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ABSTRACT

Title: Hankel Determinant of Logarithmic coefficient for a new class of q-Starlike

functions associated with Lune

This thesis aims to introduce and characterize novel subclasses of univalent functions within

the open unit disk. The utilization of q-calculus will be employed to establish the q-extension

of starlike and convex functions of logrithmic coefficient for Starlike functions associated with

lune. Additionally, we will investigate notable properties, including bounds on the coefficients

of analytic functions, and the Fekete–Szegő inequality. Furthermore, we will explore Second

Hankel Determinants for functions belonging to these newly defined classes. It will be shown

that newly obtained results are advanced as compare to the already derived results by numerous

researchers in the field of Geometric Function Theory. The special cases of newly derived results

will be presented in the form of corollaries.
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

The main proponents of Geometric Function Theory, especially Cauchy, Riemann, and Weier-

strass, are frequently contrasted in modern works on the history of mathematics, as seen in [1].

According to Remmert, these three mathematicians had a significant influence on the develop-

ment of complex analysis and, more broadly, the current theory of complex functions during

the 1800s. The things that set their contributions apart are the different ways in which they

have approached the problem of explaining the notion of holomorphic functions. They have

all approached this basic area of mathematical theory from different angles and with different

techniques.

Riemann’s geometric viewpoint enabled him to investigate holomorphic functions by map-

ping them across various domains in the complex plane departing from this viewpoint. Lastly,

Remmert narrate that the theory of locally evolved homomorphic functions into convergent

power series is known as Weierstrass theory of complex functions.

At the age of 25, Cauchy, the first of the three function theory pioneers previously mentioned,

made contributions to complex theory and went on to publish over 200 works in this field; for

more information, see [2]. The Cauchy Integral Theorem and the idea of the definite integral with

complex bounds were both developed by him.He established the Cauchy Integral Formulas and

investigated the expansion of an analytic function in power series in this study. Fellow French

mathematicians began to assist Cauchy in 1840 as he laid the groundwork for function theory.

Liouville developed a number of theorems pertaining to elliptic functions, and Puiseux examined

these functions’ behaviour at their branch points in his seminal work on algebraic functions; for
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further information, see [3]. For the first time, Briot and Bouquet methodically collected the

cumulative research of these mathematicians in a number of articles; for more information, see

[4, 5, 6].

A few decades later, in Göttingen, was where the second major actor Riemann made signif-

icant contributions to the advancement of function theory. For more information, refer to his

well-known dissertation and In his esteemed works on Abelian functions [7], Riemann starting in

1851, followed Cauchy’s example and defined an analytic function using the Cauchy-Riemann

differential equations.Riemann investigated what minimal criteria must be met in order to de-

fine such a function. He developed the well-known Riemann Mapping Theorem as a result

of this research; for more information, see [8].Riemann surfaces and the Dirichlet Principle

are important components of Riemann’s methodology.Gauss is the mathematician who had the

biggest impact on Riemann’s development of his function theory. Gauss had previously made

substantial contributions to the theory of conformal mapping and understood fundamental ideas

in function theory, such as complex integration and the Cauchy Integral Theorem. It is among

the most active fields of research today, As a consequence of this discovery open the unit disc.

E = {|ŷ| < 1; ŷ ∈ C} can be utilised as a domain rather than a complex random domain.This

theorem holds great importance as it forms the basis of the science of geometric functions.

The basis for Weierstrass’s later function theory was established in three works. Weierstrass

is the third founder of function theory. An important part of his later advances is hinted at in

these pieces. Weierstrass is noteworthy for having independently demonstrated the Laurent

Theorem before Laurent’s discovery.The notion of identical convergence, analytic functions via

power series, and the formulation of the Cauchy Estimates are some of the other significant

contributions made in these publications. The roots of Weierstrassian function theory have been

explored by a number of writers; see [9].

While there are many classes and subclasses under Geometric Function Theory [10], estab-

lishing coefficient boundaries is a key area of study. Functions belonging to various subfamilies

of the normalised analytic functions of class A are classified within this framework. The Bieber-

bach theorem, which was first proposed by German mathematician Ludwig Bieberbach’s 1916

work is significant in this perspective. The sole class of functions with a single value that this

theorem applies to is S . His second coefficient, α̂2, was found for functions in the class S ,

which is a class of univalent functions.

Bieberbach’s conjecture, which greatly advanced the science and was often pursued in attempts
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to prove, originated from this theorem. For many mathematicians, the Bieberbach conjecture has

long been a hurdle, despite its simplicity in formulation. Instead of giving up on solving it, a lot

of people have created other approaches that are now commonly used in the industry.

Despite the many attempts made by mathematicians to substantiate this theory, it has proven

to be an elusive problem. |c̆3| ≤ 3 was proved by mathematician Karl Loewner in 1923; see [11].

Others were able to verify this outcome for the general situation thanks to this proof. For over

thirty years, there was no advancement until 1955, when Gangadharan et al. [12] verified the

Bieberbach conjecture for m = 4, i.e. |c̆4| ≤ 4.

In 1985, as mentioned in[13], mathematician Louis de Branges was able to successfully

verify the Bieber-bach conjecture’s general form and he created an extensive, intricate, and

precise justification for this hypothesis. The accomplishments of De Branges were emphasised,

and several new research problems and approaches were proposed, during an international

symposium that took place at Purdue in March 1985.

The Fekete–Szego inequality, which is associated Regarding the coefficients of a polynomial

with particular properties, the Bieberbach conjecture is mostly used in complex analysis.Fekete

and Szego established this inequality in 1933; further information may be found in see [14].

Numerous significant ramifications and applications arise from the Fekete-Szegő inequality in

complicated analysis. It can be used, for instance, to obtain constraints on the coefficients of

functions in the starlike or convex function classes, two subclasses of analytic functions.It’s

crucial to keep in mind that the Fekete-Szegő inequality is sharp, meaning that it equals itself for

some functions.These types of functions are taken into consideration important for comprehend-

ing the behaviour of analytic functions in the unit disk.

Based just on the forms of their images to the main and other geometrical qualities, Geo-

metric Function Theory is divided into several classes and even smaller sub-classes. The class of

geometric function theory represented by A is the category of normalized analytical function.

Within this classification are analytical functions in disc E that are normalised using the following

axioms: τ (0)=0,τ
′
(0)=1. When τ and υ belong to the class A of functions written as, τ ≺υ ,

if τ (ŷ)=υ (E(ŷ)) where the analytic function E(ŷ) is located within the open unit disc meeting

both criteria of E(0)=0 with |E(ŷ)|<1, for more detail look[15] .

Class S function contains the univalent Functions that are analytical within a unit disk that

is open E and normalied by the constraints τ (0)=0,τ
′
(0)=1.A popular the Koebe function
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serves as a representative example within the class .The equivalence relation between function

τ and function υ is as follows: Function τ is expressed as being subordinate to function υ is

τ≺υ ⇐⇒ τ (0)=υ (0) ,τ (E)⊆υ (E). If υ is univalent in disk E and τ is analytical in disk E.

Koebe (1907) explored univalent functions, which included univalent analytic functions in the

disk E , refer to [16] for details.

The family S function has four major subdivisions: the set of convex functions, represented

by C, and the set of starlike functions, represented by S∗. Further information can be found in

reference [17]. Beginning with the attempts to prove the Bieberbach conjecture, this classification

was initiated. Through a connection known as the Alexander relation [18], which may be ex-

pressed as follows, Alexander connected two categories: S∗ denoting starlike univalent functions,

while in 1915, C stood for convex univalent functions. Given τ ∈A , τ ∈C ⇐⇒ ŷτ ′ ∈ S∗ occurs.

Subordination was used by Ma and Minda [19] to define the class of starlike functions, and they

looked at classes of starlike functions including,

S∗ =
{

τ ∈ A :
ŷτ ′(ŷ)
τ(ŷ)

≺ δ (ŷ), ŷ ∈ E
}
.

Additionally, the category of convex functions known as,

C =

{
τ ∈ A :

(ŷτ ′(ŷ))′

τ ′(ŷ)
≺ δ (ŷ), ŷ ∈ E

}
,

where δ (ŷ) is

δ (ŷ) =
(
−1+

2
1− ŷ

)
,

satisfy Schwa function in disk E.

Several scholars have made important contributions in this area by identifying several useful

properties.These features included the radius of starlikness, radius of convexity, coefficient

estimations, sufficiency characteristics, and distortion limitations.

H is the category of analytical functions in the format of { ŷ ∈ C : |ŷ|<1 } in E.

f (ŷ)=
∞

∑
n=1

anŷn ŷ ∈ E. (1.1)

In such case, H constitutes a topological vector space that is locally convex and has the consistent

topology of convergence over small subsets of D. Let the category of functions be represented

by A .Where f ′(0) = 1 and f (0) = 0, f ∈ H Stated differently, the functions f of the type

f (ŷ)= ŷ+
∞

∑
n=2

anŷn ŷ ∈ E. (1.2)
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Let S denote the subset comprising every univalent function in A . We consult the classic texts

for a univalent function theory in general.

Ff (ŷ) := log
f (ŷ)

ŷ
= 2

∞

∑
n=1

γn ( f ) ŷn, ŷ ∈ E, log 1 := 0, (1.3)

f ∈ S is connected to a logarithmic function. The terms "logarithmic coefficients of f " refer

to the values γn: = γn( f ). The logarithmic coefficients are known to be important in Milin’s

conjecture (refer to [20]; also consult [21], page 155] for additional details), the unexpected

revelation is that only two logarithmic coefficients are necessary for the class S .

γ 1 and γ 2 have sharp estimates known.

|γ1|≤1, |γ2|≤
1
2
+

1
e
= 0.635 . . .

Many writers have recently thought about assessing the magnitude regarding logarithmic coeffi-

cients for f ∈ S and different subcategories we cite the following articles: [22, 23, 24] and

their references.

Definition 1.1 Assume two analytic functions, f and g. If there is a self-map w under the

condition w(0)= 0 such that f (ŷ) = g(w(ŷ)), then f is subordinated by g and expressed as

f (ŷ)≺ g(ŷ). Furthermore, f (D)⊆ g(D) given that f (0) = g(0) and g is univalent.

The class S∗$developed by Raina and Sokol [25], is provided by

S∗$=

 f ∈ S :

∣∣∣∣∣∣
(

ŷ f
′
(ŷ)

f (ŷ)

)2

−1

∣∣∣∣∣∣ ≤ 2

∣∣∣∣∣ ŷ f
′
(ŷ)

f (ŷ)

∣∣∣∣∣ , ŷ ∈ E

 .

Geometrically, a function f ∈ S∗$is characteried in the following manner: for every ŷ ∈ E, the

region enclosed by the lune is included in the ratio ŷ f ′ (ŷ)
f (ŷ) . The relation {w ∈ C : |w2 − 1| ≤

2|w|} provides the answer. Utiliing the concept of subordination, S∗$ is delineated as

S∗$=

{
f ∈ S :

ŷ f
′
(ŷ)

f (ŷ)
≺ ŷ+

√
1+ ŷ2 = q(ŷ) , ŷ ∈ E

}
,

where q(0) = 1 is the result of selecting the square root’s branch. Class C$ is a convex function

whose characterisation is

C$ =

{
f ∈ S : 1 +

ŷ f
′′
(ŷ)

f ′ (ŷ)
≺ q(ŷ) , ŷ ∈ D

}
,
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A number of scholars have done a great deal of research on the class S∗$. Raina and Sokol

[26, 27] explored the coefficient estimates within the classS∗$, where as Gandhi and Ravi [28]

looked into the class’s radius-related problems. Sharma and colleagues [29] examined a few

differential subordinations associated with the class S∗$. Sufficient conditions and integral

representation are suplied by Raina et al. [30] for the functions in the class S∗$. A supposition

concerning this class’s coefficients were put up in a recent contribution by Cho et al. [31].

The evaluation of the limits of Hankel determinants, consisting of the coefficients of analytic

function of characteristics in E type (2), has received a lot of attention in the realm of geometric

function theory Hankel matrices and determinants hold significance across various mathematical

domains and find extensive applications [32]. The objective of this study is to provide the precise

limit for the logarithmic coefficients that make up the second Hankel determinant. We begin by

defining Hankel determinants for the scenario in which f ∈ A .

For q, n ∈ N, the following is the definition of the Hankel determinant of Taylor coefficients for

functions f ∈ A is Hn,q( f ) as seen below

Hn,q( f ) =

∣∣∣∣∣∣∣∣∣∣∣∣

an an+1 · · · an+q−1

an+1
...

a
n+2 ···

... . . .

an+q
...

an+q−1 an+q . . . an+2(q−1)

∣∣∣∣∣∣∣∣∣∣∣∣
.

The logarithmic coefficients of f ∈ S are the elements of a Hankel determinant that Kowalcyk

and Lecko [33] recently suggested, recognizing the wide application of these coefficients. The

expression for this determinant is as follows:

Hn,q(Ff /2) =

∣∣∣∣∣∣∣∣∣∣∣∣

γn γn+1 · · · γn+q−1

γn+1
...

γ
n+2···

... . . .

γn+q
...

γn+q−1 γn+q . . . γn+2(q−1)

∣∣∣∣∣∣∣∣∣∣∣∣
.

Extensive research has been conducted on Hankel determinants for various function classes such

as starlike, convex, and others, resulting in the identification of their precise constraints (refer to

[33, 34, 35, 36, 37] ) . Recently, specific subclasses functions that are starlike, convex, univalent,

highly starlike, and highly convex. have been examined for their Hankel determinants with
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logarithmic coefficients, alongside their associated literature (see [38, 33, 39] and the citations

there in). However, further investigation is required to determine the exact boundaries of Hankel

determinants of logarithmic coefficients across a broader spectrum of function classes.

Using (1.2) and differentiating (1.3),

F ′
f (ŷ) =

d
dŷ

(
log

f (ŷ)
ŷ

)
=

d
dŷ

log f (ŷ)− d
dŷ

log(ŷ) =
f ′(ŷ)
f (ŷ)

− 1
ŷ

f (ŷ) = ŷ+a2ŷ2 +a3ŷ3 +a4ŷ4+a5ŷ5+a6ŷ6 . . .

f ′(ŷ) = 1+2a2ŷ+3a3ŷ2 +4a4ŷ3 +5a5ŷ4 +6a6ŷ5 . . .

f ′′(ŷ) = 0+2a2 +6a3ŷ+12a4ŷ2 +20a5ŷ3 . . . ,

F ′
f (ŷ) =

d
dŷ

(
log

f (ŷ)
ŷ

)
=

ŷ f ′(ŷ)− f (ŷ)
ŷ f (ŷ)

(1.4)

ŷ f ′(ŷ)− f (ŷ)
ŷ f (ŷ)

=
a2ŷ2 +2a3ŷ3 +3a4ŷ4 +4a5ŷ5 +5a6ŷ6

ŷ2+a2ŷ3 +a3ŷ4 +a4ŷ5+a5ŷ6

d
dŷ

(
log

f (ŷ)
ŷ

)
= a2 +(2a3−a2

2)ŷ+(3a4−3a2a3−a3
2)ŷ

2 +(4a5−2a3
2−4a4a2+4a2

2a3−a4
2)ŷ

3

+(5a6−5a2a5 −5a3a4 +5a2
2a4+5a2

3a2−5a3
2a3 +a3

2)ŷ
4. . .,

(1.5)

differentiating again (1.3)

d
dŷ

(
2

∞

∑
n=1

γn ( f ) ŷn

)
=

d
dŷ

[ 2γ1( f )ŷ+2γ2( f ) ŷ2 +2γ3( f ) ŷ3 +2γ4( f ) ŷ4 +2γ5( f ) ŷ5 + . . .]

d
dŷ

(
2

∞

∑
n=1

γn ( f ) ŷn

)
= 2γ1 +4γ2ŷ+6γ3ŷ2 +8γ4ŷ4 +10γ5ŷ5 + . . .,

(1.6)

comparatively (1.5) with (1.6)

1. ŷo:

2γ1 = a2,

γ1 =
1
2

a2
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2. ŷ1:

4γ2 = (2a3 −a2
2),

γ2 =
1
2
(a3 −

1
2

a2
2)

3. ŷ2:

6γ3 = (3a4 −3a2a3 −a3
2),

γ =
1
2
(a4 −a2a3 +

1
3

a3
2)

4. ŷ3:

8γ4 = (4a5−2a3
2−4a4a2+4a2

2a3−a4
2)

γ4 =
1
8
(4a5−2a3

2−4a4a2+4a2
2a3−a4

2)

γ4 =
1
2
(a5 −a4a2+a2

2a3−
1
2

a2
3−

1
4

a4
2)

5. ŷ4:

10γ5 = 5a6−5a2a5−5a3a4 +5a2
2a4+5a2

3a2−5a3
2a3 +a5

2)

γ5 =
1
10

(5a6−5a2a5 −5a3a4 +5a2
2a4+5a2

3a2−5a3
2a3 +a5

2)

γ5 =
1
2
(a6 −a2a5 −a3a4+a2

2a4+a2a2
3+ a3

2a3+
1
5

a5
2).

