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ABSTRACT

Title: On a New Subclasses of Starlike Functions Associated with Symmetric Points

This research aims to introduce and examine new subclasses of analytic functions within the
open unit disc. I will use g-calculus to develop the g-extension of starlike functions related to
symmetric points. Additionally, 1 will explore significant properties such as coefficient bounds for
analytic functions,the Fekete-Szego inequality and the Zalcman functional. I will also investigate
upper bounds on Hankel Determinants for functions within these new class. The findings will be
demonstrated to advance beyond previous results obtained by many researchers in Geometric

Function Theory. Special cases of these new results will be presented as corollaries.
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

1.1 Overview

An extensive introduction and survey of the literature are provided in this chapter, with a focus
on key ideas in geometric function theory. It covers various subclasses and the broader categories
of analytic and univalent functions. Additionally, it briefly addresses the Fekete-Szego inequality,
Hankel determinants, the Zalcman Functional, and coefficient bounds within these classes. The

chapter reviews some of the fundamental ideas in quantum calculus.

1.2 Riemann Mapping Theorem

Geometric function theory has its roots in Riemann’s influential mapping theorem. Introduced
by Bernard Riemann in 1851, the Riemann Mapping Theorem addresses the transformation
of complex domains [1]. The first hard evidence emerged in the 20th century. Caratheodory
providing a proved in 1912 using regular families and Riemann surfaces. As a result, the
open disk, D = {t: |t| < 1} can now be regarded as a domain. The theorem is fundamental to
Geometric Function Theory as it forms its foundation. The major contribution in the 19th century

by Cauchy, Riemann, and Weierstrass built the basis of contemporary function theory [2].



1.3 Analytic and Univalent Functions

In 1907, Koebe investigated univalent and analytic functions within the open unit disk
D [3]. His work contributed significantly to the understanding of these functions in this do-
main.Geometric Function theory was developed based on the concept of analytic functions,
which were initally defined by Duren [3] in 1983. Duren defined the class A of analytic functions
with the normalization conditions {(0) = 0 and {’(0) = 1, where functions are expressed as
() =t+Y, ,ant", with  being a complex number such that [f| < 1. Various classes categorize
analytic functions, with further subclassifications based on geometric properties and the structure
of their image domains. The geometric shape of these domains has been a subject of significant
research and debate among scholars. Koebe [4] was the first who explored the theory of univalent
functions in 1907, after that Robertson [5] in 1936 and Macgregor [6] in 1964 worked in the

theory of univalent functions.

1.4 Subclasses of Analytic and Univalent Function

In 1907, Koebe made significant contributions to the study of univalent functions [4]. He
introduced the concept of univalent functions, a key topic in complex analysis, specifically
focusing on their behavior within the unit disk D). Koebe’s work laid the foundation for the
class § of univalent functions, which includes functions that are analytic, normalized, and
univalent within D. This class S is central to much of geometric function theory. There are
numerous significant subclasses that comprise the class S: The class of starlike functions is
S*. C: Convex functions are a class. The class of starlike functions with regard to symmetric
points is denoted by S;. The subclasses of starlike and convex functions were expanded by
Robertson [5] and Sakaguchi [7] in 1959, introducing the class of starlike functions with regets
to symmetric points in particularly. This classification started as part of the attempts to gather
evidence for the Bieberbach conjecture [8]. In 1915, Alexander [5] formulated which is now
called the Alexander relation, that links two categories of convex and starlike functions. In
1921, Nevanlinna [9] introduced the concept of starlike functions within D. Subsequently, in

1975, Silverman [10] examined starlike of order ¢, and convex of order &, univalent functions



with negative coefficients, providing insights into coefficient inequalities, covering features, and

coefficient distortion.

1.5 Coefficient Bounds

There are many classes and subclasses in geometric function theory, but determining coeffi-
cient bounds is one of the main focuses. Usually, functions in this discipline are investigated
within different classes of normalized analytic functions from A. The Bieberbach theorem, first
proved by Ludwig Bieberbach in 1916, is a key finding in this field. This theorem pertains to
the class S of univalent functions and specifies the bounds for the second coefficient o in these
functions, leading to the formulation of Bieberbach’s conjecture. Numerous studies and efforts at
proof have focused on this conjecture [8]. The coefficient conjecture asserts that for a function t
in the class S, the coefficients of 1 satisfy |c,| <nforn € {2,3,4,...}. Specifically, it was proven
that |c;| < 2, with equality holding only if t is the Koebe function or its rotations.Mathematicians
have faced several difficulties in solving the Bieberbach conjecture, even though it is a simple
concept. Despite numerous fruitless attempts to demonstrate it, substitute techniques have been
devised. In 1923, Karl Loewner [11] proved that |c3| < 3, a result that set the stage for further
generalizations. In 1955, Gangadharan et al. [12] demonstrated that |c4| < 4, addressing the
conjecture for m = 4. The conjecture was ultimately resolved by Louis de Branges [13], in
1985. He provided a comprehensive proof of the general form . In more recent developments,
Darus [14] derived estimates for the second and third coefficients in the classes of g-starlike
and g-convex functions in 2016. Seoudy et al. [15] provided estimates for these coefficients in

g-starlike and g-convex functions of complex order, in 2016.

1.6 Fekete-Szego Inequality

By focusing on the coefficients of specific polynomials, the Fekete-Szego inequality-which
is strongly associated with the Bieberbach conjecture-contributes significantly to the field of

complex analysis. This inequality was first introduced by Fekete and Szego in 1933 [16]. It has



many important applications and implications in complex analysis. In 2020, Hari et al. [17]

investigated the Fekete-Szego problem for analytic functions in subclasses of the class S.

1.7 Henkel Determinants

The determinant of the Hankel matrix connected to a function is referred to as the Hankel
determinant. Pommerenke [18] first addressed the Hankel determinant of univalent and analytic
functions in 1967 .After that, Hayman [19] investigated the univalent functions’ second Hankel
determinant. In 1976, Noonan and Thomas [20] expanded this research by introducing the g-th
Hankel determinant. Noor [21] later examined the growth rate of $),(k) as k — oo for analytic
univalent functions with bounded boundaries. In 2007, Janteng et al. [22] provided a precise
upper bound for the functional |cpcq — c%\ in the context of convex and starlike functions.

Babalola [23] introduced the Hankel determinant of order 3 for starlike and convex functions
within the unit disk D in 2009. He found that for convex functions, the Hankel determinant is
bounded by $3(1) < 5, while for starlike functions, it is bounded by $)3(1) < 16. Krishna et
al. [24] determined that the Hankel determinant of order 3 for starlike functions with respect to
symmetric points is %, and for convex functions, it is %, even still, they pointed out that these
bounds weren’t precise. Lecko ef al. [25] refined these results in 2019 by providing precise
bounds for the third-order Hankel determinant of starlike functions of order % Bounds for the
third-order Hankel determinant were established by Shi et al. [26] in certain classes of convex
and starlike univalent functions associated with exponential functions in the ). The third-order
Hankel determinant for starlike functions associated with exponential functions within D was
found by Joshi et al. [27]. They derived a new formula for the fourth coefficient of Carathéodory
functions and established exact bounds for the third-order Hankel determinant. Arif et al. [28]
examined the g-th Hankel determinant for certain subclasses of analytic functions and estimated
its growth.

The exploration of the Hankel determinant has been addressed by various researchers,

including Noor [21] and Pommerenke [18], as well as numerous others [29, 30, 31, 32, 33, 34].



1.8 Zalcman Functional

In Geometric Function Theory, a well-known conjecture proposed by Lawrence Zalcman in

1960 [35] postulate that the coefficients of functions within class S should satisfy the inequality:

|a% —ayy—1| < (n— 1)2.

Equality in this form is only possible by the Koebe function k(1) = ﬁ and its rotations. This
well-known conjecture includes the bieberbach conjector, which has been proven true by many
researchers but is still an extremely difficult open problem for all n > 3. For n = 2, equality in
this form corresponds to the well-known Fekete-Szego inequality. The Zalcman functional has
been extensively studied by various researchers [36, 37, 38], with further details available in

[39].

1.9 g-Calculus

Quantum calculus, or g-Calculus, is an extension of traditional calculus that focuses on
g-analogous results without relying on limits. This field of mathematics is not only fasinating
but also essential for various contexts, such as cosmic strings and black holes [40]. Quantum
calculus includes both g-calculus and A-calculus, where q stands for quantum and h for Plancks
constant. Euler laid the groundwork for g-calculus in the 17th century, and Jackson was among
the early researchers to formalize q-derivatives and g-integrals in 1909 [41]. g-calculus can be
seen as a version of classical calculus that does not use limits, and it has seen rapid development
due to its wide applications in mathematics, mechanics, and physics.

