
i 

 

 

 

MACHINE LEARNING BASED KEY LOGGER 

DETECTION IN MOBILE  

 

 

 

 

By 

                                           SAJID KHAN 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
NATIONAL UNIVERSITY OF MODERN LANGUAGES ISLAMABAD 

                                                September, 2024 

  



ii 

 

 

 

Machine learning based keylogger detection in mobile 

 

By 

SAJID KHAN 

 
MSEE, National University of Modern Languages, Islamabad, 2024 

 

A THESIS IN PARTIAL FULLFILMENT OF THE REQUIRMENT FOR THE 

DEGREE OF 

 

MASTER OF SCEINCE 

In Electrical Engineering 

To 

FACULTY OF ENGINEERING AND COMPUTING 

 

 

 

 

 

 

 

 
MSEE, NATIONAL UNIVERSITY OF MODERN LANGUAGES, ISLAMABAD,  

 

 

 



iii 

 

 

 

 
 

 

THESIS AND DEFENSE APPROVAL FORM 
 

 

The undersigned certify that they have read the following thesis, examined the defense, are 

satisfied with overall exam performance, and recommend the thesis to the Faculty of 

Engineering Computing. 

 

Thesis Title:          Machine learning based keylogger detection in mobile 

 

 

 

 

Submitted by:          Sajid khan                                 Registration #: NUML-S21-008 

 
Master of Science in Electrical Engineering 

 

Electrical Engineering 

Discipline 

 

Dr. Madah Ul Mustafa  

Research Supervisor Signature of Supervisor 

 

   Dr. Farhan Sohail  

Research Co-Supervisor Signature of Co- Supervisor  

  



iv 

 

 

 

 

 Dr. Farhan Sohail 

       HOD (EE)                                                                                     Signature of HOD (EE) 

 

Dr. Noman Malik 

 Dean (FEC) Signature of Dean (FEC) 

 
 

Date 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sep 4th  , 2024 



v 

 

 

 

AUTHOR’S DECLARATION  

 

I Sajid khan 

Son of Alam Zeb 

Registration # NUML-S21-008 

Discipline Electrical Engineering 

 

Candidate of Master of Science in Electrical Engineering (MSEE) at the National 

University of Modern Languages do hereby declare that the thesis Machine learning 

based keylogger detection in mobile submitted by me in partial fulfillment of MSSE 

degree, is my original work, and has not been submitted or published earlier. I also 

solemnly declare that it shall not, in future, be submitted by me for obtaining any other 

degree from this or any other university or institution. I also understand that if evidence of 

plagiarism is found in my thesis/dissertation at any stage, even after the award of a degree, 

the work may be cancelled and the degree revoked. 

 

 

 

 

 

 

  
Signature of Candidate 

 

 

 

                                                                                                         Sajid Khan 
       Name of Candidate 

4th Sep, 2024 

Date 

 



vi 

 

 

 

Dedication 

"To my father, who taught me that the best kind of knowledge is that which is learned for 

its own sake, and to my mother, who showed me that even the largest task can be 

accomplished when taken one step at a time, this thesis is dedicated." 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 

 

 

 

Acknowledgments 

For the successful completion of this project, We are thankful to Almighty Allah, for 

enabling us to complete this project and making everything possible for the project to be a 

success. 

 

We would like to express our sincere gratitude to our project supervisor, Dr.Madah Ul 

Mustafa for his sincere guidance, successive cooperation and useful suggestions. 

 

We are thankful to all the "faculty of engineering and computing" for providing valuable 

information and for helping us. We are also thankful to the National University of Modern 

Languages Islamabad for providing a platform to successfully complete this project.   

 

 

 

 

 

 

 

 

 

 

 

 



viii 

 

 

 

Abstract 

As information technology evolves, cybersecurity professionals must ensure security and 

privacy. Recent research shows a rise in new malware strains, with keyloggers becoming 

particularly sophisticated. This malicious software can discreetly record every keystroke 

on a device, giving attackers access to crucial data without the owner's approval. 

Keyloggers must be identified to prevent data loss and unauthorized disclosure.  

Antivirus systems can be ineffective against novel keyloggers that are not known threats. 

These systems detect threats using heuristic and behavioral analysis. Machine learning and 

deep learning algorithms may solve cybersecurity problems. These algorithms can detect 

several threats, including keyloggers that exploit weaknesses. However, these solutions are 

not a panacea for security challenges, and their efficacy depends on many factors.  

In this study, we proposed a hybrid deep learning model based on CNN Convolutional 

Neural Network and long short-term memory networks LSTM. CNNs are used to predict 

keylogger attacks using several feature engineering methodologies where LSTM works on 

classification. Feature engineering preprocessed the dataset by reducing unnecessary 

features, fixing imbalances, and scaling features. With only 10 epochs, the training 

approach reached 99% accuracy and good performance. This shows that the CNN-based 

technique can predict keylogger attacks and that feature engineering improves model 

performance. 

Keywords: Keyloggers. Convolutional Neural Network, Cybersecurity, Feature 

Engineering, CNN, LSTM. 
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CHAPTER 1 

1. INTRODUCTION 

1.1. Overview 

Security, often known as cybersecurity, is a multidimensional field that aims to protect 

computer systems, networks, and data against destructive acts that are carried out by threat 

actors. Within this domain, numerous types of malicious software, phishing campaigns, 

denial-of-service attacks, and insider threats all provide major dangers to the 

confidentiality, integrity, and availability of information [1]. Malware is an umbrella term 

that comprises a wide range of malicious software, such as viruses, worms, trojan horses, 

ransomware, spyware, and adware. Each of these types of software poses a unique risk to 

the security of digital transactions. Worms, for example, are able to transmit themselves 

over networks on their own, whereas viruses are able to disseminate themselves through 

infected files or applications. Trojan horses are malicious programs that cloak themselves 

as genuine software in order to obtain unauthorized access and take advantage of user trust 

[1]. Ransomware, on the other hand, encrypts files and demands payment in exchange for 

the keys to unlock them, whereas adware bombards users with adverts that they do not 

want to see, which frequently has an effect on the performance of the system [1]. In order 

to effectively combat these attacks, it is necessary to use a holistic approach that 

incorporates firewalls, antivirus solutions, intrusion detection systems, and user education 

in order to raise knowledge of recommendations for best practices in cybersecurity [2].  

Keyloggers, which are often referred to as keystroke logging programs, are a particularly 

sneaky type of malware that is designed to covertly record the keystrokes of users. This 

type of malware poses significant threats to the confidentiality of important information 

[3]. As a result of the widespread use of computers for a variety of online activities, the 

number of efforts to engage in keylogging has increased, highlighting the critical need for 

effective defenses. In light of this, education in cybersecurity ought to incorporate a 
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comprehensive investigation of keyloggers and anti-keylogging strategies in order to 

address a number of essential goals [3]. One of the primary benefits of studying keyloggers 

is that it provides students with the opportunity to acquire knowledge regarding the goals 

of cyber attackers, the complex nature of malware, and the procedures that are utilized to 

corrupt and control computers [3]. Furthermore, this instructional focus provides students 

with the tools and methodologies that are essential for detecting and blocking keyloggers. 

This is in recognition of the dynamic nature of current malware, which frequently evades 

standard static detection approaches [4].   

Recent investigations conducted by well-known cybersecurity companies provide more 

evidence that hostile actors continue to make use of keyloggers [5]. An alarming pattern 

that has been seen over the course of the past few years is indicated by the findings of an 

investigation conducted by VeriSign, which demonstrates a significant rise in the 

prevalence of malware that incorporates keylogging capabilities [5]. Similar to the previous 

example, research conducted by Symantec highlights the widespread use of keyloggers by 

hackers in order to illegally gather personal user data. This research also highlights the 

necessity of addressing this threat in the context of cybersecurity education and practice 

[5]. Furthermore, the findings of John Bambenek of the SANS Institute highlight the 

astonishing financial losses that can be attributed to keyloggers. This further emphasizes 

the necessity of combatting this threat through the implementation of complete 

cybersecurity measures [5].         

1.2.  Background 

          The author in [6] has effectively leveraged deep learning and natural language 

processing (NLP) techniques to develop an advanced system for categorizing textual data 

in log files. This innovative solution significantly enhances workflow efficiency by 

reducing the time required for manual log file review [6]. Their focus on text classification 

encompasses key areas such as intent analysis, emotion detection, and sentiment 

evaluation, which have garnered substantial interest within the machine learning 
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community. As dedicated practitioners in the field of text data, they continuously explore 

the diverse tools and methodologies provided by NLP. However, while the author 

highlights the use of NLP for log file classification, specific details regarding the 

classification architecture, model parameters, and other technical aspects are not provided 

[7]. 

          Malware is software designed to steal data, encrypt files for ransom, or create 

botnets. Trojans, viruses, keyloggers, rootkits, worms, and spyware are all classified as 

malware [8]. Malware, which evolved from the 1998 "Morris Worm" to attack 

vulnerabilities and steal user data, remains a major security issue [9]. Smart technologies 

have transformed our lives, yet keyloggers on mobile devices have increased security risks. 

Surreptitiously monitoring keyboard inputs may compromise sensitive data [8]. Malware 

detection used signature-based scanning, but AI became essential when polymorphism and 

obfuscation allowed malware to escape detection. AI can use deep learning and supervised 

learning to classify malware based on its behavior [10]. Keyloggers were meant for 

technical troubleshooting but are now used for unwanted monitoring. They record 

keystrokes and send them to distant servers in mobile devices, threatening critical data. 

Machine learning may identify malicious from conventional apps [11]. Keylogger malware 

is difficult to detect due to its stealthy activity, evasion of standard detection methods, and 

potential installation by genuine users. For reliable and efficient identification, machine 

learning and behavior-based analysis are used [11]. Keylogger identification is done using 

an SVM model in this study. SVM is a powerful machine learning method for malware 

identification and classification. SVM models can reliably categorize new keyboard 

sequences, providing reliable detection and prevention in the dynamic cybersecurity 

landscape. They are trained on a carefully annotated dataset of valid input and keylogger-

generated keystrokes.        
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1.3. Motivation 

Cyberattacks, particularly keyloggers, are an increasing threat in today's digital 

landscape. These hidden keyloggers can compromise sensitive data, posing significant 

risks to both individuals and businesses. Traditional cybersecurity methods often fall short 

in detecting these stealthy attackers, necessitating the development of sophisticated 

detection systems with high accuracy. Our robust model leverages CNNs and LSTM 

networks to extract hierarchical features from sequential data and capture temporal 

dependencies, resulting in more precise detection of keylogger activity. In an ever-evolving 

digital environment, advanced neural network architectures are essential to bolster 

cybersecurity defenses and safeguard against emerging cyber threats. 

1.4. Problem Statement 

           Cybercriminals develop new methods to hack networks and consumer gadgets as 

technology advances. Intercepting keystrokes to modify login details gives illegal access 

to bank accounts and email credentials. Traditional machine learning methods like SVMs 

and decision trees struggle to detect keyloggers [12,13]. However, deep learning methods 

like sequential models and CNNs may help detect and mitigate keyloggers. 