The quick calculation demonstrates that

γ1 =
1
2

a2

γ2 =
1
2
(a3 −

1
2

a2
2)

γ3 =
1
2
(a4 −a2a3+

1
3

a3
2)

γ4 =
1
2
(a5 −a2a4+ a2

2a3 −
1
2

a
2

3
− 1

4
a4

2)

γ5 =
1
2
(a6 −a2a5 − a3a4 + a2a2

3 +a2
2a4 − a3

2a3 +
1
5

a5
2 ).

Calculating the Hankel determinant, where the entries consist of logarithmic coefficients, is

particularly intriguing and pertinent as a result of logarithmic coefficients’ growing importance in



9

current research. Specifically, defining the second Hankel determinant involves notable attention

Ff /2 stated as

H 2,1(Ff /2) = γ1γ3 − γ
2
2

=

(
1
2

a2

) (
1
2
(a4 −a2a3+

1
3

a3
2

)
−
(

1
2
(a3−

1
2

a2
2)

)2

=
a2a4

4
−

a2
2a3

4
+

a4
2

12
−

a2
3

4
−

a4
2

16
+

2a2
2a3

8

=
12a2a4 +a4

2 −12a2
3

48

H 2,1(Ff /2) = γ1γ3 − γ
2
2 =

1
48

(a4
2 −12a2

3 +12a2a4). (1.7)

In this study, the precise limit of the Hankel determinant will be investigated H 1,2

(
Ff
2

)
for two

categories of functions, specifically star-like and convex functions related to lune.

The logarithmic coefficients associated with the Koebe function f (ŷ) = ŷ/(1 − ŷ) 2 are known

to be γn =
1
n or each positive integer n. Given the common occurrence of the Koebe function

as an external function in the geometric theory of analytic functions issues, it stands to reason

that γn =
1
n holds true for functions in S. But, even in terms of order of magnitude, this is not

generally true. A number of writers have recently examined the issue of calculating the bound of

the logarithmic coefficients in various circumstances; for example, see [40, 41, 22, 35, 24].

In the realm of specific subgroups of Starlike and Convex, Shi [42] revealed the limitations of

the third-order Hankel determinant within an open unit disc for univalent functions related to

exponential functions.

Significant aspect in delineating the limits of the Hankel determinant for functions exhibiting

positive real components lies in the Carathéodory class P and its coefficient constraints within

the domain of geometric function theory. Functions with positive real parts significantly influence

the criteria for both C convex and S∗ starlike univalent functions, alongside C convex functions.

Every function conforming to this form is encompassed within this class

p(ŷ)=1+p1ŷ+p2ŷ 2+p3ŷ 3 ...
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A function belonging to p is termed a Carathéodory function. It’s established that cn ≤ 2, n ≥ 1

in a function p ∈ P (see [21])

Satisfying these requirements and being analytic in open unit disc E

p(0)=1 with R [p(ŷ)]>0

Claimed to be functions of class P ; see [43] for further information. A function with a

positive real portion in S the disc E is defined as any function in λ accordingly. The Möbius

function stands out as the most well known illustration of a function within this category, defined

as follows: the Koebe function is extremely important in the class S function.

M̂ (ŷ) = 1+2ŷ+2ŷ2+2ŷ3... = 1+2
∞

∑
j=1

ŷ j

Quantum theory is a vital tool for dealing with difficult and complex information. The term

ordinary calculus refers to it without the concept of limits. This field of mathematics is fascinating.

Furthermore, it is essential to a great deal of physics, such as black holes and cosmic strings; for

further details, see [44]. There are two distinct forms of quantum calculus: as well as the q- and

h-calculus. Here, q and h represent quantum and Planck’s constant, respectively. Researchers are

interested within the realm of q-calculus and its applications across various domains.

Using the operator, numerous of subclasses within the category of analytic functions are thor-

oughly investigated . To advance the preliminary groundwork of q-calculus within geometric

function theory, Ismail [45] studying the well-known Fekete-Szegö Inequality, and established

the family of functions that resemble q-stars and are associated with a specific trigonometric

function, such sine functions. Subsequently, several known convolution results were applied

to show that the specified class has both necessary and sufficient conditions. Starlikeness radii,

growth and distortion limitations, and the extreme point theorem were among the other subjects

covered.

In his presentation of q-calculus applications in geometric function theory, Srivastava [46] made

use of q-analogues of hyper geometric functions. Moreover, two general subclasses of complex

order, negative coefficient normalised analytic functions were examined using various q-calculus

operators and fractional q-calculus operators, in addition to the extreme points, growth and dis-

tortion theorems, and concepts related to starlikeness and convexity, are explored and coefficient

estimations were discovered for every one of the newly specified classes.
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Let S denote the subset comprising every univalent function in A . let

Ff (ŷ) := log
f (ŷ)

ŷ
= 2

∞

∑
n=1

γn ( f ) ŷn, log 1 := 0,

f ∈ S is connected to a logarithmic function and now we solve this logrithmic function into

q-logrithmic function with the help of q-derivative definition and Taylor series expansion.

Ff ,q(ŷ) := logq
f (ŷ)

ŷ
= 2

∞

∑
n=1

γ
q
n ( f ) ŷn, ŷ ∈ E,

Let q-derivative of
(

log f (ŷ)
ŷ

)
So,first we have

g(ŷ) = log
(

f (ŷ)
ŷ

)

g(q(ŷ)) = log
(

f (qŷ)
qŷ

)
.

Using the definition of the q-derivative, we obtain

Dqlogq

(
f (ŷ)

ŷ

)
=

logq

(
f (qŷ)

qŷ

)
− logq

(
f (ŷ)

ŷ

)
qŷ− ŷ

,

simplify q-logarithmic terms

logq

(
f (qŷ)

qŷ

)
= logq( f (qŷ)− logq (qŷ)) = logq

(
f (qŷ)− logq (q)−logq(ŷ)

)

logq

(
f (ŷ)

ŷ

)
= logq ( f (ŷ)−logq (ŷ)),

in above phrase, enter these two q-logrithmic equations

Dqlogq

(
f (ŷ)

ŷ

)
=

logq
(

f (qŷ)−logq (q)−logq (ŷ)
)
− (logq f (ŷ)−logq (ŷ))

qŷ− ŷ

Dqlogq

(
f (ŷ)

ŷ

)
=

logq ( f (qŷ))− logq ( f (ŷ))
qŷ − ŷ

−
logq (q)
qŷ − ŷ

,

since we are aware

Dqlogq( f (ŷ)) =
logq ( f (qŷ))− logq ( f (ŷ))

qŷ − ŷ
=

logq

(
f (qŷ)
f (ŷ)

)
qŷ− ŷ

Dqlogq

(
f (ŷ)

ŷ

)
=

logq

(
f (qŷ)
f (ŷ)

)
qŷ− ŷ

−
logq (q)
qŷ− ŷ

,
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now we examine that logq

(
f (qŷ)
f (ŷ)

)
f (ŷ) = 1+ a1qŷ+a2q2ŷ2 +a3q3ŷ3 + . . ..

f (qŷ) = 1+ a1ŷ+a2ŷ2 +a3ŷ3 + . . ..

f (qŷ)
f (ŷ)

=
1 + a1qŷ + a2q2ŷ2 + a3q3ŷ3 + ..

1 + a1ŷ + a2ŷ2 + a3ŷ3+ . . .

f (qŷ) = f (ŷ+(q−1) ŷ) = f (ŷ)+Dqlogq( f (ŷ))(q−1) ŷ+ . . .

logq

(
f (qŷ)
f (ŷ)

)
= logq

(
f (ŷ)
f (ŷ)

+
Dq( f (ŷ))(q−1) ŷ

f (ŷ)
+

D2
q ( f (ŷ))((q−1) ŷ)2

2! f (ŷ)
+ . . .

)

logq

(
f (qŷ)
f (ŷ)

)
= logq

(
1 +

Dq( f (ŷ))(q−1) ŷ
f (ŷ)

+
D2

q ( f (ŷ))((q−1) ŷ)2

2! f (ŷ)
+ . . .

)

Implementing logq as well as the fact that

logq (1+ t) = t − t2

2
+

t3

3

t =
Dq( f (ŷ))(q−1) ŷ

f (ŷ)

So,

logq

(
1 +

Dq( f (ŷ))(q−1) ŷ
f (ŷ)

)
=

Dq( f (ŷ))(q−1) ŷ
f (ŷ)

−

(
Dq( f (ŷ))(q−1)ŷ

f (ŷ)

)2

2
+ . . .

logq

(
f (qŷ)
f (ŷ)

)
=

Dq( f (ŷ))(q−1) ŷ
f (ŷ)

,

Dqlogq

(
f (ŷ)

ŷ

)
=

Dq( f (ŷ))(q−1)ŷ
f (ŷ)

qŷ − ŷ
−

logq (q)
qŷ − ŷ

,
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by Taylor series expansion

logq (q) = (q−1)− (q−1)2

2
+ . . .

now we obtain

Dqlogq

(
f (ŷ)

ŷ

)
=

Dq( f (ŷ))(q−1)ŷ
f (ŷ) − (q−1)

ŷ(q −1)

Dqlogq

(
f (ŷ)

ŷ

)
= (q −1)

(
Dq( f (ŷ))ŷ

f (ŷ) −1
)

ŷ(q −1)

Dqlogq

(
f (ŷ)

ŷ

)
=

(
Dq( f (ŷ))ŷ

f (ŷ) −1
)

ŷ
=

(
Dq( f (ŷ))ŷ

f (ŷ) ŷ
− 1

ŷ

)

Dqlogq

(
f (ŷ)

ŷ

)
=

(
Dq f (ŷ)

f (ŷ)
− 1

ŷ

)
(1.8)

f (ŷ) = ŷ+a2ŷ2 +a3ŷ3 +a4ŷ4+a5ŷ5+a6ŷ6

Dq f (ŷ) = 1+[2]qa2ŷ+[3]qa3ŷ2 +[4]qa4ŷ3 +[5]qa5ŷ4 +[6]qa6ŷ5

D2
q f (ŷ) = 0+[2]qa2 +[6]qa3ŷ+[12]qa4ŷ2 +[20]a5ŷ3

Simplification of (1.8) then we achieve

Dqlogq

(
f (ŷ)

ŷ

)
=

ŷDq f (ŷ)− f (ŷ)
ŷ f (ŷ)

(1.9)

Putting value of f (ŷ) ,Dq f (ŷ) in (1.9) we get

ŷDq f (ŷ)− f (ŷ)
ŷ f (ŷ)

=
a2ŷ2+[2a]q3ŷ3 +[3]qa4ŷ4+[4]qa5ŷ5 +[5]qa6ŷ6

ŷ2+a2ŷ3 +a3ŷ4 +a4ŷ5+a5ŷ6

Dq(logq
f (ŷ)

ŷ
) = a2 +

(
[2]qa3 −a2

2
)

ŷ+
(
[3]qa4 − [3]qa2a3 −a3

2
)

ŷ2

+
(
[4]qa5 − [2]qa3

2 − [4]qa4a2 +[4]qa2
2a3 −a4

2
)

ŷ3

+
(
[5]qa6 − [5]qa2a5 − [5]qa3a4 +[5]qa2

2a4 +[5]qa2
3a2 − [5]qa3

2a3 +a3
2
)

ŷ4.

(1.10)

Dq(2
∞

∑
n=1

γ
q
n ( f ) ŷn) =Dq [2γ

q
1 ( f )ŷ+ 2γ

q
2 ( f ) ŷ2+2γ

q
3 ( f ) ŷ3+2γ

q
4 ( f ) ŷ4+2γ

q
5 ( f ) ŷ5+ . . .]
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Dq(2
∞

∑
n=1

γ
q
n ŷn) = 2γ

q
1 +[4]qγ

q
2 ŷ+[6]qγ

q
3 ŷ2 +[8]qγ

q
4 ŷ3 +[10]qγ

q
5 ŷ5 + . . . (1.11)

Examine (1.10) and (1.11).

ŷo:

[2]qγ
q
1 = a2

γ
q
1 =

1
[2]q

a2

ŷ1:

[4]qγ
q
2 = ([2]qa3−a2

2)

γ
q
2 =

1
[4]q

([2]qa3−a2
2)

ŷ2:

[6]qγ
q
3 = ([3]qa4−[3]qa2a3−a3

2)

γ
q
3 =

1
[6]q

([3]qa4−[3]qa2a3−a3
2)

ŷ3:

[8]qγ
q
4 = ([4]qa5−[2]qa3

2−[4]qa4a2+[4]qa2
2a3−a4

2)

γ
q
4 =

1
[8]q

([4]qa5−[2]qa3
2−[4]qa4a2+[4]qa2

2a3−a4
2)

Similarly,

ŷ4:

[10]qγ
q
5 = ([5]qa6 − [5]qa2a5 − [5]qa3a4 +[5]qa2

2a4 +[5]qa2
3a2 − [5]qa3

2a3 +a3
2)

γ
q
5 =

1
[10]q

([5]qa6 − [5]qa2a5 − [5]qa3a4 +[5]qa2
2a4 +[5]qa2

3a2 − [5]qa3
2a3 +a3

2)
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Second Hankel Determinant of Ff /2

H2,1(Ff /2) = (γ
q
1 γ

q
3 − (γ

q
2 )

2)

=

(1
2

a2

)(
1
[6]q

([3]qa4−[3]qa2a3−a3
2)

)
−

(
1
[4]q

([2]qa3−a2
2)

)2


=
[3]qa2a4

2[6]q
−
[3]qa2

2a3

2[6]q
+

a4
2

2[6]q
−

[4]qa2
3

[16]q
−

a4
2

[16]q
+

[4]qa2
2a3

[16]q

=
[12]qa2a4 +a4

2 − [12]qa2
3

[48]q

H2,1(Ff /2) = (γ
q
1 γ

q
3 − (γ

q
2 )

2) =
1

[48]q
(a4

2 − [12]qa2
3 +[12]qa2a4) (1.12)

Despite having many applications in mathematics, mechanics, and physics, q-calculus is basically

just basic classical calculus without limit ideas. As a result, it is rapidly evolving.

1.1 Preface

"The purpose regarding this thesis is to utilise the subordination notion to assess and elaborate

a few subclasses of analytic functions. It is organised into five chapters, each of which has the

following brief introduction:"

"In Chapter 1, a thorough literature survey is provided, emphasising important ideas from the

Geometric Function Theory lectures. The class of analytic functions, the class of Carathéodory

functions, and the class of univalent functions are all discussed in this exploration, along with

pertinent subclasses. These ideas form the core of this thesis."

Chapter 2 "mostly focusses on fundamental concepts of Geometric Function Theory, pro-

viding an crucial framework for the subsequent chapters. It begins by discussing the concepts

of normalised univalent functions and analytic functions in the context of the open unit disc.

Afterward, a number of basic subclasses of univalent functions are defined. Preliminary lemmas
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that will be used in later chapters are presented at the end of this chapter. It should be noted

that this chapter completely references and recognises existing theories in the field instead than

offering any novel findings."

Chapter 3"discusses the category of convex functions associated with the lune function and

examines the category of starlike functions with regard to the lune function. Furthermore, several

of the primary findings are examined. Making sure the review work is correctly cited is very

important."

Chapter 4 "focusses on the category of starlike functions with respect to the lune function

associated with the q-starlike function, which is a particular subclass of univalent functions.

Established results for functions in this class are also inferred in this chapter. The newly derived

results are shown to be consistent with those earlier affirmed by other researchers through

corollaries."



