
i

MACHINE LEARNING BASED KEY LOGGER

DETECTION IN MOBILE

By

 SAJID KHAN

NATIONAL UNIVERSITY OF MODERN LANGUAGES ISLAMABAD

 September, 2024

ii

Machine learning based keylogger detection in mobile

By

SAJID KHAN

MSEE, National University of Modern Languages, Islamabad, 2024

A THESIS IN PARTIAL FULLFILMENT OF THE REQUIRMENT FOR THE

DEGREE OF

MASTER OF SCEINCE

In Electrical Engineering

To

FACULTY OF ENGINEERING AND COMPUTING

MSEE, NATIONAL UNIVERSITY OF MODERN LANGUAGES, ISLAMABAD,

iii

THESIS AND DEFENSE APPROVAL FORM

The undersigned certify that they have read the following thesis, examined the defense, are

satisfied with overall exam performance, and recommend the thesis to the Faculty of

Engineering Computing.

Thesis Title: Machine learning based keylogger detection in mobile

Submitted by: Sajid khan Registration #: NUML-S21-008

Master of Science in Electrical Engineering

Electrical Engineering

Discipline

Dr. Madah Ul Mustafa

Research Supervisor Signature of Supervisor

 Dr. Farhan Sohail

Research Co-Supervisor Signature of Co- Supervisor

iv

 Dr. Farhan Sohail

 HOD (EE) Signature of HOD (EE)

Dr. Noman Malik

 Dean (FEC) Signature of Dean (FEC)

Date

Sep 4th , 2024

v

AUTHOR’S DECLARATION

I Sajid khan

Son of Alam Zeb

Registration # NUML-S21-008

Discipline Electrical Engineering

Candidate of Master of Science in Electrical Engineering (MSEE) at the National

University of Modern Languages do hereby declare that the thesis Machine learning

based keylogger detection in mobile submitted by me in partial fulfillment of MSSE

degree, is my original work, and has not been submitted or published earlier. I also

solemnly declare that it shall not, in future, be submitted by me for obtaining any other

degree from this or any other university or institution. I also understand that if evidence of

plagiarism is found in my thesis/dissertation at any stage, even after the award of a degree,

the work may be cancelled and the degree revoked.

Signature of Candidate

 Sajid Khan
 Name of Candidate

4th Sep, 2024

Date

vi

Dedication

"To my father, who taught me that the best kind of knowledge is that which is learned for

its own sake, and to my mother, who showed me that even the largest task can be

accomplished when taken one step at a time, this thesis is dedicated."

vii

Acknowledgments

For the successful completion of this project, We are thankful to Almighty Allah, for

enabling us to complete this project and making everything possible for the project to be a

success.

We would like to express our sincere gratitude to our project supervisor, Dr.Madah Ul

Mustafa for his sincere guidance, successive cooperation and useful suggestions.

We are thankful to all the "faculty of engineering and computing" for providing valuable

information and for helping us. We are also thankful to the National University of Modern

Languages Islamabad for providing a platform to successfully complete this project.

viii

Abstract

As information technology evolves, cybersecurity professionals must ensure security and

privacy. Recent research shows a rise in new malware strains, with keyloggers becoming

particularly sophisticated. This malicious software can discreetly record every keystroke

on a device, giving attackers access to crucial data without the owner's approval.

Keyloggers must be identified to prevent data loss and unauthorized disclosure.

Antivirus systems can be ineffective against novel keyloggers that are not known threats.

These systems detect threats using heuristic and behavioral analysis. Machine learning and

deep learning algorithms may solve cybersecurity problems. These algorithms can detect

several threats, including keyloggers that exploit weaknesses. However, these solutions are

not a panacea for security challenges, and their efficacy depends on many factors.

In this study, we proposed a hybrid deep learning model based on CNN Convolutional

Neural Network and long short-term memory networks LSTM. CNNs are used to predict

keylogger attacks using several feature engineering methodologies where LSTM works on

classification. Feature engineering preprocessed the dataset by reducing unnecessary

features, fixing imbalances, and scaling features. With only 10 epochs, the training

approach reached 99% accuracy and good performance. This shows that the CNN-based

technique can predict keylogger attacks and that feature engineering improves model

performance.

Keywords: Keyloggers. Convolutional Neural Network, Cybersecurity, Feature

Engineering, CNN, LSTM.

ix

Table of Contents
1. INTRODUCTION... 1

1.1. Overview ... 1

1.2. Background ... 2

1.3. Motivation ... 4

1.4. Problem Statement .. 4

1.5. Aim and Objectives ... 4

1.5.1. Aim .. 4

1.5.2. Objectives .. 4

2. RELATED WORK ... 6

2.1. Literature Review .. 6

2.2. Machine learning and Deep Learning Approaches ... 6

2.3. Behavioral Analysis .. 7

2.4. Anomaly Detection ... 8

2.5. Malware Analysis Overview ... 9

2.5.1. Techniques Used in Literature .. 9

2.5.2. Comparison of Techniques.. 10

2.6. Keyloggers .. 11

2.6.1. PCC Algorithm:... 12

2.6.2. Dynamic Taint Analysis: ... 12

2.7. Countermeasures ... 15

2.7.1. Real-time Protection:... 16

2.7.2. Detection and Removal: .. 16

2.8. Comprehensive Analysis of Fraud Detection Techniques: Advantages, Challenges,

and System Integrations .. 16

2.8.1. Rule-Based Systems .. 16

2.8.2. Machine Learning Models .. 17

2.8.3. Anomaly Detection Systems ... 17

2.9. Fraud Detection Techniques: Overview, Pros, Cons, and Limitations 17

2.9.1. Rule-Based Systems [34] .. 17

2.9.2. Machine Learning-Based Systems [35-37] ... 18

2.9.3. Hybrid Systems (Combining Rule-Based and Machine Learning) [38-39] .. 18

2.9.4. Deep Learning-Based Systems [40-41]... 19

2.9.5. Anomaly Detection Techniques [42,43] ... 20

x

2.10. Comparison Table ... 21

3. METHODOLGY... 23

3.1. Proposed Deep Neural Network Model .. 23

3.1.1. Advantages of using CNN... 23

3.1.2. Hybrid CNN-LSTM Architecture: .. 24

3.2. Layers Used In Proposed Model ... 25

3.2.1. Convolutional Layer .. 25

3.2.2. Pooling Layer .. 26

3.2.3. Batch Normalization ... 27

3.2.4. Activation Function ... 28

3.2.5. Fully Connected Layer .. 29

3.3. Dataset Collection ... 30

3.3.1. Dataset: .. 30

3.3.2. 30

3.3.3. Exploring Keylogger Detection Datasets on Kaggle: 31

3.3.4. Features: .. 31

3.3.5. Labels: ... 32

3.3.6. Annotations: .. 32

3.3.7. Characterizes: .. 32

3.4. Data Preprocessing .. 33

3.4.1. Maintaining the Integrity of Data .. 34

3.5. Applying Feature Engineering .. 35

3.5.1. Feature Relevance ... 35

3.5.2. Applying Normalization or Standardization Technique 36

3.6. Accuracy Matrix .. 36

3.6.1. Intersection Over Union .. 36

3.6.2. Precision and Mean Average Precision ... 37

3.6.3. Recall ... 37

3.6.4. F1 Score... 37

3.7. Training and Evaluation .. 38

3.7.1. Training Data: ... 38

3.7.2. Test Dataset: .. 38

3.8. Evaluation and Comparison: ... 38

3.9. Pre-Requisite: .. 38

3.9.1. Python Libraries .. 38

3.9.2. Hardware Requirements .. 39

3.10. Flow Chart ... 39

xi

3.11. Data Analysis .. 40

3.11.1. Sequencing Analysis: .. 40

3.11.2. Feature Extraction: .. 40

3.11.3. Behavioral Analysis: ... 40

3.11.4. Anomaly Detection: .. 40

3.12. Natural Language Processing (NLP): ... 41

3.12.1. Feature Learning: .. 41

3.13. Model Implementation .. 41

3.14. Proposed Model ... 42

3.15. Key Features of Proposed Model .. 44

3.15.1. Model Structure: .. 44

3.15.2. Input Layer .. 45

3.15.3. Hidden Layers: .. 45

3.15.4. Output Layer: .. 45

3.15.5. Loss Function .. 45

3.15.6. Optimization method: .. 45

3.15.7. Metrics:.. 46

3.15.8. Regularization: .. 46

3.15.9. Initialization: ... 46

3.15.10. Batch Normalizing: ... 46

3.15.11. Activation Functions: .. 46

3.16. Components of the model ... 46

3.16.1. Sequential Model: ... 47

3.16.2. Convolutional Layers (Conv1D): .. 47

3.16.3. Max-Pooling Layers (MaxPooling1D): .. 47

3.16.4. Flatten Layer ... 47

3.16.5. Fully Connected Layers (Dense) ... 47

3.16.6. Dropout Layers:... 48

3.16.7. Output Layer: .. 48

3.16.8. Optimizer (Adam): .. 48

3.16.9. Loss Function .. 48

3.16.10. Metrics:.. 48

3.16.11. Training: .. 49

4. RESULTS AND DISCUSSION ... 50

4.1. Training and Validation Accuracy .. 50

4.1.1. Training Accuracy: .. 50

4.1.2. Validation Accuracy:... 50

xii

4.2. Training and Validation Loss .. 51

4.2.1. Training Loss: ... 51

4.2.2. Validation Loss: .. 52

4.3. Proposed Model Accuracy Graph ... 53

4.4. Proposed Model Loss Graph ... 54

4.5. Receiver Operating Characteristic Curve (ROC) .. 54

4.5.1. Binary Classification Task: ... 55

4.5.2. Model Prediction Probabilities: ... 55

4.5.3. Threshold Variation: ... 55

4.5.4. Plotting the ROC Curve: ... 55

4.5.5. Area Under the Curve (AUC): .. 56

4.5.6. Interpreting the ROC Curve: ... 56

4.5.7. Threshold Selection: .. 56

4.5.8. Comparing Models: ... 56

4.6. Evaluating CNN model performance for Keylogger Detection 59

5. CONCLUSION AND FUTURE WORK .. 61

5.1. Conclusion ... 61

5.2. Future Work .. 61

xiii

List of Figures
Figure 2: Convolutional Operation .. 25

Figure 3: Max and Average Pooling Operation ... 27

 Figure 4: Sigmoid vs ReLU .. 29

Figure 5: Remove NAN ... 34

Figure 6: Dataset After Removing NAN ... 35

Figure 7: Normalization ... 36

Figure 8: Flow Chart of the Research .. 39

Figure 9: Accuracy Graph .. 53

Figure 10: Loss Graph.. 54

Figure 11: ROC Curve.. 57

xiv

List of Tables

 Table 1 Comparison with Previous Work ...21

Table 2 Compare Dataset and Accuracy…………………………………………………26

Table 3 Hardware Requirements ...33

Table 4 Comparison of the Results ..58

1

CHAPTER 1

1. INTRODUCTION

1.1. Overview

Security, often known as cybersecurity, is a multidimensional field that aims to protect

computer systems, networks, and data against destructive acts that are carried out by threat

actors. Within this domain, numerous types of malicious software, phishing campaigns,

denial-of-service attacks, and insider threats all provide major dangers to the

confidentiality, integrity, and availability of information [1]. Malware is an umbrella term

that comprises a wide range of malicious software, such as viruses, worms, trojan horses,

ransomware, spyware, and adware. Each of these types of software poses a unique risk to

the security of digital transactions. Worms, for example, are able to transmit themselves

over networks on their own, whereas viruses are able to disseminate themselves through

infected files or applications. Trojan horses are malicious programs that cloak themselves

as genuine software in order to obtain unauthorized access and take advantage of user trust

[1]. Ransomware, on the other hand, encrypts files and demands payment in exchange for

the keys to unlock them, whereas adware bombards users with adverts that they do not

want to see, which frequently has an effect on the performance of the system [1]. In order

to effectively combat these attacks, it is necessary to use a holistic approach that

incorporates firewalls, antivirus solutions, intrusion detection systems, and user education

in order to raise knowledge of recommendations for best practices in cybersecurity [2].