1.5. Aim and Objectives 

1.5.1. Aim 

The aim of this research is to develop an improved method for keyloggers detection 

using machine learning techniques, the objective is to enhance the existing approaches that 

are used to detect fraudulent online payment transactions. 

1.5.2.           Objectives 

 To design and develop an innovative fraud detection framework that 

integrates advanced methods, such as anomaly detection and real-time 

monitoring, to improve the detection and prevention of online payment fraud. 



5 

 

 

 

 To evaluate the effectiveness of feature engineering methodologies in 

preprocessing datasets, addressing feature imbalances, and improving the 

predictive capabilities of deep learning models in detecting keyloggers. 

 To assess the performance of current machine learning and deep learning 

algorithms in detecting online payment fraud, emphasizing their accuracy, 

scalability, and ability to adapt to emerging fraud tactics. 

 To develop and implement a CNN-based framework for predicting keylogger 

attacks, leveraging advanced feature engineering techniques to enhance 

model accuracy and performance. 

          Chapter 1 explores cybersecurity challenges, focusing on malware, particularly 

keyloggers, and various cyberattack methods. It emphasizes the importance of protecting 

systems, networks, and data from threats like malware, phishing, and insider attacks. 

Comprehensive cybersecurity measures, including firewalls, antivirus solutions, intrusion 

detection systems, and user awareness, are highlighted.  

This chapter also examines the role of machine learning, such as Support Vector Machines 

(SVM), in detecting keyloggers and evolving threats. Motivated by the growing 

sophistication of cyber-attacks, this study aims to enhance online payment fraud detection 

using advanced techniques like CNNs and LSTMs.  

This chapter concludes with objectives to review traditional methods, analyze fraud 

patterns, and propose innovative technologies for combating financial cyber threats. 
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CHAPTER 2 

2. RELATED WORK  

2.1. Literature Review          

A comprehensive literature review is needed to understand the subtle nuances of 

different types and ways for detecting online payment fraud that are being in practice as on 

today. The review will be as extensive and comprehensive using various sources, including 

academic research papers, industry reports, or esteemed publications. This study aims to 

address this limitation by synthesizing the current body of knowledge and, identify 

strengths, weaknesses and gaps with respect to existing fraud-detection techniques. 

A full overview of the area will be provided by the literature study, which will go 

into a variety of aspects, including the following points: 

2.2. Machine learning and Deep Learning Approaches 

In the field of fraud detection, machine learning algorithms have been proven as one of the 

powerful tools which can significantly improve accuracy and flexibility in detecting 

fraudulent activities specifically for online payment systems. In the literature, an extensive 

study has been done for performance analysis of various machine learning models along 

with feature selection methods and ensemble techniques to check their capabilities in this 

important area [15]. Online payment fraud detection has been extensively studied using a 

number of supervised learning methods including logistic regression, decision trees and 

random forests, support vector machines (SVM), as well as neural networks. All these 

approaches use labelled datasets to train models that will learn how to distinguish fictitious 

transactions from real ones. Studies have investigated comparing the performance of these 

models in terms of several metrics such as precision, recall and F-1 Score to find out which 

one is most suitable for fraud detection while minimizing false positives (f-p), a wrong 

judgment on acceptable transactions) and negatives. The interest in unsupervised learning, 
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such as k-means and DBSCAN for clustering anomalies on transaction data without labeled 

fraudulent examples has also brought these techniques to the spotlight. They are especially 

effective in finding out new attacks even for unseen past data, which is pretty essential to 

detect the emerging threat of fraud on online payment systems [16]. 

Unlike purely supervised learning, in such situations we have a small amount of 

labeled data and what is commonly done is to combine the supervisory signals that are 

represented both by those labels (on top of which you can optimize) as well somewhat less 

structured information present in our unlabeled instances within this unsupervised 

environment. This hybrid training methodology allows the system to learn on examples of 

both fraudulent and authentic transactions, thereby improving its ability to generalize new 

fraud instances while reducing extensive labeling efforts. 

In addition to this, ensemble methods like bagging and boosting averaging multiple 

models are also found in the literature enhance robustness of fraud detection solutions 

(Khamse-Ashari 2013) with respect to different evaluation metrics. Bagging, boosting and 

stacking ensemble techniques that benefit from diversity among individual models 

allowing for better performance in terms of classification accuracy and reduced over-

fitting. In this paper we investigate such performance of the overall accuracy when using 

each machine learning as built a model, and hope to identify their performances in 

enhancing fraud detection rate on online payment systems. Organizations can provide 

better ways to combat frauds using hybrid approach of bunching together strengths and or 

advantages any algorithms,feature selection methods, ensemble techniques. 

2.3. Behavioral Analysis 

Behavioral analysis approaches play a crucial role in fraud detection by monitoring 

user actions and identifying deviations from established behavioral norms that may signal 

fraudulent activities. The evaluation of relevant literature encompasses a diverse range of 

methodologies, including user profiling, session analysis, clickstream analysis, and other 
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behavioral analysis techniques. Through a comprehensive review, the effectiveness of 

these methods in improving the accuracy of fraud detection is thoroughly examined. 

User profiling involves creating profiles of individual users based on their historical 

behavior, transaction patterns, demographics, and other relevant characteristics [5]. By 

analyzing deviations from established profiles, such as sudden changes in spending habits 

or unusual transaction times, fraud detection systems can flag potentially fraudulent 

activities for further investigation. Research in this area focuses on the development of 

robust profiling techniques that can accurately capture the unique behaviors of individual 

users while minimizing false positives. Session analysis extends beyond individual 

transactions to examine the sequence of actions performed by users during a single session 

or interaction with an online platform. By analyzing session data, including login times, 

page navigation patterns, and interaction durations, fraud detection systems can identify 

anomalous behaviors that may indicate unauthorized access or fraudulent activity. Session 

analysis techniques aim to differentiate between legitimate user sessions and those 

associated with fraudulent behavior, thereby improving the accuracy of fraud detection 

systems [17].  

2.4. Anomaly Detection 

Anomaly detection methods play a pivotal role in identifying irregularities within 

transaction data, particularly in the context of detecting fraudulent online payments [7]. 

Statistical methods, such as z-score analysis and time-series analysis, offer simplicity and 

efficiency in pinpointing outliers based on deviations from expected norms. Clustering 

techniques, like k-means and density-based clustering, excel in uncovering groups of 

transactions that deviate from typical patterns, thereby flagging potentially fraudulent 

activities. Neural networks, including autoencoders and deep learning architectures, 

provide a powerful means of capturing intricate patterns and relationships within 

transaction data, enhancing the detection of subtle anomalies associated with fraudulent 

behavior. However, each of these approaches has its limitations. Statistical methods may 
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struggle with non-linear or complex anomalies that do not adhere to standard distributions. 

Clustering techniques may encounter challenges with high-dimensional data and require 

careful parameter tuning to achieve optimal results. Neural networks, while capable of 

capturing complex patterns, often demand large amounts of labeled data and substantial 

computational resources for training and inference. Additionally, all anomaly detection 

methods face the challenge of balancing detection accuracy with false positive rates, 

necessitating careful consideration of the trade-offs involved in fraud detection systems 

[18]. 

2.5. Malware Analysis Overview 

In this part, we will see the importance of feature engineering in fraud detection as 

they are directly impacting the performance of your machine learning model. Feature 

engineering is at the core of this task and can greatly improve detection accuracy, precision, 

recall by transforming raw data into insightful features. 

 

2.5.1.  Techniques Used in Literature 

1. Feature Creation and Selection: 

o Based on the information we receive in transaction frequency, average 

transaction amount and time based features (time of day / dyas of week) etc 

to derive new feature.  

o Feature selection: It includes (i) using the correlation analysis, ii) mutual 

information iii), feature importance scores obtained from tree-based models 

etc. 

2. Aggregation and Statistical Features: 

o Aggregating transaction data over different time windows to capture 

patterns, such as total amount spent per day or number of transactions per 

week. 
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o Calculating statistical measures like mean, median, variance, and standard 

deviation for transaction amounts and frequencies. 

3. Behavioral Features: 

o Analyzing user behavior patterns, such as typical spending habits, common 

transaction locations, and device usage. 

o Identifying anomalies in behavior that may indicate fraudulent activity. 

4. Textual and Categorical Feature Encoding: 

o Encoding categorical variables using techniques like one-hot encoding, 

label encoding, and target encoding. 

o Using natural language processing (NLP) techniques to analyze textual 

data, such as transaction descriptions or user comments. 

5. Time-Series and Sequential Features: 

o Capturing temporal dependencies in transaction data using techniques like 

rolling windows and lag features. 

o Employing sequence-based models, such as recurrent neural networks 

(RNNs), to detect patterns over time. 

2.5.2. Comparison of Techniques 

 Feature Creation vs. Aggregation: 

o Feature creation focuses on deriving new variables from raw data, providing 

a more granular view, whereas aggregation condenses information over 

time windows, offering a macro perspective. 

 Statistical Features vs. Behavioral Features: 

o Statistical features provide quantitative measures of transaction patterns, 

which are effective for detecting anomalies. In contrast, behavioral features 

capture qualitative aspects of user behavior, which can identify more subtle 

forms of fraud. 

 Encoding Techniques: 
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o One-hot encoding and label encoding are simple and effective for small 

categorical datasets, while target encoding is useful for high-cardinality 

categories. NLP techniques add a layer of sophistication for textual data but 

require more computational resources. 

 Time-Series Features: 

o Rolling windows and lag features are effective for capturing short-term 

trends, while sequence-based models are better suited for detecting complex 

temporal patterns over longer periods. 

2.6. Keyloggers 

          A keylogger is precisely what its name suggests: a program designed to silently 

record and store every keystroke made on a computer's keyboard. The inherent danger of 

having a keylogger virus on your computer lies in its ability to covertly capture every piece 

of text you input through your keyboard, including sensitive information such as passwords 

and usernames. What makes matters worse is that some keyloggers are Trojan keyloggers, 

which are concealed within seemingly harmless programs. These Trojan horse viruses are 

deceptive in nature, as they disguise themselves as regular, sometimes fully functional 

applications, making it appear as though nothing malicious has been installed on your 

computer [20-22]. These Trojan keyloggers often go by various names, such as keystroke 

malware, keylogger viruses, or Trojan horse keyloggers. They can also be considered a 

subset of Trojan viruses, specifically designed for the purpose of surreptitious surveillance, 

earning them the moniker of "child of Trojan" surveillance spyware. 

           Keyloggers are a significant concern in cybersecurity. They record keystrokes on 

computers or mobile devices, potentially compromising sensitive information. Various 

techniques and algorithms have been proposed for their detection: 
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2.6.1. PCC Algorithm:  

             The Pearson Product Correlation Coefficient (PCC) is used for keylogger detection 

in some studies. It can effectively distinguish keylogging behavior when applied to the data 

[23].  