17

CHAPTER 2

DEFINITIONS AND PRELIMINARY CONCEPTS

2.1 Overview

This section objective is to go over some crucial traditional findings that will form the basis

of further investigation. A detailed discussion of the normalised analytic univalent functions

and Carathéodory functions will be provided. There will be consideration of several exclusive

functions, a renowned linear operator, and introductory lemmas. Perhaps the most intriguing

feature of highly complex function theory is the relationship between geometry and analysis.

Definition 2.1.1. [47] If a function is differentiable at every point within a complex field, it

is said to be holomorphic in that domain. At point ŷ0, a complex valued function ξ (ŷ) that

possesses a derivative is differentiable,

ξ
′(ŷ) = lim

ŷ→ŷ0

ξ (ŷ)−ξ (ŷ0)

ŷ− ŷ0
,

such a function ξ is analytic at ŷ0 if it is differentiable at all points in its neighbourhood at ŷ0.

The fact that ŷ0 must have derivatives of all orders and that ξ has a Taylor series expression is

one of the marvels of complex analysis,

ξ (ŷ) =
∞

∑
k=0

ξ k(ŷ0)

k!
(ŷ− ŷ0)

k
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2.2 Domain

Within the theory of geometric functions, we are always pointing to a certain domain. An

open, linked set is called a domain. In terms of geometry, the open unit disc is equivalent to

a disc with a radius of 1 that is centred at the origin and does not include the disk’s boundary.

Stated differently, it encompasses all complex numbers within the disc but excludes the points

situated on its perimeter.

A key idea in complex analysis, the open unit disc is useful in many different mathematical

and analytical situations, including complex integration mapping functions as well as conformal

mappings.

Definition 2.2.1. [47, 48] An open unit disk in the complex plane, refers to a set of complex

numbers that lie within a specific region in the complex plane. It is defined as the set of all

complex numbers whose distance from the origin is less than 1. In mathematical notation, the

open unit disk is represented as,

E= {|ŷ|< 1; ŷ ∈ C}.

Here, |ŷ| indicates the modulus or absolute value of ŷ, and ŷ represents a complex number. The

distance between ŷ and the origin indicated by the condition |ŷ|< 1.

2.3 Analytic and Univalent functions

Geometric functions and analytical structures are related, and this relationship forms the basis

of the theory of univalent functions. For Analytic and Univalent functions we define categories

in this context.

Definition 2.3.1. [49] An analytic function, sometimes referred to as a holomorphic function, is

a function with complicated values that is differentiable and defined at each point in a certain

area of the complex plane. A function ξ is considered analytical if it is differentiable at all points

within the region, according to more rigorous definitions.

One significant implication is that a power series representation exists for an analytic function.

The variable ŷ can be expressed as an infinite sum of its powers, which indicates that the function
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is analytic within the region

ξ = ŷ+
∞

∑
m=2

âmŷm

where one can find the coefficients.

Definition 2.3.2. [50] If a function is analytic in open unit disc E and normalised by these require-

ments ξ (0) = 0, then it belongs to class A , the class of Normalised Analytic Function.Assuming

ξ ′(0) = 1.

ξ = ŷ+
∞

∑
m=2

âmŷm, ŷ ∈ E.

Definition 2.3.3. [16] Univalent functions, sometimes referred to as one-to-one analytic functions

or univalent mappings, are a particular kind of analytic function that maintains injectivity. In

particular, if a function ξ defined on an area in the complex plane maps various complex numbers

to separate images, it is said to be univalent. This means that it does not have two different

inputs that map to the same output.

Assume that ξ is an analytic function defined on a domain in the complex plane. If the

condition ξ (ŷ1) ̸= ξ (ŷ2) holds for any separate complex numbers ŷ1 and z2 in domain, then the

function ξ is considered univalent in domain.

Stated differently, an injective or one-to-one function within its domain is referred to as a

univalent function.The mapping of points from its domain to its range does not result in any

self-intersections or overlaps.

Geometric function theory and complex analysis are two areas of great interest for uniform

functions. Their significance lies in their numerous applications in fields like complex dynamics,

conformal mapping, and Riemann surface theory. Univalent functions provide useful geometric

qualities and can be studied to better understand the complex characteristics of transformations

and mappings.

Definition 2.3.4. [16] If a function is analytic and univalent within the open unit disc E, it belongs

to the class S , which is made up of Univalent Functions. Two normalisation requirements must

be met by the function: ξ (0) = 0 and ξ ′(0) = 1.

A function that belongs to the class S is exemplified by the Koebe Function.

ξ = ŷ+
∞

∑
m=2

mŷm, ŷ ∈ E.
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2.4 Carathéodory function

Other functions were found to have image domains that were limited to the open half plane

after many complex valued functions were found to have image domains that encompassed the

full complex plane. This class of functions, represented by P , is known as the Carathéodory

function class.

Definition 2.4.1. [50] The expression for a function p ∈ P that is analytic in E is

p(ŷ) = 1+
∞

∑
i=1

ciŷi,

In this case, Re[p(ŷ)]≥ 0 and p(0) = 1.

The most well-known illustration of a function in this class is the mobius function, which is

defined as,

M =

(
−1+

2
1− ŷ

)
.

2.5 Subordination

The behaviour of analytic functions is examined using the word "subordination" in geometric

function theory. Lindelof was the first to propose the subordination principle in 1909. There were

further developments by Littlewood and Rogosinski [15]. To define the subordination principle,

the Schwarz function is employed.

Definition 2.5.1. [49] Assume two analytic functions, f and g. If there is a self-map w under

the condition w(0)= 0 such that f (ŷ) = g(w(ŷ)), then f is subordinated by g and expressed as

f (ŷ)≺ g(ŷ). Furthermore, f (D)⊆ g(D) given that f (0) = g(0) and g is univalent.
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2.6 Logarithmic Function

The expression defines Ff (ŷ) as the natural logarithm of the function. f (ŷ) divided by ŷ and it’s

represented as a power series expansion in terms of ŷ with coefficient γn( f ) in [51].

Ff (ŷ) := log
f (ŷ)

ŷ
= 2

∞

∑
n=1

γn ( f ) ŷn, ŷ ∈ E, log 1 := 0

Where,

1. log f (ŷ)
ŷ : The logarithm of the function f divided by ŷ.

2. 2 ∑
∞
n=1 γn ( f ) ŷn: A power series expansion of the logarithmic function Ff (ŷ) .

3. It’s represented as a sum of terms involving powers of ŷ , with coefficients given by the

values of γn ( f ) for n ≥ 1.

4. here n ≥ 1 indicates that the summation is performed over all terms

starting from n = 1.

2.7 Lune Function

In complex plane, the crescent shape formed by two intersecting circles is called a lune. If

we denote a lune by (L(a,b)), where (a) and (b) Radii of circles bounding the lune. Lune is a

non-trivial geometric region because its often characterized by complex boundaries.

Definition 2.7.1. The inequality {w ∈ C : |w2 − 1| ≤ 2|w|} define a lune-shaped region [52].

Due to the fact that it symbolises the collection of all complex numbers w whose transformed

values are under the map w → w2 −1 lie within the range specified by 2|w|. This set represents

a geometric region that resembles a crescent or "lune" or the space formed by two circles that

cross.
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Figure 2.1: Geometry of Lune Function

2.8 Certain sub-classes of univalent functions

Univalent function analysis is a field that is both old and constantly changing. The previous

ten to fifteen years have seen a number of noteworthy breakthroughs. Different subclasses

of the class of univalent functions have been presented, mostly motivated by the geometric

characteristics of their image domains. Among other things, this context has defined the classes

of Starlike and Convex functions.

Definition 2.8.1. [50, 49] An "starlike function" is a function that projects the disc E onto a

domain B that, with respect to the origin, resembles a starlike domain shown in Figure 2.2. S∗

represents the subclass of which all starlike functions are included. According to the origin,

the domain is starlike if ŷ = 0 and the linear segment that connects 0 to any other point of the

domain B is entirely contained within the complex plane. That is,

∀ŷ ∈ B, λ ŷ ∈ B

In the case of 0 ≤ ψ ≤ 1, if ŷ ∈ B, it is imperative that every point of domain be observable from
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ŷ.

Figure 2.2: Starlike domain

Definition 2.8.2. [50, 49] Using a convex function, the disc E is moved onto a convex domain B

with respect to the origin shown in Figure 2.3. C represents the S subclass that includes all

convex functions. A domain is considered convex if a line segment that connects any two points

of a domain B in the complex plane lies entirely within that domain. That is,

[ψ ŷ1 +(1−ψ)ŷ2] ∈ B,

where ŷ1 and ŷ2 both are in B with 0 ≤ ψ ≤ 1.

Definition 2.8.3. [25] A function is considered to be starlike accociated with lune function S∗$
if,

S∗$=

 f ∈ S :

∣∣∣∣∣∣
(

ŷ f
′
(ŷ)

f (ŷ)

)2

−1

∣∣∣∣∣∣ ≤ 2

∣∣∣∣∣ ŷ f
′
(ŷ)

f (ŷ)

∣∣∣∣∣ , ŷ ∈ E


Definition 2.8.4. [25] A function is considered to be convex ascociated with lune function C$

if,

C$ =

{
f ∈ S : 1 +

ŷ f
′′
(ŷ)

f ′ (ŷ)
≺ q(ŷ) , ŷ ∈ E

}
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Figure 2.3: Convex domain

2.9 Quantum Calculus

Early in the 20th century, American mathematician Jackson created the first version of

quantum calculus. His definition about the q-analog of the integral operator and derivative was

the first.

Definition 2.9.1. [53] A branch of mathematics called quantum calculus, sometimes referred to

as q-calculus or Jackson’s q-calculus, introduces a parameter q and generalises several ideas

from classical calculus.

A key idea in q-calculus, a field of mathematics that extends classical calculus by adding a

parameter q, is the q-derivative operator, which is frequently represented as Dq.

Definition 2.9.2. [53] The definition of the q-derivative for a differentiable function τ(ŷ) is

Dqτ(ŷ) =
τ(ŷ)− τ(qŷ)
(1−q)ŷ

, ŷ ̸= 0

where

0 < q < 1. Its Maclaurins series is

Dqτ(ŷ) =
∞

∑
n̂=0

[n̂]qc̆nŷn̂−1,
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where

[n̂]q =


1−qn̂

1−q , n̂ ∈ C

∑
n̂−1
n̂=0 qn̂, n̂ ∈ N.

Definition 2.9.3. The q-derivative of the natural logarithm function ln(x) is defined as:

Dq[ln(x)] =
ln(q)

(q−1)x

Definition 2.9.4. [53] q-series, or power series containing q-analogs of the common calculus

operations, are introduced by quantum calculus. Numerous fields use these series for example,

the q-binomial theorem in combinatorics and the q-analog of the partition function in number

theory.

2.10 Hankel Determinant

Definition 2.10.1. The determinant of the related Hankel matrix is known as the Hankel deter-

minant. The Hankel determinant was defined by Pommerenke [54] for the class of univalent

functions for integers that are positive. n,s that are defined below,

|Hn(s)|=

∣∣∣∣∣∣∣∣∣∣∣∣

γ̆s γ̆s+1 γ̆s+2 ... γ̆s+n−1

γ̆s+1 γ̆s+2 γ̆s+3 ... γ̆s+n

... ... ... ... ...

γ̆s+n−1 γ̆s+n γ̆s+n+1 ... γ̆s+2n−2

∣∣∣∣∣∣∣∣∣∣∣∣
.
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2.11 Preliminary Lemmas

Here are a few lemmas which will be essential to advancing our findings in the chapters that

follow.

Lemma 2.11.1. [55, 56] If p ∈ P is of the form (2.1) with c1 ≥ 0, then

c1 = 2τ1 (2.1)

c2 = 2τ
2
1+2( 1−τ

2
1 )τ2 (2.2)

c3 = 2τ
3
1+4( 1−τ

2
1 )τ1τ2− 2( 1−τ

2
1 )τ1τ

2
2+ 2( 1−τ

2
1 )( 1−|τ2| 2)τ3 (2.3)

For some τ1 [0,1] and τ2,τ3 ∈ E :={ŷ ∈ C : |ŷ| ≤ 1}.

For τ1 ∈ T := ŷ ∈ C : |ŷ|= 1, there is a distinct function p ∈ P with c1 as in (2.1) namely

P(ŷ) =
1+ τ1ŷ
1− τ1ŷ

, ŷ ∈ E.

For τ1 ∈D := τ2 ∈T, there is a distinct function p ∈ P with c1 and as in (2.1) and (2.2), namely

p(ŷ) =
1+(τ1τ2 + τ1)ŷ+ τ2z2

1+((τ1τ2 − τ1)ŷ− τ2z2 , ŷ ∈ E.

For τ1,τ2 ∈ E and τ3 ∈ T, there is a unique funtion p ∈ P with c1,c2 and c3 as in (2.1)-(2.3),

namely

p(ŷ) =
1+(τ2τ3 + τ1τ2 + τ1)ŷ+(τ1τ3 + τ1τ2τ3 + τ2)ŷ2 + τ3ŷ3

1+(τ2τ3 + τ1τ2 − τ1)ŷ+(τ1τ3 − τ1τ2τ3 − τ2)ŷ2 − τ3ŷ3 , ŷ ∈ E.

Lemma 2.11.2. Assume that [57] A, B, and C are real numbers and

Y (A,B,C):= max |A+Bŷ+Cŷ2|+1−|ŷ|2 : ŷ ∈ E.

(i) If AC ≥ 0, then

Y (A,B,C) =


|A|+ |B|+ |C| , |B| ≥ 2(1−|C|) ,

1+ |A| + B2

4(1−|C|) , |B|< 2(1−|C|) .
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Y (A,B,C) =



1−|A|+ B2

4(1+|C|) , −4AC(C−2 −1)≤ B2 ∧ |B|< 2(1−|C|),

1+ |A| + B2

4(1−|C|) , B2 < min [4(1+ |C|)2,−4AC(C−2 −1)],

R(A,B,C), Otherwise,

Where

R(A,B,C) :=



|A|+ |B|− |C|, |C|(|B|+4|A|)≤ |AB|,

−|A|+ |B|+ |C|, |AB| ≤ |C|(|B|−4|A|),

(|C|+ |A|)
√

1− B2

4AC , Otherwise.

We split our thesis into two sections to make it more clear: one for starlike functions and

the other for convex functions related to lune. These sections contain several function families

belonging to class A , and they support our primary findings.
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CHAPTER 3

CLASS OF STARLIKE AND CONVEX FUNCTIONS WITH

SECOND HANKEL DETERMINANT OF LOGRITHMIC

COEFFICIENTS

3.1 Introduction

A number of essential and conventional findings that form the basis of additionally investiga-

tion are intended to be examined in this chapter. Reviewing Starlike functions and introducing a

new class called Convex functions are the first two topics covered in this part. The establishment

of these categories is related to lune function. A number of important discoveries will also be

looked at, such as the second Hankel Determinants, the well-known Fekete–Szegő inequality,

logrithmic coefficient bounds, and the subordination approach.

Definition 3.1 Class S∗$ given by Raina and Sokol [25].

S∗$ =

{
f ∈ S :

∣∣∣∣∣
(

ŷ f ′ (ŷ)
f (ŷ)

)2

−1

∣∣∣∣∣≤ 2
∣∣∣∣ ŷ f ′ (ŷ)

f (ŷ)

∣∣∣∣ , ŷ ∈ E

}

According to the function f ∈ S∗$, the region bounded by the lune is included in the ratio ŷ f ′ (ŷ)
f (ŷ)

for any ŷ ∈ E. For example, {w ∈C : |w2 − 1| ≤ 2|w|} gives it.
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Class S∗$ is established by applying the subordination concept in [51].

S∗$=

{
f ∈ S :

ŷ f ′ (ŷ)
f (ŷ)

≺ ŷ+
√

1+ ŷ2 = q(ŷ) , ŷ ∈ E
}

where q(0) = 1 is the branch of the square root thus
√

1+02, or
√

1, should equal 1.

Definition 3.2 A class is considered to be convex in [25] ascociated with lune function C$ if,

C$ =

{
f ∈ S : 1 +

ŷ f
′′
(ŷ)

f ′ (ŷ)
≺ q(ŷ) , ŷ ∈ E

}

3.2 The Logarithmic Coefficients of Class S∗$ Functions and their Second

Hankel Determinant

Theorem 3.2.1. Identifying the sharp bound of |H 2,1(Ff /2)| for function in the class S∗$.