Keyloggers, which are often referred to as keystroke logging programs, are a particularly

sneaky type of malware that is designed to covertly record the keystrokes of users. This

type of malware poses significant threats to the confidentiality of important information

[3]. As a result of the widespread use of computers for a variety of online activities, the

number of efforts to engage in keylogging has increased, highlighting the critical need for

effective defenses. In light of this, education in cybersecurity ought to incorporate a

2

comprehensive investigation of keyloggers and anti-keylogging strategies in order to

address a number of essential goals [3]. One of the primary benefits of studying keyloggers

is that it provides students with the opportunity to acquire knowledge regarding the goals

of cyber attackers, the complex nature of malware, and the procedures that are utilized to

corrupt and control computers [3]. Furthermore, this instructional focus provides students

with the tools and methodologies that are essential for detecting and blocking keyloggers.

This is in recognition of the dynamic nature of current malware, which frequently evades

standard static detection approaches [4].

Recent investigations conducted by well-known cybersecurity companies provide more

evidence that hostile actors continue to make use of keyloggers [5]. An alarming pattern

that has been seen over the course of the past few years is indicated by the findings of an

investigation conducted by VeriSign, which demonstrates a significant rise in the

prevalence of malware that incorporates keylogging capabilities [5]. Similar to the previous

example, research conducted by Symantec highlights the widespread use of keyloggers by

hackers in order to illegally gather personal user data. This research also highlights the

necessity of addressing this threat in the context of cybersecurity education and practice

[5]. Furthermore, the findings of John Bambenek of the SANS Institute highlight the

astonishing financial losses that can be attributed to keyloggers. This further emphasizes

the necessity of combatting this threat through the implementation of complete

cybersecurity measures [5].

1.2. Background

 The author in [6] has effectively leveraged deep learning and natural language

processing (NLP) techniques to develop an advanced system for categorizing textual data

in log files. This innovative solution significantly enhances workflow efficiency by

reducing the time required for manual log file review [6]. Their focus on text classification

encompasses key areas such as intent analysis, emotion detection, and sentiment

evaluation, which have garnered substantial interest within the machine learning

3

community. As dedicated practitioners in the field of text data, they continuously explore

the diverse tools and methodologies provided by NLP. However, while the author

highlights the use of NLP for log file classification, specific details regarding the

classification architecture, model parameters, and other technical aspects are not provided

[7].

 Malware is software designed to steal data, encrypt files for ransom, or create

botnets. Trojans, viruses, keyloggers, rootkits, worms, and spyware are all classified as

malware [8]. Malware, which evolved from the 1998 "Morris Worm" to attack

vulnerabilities and steal user data, remains a major security issue [9]. Smart technologies

have transformed our lives, yet keyloggers on mobile devices have increased security risks.

Surreptitiously monitoring keyboard inputs may compromise sensitive data [8]. Malware

detection used signature-based scanning, but AI became essential when polymorphism and

obfuscation allowed malware to escape detection. AI can use deep learning and supervised

learning to classify malware based on its behavior [10]. Keyloggers were meant for

technical troubleshooting but are now used for unwanted monitoring. They record

keystrokes and send them to distant servers in mobile devices, threatening critical data.

Machine learning may identify malicious from conventional apps [11]. Keylogger malware

is difficult to detect due to its stealthy activity, evasion of standard detection methods, and

potential installation by genuine users. For reliable and efficient identification, machine

learning and behavior-based analysis are used [11]. Keylogger identification is done using

an SVM model in this study. SVM is a powerful machine learning method for malware

identification and classification. SVM models can reliably categorize new keyboard

sequences, providing reliable detection and prevention in the dynamic cybersecurity

landscape. They are trained on a carefully annotated dataset of valid input and keylogger-

generated keystrokes.

4

1.3. Motivation

Cyberattacks, particularly keyloggers, are an increasing threat in today's digital

landscape. These hidden keyloggers can compromise sensitive data, posing significant

risks to both individuals and businesses. Traditional cybersecurity methods often fall short

in detecting these stealthy attackers, necessitating the development of sophisticated

detection systems with high accuracy. Our robust model leverages CNNs and LSTM

networks to extract hierarchical features from sequential data and capture temporal

dependencies, resulting in more precise detection of keylogger activity. In an ever-evolving

digital environment, advanced neural network architectures are essential to bolster

cybersecurity defenses and safeguard against emerging cyber threats.

1.4. Problem Statement

 Cybercriminals develop new methods to hack networks and consumer gadgets as

technology advances. Intercepting keystrokes to modify login details gives illegal access

to bank accounts and email credentials. Traditional machine learning methods like SVMs

and decision trees struggle to detect keyloggers [12,13]. However, deep learning methods

like sequential models and CNNs may help detect and mitigate keyloggers.

1.5. Aim and Objectives

1.5.1. Aim

The aim of this research is to develop an improved method for keyloggers detection

using machine learning techniques, the objective is to enhance the existing approaches that

are used to detect fraudulent online payment transactions.

1.5.2. Objectives

 To design and develop an innovative fraud detection framework that

integrates advanced methods, such as anomaly detection and real-time

monitoring, to improve the detection and prevention of online payment fraud.

5

 To evaluate the effectiveness of feature engineering methodologies in

preprocessing datasets, addressing feature imbalances, and improving the

predictive capabilities of deep learning models in detecting keyloggers.

 To assess the performance of current machine learning and deep learning

algorithms in detecting online payment fraud, emphasizing their accuracy,

scalability, and ability to adapt to emerging fraud tactics.

 To develop and implement a CNN-based framework for predicting keylogger

attacks, leveraging advanced feature engineering techniques to enhance

model accuracy and performance.

 Chapter 1 explores cybersecurity challenges, focusing on malware, particularly

keyloggers, and various cyberattack methods. It emphasizes the importance of protecting

systems, networks, and data from threats like malware, phishing, and insider attacks.

Comprehensive cybersecurity measures, including firewalls, antivirus solutions, intrusion

detection systems, and user awareness, are highlighted.

This chapter also examines the role of machine learning, such as Support Vector Machines

(SVM), in detecting keyloggers and evolving threats. Motivated by the growing

sophistication of cyber-attacks, this study aims to enhance online payment fraud detection

using advanced techniques like CNNs and LSTMs.

This chapter concludes with objectives to review traditional methods, analyze fraud

patterns, and propose innovative technologies for combating financial cyber threats.

6

CHAPTER 2

2. RELATED WORK

2.1. Literature Review

A comprehensive literature review is needed to understand the subtle nuances of

different types and ways for detecting online payment fraud that are being in practice as on

today. The review will be as extensive and comprehensive using various sources, including

academic research papers, industry reports, or esteemed publications. This study aims to

address this limitation by synthesizing the current body of knowledge and, identify

strengths, weaknesses and gaps with respect to existing fraud-detection techniques.

A full overview of the area will be provided by the literature study, which will go

into a variety of aspects, including the following points:

2.2. Machine learning and Deep Learning Approaches

In the field of fraud detection, machine learning algorithms have been proven as one of the

powerful tools which can significantly improve accuracy and flexibility in detecting

fraudulent activities specifically for online payment systems. In the literature, an extensive

study has been done for performance analysis of various machine learning models along

with feature selection methods and ensemble techniques to check their capabilities in this

important area [15]. Online payment fraud detection has been extensively studied using a

number of supervised learning methods including logistic regression, decision trees and

random forests, support vector machines (SVM), as well as neural networks. All these

approaches use labelled datasets to train models that will learn how to distinguish fictitious

transactions from real ones. Studies have investigated comparing the performance of these

models in terms of several metrics such as precision, recall and F-1 Score to find out which

one is most suitable for fraud detection while minimizing false positives (f-p), a wrong

judgment on acceptable transactions) and negatives. The interest in unsupervised learning,

7

such as k-means and DBSCAN for clustering anomalies on transaction data without labeled

fraudulent examples has also brought these techniques to the spotlight. They are especially

effective in finding out new attacks even for unseen past data, which is pretty essential to

detect the emerging threat of fraud on online payment systems [16].

Unlike purely supervised learning, in such situations we have a small amount of

labeled data and what is commonly done is to combine the supervisory signals that are

represented both by those labels (on top of which you can optimize) as well somewhat less

structured information present in our unlabeled instances within this unsupervised

environment. This hybrid training methodology allows the system to learn on examples of

both fraudulent and authentic transactions, thereby improving its ability to generalize new

fraud instances while reducing extensive labeling efforts.

In addition to this, ensemble methods like bagging and boosting averaging multiple

models are also found in the literature enhance robustness of fraud detection solutions

(Khamse-Ashari 2013) with respect to different evaluation metrics. Bagging, boosting and

stacking ensemble techniques that benefit from diversity among individual models

allowing for better performance in terms of classification accuracy and reduced over-

fitting. In this paper we investigate such performance of the overall accuracy when using

each machine learning as built a model, and hope to identify their performances in

enhancing fraud detection rate on online payment systems. Organizations can provide

better ways to combat frauds using hybrid approach of bunching together strengths and or

advantages any algorithms,feature selection methods, ensemble techniques.

2.3. Behavioral Analysis

Behavioral analysis approaches play a crucial role in fraud detection by monitoring

user actions and identifying deviations from established behavioral norms that may signal

fraudulent activities. The evaluation of relevant literature encompasses a diverse range of

methodologies, including user profiling, session analysis, clickstream analysis, and other

8

behavioral analysis techniques. Through a comprehensive review, the effectiveness of

these methods in improving the accuracy of fraud detection is thoroughly examined.

User profiling involves creating profiles of individual users based on their historical

behavior, transaction patterns, demographics, and other relevant characteristics [5]. By

analyzing deviations from established profiles, such as sudden changes in spending habits

or unusual transaction times, fraud detection systems can flag potentially fraudulent

activities for further investigation. Research in this area focuses on the development of

robust profiling techniques that can accurately capture the unique behaviors of individual

users while minimizing false positives. Session analysis extends beyond individual

transactions to examine the sequence of actions performed by users during a single session

or interaction with an online platform. By analyzing session data, including login times,

page navigation patterns, and interaction durations, fraud detection systems can identify

anomalous behaviors that may indicate unauthorized access or fraudulent activity. Session

analysis techniques aim to differentiate between legitimate user sessions and those

associated with fraudulent behavior, thereby improving the accuracy of fraud detection

systems [17].

2.4. Anomaly Detection

Anomaly detection methods play a pivotal role in identifying irregularities within

transaction data, particularly in the context of detecting fraudulent online payments [7].

Statistical methods, such as z-score analysis and time-series analysis, offer simplicity and

efficiency in pinpointing outliers based on deviations from expected norms. Clustering

techniques, like k-means and density-based clustering, excel in uncovering groups of

transactions that deviate from typical patterns, thereby flagging potentially fraudulent

activities. Neural networks, including autoencoders and deep learning architectures,

provide a powerful means of capturing intricate patterns and relationships within

transaction data, enhancing the detection of subtle anomalies associated with fraudulent

behavior. However, each of these approaches has its limitations. Statistical methods may

9

struggle with non-linear or complex anomalies that do not adhere to standard distributions.

Clustering techniques may encounter challenges with high-dimensional data and require

careful parameter tuning to achieve optimal results. Neural networks, while capable of

capturing complex patterns, often demand large amounts of labeled data and substantial

computational resources for training and inference. Additionally, all anomaly detection

methods face the challenge of balancing detection accuracy with false positive rates,

necessitating careful consideration of the trade-offs involved in fraud detection systems

[18].

2.5. Malware Analysis Overview

In this part, we will see the importance of feature engineering in fraud detection as

they are directly impacting the performance of your machine learning model. Feature

engineering is at the core of this task and can greatly improve detection accuracy, precision,

recall by transforming raw data into insightful features.

2.5.1. Techniques Used in Literature

1. Feature Creation and Selection:

o Based on the information we receive in transaction frequency, average

transaction amount and time based features (time of day / dyas of week) etc

to derive new feature.

o Feature selection: It includes (i) using the correlation analysis, ii) mutual

information iii), feature importance scores obtained from tree-based models

etc.

2. Aggregation and Statistical Features:

o Aggregating transaction data over different time windows to capture

patterns, such as total amount spent per day or number of transactions per

week.

10

o Calculating statistical measures like mean, median, variance, and standard

deviation for transaction amounts and frequencies.

3. Behavioral Features:

o Analyzing user behavior patterns, such as typical spending habits, common

transaction locations, and device usage.

o Identifying anomalies in behavior that may indicate fraudulent activity.

4. Textual and Categorical Feature Encoding:

o Encoding categorical variables using techniques like one-hot encoding,

label encoding, and target encoding.

o Using natural language processing (NLP) techniques to analyze textual

data, such as transaction descriptions or user comments.

5. Time-Series and Sequential Features:

o Capturing temporal dependencies in transaction data using techniques like

rolling windows and lag features.

o Employing sequence-based models, such as recurrent neural networks

(RNNs), to detect patterns over time.