 Kernel-Based Behaviour Analysis: This approach involves scrutinizing the 

behaviour of applications to detect malicious behaviours. It is particularly useful 

for security assessments of Android applications [24]. 

2.6.2. Dynamic Taint Analysis:  

            Dynamic taint analysis is employed for detecting kernel-level keyloggers. It can 

differentiate between bit-level keylogging and underlying drivers. Machine Learning: 

Machine learning models, such as Support Vector Machine (SVM) and Random Forest, 

have been applied to detect keyloggers with promising results. 

Keyloggers pose a significant threat to users due to their ability to secretly capture 

keystrokes and compromise sensitive information. Unlike other types of malicious 

software, keyloggers do not directly harm the system itself but instead target the user's data. 

Here's a rewritten version of the text. Keyloggers are a distinct cybersecurity threat that 

may not harm computer systems directly, but they pose a grave danger to users by 

surreptitiously intercepting keystrokes and potentially compromising confidential 

information entered through the keyboard [23]. This clandestine activity enables 

cybercriminals to obtain critical data, including passwords, PIN codes, and other sensitive 

information. The repercussions of such breaches are wide-ranging, extending from 

financial losses, such as unauthorized transactions from the victim's account or 

unauthorized access to online gaming accounts, to more severe consequences [24]. 

 Keyloggers can be used as instruments in a variety of forms of espionage, including 

industrial and political espionage, in addition to causing individuals to suffer financial 

losses. It is possible for them to facilitate the theft of confidential government information 

as well as sensitive commercial data, putting the safety of both private businesses and state-
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owned organizations at jeopardy. It is possible, for instance, that they will steal secret 

encryption keys, which can have far-reaching consequences [25]. 

Keyloggers, phishing attacks, and social engineering tactics are the principal 

strategies that are now being utilized in the field of cyber fraud. The protection of users 

against keyloggers is more difficult than the protection against phishing, which may be 

accomplished by recognizing and avoiding phishing emails and abstaining from entering 

personal information on websites that appear to be dubious. The implementation of 

comprehensive security measures is typically the only effective countermeasure that can 

be taken. It is practically impossible for consumers to detect the presence of keyloggers on 

their computers since keyloggers frequently function in a hidden manner [26]. 

              According to [27-28], who oversees Brazil's Computer Emergency 

Response Team under the country's Internet Steering Committee, keyloggers have eclipsed 

phishing as the most widely deployed method for stealing sensitive information. 

Additionally, keyloggers are continuously developing and becoming more complex as time 

goes on. They now have the capacity to monitor the websites that the user visits and 

selectively collect keystrokes that are entered on websites that are of particular interest to 

the cybercriminal. In recent years, there has been a considerable increase in the prevalence 

of a variety of harmful programmed that contain keylogging capabilities. Each of these 

programs has become increasingly widespread. Every single person who uses the internet 

is susceptible to the dangers that are posed by cybercriminals, regardless of where they are 

located or the organizations that they are involved with. 

             It's important to note that not all programs with keylogging capabilities are 

inherently malicious. Some businesses employ keystroke logging programs to monitor 

their employees' computer usage, and various parental control software also logs a child's 

internet activity. These legitimate use cases are not considered malicious keyloggers. So, 

what exactly does a keylogger Trojan do? A keylogger, in its malicious form, diligently 

monitors and records every keystroke it can detect. Once it infiltrates a system, it proceeds 

to track and store the gathered information locally. In some cases, the hacker behind the 
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keylogger may need physical access to the compromised computer to retrieve the logged 

data [29].  

            Alternatively, the keylogger can transmit the recorded logs over the internet to the 

attacker. This means that if you have fallen victim to a keylogger virus and are using your 

keyboard to input information anywhere, the virus is likely privy to it. This holds true 

whether you're working within an offline program like Microsoft Word or accessing online 

platforms such as your bank or social media accounts. Some sophisticated keystroke 

malware can even remain dormant until specific actions are detected [30]. The easiest path 

for a keylogger Trojan to take is when your antivirus software is outdated, turned off, or 

perhaps not even installed on your system. Consequently, these keyloggers can easily 

bypass the antivirus software if it lacks the knowledge to protect your computer effectively. 

Keyloggers are typically downloaded through executable files (EXE files). This is the 

standard format for most programs on your computer, making it impractical to avoid all 

EXE files in an attempt to steer clear of keyloggers [31-33]. 

          A number of preventative measures ought to be performed in order to improve 

software security and reduce the likelihood of malicious software, which may include 

spyware and keyloggers. When downloading software, make sure to only do it from 

reliable sources, such as official app stores and respected websites. Avoid downloading 

software from random or torrent sources. Verify the digital signatures of the apps you have 

downloaded to guarantee their legitimacy, and read reviews written by other users for 

additional assurance. In order to fix security vulnerabilities, it is important to keep 

operating systems and software up to date. Additionally, it is important to install 

trustworthy antivirus and anti-malware applications in order to detect and remove harmful 

software. Additionally, it is important to exercise caution while dealing with email 

attachments, particularly executable files that come from unknown senders. A firewall 

should be enabled to monitor network traffic and prevent unwanted access [37]. The best 

way to protect oneself against hackers is to educate yourself on the main social engineering 

techniques they use and to frequently back up essential data to cloud storage or external 
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sources. A typical user account should be used for everyday work in order to reduce the 

risk of virus harm. Additionally, it is important to be aware of browser extensions and 

permissions that are sought by software that has been installed. In addition, whenever it is 

feasible, implement two-factor authentication for online accounts. This will add an 

additional layer of protection against illegal access. 

Keyloggers are used by cybercriminals to illegally get sensitive information by secretly 

recording the keystrokes performed by users who are unaware of the activities being 

recorded. In the case of phishing schemes that targeted customers of Nordea bank, for 

example, malicious emails were sent to users, prompting them to install an anti-spam 

program that embedded the Haxdoor Trojan to record login credentials throughout the 

process of registering for online services [34]. In a similar manner, the Mydoom worm 

carried out a distributed denial of service attack while covertly recording sensitive 

information such as credit card details from computers that were infected [36]. Trojan 

horses that contained embedded keyloggers were used in targeted assaults, such as those 

that were carried out on the London headquarters of Sumitomo Mitsui, in order to monitor 

and steal login credentials, thereby permitting unauthorized access to accounts [37]. 

Additionally, in instances of industrial espionage, it is quite probable that keyloggers were 

utilized in order to steal critical information from the corporations that were the targets of 

the espionage. This demonstrates the widespread and detrimental impact that malware of 

this kind has on compromising cybersecurity and undermining the integrity of 

organizations [38]. 

2.7. Countermeasures 

          As the threat of spyware continues to evolve and becomes more sophisticated, 

several techniques have emerged to combat it effectively. These encompass both software 

programs designed for spyware removal or blocking, and various user practices aimed at 

reducing the risk of spyware infiltrating a system. Anti-spyware programs employ two 

primary methods to tackle spyware: 
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2.7.1. Real-time Protection: 

            Anti-spyware programs can offer real-time protection against the installation of 

spyware software on your computer. This functionality parallels that of antivirus software. 

The anti-spyware software continuously scans all incoming network data for any signs of 

spyware software and promptly blocks any identified threats. 

2.7.2. Detection and Removal: 

             Alternatively, anti-spyware software can be utilized exclusively for detecting and 

removing spyware software that has already infiltrated user computer. This approach is 

generally more user-friendly and widely adopted. With this type of spyware protection 

software, we can schedule regular scans of over computer, such as weekly, daily, or 

monthly, to identify and eliminate any spyware software present. This anti-spyware 

software conducts thorough scans of the Windows registry, operating system files, and 

installed programs on your computer, generating a list of detected threats. we can then 

decide which items to delete and which to retain based on the scan results [41]. 

2.8. Comprehensive Analysis of Fraud Detection Techniques: 

Advantages, Challenges, and System Integrations 

When addressing fraud detection techniques, it's crucial to analyze and compare the 

methods in terms of their references, advantages, disadvantages, and limitations. Here’s a 

detailed exploration of various common fraud detection techniques: 

2.8.1. Rule-Based Systems  

RBS are traditional methods used extensively in banks and financial institutions. 

They are simple to implement and understand, making them effective for catching known 

types of fraud that follow predictable patterns. However, these systems are rigid and not 

adaptable to new or evolving fraudulent strategies without manual updates. Their main 

limitations include the inability to detect new, unseen types of fraud and a high rate of false 

positives as the fraud landscape evolves. 
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2.8.2. Machine Learning Models 

ML Models represent modern data-driven approaches that are widely 

adopted in various sectors. These models are capable of learning and adapting from 

new data, detecting complex patterns of fraudulent behavior, and can handle large 

volumes of data efficiently. Despite their advantages, machine learning models 

require significant data preprocessing and feature engineering and may be opaque 

in their decision-making processes, often referred to as the black-box issue. They 

depend on large, labeled datasets for training and risk model decay over time if not 

continuously updated with new data. 

 

2.8.3. Anomaly Detection Systems 

ADS are designed to identify outliers in data that could indicate fraudulent 

activity. They are effective in detecting fraud that deviates from normal behavior 

patterns and can be unsupervised, not requiring labeled data for training. However, 

they suffer from higher false positive rates, as not all anomalies are fraudulent, and 

can miss frauds that mimic normal behavior patterns. Determining the threshold for 

what constitutes an anomaly and adjusting it based on evolving data patterns can 

be challenging. 

2.9. Fraud Detection Techniques: Overview, Pros, Cons, and 

Limitations 

2.9.1.  Rule-Based Systems  

Pros: 

 Easy to implement and understand. 

 Effective for detecting well-known and simple fraud patterns. 

 Provides immediate alerts for predefined suspicious activities. 

Cons: 

 Inability to adapt to new and evolving fraud tactics. 
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 High number of false positives, leading to wasted resources. 

 Requires constant maintenance and updating of rules. 

 May overlook complex and sophisticated fraud schemes. 

Limitations: 

 The static nature of predefined rules makes it challenging to keep pace with rapidly 

changing fraud patterns. 

 Balancing thresholds to minimize false positives and false negatives requires 

continuous fine-tuning. 

2.9.2. Machine Learning-Based Systems  

Pros: 

 Adaptability to new and evolving fraud patterns. 

 Ability to learn from data and improve over time. 

 Can detect complex and subtle fraudulent activities. 

 Reduces false positives by distinguishing between legitimate and fraudulent 

transactions more accurately. 

Cons: 

 Requires large amounts of labeled data for training. 

 Computationally intensive and may require significant processing power. 

 May produce opaque models that are difficult to interpret. 

Limitations: 

 The effectiveness of machine learning models depends on the quality and quantity 

of training data. 

 Risk of overfitting to training data, leading to reduced performance on unseen data. 

 Initial setup and model training can be resource-intensive. 