Let f ∈ S∗$. Then

|H 2,1(Ff /2)| ≤ 1
16

, (3.1)

given the function g ∈ S∗$, the inequality is sharp

g(ŷ) = ŷ exp

(∫ ŷ0

0

x2 +
√

1+ x4 −1
x

dx

)
= ŷ+

ŷ3

2
+

ŷ5

4
+ . . .

Proof. Let f ∈ S∗$. Therefore, under definition 1.1

ŷ f ′ (ŷ)
f (ŷ)

= w(ŷ)+
√

1+w2(ŷ), (3.2)

where w is a Schwarz function with w(0) = 0 and |w(ŷ) | ≤ 1 in E .

let h ∈ P, then write it as

w(ŷ) =
h(ŷ) − 1
h(ŷ) + 1

(3.3)

h(ŷ) = 1+ c1ŷ+ c2ŷ2 + c3ŷ3 + c4ŷ4 + . . . ,

then (3.3) is

h(ŷ) − 1
h(ŷ) + 1

=
1 + c1ŷ + c2ŷ2 + c3ŷ3+c4ŷ4 −1
1 + c1ŷ + c2ŷ2 + c3ŷ3+c4ŷ4 +1

=
c1ŷ + c2ŷ2 + c3ŷ3+c4ŷ4

2 + c1ŷ + c2ŷ2 + c3ŷ3+c4ŷ4
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w(ŷ) =
1
2

c1(ŷ)+
1
2
(c2−

1
2

c2
1)(ŷ)

2+
1
2
(c3−c1c2 +

1
4

c3
1)(ŷ)

3 + . . . , (3.4)

simplification of (3.2) is

ŷ f ′ (ŷ)
f (ŷ)

=
ŷ+2a2ŷ2+3a3ŷ3+4a4ŷ4

ŷ+a2ŷ2+a3ŷ3+a4ŷ4

ŷ f ′ (ŷ)
f (ŷ)

= 1+a2ŷ+ (2a3−a2
2)ŷ

2+(3a4−3a2a3 +a3
2)ŷ

3 + . . . , (3.5)

from (3.2) and (3.4 ), a simple computation shows that

w(ŷ)+
√

1+w2 (ŷ) =
1
2

c1ŷ+
1
2
(c2−

1
2

c2
1)ŷ

2 +

√
1+
(

1
2

c1ŷ+
1
2
(c2−

1
2

c2
1)ŷ

2
)2

√
1+w2 (ŷ) =

√
1+

1
4

c2
1ŷ2+

1
4

(
c2−

1
2

c2
1

)2

ŷ4 +
1
2

c1(c2−
1
2

c2
1)ŷ

3,

using bionomial expansion:
√

1+ x = 1+
1
2

x+
1
8

x2+
1

16
x3 + . . .

x =
1
4

c2
1ŷ2+

1
4

(
c2−

1
2

c2
1

)2

ŷ4 +
1
2

c1(c2−
1
2

c2
1)ŷ

3,

thus we have√
1+w2 (ŷ) =

√
1+ x = 1+

1
2

x+
1
8

x2

= 1+
1
2

(
1
4

c2
1ŷ2+

1
4
(c2−

1
2

c2
1)

2
ŷ4 +

1
2

c1(c2−
1
2

c2
1)ŷ

3
)

+
1
8

(
1
4

c2
1ŷ2+

1
4
(c2−

1
2

c2
1)ŷ

4 +
1
2
(c2−

1
2

c2
1)ŷ

3
)2

. . .

√
1+w2 (ŷ) = 1+

1
8

c2
1ŷ2 +

1
4

c1(c2−
1
2

c2
1)ŷ

3+
1
8
(c2−

1
2

c2
1)

2
ŷ4, (3.6)

now we obtain

w(ŷ)+
√

1+w2 (ŷ) =
1
2

c1ŷ+
1
2
(c2−

1
2

c2
1)ŷ

2+
1
2
(c3−c1c2 +

1
4

c3
1)ŷ

3 +1+
1
8

c2
1ŷ2

+
1
4

c1(c2−
1
2

c2
1)ŷ

3,

by adding similar terms of ŷ2 andŷ3

w(ŷ)+
√

1+w2 (ŷ) = 1+
1
2

c1ŷ−
(

1
8

c2
1+

1
2

c2

)
ŷ2 +

(
1
2

c3−
1
4

c
1
c2

)
ŷ3, (3.7)
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so (3.2) is
ŷ f ′ (ŷ)
f (ŷ)

= w(ŷ)+
√

1+w2(ŷ),

after comparing (3.5) and (3.7) we have

1. Oder of ŷ0:

ŷ0 = 1

2. Oder of ŷ1:

a2 =
1
2

c1

3. Oder of ŷ2:

2a3−a2
2 =−1

8
c2

1 +
1
2

c2

2a3 =
1
2

c2 − 1
8

c2
1 +

1
4

c1
2

a3 =
1
4

c2 +
1

16
c2

1 ,

similarly

4. Oder of ŷ3:

(3a4−3a2a3 +a3
2) =

(
1
2

c3−
1
4

c
1
c2

)
3a4 −3

(
1
2

c1

)(
1
4

c2 +
1
16

c2
1

)
+

(
1
2

c1

)3

=
1
2

c3−
1
4

c
1
c2

3a4 −
(

3
8

c1c2+
1
32

c3
1

)
=

1
2

c3−
1
4

c
1
c2

3a4 =
3
8

c
1
c2−

1
32

c3
1 +

1
2

c3−
1
4

c
1
c2

3a4 =
1
8

c
1
c2−

1
32

c3
1 +

1
2

c3

a4 =
1

24
c

1
c2 +

1
6

c3 +
1
96

c3
1


a2 = 1

2 c1

a3=
1
4c2 +

1
16c2

1

a4=
1
24c1c2+

1
6c3+

1
96c3

1

(3.8)
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Since the class P and H2,1(Ff/2) is invariant under rotation, and we assume that c1 ∈ [0,2] that

is in view of (1.13) that τ ∈ [0,1]. Using (3.8) in (1.7) We possess

H2,1(Ff /2) =
1

48

(
1
2

c1

)4

−12
(

1
4

c2 +
1

16
c2

1

)2

+12
(

1
2

c1

)(
1

24
c1c2+

1
6

c3+
1

96
c3

1

)

H2,1(Ff /2) =
1
48

(
1

16
c4

1−
12
16

c2
2 −

12
256

c4
1 −

12
32

c2
1c2 +

12
48

c2
1c2 +

12
12

c1c3 −
12

192
c4

1

)
,

after further simplification

H2,1(Ff /2) =
1

48

(
−3

4
c2

2 −
3

64
c4

1 −
1
8

c2
1c2 + c1c3

)

H2,1(Ff /2) =
1

48×64
(
−48c2

2 −3c4
1 −8c2

1c2 +64c1c3
)

H2,1(Ff /2) =
1

3072
(
−3c4

1 −8c2
1c2 −48c2

2 +64c1c3
)
, (3.9)

by the Lemma (2.12.1) we have value of c1, c2 and c3 use in (3.9)

H2,1(Ff /2) =
1

3072
[−3(2τ1)

4 −8(2τ1)
2 (2( 1− τ

2
1
)

τ2
)
−48(2τ

2
1+2( 1− τ

2
1 )τ2)

2

+64(2τ1)(2τ
3
1+4( 1−τ

2
1 )τ1τ2− 2( 1−τ

2
1 )τ1τ

2
2+ 2( 1−τ

2
1 )( 1−|τ2| 2)τ3) ]

H2,1(Ff /2) =
1

3072
[−48τ

4
1−64τ

4
1−64τ

2
1 τ2 +64τ

4
1 τ2−192τ

4
1−384τ

2
1 τ2 +384τ

4
1 τ2 +384τ

2
1 τ

2
2−192τ

2
2

−192τ
4
1 τ

2
2 +256τ

4
1 +512τ

2
1 (1−τ

2
1 )τ2−256 (1−τ

2
1 )τ

2
1 τ

2
2 +256τ1(1−τ

2
1 )( 1−|τ2| 2)τ3]

H2,1(Ff /2) =
1

3072
[−304τ

4
1−448τ

2
1 τ2+448τ

4
1 τ2−192τ

2
2−384τ

2
1 τ

2
2−192τ

4
1 τ

2
2 +256τ

4
1 +512τ

2
1 τ2

−512τ
4
1 τ2−256 τ

2
1 τ

2
2+256 τ

4
1 τ

2
2 +256τ1τ3−256τ

3
1 τ3−256τ1τ3|τ2| 2 +256τ

3
1 |τ2| 2

τ3]

H2,1(Ff /2) =
1

16×192
[−48τ

4
1+64τ

2
1 τ2−64τ

4
1 τ2 +64τ

4
1 τ

2
2 +128τ

2
1 τ

2
2−192τ

2
2 +256τ1τ3−256τ

3
1 τ3

−256τ1τ3|τ2| 2 +256τ
3
1 |τ2| 2

τ3 ]

H2,1(Ff /2) =
1

192
[−3τ

4
1+4τ

2
1 τ2−4τ

4
1 τ2 +4τ

4
1 τ

2
2 +8τ

2
1 τ

2
2−12τ

2
2 +16τ1τ3−16τ

3
1 τ3−16τ1τ3|τ2| 2

+16τ
3
1 |τ2| 2

τ3],

as we know that
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1. −4(1− τ2
1 )(3+τ2

1 ) τ2
2 = 4τ2

2 τ4
1+8τ2

1 τ
2
2−12τ2

2

2. 16τ1τ3(1− τ2
1 )(1− |τ2

2 |) = +16τ1τ3−16τ3
1 τ3−16τ1τ3|τ2| 2 +16τ3

1 |τ2| 2
τ3

H2,1(Ff /2) =
1

192
[−3τ

4
1+4(1− τ

2
1 )τ

2
1 τ2 −4(1− τ

2
1 )(3+τ

2
1 ) τ

2
2 +16τ1τ3(1− τ

2
1 )(1− |τ2

2 |) ],

(3.10)

Examine the subsequent possible cases on τ1:

Case 1.

if τ1= 1 then from (3.10) we easily obtain

|H2,1(Ff /2)|= 1
192

[−3+0]

|H2,1(Ff /2)|= 1
64

Case 2.

if τ1= 0 then from (3.10) we see that

|H2,1(Ff /2)|= 1
192

[−4(3)τ2
2 ]

|H2,1(
Ff

2
)|= 1

16
|τ2

2 | ≤ 1
16

Case 3.

Assume τ ∈ (0,1) . Utilising the triangle inequality in (3.10) and by using the fact that

|τ3| ≤ 1, we obtain

H2,1(Ff /2) =
1

192
[−3τ

4
1+4(1− τ

2
1 )τ

2
1 τ2 −4(1− τ

2
1 )(3+τ

2
1 ) τ

2
2 +16τ1 (1− τ

2
1 )(1− |τ2

2 |) ],

if 1
12τ1 (1− τ2

1 ) common from inside we have

H2,1(Ff /2) =
1
12

τ1 (1− τ
2
1 )

{
−3τ3

1
16
(
1− τ2

1
) + 4τ1τ2

16
−
(
3+ τ2

1
)

τ2
2

4τ1
+(1− |τ2

2 |)

}
, (3.11)

where

A =
−3τ3

1
16
(
1− τ2

1
) , B =

τ1

4
, C =

− (3− τ2
1 )

4τ1
,

so, we have

=
1
12

τ1
(
1− τ

2
1
)
(|A+Bτ2 +Cτ

2
2 |+1− |τ2

2 |), (3.12)

Note that AC > 0, allowing us to use Lemma (2.12.2) case (i). We now examine every circum-

stance in case (i).
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3(a) The inequality is observed:

|B|−2(1−|C|) = τ1

4
−2
(

1−
−(3−τ2

1 )

4τ1

)

=
τ1

4
−2+

2 (3− τ2
1 )

4τ1

=
2τ1 (τ1 −8)+4(3+ τ2

1 )

(2τ1)(4)

=
(6τ2

1 +16τ1 +12)
8τ1

|B|−2(1−|C|) =
(3τ2

1 −8τ1 +6)
4τ1

> 0.

Which is true for all τ1 ∈ (0,1) . Consequently, Lemma (2.12.2) leads to furthermore, the

inequality (3.12) that

|H2,1(Ff /2)| ≤ 1
12

τ1
(
1−τ

2
1
)
(|A|+ |B|+ |C|)

=
1
12

τ1
(
1− τ

2
1
)(∣∣∣∣∣ −3τ3

1
16
(
1− τ2

1
)∣∣∣∣∣+ ∣∣∣τ1

4

∣∣∣+ ∣∣∣∣−(3− τ2
1 )

4τ1

∣∣∣∣
)

=
−3τ4

1
192

+
τ2

1
(
1−τ2

1
)

48
+

τ1
(
1−τ2

1
)
− (3− τ2

1 )

48τ1

=
−3τ4

1+4τ2
1−4τ4

1 +12τ
2
1+12τ

4
1 −12−12τ

2
1

192

=
4τ

2
1−12+5τ4

1
192

|H2,1(Ff /2)|= 1
192

(12−4τ
2
1−5τ

4
1 ),
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if τ1= 0 then

|H2,1(Ff /2)|= 1
192

[−12 −4(0)−5(0)]

=
1

192
[−12]

=

∣∣∣∣ 1
192

[−12]
∣∣∣∣≤ 1

16

|H2,1(Ff /2)| ≤ 1
16

3(b) Next, it’s simple to verify that

|B|−2(1−|C|) = τ1

4
−2
(

1−
−(3− τ2

1 )

4τ1

)
=

(3τ2
1 −8τ1 +6)

4τ1
< 0,

which is not true for all τ1 ∈ (0,1).

Summarizing case The inequality (3.1) is established for 1, 2, and 3.It is enough to demonstrate

that the bound is crisp to finish the evidence. The function g ∈ S∗$ is examined as follows to

demonstrate that

g(ŷ) = zexp

(∫ z

0

x2 +
√

1+ x4 −1
x

dx

)
= z+

ŷ3

2
+

ŷ5

4
+ . . .,

with a2= a4 = 0 and a3 =
1

12 use in (1.7) by straightforward calculation, it is readily seen that

|H2,1(Fg/2)|= 1
16 . This complete the proof.

3.3 The Logarithmic Coefficients of Class C$ Functions and their Second

Hankel Determinant

Theorem 3.3.1. Let f ∈ C$.Then

|H2,1(Ff /2)| ≤ 23
3264

, (3.13)

given the function h ∈ C$, the inequality is sharp

h(ŷ) =
∫ ŷ

0

h0(x)
x

dx = ŷ+

√
69

12
√

17
ŷ3 +

1
20

(
69
136

+

√
69

4
√

17

)
ŷ5 + . . .,
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where h0(ŷ) is given by (3.20).