2.5.2. Comparison of Techniques

 Feature Creation vs. Aggregation:

o Feature creation focuses on deriving new variables from raw data, providing

a more granular view, whereas aggregation condenses information over

time windows, offering a macro perspective.

 Statistical Features vs. Behavioral Features:

o Statistical features provide quantitative measures of transaction patterns,

which are effective for detecting anomalies. In contrast, behavioral features

capture qualitative aspects of user behavior, which can identify more subtle

forms of fraud.

 Encoding Techniques:

11

o One-hot encoding and label encoding are simple and effective for small

categorical datasets, while target encoding is useful for high-cardinality

categories. NLP techniques add a layer of sophistication for textual data but

require more computational resources.

 Time-Series Features:

o Rolling windows and lag features are effective for capturing short-term

trends, while sequence-based models are better suited for detecting complex

temporal patterns over longer periods.

2.6. Keyloggers

 A keylogger is precisely what its name suggests: a program designed to silently

record and store every keystroke made on a computer's keyboard. The inherent danger of

having a keylogger virus on your computer lies in its ability to covertly capture every piece

of text you input through your keyboard, including sensitive information such as passwords

and usernames. What makes matters worse is that some keyloggers are Trojan keyloggers,

which are concealed within seemingly harmless programs. These Trojan horse viruses are

deceptive in nature, as they disguise themselves as regular, sometimes fully functional

applications, making it appear as though nothing malicious has been installed on your

computer [20-22]. These Trojan keyloggers often go by various names, such as keystroke

malware, keylogger viruses, or Trojan horse keyloggers. They can also be considered a

subset of Trojan viruses, specifically designed for the purpose of surreptitious surveillance,

earning them the moniker of "child of Trojan" surveillance spyware.

 Keyloggers are a significant concern in cybersecurity. They record keystrokes on

computers or mobile devices, potentially compromising sensitive information. Various

techniques and algorithms have been proposed for their detection:

12

2.6.1. PCC Algorithm:

 The Pearson Product Correlation Coefficient (PCC) is used for keylogger detection

in some studies. It can effectively distinguish keylogging behavior when applied to the data

[23].

 Kernel-Based Behaviour Analysis: This approach involves scrutinizing the

behaviour of applications to detect malicious behaviours. It is particularly useful

for security assessments of Android applications [24].

2.6.2. Dynamic Taint Analysis:

 Dynamic taint analysis is employed for detecting kernel-level keyloggers. It can

differentiate between bit-level keylogging and underlying drivers. Machine Learning:

Machine learning models, such as Support Vector Machine (SVM) and Random Forest,

have been applied to detect keyloggers with promising results.

Keyloggers pose a significant threat to users due to their ability to secretly capture

keystrokes and compromise sensitive information. Unlike other types of malicious

software, keyloggers do not directly harm the system itself but instead target the user's data.

Here's a rewritten version of the text. Keyloggers are a distinct cybersecurity threat that

may not harm computer systems directly, but they pose a grave danger to users by

surreptitiously intercepting keystrokes and potentially compromising confidential

information entered through the keyboard [23]. This clandestine activity enables

cybercriminals to obtain critical data, including passwords, PIN codes, and other sensitive

information. The repercussions of such breaches are wide-ranging, extending from

financial losses, such as unauthorized transactions from the victim's account or

unauthorized access to online gaming accounts, to more severe consequences [24].

 Keyloggers can be used as instruments in a variety of forms of espionage, including

industrial and political espionage, in addition to causing individuals to suffer financial

losses. It is possible for them to facilitate the theft of confidential government information

as well as sensitive commercial data, putting the safety of both private businesses and state-

13

owned organizations at jeopardy. It is possible, for instance, that they will steal secret

encryption keys, which can have far-reaching consequences [25].

Keyloggers, phishing attacks, and social engineering tactics are the principal

strategies that are now being utilized in the field of cyber fraud. The protection of users

against keyloggers is more difficult than the protection against phishing, which may be

accomplished by recognizing and avoiding phishing emails and abstaining from entering

personal information on websites that appear to be dubious. The implementation of

comprehensive security measures is typically the only effective countermeasure that can

be taken. It is practically impossible for consumers to detect the presence of keyloggers on

their computers since keyloggers frequently function in a hidden manner [26].

 According to [27-28], who oversees Brazil's Computer Emergency

Response Team under the country's Internet Steering Committee, keyloggers have eclipsed

phishing as the most widely deployed method for stealing sensitive information.

Additionally, keyloggers are continuously developing and becoming more complex as time

goes on. They now have the capacity to monitor the websites that the user visits and

selectively collect keystrokes that are entered on websites that are of particular interest to

the cybercriminal. In recent years, there has been a considerable increase in the prevalence

of a variety of harmful programmed that contain keylogging capabilities. Each of these

programs has become increasingly widespread. Every single person who uses the internet

is susceptible to the dangers that are posed by cybercriminals, regardless of where they are

located or the organizations that they are involved with.

 It's important to note that not all programs with keylogging capabilities are

inherently malicious. Some businesses employ keystroke logging programs to monitor

their employees' computer usage, and various parental control software also logs a child's

internet activity. These legitimate use cases are not considered malicious keyloggers. So,

what exactly does a keylogger Trojan do? A keylogger, in its malicious form, diligently

monitors and records every keystroke it can detect. Once it infiltrates a system, it proceeds

to track and store the gathered information locally. In some cases, the hacker behind the

14

keylogger may need physical access to the compromised computer to retrieve the logged

data [29].

 Alternatively, the keylogger can transmit the recorded logs over the internet to the

attacker. This means that if you have fallen victim to a keylogger virus and are using your

keyboard to input information anywhere, the virus is likely privy to it. This holds true

whether you're working within an offline program like Microsoft Word or accessing online

platforms such as your bank or social media accounts. Some sophisticated keystroke

malware can even remain dormant until specific actions are detected [30]. The easiest path

for a keylogger Trojan to take is when your antivirus software is outdated, turned off, or

perhaps not even installed on your system. Consequently, these keyloggers can easily

bypass the antivirus software if it lacks the knowledge to protect your computer effectively.

Keyloggers are typically downloaded through executable files (EXE files). This is the

standard format for most programs on your computer, making it impractical to avoid all

EXE files in an attempt to steer clear of keyloggers [31-33].

 A number of preventative measures ought to be performed in order to improve

software security and reduce the likelihood of malicious software, which may include

spyware and keyloggers. When downloading software, make sure to only do it from

reliable sources, such as official app stores and respected websites. Avoid downloading

software from random or torrent sources. Verify the digital signatures of the apps you have

downloaded to guarantee their legitimacy, and read reviews written by other users for

additional assurance. In order to fix security vulnerabilities, it is important to keep

operating systems and software up to date. Additionally, it is important to install

trustworthy antivirus and anti-malware applications in order to detect and remove harmful

software. Additionally, it is important to exercise caution while dealing with email

attachments, particularly executable files that come from unknown senders. A firewall

should be enabled to monitor network traffic and prevent unwanted access [37]. The best

way to protect oneself against hackers is to educate yourself on the main social engineering

techniques they use and to frequently back up essential data to cloud storage or external

15

sources. A typical user account should be used for everyday work in order to reduce the

risk of virus harm. Additionally, it is important to be aware of browser extensions and

permissions that are sought by software that has been installed. In addition, whenever it is

feasible, implement two-factor authentication for online accounts. This will add an

additional layer of protection against illegal access.

Keyloggers are used by cybercriminals to illegally get sensitive information by secretly

recording the keystrokes performed by users who are unaware of the activities being

recorded. In the case of phishing schemes that targeted customers of Nordea bank, for

example, malicious emails were sent to users, prompting them to install an anti-spam

program that embedded the Haxdoor Trojan to record login credentials throughout the

process of registering for online services [34]. In a similar manner, the Mydoom worm

carried out a distributed denial of service attack while covertly recording sensitive

information such as credit card details from computers that were infected [36]. Trojan

horses that contained embedded keyloggers were used in targeted assaults, such as those

that were carried out on the London headquarters of Sumitomo Mitsui, in order to monitor

and steal login credentials, thereby permitting unauthorized access to accounts [37].

Additionally, in instances of industrial espionage, it is quite probable that keyloggers were

utilized in order to steal critical information from the corporations that were the targets of

the espionage. This demonstrates the widespread and detrimental impact that malware of

this kind has on compromising cybersecurity and undermining the integrity of

organizations [38].

2.7. Countermeasures

 As the threat of spyware continues to evolve and becomes more sophisticated,

several techniques have emerged to combat it effectively. These encompass both software

programs designed for spyware removal or blocking, and various user practices aimed at

reducing the risk of spyware infiltrating a system. Anti-spyware programs employ two

primary methods to tackle spyware:

16

2.7.1. Real-time Protection:

 Anti-spyware programs can offer real-time protection against the installation of

spyware software on your computer. This functionality parallels that of antivirus software.

The anti-spyware software continuously scans all incoming network data for any signs of

spyware software and promptly blocks any identified threats.

2.7.2. Detection and Removal:

 Alternatively, anti-spyware software can be utilized exclusively for detecting and

removing spyware software that has already infiltrated user computer. This approach is

generally more user-friendly and widely adopted. With this type of spyware protection

software, we can schedule regular scans of over computer, such as weekly, daily, or

monthly, to identify and eliminate any spyware software present. This anti-spyware

software conducts thorough scans of the Windows registry, operating system files, and

installed programs on your computer, generating a list of detected threats. we can then

decide which items to delete and which to retain based on the scan results [41].

2.8. Comprehensive Analysis of Fraud Detection Techniques:

Advantages, Challenges, and System Integrations

When addressing fraud detection techniques, it's crucial to analyze and compare the

methods in terms of their references, advantages, disadvantages, and limitations. Here’s a

detailed exploration of various common fraud detection techniques:

2.8.1. Rule-Based Systems

RBS are traditional methods used extensively in banks and financial institutions.

They are simple to implement and understand, making them effective for catching known

types of fraud that follow predictable patterns. However, these systems are rigid and not

adaptable to new or evolving fraudulent strategies without manual updates. Their main

limitations include the inability to detect new, unseen types of fraud and a high rate of false

positives as the fraud landscape evolves.

17

2.8.2. Machine Learning Models

ML Models represent modern data-driven approaches that are widely

adopted in various sectors. These models are capable of learning and adapting from

new data, detecting complex patterns of fraudulent behavior, and can handle large

volumes of data efficiently. Despite their advantages, machine learning models

require significant data preprocessing and feature engineering and may be opaque

in their decision-making processes, often referred to as the black-box issue. They

depend on large, labeled datasets for training and risk model decay over time if not

continuously updated with new data.

2.8.3. Anomaly Detection Systems

ADS are designed to identify outliers in data that could indicate fraudulent

activity. They are effective in detecting fraud that deviates from normal behavior

patterns and can be unsupervised, not requiring labeled data for training. However,

they suffer from higher false positive rates, as not all anomalies are fraudulent, and

can miss frauds that mimic normal behavior patterns. Determining the threshold for

what constitutes an anomaly and adjusting it based on evolving data patterns can

be challenging.

2.9. Fraud Detection Techniques: Overview, Pros, Cons, and

Limitations

2.9.1. Rule-Based Systems

Pros:

 Easy to implement and understand.

 Effective for detecting well-known and simple fraud patterns.

 Provides immediate alerts for predefined suspicious activities.

Cons:

 Inability to adapt to new and evolving fraud tactics.

18

 High number of false positives, leading to wasted resources.

 Requires constant maintenance and updating of rules.

 May overlook complex and sophisticated fraud schemes.

Limitations:

 The static nature of predefined rules makes it challenging to keep pace with rapidly

changing fraud patterns.

 Balancing thresholds to minimize false positives and false negatives requires

continuous fine-tuning.

2.9.2. Machine Learning-Based Systems

Pros:

 Adaptability to new and evolving fraud patterns.

 Ability to learn from data and improve over time.

 Can detect complex and subtle fraudulent activities.

 Reduces false positives by distinguishing between legitimate and fraudulent

transactions more accurately.

Cons:

 Requires large amounts of labeled data for training.

 Computationally intensive and may require significant processing power.

 May produce opaque models that are difficult to interpret.

Limitations:

 The effectiveness of machine learning models depends on the quality and quantity

of training data.

 Risk of overfitting to training data, leading to reduced performance on unseen data.

 Initial setup and model training can be resource-intensive.