2.9.3. Hybrid Systems (Combining Rule-Based and Machine Learning)  

Pros: 
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 Leverages the strengths of both rule-based and machine learning approaches. 

 Provides immediate detection through rules while continuously adapting to new 

fraud patterns through machine learning. 

 Balances precision and recall, reducing false positives and negatives. 

Cons: 

 Increased complexity in implementation and maintenance. 

 Requires integration and synchronization between rule-based and machine learning 

components. 

 May still struggle with very novel or sophisticated fraud tactics that fall outside 

both predefined rules and learned patterns. 

Limitations: 

 The need for continuous coordination and fine-tuning between rule-based rules and 

machine learning models. 

 Potentially higher resource requirements due to the combination of both techniques. 

 Challenges in ensuring seamless cooperation between static rules and dynamic 

learning models. 

2.9.4. Deep Learning-Based Systems  

Pros: 

 High accuracy in detecting complex fraud patterns. 

 Capable of processing large volumes of data efficiently. 

 Can automatically extract relevant features from raw data. 

Cons: 

 Requires substantial computational resources and specialized hardware. 

 May have longer training times compared to traditional machine learning models. 

 Often seen as a "black box," making the results difficult to interpret and explain. 

Limitations: 

 The need for extensive labeled data for effective training. 
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 Risk of overfitting if not properly regularized. 

 High implementation and operational costs. 

2.9.5. Anomaly Detection Techniques  

Pros: 

 Effective at identifying unusual patterns that may indicate fraud. 

 Can be used with unsupervised learning, requiring no labeled data. 

 Adaptable to various types of data and fraud scenarios. 

Cons: 

 May generate false positives by flagging legitimate but unusual transactions. 

 Requires fine-tuning to balance sensitivity and specificity. 

 May miss fraud patterns that appear normal within the data distribution. 

Limitations: 

 The challenge of distinguishing between benign anomalies and actual fraudulent 

activities. 

 May require domain expertise to interpret and act on detected anomalies. 

 Dependence on the quality of the data and the chosen detection algorithm. 
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2.10. Comparison Table 

Tabel 1: Compare with Previous Work 

Year References Title Summary  

2019 [35] A modified framework 

to detect keyloggers 

using machine learning 

algorithm 

In this research used ResNet-50 and 

ResNet-101 model on phishing 

dataset. But Training time can be long 

for large datasets 

2020 [41] Investigation of 

machine learning 

techniques in intrusion 

detection system for IoT 

network  

The model might not generalize well 

to novel attack types or techniques 

that emerge after the model has been 

trained. Additionally, the focus on 

primarily Botnet and Keylogger 

attacks might limit the model's 

effectiveness against other types of 

cyber threats targeting IoT devices. 

2022 [39] Building ML Model 

with Hybrid Feature 

Selection Technique for 

Keylogger Detection 

This research used Random Forest as 

a machine learning model. Issue in 

this work is Struggle with high-

dimensional dataset 

2022 [38] Malware Classification 

using DL. Thara, 

Malware Classification 

using Deep Learning  

RNN model is used to detect trojan 

data. But it can be prone to overfitting 

if not properly regularized. 

2023 [36] A Combinatorial-Based 

Fuzzy Inference System 

for Keylogger Detection 

The detection of malware with fuzzy 

logic. It may not capture complex 

relationships in data 

  

        Runs several research efforts trying to detected keyloggers and other EL using various 

machine learning / deep learning techniques Table of impact. Warning: Another work from 

2019 [35] with ResNet-50 and ResNet-101 models attempt to use keylogging detection in 

a phish dataset but long training time on large scale data made it infeasible. Also in 2020, 

another work [41] investigated machine learning tools for intrusion detection on IoT 

networks highlighting the Botnet and Keylogger threats. But, the model could only perform 
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well at new attack types that arrived after training. In 2022, a study [39] used Random 

Forest (RF) as an algorithm with hybrid feature selection method for detecting keylogger 

which experienced limit in the high dimensionality of datasets. A different 2022 study [38] 

applied an RNN model for trojan malware classification, but it faced overfitting problem 

which showed the necessity of regularization. And lastly a study [36] conducted in 2023 

used Combinatorial-based Fuzzy Inference System for detecting keyloggers which was 

innovative but it is inadequate to capture complex relationships within the data. These 

contrasts reflect the challenges of building strong, effective models that handle large and 

diverse array data; two important aspects to generalize in a malware detection task. 
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CHAPTER 3 

3. METHODOLGY   

       The research methodology presented herein is a carefully structured approach designed 

to achieve the objectives outlined in this proposal. The following sections provide a 

comprehensive overview of our methodology: 

3.1. Proposed Deep Neural Network Model 

              Keyloggers represent a significant threat to cybersecurity due to their ability to 

covertly record users' keystrokes. This capability poses a dual risk, compromising both the 

privacy and security of individuals. To counteract this threat, the implementation of 

machine learning algorithms, specifically Convolutional Neural Networks (CNNs), has 

emerged as a promising approach for the development of reliable keylogger detection 

systems. This investigation explores the potential of CNNs in detecting keyloggers 

effectively. Convolutional Neural Networks (CNNs) are a class of deep learning models 

primarily used for image analysis. However, their application is not limited to visual data; 

they can be adapted to handle various types of data, including sequences and grids. This 

versatility is achieved by modifying the architecture and input format of the CNN to suit 

the specific data type. CNNs are designed to automatically learn hierarchical patterns and 

features from the data they are trained on, making them well-suited for identifying complex 

patterns such as those associated with keylogger activity.  

3.1.1. Advantages of using CNN 

The reason of using CNN is deep learning models, such as neural networks, possess 

the remarkable ability to recognize complex patterns in data and automatically construct 

hierarchical representations. This technology is particularly adept at handling time-series 

or sequential data, making it an invaluable tool for various applications, including 

keylogger prediction. 
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In the context of keylogger detection, utilizing neural network architectures like 

Convolutional Neural Networks (CNNs) or Long Short-Term Memory (LSTM) networks 

can be highly effective. CNNs are known for their ability to extract spatial features from 

data, while LSTMs excel at capturing temporal dependencies in sequences. By leveraging 

these architectures, it's possible to analyze the patterns of keystrokes and identify 

anomalies indicative of keylogger activity. 

The combination of CNNs and LSTMs can provide a robust solution for keylogger 

prediction, enabling the detection of subtle and complex patterns associated with malicious 

keystroke logging. As deep learning technology continues to evolve, its application in 

cybersecurity, particularly in keylogger detection, is expected to become increasingly 

sophisticated and effective. 

3.1.2. Hybrid CNN-LSTM Architecture: 

Our model uniquely combines CNN and LSTM architectures, leveraging the 

strengths of both. The CNN layers are adept at identifying spatial features, while the LSTM 

layers focus on capturing temporal relationships. This integrated approach enhances the 

model's ability to process and interpret sequential data, improving its accuracy in making 

predictions. 

The integration of CNNs into our detection system significantly enhances its 

performance by providing superior feature extraction, managing intricate data, ensuring 

robustness, achieving generalization, offering scalability, and maintaining high accuracy. 

These capabilities are crucial for effectively addressing the threats posed by keyloggers 

and phishing attacks. 
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3.2. Layers Used In Proposed Model 

3.2.1. Convolutional Layer  

          It is the most important layer of CNN. The main calculation is performed in this 

layer, where variety of feature maps are created through using kernels (weights matrix). 

The extraction of feature map creates using the following equation: 

𝑆(𝑖,𝑗) = (𝐼 ∗ 𝐾)(𝑖,𝑗) = ∑∑𝐾(𝑖 − 𝑚,𝑗 − 𝑛)𝐼(𝑚, 𝑛) 

         Where i, j indicates the row number and the column number of an image, and m, n 

represents the serial number in the kernel. I represent the input image, while 2D kernel is 

denoted by K. After convolution the output is stored in S. Furthermore, the connection 

between the input and output size will be calculated from the following equation.  

𝑊 = 𝑊 − 𝐹 − 2𝑃 / 𝑆 + 1 

𝐻 = 𝐻 − 𝐹 − 2𝑃 / 𝑆 + 1 

𝐷 = K 

        Where W and H represents the input, size padded by P. F represents the size of a 

square kernel. While, S is the stride value. Also, the output dimension (D) equals to the 

number of kernels (K) [77]. 

 

Figure 1: Convolutional Operation 

       Figure 2, describes the basic convolution operation. Where each element of the sliding 

window is multiplied by the filter. And add the results. Then based on the stride value the 
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sliding window is moved to the next position. In this figure, the stride value is one. So, it 

moves single position. And do the same calculation to get the next results. 

 Purpose of Convolutional Layer 

The convolutional layer of a CNN is essential for its performance across various 

applications due to its ability to automatically extract significant features from input data, 

recognize spatial hierarchies, and reduce parameter count through sharing. Additionally, it 

achieves translation invariance, lowers computational complexity, and maintains spatial 

relationships, all of which are critical for the effective functioning of CNNs. 

3.2.2. Pooling Layer 

      In a typical Convolutional Neural Network (CNN), the pooling layer is critical for 

reducing the dimensionality of feature maps, thereby adding hierarchical structure to the 

model and decreasing computational complexity. This reduction is vital for enhancing the 

network’s capability to focus on essential features. Typically positioned after the 

convolutional layer, the pooling layer can utilize various methods, with max pooling and 

average pooling being the most prevalent. Max pooling simplifies the input feature map by 

dividing it into non-overlapping regions (for example, 2x2 blocks) and selecting the 

maximum value from each region. This method is effective in preserving prominent 

features while eliminating less significant ones. Conversely, average pooling computes the 

mean of all values within each block, offering a more uniform representation of the feature 

map. Although it helps in reducing noise, it dilutes the impact of stronger signals. 

In our proposed model, we strategically incorporate multiple max pooling layers to 

progressively down sample the feature maps. This approach allows the network to 

concentrate on the most salient features, reducing the spatial dimensions of the data. 

Consequently, our model achieves greater computational efficiency and is more robust 

against overfitting, making it particularly effective for applications such as predicting 

keylogger activities. 
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Figure 2: Max and Average Pooling Operation 

3.2.3. Batch Normalization  

         Batch normalization is a widely used method for normalizing the output of 

convolutional layers in deep learning models. The primary goal of batch normalization is 

to stabilize and accelerate the training process by ensuring that the inputs to each layer have 

a mean of zero and a standard deviation of one. This is achieved through the equation: 

Normalization ∶ 𝑥̂ 𝑙 =
𝑥̂𝑖 − µ

𝛽

√𝛿𝛽 
2 +  ɛ

 

Where xi is the input, μβ is the mini-batch mean, δβ2 is the mini-batch variance, and  

ϵ is a small constant added for numerical stability. 