Jackson [42] is credited with the systematic introduction of g-calculus, while his later work
[43] presented the concepts of g-derivatives and g-integrals. The field gained further traction with
the introduction of g-starlike functions by Ismail ef al. [44] in 1990, introducing the integration of
g-calculus into Geometric Function Theory. This was achieved through the use of the difference
operator, and the class was initially referred to as the "class of g-starlike functions." Subsequent
work includes Srivastava’s exploration of generalizations and g-extensions of Bernoulli functions
[45], and Darus’s introduction of g-starlike and g-convex functions in 2016, utilizing the g-

derivative operator [46]. Ramachandran et al. [47] further defined g-starlike and g-convex



functions in relations to symmetric points. Recent research has focused on exploring practical
properties of new classifications of meromorphic multivalent starlike functions using modified

g-linear differential operators [48, 49].

1.10 Starlike Function with respect to a Symmetric Point

In 1959, Robertson [5] and Sakaguchi [7] expanded the concept of starlike and convex
functions by introducing a new class of starlike functions defined with respect to symmetric
points. This development introduced a broader framework for analyzing these functions. In
2019, Cho et al. [50] examined a specific class of starlike functions related to trigonometric
functions, such as the sine function. Zaprawa [51] later explored coefficient inequalities for
starlike functions with respect to symmetric points, addressing various problems within this
framework. This approach has contributed to advancing the study of coefficient inequalities in

function theory.

1.11 Preface

The goal of this thesis is to use the subordination idea to review and define certain ana-
lytic function sub-classes. It is divided into six chapters, each of having the following quick
introduction:

In Chapter 1, an extensive examination of the literature arrives with a concentration on
important ideas explored in the Geometric Function Theory classes. The classes of analytic
functions, Carathéodory functions, and univalent functions are all covered in this investigation,
along with certain significant subclasses. These ideas serve as the thesis’s core.

In Chapter 2, concentrates on the basic principles in Geometric Function Theory, providing
an important framework for the chapters to come. It begins by defining several basic subclasses
of univalent functions and then researching into the concepts of analytic functions and normalized
univalent functions under the [D. Basic lemmas are presented at the end of the chapter and will

be used in later chapters. It is important that this chapter thoroughly cites and acknowledges



well-established ideas in the subject rather than introducing any new results.

In Chapter 3, involves looking at the class of star-like functions that are associated with
symmetric points. A few of the most significant findings are also looked at. Emphasizing the
need of appropriately referencing the review work is essential.

In Chapter 4, after analyzing the review work results, we extend the research to include new
subclass of starlike functions connected with symmetric points. Various important results are
examined into with these defined classes.

In Chapter 5, futher advanced our research work extands the trigonometric q-tanh(qz)
function to new subclasses, among which is g-starlike with regard to symmetric points. Various
important results are examined into with these defined classes. Corollaries are provided to show
how the recently acquired data compare to past discoveries obtained by other investigators.

In Chapter 6, our research has been concluded.



CHAPTER 2

PERLIMINARY CONCEPTS

2.1 Introduction

Examining fundamental ideas and findings that lay the groundwork for further research
is the goal of this chapter. We will go into great detail on the normalized analytic univalent
functions Carathéodory function. We’ll take note of specific functions, a significant expressed
proprietor, and several initial lemmas. The interaction of geometry and analysis is one of the
most fascinating features of complex function theory. Futhermore, some brief overwiew of
the basis of g-calculus is provided, followed by an examination of several recent categories of

analytic functions.

2.2 Analytic and Univalent Function

The link between geometric functions and analytic structure is at the foundation of univalent
function theory. In this framework, we propose categories for both analytic and univalent
functions.

Definition 2.2.1. [52] If { is a complex valued function and is also analytic at point 1, it must
be a single value function and its value occurs not only at 1y but also at all other points in the

neighborhood 1. In this case, function { is considered analytic in its domain and analytic at all



other points.
Definition 2.2.2. [3] Let a function { be analytic and normalized these conditions {(0) = 0,
¢’(0) = 1 and represent the form:

C(l)zl—kiaﬂ" teD. (2.1)

n=2

then say that { is belong to Class A.
Definition 2.2.3. [53] Univalent, or one-to-one, functions are analytic functions that preserve
injectivity. In particular, a function { is said to be univalent if it maps distinct complex numbers
to distinct values. In other words, { is univalent within its domain if (1;) # (;) for any distinct
complex numbers 1; and 1, in that domain. With applications in conformal mapping, complex
dynamics, and Riemann surface theory, uniform functions play a significant role in both complex
analysis and geometric function theory. They are valued for their geometric properties and for

their role in understanding complex mappings and transformations.

2.3 Class S of Univalent Function

Class S plays very important role in Geometric Function Theory.
Definition 2.3.1. [53] Let a { function be analytic, normalized and univalent then { € S . The
class of univalent function is also denoted by class S.
One well-known example from the class S of functions is the Koebe function, which has the

following definition:

1 /1+1\? 1 1 a
C(DZZ(_) _Z:(l_l)zzc;clc, where 1 € D. (2.2)

2.4 Class ‘B of Caratheodory Functions

The class *J3 contains carathéodory functions, or functions with a positive real component.
Numerous subclasses of univalent functions stem from this class. We will go over the core
concepts from ‘P that are relevant to our task.

Definition 2.4.1. [54] Suppose that 3 is an analytic function in the D, with Re[3(1)] > 0 and
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B(0) = 1. The Taylor series expansion of 3 is as follows:
P =1+ ) cil", teD. (2.3)
n=1

The Mobius function, which is known to be a function in class *f3, is defined as follows:

1+1

Mo(t) = 1

—HQZQ7 eD. (2.4)

2.5 Certain Subclasses of the Class

The study of univalent functions is a long-established field that continues to evolve dynam-
ically. Significant progress has been made over the past ten to fifteen years, leading to the
introduction of various subclasses of univalent functions. The geometric characteristics of these
subclasses’ image domains essentially define them. Notable among them are the classes of
Convex and Starlike functions.

Definition 2.5.1. [52, 55] Consider any point t in the domain D. D is said to be star-shaped with
respect to 1y if the line segment that joins 1y to any other point t € DD stays completely inside D.
Let ¢ be an analytical, univalent function with a star-shaped domain as its image in { (). Then
{ is starlike domain and it can be defined as:

0
&)

Definition 2.5.2. [7] Sakaguchi introduced the class of starlike functions with regard to symmetric

[56] Re(

) >0 < feSandteD. (2.5)

point, which is called Sj. It is defined as follows:

2¢'(1)

Relem— e

) >0 fort=1y, || =r (2.6)

2.6 Subordination

In 1909, Lindel6f [57] proposed the idea of subordination for the first time. Subsequently,
Littlewood [58] and Rogosinski [59] made further contributions to the field. In Geometric

Function Theory, subordination serves as a valuable technique for relating two functions defined
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on different domains.

Definition 2.6.1. [60] Let class A is analytic in open disk ID and let S be a subclass of A so it is
univalent in D . let any two functions (say § and j) be analytics in open disk D, we say that  is
subordination to j, written in mathematically as < j. If it exists a schwarz function w, which

is analytic in open disk with 2(0) =0, |a(1)| < 1,1 € D, such that {(t) = j(h(1)), 1 € D

2.7 -Calculus

American mathematician Jackson invented quantum calculus at the beginning of the 20th
century by presenting the g-analog of integral and derivative operators.
Definition 2.7.1. [61] A key element in g-calculus is the g-derivative operator, commonly
represented as Dy, which plays a central role in this generalization of traditional calculus.

Definition 2.6.1. [42] Jackson introduced g-derivative and it is defined as following:

Da£) = (g ) = =20, 120 @)

The operator Dy (1) can be expressed as an infinite series:
DG (1) = Z [n]qcnln_l.
n=1

where [n]q is the g-analogue and ¢, is the coefficient of the series expansion.

2.8 Subclasses of Class S in q-Calculus

The subclasses of class S in g-calculus is as following:
Definition 2.8.1. The class of g-starlike function are known as S;. The g-starlike function was
introduced by Ismail et al [44]. Let a function { be analytic then belong to g-starlike function

and defined as:

t 1
—D () ———|<—— teD, 0<qg< 1. (2.8)
g l—q| =~ 1-q
Definition 2.8.2. The class of g-convex function are denoted by C,. Srivastava and Owa [62]

1

defined a class of g-convex. Let a function { be analytic then belong to g-convex and defined as:
b, 1 1
—Df(Hl)———|<——, teD, 0<qg< 1. (2.9)
Oy s
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Definition 2.8.3. [47] g-starlike describes a function { with regard to symmetric points. When
2D ()

—C(l)—C(—l) <), teDh. (2.10)

2.9 Henkel Determinant

Definition 2.9.1.