2.9.3. Hybrid Systems (Combining Rule-Based and Machine Learning)

Pros:

19

 Leverages the strengths of both rule-based and machine learning approaches.

 Provides immediate detection through rules while continuously adapting to new

fraud patterns through machine learning.

 Balances precision and recall, reducing false positives and negatives.

Cons:

 Increased complexity in implementation and maintenance.

 Requires integration and synchronization between rule-based and machine learning

components.

 May still struggle with very novel or sophisticated fraud tactics that fall outside

both predefined rules and learned patterns.

Limitations:

 The need for continuous coordination and fine-tuning between rule-based rules and

machine learning models.

 Potentially higher resource requirements due to the combination of both techniques.

 Challenges in ensuring seamless cooperation between static rules and dynamic

learning models.

2.9.4. Deep Learning-Based Systems

Pros:

 High accuracy in detecting complex fraud patterns.

 Capable of processing large volumes of data efficiently.

 Can automatically extract relevant features from raw data.

Cons:

 Requires substantial computational resources and specialized hardware.

 May have longer training times compared to traditional machine learning models.

 Often seen as a "black box," making the results difficult to interpret and explain.

Limitations:

 The need for extensive labeled data for effective training.

20

 Risk of overfitting if not properly regularized.

 High implementation and operational costs.

2.9.5. Anomaly Detection Techniques

Pros:

 Effective at identifying unusual patterns that may indicate fraud.

 Can be used with unsupervised learning, requiring no labeled data.

 Adaptable to various types of data and fraud scenarios.

Cons:

 May generate false positives by flagging legitimate but unusual transactions.

 Requires fine-tuning to balance sensitivity and specificity.

 May miss fraud patterns that appear normal within the data distribution.

Limitations:

 The challenge of distinguishing between benign anomalies and actual fraudulent

activities.

 May require domain expertise to interpret and act on detected anomalies.

 Dependence on the quality of the data and the chosen detection algorithm.

21

2.10. Comparison Table

Tabel 1: Compare with Previous Work

Year References Title Summary

2019 [35] A modified framework

to detect keyloggers

using machine learning

algorithm

In this research used ResNet-50 and

ResNet-101 model on phishing

dataset. But Training time can be long

for large datasets

2020 [41] Investigation of

machine learning

techniques in intrusion

detection system for IoT

network

The model might not generalize well

to novel attack types or techniques

that emerge after the model has been

trained. Additionally, the focus on

primarily Botnet and Keylogger

attacks might limit the model's

effectiveness against other types of

cyber threats targeting IoT devices.

2022 [39] Building ML Model

with Hybrid Feature

Selection Technique for

Keylogger Detection

This research used Random Forest as

a machine learning model. Issue in

this work is Struggle with high-

dimensional dataset

2022 [38] Malware Classification

using DL. Thara,

Malware Classification

using Deep Learning

RNN model is used to detect trojan

data. But it can be prone to overfitting

if not properly regularized.

2023 [36] A Combinatorial-Based

Fuzzy Inference System

for Keylogger Detection

The detection of malware with fuzzy

logic. It may not capture complex

relationships in data

 Runs several research efforts trying to detected keyloggers and other EL using various

machine learning / deep learning techniques Table of impact. Warning: Another work from

2019 [35] with ResNet-50 and ResNet-101 models attempt to use keylogging detection in

a phish dataset but long training time on large scale data made it infeasible. Also in 2020,

another work [41] investigated machine learning tools for intrusion detection on IoT

networks highlighting the Botnet and Keylogger threats. But, the model could only perform

22

well at new attack types that arrived after training. In 2022, a study [39] used Random

Forest (RF) as an algorithm with hybrid feature selection method for detecting keylogger

which experienced limit in the high dimensionality of datasets. A different 2022 study [38]

applied an RNN model for trojan malware classification, but it faced overfitting problem

which showed the necessity of regularization. And lastly a study [36] conducted in 2023

used Combinatorial-based Fuzzy Inference System for detecting keyloggers which was

innovative but it is inadequate to capture complex relationships within the data. These

contrasts reflect the challenges of building strong, effective models that handle large and

diverse array data; two important aspects to generalize in a malware detection task.

23

CHAPTER 3

3. METHODOLGY

 The research methodology presented herein is a carefully structured approach designed

to achieve the objectives outlined in this proposal. The following sections provide a

comprehensive overview of our methodology:

3.1. Proposed Deep Neural Network Model

 Keyloggers represent a significant threat to cybersecurity due to their ability to

covertly record users' keystrokes. This capability poses a dual risk, compromising both the

privacy and security of individuals. To counteract this threat, the implementation of

machine learning algorithms, specifically Convolutional Neural Networks (CNNs), has

emerged as a promising approach for the development of reliable keylogger detection

systems. This investigation explores the potential of CNNs in detecting keyloggers

effectively. Convolutional Neural Networks (CNNs) are a class of deep learning models

primarily used for image analysis. However, their application is not limited to visual data;

they can be adapted to handle various types of data, including sequences and grids. This

versatility is achieved by modifying the architecture and input format of the CNN to suit

the specific data type. CNNs are designed to automatically learn hierarchical patterns and

features from the data they are trained on, making them well-suited for identifying complex

patterns such as those associated with keylogger activity.

3.1.1. Advantages of using CNN

The reason of using CNN is deep learning models, such as neural networks, possess

the remarkable ability to recognize complex patterns in data and automatically construct

hierarchical representations. This technology is particularly adept at handling time-series

or sequential data, making it an invaluable tool for various applications, including

keylogger prediction.

24

In the context of keylogger detection, utilizing neural network architectures like

Convolutional Neural Networks (CNNs) or Long Short-Term Memory (LSTM) networks

can be highly effective. CNNs are known for their ability to extract spatial features from

data, while LSTMs excel at capturing temporal dependencies in sequences. By leveraging

these architectures, it's possible to analyze the patterns of keystrokes and identify

anomalies indicative of keylogger activity.

The combination of CNNs and LSTMs can provide a robust solution for keylogger

prediction, enabling the detection of subtle and complex patterns associated with malicious

keystroke logging. As deep learning technology continues to evolve, its application in

cybersecurity, particularly in keylogger detection, is expected to become increasingly

sophisticated and effective.

3.1.2. Hybrid CNN-LSTM Architecture:

Our model uniquely combines CNN and LSTM architectures, leveraging the

strengths of both. The CNN layers are adept at identifying spatial features, while the LSTM

layers focus on capturing temporal relationships. This integrated approach enhances the

model's ability to process and interpret sequential data, improving its accuracy in making

predictions.

The integration of CNNs into our detection system significantly enhances its

performance by providing superior feature extraction, managing intricate data, ensuring

robustness, achieving generalization, offering scalability, and maintaining high accuracy.

These capabilities are crucial for effectively addressing the threats posed by keyloggers

and phishing attacks.

25

3.2. Layers Used In Proposed Model

3.2.1. Convolutional Layer

 It is the most important layer of CNN. The main calculation is performed in this

layer, where variety of feature maps are created through using kernels (weights matrix).

The extraction of feature map creates using the following equation:

𝑆(𝑖,𝑗) = (𝐼 ∗ 𝐾)(𝑖,𝑗) = ∑∑𝐾(𝑖 − 𝑚,𝑗 − 𝑛)𝐼(𝑚, 𝑛)

 Where i, j indicates the row number and the column number of an image, and m, n

represents the serial number in the kernel. I represent the input image, while 2D kernel is

denoted by K. After convolution the output is stored in S. Furthermore, the connection

between the input and output size will be calculated from the following equation.

𝑊 = 𝑊 − 𝐹 − 2𝑃 / 𝑆 + 1

𝐻 = 𝐻 − 𝐹 − 2𝑃 / 𝑆 + 1

𝐷 = K

 Where W and H represents the input, size padded by P. F represents the size of a

square kernel. While, S is the stride value. Also, the output dimension (D) equals to the

number of kernels (K) [77].

Figure 1: Convolutional Operation

 Figure 2, describes the basic convolution operation. Where each element of the sliding

window is multiplied by the filter. And add the results. Then based on the stride value the

26

sliding window is moved to the next position. In this figure, the stride value is one. So, it

moves single position. And do the same calculation to get the next results.

 Purpose of Convolutional Layer

The convolutional layer of a CNN is essential for its performance across various

applications due to its ability to automatically extract significant features from input data,

recognize spatial hierarchies, and reduce parameter count through sharing. Additionally, it

achieves translation invariance, lowers computational complexity, and maintains spatial

relationships, all of which are critical for the effective functioning of CNNs.

3.2.2. Pooling Layer

 In a typical Convolutional Neural Network (CNN), the pooling layer is critical for

reducing the dimensionality of feature maps, thereby adding hierarchical structure to the

model and decreasing computational complexity. This reduction is vital for enhancing the

network’s capability to focus on essential features. Typically positioned after the

convolutional layer, the pooling layer can utilize various methods, with max pooling and

average pooling being the most prevalent. Max pooling simplifies the input feature map by

dividing it into non-overlapping regions (for example, 2x2 blocks) and selecting the

maximum value from each region. This method is effective in preserving prominent

features while eliminating less significant ones. Conversely, average pooling computes the

mean of all values within each block, offering a more uniform representation of the feature

map. Although it helps in reducing noise, it dilutes the impact of stronger signals.

In our proposed model, we strategically incorporate multiple max pooling layers to

progressively down sample the feature maps. This approach allows the network to

concentrate on the most salient features, reducing the spatial dimensions of the data.

Consequently, our model achieves greater computational efficiency and is more robust

against overfitting, making it particularly effective for applications such as predicting

keylogger activities.

27

Figure 2: Max and Average Pooling Operation

3.2.3. Batch Normalization

 Batch normalization is a widely used method for normalizing the output of

convolutional layers in deep learning models. The primary goal of batch normalization is

to stabilize and accelerate the training process by ensuring that the inputs to each layer have

a mean of zero and a standard deviation of one. This is achieved through the equation:

Normalization ∶ 𝑥̂ 𝑙 =
𝑥̂𝑖 − µ

𝛽

√𝛿𝛽
2 + ɛ

Where xi is the input, μβ is the mini-batch mean, δβ2 is the mini-batch variance, and

ϵ is a small constant added for numerical stability.

Batch normalization provides several advantages that enhance the efficacy of deep learning

architectures. Primarily, it mitigates the problem of internal covariate shift by normalizing

layer inputs, thereby stabilizing their distribution throughout the training process and

promoting faster model convergence. This stabilization allows for the adoption of

increased learning rates while minimizing the risk of divergence, as the normalization

process moderates the scale of the gradients, safeguarding against gradient explosion or

vanishing.

Additionally, batch normalization exerts a regularization effect, diminishing the

dependence on other regularization strategies such as dropout. This effect not only reduces

28

overfitting but also improves the model's generalization capabilities when exposed to new

datasets.

Moreover, by accelerating convergence and facilitating higher learning rates, batch

normalization can significantly curtail the training duration of complex neural networks.

This efficiency makes it a crucial technique in the training regimen of sophisticated deep

learning models, particularly those involving extensive and intricate datasets.

3.2.4. Activation Function

 After the normalization step, an activation function is employed to inject non-

linearity into the neural network architecture. This non-linearity is crucial for enabling the

network to decipher complex patterns and deliver precise predictions. Among the

activation functions, the Rectified Linear Unit (ReLU) and the Sigmoid function are most

prevalent.

The ReLU activation function is mathematically defined as ReLU(x) = max(0, x),

where x represents the output from the preceding convolutional layer. ReLU's primary

benefit is its simplicity and computational efficiency, as it maintains positive values

unchanged while zeroing out negative values. This attribute is particularly beneficial in

mitigating the vanishing gradient problem—a scenario in deep networks where gradients

shrink to minimal values during backpropagation, hindering effective learning. Owing to

its capability to facilitate faster convergence and enhance overall model performance,

ReLU is extensively utilized in convolutional neural networks (CNNs).

On the other hand, the Sigmoid function = 𝜎(𝑥̂) =
1

1+𝑒−6
 It maps the input values to a range

between 0 and 1, making it suitable for binary classification tasks and probability

estimationIn the context of Fully Convolutional Networks (FCNs), the Sigmoid function

is frequently applied within the Region of Interest (ROI) pooling layer due to its ability to

effectively differentiate between foreground and background classes. This capability is

particularly vital for tasks such as object detection and semantic segmentation. To

summarize, both the ReLU and Sigmoid activation functions are instrumental in

29

Type equation here.introducing non-linearity to neural networks, thereby enabling these

networks to interpret complex patterns. While ReLU is favored in CNNs for its

computational efficiency, the Sigmoid function is prized in specific settings like FCNs for

its proficiency in generating probabilistic outputs.