Proof. Suppose f ∈C$. Then, as defined by (1.1), we observe that

1+
ŷ f ′′ (ŷ)
f ′ (ŷ)

= w(ŷ)+
√

1+w2(ŷ), (3.14)

where w is a Schwarz function with w(0) = 0 and |w(ŷ) | ≤ 1 in E. let h ∈P .Then we can write

w(ŷ) =
h(ŷ)−1
h(ŷ)+1

(3.15)

h(ŷ) = 1+ c1ŷ+ c2ŷ2 + c3ŷ3+c4ŷ4 + . . . ,

after simplification (3.15) is

h(ŷ) − 1
h(ŷ) + 1

=
1 + c1ŷ + c2ŷ2 + c3ŷ3+c4ŷ4 −1
1 + c1z + c2ŷ2 + c3ŷ3+c4ŷ4 +1

=
c1ŷ + c2ŷ2 + c3ŷ3+c4ŷ4

2 + c1z + c2ŷ2 + c3ŷ3+c4ŷ4

w(ŷ) =
1
2

c1ŷ+
1
2
(c2−

1
2

c2
1)ŷ

2+
1
2
(c3−c1c2 +

1
4

c3
1)ŷ

3 + . . . ,

(3.16)

computation of (3.14) is

1+
ŷ f ′′ (ŷ)
f ′ (ŷ)

=
1+ 4a2ŷ + 9a3ŷ2+ 16a4ŷ3+25a5ŷ4

ŷ+a2ŷ2+a3ŷ3+a4ŷ4

1+
ŷ f ′′ (ŷ)
f ′ (ŷ)

= 1+2a2ŷ+(6a3−4a2
2)ŷ

2+(12a4−18a2a3 +8a3
2)ŷ

3. . ., (3.17)

simple calculation from (3.14) and (3.16), reveals that

w(ŷ)+
√

1+w2 (ŷ) =
1
2

c1ŷ+
1
2
(c2−

1
2

c2
1)ŷ

2 +

√
1+
(

1
2

c1z+
1
2
(c2−

1
2

c2
1)ŷ

2
)2

w(ŷ)+
√

1+w2 (ŷ) =

√
1+

1
4

c2
1ŷ2+

1
4
(c2−

1
2

c2
1)ŷ

4 +
1
2

c1(c2−
1
2

c2
1)ŷ

3,

by using Bionomial expansion that is

√
1+ x = 1+

1
2

x+
1
8

x2+
1
16

x3 + . . .

x =
1
4

c2
1ŷ2+

1
4
(c2−

1
2

c2
1)ŷ

4 +
1
2

c1(c2−
1
2

c2
1)ŷ

3,
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√
1+w2 (ŷ) =

√
1+ x = 1+

1
2

x+
1
8

x2

1+
1
2

x− 1
8

x2 = 1+
1
2

(
1
4

c2
1ŷ2+

1
4
(c2−

1
2

c2
1)ŷ

4 +
1
2

c1(c2−
1
2

c2
1)ŷ

3
)

+
1
8

(
1
4

c2
1ŷ2+

1
4
(c2−

1
2

c2
1)ŷ

4 +
1
2

c1(c2−
1
2

c2
1)ŷ

3
)2

√
1+w2 (ŷ) = 1+

1
8

c2
1ŷ2 +

1
4

c1(c2−
1
2

c2
1)ŷ

3+
1
8
(c2−

1
2

c2
1)ŷ

4, (3.18)

now we obtain

w(ŷ)+
√

1+w2 (ŷ) =
1
2

c1ŷ+
1
2
(c2−

1
2

c2
1)ŷ

2+
1
2
(c3−c1c2 +

1
4

c3
1)ŷ

3 +1+
1
8

c2
1ŷ2

+
1
4

c1(c2−
1
2

c2
1)ŷ

3,

after adding similar terms of ŷ2 and z3

w(ŷ)+
√

1+w2 (ŷ) = 1+
1
2

c1ŷ−
(

1
8

c2
1+

1
2

c2

)
ŷ2 +

(
1
2

c3−
1
4

c
1
c2

)
ŷ3 (3.19)

So, (3.14) will become,

1+
ŷ f ′′ (ŷ)
f ′ (ŷ)

= w(ŷ)+
√

1+w2(ŷ),

by comparing (3.17) and (3.19) we have,

Oder of ŷ0:-

ŷ0 = 1

Oder of ŷ1:-

a2 =
1
4

c1

Oder of ŷ2:-

6a3−4a2
2 =−1

8
c2

1 +
1
2

c2

6a3−4(
1
4

c1)
2
=−1

8
c2

1 +
1
2

6a3 =
1
2

c2 +
1
8

c2
1

a3 =
1

12
c2 +

1
48

c2
1 ,

similarly,

Oder of ŷ3:-

a4 =
1

96
c

1
c2 +

1
24

c3 −
1

384
c3

1
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a2 = 1

4 c1

a3=
1

12c2 +
1
48c2

1

a4=
1
96c1c2+

1
24c3+

1
384c3

1

(3.20)

Since the class P and H2,1(Ff/2) is invariant under rotation, and we assume that c1 ∈ [0,2]

that is in view of (1.13) that τ ∈ [0,1]. Using (3.20) in (1.7) we have

H2,1(Ff /2)=
1

48

(
1
4

c1

)4

−12
(

1
12

c2 +
1

48
c2

1

)2

+12
(

1
4

c1

)(
1

96
c

1
c2+

1
24

c3−
1

384
c3

1

)

=
1

48

(
1

256
c4

1−
12

144
c2

2 −
12

2304
c4

1 −
24

576
c2

1c2 +
12

384
c2

1c2 +
12
96

c
1
c3 −

12
1536

c4
1

)
=

1
48

(
− 448

49152
c4

1 −
8

768
c2

1c2 −
12

144
c2

2 +
12
96

c1c3

)
=

1
48

(
− 7

768
c4

1 −
1

96
c2

1c2 −
1

12
c2

2 +
1
8

c1c3

)
=

1
48×768

(
−7c4

1 −8c2
1c2 −64c2

2 +96c1c3
)

H2,1(Ff /2) =
1

36864
(
−7c4

1 −8c2
1c2 −64c2

2 +96c1c3
)
, (3.21)

by the Lemma (2.12.1) we have value of c1, c2 and c3 use in (3.21)

H2,1(Ff /2) =
1

36864
[−7(2τ1)

4 −8(2τ1)
2 (2( 1− τ

2
1
)

τ2
)
−64(2τ

2
1+2( 1− τ

2
1 )τ2)

2

+96(2τ1)(2τ
3
1+4( 1−τ

2
1 )τ1τ2− 2( 1−τ

2
1 )+ 2( 1−τ

2
1 )( 1−|τ2| 2)τ3)]

H2,1(Ff /2) =
1

36864
[−112τ

4
1−64τ

4
1−64τ

2
1 τ2 +64τ

4
1 τ2−256τ

4
1−512τ

2
1 τ2 +512τ

4
1 τ2 +512τ

2
1 τ

2
2

−256τ
2
2−256τ

4
1 τ

2
2 +384τ

4
1 +768τ

2
1 (1−τ

2
1 )τ2−384 (1−τ

2
1 )τ

2
1 τ

2
2

+384τ1(1−τ
2
1 )( 1−|τ2| 2)τ3],

after more simplification and adding similar terms

H2,1(Ff /2) =
1

36864
[−432τ

4
1−576τ

2
1 τ2+576τ

4
1 τ2−256τ

2
2−512τ

2
1 τ

2
2−256τ

4
1 τ

2
2 +384τ

4
1 +768τ

2
1 τ2

−768τ
4
1 τ2−384 τ

2
1 τ

2
2+384 τ

4
1 τ

2
2 +384τ1(1−τ

2
1 )( 1−|τ2| 2)τ3]

H2,1(Ff /2) =
1

2304×16
[−48τ

4
1−192τ

2
1 τ2−192τ

4
1 τ2 +128τ

4
1 τ

2
2 +128τ

2
1 τ

2
2−256τ

2
2

+384τ1(1−τ
2
1 )( 1−|τ2| 2)τ3]



39

H2,1(Ff /2) =
1

2304
[−3τ

4
1−12τ

2
1 τ2−12τ

4
1 τ2−16τ

2
2 +8τ

4
1 τ

2
2 +8τ

2
1 τ

2
2 +24τ1τ3 (1−τ

2
1 )( 1−|τ2| 2) ],

as we know

1. 12τ2
1 τ2 −12τ4

1 τ2= 12(1− τ2
1 )τ

2
1 τ2

2

2. −16τ2
2 +8τ4

1 τ2
2 +8τ2

1 τ
2
2 =−8(1−τ2

1 )(2+τ2
1 )τ

2
2

H2,1(Ff /2)=
1

2304
[−3τ

4
1+12(1− τ

2
1 )τ

2
1 τ

2
2 −8(1− τ

2
1 ) (2+ τ

2
1 ) τ

2
2 +24τ1τ3(1− τ

2
1 )(1− |τ2

2 |)].

(3.22)

Examine the subsequent possible cases on τ1:

Case 1.

if τ1= 1 then from (3.22), we obtain

|H2,1(Ff /2)|= 1
2304

[−3+0]

|H2,1(Ff /2)|= 1
768

Case 2.

if τ1= 0 then from (3.22), we see that is

|H2,1(Ff /2)|= 1
2304

[−8(2)τ2
2 +0]

= | −16
2304

τ
2
2 |= 1

144
τ

2
2

|H2,1(Ff /2)|= 1
144

τ
2
2

Case 3.

Suppose τ ∈ (0,1) . Utilising (3.22), and the triangle inequality, as well as the fact that

|τ3| ≤ 1, we obtain:

H2,1(Ff /2) =
1

2304
[−3τ

4
1−12τ

2
1 τ2−12τ

4
1 τ2−16τ

2
2 +8τ

4
1 τ

2
2 +8τ

2
1 τ

2
2 +24τ1τ3 (1−τ

2
1 )( 1−|τ2| 2)],

taking 1
96τ1 (1− τ2

1 ) common from inside the term

H2,1(Ff /2) =
1
96

τ1 (1− τ
2
1 )

{
−3τ3

1
8
(
1− τ2

1
) + τ1τ2

2
−
(
2−τ2

1
)

τ2
2

3τ1
+(1− |τ2

2 |)

}
, (3.23)

where

A =
−τ3

1
8
(
1− τ2

1
) , B =

τ1

2
, C =

− (2+τ2
1 )

3τ1
,
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now we obtain

H2,1(Ff /2) =
1
96

τ1
(
1− τ

2
1
)
(|A+Bτ2 +Cτ

2
2 |+1− |τ2

2 |). (3.24)

Since we can see that AC > 0, we can use Lemma (2.12.2) case (i). We now examine every

condition of case (i).

3(a) The inequality is seen

|B|−2(1−|C|) = τ1

2
−2
(

1−
− (2+τ2

1 )

3τ1

)
=

τ1

2
−2+

2 (2+ τ2
1 )

3τ1

=
τ1 −4

2
+

4+2τ2
1

3τ1

=
(3τ1 (τ1 −4)+2(4+2τ

2
1)

(6τ1)

=
7τ2

1 −12τ1 +8
6τ1

|B|−2(1−|C|) =
(7τ2

1 −12τ1 +8)
6τ1

> 0,

which is true for all τ1 ∈ (0,1) . Lemma (2.12.2) and the inequality (3.24) therefore imply that

|H2,1(Ff /2)| ≤ 1
96

τ1
(
1− τ

2
1
)
(|A|+ |B|+ |C|)

=
1
96

τ1
(
1− τ

2
1
)(∣∣∣∣∣ −τ3

1
8
(
1− τ2

1
)∣∣∣∣∣+ ∣∣∣τ1

2

∣∣∣+ ∣∣∣∣− (2+τ2
1 )

3τ1

∣∣∣∣
)

=
τ4

1
768

+
τ2

1
(
1− τ2

1
)

192
+

τ1
(
1− τ2

1
)(

2+τ2
1
)

288τ1

=
τ4

1
768

+
τ2

1− τ4
1

192
+

−2−2τ2
1+τ2

1 − τ4
1

288

=
3τ4

1+12τ2
1−12τ4

1 −16−16τ
2
1+8τ

4
1 −8τ

4
1

2304

|H2,1(Ff /2) =
4τ

2
1+16−17τ4

1
2304

,

if τ1= 0 then

|H2,1(Ff /2)|= 1
2304

[16 ]

|H2,1(Ff /2)|=
∣∣∣∣ 1

2304
[16 ]

∣∣∣∣≤ 1
144

|H2,1(Ff /2)|= ≤ 1
144
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3(b) Next, it is easy to check that

|B|−2(1−|C|) = τ1

2
−2
(

1−
(2+τ2

1 )

4τ1

)
|B|−2(1−|C|) =

(7τ2
1 −12τ1 +8)

6τ1
< 0,

which is not true for all τ1 ∈ (0,1).Summarizing the inequality (3.13) is proven in cases 1, 2,

and 3.It is enough to demonstrate that the bound is sharp to finish the evidence.To demonstrate

that we take into account the function h ∈C$, as follows:

h(ŷ) =
∫ ŷ

0

ho(x)
x

dx = ŷ+

√
69

12
√

17
ŷ3 +

1
20

(
69
136

+

√
69

4
√

17

)
ŷ5 + . . .,

where

ho(x) = x+

√
69

4
√

17
x3 +

1
4

(
69

136
+

√
69

4
√

17

)
x5

ho(x)
x

= 1+

√
69

4
√

17
x2 +

1
4

(
69

136
+

√
69

4
√

17

)
x4

∫ ŷ

0

ho(x)
x

dx =
∫ ŷ

0
1dx+

∫ ŷ

o

√
69

4
√

17
x2 +

∫ ŷ

o

1
4

(
69

136
+

√
69

4
√

17

)
x4

h(ŷ) =
∫ ŷ

0

h0(x)
x

dx = ŷ+

√
69

12
√

17
ŷ3 +

1
20

(
69

136
+

√
69

4
√

17

)
ŷ5 + . . .

With a2 = a4 = 0 and a3 =
√

69
12

√
17

in (1.7). Then we have

|H2,1(Fh/2)|= 23
3264

which depicts that the bound is sharp.This complete the proof.

3.4 Summary

This chapter examined the category of star-like functions connected to lune function, as

defined by Mandal and Ahamed [51]. Furthermore, the class of convex functions related to

lune functions was proposed as a new category. Several findings pertaining to the Fekete–Szegő

inequality, logrithmic coefficient bounds, and the second Hankel determinants were examined

for both of these classes.
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CHAPTER 4

q-EXTENSION OF STARLIKE AND CONVEX FUNCTIONS

WITH SECOND HANKEL DETERMINANT OF LOGRITHMIC

COEFFICIENTS

4.1 Introduction

This chapter’s goal is to define a few new types of univalent functions. These classes

correspond to the logrithmic coefficient associated with the lune function and are q-extensions

of convex and starlike functions. This is q ∈ (0,1). In this chapter, some significant findings

are presented. Logarithmic coefficients of lune functions in the classes S∗$ and C$ have the

q-Version of the Second Hankel Determinant defined as follows.

Definition 4.1.1. A function associated with the lune function S∗$(q) is regarded as q-starlike if,

S∗$=

{
f ∈ S :

∣∣∣∣∣
(

ŷDq f (ŷ)
f (ŷ)

)2

−1

∣∣∣∣∣ ≤ 2
∣∣∣∣ ŷDq f (ŷ)

f (ŷ)

∣∣∣∣ , ŷ ∈ E

}

Definition 4.1.2. A function associated with a lune function C$(q) is regarded as q-convex if,

C$ =

{
f ∈ S : 1 +

ŷD2
q f (ŷ)

Dq f (ŷ)
≺ q(ŷ) , ŷ ∈ E

}
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4.2 q-Extension of Logarithmic Coefficients of Class S∗$ Functions and their

Second Hankel Determinant is New Class S∗$(q)

Theorem 4.2.1. Finding the sharp limit of |H2,1(Ff ,q/2)| for the class function S∗$(q).