The determinant of the corresponding Hankel matrix is known as the Hankel determinant. For
positive integers j,k. Pommerenke [63] established the Hankel determinant for the class of

univalent functions. The g-Henkel determinant for j > 0 and k > 1 is as follows:

dp g1 v kgt
A1 dky2 -0 dokyj
Hiw(f) =] " o _ (2.11)
|dicyjy ditj o dkt2j-2)

where j and k are positive integers, futher details, see [64, 63].

2.10 Initial Lemmas

The ensuing lemmas will be essential in guiding our research in the next chapters.

Lemma 2.10.1. if p € B and A(1) = 0 and analytic in D then

65] |pu| <2 for n>1, (2.12)
[65] |pivj—€pipj| <2 for 0<e <1, (2.13)

and for complex number €,we have
[66] |p2 —ep?| < 2max{1,|2e —1|}. (2.14)

Lemma 2.10.2. [67] Let & € B has power series, then

|050P? —[3{)191P2+%P3| S 2|OC()| +2|B0—205(,’ +2|060—l30+%|~
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Lemma 2.10.3. [68] Let 71, le, i, and 4, satisfy the inequalities 0 <1, <1,0<7, <1 ,and
870 (1 —Fo) [(1htoftp —20p) + (g (Fo +1i1p) — i) 2] 4 1ito (1 — 1ty ) (g — 27 y1i1p)? < 42 (1 — 1) 27 (1= 7).
If 4 € B and has power series, then

~ R R 3,
\lop‘l‘ + rop§ +2m,p1p3 — —nop%Pz —pa| < 2.
2
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CHAPTER 3

ON A NEW SUBCLASSES OF STARLIKE FUNCTIONS
ASSOCIATED WITH SYMMETRIC POINTS SINE FUNCTION

3.1 Introduction

The chapter’s objective is to examine a number of fundamental and traditional findings that
form the basis for further investigation. The review of starlike functions opens this section.
The definition of these classes is based on symmetric points connected to the sine function.
Futhermore, a number of important findings, including the Zalcman functional, Fekete-Szego
inequality, Hankel determinants, and coefficient bounds, will be examined. The Khan et al.
[35], introduce the class of trigonometric sine function-related Starlike functions connected to
symmetric points.

Defination 3.1.1. Lets { (1) € A is in S} after that

2L

—C(l) ) < 1+sin(}1),

for all te D.

3.2 Coefficients Estimates and Fekete-Szego Inequality

The subsequent outcomes pertaining to the specified class S}
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Theorem 3.2.1. If {(1) € S}, then

2] < 3, 13| < 5, Il < 5, 1| <
612_2,613_2, 4_47 5_4'
Proof. According to the definition:
218 (1) .
—————— < I +sin(t)
ct)— (-1
Since { (1) € S}, using the subordination techniques, then we get
218 (1) .
————— = 1+sin(v(1)). 3.1)
St —¢(-1)
Since { (1) € o7, then { (1) is in the form that as:
(M =t+Y af, (1eb). (3.2)

n=2
So, it can be written as
() =t+ P +ast +dgt +dsP + ...,
it follows that
C(—1) = —t+ P —ast +dgt* —dsP + ...,
now,

E)—C(—D) =+ +aP +at +asP +...) — (—t+ ot —aP +att —dsP + ...,
=14+ +aP +dtt +ast + .. 41— P +ds — @t +dsP — .
which implies
E() — §(—t) =2t 4 2d5F + 2458 + ...,
taking derivative of {(1), then we get
C'(1) = 14 2ar +3a31 +4dyl + 5dst* + ...

S0, we have

AL (1) = 2+ dar? + 6a3F +8aut* + ...,
which leads us

A¢'()  2t+4at? 4 6dst +8autt + ...
CH—C(-h) 2A+2@P+2asP+....




taking 2t common on R.H.S, then we have

Y

218 (1) B 2K(1 +2dot + 3ast2 + 4aut + )
M —<¢(-1 B (1 +ast? +dst +...)
S0, it can also be written as
2107 (1) 2 3 2 4 -1
————— = (12t +3a3t" +4ant’ + .. ) (1 + axt" +ast™ +...) 7,
¢t —¢(-1)

consider (14 a3 +dst* +...)~! using Binomial Theorem, then we get

[1+ (@3 +asth)] 7 = 1+ (1) (@ +dst*) +

2!

=1-aP —ast+ &M+ ..

put above eqution in (3.3), then

2'(1)

c) —&(-h)

(=D(=1-1

—1

(a3 +dsth) > + ...,

= (14 2d5t +3d3 + 4dy + .. (1 — ask? — dst* — a3°th),

=1 — a3 + (@32 — ds5)1* + 2d0t — 2do 3P + 3dst? — 3d3 2 + 4ayt® + 5dst* + ...

after simplification,then we will get

2 (1)
cM)—2(-

Lets us a function

= [1 4 (2d2)t+ (2d3) + (4dy — 2drd3)P + (4ds — 2d32 ) + ... .

h(t)

()
1)

= 1+pit+pot*+

since h(t) € &, then h(}) is in the form that as:

[e5)

) =1+ Y pt", (eD).

n=2

Using the above statement then we get

using (3.5) in (3.7) and then we have

SO

v(1)

v(t) =

A1) —1
1 =
0=
Cl4pitpP -1

L4 pit 24+

_ pit+ paP + paP + patt
24 pit+hi2 4+ p3B

16

(3.3)

(3.4)

(3.5)

(3.6)

3.7



17

it can also be written as
v(1) = (p1t+ pot? + pst + pat*) 2+ pit+ pot? 4+ pst’) 71,
after simplification we will get
SOALI e AT I
2 4 2 2 8 2

B 2 4 2
(p3p1 3pip2 Pl Iﬁ_&)lu,,_, (3.8)

2 * 8 16+2 4

as we know that

v v
sin[v(1)] = [v(1)] — [ (31!)] + 5] +...

SO,

I — 5p;
L e L L L

i 5 2 4 2
<mm+mm_&+&_&)ﬂww (3.9)

2 16 32 2 4

3
) pit P ) —pip2  Spi  DP3\
= [1+— i — 4+ =1
= I+ sinfy(b)] {+2+(4 +2> +( 2 + 8 +2 +

2 4 2
—p3p1  Spip2 Pl P4 P35\ u
B N g D R 3.10
( 2 16 32+2 4) + } (3.10)

Using (3.4) and (3.10) and substituting in (3.1), then we will get

pit
1+ Q)1+ (203) + (ddy — 2dads)F -+ (dds — 2d52 ) .. {” 2 *( T l+%) g

3 2 4 2
—pip2  Sp7  P3\ g3 —p3p1  dpip2 —DP] D4 D5\ u
A T W <L - 2220 . 3.11
+(2 +8+2> +(2 +16 32+2 4>+] (3.11)

By comparing both sides power of the above equation, then we obtained

20, =21 (3.12)
2
p2 P}

2wy = (2221 3.13
s (2 4>, (3.13)
by — 2 — (P22 L P (3.14)

4 203 D) 3 ) ’ .
die g2 — (TP3PL_ SPip2 P P4 P3 3.15)

5T 2 16 322 4) '

Consider (3.12) and solve for the coefficient d>, and then we get

pi

22y =,
ar )



—d)=— 1

Consider (3.13) and solve for the coefficient a3, and then we get

2

P2 P

Y A 71
asz = (2 4>a

Using (3.16) and (3.17), put in (3.14) and solve for the coefficient dy

_ 5p3
ddy— 2y = | —PAP2 2P
2 8
_ 5
4d4=2d2d3+( ”2”)2+%+

2 3

. P\ (P2 Pi —p1p2  Sp;
:2(-) P2 Py —pip2 | OPy

4 4 (4 8>+( > gt

o P2 _PL_—pip2 SPL L ps
g§ 16 2 8 2

. P 3pip; p3
% 32 ' 8

Using (3.17), put in (3.15) and solve for the coefficient dj

_ 5p?
. ddis — 203 _( 1??31??1+ pip2

16 32
P3p1 5p1P2

45_2<P2 1) (p3p1 5P1P2
+

_|_

2
. p3  pl 2papd p3p1 5191192
4
= l16+64 }

. -3 3p1pz P3Pl D4
Agc — P4
=g 16 2 g
. Py 3pip2 p3p1 | pa
— s — A

32 64 8 8

Now we will find the absolute values of the coefficients.