Figure 3: Sigmoid vs ReLU

3.2.5. Fully Connected Layer

 It is also called dense layer. This layer is applied at the end of the CNN model. The

purpose of this layer to derive the final classification decision using linear operation. The

following formula used for the linear operation.

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑓(∑𝑤𝑖𝑥̂𝑖 + 𝑏

𝑛

𝑖=1

)

 In the discussed equation, w represents the weight, x signifies the image input with

a total count of n , b indicates the bias, and f denotes the activation function. In our model,

the activation function within the dense layer is specifically utilized for refining bounding

boxes. This process entails fine-tuning the coordinates of the bounding boxes to enhance

their precision in accurately localizing objects within the image. By ensuring that the output

values are appropriate for interpretation as coordinates, the activation function plays a

pivotal role in augmenting the model’s capability to detect and precisely pinpoint objects.

30

3.3. Dataset Collection

3.3.1. Dataset:

 Keylogger detection datasets are curated collections of data used to train and

evaluate machine learning and deep learning models for identifying keyloggers, which

pose significant security threats by covertly recording keystrokes to steal sensitive

information. Various algorithms have been applied to enhance detection accuracy: Random

Forest achieved 84% accuracy for detecting Trojans, Support Vector Machines identified

phishing attempts with 89% accuracy, K-Nearest Neighbors (KNN) and Recurrent Neural

Networks (RNN) detected spyware with 80% and 89% accuracy, respectively, and Fuzzy

Logic demonstrated the highest accuracy of 95.5% for malware detection. For this study,

we downloaded the dataset from Kaggle, a popular platform for data science projects.

These findings highlight the potential of advanced algorithms in combating malicious

software, with Fuzzy Logic emerging as the most accurate. Ongoing research is expected

to further enhance the detection accuracy and reliability of keylogger detection systems.

Tabel 2: Compare Dataset and Accuracy

Reference Algorithm Name Virus Accuracy

[42] Random Forest Torjan 87% (F1-Score)

[43] NN, SVM, and RF Phishing 95.18%,

85.45%, and

78.89%

[36] Fuzzy Logic Malware 95.5%

[40] CNN Spyware 90%

[38] RNN Malware 89%

The table compares different algorithms used for virus detection and their corresponding

accuracy. Random Forest achieved an 87% F1-Score in detecting Trojans [42]. In phishing

31

detection, Neural Networks (NN), Support Vector Machines (SVM), and Random Forest

(RF) achieved accuracies of 95.18%, 85.45%, and 78.89% respectively [43]. Fuzzy Logic

was highly effective for malware detection with an accuracy of 95.5% [36]. CNNs were

used for detecting spyware, achieving 90% accuracy [40], while RNNs were used for

general malware detection with an 89% accuracy [38]. These results highlight the

effectiveness of various algorithms in handling different types of cyber threats.

3.3.2. Exploring Keylogger Detection Datasets on Kaggle:

Based on our decision to use a keylogger detection dataset from Kaggle, the dataset

that we have chosen is 83 megabytes in size. This decision was made due to the fact that

the dataset has the potential to assist in research, benchmarking, and model building within

the cybersecurity sector. The substantial scale offers a wide variety of data that may be

utilized for the purposes of training, testing, and evaluation, which in turn encourages

collaboration and learning among members of the Kaggle membership. The adherence to

appropriate usage and citation rules is of the utmost importance, just as it is with any

dataset.

 Typically, the Keylogger Detection dataset includes a wide variety of characteristics

as well as labels. An explanation of the following major components is as follows:

3.3.3. Features:

 Features are the traits or characteristics of the data that are used as input to the

detection model. This can also be written as "features of the data." Information such as the

following may be included as features in a dataset for Keylogger Detection:

 Keystroke patterns: Timing and sequence of keystrokes.

 System activity: Data on processes running on the computer.

 Network traffic: Information about network connections and data transfers.

 File system activity: Data about file creation, modification, or deletion.

 Registry changes: Records of changes made to the Windows Registry.

32

 API calls: Calls to specific functions within the operating system.

3.3.4. Labels:

 In keylogger detection datasets, labels are crucial for training machine learning

models, providing the "ground truth" to identify the presence or absence of a keylogger.

Typically, labels are binary, with 0 indicating no keylogger and 1 indicating its presence,

simplifying the classification task. In more advanced scenarios, labels may be multi-class,

categorizing different types of keyloggers based on unique characteristics and behaviors,

enabling more granular detection. The accuracy and consistency of these labels are vital,

as they directly influence the model’s learning and prediction capabilities. Poorly labeled

or inconsistent data can degrade model performance and reliability. Therefore, meticulous

labeling with clear criteria is essential to ensure the development of effective keylogger

detection systems that can accurately identify and mitigate security threats.

3.3.5. Annotations:

 Keylogger detection datasets may include metadata providing additional context,

such as the type of keylogger (hardware- or software-based) and the environment where

the data was collected (e.g., operating system, applications, or network configuration).

Hardware-based keyloggers are physical devices, while software-based ones are malicious

programs. This metadata enriches the dataset, enabling machine learning models to

differentiate between keylogger types and improve detection accuracy across diverse

scenarios by leveraging contextual information.

3.3.6. Characterizes:

 The Keylogger Detection dataset serves as a critical resource for researchers and

cybersecurity professionals in their quest to develop and evaluate machine learning models

or intrusion detection systems specifically designed to detect and mitigate the threats posed

by keyloggers. By utilizing this dataset, these professionals aim to create a robust line of

33

defense against data theft and privacy breaches, which are significant concerns in the

digital age.

 To achieve this, the models analyze features extracted from network traffic or the

user's machine to determine the presence of a keylogger. These features might include

patterns of keystrokes, unusual system behavior, or suspicious network communications.

By meticulously examining these features, the models can identify the telltale signs of

keylogger activity and take appropriate action to neutralize the threat. The ultimate goal of

using the Keylogger Detection dataset is to enhance the security of computer systems and

protect sensitive information from being compromised by malicious keylogging software.

3.4. Data Preprocessing

 The analysis of any dataset, including a dataset for keylogger detection, requires the

completion of an essential step known as "data preprocessing." Handling missing data,

more especially addressing NaN (Not a Number) values, is a critical component of this

procedure that must not be overlooked. Dealing with missing values becomes especially

important when applied to a dataset for keylogger detection, in which the precise detection

of keyloggers is of the utmost importance.

The accuracy and reliability of machine learning models that have been trained to

identify keyloggers in a dataset can be significantly improved by preprocessing the data.

The handling of missing data, more specifically addressing NaN (Not a Number) values,

is an important part of this process that should not be overlooked. Identifying and

Managing Values That Are Not a Number

 Detection is the initial phase in the data preprocessing pipeline, and its purpose

is to determine whether or not the dataset contains any values that are not a

number (NaN). These NaN numbers may appear for a number of different

causes, including corruption or insufficiently thorough data capture, for

example.

34

 Quantifying the Amount of Missing Data In order to determine the scope of

the problem, we count the total number of NaN values that are present in the

dataset. This elucidates for us several important aspects regarding the

reliability of the data. In order to retrieve this count, we can make use of the

'.isna().sum().sum()' method.

 "Removal": When dealing with circumstances in which NaN values are

present, we have various different options available to us to choose from. The

elimination of rows or columns that contain NaN values is a typical strategy

that can be utilized in certain circumstances. We are able to remove entire rows

or columns of data that are insufficient by utilizing the '.dropna()' method.

Because of this, our model is trained on information that is both thorough and

dependable, which is very necessary for accurate keylogger detection.

Figure 4: Remove NAN

3.4.1. Maintaining the Integrity of Data

 In the data preparation phase, resolving NaN (Not a Number) values is crucial for

improving the quality of the dataset. However, it is essential to approach this task with

caution to avoid unintentional data loss. Proper data cleaning involves strategies that

preserve the integrity of the dataset while handling missing values effectively. One

common approach is to replace NaN values with appropriate imputation methods, such as

using the mean, median, or mode of the column for numerical data, or the most frequent

value for categorical data. Another method is to use predictive models to estimate the

35

missing values based on other features in the dataset. In some cases, it may be appropriate

to remove rows or columns with a high percentage of missing values if they are unlikely

to contribute valuable information. Ultimately, the choice of strategy depends on the nature

of the data, the extent of missing values, and the specific requirements of the analysis or

machine learning model. It's important to carefully evaluate the impact of any data cleaning

decisions on the overall dataset to ensure that the resulting data remains representative and

meaningful for the intended analysis.

Figure 5: Dataset After Removing NAN

3.5. Applying Feature Engineering

 The process of engineering features is an essential part of getting a dataset ready for

machine learning analysis in the context of keylogger detection. Within this framework,

our key goals are to increase the predictive power of the model while simultaneously

decreasing the complexity of the computational process. The process of picking the

features that are most important to the problem at hand and then applying various

normalizing methods in order to achieve both consistency and the highest possible level of

efficiency is known as feature engineering. The following is some material that describes

the process of feature engineering in a dataset for keylogger detection:

3.5.1. Feature Relevance

 In the context of keylogger detection, the dataset might contain numerous attributes,

some of which may not be relevant to the task at hand or might be redundant. To simplify

the dataset and enhance the model's performance, feature selection is employed. This

process involves identifying and retaining only the most informative and relevant features

36

that significantly contribute to the keylogger detection task. Feature selection can be guided

by various methods. Correlation analysis helps in identifying features that are highly

correlated with the target variable, while simultaneously eliminating features that are

highly correlated with each other, to reduce redundancy. Additionally, domain-specific

expertise plays a crucial role in recognizing features that are inherently significant for

detecting keyloggers, based on knowledge of how keyloggers operate and the typical

patterns they exhibit. By judiciously selecting features, the complexity of the model is

reduced, which can lead to faster training times, improved model interpretability, and

potentially better detection performance.

3.5.2. Applying Normalization or Standardization Technique

 Once we have identified the significant features, we implement normalization

techniques to ensure all features are on a consistent scale. Standardization is a common

method that involves transforming the features so that they have a mean of zero and a

standard deviation of one. This is achieved through a specific transformation process.

Figure 6: Normalization

3.6. Accuracy Matrix

3.6.1. Intersection Over Union

 The loss function is the error between the predicted class and the ground truth. When

the loss is smaller, then the predication of the class is better. In this study area we use

Intersection over union (IoU) to detect accurate results.

37

IOU = (Area of Intersection) / (Area of Union). More generally, IOU is a measure of

Overlap between the bounding boxes. If IOU<0.5 → we say it ‘Bad’ IOU>0.5→ ‘descent’,

IOU>0.7 → ‘Good’, IOU>0.9 → ‘Almost perfect’.

3.6.2. Precision and Mean Average Precision

 Precision defines the ratio of correct prediction and total prediction. Or from all

positive classes, how many are actually positive.

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑷

In addition, the average precision defines as the average precision over all classes.

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 (𝑨𝑷) =
𝟏

𝑴
∑𝑷𝒊

𝑪

𝒊

Where M represents the number of classes. In this study the number of classes are three

i.e. complete, incomplete and foundation.

Moreover, mean Average Precision represents the average precision over IOU as testing

dataset. Where the value of IOU is set as 0.5, 0.6, 0.7,0.8

3.6.3. Recall

Recall measures how well a model is able to find all the positives. Recall or True positive

rate answers the question “Out of all actual positives, how many did we predict as true?”

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝑷

𝑻𝑷 + 𝑭𝒏

Precision and recall are easily seen where they lie in Proportion space.

3.6.4. F1 Score

The F1 Score is a kind of average that combines recall and precision. We can see that there

is a trade-off between precision and recall, thus F1 could be an efficient way to measure

how our models are doing on this.

38

𝑭𝟏 = 𝟐.
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏. 𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍

A key property of the F1 score is that it is 0 if either component (precision and recall) are

at zero. Hence it punishes very negative values of either components.

3.7. Training and Evaluation

3.7.1. Training Data:

 CNN is trained on a labeled dataset, using techniques such as stochastic gradient

descent (SGD) to minimize classification errors.

3.7.2. Test Dataset:

 The performance of CNN is evaluated on a separate test dataset. Metrics such as

accuracy, precision, recall, and F1-score are used to assess the model's effectiveness.

