defined by Eq. (3.28)] required for n vector field for the Kerr-like black

hole in PFDM backgrounds are obtained as

e1,2 =
arl
[
2M−α ln

( r
α

)
sin2

θ
]
±ρ cscθ

√
∆
[
l2ρ2 −a2∆sin4

θ +(r2 +a2)2 sin2
θ
]

(a2 + r2)2 −a2∆sin2
θ

, (4.9)

In the equatorial plane, they are reduced to

e1,2=
2laMr± r

√
∆((r2 +a2)2 + r2l2 −∆a2)

(r2 +a2)2 −∆a2 . (4.10)

In Fig. (4.1) the effective potential for a BH with a= 0.4, M = 1, α = 0.8 demonstrates its typical

behaviour. Fig. 4.1 (a) is potted for l = 2.0100, and different values of E = 1.0200, 1.02105,

1.02150, 1.0220, and 1.0225 which shows for these two particular values of E there are two

TCOs whose radius are represented by black dots (their radii are approximately r = 3.4666 and

r = 7.7074). Fig. 4.1 (b) is plotted for l = 2.0108, and different values of E = 1.0200, 1.0210,

1.0215, 1.0220, and 1.0225. It can be seen that for specific values of angular momentum, the two

mentioned timelike circular orbits merge into a single orbit, known as the MSCO, with a radius

represented by a black dot (approximately r = 8.2027). There is one point with E = 0.9691,

E = 0.99776, and V = 0 = ∂rV for every curve. These are the regions where the radial velocity

of particles around the black hole is zero, indicating the presence of two TCOs for l = 2.0100.

Fig. 4.1(b) shows that for a lower energy value and increased angular momentum (l = 2.0108),

there are still two extremal points. As the energy increases, these points converge at a black dot

with E = 1.0210, where ∂rV = 0 is also satisfied. The dark dot, as expected, denotes the MSCO.

It’s worth noting, in particular, that such MSCO exactly fulfills the ISCO for the Kerr BHs.

There will be no extreme point when the energy exceeds 0.9620. The effective potentials for

l = 2.0 and l =−2.0 are illustrated in Figs. 4.2 (a) and 4.2(b). Although the angular momenta
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have different signs, the patterns remain similar. In both cases, no extremal points are observed

regardless of energy variations, indicating the absence of TCOs. The effective potential is given

in Fig. 4.3 (a) is plotted a = 0.5, M = 1 and α = 0.5 for l = −4.2 and different values of E,

E = 0.92,0.96,1.00,1.04 and 1.08 similar pattern to that shown in Fig. 4.3 (b). is plotted for

l = 2.0 and different values of E = 0.94,0.95,0.96,0.97 and 0.98. The MSCO is given for

particular a, l, and E values.

4.3.1 Vector and Asymptotic Behaviours

The aim is to analyze the asymptotic behaviour of the vector within the Kerr BH framework

and check its consistency with the general scenario, which has been already described. While

the vector can be derived using Eq. (3.34), this method is intricate and not elaborated upon here.

As the vector approaches θ = 0, we observe;

φ
r =

∂re1√
grr

, (4.11)

φ
r(θ → 0) =−

l
[
(r+M)a2 +(−3M+ r)r2 − α

2

{
r2 +a2 +

(
a2 −3r2) ln

( r
α

)}]
(a2 + r2)

5
2

θ
−1

+
a
√

∆l
[
2M
(
a2 −3r2)−α

{
r2 +a2 +

(
a2 −3r2) ln

( r
α

)}]
(a2 + r2)

7/2 +O(θ)1. (4.12)

Similarly, the vector field component,

φ
θ =

∂θ e1√
gθθ

. (4.13)

Near the axis θ = 0,

φ
θ (θ → 0) =

−l
√

∆

(a2 + r2)
3
2

θ
−2 +

√
∆

6l(r2 +a2)
7
2

[
3a6 +(−2l2 +9r2)a4 + ra2{9r3 − (r+12M)l2}

+ r4(3r2 + l2)+6a2l2rα ln
( r

α

)]
. (4.14)

Moreover, nearly θ = π , we have;

φ
r(θ → π) = l

[
a2(r+M)+(−3M+ r)r2 − α

2

{
r2 +a2 +

(
a2 −3r2) ln

( r
α

)}
(r2 +a2)