Let f ∈ S∗$(q). Then

|H2,1(Ff ,q/2)| ≤ 12
q̄o

(4.1)

where q̄o = 1+q+q2 +q3...+q191.

given the function g ∈ S∗$(q), the inequality is sharp

g(ŷ) = ŷ expq

(∫ ŷ

0

x2 +
√

1+ x4 −1
x

dqx

)
= ŷ+

ŷ3

q2
+

ŷ5

q4
+ . . .,

Proof. Let f ∈ S∗$(q). Considering definition 1.1, it is evident that

ŷDq f (ŷ)
f (ŷ)

= w(ŷ)+
√

1+w2(ŷ). (4.2)

In E, let h ∈ P and let w is a Schwarz function with w(0) = 0 and |w(ŷ)| ≤ 1. After that,

we can write

w(ŷ) =
h(ŷ) − 1
h(ŷ)+1

(4.3)

h(ŷ) = 1+ c1ŷ+ c2ŷ2 + c3ŷ3+c4ŷ4 + . . .,

so, (4.3) computation is

h(ŷ) − 1
h(ŷ) + 1

=
1 + c1ŷ + c2ŷ2 + c3ŷ3+c4ŷ4 −1
1 + c1ŷ + c2ŷ2 + c3ŷ3+c4ŷ4 +1

=
c1ŷ + c2ŷ2 + c3ŷ3+c4ŷ4

2 + c1ŷ + c2ŷ2 + c3ŷ3+c4ŷ4

w(ŷ) =
1
2

c1ŷ+
1
2
(c2−

1
2

c2
1)ŷ

2+
1
2
(c3−c1c2 +

1
4

c3
1)ŷ

3 + . . ., (4.4)

simplification of (4.2) is

ŷDq f (ŷ)
f (ŷ)

=
ŷ(1+[2]qa2ŷ+[3]qa3ŷ2+[4]qa4ŷ3)

(ŷ+a2ŷ2+a3ŷ3+a4ŷ4)
=

ŷ+ [2]qa2ŷ2 + [3]qa3ŷ3 + [4]qa4ŷ4

ŷ+a2ŷ2+a3ŷ3+a4ŷ4

ŷDq f (ŷ)
f (ŷ)

= 1+([2]qa2 −a
2
)ŷ+( [3]qa3 −a

3
−[2]qa2 +a2

2)ŷ
2 + . . ., (4.5)
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from (4.2) and (4.4), a simple computation show that

w(ŷ)+
√

1+w2 (ŷ) =
1
2

c1ŷ+
1
2
(c2−

1
2

c2
1)ŷ

2 +

√
1+
(

1
2

c1ŷ+
1
2
(c2−

1
2

c2
1)ŷ

2
)2

√
1+w2 (ŷ) =

√
1+

1
4

c2
1ŷ2+

1
4

(
c2−

1
2

c2
1

)2

ŷ4 +
1
2

c1(c2−
1
2

c2
1)ŷ

3,

using Bionomial expansion

√
1+ x = 1+

1
2

x+
1
8

x2+
1

16
x3 + . . .

x =
1
4

c2
1ŷ2+

1
4

(
c2−

1
2

c2
1

)2

ŷ4 +
1
2

c1(c2−
1
2

c2
1)ŷ

3,

thus we have, √
1+w2 (ŷ) =

√
1+ x = 1+

1
2

x+
1
8

x2 (4.6)

1+
1
2

x− 1
8

x2 = 1+
1
2

(
1
4

c2
1ŷ2+

1
4
(c2−

1
2

c2
1)

2
ŷ4 +

1
2

c1(c2−
1
2

c2
1)ŷ

3
)

√
1+w2 (ŷ) = 1+

1
8

c2
1ŷ2+

1
8
(c2−

1
2

c2
1)

2
ŷ4 +

1
4

c1(c2−
1
2

c2
1)ŷ

3,

with (4.6) we have√
1+w2 (ŷ) = 1+

1
8

c2
1ŷ2 +

1
4

c1(c2−
1
2

c2
1)ŷ

3+
1
8
(c2−

1
2

c2
1)

2
ŷ4, (4.7)

now we obtain

w(ŷ)+
√

1+w2 (ŷ) =
1
2

c1ŷ+
1
2
(c2−

1
2

c2
1)ŷ

2+
1
2
(c3−c1c2 +

1
4

c3
1)ŷ

3 +1+
1
8

c2
1ŷ2

+
1
4

c1(c2−
1
2

c2
1)ŷ

3,

by adding similar terms of ŷ2 andŷ3

w(ŷ)+
√

1+w2 (ŷ) = 1+
1
2

c1ŷ−
(

1
8

c2
1+

1
2

c2

)
ŷ2 +

(
1
2

c3−
1
4

c
1
c2

)
ŷ3, (4.8)

so (4.2) will become

zDq f (ŷ)
f (ŷ)

= w(ŷ)+
√

1+w2(ŷ)

ŷDq f (ŷ)
f (ŷ)

= 1+([2]qa2 −a
2
)ŷ+( [3]qa3 −a

3
−[2]qa2 −a2

2)ŷ
2,
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by comparing (4.5) and (4.8) we have

Oder of ŷ1:

[2]qa2 −a
2
=

1
2

c1

a2([2]q−1) =
1
2

c1

a2 =
c1

2([2]q−1)

Oder of ŷ2:

( [3]qa3 −a
3
−[2]qa2 −a2

2) =−1
8

c2
1 +

1
2

c2

a3([3]q−1) =−1
8

c2
1 +

1
2

c2 + a2
2 ([2]q−1)

a3([3]q−1) =−1
8

c2
1 +

1
2

c2+

(
c1

2([2]q−1)

)2

([2]q−1)

a3([3]q−1) =− 1
8

c2
1 +

1
2

c2+
c1

2(
4([2]q−1)

)

a3 =
c1

2

8([2]q−1)([3]q−1)
+

c2

2([3]q−1)

Oder of ŷ3:

([4]qa4 −a
4
−[2]qa2a3 − [3]qa2a3 +2a2a3 +[2]qa3

2
+a3

2) =

(
1
2

c3−
1
4

c
1
c2

)

([4]q−1)a4 =

(
c1

2([2]q−1)

)(
c1

2

8([2]q−1)([3]q−1)
+

c2

2([3]q−1)

)(
[5]q −2

)

−

(
c1

2([2]q−1)

)3

([2]q+1)+
c3

2
−c1c2

4
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a4=
c1

3
(
[−5]q −2

)
−2c1

3([3]q−1)

([80]q+16)
+

c1c2

(
[5]q −2

)
− c1c2([1]q+1)

([28]q−4)
+

c3

2([4]q −1)

a4=
−c1

3
(
[−5]q +2+[6]q −2

)
([80]q+16)

+
c1c2

(
[5]q −2− [1]q−1

)
([28]q−4)

+
c3

([8]q −2)

a4=
−c1

3
(
[1]q
)

([80]q+16)
+

c1c2

(
[4]q− 3

)
([28]q−4)

+
c3

([8]q −2)



a2 =
c1

2([2]q−1)

a3 =
c1

2

8([2]q−1)([3]q−1) +
c2

2([3]q−1)

a4 =
−c1

3([1]q)
([80]q+16) +

c1c2([4]q− 3)
([28]q−4) + c3

([8]q−2)

(4.9)

With the assumption that the class P and H2,1(Ff ,q/2) is invariant under rotation, c1 ∈ [0,2]

that is in view of (1.13) that τ ∈ [0,1]. Using (4.9) in (1.12) we have

H2,1(Ff ,q/2) =
1

[48]q

( c1

2([2]q−1)

)4

− [12]q

(
c1

2

8([2]q−1)([3]q−1)
+

c2

2([3]q−1)

)2


+[12[q

(
c1

2([2]q−1)

)−c1
3
(
[1]q
)

([80]q+16)
+

c1c2

(
[4]q− 3

)
([28]q−4)

+
c3

([8]q −2)


=

1
[48]q

(
c1

4

16([2]q−1)4 −
4[3]qc1

4

64([3]q−1)2([2]q−1)2 −
4[3]qc2

2

4([3]q−1)2 −
4[6]qc1

2c2

16([3]q−1)2([2]q−1)2

)

−
[6]qc1

4
(
[1]q
)

([80]q+16)
+

[6]qc1
2c2

(
[4]q−3

)
([20]q+4)

+
[6]qc1c3

([8]q −2)
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=
1

[48]q

(
c1

4

16([2]q−1)4 −
[3]qc1

4

16([3]q+1)
−

[3]qc2
2

([3]q+1)
−

[3]qc1
2c2

2([3]q+1)

)

−
[6]qc1

4
(
[1]q
)

16([5]q+1)
+
[6]qc1

2c2

(
[4]q−3

)
([20]q+4)

+
[6]qc1c3

([4]q +2)



H2,1(Ff ,q/2) =
1

[48]q

−
[3]qc1

4

16
(
[3]q+1

) −
[3]qc2

2([
[3]q
]

q+1
) −

[3]qc1
2c2[−8+16]q(
[184]q+8

) +
[6]qc1c3

[4]q+2

 ,

after further simplification

=
1

[48]q

−
[3]qc1

4

16
(
[3]q+1

) −
16× [3]qc2

2(
[3]q+1

)
×16

−
[3]qc1

2c2([−8]q +16)(
[184]q+8

) +
[6]qc1c3 ×16

(
[3]q+1

)
([4]q+2)×16

(
[3]q+1

)


=
1

[48]q

−
[3]qc1

4

16
(
[3]q+1

) −
16× [3]qc2

2(
[3]q+1

)
×16

−
[6]qc1

2c2([−8]q +16)(
[368]q+16

) +
[6]qc1c3 ×16

(
[3]q+1

)
([4]q+2)×16

(
[3]q+1

)


=
1

[48]q16
(
[3]q+1

)
−[3]qc1

4 − [48]qc2
2 −

[6]qc1
2c2([−8]q +16)(
[5]q+1

) +
[6]qc1c3 ×16

(
[3]q+1

)
([4]q+2)



=
1

[48]q16
(
[3]q+1

)


−[3]qc1
4([4]q+2)

(
[5]q+1

)
− [48]qc2

2([4]q+2)
(
[5]q+1

)
−[6]qc1

2c2([−8]q +16)([4]q+2)+ [6]qc1c3 ×16
(
[3]q+1

)(
[5]q+1

)
([4]q+2)

(
[5]q+1

)


=
1

[48]q16
(
[3]q+1

)


−[3]qc1
4([34]q+2)− [48]qc2

2([34]q+2)− c1
2c2([−8]q +16)([24]

q
+[12]q)

+c1c3 ×16
(
[3]q+1

)(
[30]q+[6]q

)
([34]q+2)


,

as we know when q → 1− so,

([34]q+2) = ([24]q+[12]q) =
(
[30]q+[6]q

)

H2,1(Ff ,q/2)=
([34]q+2)

[48]q16
(
[3]q+1

)
−[3]qc1

4 − [48]qc2
2 −6c1

2c2([−8]q +16)+ c1c3 ×16
(
[3]q+1

)
([34]q+2)
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=
1

[48]q16([3]q+1)
(−[3]qc1

4− [48]qc2
2−c1

2c2([−8]q+16)+c1c3×16([3]q+1))

H2,1(Ff ,q/2) =

(
−[3]qc1

4 − [48]qc2
2 − c1

2c2([−8]q +16)+ c1c3 ×16
(
[3]q+1

))
[48]q16

(
[3]q+1

) , (4.10)

by Lemma (3.1.1) we have value of c1, c2 and c3 use in (4.10)

H2,1(Ff ,q/2) =
1

[48]q16
(
[3]q+1

)


−[3]q(2τ1)
4 − [48]q(2τ2

1+2( 1− τ2
1 )τ2)

2

−([−8]q +16)(4τ1)
2(2τ2

1+2
(

1− τ2
1
)

τ2)

+
(
4τ4

1+8( 1− τ2
1 )τ2

1 τ2− 4( 1− τ2
1 )τ2

1 τ2
2
)

16([3]q+1)

+
(

2( 1− τ2
1 )( 1−|τ2| 2)τ3

)
16([3]q+1)



=
1

[48]q16
(
[3]q+1

)



−48τ1
4−192τ4

1−384τ2
1 τ2+ 384τ4

1 τ2

+384τ2
1 τ2

2−192τ2
2−192τ4

1 τ
2
2 −8τ4

1 ([−8]q +16)

−8τ2
1 τ2([−8]q +16)+8τ4

1 τ2([−8]q +16)

+
(
4τ4

1+8τ2
1 τ2−8τ4

1 τ2−4 τ2
1 τ2

2+4 τ4
1 τ2

2
)

16([3]q +1)

+
(
( 4τ1− 4τ3

1 )( 1−|τ2|2τ3)
)

16([3]q +1)



=
16

[48]q16
(
[3]q+1

)


−240τ1
4

16 −384τ2
1 τ2

16 +
384τ4

1 τ2
16 +

384τ2
1 τ2

2
16 −192τ2

2
16 −192τ4

1 τ
2
2

16

+
(−8τ4

1 ([−8]q+16)−8τ2
1 τ2([−8]q+16)+8τ4

1 τ2([−8]q+16))
16

+
16([3]q+1)×[+4τ4

1+8τ2
1 τ2−8τ4

1 τ2−4τ2
1 τ2

2+4τ4
1 τ2

2+ ( 4τ1− 4τ3
1 )( 1−|τ2|2τ3)]

16
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=
1

[48]q
(
[3]q+1

)



−15τ4
1−24τ2

1 τ2+ 24τ4
1 τ2+24τ2

1 τ2
2−12τ2

2−12τ4
1 τ

2
2

+

[
− τ4

1 ([−8]q+16)
2 − τ2

1 τ2([−8]q+16)
2 +

τ4
1 τ2([−8]q+16)

2

]

+



4τ4
1

(
[3]q+1

)
+8τ2

1 τ2

(
[3]q+1

)
−8τ4

1 τ2

(
[3]q+1

)

−4 τ2
1 τ2

2

(
[3]q+1

)
+4 τ4

1 τ2
2

(
[3]q+1

)

+
(
[3]q+1

)(
4τ1− 4τ3

1
)(

1−|τ2|2τ3

)





=
1

[48]q
(
[3]q+1

)



−15τ4
1−24τ2

1 τ2+ 24τ4
1 τ2+24τ2

1 τ2
2−12τ2

2−12τ4
1 τ

2
2

+

[
− τ4

1 ([−8]q+16)
2 − τ2

1 τ2([−8]q+16)
2 +

τ4
1 τ2([−8]q+16)

2

]


[12]qτ4
1+4τ4

1+[24]qτ2
1 τ2+8τ2

1 τ2−[24]qτ4
1 τ2−8τ4

1 τ2

− [12]qτ2
1 τ2

2+4τ2
1 τ2

2+[12]qτ4
1 τ2

2+4τ4
1 τ2

2

+
(
[3]q+1

)(
4τ1− 4τ3

1
)(

1−|τ2|2τ3

)
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=
1

[48]q
(
[3]q+1

)



−15τ4
1+4τ4

1−24τ2
1 τ2+8τ2

1 τ2+ 24τ4
1 τ2−8τ4

1 τ2

+24τ2
1 τ2

2+4τ2
1 τ2

2−12τ2
2−12τ4

1 τ
2
2+4τ4

1 τ2
2

[
−16τ

4
1

2 +
[8]qτ4

1
2 − 16τ2

1 τ2
2 +

[8]qτ2
1 τ2

2 − [8]qτ4
1 τ2

2 +
16τ

4
1τ2

2

]


[12]qτ4
1+[24]qτ2

1 τ2−[24]qτ4
1 τ2

− τ2
1 τ2

2 [12]q+ τ4
1 τ2

2 [12]q

+
(
[3]q+1

)(
4τ1− 4τ3

1
)(

1−|τ2|2τ3

)





=
1

[48]q
(
[3]q+1

)



−15τ4
1+4τ4

1 −8τ4
1−24τ2

1 τ2+8τ2
1 τ2 −8τ2

1 τ2

+24τ2
1 τ2

2+4τ2
1 τ2

2+ 24τ4
1 τ2−8τ4

1 τ2 +8τ4
1 τ2

−12τ2
2−12τ4

1 τ
2
2+4τ4

1 τ2
2



τ4
1 [12]q+

[8]qτ4
1

2 +[24]qτ2
1 τ2 +

[8]qτ2
1 τ2

2 −[24]qτ4
1 τ2−

[8]qτ4
1 τ2

2

− [12]qτ2
1 τ2

2+ [12]qτ4
1 τ2

2

+
(
[3]q+1

)(
4τ1− 4τ3

1
)(

1−|τ2|2τ3

)
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=
1

[48]q
(
[3]q+1

)



−19τ4
1−24τ2

1 τ2+20τ2
1 τ2

2+ 24τ4
1 τ2−12τ2

2−8τ4
1 τ

2
2



+
[32]qτ4

1
2 +

[56]qτ2
1 τ2

2 − [56]qτ4
1 τ2

2

−[12]qτ2
1 τ2

2+ [12]qτ4
1 τ2

2

+
(
[3]q+1

)(
4τ1− 4τ3

1
)(

1−|τ2|2τ3

)





=
1

[48]q
(
[3]q+1

)



−19τ4
1−24τ2

1 τ2+20τ2
1 τ2

2+ 24τ4
1 τ2−12τ2

2−8τ4
1 τ

2
2



+
[32]qτ4

1
2 +

[56]qτ2
1 τ2

2 − [56]qτ4
1 τ2

2

−[12]qτ2
1 τ2

2+ [12]qτ4
1 τ2

2

+
(
[12]q+4

)
τ1(1−τ2

1 )
(

1−|τ2|2τ3

)





H2,1(Ff ,q/2)=
1

[48]q
(
[3]q+1

)


−19τ4
1 +

[32]qτ4
1

2 −24τ2
1 τ2 +

[56]qτ2
1 τ2

2 + 24τ4
1 τ2−

[56]qτ4
1 τ2

2

−8τ4
1 τ

2
2+ [12]qτ4

1 τ2
2−[12]qτ2

1 τ2
2 +20τ2

1 τ2
2

−12τ2
2+
(
[12]q+4

)
τ1(1−τ2

1 )
(

1−|τ2|2τ3

)


.