3.8. Evaluation and Comparison:

 The efficacy of our proposed framework is rigorously assessed using the

comprehensive dataset we have gathered. This evaluation encompasses a detailed

comparison of our framework's performance metrics, including accuracy, precision, recall,

and F1 score, against existing methods. Notably, this comparative analysis includes

traditional rule-based systems and single-model machine learning approaches.

3.9. Pre-Requisite:

3.9.1. Python Libraries

 Numpy

 Karas

 Tensorflow

 Sklearn

39

3.9.2. Hardware Requirements

Tabel 3: Hardware Requirements

Processor I5 8th Generation Processor

RAM 8GB

Graphics Card 2GB

3.10. Flow Chart

The overall flow of this research is done according to this flowchart:

Figure 7: Flow Chart of the methodology

Start

Data

Data Preprocessing

Select DL

Applying Feature

Training and Testing

Evaluation and Comparison

End

40

3.11. Data Analysis

 Deep learning techniques can be employed for the analysis of data related to

keyloggers. Specifically, deep learning can be applied to analyze the patterns and behaviors

associated with keylogging activities. Here are some ways in which deep learning can be

used for keylogger detection and analysis:

3.11.1. Sequencing Analysis:

 Deep learning models, such as RNNs or LSTMs, can be used to analyze the

sequential data of keystrokes.

These models can learn the patterns of normal typing behavior and detect anomalies or

patterns indicative of keylogging activity.

3.11.2. Feature Extraction:

 Deep learning techniques like autoencoders can be used to automatically extract

relevant features from keystroke data. These extracted features can then be fed into other

machine learning models for further analysis and classification.

3.11.3. Behavioral Analysis:

 Deep learning models can be trained to recognize abnormal behavioral patterns in

user typing, such as sudden changes in typing speed, frequency of certain keystrokes, or

irregular intervals between keystrokes, which may signal a keylogger's presence.

3.11.4. Anomaly Detection:

 Deep learning algorithms, particularly deep autoencoders and generative adversarial

networks (GANs), can be used to detect anomalies in keystroke data. Unusual typing

patterns that do not conform to normal user behavior can be flagged as potential keylogging

activities.

41

3.12. Natural Language Processing (NLP):

 For text-based keyloggers that capture text input, deep learning techniques in NLP,

such as recurrent neural networks (RNNs) and transformers, can be used to analyze the

content of keystrokes for suspicious or malicious content.

3.12.1. Feature Learning:

 Deep learning models can learn representations of data that are relevant for

keylogger detection. These learned features can then be used in traditional machine

learning algorithms for classification.

 In summary, deep learning techniques can be applied to various aspects of

keylogger data analysis, including keystroke sequences, behavioral patterns, and content

analysis, to detect and mitigate the threat of keyloggers effectively. Deep learning

techniques play a crucial role in the realm of cybersecurity, primarily as tools for detecting

and safeguarding against malicious entities like keyloggers. Keyloggers, whether in the

form of malicious software or discreet hardware devices, are designed with the nefarious

intent of capturing users' keystrokes and potentially compromising sensitive data. To

counteract these threats, deep learning methodologies are harnessed to identify and

mitigate such risks effectively.

3.13. Model Implementation

 Convolutional Neural Networks (CNNs), renowned for their proficiency in

processing visual data, are versatile tools used to detect not only software-based keyloggers

but also hardware keyloggers or devices that surreptitiously capture visual input. For

instance, CNNs can be deployed to identify devices like ATM skimmers that illicitly record

users' keystrokes by capturing the visual cues on ATM keypads.

 Auto encoders, another valuable component of the deep learning arsenal, serve

multiple purposes in the cybersecurity domain. These neural networks excel at feature

extraction and anomaly detection. When applied to keystroke data, autoencoders are

42

instrumental in uncovering hidden patterns or distinctive features that might indicate the

presence of a keylogger. By comparing observed keystroke patterns against established

norms, auto encoders can flag deviations that warrant further investigation, ultimately

enhancing the overall security posture against potential threats.

 In essence, deep learning techniques such as LSTMs, CNNs, and autoencoders are

pivotal in the ongoing battle against keyloggers and similar cyber threats. By leveraging

their capabilities, cybersecurity professionals can proactively identify and defend against

these malicious entities, safeguarding user data and digital assets.

3.14. Proposed Model

 It seems as though the code we have provided is associated with the process of

training a machine learning or deep learning model. It does things like configure a variety

of configuration parameters and define callbacks, which are functions that are invoked

during the training process to monitor the performance of the model and make adjustments

as necessary. Let's divide the code down into its component parts:

 learning_rate = 0.001: It is a hyperparameter that is utilised in gradient-based

optimisation techniques such as stochastic gradient descent (SGD), and this

variable is responsible for specifying the learning rate. It is responsible for

determining the step size at which the weights of the model are changed while it is

being trained. Because of the slower but more stable convergence that might result

from a slower learning rate.

 batch_size = 5000: The amount of training samples that are utilised in each

iteration (or batch) during training is determined by the batch size, which is defined

by this variable before training begins. The training process can be sped up by using

a bigger batch size, although it may demand more memory.

 epochs = 10: The number of epochs determines the number of times that the model

traverses the entirety of the existing training dataset. Each epoch consists of

43

multiple batches, and the model's weights are updated after each batch. Training

for more epochs can improve the model's performance.

 model_save: This is a callback created using ModelCheckpoint. It saves the

model's weights to a file named 'model.h5' under certain conditions:

 monitor='val_loss': It monitors the validation loss during training.

 mode='min': It saves when the monitored quantity (validation loss) reaches a

minimum.

 verbose=1: It displays progress information when saving.

 early_stop: This is another callback created using EarlyStopping. It stops training

when certain conditions are met:

 monitor='val_loss': It monitors the validation loss.

 min_delta=0.0001: It defines the minimum change in the monitored quantity to be

considered an improvement.

 patience=8: It specifies the number of epochs with no improvement after which

training will be stopped.

 mode='min': It looks for a decrease in the monitored quantity (validation loss).

 verbose=1: It provides information about when early stopping is triggered.

 restore_best_weights=True: It restores the model's weights to the best

configuration when training stops.

 reduce_lr: This is a callback created using ReduceLROnPlateau. It adjusts the

learning rate when certain conditions are met:

 monitor='val_loss': It monitors the validation loss.

 factor=0.6: It scales down the learning rate by a factor of 0.6 when the monitored

quantity plateaus.

 patience=4: It specifies the number of epochs with no improvement before

reducing the learning rate.

44

 min_delta=0.0001: It defines the minimum change in the monitored quantity to

trigger a learning rate reduction.

 mode='min': It looks for a decrease in the monitored quantity (validation loss).

 verbose=1: It provides information about when the learning rate is adjusted.

3.15. Key Features of Proposed Model

 The configuration parameters and callbacks needed to train a machine learning or

deep learning model are defined in the code. Despite the fact that it defines the training

setting, it does not define the architecture of the model itself nor any of its particulars. The

model architecture and layers that construct independently from this setup will determine

which aspects of this model are available to use.

The following is a list of typical characteristics of a deep learning model that, in addition

to the configuration we gave, we would generally describe as follows:

3.15.1. Model Structure:

 This refers to the exact structure of the neural network, which includes the number

of layers, the types of layers (for example, dense, convolutional, and recurrent), the

activation functions, and the flow of data through the network. At this point, we will be

tasked with defining the fundamental aspects of the model.

Figure 8: Proposed Model Architecture

45

3.15.2. Input Layer

 This layer specifies the structure and type of input data that the model anticipates

receiving, also known as the "input layer." It is the job of this layer to take in the

characteristics or data from which the model is going to learn.

3.15.3. Hidden Layers:

 The operations of feature extraction and transformation" are carried out by these

layers. Important characteristics include the number of hidden layers as well as the number

of neurons found in each layer. Within these layers, we are also able to set other parameters,

such as dropout and batch normalization, as needed.

3.15.4. Output Layer:

 The output layer is responsible for determining the format that the model's

predictions will take. This could be a single neuron for binary classification, many neurons

for multi-class classification, or an entirely new arrangement for regression tasks,

depending on the nature of the problem you're trying to solve.

3.15.5. Loss Function

 The Loss Function is also known as the Objective Function, and it evaluates how

well the model's predictions correspond to the actual labels. The type of problem

determines which loss function should be used (for example, mean squared error is used

for regression, while binary cross-entropy is used for binary classification).

3.15.6. Optimization method:

 The optimization method (such as SGD, Adam, or RMSprop) and its learning rate

determine the manner in which the model's weights are changed while it is being trained

in order to minimize the loss function.

46

3.15.7. Metrics:

 Metrics, including as accuracy, precision, and recall, are utilized in order to

evaluate the performance of the model both before and after the training process. The

training process does not make use of these indicators; however, they are helpful when

evaluating the quality of models.

3.15.8. Regularization:

 Methods such as dropout, L1/L2 regularization, and batch normalization are

examples of regularization techniques that can be used to reduce overfitting and improve

the generalization of the model.

3.15.9. Initialization:

 Initialization methods for model weights, such as Xavier/Glorot initialization, can

have an impact on the stability and convergence of the training process.

3.15.10. Batch Normalizing:

 If implemented, the usage of batch normalizing layers can help the model learn

more quickly and perform more effectively in generalization.

3.15.11. Activation Functions:

 The manner in which information is distributed across the network is impacted by

the activation functions (such as ReLU, sigmoid, and tanh) that are selected for the hidden

layers of the network.

3.16. Components of the model

 This CNN was developed specifically for a binary classification task, which is a

common use in the detection of keyloggers and other security-related activities. Let's begin

by analyzing the architecture of this model, followed by its primary components:

47

3.16.1. Sequential Model:

 This line initializes a sequential model, which is a linear stack of layers. we can

simply add layers to the model sequentially.

3.16.2. Convolutional Layers (Conv1D):

 The extraction of features lies under the purview of these tiers. They ran the input

data through a series of convolution procedures. After a number of layers consisting of

many pairs of convolutional layers, your model moves on to the max-pooling layers. Each

convolutional layer applies the filters that it contains, which are kernels of size 2, to the

input data. There are 16, 32, 64, or 128 of these kernels. The filters contribute to the data's

ability to catch local patterns and features.

3.16.3. Max-Pooling Layers (MaxPooling1D):

 A max-pooling layer comes after every pair of convolutional layers that come

before it in the training process. The spatial dimensions of the feature maps can be reduced

by max-pooling, yet the essential information can still be preserved.

3.16.4. Flatten Layer

 After the last convolutional and pooling layers, the data is flattened (transformed

from a matrix to a vector) to feed into a fully connected network (Dense layers). This part

of the network is responsible for classification based on features extracted by the

convolutional layers.

3.16.5. Fully Connected Layers (Dense)

 Following the flattening process, we have two layers that are dense and fully

connected with 64 and 32 neurons, respectively. These layers are responsible for the

aggregation and transformation of high-level features. In order to implement non-linearity,

activation functions, also known as ReLU, are used.

48

3.16.6. Dropout Layers:

 After the layers that are fully connected comes the step of adding the dropout layers,

which helps prevent over fitting. During training, they will randomly deactivate a portion

of neurons, which will be 20% in your case. This will help the model generalize more

effectively.

3.16.7. Output Layer:

 The topmost layer is composed of a single neuron that has a sigmoid activation

function, which is typical for tasks that involve binary categorization. It generates a

likelihood score that falls anywhere between 0 and 1, with values that are closer to 1

indicating a positive class prediction (for example, the existence of a keylogger).

3.16.8. Optimizer (Adam):

 For gradient-based optimization, the Adam optimizer is typically utilized. During

training, it modifies the rate of learning in order to achieve better convergence.

3.16.9. Loss Function

 As a loss function, the model makes use of binary cross-entropy, which is a

technique that is commonly used for binary classification problems. It determines the

degree to which actual labels differ from those that were projected.

3.16.10. Metrics:

 The area under the ROC curve (also known as AUC) is another measure that the

model monitors in addition to accuracy. The area under the curve (AUC) is a useful statistic

for situations involving binary classification and imbalanced datasets.

49

3.16.11. Training:

 The fit approach is utilized throughout the training process of the model. we are

responsible for specifying the data for training and validation, as well as the batch size,

number of epochs, and callbacks. Callbacks, which we defined earlier, are responsible for

monitoring the training process and carrying out actions like as preserving the model's

weights, halting the training early, and reducing the learning rate.

 In order to construct a model for binary classification, this architecture utilizes

dropout for regularization and combines dropout with convolutional and fully connected

layers, both of which are typical in CNNs. It is programmed to automatically learn features

from sequential data (such as time series data, which is frequently utilized in activities

linked to security) and to make predictions about the existence or absence of a keylogger.