5
2

]
(θ −π)−1

+
2a

√
∆Ml

[
a2 −3r2 − α

2

{
r2 +a2 +

(
a2 −3r2) ln

( r
α

)}]
(a2 + r2)

7
2

+O(θ −π), (4.15)

φ
θ (θ → π) =

l
√

∆

(r2 +a2)
3
2
(θ −π)−2 − 1

6l(r2 +a2)
7
2

[√
∆

{
3a6 +(−2l2 +9r2)a4

+ a2r
{

9r3 − l2 (r+12M)
}
+
(
3r2 + l2)r4 +6a2l2r ln

( r
α

)}]
. (4.16)
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As a result, the vector’s direction argφ = arctan(φ θ/φ r) when θ = 0 and θ = π is

argφ(θ → 0)∼ arctan

(
−l

√
∆

(a2 + r2)
3
2

θ
−2

)
∼ arctan(−θ

−2) =
−π

2
, (4.17)

argφ(θ → π)∼ arctan

(
l
√

∆

(a2 + r2)
3
2

θ
−2

)
∼ arctan(θ−2) =

π

2
. (4.18)

Hence, the vector’s positions are down at θ = 0 and up at θ = π . The vector can further be

extended at large r on the equatorial plane, which provides

φ
r(θ =

π

2
,r → ∞) =

M
r2 − l2

r3 +O
(

1
r4

)
. (4.19)

The smallest positive parameter ∈= r − rh is denoted near the horizon. The vector is then

expanded near the horizon to give us

φ
r(θ =

π

2
,∈→ 0) =

√
(−a2 +M2)(l2 +M2)

(
M−

√
a2 −M2

)
4a2M2 +O(∈

1
2 ). (4.20)

The positive order of zero is significant. At the horizon and at large r, the vector’s position aligns

correctly since φ(θ = π

2 ) = 0. For a = 0, this results in

φ
r(θ =

π

2
,r → r+) =

1
4M

√
l2

4M2 +1. (4.21)

The Schwarzschild BH yields the exact result given in Eq. (3.41) with κ = 1/4M and

gH
φφ

= 4M2. In summary, the general formulation and the asymptotic behaviour of the vector in

the Kerr BH scenario are consistent, indicating that the total topological number for TCOs in

this context is zero.
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Figure 4.1: The behaviour of the effective potential V with respect to r is plotted for BH a = 0.4, M = 1, α = 0.8

and various values of l and E. (a) The figure is potted for l = 2.0100, and different values of E = 1.0200, 1.0210,

1.0219, 1.0228, and 1.0234 which shows for these two particular values of E there are two TCOs whose radius

are represented by black dots (their radii are approximately r = 3.4666 and r = 7.7074). (b) This figure is plotted

for l = 2.0108, and different values of E = 1.0200, 1.0210, 1.0215, 1.0220, and 1.0225. It shows that for specific

values of E = 1.0210, the two mentioned TCOs merge into a single orbit, known as the MSCO, with a radius

represented by a black dot (approximately r = 8.2027).
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Figure 4.2: The behaviour of the effective potential V with respect to r is plotted for BH a = 0.4, M = 1, α = 0.8

and various values of l and E. (a) The figure is potted for l = 2.0, and different values of E = 1.0110, 1.0120,

1.0130, 1.0140, and 1.0150. (b) This figure is plotted for l = −2.0, and different values of E = 1.0110, 1.0120,

1.0130, 1.0140, and 1.0150.
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Figure 4.3: The behaviour of the effective potential V with respect to r is plotted for BH a = 0.5, M = 1, α = 0.5

and various values of l and E. (a) The figure is potted for l =−4.2, and different values of E = 0.92, 0.96, 1.00,

1.04, and 1.08. (b) This figure is plotted for l = 2.0, and different values of E = 0.94, 0.95, 0.965, 0.97, and 0.98.
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Figure 4.4: (a) The blue arrows represent the direction of unit vector n for M = 1, a = 0.98, and l = 1.5. (b) The

red arrows represent the direction of the unit vector field n for M = 1, a = 0.98, and l = 1.9.
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CHAPTER 5

CONCLUSION

In this study, we built a strong framework for understanding the topology of trapped TCO

within a general black hole spacetime, despite their close dependency on large particles’ energy

and angular momentum. Initially, we chose angular momentum as the control parameter. we

started our analysis with timelike geodesics and used the effective potential to create a vector