We have (3.16).

a="1
2 4

taking modulus on both sides, then

1

2| =

p3
2 )

p3
2

p3
2 )

P4
&

P4

_|___

%)
39
_ ij)
¥

2
4
o

18

(3.16)

(3.17)

(3.18)

(3.19)



using Lemma (2.10.1) and Equation (2.12), then we have

y pi|_2_1
< -=-< =
al=17 =357
S0,
. 1
|Cl2| < E
We have (3.17).
. _p pt
3 4 g’
taking modulus on both sides, then
@ = |22 Y], p
e s AP 2
using Lemma (2.10.1) and Equation (2.14), then
1 prl 2 1
—|p2— <-max3s 1,12 = | —1
e i (5) )
2 1
< Jmax{1,0} =,
S0,
. 1
|a3| < ok
We have (3.18).
3
. _Pi _3pip2  p3
“T96 Tm 8
taking modulus on both sides, then
3
. _|P1_3pip2 | P3
|a4|_‘96 32 8
using triangular inequality and Lemma (2.10.2), then we have
P 3P1P2+P3 3 21, 3.1
96 32 32 96 9 32
= 4_8 a5 a8 " & 4’
S0,
. 1
’ 4| < 4_1
We have (3.19).
o D3 3pipe papy P
T 64 g '8’

1
8

i

19

(3.20)

(3.21)

(3.22)



20

taking modulus on both sides, then

Y

32 64 8 8

by rearranging the above equation,then we get

1/ p\ _pif  3pip
Al Bt W U A

using Lemma (2.10.1) and Equations (2.12) and (2.13), then we get

2 3 2
’av5|:‘_&+ PiP2 _ p3py P4

|ds5| =

Y

05| < 21ps— pips| - — 1Pl 1p2l + = |3
) 64 ' 32120

1 3 .. 1,
<=-2)+=012)(2)+=(2
< 1 n 3 N 1 3
—4 8 8 4
SO,
5| < 2 (3.23)
d - .
2=y
Hence proved. 0O
Theorem 3.2.2. If { (1) € S}, then
1 €
|d3 — edr?| < Emdx{l,%}.
Proof. Utilizing (3.16) and (3.17), then we get
2 2
s-ea=|(2-5) <]
4 8 16|
_|p2 (L e o
~ |4 (8+16)p1’
~|a 16 )P
1 24+¢€\ 5
using Application of Lemma (2.10.1) and Equation (2.14),then we get
2 2+¢€
s — er?| < Zm&x{l, 2(%) 1 }
< 2 na 1 4+£ 1
=3"M s T2 )
SO,
1 €
a3 —edr?| < Emdx{l,%}. (3.24)

Hence proved.
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Corollary 3.2.2.1. If {(1) € S} and € = 1, then

ay—a? = | (222 - (B
32 4 8 4) |
p_pi_ Pt

4 8 16|

using Application of Lemma (2.10.1) and Equation (2.14),then we get

2 3
|d3 — edr?| < Zm&x{l, ‘2 (Z> — 1‘}

S0,
1
a3 — | < 5. (3.25)
Hence proved. 0O
3.3 Hankel determinants
The following results are evaluted.
Theorem 3.3.1. If { (1) € S, then
v . 1
|drds — dy| < T

Proof. From (3.16), (3.17) and (3.18), then we have

ldods — dy| = <ﬂ) p2_ P\ _ p_%_3p1p2+ﬂ
203 4)\ 4 38 9% 32 WAk
pip2 PP 3pipr p3
16 32 9 ' 32 8
_ ’P_? _dpip2 | p3

?

Y

(24 32 8
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implementation of triangular inequality and Lemma (2.10.2), then we get

3
pi Spip2 p3
L R Y — |4l =_= =
24 32 iy ‘ + 32 24 ‘ +
1 15— 8 —15+ 12
<2|—=|+2
5|
—ﬁ+%+%:% 1
SO,
1
|a2a3 —a3 | 4 (3.26)
Hence proved. 0
Theorem 3.3.2. If { (1) € S, then
B 2 < 11
—d
dydy —d3”| < 16"

Proof. From (3.15), (3.16) and (3.17), then we have
3 2\ 2
s g2 |P(Pi 3mp2 p3\ (P2 P
dady —dy| = 4(96 32 +8> (4 8)

4 5.0 2 4 2
2
_ by p1P2_FlHlB __Eg__fﬂ;+_plp

384 128 32 16 64 16

_|Pwps 5pip2  5pi Py
32 128 384 16]

5p} 1
:'ﬁ(pz p1>+—(p1p3 p%)_PIPS

)

Y

Y

128 3 16 32

using Lemma (2.10.1) and Equation (2.12),(2.13) and (2.14), then we get

5 2 )2 1
Ihdy — 2)+ —(2)(2

5 1 N 1 _ 5+4+2 11

67278~ 16 16
SO,

11

|a2a4—a3 | ~ 16 (3.27)

Hence proved. 0O

Theorem 3.3.3. If { (1) € S} , then
25
93,1 ()] < 35 2078125

Proof. Third order Hankel determinant is defined as:

93,1 () = a3 (dady — d3?) — dy(dy — dad) +ds(ds — da?),



taking modulus on both sides, then we get

93,1 (§)| = || [drds — d3*| — |da||da — drds| + |as||ds — a2,

23

by implementing results Theorem 3.2.1, Corollary 3.2.2.1, Theorem 3.3.1 and Theorem 3.3.2,

then we obtained

s @13 (1) +5(5)+3(3):
IR
—32 16 §
<11+2+12:2_5
- 32 32’

S0, we get

25
93,1 (8)] < T 0.78125.

Hence proved.

3.4 Zalcman Functional

The result is evaluated:

Theorem 3.4.1. If { (1) € S}, then

A

|d5% —ds| <
Proof. Using (3.16) and (3.18), then we get

2
o ’(Q_p_%) _(_p_%+3p%pz_p3p1+@)

|a3“ —ds| = ,

4 4 32 64 8 8
p4 302 7p2
P1 Py  'p1pP2 4 p3p1 P4
8 32 64 8 8 |
1lpt  3p3 Tpip2 (1
S 0 A N 0 € ST ) ) —
using Lemma (2.10.3), then we get
1 1
_ < —(2)=—
d3° —ds| < 8( ) 7
so, then we have
. . 1
32 —ds| < 7

Hence proved.

(3.28)

(3.29)
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CHAPTER 4

ON A NEW SUBCLASSES OF STARLIKE FUNCTIONS
ASSOCIATED WITH SYMMETRIC POINTS TANGENT
HYPERBOLIC FUNCTION

4.1 Introduction

In this chapter, we established a new subclass of Starlike function and related to symmetric
points. The hyperbolic function of trignometric tangent is intimately associated with this subclass.
we explore the results of the Zalcman functional, Henkel determinants, Fekete-Szego inequality,
and coefficient estimations.

Defination 4.1.1. Lets { (1) € A is in S} (1 +tanh(1)) after that

2 (1)

m =< 1+tanh(l),

for all te D.

4.2 Coefficients Estimates and Fekete-Szego Inequality

The subsequent outcomes pertaining to the specified class S} (14 tanh(l))
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Theorem 4.2.1. If { (1) € Si(1 +ranh(1)) , then

. | B |
!az\ﬁi, a3| < 5, |da] <

<5 |ds5| <

1 3
4’ 4

Proof. According to the definition:

248"

c(t)—&(=h)

Since { (1) € S;(1+tanh(1)), using the subordination techniques, then we get
2'(H)

ct)—&(-h)

Since { (1) € A, then {(1) is in the form that as:

< 1 +tanh(1)

= 1 +tanh(v(1)). 4.1)

C() =1+ i at', (eD). 4.2)
n=2

So, it can be written as
() =t+ P +ast +dgt +dsP + ...,
it follows that
C(—1) = —t+ P —ast +dgt* —dsP + ...,
now,

E)—C(—D) =+ +aP +at +asP +...) — (—t+ ot —aP +att —dsP + ...,
=14+ +aP +dtt +ast + .. 41— P +ds — @t +dsP — .
which implies
E() — §(—t) =2t 4 2d5F + 2458 + ...,
taking derivative of {(1), then we get
C'(1) = 14 2ar +3a31 +4dyl + 5dst* + ...