50

CHAPTER 4

4. RESULTS and DISCUSSION

4.1. Training and Validation Accuracy

 In deep learning, training and validation accuracy are important metrics used to

evaluate the performance of a neural network during the training process. These metrics

help to assess how our model is learning from the training data and how well it generalizes

to unseen data.

4.1.1. Training Accuracy:

 The accuracy of the model's predictions on the same data that it was trained on is

what is typically referred to as the training accuracy. The model makes adjustments to its

weights and biases as it is being trained in order to reduce the amount of error that exists

between its predictions and the actual target values. The accuracy of the training often

improves as the training goes because the model becomes more adept at fitting the training

data. Nevertheless, a high training accuracy does not necessarily suggest that the model is

able to generalize well to new data that it has not before encountered because the model

may overfit the training data.

4.1.2. Validation Accuracy:

Validation accuracy is a technique to ensure that the model generalizes well with respect

data previously not encountered during training. Since we want the model to generalize

well on new data, in addition to our testing sets Training Data hence a part of out dataset

is held for using as validation set Their performance has been evaluated on this validation

set at every time step during the training process. The validation correctness gives you an

estimate on how good the model is going to perform with new data it never saw so far. You

51

can use it to spot overfitting. If the training accuracy keeps increasing while validation

accuracy is steady or decreasing, this means that has happened.

 Here's a simplified process of how we might monitor training and validation

accuracy during deep learning training:

Forward pass:

 Generate predictions on the training data using this model.

 Compute the training loss according to these predictions and ground truth.

 Update the weights and biases of a model to minimize its training loss

(backward pass).

 Compute the accuracy of training on those predictions.

 Mark these features and fine-tune your hyperparameters for the model.

4.2. Training and Validation Loss

 Training loss and validation loss are two crucial measures that are utilized in deep

learning for the purpose of monitoring and evaluating the performance of a neural network

while it is participating in the training process. It is vital to have these metrics in order to

have an insight of how effectively the model is learning from the training data and how

well it generalizes to data that it has not before encountered.

4.2.1. Training Loss:

The measurement for how well the neural network is learning on the training data, we have

a term trining loss. It is a measure of the error between what model predicts and the actual

target values, For all data points (predictor, target) in our training dataset. This point of the

training is to minimized this loss. For classification tasks, the two most common loss

functions used are categorical cross-entropy and mean squared error (MSE) for regression

tasks. As the performance of your model predicts accurately and following the nature of

xor function, while training loss decreases.

52

4.2.1.1. Low training loss:

The model you are specifying is fitting the training set well, given that a low value of loss

on train data. However, it does not mean that this model will do well on the data on which

we have never seen before validation loss comes into play here.

4.2.2. Validation Loss:

By contrast, validation loss is a measure of how well your neural network generalizes to

(unseen during training but used after as "additional" data set) new data. The computation

is done on separate data-set called validation Data-Set. This Dataset is not used for training,

instead it might be helpful to test the model performance during or post-training.

Overfitting: If a model performs very well on training data but poorly on new, unseen

examples this is due to overfitting. To avoid this situation, is what the validation loss helps

in.

4.2.2.1. Low training loss but high validation loss:

 This is a symptom of not fitting properly. It indicates that the model has acquired

the ability to memories the training data rather than acquire the ability to generalize from

it. To solve the issue of overfitting, it is possible that you may need to implement strategies

such as regularization, dropout, or lessen the complexity of the model.

 Monitoring training and validation loss throughout epochs, which are iterations

over the complete training dataset, is a frequent approach in the field of deep learning. A

better understanding of the model's learning progress can be gained from the loss curves:

4.2.2.2. Decreasing Training Loss:

 As the model learns, the training loss should generally decrease. It may start high

and gradually decrease, indicating that the model is improving.

53

4.2.2.3. Validation Loss Curve:

 You will be able to tell when the model begins to overfit it with the assistance of

the validation loss. It is an indication that the model is overfitting if the training loss

continues to reduce while the validation loss begins to increase but the training loss

continues to decrease.

 A well-trained model should have both low training and validation losses,

indicating that it has learned to generalize from the training data effectively. However,

achieving a balance between these two metrics is essential to building a robust model.

Techniques such as early stopping, hyperparameter tuning, and cross-validation can help

in optimizing the model's performance with respect to training and validation losses.

4.3. Proposed Model Accuracy Graph

 Based on the evidence that has been supplied, it would appear that the training

process is advancing with a decreasing loss and a varied AUC. This suggests that the model

is learning to differentiate between keyloggers and non-keyloggers in an effective manner.

In addition, the callbacks are operating as intended, and there has been a successful

implementation of model saving, early halting, and a reduction in learning rate depending

on validation loss.

Figure 1: Accuracy Graph

54

4.4. Proposed Model Loss Graph

 We utilize two primary metrics for each epoch, which are "loss" and "AUC." The

term "loss" refers to the degree to which the model's predictions correspond to the actual

labels. During training, we are working to reduce its impact.

In the context of problems involving binary classification, the term "AUC" refers to the

region under the receiver operating characteristic (ROC) curve. The area under the curve

(AUC) is a measurement of how well a model can differentiate between positive and

negative samples. During training, we observe that the AUC values shift, which is a

reflection of how effectively the model is learning to differentiate between keyloggers and

non-keyloggers.

Figure 2: Loss Graph

4.5. Receiver Operating Characteristic Curve (ROC)

 Receiver Operating Characteristic (ROC) curves are a type of graphical

representation that are frequently utilized in the fields of machine learning and deep

learning for the purpose of evaluating the effectiveness of classification models. In the

context of a binary classification task, it is helpful to visualize the trade-off between the

true positive rate (sensitivity) and the false positive rate (1-specificity) across a range of

threshold values. A look at how ROC curves are utilized in deep learning is as follows:

55

4.5.1. Binary Classification Task:

 ROC curves are most commonly used for binary classification problems, where

the goal is to classify data points into one of two classes (e.g., positive and negative).

4.5.2. Model Prediction Probabilities:

 To create an ROC curve, we need the predicted probabilities or scores generated

by our deep learning model. These scores represent the model's confidence in classifying

data points.

4.5.3. Threshold Variation:

 When the decision criterion for classification is changed, the ROC curve is

produced as a result. We begin with a threshold of zero, which means that everything is

classified as belonging to the positive class, and we gradually raise it to one, which means

that everything is classified as belonging to the negative class. Calculating the true positive

rate (TPR) and the false positive rate (FPR) for each threshold is something that we

consider.

 The ratio of the number of true positives to the total number of actual positives is

referred to as the True Positive Rate (TPR), which is sometimes referred to as sensitivity

or recall. It evaluates the degree to which the model accurately recognises examples of

favorable outcomes.

 The ratio of the number of false positives to the total number of real negatives is

used to calculate the False Positive Rate (FPR). The frequency with which the model

wrongly recognizes negative cases as positive is what this metric measures.

4.5.4. Plotting the ROC Curve:

 Determine the TPR (y-axis) and FPR (x-axis) for each threshold value, then plot

the results. As a result, the ROC curve is produced. A high sensitivity and a low false

56

positive rate are indicated by the ideal ROC curve, which is located in the upper-left corner

of the figure.

4.5.5. Area Under the Curve (AUC):

 One of the numerical values that can be used to quantify the overall performance

of the model is the area under the ROC curve, also known as the AUC. The performance

of a model with an AUC of 0.5 is equivalent to that of random guessing, but the

performance of a model with an AUC of 1.0 is considered to be flawless.

4.5.6. Interpreting the ROC Curve:

 By looking at the ROC curve and AUC, we can assess the model's ability to

distinguish between the two classes. A higher AUC suggests better discrimination between

positive and negative cases.

4.5.7. Threshold Selection:

 The choice of the threshold depends on the specific requirements of our

application. If you prioritize sensitivity, we might choose a threshold that maximizes TPR,

even if it leads to a higher FPR. Conversely, if we prioritize specificity, we might choose

a threshold that minimizes FPR.

4.5.8. Comparing Models:

 A number of different deep learning models or algorithms are compared by

comparing their ROC curves and the area under the curve (AUC) values. In general, the

proposed model that has a higher area under the curve (AUC) is deemed to be superior in

classification.

57

 In summary, ROC curves are a valuable tool for evaluating the performance of

proposed deep learning models in binary classification tasks, allowing us to assess the

trade-off between sensitivity and specificity at different threshold values and make

informed decisions about model performance and threshold selection.

 The ROC curve for our binary classification model's predictions (y_pred) is

generated and displayed. This function compares the predictions (y_pred) to the true labels

(y_test). In order to offer a quantitative indication of the model's success in discriminating

between the positive and negative classes, the area under the curve, or AUC, value is also

displayed on the plot. We evaluate the quality of the model's classification with the

assistance of this graphical representation, which can also help we choose an appropriate

threshold for making predictions based on the properties of the ROC curve.

Figure 3: ROC Curve

 On the basis of these data, one may make the case that this CNN model for the

identification of keyloggers possesses numerous advantages over other machine learning

algorithms:

58

 It has a high area under the curve (AUC), which indicates that it can

discriminate well.

 In order to maximize the effectiveness of the training, it modifies the learning

pace and makes use of early pausing.

 Throughout the training process, it keeps the ideal model weights.

 It reaches an extremely high validation AUC, which is indicative of its

outstanding performance.

Table 4: Comparison of the Results

Algorithm Name Date Accuracy Remarks

NN, SVM, RF

[43]

2022 95.18%,

85.45%, and

78.89%

It relies heavily on machine

learning models, which may

require substantial

computational resources and

extensive training data to

achieve high accuracy.

Random Forest

[42]

2022 87% (F1-

Score)

it may face scalability issues

and increased computational

complexity due to the hybrid

optimization-based deep

learning techniques

CaFISKLD with

Fuzzy Logic [36]

2023 95.5% It may not capture complex

relationships in data

CNN [40] 2022 90% The model might not generalize

well to novel attack types or

techniques that emerge after the

model has been trained.

Additionally, the focus on

primarily Botnet and

Keylogger attacks might limit

the model's effectiveness

against other types of cyber

threats targeting IoT devices.

59

RNN [38] 2022 89% Can be prone to overfitting if

not properly regularized.

CNN [Proposed

Model]

2023-

2024

97% Captures complex patterns in

data. Highly flexible and can

handle both structured and

unstructured data. Uses a

different dataset focused on

phishing attacks, providing

better detection and

generalization compared to

other models.

 Our proposed CNN model stands out due to its focus on phishing attacks, utilizing

a specialized dataset that enhances its ability to identify these threats effectively. This

targeted approach allows the model to capture complex patterns specific to phishing,

resulting in higher accuracy and better generalization compared to models focused on

broader or different types of cyber threats. The proposed model’s superior performance is

attributed to its capacity to adapt to the nuanced characteristics of phishing URLs and its

flexibility in handling diverse data types, ensuring robust detection and prevention.

Table 4 compares various algorithms used for phishing attack detection. The proposed

CNN model (2023-2024) achieved the highest accuracy at 97%, outperforming other

models like NN, SVM, RF (95.18%, 85.45%, 78.89%), Random Forest (87%), CaFISKLD

with Fuzzy Logic (95.5%), CNN (90%), and RNN (89%). The proposed CNN model excels

in capturing complex patterns and handling both structured and unstructured data, offering

better detection and generalization. Other models face challenges such as high

computational requirements, scalability issues, and potential overfitting, limiting their

effectiveness against evolving cyber threats.

4.6. Evaluating CNN model performance for Keylogger Detection

 Success with deep learning models, especially CNNs, depends on more than

architecture and training. As the foundation of the project, dataset quality and extracted

60

feature relevance are crucial. For appropriate preprocessing, missing value handling, and

class balancing, one must grasp the dataset's attributes, distributions, and quirks.

CNN models were designed and tested for binary classification in network intrusion

detection. The model had strong performance measures, including high AUC values of

0.93 to 0.99. The model can accurately distinguish incursion from ordinary network

activity using the AUC, a binary classification metric.

 The CNN model's dynamic learning rate adjustment technique that uses the

Reduce-LR-On-Plateau callback to reduce learning rate when validation loss plateaus

ensures training convergence. Early stopping prevents overfitting by halting training when

validation loss doesn't improve. During training, the model's weights are saved to use later.

The last epoch validation AUC value reached 1.0, demonstrating near-perfect

discrimination based on validation data. Training is computationally demanding, but the

model's performance is worth it. The CNN model has excellent discrimination, learning

rate adaptation, and overfitting prevention.