 

Batch normalization provides several advantages that enhance the efficacy of deep learning 

architectures. Primarily, it mitigates the problem of internal covariate shift by normalizing 

layer inputs, thereby stabilizing their distribution throughout the training process and 

promoting faster model convergence. This stabilization allows for the adoption of 

increased learning rates while minimizing the risk of divergence, as the normalization 

process moderates the scale of the gradients, safeguarding against gradient explosion or 

vanishing. 

Additionally, batch normalization exerts a regularization effect, diminishing the 

dependence on other regularization strategies such as dropout. This effect not only reduces 
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overfitting but also improves the model's generalization capabilities when exposed to new 

datasets. 

Moreover, by accelerating convergence and facilitating higher learning rates, batch 

normalization can significantly curtail the training duration of complex neural networks. 

This efficiency makes it a crucial technique in the training regimen of sophisticated deep 

learning models, particularly those involving extensive and intricate datasets.   

3.2.4. Activation Function 

         After the normalization step, an activation function is employed to inject non-

linearity into the neural network architecture. This non-linearity is crucial for enabling the 

network to decipher complex patterns and deliver precise predictions. Among the 

activation functions, the Rectified Linear Unit (ReLU) and the Sigmoid function are most 

prevalent. 

The ReLU activation function is mathematically defined as ReLU(x) = max(0, x), 

where x  represents the output from the preceding convolutional layer. ReLU's primary 

benefit is its simplicity and computational efficiency, as it maintains positive values 

unchanged while zeroing out negative values. This attribute is particularly beneficial in 

mitigating the vanishing gradient problem—a scenario in deep networks where gradients 

shrink to minimal values during backpropagation, hindering effective learning. Owing to 

its capability to facilitate faster convergence and enhance overall model performance, 

ReLU is extensively utilized in convolutional neural networks (CNNs). 

On the other hand, the Sigmoid function = 𝜎(𝑥̂) =
1

1+𝑒−6
 It maps the input values to a range 

between 0 and 1, making it suitable for binary classification tasks and probability 

estimationIn the context of Fully Convolutional Networks (FCNs), the Sigmoid function 

is frequently applied within the Region of Interest (ROI) pooling layer due to its ability to 

effectively differentiate between foreground and background classes. This capability is 

particularly vital for tasks such as object detection and semantic segmentation. To 

summarize, both the ReLU and Sigmoid activation functions are instrumental in  
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Type equation here.introducing non-linearity to neural networks, thereby enabling these 

networks to interpret complex patterns. While ReLU is favored in CNNs for its 

computational efficiency, the Sigmoid function is prized in specific settings like FCNs for 

its proficiency in generating probabilistic outputs. 

 

Figure 3: Sigmoid vs ReLU 

3.2.5. Fully Connected Layer 

           It is also called dense layer. This layer is applied at the end of the CNN model. The 

purpose of this layer to derive the final classification decision using linear operation. The 

following formula used for the linear operation. 

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑓(∑𝑤𝑖𝑥̂𝑖 + 𝑏

𝑛

𝑖=1

 ) 

          In the discussed equation, w represents the weight, x  signifies the image input with 

a total count of  n , b  indicates the bias, and f  denotes the activation function. In our model, 

the activation function within the dense layer is specifically utilized for refining bounding 

boxes. This process entails fine-tuning the coordinates of the bounding boxes to enhance 

their precision in accurately localizing objects within the image. By ensuring that the output 

values are appropriate for interpretation as coordinates, the activation function plays a 

pivotal role in augmenting the model’s capability to detect and precisely pinpoint objects. 
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3.3. Dataset Collection 

3.3.1. Dataset: 

              Keylogger detection datasets are curated collections of data used to train and 

evaluate machine learning and deep learning models for identifying keyloggers, which 

pose significant security threats by covertly recording keystrokes to steal sensitive 

information. Various algorithms have been applied to enhance detection accuracy: Random 

Forest achieved 84% accuracy for detecting Trojans, Support Vector Machines identified 

phishing attempts with 89% accuracy, K-Nearest Neighbors (KNN) and Recurrent Neural 

Networks (RNN) detected spyware with 80% and 89% accuracy, respectively, and Fuzzy 

Logic demonstrated the highest accuracy of 95.5% for malware detection. For this study, 

we downloaded the dataset from Kaggle, a popular platform for data science projects. 

These findings highlight the potential of advanced algorithms in combating malicious 

software, with Fuzzy Logic emerging as the most accurate. Ongoing research is expected 

to further enhance the detection accuracy and reliability of keylogger detection systems. 

Tabel 2: Compare Dataset and Accuracy 

Reference Algorithm Name  Virus  Accuracy 

[42] Random Forest Torjan 87% (F1-Score) 

[43] NN, SVM, and RF Phishing  95.18%, 

85.45%, and 

78.89% 

[36] Fuzzy Logic Malware 95.5% 

[40] CNN Spyware 90% 

[38] RNN  Malware 89% 

 

The table compares different algorithms used for virus detection and their corresponding 

accuracy. Random Forest achieved an 87% F1-Score in detecting Trojans [42]. In phishing 
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detection, Neural Networks (NN), Support Vector Machines (SVM), and Random Forest 

(RF) achieved accuracies of 95.18%, 85.45%, and 78.89% respectively [43]. Fuzzy Logic 

was highly effective for malware detection with an accuracy of 95.5% [36]. CNNs were 

used for detecting spyware, achieving 90% accuracy [40], while RNNs were used for 

general malware detection with an 89% accuracy [38]. These results highlight the 

effectiveness of various algorithms in handling different types of cyber threats. 

3.3.2. Exploring Keylogger Detection Datasets on Kaggle: 

Based on our decision to use a keylogger detection dataset from Kaggle, the dataset 

that we have chosen is 83 megabytes in size. This decision was made due to the fact that 

the dataset has the potential to assist in research, benchmarking, and model building within 

the cybersecurity sector. The substantial scale offers a wide variety of data that may be 

utilized for the purposes of training, testing, and evaluation, which in turn encourages 

collaboration and learning among members of the Kaggle membership. The adherence to 

appropriate usage and citation rules is of the utmost importance, just as it is with any 

dataset. 

         Typically, the Keylogger Detection dataset includes a wide variety of characteristics 

as well as labels. An explanation of the following major components is as follows: 

3.3.3. Features:   

          Features are the traits or characteristics of the data that are used as input to the 

detection model. This can also be written as "features of the data." Information such as the 

following may be included as features in a dataset for Keylogger Detection: 

 Keystroke patterns: Timing and sequence of keystrokes. 

 System activity: Data on processes running on the computer. 

 Network traffic: Information about network connections and data transfers. 

 File system activity: Data about file creation, modification, or deletion. 

 Registry changes: Records of changes made to the Windows Registry. 
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 API calls: Calls to specific functions within the operating system. 

3.3.4. Labels:  

             In keylogger detection datasets, labels are crucial for training machine learning 

models, providing the "ground truth" to identify the presence or absence of a keylogger. 

Typically, labels are binary, with 0 indicating no keylogger and 1 indicating its presence, 

simplifying the classification task. In more advanced scenarios, labels may be multi-class, 

categorizing different types of keyloggers based on unique characteristics and behaviors, 

enabling more granular detection. The accuracy and consistency of these labels are vital, 

as they directly influence the model’s learning and prediction capabilities. Poorly labeled 

or inconsistent data can degrade model performance and reliability. Therefore, meticulous 

labeling with clear criteria is essential to ensure the development of effective keylogger 

detection systems that can accurately identify and mitigate security threats. 

3.3.5. Annotations:  

          Keylogger detection datasets may include metadata providing additional context, 

such as the type of keylogger (hardware- or software-based) and the environment where 

the data was collected (e.g., operating system, applications, or network configuration). 

Hardware-based keyloggers are physical devices, while software-based ones are malicious 

programs. This metadata enriches the dataset, enabling machine learning models to 

differentiate between keylogger types and improve detection accuracy across diverse 

scenarios by leveraging contextual information. 

3.3.6. Characterizes:   

           The Keylogger Detection dataset serves as a critical resource for researchers and 

cybersecurity professionals in their quest to develop and evaluate machine learning models 

or intrusion detection systems specifically designed to detect and mitigate the threats posed 

by keyloggers. By utilizing this dataset, these professionals aim to create a robust line of 
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defense against data theft and privacy breaches, which are significant concerns in the 

digital age. 

          To achieve this, the models analyze features extracted from network traffic or the 

user's machine to determine the presence of a keylogger. These features might include 

patterns of keystrokes, unusual system behavior, or suspicious network communications. 

By meticulously examining these features, the models can identify the telltale signs of 

keylogger activity and take appropriate action to neutralize the threat. The ultimate goal of 

using the Keylogger Detection dataset is to enhance the security of computer systems and 

protect sensitive information from being compromised by malicious keylogging software. 

3.4. Data Preprocessing 

          The analysis of any dataset, including a dataset for keylogger detection, requires the 

completion of an essential step known as "data preprocessing." Handling missing data, 

more especially addressing NaN (Not a Number) values, is a critical component of this 

procedure that must not be overlooked. Dealing with missing values becomes especially 

important when applied to a dataset for keylogger detection, in which the precise detection 

of keyloggers is of the utmost importance.  

The accuracy and reliability of machine learning models that have been trained to 

identify keyloggers in a dataset can be significantly improved by preprocessing the data. 

The handling of missing data, more specifically addressing NaN (Not a Number) values, 

is an important part of this process that should not be overlooked. Identifying and 

Managing Values That Are Not a Number 

 Detection is the initial phase in the data preprocessing pipeline, and its purpose 

is to determine whether or not the dataset contains any values that are not a 

number (NaN). These NaN numbers may appear for a number of different 

causes, including corruption or insufficiently thorough data capture, for 

example. 
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 Quantifying the Amount of Missing Data In order to determine the scope of 

the problem, we count the total number of NaN values that are present in the 

dataset. This elucidates for us several important aspects regarding the 

reliability of the data. In order to retrieve this count, we can make use of the 

'.isna().sum().sum()' method. 

 "Removal": When dealing with circumstances in which NaN values are 

present, we have various different options available to us to choose from. The 

elimination of rows or columns that contain NaN values is a typical strategy 

that can be utilized in certain circumstances. We are able to remove entire rows 

or columns of data that are insufficient by utilizing the '.dropna()' method. 

Because of this, our model is trained on information that is both thorough and 

dependable, which is very necessary for accurate keylogger detection. 

 

Figure 4: Remove NAN 

3.4.1. Maintaining the Integrity of Data 

           In the data preparation phase, resolving NaN (Not a Number) values is crucial for 

improving the quality of the dataset. However, it is essential to approach this task with 

caution to avoid unintentional data loss. Proper data cleaning involves strategies that 

preserve the integrity of the dataset while handling missing values effectively. One 

common approach is to replace NaN values with appropriate imputation methods, such as 

using the mean, median, or mode of the column for numerical data, or the most frequent 

value for categorical data. Another method is to use predictive models to estimate the 
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missing values based on other features in the dataset. In some cases, it may be appropriate 

to remove rows or columns with a high percentage of missing values if they are unlikely 

to contribute valuable information. Ultimately, the choice of strategy depends on the nature 

of the data, the extent of missing values, and the specific requirements of the analysis or 

machine learning model. It's important to carefully evaluate the impact of any data cleaning 

decisions on the overall dataset to ensure that the resulting data remains representative and 

meaningful for the intended analysis. 