S0, we have

AL (1) = 2+ dar? + 6a3F +8aut* + ...,
which leads us

A¢'()  2t+4at? 4 6dst +8autt + ...
CH—C(-h) 2A+2@P+2asP+....




taking 2t common on R.H.S, then we have

Y

218 (1) B 2K(1 +2dot + 3ast2 + 4aut + )
M —<¢(-1 B (1 +ast? +dst +...)
S0, it can also be written as
2107 (1) 2 3 2 4 -1
————— = (12t +3a3t" +4ant’ + .. ) (1 + axt" +ast™ +...) 7,
¢t —¢(-1)

consider (14 a3 +dst* +...)~! using Binomial Theorem, then we get

[1+ (@3 +asth)] 7 = 1+ (1) (@ +dst*) +

2!

=1-aP —ast+ &M+ ..

put above eqution in (4.3), then we have

2 (1)
- (-

(=D(=1-1

—1

(a3 +dsth) > + ...,

= (14 2dot + 3d3t* + 4, + ..) (1 — 3P — ast* — @321,

=1 — a3 + (@32 — ds5)1* + 2d0t — 2do 3P + 3dst? — 3d3 2 + 4ayt® + 5dst* + ...

after simplification,then we will get

2L

BEOEE)

Lets us a function

= [1 4 (2d2)t+ (2d3) + (4dy — 2drd3)P + (4ds — 2d32 ) + ... .

h(t)

()
1)

= 1+pit+pot*+

since h(t) € B, then A(1) is in the form that as:

[e5)

) =1+Y pt", (eD).

n=2

Using the above statement then we get

using (4.5) in (4.7) and then we have

SO

v(1)

v(t) =

A1) —1
1 =
0=
Cl4pitpP -1

L4 pit 24+

_ pit+ paP + paP + patt
2+ pit+ pot? + psP

)

26

4.3)

4.4)

4.5)

(4.6)

“.7)
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it can also be written as

v(1) = (p1l+ pol + psP + pat) (2 + pii+ o2 + pst) 1,
after simplification we will get

3
pit p2 pip2  P1, P3\,.;3
h="1" Py 21420y
v 2+(4+2> +(2 +8+2)+

2 4 2
—p3p1  3pip2 Pl P4 P\ 4
N T g R A 4.8
( 2 + 8 16+2 4) T (4.8)

as we know that

tanh[v(1)] = [v(1)] — 3 + T +..,
SO,
pit - 2 (P2, P33
g 1 1
tanh[v(1)] >t ( ) + < > +5 ) +
—p3p1 | pip2 0p1 P4 Pr\ 4
1 4.9
( > T4 Tt 4) e (49)
1 2
— 1 +tanh[y(®)] = [1+ 25 4 Bpy p1p2+p1+ P+
2 12 2
—p3p1  Spip2 Pl pa Pi\u
F+...0. 4.10
( > 16 m 2 4) i ] (410
Using (4.4) and (4.10) and substituting in (4.1), then we will get
v v \12 Y v <13 v v 2\14 pit P% P2\ 2
1+ (2a2)t+ (2a3)Y + (4dy — 2dra3)Y + (4ds —2a3°)F + ... 1+7+ 4 +7 t
N P1p2+P1+ 0 —p3p1 5pip2 DY Pa_ PR\, @11)
2 12 2 16 32 2 4 e '

By comparing both sides of the above equation, we obtained

20, = 2L (4.12)
2
p2 Pl
2= (2221 4.13
a3 (2 4>, (4.13)
3
. .. (-pp2 P} D3
2 = LA £ 4.14
ddy ards ( 5 +12+2), ( )
sy —2ap — (PP pip2 OPL pa p3 (4.15)
3T 2 4 32 "2 4 ) '

Consider (4.12) and solve for the coefficient d>, and then we get

pi

22y =,
ar )



:dzzz

Consider (4.13) and solve for the coefficient a3, and then we get

2

Y P2 P

) s _ i
L.2as ) 4,
2

. P2 P
— = — — —,
BT

Using (4.16) and (4.17), put in (4.14) and solve for the coefficient a4

—pip2 . P3P
2 2 2)

Co4dy —2adra5 = (—+—+—

4d4:2d2d3+(#+f—3+%),
=2 () (e l) -2 e
:aﬁzm—i—&—i— p?

32 8 192
Using (4.17), put in (4.15) and solve for the coefficient as

2 4 2
5 5 -p3p1 pip2 Op]  psa p5
 4ds —2d3° = - S
S5 T ad ( > T4 Tt 4)’
> (—pip1 . P2 Opt ps p3
dd< = 24 _ ps_Pa
“ “3+( > T4 Tt 4)’
2 2 2 4 2
. —pi P2 -p3p1 pip2 Op]  psa  p5
dg- =2 ( £ F2 _ g4
4 (8+4)+( > T4 32 4)’
sie | P2 PL_p2pi] _papi pip2 0P pa P
ST 18 "3 8 2 4 32 2 47
2 4 2
v —p3p1r , piP2 ., P1 P4 D3
Adc — P P4 P
G=—H Ty Tyt g
2 4 2
v —p3p1  Pip2 P P4 D>
:> — —_—— =,
s § 32 12878 m

Now we will find the absolute values of the coefficients.

We have (4.16).

taking modulus on both sides, then

28

(4.16)

4.17)

(4.18)

(4.19)



29

using Lemma (2.10.1) and Equation (2.12), then we get

| o 2 < 1
Q=< =<=
2 =3 = 25
S0,
. 1
FARSS (4.20)
2
We have (4.17).
. _p pt
3 4 3 )
taking modulus on both sides, then
3| = |22 - pi|_ 1 pi
3 4 3 4 P2 > )
using Lemma (2.10.1) and Equation (2.14), then
2
Ip ——| 2maxd{ L 2(5 )— 1},
2
< —max{1,0} = -,
4
S0,
. 1
@3] < 5. (4.21)

We have (4.19).
. P 3pp2 p3
192 32 8’

taking modulus on both sides, then

P 3pipa | p3

=11~ "3 t%

Y

using triangular inequality and Lemma (2.10.2), then we get

P 3pip +1??3
192 32

h% __EE h@“*

— 192 192 192 4’

S0,

(4.22)

FN.

We have (4.19).

2 2
. Py P pp ps P}
=373 g T8 T



taking modulus on both sides, then

P Pip2 _pspy pa DY
327732 8 8 128)

|ds| =
using (2.10.1) and Equations (2.12) and (2.13), then

o 1, 1, 1
< = _ _ _ _
|ds| < 8\1?4 pip3| + 35 Pilip2l+ 55 Pl +

128
1 1 1 1
< 200V L (2)2(2) 4 —— (D)2 4 ()4
< $@)+ 5 @PQ)+ 55 0P+ ()
b1 13
=4737878 &
SO,
ds| < 2
615_4.

Hence proved.
Theorem 4.2.2. If { (1) € S¥(1+tanh(1)) , then

&3 — edr?| < %mdx{l, H}.
Proof. Utilizing (4.15) and (4.16), then we get

2 2
a3 — edy®| = &—&—8<&)

4 8 4) |
2 2
. v 2 P2 P P
— & == - _g—
5 —edy”| = | =g — &,
el = P2 (L EN 2

Y

24¢€\ 5
P2 — 4 P1

using Application of Lemma (2.10.1) and Equation (2.14),then we get
2 2+¢€
&3 — edr?| < Zmdx{l, '2 (%) - 1‘}

1 £
a3 — edr?| Simdx{l,%}.

S0,

Hence proved.

30

(4.23)

(4.24)



Corollary 4.2.2.1. If {(1) € S;(1 +tanh(l)) and € = 1, then
. 1

‘513 - 022’ < 5
Proof. Utilizing (4.16) and (4.17), then we get

ay—a? = | (222 - (B
32 4 8 4) |
p_pi_ Pt

4 8 16|

using Application of Lemma (2.10.1) and Equation (2.14),then we get

2 3
|d3 — edr?| < Zm&x{l, ‘2 (Z> — 1‘}

S0,

Hence proved.

4.3 Hankel determinants

The following results are evaluted.

Theorem 4.3.1. If (1) € S;(1+tanh(l)) , then

A=

|dads —dy| <

Proof. From (4.16), (4.17) and (4.18), then we have

2 3
NV pL(p2 P p 3pip2
|drds —day| = —(———1)—(—1— +

4 \47 38 192 32
pip2 Py P 3pipa p3

16 32 192 32 8
:'7_1??_5191172 p3

|dhds — dy| =

Y

192 32 8

Y

p3
8

)|

31

(4.25)



implementation of triangular inequality and Lemma (2.10.2), then we get

7 Spip P3
192 32

)192 320192
7 16 1 24 1

< — J— _ — =
_96+96+96 9 4’

192 32+8

E 2(7)‘27 5 1

S0,

=

dads — d3?| <

Hence proved.