 It's important to remember that these results are based on training. Validate real-

world applicability and generalization on an independent test dataset. Keylogger detection

using the model requires practical deployment scenarios and computational resource

constraints. Overall, the CNN model detects keyloggers well due to its high AUC values,

good adaption mechanisms, and robust model training.

61

CHAPTER 5

5. Conclusion and Future Work

5.1. Conclusion

 The study demonstrates the potential of Convolutional Neural Networks (CNNs) to

effectively predict keylogger attacks through meticulous feature engineering. By

preprocessing the dataset to eliminate extraneous features, correct imbalances, and scale

attributes appropriately, the CNN-based approach achieved an impressive 99% accuracy

in just 10 epochs. This highlights the significant role of feature engineering in enhancing

the performance of machine learning models in cybersecurity applications. However, it is

also acknowledged that while machine learning and deep learning offer substantial

advantages for detecting sophisticated cyber threats like keyloggers, they are not foolproof

solutions. The effectiveness of these technologies depends on various factors, including the

quality of the data and the adaptability of the models to new, unknown threats. Therefore,

continuous improvements and updates to these models are essential to maintain their

efficacy against evolving cybersecurity challenges.

5.2. Future Work

As the investigation moves forward, it will concentrate on a number of different

paths that can be further developed and investigated. Improving the generalization of the

model is a top priority, and this will require extensive testing with a variety of datasets and

scenarios that are taken from the actual world. The purpose of conducting research into

data augmentation methods is to broaden the scope of the dataset. Performance tuning of

hyperparameters will be carried out in order to optimize the configuration of the model,

with an emphasis placed on interpretability in order to ensure transparency. The

identification of keyloggers in real time and the evaluation of the model's resistance to

attacks from adversaries are both essential topics that will require further investigation in

62

the future. For the purpose of ensuring that the model is effective in dynamic contexts,

practical implementation factors will be addressed. These considerations include resource

limits, latency, and collaboration with cybersecurity specialists.

63

References

1. J. Bharadiya, ‘Machine learning in cybersecurity: Techniques and

challenges’, European Journal of Technology, vol. 7, no. 2, pp. 1–14, 2023.

2. Ö. Aslan, S. S. Aktuğ, M. Ozkan-Okay, A. A. Yilmaz, and E. Akin, ‘A

comprehensive review of cyber security vulnerabilities, threats, attacks, and

solutions’, Electronics, vol. 12, no. 6, p. 1333, 2023.

3. A. Singh, A. Handa, N. Kumar, and S. K. Shukla, ‘Malware classification using

image representation’, in Cyber Security Cryptography and Machine Learning:

Third International Symposium, CSCML 2019, Beer-Sheva, Israel, June 27--28,

2019, Proceedings 3, 2019, pp. 75–92.

4. C. Ekele Victoria, A. Adebiyi Ayodele, and O. Igbekele Emmanuel, ‘Keylogger

Detection: A Systematic Review’, in International Conference on Science,

Engineering and Business for Sustainable Development Goals (SEB-SDG), 2023,

pp. 1–6.

5. A. Kazi, M. Mungekar, D. Sawant, and P. Mirashi, ‘Keylogger

detection’, International Research Journal of Modernization in Engineering

Technology and Science, vol. 5, no. 04, pp. 4897–4902, 2023.

6. A. Solairaj, S. C. Prabanand, J. Mathalairaj, C. Prathap, and L. S. Vignesh,

‘Keyloggers software detection techniques’, in 2016 10th International Conference

on Intelligent Systems and Control (ISCO), 2016, pp. 1–6.

7. D. H. Parekh, N. Adhvaryu, and V. Dahiy, ‘Keystroke Logging: Integrating Natural

Language Processing Technique to Analyze Log Data’, International Journal of

Innovative Technology and Exploring Engineering (IJITEE), vol. 9, no. 3, pp.

2028–2033, 2020.

8. J. Sabu, S. Ananthanarayanan, A. Gopan, S. Gowtham, and S. Murali, ‘Advanced

Keylogger with Keystroke Dynamics’, in 2023 International Conference on

Inventive Computation Technologies (ICICT), 2023, pp. 1598–1603.

9. A. Singh, P. Choudhary, and Others, ‘Keylogger detection and prevention’,

64

in Journal of Physics: Conference Series, 2021, vol. 2007, p. 012005.

10. Prajapati, V., Kalsariya, R., Dubey, A., Mehta, K. and Patil, M., 2020. Analysis of

keyloggers in cybersecurity. International Journal for Research in Applied Science

Engineering Technology (IJRASET), 8(10), pp.466-474.

11. Hussain, A., Asif, M., Ahmad, M.B., Mahmood, T. and Raza, M.A., 2022. Malware

detection using machine learning algorithms for windows platform. In Proceedings

of International Conference on Information Technology and Applications: ICITA

2021 (pp.619-632). Springer Nature Singapore.

12. Singh, A. and Choudhary, P., 2021. Keylogger detection and prevention. Journal

of Physics: Conference Series, 2007(1), p.012005. IOP Publishing.

13. Prajapati, V., Kalsariya, R., Dubey, A., Mehta, K. and Patil, M., 2020. Analysis of

keyloggers in cybersecurity. International Journal for Research in Applied Science

Engineering Technology (IJRASET), 8(10), pp.466-474.

14. Schultz, M.G., Eskin, E., Zadok, F. and Stolfo, S.J., 2000. Data mining methods for

detection of new malicious executables. In Proceedings 2001 IEEE Symposium on

Security and Privacy. S&P 2001 (pp.38-49). IEEE.

15. Ahmad, S., Mehfuz, S. and Beg, J., 2023. An efficient and secure key management

with the extended convolutional neural network for intrusion detection in cloud

storage. Concurrency and Computation: Practice and Experience, 35(23), p.e7806.

16. Manjeera, J.G., Malla, A. and Pravallika, M.V.L., 2023. Preventing Malicious Use

of Keyloggers Using Anti-Keyloggers. arXiv preprint arXiv:2304.07594.

17. Wajahat, A., Imran, A., Latif, J., Nazir, A. and Bilal, A., 2019. A novel approach

of unprivileged keylogger detection. In 2019 2nd International Conference on

Computing, Mathematics and Engineering Technologies (iCoMET) (pp.1-6). IEEE.

18. Huseynov, H., Kourai, K., Saadawi, T. and Igbe, O., 2020. Virtual machine

introspection for anomaly-based keylogger detection. In 2020 IEEE 21st

International Conference on High Performance Switching and Routing (HPSR)

(pp.1-6). IEEE.

65

19. Shhadat, I., Hayajneh, A. and Al-Sharif, Z.A., 2020. The use of machine learning

techniques to advance the detection and classification of unknown malware.

Procedia Computer Science, 170, pp.917-922.

20. Sharma, S., Rama Krishna, C. and Sahay, S.K., 2019. Detection of advanced

malware by machine learning techniques. In Soft Computing: Theories and

Applications: Proceedings of SoCTA 2017 (pp.333-342). Springer Singapore.

21. Singh, A., Handa, A., Kumar, N. and Shukla, S.K., 2019. Malware classification

using image representation. In Cyber Security Cryptography and Machine

Learning: Third International Symposium, CSCML 2019, Beer-Sheva, Israel, June

27–28, 2019, Proceedings 3 (pp.75-92). Springer International Publishing.

22. Geetha, S., 2016. Smart phone key logger detection technique using support vector

machine. In Proceeding of International conference on Advances in computational

Intelligence in Communication (CIC 2016).

23. Ortolani, S., Giuffrida, C. and Crispo, B., 2012. Unprivileged black-box detection

of user-space keyloggers. IEEE Transactions on Dependable and Secure

Computing, 10(1), pp.40-52.

24. Isohara, T., Takemori, K. and Kubota, A., 2011. Kernel-based behavior analysis for

android malware detection. In 2011 seventh international conference on

computational intelligence and security (pp.1011-1015). IEEE.

25. Gao, C. and Liu, J., 2012. Modeling and restraining mobile virus propagation. IEEE

Transactions on Mobile Computing, 12(3), pp.529-541.

26. A. Hussain, M. Asif, M. B. Ahmad, T. Mahmood, and M. A. Raza, ‘Malware

detection using machine learning algorithms for windows platform’,

in Proceedings of International Conference on Information Technology and

Applications: ICITA 2021, 2022, pp. 619–632.

27. Schultz, M.G., Eskin, E., Zadok, F. and Stolfo, S.J., 2000. Data mining methods for

detection of new malicious executables. In Proceedings 2001 IEEE Symposium on

Security and Privacy. S&P 2001 (pp.38-49). IEEE.

66

28. Sreenivas, R.S. and Anitha, R., 2011. Detecting keyloggers based on traffic analysis

with periodic behaviour. Network Security, 2011(7), pp.14-19.

29. Fu, J., Liang, Y., Tan, C. and Xiong, X., 2010. Detecting software keyloggers with

dendritic cell algorithm. In 2010 International Conference on Communications and

Mobile Computing (Vol.1, pp.111-115). IEEE.

30. Amancio, D.R., Comin, C.H., Casanova, D., Travieso, G., Bruno, O.M., Rodrigues,

F.A. and da Fontoura Costa, L., 2014. A systematic comparison of supervised

classifiers. PloS one, 9(4), p.e94137.

31. Sirigiri, M., Sirigiri, D., Aishwarya, R. and Yogitha, R., 2023. Malware Detection

and Analysis using Machine Learning. In 2023 7th International Conference on

Computing Methodologies and Communication (ICCMC) (pp.1074-1081). IEEE.

32. Hussain, A., Asif, M., Ahmad, M.B., Mahmood, T. and Raza, M.A., 2022. Malware

detection using machine learning algorithms for windows platform. In Proceedings

of International Conference on Information Technology and Applications: ICITA

2021 (pp.619-632). Springer Nature Singapore.

33. Isohara, T., Takemori, K. and Kubota, A., 2011. Kernel-based behavior analysis for

android malware detection. In 2011 seventh international conference on

computational intelligence and security (pp.1011-1015). IEEE.

34. Balakrishnan, Y. and Renjith, P.N., 2023. An analysis on Keylogger Attack and

Detection based on Machine Learning. In 2023 International Conference on

Artificial Intelligence and Knowledge Discovery in Concurrent Engineering

(ICECONF) (pp.1-8). IEEE.

35. Pillai, D. and Siddavatam, I., 2019. A modified framework to detect keyloggers

using machine learning algorithm. International Journal of Information

Technology, 11, pp.707-712.

36. F. E. Ayo, J. B. Awotunde, O. A. Olalekan, A. L. Imoize, C.-T. Li, and C.-C. Lee,

‘CBFISKD: A combinatorial-based fuzzy inference system for keylogger

detection’, Mathematics, vol. 11, no. 8, p. 1899, 2023.

67

37. S. Sharma, C. Rama Krishna, and S. K. Sahay, ‘Detection of advanced malware by

machine learning techniques’, in Soft Computing: Theories and Applications:

Proceedings of SoCTA 2017, 2019, pp. 333–342.

38. A. K Nazeer and T. Rj, ‘Malware Classification using Deep Learning’,

in Proceedings of the International Conference on Systems, Energy and

Environment, 2022

M. S. Alsubaie, S. H. Atawneh, and M. S. Abual-Rub, ‘Building Machine Learning

Model with Hybrid Feature Selection Technique for Keylogger

Detection’, International Journal of Advances in Soft Computing & Its

Applications, vol. 15, no. 2, 2023.

39. S. L. A. Suresh and A. S. Philip, ‘Multiple botnet and keylogger attack detection

using CNN in IoT networks’, in 2022 International Conference on Futuristic

Technologies (INCOFT), 2022, pp. 1–6.

40. S. S. S. Sugi and S. R. Ratna, ‘Investigation of machine learning techniques in

intrusion detection system for IoT network’, in 2020 3rd international conference

on intelligent sustainable systems (ICISS), 2020, pp. 1164–1167.

41. E. S. Gsr, M. Azees, C. H. R. Vinodkumar, and G. Parthasarathy, ‘Hybrid

optimization enabled deep learning technique for multi-level intrusion

detection’, Advances in Engineering Software, vol. 173, p. 103197, 2022.

42. G. Mohamed, J. Visumathi, M. Mahdal, J. Anand, and M. Elangovan, ‘An effective

and secure mechanism for phishing attacks using a machine learning

approach’, Processes, vol. 10, no. 7, p. 1356, 2022.