 

Figure 5: Dataset After Removing NAN 

3.5. Applying Feature Engineering 

          The process of engineering features is an essential part of getting a dataset ready for 

machine learning analysis in the context of keylogger detection. Within this framework, 

our key goals are to increase the predictive power of the model while simultaneously 

decreasing the complexity of the computational process. The process of picking the 

features that are most important to the problem at hand and then applying various 

normalizing methods in order to achieve both consistency and the highest possible level of 

efficiency is known as feature engineering. The following is some material that describes 

the process of feature engineering in a dataset for keylogger detection: 

3.5.1. Feature Relevance 

            In the context of keylogger detection, the dataset might contain numerous attributes, 

some of which may not be relevant to the task at hand or might be redundant. To simplify 

the dataset and enhance the model's performance, feature selection is employed. This 

process involves identifying and retaining only the most informative and relevant features 
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that significantly contribute to the keylogger detection task. Feature selection can be guided 

by various methods. Correlation analysis helps in identifying features that are highly 

correlated with the target variable, while simultaneously eliminating features that are 

highly correlated with each other, to reduce redundancy. Additionally, domain-specific 

expertise plays a crucial role in recognizing features that are inherently significant for 

detecting keyloggers, based on knowledge of how keyloggers operate and the typical 

patterns they exhibit. By judiciously selecting features, the complexity of the model is 

reduced, which can lead to faster training times, improved model interpretability, and 

potentially better detection performance. 

3.5.2. Applying Normalization or Standardization Technique 

           Once we have identified the significant features, we implement normalization 

techniques to ensure all features are on a consistent scale. Standardization is a common 

method that involves transforming the features so that they have a mean of zero and a 

standard deviation of one. This is achieved through a specific transformation process. 

 

Figure 6: Normalization 

3.6.  Accuracy Matrix 

3.6.1. Intersection Over Union 

         The loss function is the error between the predicted class and the ground truth. When 

the loss is smaller, then the predication of the class is better. In this study area we use 

Intersection over union (IoU) to detect accurate results.  
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IOU = (Area of Intersection) / (Area of Union). More generally, IOU is a measure of 

Overlap between the bounding boxes. If IOU<0.5 → we say it ‘Bad’ IOU>0.5→ ‘descent’, 

IOU>0.7 → ‘Good’, IOU>0.9 → ‘Almost perfect’. 

3.6.2. Precision and Mean Average Precision 

           Precision defines the ratio of correct prediction and total prediction. Or from all 

positive classes, how many are actually positive. 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
 

In addition, the average precision defines as the average precision over all classes. 

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 (𝑨𝑷) =
𝟏

𝑴
∑𝑷𝒊

𝑪

𝒊

 

Where M represents the number of classes. In this study the number of classes are three 

i.e. complete, incomplete and foundation. 

Moreover, mean Average Precision represents the average precision over IOU as testing 

dataset. Where the value of IOU is set as 0.5, 0.6, 0.7,0.8 

3.6.3. Recall  

Recall measures how well a model is able to find all the positives. Recall or True positive 

rate answers the question “Out of all actual positives, how many did we predict as true?” 

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝑷

𝑻𝑷 + 𝑭𝒏
 

Precision and recall are easily seen where they lie in Proportion space.  

3.6.4. F1 Score 

The F1 Score is a kind of average that combines recall and precision. We can see that there 

is a trade-off between precision and recall, thus F1 could be an efficient way to measure 

how our models are doing on this. 
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𝑭𝟏 = 𝟐.
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏. 𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 +  𝑹𝒆𝒄𝒂𝒍𝒍
 

  

A key property of the F1 score is that it is 0 if either component (precision and recall) are 

at zero. Hence it punishes very negative values of either components. 

3.7. Training and Evaluation 

3.7.1. Training Data:  

            CNN is trained on a labeled dataset, using techniques such as stochastic gradient 

descent (SGD) to minimize classification errors. 

3.7.2. Test Dataset:  

          The performance of CNN is evaluated on a separate test dataset. Metrics such as 

accuracy, precision, recall, and F1-score are used to assess the model's effectiveness. 

3.8. Evaluation and Comparison: 

          The efficacy of our proposed framework is rigorously assessed using the 

comprehensive dataset we have gathered. This evaluation encompasses a detailed 

comparison of our framework's performance metrics, including accuracy, precision, recall, 

and F1 score, against existing methods. Notably, this comparative analysis includes 

traditional rule-based systems and single-model machine learning approaches. 

3.9. Pre-Requisite:  

3.9.1. Python Libraries 

 Numpy 

 Karas 

 Tensorflow 

 Sklearn 
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3.9.2. Hardware Requirements 

Tabel 3: Hardware Requirements 

Processor  I5 8th Generation Processor  

RAM 8GB  

Graphics Card 2GB  

3.10. Flow Chart 

The overall flow of this research is done according to this flowchart:   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Flow Chart of the methodology 
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3.11. Data Analysis  

         Deep learning techniques can be employed for the analysis of data related to 

keyloggers. Specifically, deep learning can be applied to analyze the patterns and behaviors 

associated with keylogging activities. Here are some ways in which deep learning can be 

used for keylogger detection and analysis: 

 

3.11.1. Sequencing Analysis: 

          Deep learning models, such as RNNs or LSTMs, can be used to analyze the 

sequential data of keystrokes.  

These models can learn the patterns of normal typing behavior and detect anomalies or 

patterns indicative of keylogging activity. 

3.11.2. Feature Extraction: 

          Deep learning techniques like autoencoders can be used to automatically extract 

relevant features from keystroke data. These extracted features can then be fed into other 

machine learning models for further analysis and classification. 

3.11.3. Behavioral Analysis: 

          Deep learning models can be trained to recognize abnormal behavioral patterns in 

user typing, such as sudden changes in typing speed, frequency of certain keystrokes, or 

irregular intervals between keystrokes, which may signal a keylogger's presence. 

3.11.4. Anomaly Detection: 

          Deep learning algorithms, particularly deep autoencoders and generative adversarial 

networks (GANs), can be used to detect anomalies in keystroke data. Unusual typing 

patterns that do not conform to normal user behavior can be flagged as potential keylogging 

activities. 
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3.12. Natural Language Processing (NLP): 

          For text-based keyloggers that capture text input, deep learning techniques in NLP, 

such as recurrent neural networks (RNNs) and transformers, can be used to analyze the 

content of keystrokes for suspicious or malicious content. 

3.12.1. Feature Learning: 

             Deep learning models can learn representations of data that are relevant for 

keylogger detection. These learned features can then be used in traditional machine 

learning algorithms for classification. 

            In summary, deep learning techniques can be applied to various aspects of 

keylogger data analysis, including keystroke sequences, behavioral patterns, and content 

analysis, to detect and mitigate the threat of keyloggers effectively. Deep learning 

techniques play a crucial role in the realm of cybersecurity, primarily as tools for detecting 

and safeguarding against malicious entities like keyloggers. Keyloggers, whether in the 

form of malicious software or discreet hardware devices, are designed with the nefarious 

intent of capturing users' keystrokes and potentially compromising sensitive data. To 

counteract these threats, deep learning methodologies are harnessed to identify and 

mitigate such risks effectively. 

3.13. Model Implementation 

         Convolutional Neural Networks (CNNs), renowned for their proficiency in 

processing visual data, are versatile tools used to detect not only software-based keyloggers 

but also hardware keyloggers or devices that surreptitiously capture visual input. For 

instance, CNNs can be deployed to identify devices like ATM skimmers that illicitly record 

users' keystrokes by capturing the visual cues on ATM keypads. 

              Auto encoders, another valuable component of the deep learning arsenal, serve 

multiple purposes in the cybersecurity domain. These neural networks excel at feature 

extraction and anomaly detection. When applied to keystroke data, autoencoders are 
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instrumental in uncovering hidden patterns or distinctive features that might indicate the 

presence of a keylogger. By comparing observed keystroke patterns against established 

norms, auto encoders can flag deviations that warrant further investigation, ultimately 

enhancing the overall security posture against potential threats. 

           In essence, deep learning techniques such as LSTMs, CNNs, and autoencoders are 

pivotal in the ongoing battle against keyloggers and similar cyber threats. By leveraging 

their capabilities, cybersecurity professionals can proactively identify and defend against 

these malicious entities, safeguarding user data and digital assets. 

3.14. Proposed Model  

          It seems as though the code we have provided is associated with the process of 

training a machine learning or deep learning model. It does things like configure a variety 

of configuration parameters and define callbacks, which are functions that are invoked 

during the training process to monitor the performance of the model and make adjustments 

as necessary. Let's divide the code down into its component parts: 

 learning_rate = 0.001: It is a hyperparameter that is utilised in gradient-based 

optimisation techniques such as stochastic gradient descent (SGD), and this 

variable is responsible for specifying the learning rate. It is responsible for 

determining the step size at which the weights of the model are changed while it is 

being trained. Because of the slower but more stable convergence that might result 

from a slower learning rate. 

 batch_size = 5000: The amount of training samples that are utilised in each 

iteration (or batch) during training is determined by the batch size, which is defined 

by this variable before training begins. The training process can be sped up by using 

a bigger batch size, although it may demand more memory. 

 epochs = 10: The number of epochs determines the number of times that the model 

traverses the entirety of the existing training dataset. Each epoch consists of 
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multiple batches, and the model's weights are updated after each batch. Training 

for more epochs can improve the model's performance. 

 model_save: This is a callback created using ModelCheckpoint. It saves the 

model's weights to a file named 'model.h5' under certain conditions: 

 monitor='val_loss': It monitors the validation loss during training. 

 mode='min': It saves when the monitored quantity (validation loss) reaches a 

minimum. 

 verbose=1: It displays progress information when saving. 

 early_stop: This is another callback created using EarlyStopping. It stops training 

when certain conditions are met: 

 monitor='val_loss': It monitors the validation loss. 

 min_delta=0.0001: It defines the minimum change in the monitored quantity to be 

considered an improvement. 

 patience=8: It specifies the number of epochs with no improvement after which 

training will be stopped. 

 mode='min': It looks for a decrease in the monitored quantity (validation loss). 

 verbose=1: It provides information about when early stopping is triggered. 

 restore_best_weights=True: It restores the model's weights to the best 

configuration when training stops. 

 reduce_lr: This is a callback created using ReduceLROnPlateau. It adjusts the 

learning rate when certain conditions are met: 

 monitor='val_loss': It monitors the validation loss. 

 factor=0.6: It scales down the learning rate by a factor of 0.6 when the monitored 

quantity plateaus. 

 patience=4: It specifies the number of epochs with no improvement before 

reducing the learning rate. 
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 min_delta=0.0001: It defines the minimum change in the monitored quantity to 

trigger a learning rate reduction. 

 mode='min': It looks for a decrease in the monitored quantity (validation loss). 

 verbose=1: It provides information about when the learning rate is adjusted. 