(4.11)

The subsequent situations could now arise on τ1 :

Case 1.

if τ1= 1. Then from (4.11) we obtain

|H2,1(Ff ,q/2)|= 1

[48]q
(
[3]q+1

)


−19+
[32]q

2 −24τ2 +
[56]qτ2

2 + 24τ2−
[56]qτ2

2

−8τ2
2+ [12]qτ2

2−[12]qτ2
2+20τ2

2

−12τ2
2+
(
[12]q+4

)
τ1(1−1)

(
1−|τ2|2τ3

)
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|H2,1(Ff ,q/2)|=

∣∣∣∣∣∣ 1

[48]q
(
[3]q+1

) (−19+
[32]q

2

)∣∣∣∣∣∣
If q → 1− then we have

|H2,1(Ff ,q/2)|= 1
64

Case 2.

if τ1= 0 then from (4.11), we see that

|H2,1(Ff ,q/2)|= 1

[48]q
(
[3]q+1

)(−4(3)τ2
2 )

|H2,1(Ff ,q/2)|=

∣∣∣∣∣∣ −12

[48]q
(
[3]q+1

)
∣∣∣∣∣∣ |τ2|2 ≤ 12

[48]q
(
[3]q+1

)
If q → 1− the we have

|H2,1(Ff ,q/2)|= 1
16

|τ2|2 ≤ 1
16

Case 3.

Consider τ ∈ (0,1) . Utilising the triangle inequality in (4.11) and by using the fact that

|τ3| ≤ 1, we obtain

=
1

[144]q +[48]q



(−38+[32]q)τ
4
1

2 +
−48τ2

1 τ2+48τ4
1 τ2−[56]qτ4

1 τ2+[56]qτ2
1 τ2

2

(
−8τ4

1 +[12]qτ
4
1
−[12]qτ2

1+20τ2
1−12

)
τ2

2

+
(
[12]q+4

)
τ1(1−τ2

1 )(1− |τ2
2 |)



=
1

[12]q([12]q +[4]q)



(−38+[32]q)τ
4
1

2 +
−48τ2

1 τ2+48τ4
1 τ2−[56]qτ4

1 τ2+[56]qτ2
1 τ2

2

(
+[12]qτ

4
1
−[12]qτ2

1−8τ4
1+20τ2

1−12
)

τ2
2

+
(
[12]q+4

)
τ1(1−τ2

1 )(1− |τ2
2 |)
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=
1

[12]q([12]q +[4]q)



2(−19+[16]q)τ
4
1

2 +
−48τ2

1 τ2(1− τ2
1 )+[56]qτ2

1 τ2(1− τ2
1 )

2

(− [12]qτ2
1
(
− τ2

1 +1
)
−4
(
2τ4

1 −5τ2
1 +3

)
)τ2

2

+
(
[12]q+4

)
τ1(1−τ2

1 )(1− |τ2
2 |)



=
1

[12]q([16]q)



2(−19+[16]q)τ
4
1

2 +
−48τ2

1 τ2(1− τ2
1 )+[56]qτ2

1 τ2(1− τ2
1 )

2

(− [12]qτ2
1
(
− τ2

1 +1
)
+4(1−τ2

1 )(2τ2
1 −3))τ2

2

+
(
[12]q+4

)
τ1(1−τ2

1 )(1− |τ2
2 |)



=
1

[12]q
τ1 (1− τ

2
1 )



(−19+[16]q)τ
3
1

[16]q(1− τ2
1 )

+
(−24+[28]q)τ1τ2

[16]q

+
(−[12]qτ2

1+4(2τ2
1−3)

[16]qτ1
)τ2

2

+([12]q+4) (1− |τ2
2 |)

[16]q



H2,1(Ff ,q/2) =
1

[12]q
τ1 (1− τ

2
1 )



(−19+[16]q)τ
3
1

[16]q(1− τ2
1 )

+
(−24+[28]q)τ1τ2

[16]q

+
τ2

1 (−[12]q+8) −12)
[16]qτ1

)τ2
2

+([12]q+4) (1− |τ2
2 |)

[16]q


(4.12)

A =
(−19+[16]q)τ

3
1

[16]q(1− τ2
1 )

, B =
(−24+[28]q)τ1

[16]q
C =

τ2
1 (− [12]q +8) −12)

[16]qτ1
.

So, above term (4.12) will becomes
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H2,1(Ff ,q/2) =
1

[12]q
τ1 (1− τ

2
1 )=(|A+Bτ2 +Cτ2|+1−|τ2|2). (4.13)

Since we can see that AC > 0, we may use Lemma (3.1.2) case (i). We now examine every

circumstance in case (i).

3(a) The inequality is seen.

|B|−2(1−|C|) =

(
(−24+[28]q)τ1

[16]q

)
−2

(
1 −

τ2
1 ([12]q −8)+12)

[16]qτ1

)

=
(−24+[28]q)τ1

[16]q
−2+

τ2
1 ([24]q −16)+24)

[16]qτ1

=
(−24+[28]q)τ

2
1
−2[16]qτ1 + τ2

1 ([24]q −16)+24

[16]qτ1

=
−24τ2

1 +[28]qτ
2
1
−2[16]qτ1 + τ2

1 [24]q −16τ2
1 +24

[16]qτ1

|B|−2(1−|C|) =
−40τ2

1 +[52]qτ
2
1
− [32]qτ1 +24)

[16]qτ1

If q → 1− then we have

|B|−2(1−|C|) =
12τ2

1 −32τ1 +24
16τ1

|B|−2(1−|C|) =
(3τ2

1 −8τ1 +6)
(4τ1)

> 0.

which is true for all τ1 ∈ (0,1) . Therefore, Lemma (3.1.2). implies it. Additionally, the inequality

(4.13) that

|H2,1(Ff ,q/2)| ≤ 1
[12]q

τ1
(
1− τ

2
1
)
(|A|+ |B|+ |C|)

=
1

[12]q
τ1
(
1− τ

2
1
)(∣∣∣∣∣(−19+[16]q)τ

3
1

[16]q(1− τ2
1 )

∣∣∣∣∣+
∣∣∣∣∣(+[28]q−24)τ1

[16]q

∣∣∣∣∣+
∣∣∣∣∣τ

2
1 (− [12]q +8) −12)

[16]qτ1

∣∣∣∣∣
)
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=
1

[12]q
τ1
(
1− τ

2
1
)((19− [16]q)τ

3
1

[16]q(1− τ2
1 )

+
([28]q−24)τ1

[16]q
+

τ2
1 ([12]q −8)+12)

[16]qτ1

)

=
τ1
(
1− τ2

1
)

[12]q

τ2
1 ([12]q −8)+12)(1− τ2

1 )+(19− [16]q)τ
4
1
([28]q −24)τ2

1 (1− τ2
1 )

[16]q(1− τ2
1 )τ1



=
1

[192]q

(
τ

2
1 ([12]q −8)+12)(1− τ

2
1 )+(19− [16]q)τ

4
1
([28]q −24)τ2

1 (1− τ
2
1 )
)

=
1

[192]q

 [12]qτ2
1 −8τ2

1 +12−[12]qτ
4
1
+8τ4

1 −12τ2
1 +19τ4

1 − [16]qτ
4

1

+[28]qτ2
1 −24τ2

1−[28]qτ4
1+−24τ4

1 )



|H2,1(Ff ,q/2)|= 1
[192]q

(
[40]qτ

2
1 −44τ

2
1 +12−[56]qτ

4
1
+51τ

4
1

)
If q → 1− then we have

|H2,1(Ff ,q/2)|= 1
192

(12−4τ
2
1−5τ

4
1 )

If τ1= 0 then

|H2,1(Ff ,q/2)|= 1
192

[−12 −4(0)−5(0)]

=
1

192
[−12 ]

=

∣∣∣∣ 1
192

[−12 ]

∣∣∣∣≤ 1
16

|H2,1(Ff ,q/2)| ≤ 1
16

.

3(b) Next, it’s simple to verify that

|B|−2(1−|C|) =
(−24+[28]q)τ1

[16]q
−2

(
1 −

τ2
1 ([12]q −8)+12)

[16]qτ1

)

If q → 1− then we have

|B|−2(1−|C|) =
(3τ2

1 −8τ1 +6)
τ1

< 0

which is not true for all τ1 ∈ (0,1) .

After a summary of cases 1,2 and 3, the inequality (4.1) is proven.Demonstrating that the bound
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is sharp is sufficient to finish the proof. To demonstrate that we consider the function

g ∈ S∗$(q) like this.

g(ŷ) = ŷ expq

(∫ ŷ

0

x2 +
√

1+ x4 −1
x

dqx

)
= ŷ+

ŷ3

[2]q
+

ŷ5

[4]q
+ . . .,

with a2= a4= 0 and a3= 1
[2]q

in (1.12). Then we have

|H2,1(Fg/2)|= 12
q̄o

.

This complete the proof.

4.3 q-Extension of Logarithmic Coefficients of Class C$ Functions and their

Second Hankel Determinant is the New Class C$(q)

Theorem 4.3.1. Let f ∈C$(q). Then

|H2,1(Ff ,q/2)| ≤ 1
q̄1

(4.14)

where q̄1 = 1+q+q2 +q3 + ...q143.

given the function h ∈C$(q) the inequality is sharp

h(ŷ) =
∫ ŷ

0

h0(x)
x

dqx = ŷ+

√
69

6q2
√

17
ŷ3 +

( √
69

10q4
√

17

)
ŷ5 + . . .,

where h0(ŷ) is given by (4.21) .

Proof. Let f ∈ C$(q). Considering definition 1.1, it is evident that

1+
zDq

2 f (ŷ)
Dq f (ŷ)

= w(ŷ)+
√

1+w2(ŷ) (4.15)

In E, let h ∈ P and let w is a Schwarz function with w(0) = 0 and |w(ŷ)| ≤ 1. After that,

we can write

w(ŷ) =
h(ŷ)−1
h(ŷ)+1

(4.16)

h(ŷ) = 1+ c1ŷ+ c2ŷ2 + c3ŷ3 + c4ŷ4 + . . .
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Then (4.16) is

h(ŷ)−1
h(ŷ)+1

=
1+c1ŷ+c2ŷ2 + c3ŷ3 + c4ŷ4 −1
1+c1ŷ+c2ŷ2+c3ŷ3 + c4ŷ4 +1

=
c1ŷ + c2ŷ2 + c3 ˆ̂y3 + c4ŷ4

2 + c1ŷ + c2ŷ2 + c3ŷ3 + c4ŷ4

w(ŷ) =
1
2

c1ŷ+
1
2
(c2 −

1
2

c2
1)ŷ

2 +
1
2
(c3 − c1c2 +

1
4

c3
1)ŷ

3 + . . . (4.17)

And the term (4.15) is

1+
ŷDq

2 f (ŷ)
Dq (ŷ)

= 1+
ŷ([2]qa2+[6]qa3ŷ+[12]qa4ŷ2+[20]qa5ŷ3)

1+[2]qa2ŷ+[3]qa3ŷ2+[4]qa4ŷ3+[5]qa
5
ŷ4 =

1+[4]qa2ŷ +[9]qa3ŷ2+[16]qa4ŷ3

1+[2]qa2ŷ+[3]qa3ŷ2+[4]qa4ŷ3

1+
ŷDq

2 f (ŷ)
Dq (ŷ)

= 1+[2]qa
2
ŷ+ ([6]qa

3
− [4]qa2

2
)ŷ2 +([12]qa

4
− [6]qa2a3 +[8]qa3

2
)ŷ3

(4.18)

(4.15) using with (4.17) then we have

w(ŷ)+
√

1+w2 (ŷ) =
1
2

c1ŷ+
1
2
(c2 −

1
2

c2
1)ŷ

2 +

√
1+
(

1
2

c1ŷ+
1
2
(c2 −

1
2

c2
1)ŷ

2
)2

=

√
1+

1
4

c2
1ŷ2 +

1
4
(c2 −

1
2

c2
1)ŷ

4 +
1
2

c1(c2 −
1
2

c2
1)ŷ

3

using bionomial expansion:

√
1+ x = 1+

1
2

x+
1
8

x2 +
1

16
x3+. . .

x =
1
4

c2
1ŷ2 +

1
4
(c2 −

1
2

c2
1)ŷ

4 +
1
2

c1(c2 −
1
2

c2
1)ŷ

3,

thus we have√
1+w2 (ŷ) = 1+

1
2

x+
1
8

x2

= 1+
1
2

(
1
4

c2
1ŷ2 +

1
4
(c2 −

1
2

c2
1)ŷ

4 +
1
2

c1(c2 −
1
2

c2
1)ŷ

3
)

= 1+
1
8

c2
1ŷ2 +

1
8
(c2 −

1
2

c2
1)ŷ

4 +
1
4
(c1c2 −

1
2

c2
1)ŷ

3,√
1+w2 (ŷ) = 1+

1
8

c2
1ŷ2 +

1
4

c1(c2 −
1
2

c2
1)ŷ

3 +
1
8
(c2 −

1
2

c2
1)ŷ

4. (4.19)

Now by (4.17) and (4.19) we have

w(ŷ)+
√

1+w2 (ŷ) =
1
2

c1ŷ+
1
2
(c2 −

1
2

c2
1)ŷ

2 +
1
2
(c3 − c1c2 +

1
4

c3
1)ŷ

3 +1+
1
8

c2
1ŷ2

+
1
4

c1(c2 −
1
2

c2
1)ŷ

3,
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by adding similar terms of ŷ2 and ŷ3

w(ŷ)+
√

1+w2 (ŷ) = 1+
1
2

c1ŷ−
(

1
8

c2
1+

1
2

c2

)
ŷ2 +

(
1
2

c3 −
1
4

c
1
c2

)
ŷ3. (4.20)

So (4.15) is,

1+
zDq

2 f (ŷ)
Dq (ŷ)

= w(ŷ)+
√

1+w2(ŷ),

by comparing (4.18) and (4.21) we have

Oder of ŷ1 :

a2([2]q −1) =
1
2

c1

a2 =
c1

2([2]q)

Oder of ŷ2 :

( [6]qa3 − [4]qa2
2) =−1

8
c2

1 +
1
2

c2

[6]qa3 =−1
8

c2
1 +

1
2

c2 + a2
2 ([4]q)

[6]qa3 =−1
8

c2
1 +

1
2

c2 +

(
c1

2([2]q)

)2

([4]q)

[6]qa3 =−1
8

c2
1 +

1
2

c2 +
c1

2(
4([4]q)

)([4]q)
a3 =

−c1
2

8([6]q)
+

c2

2 [6]q
+

c1
2

(4) [6]q

a3 =
c1

2

8([6]q)
+

c2

2 [6]q
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Oder of ŷ3 :

([12]qa4 − [18]qa2a3 +[8]qa3
2
) =

(
1
2

c3 −
1
4

c
1
c2

)

[12]qa4 =

(
[18]qc1

2([2]q)

)(
[18]qc1

2

8([6]q)
+

[18]qc2

2([6]q)

)
− [8]q

(
c1

2([2]q)

)3

+
c3

2
− c1c2

4

[12]qa4 =

(
[18]qc1

3

16([12]q)
+

[18]qc2
1c2

4([12]q)

)
− [8]q

(
c1

3

8([8]q

)
+

c3

2
− c1c2

4

[12]qa4 =
[18]qc

1
3

16([12]q)
+

[18]qc
1
c

2
4([12]q)

− c1
3

8
+

c3

2
− c1c2

4

[12]qa4 =
[18]qc

1
3 −2[12]qc1

3

16([12]q)
+

[18]qc
1
c

2
− [12]qc

1
c2

4[12]q
+

c3

2

[12]qa4 =
−[6]qc1

3

16([12]q)
+

+[6]qc
1
c2

4[12]q
+

c3

2

a4 =
−c1

3

16[24]q
+

c1c2

4[24]q
+

c3

2[12]q

a2 = c1
2([2]q)

a3 = c1
2

8([6]q)
+ c2

2 [6]q

a4 = −c1
3

16[24]q
+ c1c2

4[24]q
+ c3

2[12]q

(4.21)

Since the class P and H2,1(Ff ,q/2) is invariant under rotation, and we assume that c1 ∈ [0,2]
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that is in view of (1.13) that τ ∈ [0,1]. Using (4.21) in (1.12) we have

H2,1(Ff ,q/2) = (γ
q
1 γ

q
3 − (γ

q
2 )

2) =
1

[48]q
(a4

2 − [12]qa2
3 +[12]qa2a4)

=
1

[48]q

( c1

2([2]q)

)4

−3[4]q

(
c1

2

8([6]q)
+

c2

(2[6]q)

)2


+

[(
3[4]qc1

2([2]q)

)(
−c1

3

16[24]q
+

c1c2

4[24]q
+

c3

2[12]q

)]

=
1

[48]q

[(
c1

4

16[16]q

)
−

(
3[4]qc1

4

64[36]q
+

3[4]qc2
2

4[36]q
+

3[8]qc1
2c2

16[36]q

)]

+

[(
−3c1

4

8[48]q
+

3c1
2c2

2[48]q
+

3c1c3

[24]q

)]

=
1

[48]q

[
c1

4

16[16]q
− 3c1

4

16[36]q
− 3c2

2

[36]q
− 3c1

2c2

2[36]q
− 3c1

4

8[48]q
+

3c1
2c2

2[48]q
+

3c1c3

[24]q

]

=
1

[48]q

[(
c1

4

16[16]q
− 3c1

4

16[36]q
− 3c1

4

8[48]q

)(
−3c1

2c2

2[36]q
+

3c1
2c2

2[48]q

)
+

(
− 3c2

2

[36]q
+

3c1c3

[24]q

)]

=
1

[48]q

[(
−
[7]qc

1
4

16[48]q
− c1

2c2

2[48]q
− 3c2

2

[36]q
+

3c1c3

[24]q

)]

=

[(
−

[7]qc
1

4

[36864]q
− c1

2c2

[4608]q
− 3c2

2

[1728]q
+

3c1c3

[1152]q

)]

=

− [7]qc
1

4

[36864]q
−

[8]q × c1
2c2

[4608]q × [8]q
−

3c2
2 × [64]q

3

[1728]q ×
[64]q

3

+
3c1c3 × [32]q
[1152]q × [32]q



H2,1(Ff ,q/2) =

[
−[7]qc

1
4 − [8]qc1

2c2 − [64]qc
2

2 +[96]qc
1
c3

]
[36864]q

. (4.22)
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By the Lemma (3.1.1) we have value of c1, c2 and c3 use in (4.22).