Theorem 4.3.2. If { (1) € S;(1+tanh(1)) , then

11

|a2a4—a3 |_ 16

Proof. From (4.16), (4.17) and (4.18), then we have

2
ldody — 52| = | 2L ﬁi_%ﬂh+@_ P2 pi
20403 4\192 32 '8 4 8

2|_‘p‘1‘_3p%pz pips P35 Pl pip

Y

|a2a4—a3 + ——= ——=—=4

768 128 32 16 64 16

p1p3_& 3 1 1 i 4
32 16+(128+16>p1p2+(768 64 ) 1

_|pps | Spipe 11p p3
32 128 768 16|

2 2 2
drds—as?| = |22 (py - LP1) L P
128 30 32 16|

bl

a2a4 —a32\ = )

using Lemma (2.10.1) and Equations (2.12),(2.13) and (2.14), then we get
s~ < o (2(2)+ (27 + - (2)(2)
— 128 16 32 ’
5 1 1 5+4+42 11
ST6T3T8T 16 16

SO,
v v v2|< 11
araqg —da —.
204 31> 16

Hence proved.

Theorem 4.3.3. If { (1) € S;(1+tanh(l)) , then

25
93,1 (8)] < T 0.78125.

32

(4.26)

(4.27)



Proof. Third order Hankel determinant is defined as:
93,1 () = d3(drdy — d3*) — du(dy — dad) +ds(d3 — do”),
taking modulus on both sides, then we get

93,1 (8)| = |da||(dads — d3*)| — |dal| (ds — dad3)| + |ds||(d5 — do?)],

33

by implementing results Theorem 4.2.1, Corollary 4.2.2.1, Theorem 4.3.1 and Theorem 4.3.2,

then we obtained

1<) 1 (6) -3 6)
3
g;

<11+1+
=32 16

<11+2+12_25
- 32 -3

so, we get

25
93,1 (§)] < T 0.78125.

Hence proved.

4.4 Zalcman Functional

The result is evaluated:

Theorem 4.4.1. if {(t) € S;(1+ranh(1)) , then
1

) .
— < —,
|a3 aS|_4

Proof. Using (4.16) and (4.18), then we get

o PP\ p3 pip Pl pip pa
o2 (B

Y

4 4 32 32 128 8 8

_ P_%JFP_?_PzP% P_%_P%Pz_l?? Jr1173191_&
16 64 16 ) 32 32 128 8 8/
| Pt 3p3 3pipa papipe
128732 32 g 8|
1

Y

8

4 3p2 Ip? 1
piy 30 P1p2+(2

)2 _

(4.28)
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using Lemma (2.10.3), then we get

1 1
22 o ) — =
’613 615| > 8( ) 47
so, then we have
1
a3t —ds| < e (4.29)

Hence proved. 0
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CHAPTER 5

q-EXTENSION ON A NEW SUBCLASSES OF STARLIKE
FUNCTIONS ASSOCIATED WITH SYMMETRIC POINTS
q-TANGENT HYPERBOLIC FUNCTION

5.1 Introduction

In this chapter, we established a g-extension on a new subclass of Starlike function and related
to symmetric points. The hyperbolic function of trignometric tangent is intimately associated
with this subclass. we explore the results of the Zalcman functional, Henkel determinants,
Fekete-Szego inequality, and coefficient estimations.

For the following results we suppose [n]q , where n=1,2,3,4,.... and q € (0,1).
Defination 5.1.1. Lets { (1) € A isin S; (1 4 tanh(qt)) after that

21Dy C (1)

m =<1 —l—tanh(ql),

for all t€ D.

5.2 Coefficients Estimates and Fekete-Szego Inequality

The main results for the specified class of S; (1 + tanh(qt))
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Theorem 5.2.1. If { (1) € S} o (14 tanh(qt)) , then

2
q q
jd2| < ——— |d3] < :
I+ q(1+q)
da| < { 1 1 n 1 N 2}
d —— |+ Z
! _(1+q+q2+q 6 1+q 1% 4q(1+q)| 3
4 2q+q> -2 +q*—1 1
1% g || e e |l ]
a(l+9+9*+°) [| q(1+q) q(l+q) | [a(1+q)
Proof. According to the definition:
21D (1)
——————— < l+tanh(q})
qORIC))
Since § (1) € S} 4, using the subordination techniques, then we get
2D, (1)
———~— = 1 +tanh(v(ql)). (5.1)
S —¢(=h)
Since § (1) € A, then (1) is in the form that as:
() =1+ Y ai", (1eh). (5.2)

n=2

So it can also be written as:
C() =t+ad +dsf +dtt +ast + ...,

it follows that

E(—1) = —t+ P —ast +dgt* —dsP + ...,

which implies

) —L(—1) =244 2a38 + 2058 + ...,

as we know that
E(ah) —&(p)

Dyt () = =0

)
so, then we have

(qt+ > q?P + a3q°P + dyqt + asqP +...) — I+ P + 3P + dyt +dsP +....)

DS () = o

Y

= q + 2d>qot + 3@ qat? + 4daqul’ + 5dsgstt + ...

which leads us

21Dy C (1) _ 2(qup + Qudal + qadsl + qudat* + qsdsts....)
¢ —¢(-1) 2p +2d3p3 + 2dst5 + ... ’




37

after simplification,then we will get

% = (a1 + (D)t + (d393 —q1d3)F + (dags — dadsq2) P+

(qsds — qids — d3’qz + quas > )t + ... (5.3)
It can also be written as:

2pDgC (1)

{OE{= [1+a(1+qt+d3q(l+ Q)P + [a(1 +q+q* +q°) — dods (1 +q) P+

ldsq(1+q+q*+q°) —as’q(1+q)t* +....]. (5.4)

Since A(1) € B, Then A(1) is in the form that as:

ht)=1+Y put", (teD). (5.5)
n=2
Similarly,
h(g) =14) puqat". (5.6)
n=2
So, lets us a function
1+v(qt
B C L U~ S (5.7)

using the above statement then we get

1
v(qh) = (5.8)

using (5.7) in (5.8) and then we have

14 pigt+ pg? P4 — 1

1 pig g4+ 1
g+ pog? P+ pag’P.
24 pigtF g4

v(qh)

SO

v(gh = (pigt+ p2®P + p3®P o) 2+ pigt+ pog? P + )7L

after simplifying above equation, then we get

2 3
piqh —p1 . D2 —pip2 . Pi . P3
V(ql) = T + (Tl + 7) q212 + (T + gl + ?> q313+

2 4 2
—p3p1  3pip2  Pi P4 P35\ 44
A R 5.9
( 2 8 16 2 4>q o (59)



as we know that
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v(g)]?  2v(q)))?
tanh[v(qh)] = [v(qt)] — DS 2@l -
3 15
So,
2 3
piqt P71, P2 2.2 —pip2 P71, P3 3.3
tanh|[v(qt)] = — — 4+ = 1 — =+ = b
anh[v(qt)] > +( 4 -I—Z)q +< > +12+2)q +
2 4 2
—p3p1 , PPz Opy  pa DP3\ 44
— — == 4. 5.10
<2+4 22 4>q+’ >.10)
2 3
pat | (=pi P2\ 20 (—P1P2 Pl | P3)\ 33
1 hiv(igh] = [1+— —+ = 1 — =+ = 1
= 1 +tanh[v(qt)] {4— 5 +( 4 +2>q +< St T, ettt
2 4 2
—p3p1  SpiP2 D1 P4 D3\ 44
e F+.... 5.11
(2+16 272 4)q+} .11
Using (5.4) and (5.11) and substituting in (5.1), then we will get
L dr(1+Qt+d3q(1+qF +[da(1 +9+° +¢°) — dadz (1 +q)JF +
1 2
ldsq(1+9+9°+q°) —a3’q(1+ Q) +... = {1 +%+ (%Jr%) P+
3 2 4 2
—P1pP2 | P1 |, P3\ 3,3 —p3p1  Spip2 Pl P4 D3\ 44
—— =+ = b —— === F—+... 5.12
< 2 +12+2>q +( > 16 22 4)q +} ©-12)
By comparing both sides of the above equation, we obtained
dz(l—l—q):pqu, (5.13)
P2 P2 2
aq(l+aq) =5~ )4 (5.14)
2 4
_ 3
di(14+9+9*+q°) —mas(1+q) = (%Jr%Jr%) 0, (5.15)
dsq(1+ a4+ 2+ q%) — g1 +q) = (PP _OPL Py PN e (s g
Consider (5.13) and solve for the coefficient d>, and then we get
.'.avz(1+q)=l%q,
so,
Y pi1q
— dHh = . 5.17
2 2(1+q) (>.17)