3.15. Key Features of Proposed Model 

          The configuration parameters and callbacks needed to train a machine learning or 

deep learning model are defined in the code. Despite the fact that it defines the training 

setting, it does not define the architecture of the model itself nor any of its particulars. The 

model architecture and layers that construct independently from this setup will determine 

which aspects of this model are available to use.  

The following is a list of typical characteristics of a deep learning model that, in addition 

to the configuration we gave, we would generally describe as follows: 

3.15.1. Model Structure:  

             This refers to the exact structure of the neural network, which includes the number 

of layers, the types of layers (for example, dense, convolutional, and recurrent), the 

activation functions, and the flow of data through the network. At this point, we will be 

tasked with defining the fundamental aspects of the model. 

 

Figure 8: Proposed Model Architecture 
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3.15.2. Input Layer  

           This layer specifies the structure and type of input data that the model anticipates 

receiving, also known as the "input layer." It is the job of this layer to take in the 

characteristics or data from which the model is going to learn. 

3.15.3. Hidden Layers:  

            The operations of feature extraction and transformation" are carried out by these 

layers. Important characteristics include the number of hidden layers as well as the number 

of neurons found in each layer. Within these layers, we are also able to set other parameters, 

such as dropout and batch normalization, as needed. 

3.15.4. Output Layer:  

            The output layer is responsible for determining the format that the model's 

predictions will take. This could be a single neuron for binary classification, many neurons 

for multi-class classification, or an entirely new arrangement for regression tasks, 

depending on the nature of the problem you're trying to solve. 

3.15.5. Loss Function   

             The Loss Function is also known as the Objective Function, and it evaluates how 

well the model's predictions correspond to the actual labels. The type of problem 

determines which loss function should be used (for example, mean squared error is used 

for regression, while binary cross-entropy is used for binary classification). 

3.15.6. Optimization method:  

             The optimization method (such as SGD, Adam, or RMSprop) and its learning rate 

determine the manner in which the model's weights are changed while it is being trained 

in order to minimize the loss function. 
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3.15.7. Metrics:  

             Metrics, including as accuracy, precision, and recall, are utilized in order to 

evaluate the performance of the model both before and after the training process. The 

training process does not make use of these indicators; however, they are helpful when 

evaluating the quality of models. 

3.15.8. Regularization:  

             Methods such as dropout, L1/L2 regularization, and batch normalization are 

examples of regularization techniques that can be used to reduce overfitting and improve 

the generalization of the model. 

3.15.9. Initialization:  

             Initialization methods for model weights, such as Xavier/Glorot initialization, can 

have an impact on the stability and convergence of the training process. 

3.15.10. Batch Normalizing:  

             If implemented, the usage of batch normalizing layers can help the model learn 

more quickly and perform more effectively in generalization. 

3.15.11. Activation Functions:  

             The manner in which information is distributed across the network is impacted by 

the activation functions (such as ReLU, sigmoid, and tanh) that are selected for the hidden 

layers of the network. 

3.16. Components of the model  

          This CNN was developed specifically for a binary classification task, which is a 

common use in the detection of keyloggers and other security-related activities. Let's begin 

by analyzing the architecture of this model, followed by its primary components: 
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3.16.1. Sequential Model: 

            This line initializes a sequential model, which is a linear stack of layers. we can 

simply add layers to the model sequentially. 

3.16.2. Convolutional Layers (Conv1D): 

            The extraction of features lies under the purview of these tiers. They ran the input 

data through a series of convolution procedures. After a number of layers consisting of 

many pairs of convolutional layers, your model moves on to the max-pooling layers. Each 

convolutional layer applies the filters that it contains, which are kernels of size 2, to the 

input data. There are 16, 32, 64, or 128 of these kernels. The filters contribute to the data's 

ability to catch local patterns and features. 

3.16.3. Max-Pooling Layers (MaxPooling1D): 

             A max-pooling layer comes after every pair of convolutional layers that come 

before it in the training process. The spatial dimensions of the feature maps can be reduced 

by max-pooling, yet the essential information can still be preserved. 

3.16.4. Flatten Layer 

              After the last convolutional and pooling layers, the data is flattened (transformed 

from a matrix to a vector) to feed into a fully connected network (Dense layers). This part 

of the network is responsible for classification based on features extracted by the 

convolutional layers. 

3.16.5. Fully Connected Layers (Dense) 

             Following the flattening process, we have two layers that are dense and fully 

connected with 64 and 32 neurons, respectively. These layers are responsible for the 

aggregation and transformation of high-level features. In order to implement non-linearity, 

activation functions, also known as ReLU, are used. 
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3.16.6. Dropout Layers: 

            After the layers that are fully connected comes the step of adding the dropout layers, 

which helps prevent over fitting. During training, they will randomly deactivate a portion 

of neurons, which will be 20% in your case. This will help the model generalize more 

effectively. 

3.16.7. Output Layer: 

             The topmost layer is composed of a single neuron that has a sigmoid activation 

function, which is typical for tasks that involve binary categorization. It generates a 

likelihood score that falls anywhere between 0 and 1, with values that are closer to 1 

indicating a positive class prediction (for example, the existence of a keylogger). 

3.16.8. Optimizer (Adam): 

             For gradient-based optimization, the Adam optimizer is typically utilized. During 

training, it modifies the rate of learning in order to achieve better convergence. 

3.16.9. Loss Function 

             As a loss function, the model makes use of binary cross-entropy, which is a 

technique that is commonly used for binary classification problems. It determines the 

degree to which actual labels differ from those that were projected. 

3.16.10. Metrics: 

            The area under the ROC curve (also known as AUC) is another measure that the 

model monitors in addition to accuracy. The area under the curve (AUC) is a useful statistic 

for situations involving binary classification and imbalanced datasets. 
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3.16.11. Training: 

           The fit approach is utilized throughout the training process of the model. we are 

responsible for specifying the data for training and validation, as well as the batch size, 

number of epochs, and callbacks. Callbacks, which we defined earlier, are responsible for 

monitoring the training process and carrying out actions like as preserving the model's 

weights, halting the training early, and reducing the learning rate. 

          In order to construct a model for binary classification, this architecture utilizes 

dropout for regularization and combines dropout with convolutional and fully connected 

layers, both of which are typical in CNNs. It is programmed to automatically learn features 

from sequential data (such as time series data, which is frequently utilized in activities 

linked to security) and to make predictions about the existence or absence of a keylogger.  
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CHAPTER 4 

4. RESULTS and DISCUSSION 

4.1. Training and Validation Accuracy 

          In deep learning, training and validation accuracy are important metrics used to 

evaluate the performance of a neural network during the training process. These metrics 

help to assess how our model is learning from the training data and how well it generalizes 

to unseen data. 

4.1.1. Training Accuracy:  

            The accuracy of the model's predictions on the same data that it was trained on is 

what is typically referred to as the training accuracy. The model makes adjustments to its 

weights and biases as it is being trained in order to reduce the amount of error that exists 

between its predictions and the actual target values. The accuracy of the training often 

improves as the training goes because the model becomes more adept at fitting the training 

data. Nevertheless, a high training accuracy does not necessarily suggest that the model is 

able to generalize well to new data that it has not before encountered because the model 

may overfit the training data. 

4.1.2. Validation Accuracy: 

Validation accuracy is a technique to ensure that the model generalizes well with respect 

data previously not encountered during training. Since we want the model to generalize 

well on new data, in addition to our testing sets Training Data hence a part of out dataset 

is held for using as validation set Their performance has been evaluated on this validation 

set at every time step during the training process. The validation correctness gives you an 

estimate on how good the model is going to perform with new data it never saw so far. You 
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can use it to spot overfitting.  If the training accuracy keeps increasing while validation 

accuracy is steady or decreasing, this means that has happened. 

            Here's a simplified process of how we might monitor training and validation 

accuracy during deep learning training: 

Forward pass:  

      Generate predictions on the training data using this model. 

      Compute the training loss according to these predictions and ground truth. 

     Update the weights and biases of a model to minimize its training loss 

(backward pass). 

     Compute the accuracy of training on those predictions. 

     Mark these features and fine-tune your hyperparameters for the model. 

4.2. Training and Validation Loss 

           Training loss and validation loss are two crucial measures that are utilized in deep 

learning for the purpose of monitoring and evaluating the performance of a neural network 

while it is participating in the training process. It is vital to have these metrics in order to 

have an insight of how effectively the model is learning from the training data and how 

well it generalizes to data that it has not before encountered. 

4.2.1. Training Loss:   

The measurement for how well the neural network is learning on the training data, we have 

a term trining loss. It is a measure of the error between what model predicts and the actual 

target values, For all data points (predictor, target) in our training dataset. This point of the 

training is to minimized this loss. For classification tasks, the two most common loss 

functions used are categorical cross-entropy and mean squared error (MSE) for regression 

tasks. As the performance of your model predicts accurately and following the nature of 

xor function, while training loss decreases. 
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4.2.1.1. Low training loss:  

The model you are specifying is fitting the training set well, given that a low value of loss 

on train data. However, it does not mean that this model will do well on the data on which 

we have never seen before validation loss comes into play here. 

4.2.2. Validation Loss: 

By contrast, validation loss is a measure of how well your neural network generalizes to 

(unseen during training but used after as "additional" data set) new data. The computation 

is done on separate data-set called validation Data-Set. This Dataset is not used for training, 

instead it might be helpful to test the model performance during or post-training. 

Overfitting: If a model performs very well on training data but poorly on new, unseen 

examples this is due to overfitting. To avoid this situation, is what the validation loss helps 

in. 

4.2.2.1. Low training loss but high validation loss: 

               This is a symptom of not fitting properly. It indicates that the model has acquired 

the ability to memories the training data rather than acquire the ability to generalize from 

it. To solve the issue of overfitting, it is possible that you may need to implement strategies 

such as regularization, dropout, or lessen the complexity of the model. 

               Monitoring training and validation loss throughout epochs, which are iterations 

over the complete training dataset, is a frequent approach in the field of deep learning. A 

better understanding of the model's learning progress can be gained from the loss curves: 

4.2.2.2. Decreasing Training Loss: 

                As the model learns, the training loss should generally decrease. It may start high 

and gradually decrease, indicating that the model is improving. 



53 

 

 

 

4.2.2.3. Validation Loss Curve: 

               You will be able to tell when the model begins to overfit it with the assistance of 

the validation loss. It is an indication that the model is overfitting if the training loss 

continues to reduce while the validation loss begins to increase but the training loss 

continues to decrease. 

               A well-trained model should have both low training and validation losses, 

indicating that it has learned to generalize from the training data effectively. However, 

achieving a balance between these two metrics is essential to building a robust model. 