φ , similar to how we did with photons. The TCOs perfectly corresponded to the places where

φ equals zero, allowing us to assign each TCO a local topological charge. we analyzed the

behaviour of φ at the boundaries of the r − θ plane, focusing on the horizon, asymptotic

limits, and the axis. we then explored the local and global topological characteristics of TCOs,

discovering that unstable and stable TCO correspond to negative and positive winding numbers,

respectively, from a local perspective. Specifically, TCOs either become unstable or vanish at the

MSCO, which serves as a bifurcation point. The overall sum of the winding numbers remains

constant before and after the bifurcation point. From a global perspective, we found that in a

typical BH spacetime, the total topological number, which is calculated by summing the winding

numbers of all 0 points, consistently equals zero. This indicates that stable and unstable TCOs

with a given angular momentum always occur in pairs. Importantly, this finding is universal and

unaffected by the particle’s BHs or the angular momentum characteristics. However, it is crucial

to note that in a typical BH scenario, the total topological number for LRs is −1, indicating the

presence of a normal light ring LR. Specifically, in the case of a Kerr BH, the vector points to

the right at r = rh and at infinity, and it points outward at θ = 0 and θ = π . This continuous

tendency shows that the Kerr BH has an overall topological number of TCOs W = 0. As a result,
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unstable and stable TCOs typically appear in pairs when angular momentum l is used as the

controlling parameter. Particularly, the MSCOs correspond to clockwise and counterclockwise

rotations thus they act as bifurcation points. A created point corresponds to an MSCO with

positive angular momentum, while a destroyed point corresponds to an MSCO with negative

angular momentum. A created point corresponds to an MSCO with positive angular momentum,

while a destroyed point corresponds to an MSCO with negative angular momentum. Although

the potential of two or zero TCO branches for different angular momentum values, the total sum

of the entire topological number is continuously 0, as predicted.

The test particle’s energy is another control parameter in addition to angular momentum. As a

result, we examine the topology for rotations that are both clockwise and counterclockwise. The

results indicate that the total topological number is W = 0 for energies in the range 0 < E < 1,

and W =−1 for energies above E = 1. This suggests a topological phase transition at E = 1 in

both prograde and retrograde scenarios, reflecting the independent motion of massive particles at

infinity. Furthermore, in this case, the MSCOs exactly match to two produced locations. Before

concluding this study, we would like to emphasize three distinctions in the topology of TCOs

compared to LRs: (i) Unlike LRs, where energy and angular momentum are linearly related,

TCOs have a nonlinear correlation between these quantities. (ii) The characteristics of the photon

do not affect the radius of an LR while the black hole background remains constant, however,

the test particle described has a significant impact on the radius of a TCO. This means that the

circular orbit’s degeneracy is interrupted by the existence of the mass in test particles, as shown

in Fig. 3.10 (iii) In terms of total topological number, LRs have a value of W =−1, whereas

TCOs have 0. This indicates that TCOs typically occur in pairs when angular momentum is

held constant, and that standard LRs are found in at least one instance within a typical BH

scenario. In this study, we have developed an extensive topological framework to analyze TCOs

and applied this approach to the Kerr BH. We predict that by using this topological technique,

we will obtain new insights on TCOs for both spinning and non-rotating black holes in general

relativity or modified gravity theories. In addition, we plan to study more generic BH solutions

that do not have Z2 symmetry. The paper provides an in-depth examination of the topological

characteristics of TCOs surrounding black holes, with a particular focus on the Kerr black hole.

Using a topological approach, this study explores how the energy and angular momentum of test

particles influence the behaviour and stability of TCOs. The findings reveal that TCOs always

occur in pairs, consisting of one stable and one unstable orbit, with the total topological number
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remaining zero for a generic black hole. The paper also discusses the impact of black hole spin

and test particle mass on the degeneracy of circular orbits. In addition, the paper explores the

presence of closed timelike curves and the winding numbers that correspond with them, showing

that TCOs always appear in pairs for a certain angular momentum. A critical energy value of

E = 1 is identified as a key point for a topological phase transition, distinguishing between

bounded and unbounded orbits. The results indicate that the topological approach effectively

characterizes the physical features of test particle motion around a Kerr black hole. Furthermore,

the paper explores the concept of TCOs, MSCOs, and ISCOs, analyzing their global and local

behaviours and stability. The research provides illumination on black hole topological current

objects within the (r,θ) plane, highlighting that TCOs always appear in pairs with a total sum of

the topological number zero. The stability of TCOs is determined by the position of the vector φ ,

with positive winding numbers indicating stability.