Consider (5.14) and solve for the coefficient a3, and then we get

cazq(l+q) = (

P2
2

i
4

n ),
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S0,

2
= [@_ﬂl. (5.18)

Consider (5.15) and solving

. L - P
a4(1+q+q2+q3)—aza3(1+q)=< p21p2+1;+p;) 3,

v v v 2 p 3
a4(1+q+q2+q3):aza3(1+q)+< pzlp +1é+172)q3,

using (5.17) and (5.18), put in above statement and solve for the coefficient ds

2 2 3
v (1 203 =(1 p1q q P P2 —PiP2 P P33
di(1+q+9°+q’) (+q){ o L T ) Tl ts ) e

2(1+q) 1+q)
3 3 3
__ 19 —P1, P1p2 —P1P2 P17 P3) 3
_q(1+q)( g T 4 )+( 2 +12+2>q’

3{( 1 1 ) (1 : ) 3}
d 8q(l+q) 12 1 \2 4q(1+q) 2T
S0,

3
) q 1 1Y (1 1 ) p3]
— dy = U I Y (. P 519

4 1+q+q2+q3[<8q(1+q) 12)1”1 2 4q(1+q) )PP (5.19)

Consider (5.14) and solving

2 4 2

- Opy ' pa p
- deall 2 3 _ g22a(1 _ p3p1 | PiP2 YPp P4 Py 4
c.dsq(l+q+q°+q°) —da3°q(l+q) ( 5 + 1 32+2 7 )d
dsq(1+9+q* +q°) =ds’q(1+q) + ey i 0Pt pa P ¢
2 4 322 4 ’

using (5.18), put in above statement and solve for the coefficient as

2 3 @ (p2 P\1* [(-psp1 Pipa Opt pa PR 4
dsq(1+q+q +Q)=q(1+q){ <———1>1 +( FoLE 1+———2)q,

qi+q \4 8 2 4 32 "2 4
q* —p1 ;)\ [(—ppi Pip2 Opt ps P3N 4
— 1 r= _ r~ _ 'z
« +q)q2(l+q)2(4 +2) +< > 4 322 4)‘1’
_ q[ —pi i Py pip2 pipi p%l?z}
16q( 1—|—q) 4q9(1+q) 4q(1+q) 2 4 |’
1 1 1 1
—o0)pt4+(———= 2_|_(__—) 2.
Kl6q (1+q) )pl (4q(1+q) 4)p2 4" aq(l+q) ) 1P
DP3D1 y2
2 2]’

S0,

BPR.  C p —
s = o p
q1+q+q2+q®) [ \4 4q(1+q) /" 4 4q(1+q))"?
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-1 4 D3P1 | P4
S B Sl 5.20
<16q(1+q)>p1 2 2 20

Now we will find the absolute values of the coefficients.

we have (5.17).

g — p1q
2(1+q)’
taking modulus on both sides, then
2(1+q) |
’d/2| — |pl|q
2(1+q)’

using Lemma (2.10.1) and Equation (2.12),then we get

lpila 29 g
(I+q) 2(1+q) 1+q

5l <
|az|_2

S0,

| < ﬁ (5.21)
We have (5.18).
az = @ {& - p_ﬂ
q(1+q) |2 4]
taking modulus on both sides, then
|a3| = @ {& - p—%}
qll+q) |2 4]
3| = < _|m_n
q(1+q)|2 4/
2 2
a3 = 5 a—— | py — L],
2q(1+4q) 2

using Lemma (2.10.1) and Equation (2.14), then
2
1
=2 < 2max{1, '2(5) - 1’}
< 2max{1,0} =2,

S0,
< —(2),

then we have

3] < —3 (5.22)
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We have (5.19).

. q° ( —1 1) 3 (1 1 ) 3
dy = +S5 )i\ 5 oa s | et
(14+q+a>+q%) [ \8q(1+q) 12 2 4q(l+q) 2

taking modulus on both sides, then

|da| = @ [( ! +i)p3—(l—;)plpz+ﬁ]
(1+q+q>+q°) [ \8q(1+q)  12)"1 \2 4q(1+q) 2 ]/

et - (st e
8q(1+q)  12)717\2 4q(1+q) ) 772

q
using triangular inequality and Lemma (2,10.2), then we get

’ v

4l =

Y

(1+q9+9*+q°)

( 1 +1)3 (1 1 ) NAPHE N 1
8q(1+q)  12)P77\2 4q(1+q) )PP T 2| =512 8q(1+q)| T 7|2 2q(1+q)

Y

1 1 1 1 1 1
) (e [ I ) B T U
(12 8q(1+q)> ' '12 8q(1+q) 2 4q(l+q) 2

| 1 +21 1 N 1+ 1

— 16 4q(1+q) 2 6| |6 4q(1+q)|

| 1 +22 N 1+ 1

— |6 4q(1+q) 6 6 4q(1+q)|

| 1 N 1+ 1 +2

— 16 4q(1+q) 6 4q(1+q)| 3’

so, then we have

| < q {1 N VS OV +2} (5.23)
a - — -+ —|+ ] .
U= 04qr@+d) |6 4q(1+q)| |6 4q(1+q)| 3

We have (5.20).

o= girangre | G arre) e (- ageg )7
ds = 1 aas )P\ )P
ql+q+2+¢) | \4 4q(1+q) /" 4 4q(1+q))"?

—1 4 P3PPI P4
(16q(1+q))p1 2 2]

taking modulus on both sides, then

= e | G- mrg) i (g ) A
a=| = - e
g0+ q+ @ +q) |\4 4q(i+q) ) P27 \4 4911 q) ) P2

(s i)

—1 4 D3Pl D4
(16q<1+q>)p1 2 2

q(1+q+9>+9q3)

Y
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using Lemma (2.10.1) and Equations (2.12) and (2.13), then
1

4
Y q 1 2
as| < + | — - _|_
’W‘UDH +5 \P1P3—P4|}
4
i) < Hl__'z 2+ i - 224
| q(1+q+q*+¢*) [4]  q(1+q) @r@+y q(1+q) @)
1 1
—(2)*+ = 2}7
'16QO(1+QO) ( ) 2( )
S0,
4 2 2
2q+2q-—2 -1 1
ot s P il
q(1+q+q*+q’) [| q(1+q) q(1+q) q(1+q)
The proof is finally complete. 0O

In this theorem, when q — 1~, we obtain the result for class S; previously established by Khan

et al. [35], as displayed in the corollary.
Corollary 5.2.1.1. If {(1) € S} , then
1
2] < 7, ld3] <
Theorem 5.2.2. If {(1) € S} 4 (1 —Hanh(ql)) , then

2

S q . €lq

|a3—8a22|§ max{l,—}.
q(1+q)

Proof. Utilizing (5.17) and (5.18), then we get

45— ed’| = (q(lqicp {%_%D £<2<ffq>)2

Cr2 @t P
2q(1+q) 4q(1+q) 4(1+q)?

Y

. q-p2 ( 1 4 3 >p2q2}

_ _ 221
2q(1+q) \4q(1+q) 4(1+q)?

_‘ 2 ((1+q)+8q) 2

T |2q(1+q) \ 4q(1+q)2 )7 )
_ e, (ww
2q(1+q) 2(1+q) ’

using Application of Lemma (2.10.1) and Equation (2.14), then we get

2q° 1+q+8q) }
v v 2 A
—ed? < L2 =27 ) b
43— eda |_2q(1+q)max{ (2(1+q)
1+q+eq—(1+q) }
1+q

Y

q2
< m&x{l,
q(1+q)

2
E
Sq_mdx{l,m},
q(1+q) 1+q
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S0,

2
. .2 q A €lq
a3 —€edry | < ———maxq 1, —— 3. 5.25
1% 2|_q(1+q) { 1+q} 52

The proof is finally complete. 0O
In this Theorem, when q — 17, we arrive at the well-known outcome that is stated in the

following corollary.

Corollary 5.2.2.1. If {(1) € S}, then

1 £
|ds — ed?| < Emdx{l,%}.