H2,1(Ff ,q/2) =
1

[36864]q



−[7]q(2τ1)
4 − [64]q(2τ2

1 +2( 1− τ2
1 )τ2)

2

−[8]q(2τ1)
2(2τ2

1 +2
(

1− τ2
1
)

τ2)+[96]q(2τ1)(2τ3
1 +4( 1− τ2

1 )τ1τ2

− 2( 1− τ2
1 )τ1τ2

2 + 2( 1− τ2
1 )( 1−|τ2| 2)τ3)



=
1

[36864]q



−[7]q16τ
4
1 − [64]q(4τ2

1 +4τ2
2 ( 1− τ2

1 )
2
+8τ2

1 ( 1− τ2
1 )τ2)

−[8]q(4τ2
1 ) (2τ2

1 +2τ2 −2τ2τ
2
1)+[96]q(2τ1)(2τ3

1 +4τ1τ2 −4τ3
1

−2τ1τ
2
2 +2τ2

2 τ
3
1( 2−2τ2

1 )( 1−|τ2| 2)τ3)

τ2



=
1

[36864]q



−[7]q16τ
4
1 − [64]q[4τ4

1 +4τ2
2 (1− τ4

1 +2τ2
1 )+8τ2

1 τ2 −8τ4
1 τ2

−[8]q(8τ4
1 +8τ2

1 τ2 −8τ2τ
4
1)+[96]q(4τ4

1 +8τ2
1 τ2 −8τ2τ

4
1−4τ2

1 τ
2
2

−4τ4
1 τ2

2 +(4τ1 −4τ3
1 )( 1−|τ2| 2)τ3)



=
1

[36864]q



−[7]q16τ
4
1 − [64]q[4τ4

1 +4τ2
2 +4τ2

2 τ4
1 −8τ2

2 τ2
1+8τ2

1 τ2 −8τ4
1 τ2

−[8]q(8τ4
1 +8τ2

1 τ2 −8τ2τ
4
1)+[96]q(4τ4

1 +8τ2
1 τ2 −8τ2τ

4
1−4τ2

1 τ
2
2

−4τ4
1 τ2

2 +(4τ1 −4τ3
1 )( 1−|τ2| 2)τ3)
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=
1

[36864]q



−[112]qτ4
1 − [256]qτ4

1 − [256]qτ2
2 − [256]qτ2

2 τ4
1 +[512]qτ2

2 τ2
1

− [512]qτ2
1 τ2 +[512]qτ4

1 τ
2
− [64]qτ4

1 − [64]qτ2
1 τ2 +[64]qτ2τ4

1)

+[384]qτ4
1 +[768]qτ2

1 τ2 − [768]qτ
2
τ

4
1
−[384]qτ2

1 τ
2
2

+[384]qτ4
1 τ2

2 +[96]q(4τ1 −4τ3
1 )( 1−|τ2| 2)τ3)



=
1

[36864]q



−[112]qτ4
1 − [256]qτ4

1 − [256]qτ2
2 − [256]qτ2

2 τ4
1 +[512]qτ2

2 τ2
1

− [512]qτ2
1 τ2 +[512]qτ4

1 τ
2
− [64]qτ4

1 − [64]qτ2
1 τ2 +[64]qτ2τ4

1)

+[384]qτ4
1 +[768]qτ2

1 τ2 − [768]qτ
2
τ

4
1
−[384]qτ2

1 τ
2
2

+[384]qτ4
1 τ2

2 +[96]q(4τ1 −4τ3
1 )( 1−|τ2| 2)τ3)



=
1

[36864]q


−[48]qτ4

1 − [256]qτ2
2 +[128]qτ2

2 τ4
1 +[128]qτ2

2 τ2
1 +[192]qτ2

1 τ2

−[192]qτ4
1 τ2 +[96]q(4τ1 −4τ3

1 )( 1−|τ2| 2)τ3)



=
1

[2304]q × [16]q


−[48]qτ4

1 − [256]qτ2
2 +[128]qτ2

2 τ4
1 +[128]qτ2

2 τ2
1 +[192]qτ2

1 τ2

−[192]qτ4
1 τ2 +[96]q(4τ1 −4τ3

1 )( 1−|τ2| 2)τ3)



=
1

[2304]q


−[48]qτ4

1
[16]q

− [256]qτ2
2

[16]q
+

[128]qτ2
2 τ4

1
[16]q

+
[128]qτ2

2 τ2
1

[16]q
+

[192]qτ2
1 τ2

[16]q

− [192]qτ4
1 τ2

[16]q
+

[96]q(4τ1−4τ3
1 )( 1−|τ2| 2)τ3)

[16]q



=
1

[2304]q


−[3]qτ4

1 − [16]qτ2
2 +[8]qτ2

2 τ4
1 +[8]qτ2

2 τ2
1 +[12]qτ2

1 τ2

−[12]qτ4
1 τ2 +[6]q(4τ1 −4τ3

1 )( 1−|τ2| 2)τ3)
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As we know that

−[16]qτ
2
2 +[8]qτ

2
2 τ

4
1 +[8]qτ

2
2 τ

2
1 = −[8]q(1− τ

2
1 )(2+ τ

2
1 )τ

2
2

[12]qτ
2
1 τ2 − [12]qτ

4
1 τ2 = [12]q(1− τ

2
1 )τ

2
1 τ

2
2 ,

then above term has become

H2,1(Ff ,q/2) =
1

[2304]q


−[3]qτ4

1 − [8]q(1− τ2
1 ) (2+ τ2

1 ) τ2
2

+[12]q(1− τ2
1 )τ

2
1 τ2

2 + [24]qτ1τ3(1− τ2
1 )( 1−|τ2| 2)

 . (4.23)

Examine the subsequent possible cases on τ1:

Case 1

if τ1 = 1. Then (4.23) is

H2,1(Ff ,q/2)|= 1
[2304]q

[−[3]q +0]

If q → 1− then we have

|H2,1(Ff /2)|= 1
768

Case 2

if τ1 = 0.Then (4.14) is

|H2,1(Ff ,q/2)|= 1
[2304]q

[−[8]q(2)τ
2
2 +0]

|H2,1(Ff ,q/2)|=
[16]q
[2304]q

|τ2|2 ≤
[16]q

[2304]q

If q → 1− the we have

|H2,1(Ff /2)|= 1
144

|τ2|2 ≤ 1
144

Case 3

Suppose τ ∈ (0,1) . Utilizing the triangle inequality in (4.23) Additionally, we use the knowledge

that |τ3| ≤ 1, to get

|H2,1(Ff ,q/2)|= 1
[2304]q

 −[3]qτ4
1+[12]q(1− τ2

1 )τ
2
1 τ2

2 − [8]q(1− τ2
1 ) (2+ τ2

1 ) τ2
2

+ [24]qτ1τ3(1− τ2
1 )( 1−|τ2| 2)


taking 1

[96]q
τ1 (1− τ2

1 ) from inside we have

=
1

[96]q
τ1 (1− τ

2
1 )

{
−[3]qτ3

1

[24]q
(
1− τ2

1
) + [12]qτ

1
τ2

[24]q
−

[8]q
(
2− τ2

1
)

τ2
2

[24]qτ1
+(1− |τ2

2 |)

}
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If we take

A =
−τ3

1
[8]q
(
1− τ2

1
) , B =

τ1

[2]q
C =

− (2+ τ2
1 )

[3]qτ1
.

Then we obtain

|H2,1(Ff ,q/2)|= 1
[96]q

τ1
(
1− τ

2
1
)
(|A+Bτ2 +Cτ

2
2 +1− |τ2

2 |). (4.24)

Since we can see that AC > 0, we can use Lemma (3.1.2) case (i).Currently, we examine every

condition of case (i).

3(a) The inequality is seen.

|B|−2(1−|C|) = τ1

[2]q
−2

(
1−

− (2+ τ2
1 )

[3]qτ1

)

=
τ1

[2]q
−2+

2 (2+ τ2
1 )

[3]qτ1

=
τ1

[2]q
−2+

4
[3]qτ1

+
2τ

2
1

[3]qτ1

=
τ1 − [4]q
[2]q

+
4+2τ2

1
[3]qτ1

=
[3]qτ2

1 − [12]qτ1 +[8]q +[4]qτ2
1 )

[6]qτ1

=
[7]qτ2

1 − [12]qτ1 +[8]q
[6]qτ1

> 0,

If q → 1− then we have

|B|−2(1−|C|) =
(7τ2

1 −12τ1 +8)
(6τ1)

> 0.

Which is true for all τ1 ∈ (0,1) . Thus, Lemma (3.1.2) implies it. Not to mention the inequality
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(4.24) that

|H 2,1(Ff ,q/2)| ≤ 1
[96]q

τ1
(
1− τ

2
1
)
(|A|+ |B|+ |C|)

=
1

[96]q
τ1
(
1− τ

2
1
)(∣∣∣∣∣ −τ3

1
[8]q
(
1− τ2

1
)∣∣∣∣∣+

∣∣∣∣∣ τ1

[2]q

∣∣∣∣∣+
∣∣∣∣∣− (2+ τ2

1 )

[3]qτ1

∣∣∣∣∣
)

=
τ4

1
[768]q

+
τ2

1
(
1− τ2

1
)

[192]q
+

τ1
(
1− τ2

1
)(

2+ τ2
1
)

[288]qτ1

=
τ4

1
[768]q

+
τ2

1 − τ4
1

[192]q
+

−2−2τ2
1 + τ2

1 − τ4
1

[288]q

=
[3]qτ4

1 +[12]qτ2
1 − [12]qτ4

1 − [16]q − [16]qτ
2
1
+[8]qτ

4
1
− [8]qτ

4
1

[2304]q

=
[4]qτ

2
1
+[16]q − [17]qτ4

1

2304

|H2,1(Ff ,q/2)|= 1
[2304]q

([16]q +[4]qτ
2
1 − [17]qτ

4
1 ),

if τ1 = 0 then

|H2,1(Ff ,q/2)| ≤

∣∣∣∣∣ [16]q
[2304]q

∣∣∣∣∣≤ 1
[144]q

If q → 1− then we have

|H2,1(Ff ,q/2)| ≤ 1
144

3(b) Next, it is easy to check that

|B|−2(1−|C|) = τ1

[2]q
−2

(
1−

(2+ τ2
1 )

[4]qτ1

)

=
([7]qτ2

1 − [12]qτ1 +[8]q)

[6]qτ1
< 0,

If q → 1− then we have

|B|−2(1−|C|) =
(7τ2

1 −12τ1 +8)
(6τ1)

< 0.
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which is not true for all τ1 ∈ (0,1).

After a summary of cases 1,2 and 3, the inequality (4.14) is proven.It is only to show that the

boundary is sharp in order to finish the proof. To demonstrate that we consider the function

h ∈ C$(q), like this

h0 (ŷ) = ŷ expq

(√
69√
68

∫ ŷ

0

x2 +
√

1+ x4 −1
x

dqx

)
(4.25)

= ŷ+

√
69

6[2]q
√

17
ŷ3 +

√
69

10[4]q
√

17
ŷ5 + . . .,

let

h(ŷ) =
∫ ŷ

0

h0(x)
x

dqx = ŷ+

√
69

6[2]q
√

17
ŷ3 +

√
69

10[4]q
√

17
ŷ5 + . . .,

with a2 = a4 = 0 and a3 =
√

69
6[2]q

√
17

in (1.12). Then we have

|H2,1(Fh/2)|= 1
q̄1

.

This complete the proof.

4.4 Summary

This chapter defines two subclasses of univalent functions: convex and starlike functions.

Fekete–Szegő inequality, Hankel Determinants, and coefficient estimates were established for

the newly defined classes. A few corollaries are also defined in this study, indicating that the

resulting results are identical to those demonstrated by researchers when the limit q → 1− is

substituted.
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CHAPTER 5

CONCLUSION

In this thesis, the initial coefficient bounds of analytic, univalent, normalised functions inside

the open unit disc are the main emphasis. The first things we discussed were some fundamental

terms and preliminary results from the Geometric Function Theory. We examined more recent

concepts that were introduced in Quantum Calculus, but these fundamental concepts serve as the

foundation for our innovative discoveries. A variety of distinctive classes of analytic functions

related with symmetric points were defined using q-Calculus, and the applications of the operator

for q-derivative in the Theory of Geometric Functions were thoroughly examined.

Our study focusses on two basic categories of univalent functions: convex functions connected

with the second Hankel Determinant of logrithmic coefficients associated with lune and starlike

functions. Building on earlier research by S. Mandal and Ahamed [51] on the S∗$ class of starlike

functions with Second Hankel Determinant of logrithmic coefficients associated with lune,we

investigated the extension of these classes using q-calculus lune-associated logrithmic coefficients

belonging to the C$ class of convex functions with the Second Hankel Determinant. An extension

of the original S∗$ class, we presented the S∗$(q̂) class and C$(q̂), which represent starlike

functions and convex functions with logrithmic coefficients q-lune function. We demonstrated

the q-extension of these classes by computing the second Hankel Determinant for q-starlike

functions and q-convex functions, both of which are subordinate to the q-lune function we used

the subordination technique to study the features of these classes, which were introduced by the

q-derivative operator.

Within our recently established classes, we have investigated some important features of
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functions, such as the well-known Fekete–Szegő inequality and coefficient bounds. We have

also looked into Hankel determinants of second order for functions that fall under our recently

established classes. These new classes have been shown to be an improvement over the ones

that already exist, and the resulting results indicate improvements over the theorems that many

Geometric Function Theory scholars have already established. Our results were validated by

considering the limit as q → 1− which produced known results. The results of this work should

greatly enhance the field of geometric function theory.

5.1 Future work

In univalent function theory, this thesis focusses on two main categories: starlike functions

with the second Hankel Logrithmic coefficient and convex function determinant using Hankel In

the fields of spherical forms, geometry, and spherical trigonometry, it is essential to determine the

second order of logrithmic coefficients associated with lune, which are subservient to a particular

lune function. These classes can be proficient by using the concept of close-to-convexity.

Outcomes for the proficient class of q-quasi convex functions can be found, and an analytical

and geometrical association in between these categories and the classes within this thesis can be

shown.
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