In the Kerr BH background, the paper observes the presence of MSCOs that coincide with the

ISCOs, displaying consistent stability and zero topological charges for TCOs. The topological

charge of TCOs in the Kerr BH scenario is zero, as confirmed by the analysis of the effective

potential and vector behaviour. Overall, the study provides a detailed and insightful examination

of the topological properties of TCOs around black holes, offering valuable contributions to

understanding test particle motion in these gravitational systems.
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[54] D. Clowe, M. Bradač, A. H. Gonzalez, M. Markevitch, S. W. Randall, C. Jones, and

D. Zaritsky, “A Direct Empirical Proof of the Existence of Dark Matter,” The Astrophysical

Journal, vol. 648, no. 2, p. L109, 2006.

[55] P. J. E. Peebles, The Llarge-Scale Structure of the Universe. Princeton University Press,

1980, vol. 12.

[56] C. J. Copi, D. N. Schramm, and M. S. Turner, “Big-bang Nucleosynthesis and the Baryon

Density of the Universe,” Science, vol. 267, no. 5195, pp. 192–199, 1995.



61

[57] L. Amendola and S. Tsujikawa, Dark Eenergy: Theory and Observations. Cambridge

University Press, 2010.

[58] M.-H. Li and K.-C. Yang, “Galactic Dark Matter in the Phantom Field,” Physical Review

D—Particles, Fields, Gravitation, and Cosmology, vol. 86, no. 12, p. 123015, 2012.

[59] V. Kiselev, “Quintessence and Black Holes,” Classical and Quantum Gravity, vol. 20, no. 6,

p. 1187, 2003.

[60] X. Hou, Z. Xu, and J. Wang, “Rotating Bblack Hole Shadow in Perfect Fluid Dark Matter,”

Journal of Cosmology and Astroparticle Physics, vol. 2018, no. 12, p. 040, 2018.

[61] S. Haroon, M. Jamil, K. Jusufi, K. Lin, and R. B. Mann, “Shadow and Deflection Angle of

Rotating Black Holes in Perfect Fluid Dark Matter with a Cosmological Constant,” Physical

Review D, vol. 99, no. 4, p. 044015, 2019.

[62] M. Rizwan, M. Jamil, and K. Jusufi, “Distinguishing a Kerr-Like Black Hole and a Naked

Singularity in Perfect Fluid Dark Matter Via Precession Frequencies,” Physical Review D,

vol. 99, no. 2, p. 024050, 2019.


	AUTHOR’S DECLARATION
	ABSTRACT
	TABLE OF CONTENTS
	Table of Contents
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	LIST OF SYMBOLS
	ACKNOWLEDGMENT
	DEDICATION
	=Introduction
	General Relativity
	Black Hole
	Static and Stationary Black Hole
	Schwarzschild Black Hole
	 Reissner-Nordström Black Hole
	Kerr Black Hole
	 Kerr-Newman Black Hole
	Event Horizon
	Light Ring
	Topological Number of Static Spheres
	The Number of Static Sphere
	Lagrangian Method for Geodesics


	=LITERATURE REVIEW
	=Topology of Timelike Circular Around Rotating Black Hole
	Circular Geodesics and Effective Potential
	Topology of Light Rings
	Timelike Circular Orbits

	Local and Global Typologies
	 Global Property
	 Stability and Local Property
	 Bifurcation Point and MSCO 

	Timelike Circular Orbit and Topology in Kerr Black Hole
	Effective Potential of a Kerr Black Hole
	Asymptotic Behaviours and Vector


	Topology of Timelike Circular Orbit in Kerr-like Black Hole in Perfect Fluid Dark Matter Background
	Dark Matter
	Kerr-Like Black Holes in PFDM Background
	Topology of Equatorial Timelike Circular Orbits Around Kerr-Like Black PFDM Background
	Vector and Asymptotic Behaviours


	Conclusion