Techniques such as early stopping, hyperparameter tuning, and cross-validation can help 

in optimizing the model's performance with respect to training and validation losses. 

4.3. Proposed Model Accuracy Graph  

          Based on the evidence that has been supplied, it would appear that the training 

process is advancing with a decreasing loss and a varied AUC. This suggests that the model 

is learning to differentiate between keyloggers and non-keyloggers in an effective manner. 

In addition, the callbacks are operating as intended, and there has been a successful 

implementation of model saving, early halting, and a reduction in learning rate depending 

on validation loss. 

 

Figure 1: Accuracy Graph 
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4.4. Proposed Model Loss Graph 

           We utilize two primary metrics for each epoch, which are "loss" and "AUC." The 

term "loss" refers to the degree to which the model's predictions correspond to the actual 

labels. During training, we are working to reduce its impact. 

In the context of problems involving binary classification, the term "AUC" refers to the 

region under the receiver operating characteristic (ROC) curve. The area under the curve 

(AUC) is a measurement of how well a model can differentiate between positive and 

negative samples. During training, we observe that the AUC values shift, which is a 

reflection of how effectively the model is learning to differentiate between keyloggers and 

non-keyloggers. 

 

Figure 2: Loss Graph 

4.5. Receiver Operating Characteristic Curve (ROC) 

          Receiver Operating Characteristic (ROC) curves are a type of graphical 

representation that are frequently utilized in the fields of machine learning and deep 

learning for the purpose of evaluating the effectiveness of classification models. In the 

context of a binary classification task, it is helpful to visualize the trade-off between the 

true positive rate (sensitivity) and the false positive rate (1-specificity) across a range of 

threshold values. A look at how ROC curves are utilized in deep learning is as follows: 
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4.5.1. Binary Classification Task:  

             ROC curves are most commonly used for binary classification problems, where 

the goal is to classify data points into one of two classes (e.g., positive and negative). 

4.5.2. Model Prediction Probabilities: 

             To create an ROC curve, we need the predicted probabilities or scores generated 

by our deep learning model. These scores represent the model's confidence in classifying 

data points. 

4.5.3. Threshold Variation: 

            When the decision criterion for classification is changed, the ROC curve is 

produced as a result. We begin with a threshold of zero, which means that everything is 

classified as belonging to the positive class, and we gradually raise it to one, which means 

that everything is classified as belonging to the negative class. Calculating the true positive 

rate (TPR) and the false positive rate (FPR) for each threshold is something that we 

consider. 

           The ratio of the number of true positives to the total number of actual positives is 

referred to as the True Positive Rate (TPR), which is sometimes referred to as sensitivity 

or recall. It evaluates the degree to which the model accurately recognises examples of 

favorable outcomes. 

           The ratio of the number of false positives to the total number of real negatives is 

used to calculate the False Positive Rate (FPR). The frequency with which the model 

wrongly recognizes negative cases as positive is what this metric measures. 

4.5.4. Plotting the ROC Curve: 

             Determine the TPR (y-axis) and FPR (x-axis) for each threshold value, then plot 

the results. As a result, the ROC curve is produced. A high sensitivity and a low false 
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positive rate are indicated by the ideal ROC curve, which is located in the upper-left corner 

of the figure. 

4.5.5. Area Under the Curve (AUC):  

             One of the numerical values that can be used to quantify the overall performance 

of the model is the area under the ROC curve, also known as the AUC. The performance 

of a model with an AUC of 0.5 is equivalent to that of random guessing, but the 

performance of a model with an AUC of 1.0 is considered to be flawless. 

4.5.6. Interpreting the ROC Curve:  

             By looking at the ROC curve and AUC, we can assess the model's ability to 

distinguish between the two classes. A higher AUC suggests better discrimination between 

positive and negative cases. 

4.5.7. Threshold Selection:  

             The choice of the threshold depends on the specific requirements of our 

application. If you prioritize sensitivity, we might choose a threshold that maximizes TPR, 

even if it leads to a higher FPR. Conversely, if we prioritize specificity, we might choose 

a threshold that minimizes FPR. 

4.5.8. Comparing Models: 

             A number of different deep learning models or algorithms are compared by 

comparing their ROC curves and the area under the curve (AUC) values. In general, the 

proposed model that has a higher area under the curve (AUC) is deemed to be superior in 

classification. 



57 

 

 

 

            In summary, ROC curves are a valuable tool for evaluating the performance of 

proposed deep learning models in binary classification tasks, allowing us to assess the 

trade-off between sensitivity and specificity at different threshold values and make 

informed decisions about model performance and threshold selection. 

          The ROC curve for our binary classification model's predictions (y_pred) is 

generated and displayed. This function compares the predictions (y_pred) to the true labels 

(y_test). In order to offer a quantitative indication of the model's success in discriminating 

between the positive and negative classes, the area under the curve, or AUC, value is also 

displayed on the plot. We evaluate the quality of the model's classification with the 

assistance of this graphical representation, which can also help we choose an appropriate 

threshold for making predictions based on the properties of the ROC curve. 

 

Figure 3: ROC Curve 

            On the basis of these data, one may make the case that this CNN model for the 

identification of keyloggers possesses numerous advantages over other machine learning 

algorithms: 
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 It has a high area under the curve (AUC), which indicates that it can 

discriminate well. 

 In order to maximize the effectiveness of the training, it modifies the learning 

pace and makes use of early pausing. 

 Throughout the training process, it keeps the ideal model weights. 

 It reaches an extremely high validation AUC, which is indicative of its 

outstanding performance. 

Table 4: Comparison of the Results  

Algorithm Name Date Accuracy Remarks 

NN, SVM, RF 

[43] 

2022 95.18%, 

85.45%, and 

78.89% 

It relies heavily on machine 

learning models, which may 

require substantial 

computational resources and 

extensive training data to 

achieve high accuracy. 

Random Forest 

[42] 

2022 87% (F1-

Score) 

it may face scalability issues 

and increased computational 

complexity due to the hybrid 

optimization-based deep 

learning techniques 

CaFISKLD with 

Fuzzy Logic [36] 

2023 95.5% It may not capture complex 

relationships in data 

CNN [40] 2022 90% The model might not generalize 

well to novel attack types or 

techniques that emerge after the 

model has been trained. 

Additionally, the focus on 

primarily Botnet and 

Keylogger attacks might limit 

the model's effectiveness 

against other types of cyber 

threats targeting IoT devices. 
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RNN [38] 2022 89% Can be prone to overfitting if 

not properly regularized. 

CNN [Proposed 

Model] 

2023-

2024 

97% Captures complex patterns in 

data. Highly flexible and can 

handle both structured and 

unstructured data. Uses a 

different dataset focused on 

phishing attacks, providing 

better detection and 

generalization compared to 

other models. 

              

               Our proposed CNN model stands out due to its focus on phishing attacks, utilizing 

a specialized dataset that enhances its ability to identify these threats effectively. This 

targeted approach allows the model to capture complex patterns specific to phishing, 

resulting in higher accuracy and better generalization compared to models focused on 

broader or different types of cyber threats. The proposed model’s superior performance is 

attributed to its capacity to adapt to the nuanced characteristics of phishing URLs and its 

flexibility in handling diverse data types, ensuring robust detection and prevention. 

Table 4 compares various algorithms used for phishing attack detection. The proposed 

CNN model (2023-2024) achieved the highest accuracy at 97%, outperforming other 

models like NN, SVM, RF (95.18%, 85.45%, 78.89%), Random Forest (87%), CaFISKLD 

with Fuzzy Logic (95.5%), CNN (90%), and RNN (89%). The proposed CNN model excels 

in capturing complex patterns and handling both structured and unstructured data, offering 

better detection and generalization. Other models face challenges such as high 

computational requirements, scalability issues, and potential overfitting, limiting their 

effectiveness against evolving cyber threats. 

4.6. Evaluating CNN model performance for Keylogger Detection  

        Success with deep learning models, especially CNNs, depends on more than 

architecture and training. As the foundation of the project, dataset quality and extracted 
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feature relevance are crucial. For appropriate preprocessing, missing value handling, and 

class balancing, one must grasp the dataset's attributes, distributions, and quirks.  

CNN models were designed and tested for binary classification in network intrusion 

detection. The model had strong performance measures, including high AUC values of 

0.93 to 0.99. The model can accurately distinguish incursion from ordinary network 

activity using the AUC, a binary classification metric.  

              The CNN model's dynamic learning rate adjustment technique that uses the 

Reduce-LR-On-Plateau callback to reduce learning rate when validation loss plateaus 

ensures training convergence. Early stopping prevents overfitting by halting training when 

validation loss doesn't improve. During training, the model's weights are saved to use later.  

The last epoch validation AUC value reached 1.0, demonstrating near-perfect 

discrimination based on validation data. Training is computationally demanding, but the 

model's performance is worth it. The CNN model has excellent discrimination, learning 

rate adaptation, and overfitting prevention.  

             It's important to remember that these results are based on training. Validate real-

world applicability and generalization on an independent test dataset. Keylogger detection 

using the model requires practical deployment scenarios and computational resource 

constraints. Overall, the CNN model detects keyloggers well due to its high AUC values, 

good adaption mechanisms, and robust model training.  
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CHAPTER 5 

5. Conclusion and Future Work 

5.1. Conclusion 

          The study demonstrates the potential of Convolutional Neural Networks (CNNs) to 

effectively predict keylogger attacks through meticulous feature engineering. By 

preprocessing the dataset to eliminate extraneous features, correct imbalances, and scale 

attributes appropriately, the CNN-based approach achieved an impressive 99% accuracy 

in just 10 epochs. This highlights the significant role of feature engineering in enhancing 

the performance of machine learning models in cybersecurity applications. However, it is 

also acknowledged that while machine learning and deep learning offer substantial 

advantages for detecting sophisticated cyber threats like keyloggers, they are not foolproof 

solutions. The effectiveness of these technologies depends on various factors, including the 

quality of the data and the adaptability of the models to new, unknown threats. Therefore, 

continuous improvements and updates to these models are essential to maintain their 

efficacy against evolving cybersecurity challenges. 

5.2. Future Work 

As the investigation moves forward, it will concentrate on a number of different 

paths that can be further developed and investigated. Improving the generalization of the 

model is a top priority, and this will require extensive testing with a variety of datasets and 

scenarios that are taken from the actual world. The purpose of conducting research into 

data augmentation methods is to broaden the scope of the dataset. Performance tuning of 

hyperparameters will be carried out in order to optimize the configuration of the model, 

with an emphasis placed on interpretability in order to ensure transparency. The 

identification of keyloggers in real time and the evaluation of the model's resistance to 

attacks from adversaries are both essential topics that will require further investigation in 
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the future. For the purpose of ensuring that the model is effective in dynamic contexts, 

practical implementation factors will be addressed. These considerations include resource 

limits, latency, and collaboration with cybersecurity specialists. 
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