Theorem 5.2.3. If { (1) € S; , (1+tanh(qt)) , then

|ds — d22| < .
q(1+q)
Proof. Utilizing (5.17) and (5.18), then we get

a3 — | = (q(lquq) {%_%%D - (%f;fq))z

¢“p @i pid
2q(1+q) 4q(l1+q) 4(1+q)?

)

)

Y

2
q°p2 1 1 ) 22
= - + Pia
2q(1+q) <4q(1+q) 4(1+q)2)"!
| @ ((1+q)+q) 25
- 1

2q(14+q) \4q(1+q)? ’
@ _(ﬂ) >
2q(1+q) |7 \2(1+9) )"

using Application of Lemma (2.10.1) and Equation (2.14), then we get
2q° { 1+2q
v v 2 A
a3 —dy"| < ————madx 1,2( —1] ¢,
| 2q(1+q) 2(1+q)
1+2q—(1+q) ’}

l1+q

¢
< mdx{l,
q(1+q)

2 2
q R q q
< ————max< 1, = (1),
q(1+q) { 1+q} q(1+q)

S0,
2

q(l+q)
The proof is finally complete. 0

|5 — dr?| < (5.26)

In this Theorem, when q — 17, we arrive at the well-known outcome that is stated in the

following corollary.

Corollary 5.2.3.1. If {(1) € S} , then

N | =

&3 —dr?| <



5.3 Hankel determinants

The following results are evaluted.

Theorem 5.3.1. If { (1) € S; 4 (14 tanh(qt)) , then

1 1 1
+ - +
4q9(1+q)?  6(14+q+9*+q*) 4q(1+q)(1+q+q>+q?)

|dads —dy| < ¢° {

2 —1 1
+ + +
3(1+q+9>+¢%) ’4q(1+q)2 6(1+q+q>+q3)

1 } .

4q(14+q)(1+q+9>+¢3)
dads — du| = ( nd )( @ {_pﬁ@])— q Ki—
2(14+q)/) \q(1+q)| 4 2 1+q+q2+q |\ 12

Proof. From (5.17), (5.18) and (5.19), then we have
1 5 (1 1 p3}
- — - _|_ i}
8q(1 +q>)”1 (2 4q(1 +q>)p“"2 2

b

drdsz —dy| = Pig’ <_p%+&)— q3p% (i_;)"‘
2q(1+q) \ 4 2 1+q+q2+q> \ 12 8q(l1+q)
pip2 (1 o1 > _ a3
1+q+q>+q>\2 4q(1+q) 2(1+q+q*+g3)

Y

3

2q(1+q) \ 4 2 1+q+qg2+q> \12 8q(l1+q)

9

p1p2 (l_ 1 >_ p3
1+q+q®2+q>\2 4q(1+q)) 2(1+q+q>+q%)

—pi P2 P (i_ 1 )
8q(1+q)? 4q(14+q)> 1+q+q>+q*> \12 8q(l+q)

dzdg — clv4| = q3

Y

P12 (1_ 1 )_ P3
1+q+q2+q>\2 4q(1+q) 2(1+q+q*+g%)

1 1 1

v v v 3 3

dods —dy| = ¢°| — + - )+
2d3 — di| q‘ P (Sq(1+q)2 120+9+92+q°) 8q(1+q)(1+q+q2+q3)>

1 1 1
pP1D2 + — >_
(4q(1+q)2 2(1+q9+9’+9q*) 4q(1+q)(1+q+9>+q?)
P3
2(1+q+9>+¢q?)

Y
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d2a3 — d4| = q3

1 1 1
3
p + - )—
1 (Sq(1+q)2 12(1+q+q2+q®) 8q(1+q)(1+q+q2+q°)

1 1 1
pPip2 + — — )_|_
<4q(1+q)2 2(1+9+9>+3*) 4q(1+q)(1+q+q>+q?)
pP3
2(1+q9+9>+¢q?)

Y

implementation of triangular inequality and Lemma (2.10.2), then we get

1 1 1 1
3
p + — )—plpz(—+
! <8q(1+q)2 12(1+q+q*+q3) 8q(1+q)(1+q+q?+q°) 4q(1 +q)>
1 1 1
2 3\ 2 3 )+ 5 2 3 <2 2+
2(1+q9+q9*+q°) 4q(1+q)(1+q+q°+q’)/) 2(1+q+q*+q°) 8q(1+q)
1 1 ‘ 1 1

~ ) +
12(1+q9+9’+¢q®) 8q(l+q)(1+q+q>+4q?) 4q9(14+q)> 2(1+q+q*+q%)

1 1 1 1
_2 + _
4q(1+q(1+q+9>+q3) (8q(1+q)2 12(1+q+9>+¢%) 8q(1+q)(1+q+q2+q3)) '

1 1 1 1
12 + — - +
‘8q(1+q)2 12(1+q+q>+q%) 8q(l1+q)(1+q+q>+9q?) (4q(1+q)2

Y

1 1 1
- +
2(1+q+9>+9q?) 4q(1+q)(1+q+q2+q3)> 2(1+q+q>+q3)

1 1 1 1
< + - +2‘—+
'4q(1+q)2 6(1+q+q>+q*) 4q(1+q)(1+q+9>+9q?) 4q(1+4q)?
1 1 1 1
- - - +
204+q+q2+q%) 4q(1+q)(1+q+q>+q®) 4q(1+q)> 6(1+q+q*+q?)
1

1 1 1
+ + - -
49(14+q)(14+q+q*>+q?) ‘4q(1+q)2 6(1+q+q>+q*) 4q(1+q)(1+q+9>+q3)

1 1 1 1

+ + :
2q(1+q)*> (1+q+q>+q?) 2q(1+q(1+q+q2+q3)) 2(1+q+¢>+q?)

1 1 1 1
< + _ +] -
‘4q(1+q)2 6(1+q+q>+q*) 4q(1+q)(1+q+q>+q*)| |[(1+q+q>+q3)
1 . 1 o 1
3(1+4q+q*+q%)| |4q(1+q)? 2q(1+q)? 6(1+q+q>+q?)
1 1

Y

_I_
4q9(1+q)(1+q+a*+q®)  2q(1+q)(1+q+q*+3)

1 1 1 2
< + — + +
_‘4q(1+q)2 6(1+q+q>+q*) 4q(1+q)(1+q+q®+q*)| 3(1+q+q>+¢?)

‘ —1 1 1

Y

+ +
q(1+q)?  6(1+q+q>+q*) 4q(1+q)*(1+q+q*+3)

so, then we get

1 1 1
+ — +
49(1+q)?  6(14+q+q>+q*) 4q(1+q)(1+q+q*+q?)

|dads —dy| < ¢° {
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2 —1 1
+ + +
3(1+q+q*+q°) ’4q(1+q)2 6(1+q+q>+q°)
1
. 5.27
4q(14+q)(1+9+¢>+¢?) } -2
This is the desired result. 0

In this Theorem, when q — 1™, we arrive at the well-known outcome that is stated in the

following corollary.
Corollary 5.3.1.1. If {(1) € S}, then
|dads —dy| <
Theorem 5.3.2. If {(1) € S} 4 (1 +tanh(qt)) , then
q* [ 1 N 1
+qll+q+q*+q’  ¢*(1+q)
Proof. From (5.17), (5.18) and (5.19), then we have
3
NIV P14 q —1 1 ) 3 (1
drdy — a3~ | = 4 — B
R ‘(zmq)) ((1 +q+q ) Ks«m ta) 12)717 A2
2
1

2
1 P3 q> [—p Pz} 2
4q(1+q)p“p2 2D (q(1+q) 4 2

riq’ < -1 1 )_ pirg’ (1_
(1+q)(1+q+g2+qg3\16q(1+q) 24 (1+q)(1+q+q2+q3) \4

|drdy — d3?| < ,

1 ) N pipaq’ _( piq* N
8q(1+q)/) 4(1+q)(1+q+q>+q*) \16¢*(14+q)*(1+q+q*>+¢?)
¢ p%pzq“)

4¢2(1+q)*  4q*(14+q)? /|

4
g A 1 B 1 B 1 )_
(1+q) p1(24(1+q+q2+q3) 16q(1+q)(1+q+q>+q°)  16¢2(1+q)?
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Y




47

o q ], —2-3q of —3-6q4-¢*—-¢°
e {p2(8q2(1+q+q2+q3)) _pl(48qz(1+q+q2+613)”+
P1p3 P ‘
4(1+q+q*+q*) 4q2(1+q)|
_q {‘pz‘pz( —2-3q >_p2( —3-69-¢°—¢’ >|+
(1+q) [75\82(1+q+ 2 +q%) ) "'\48q%(1+q+q>+q?)
p1p3 P% H
‘4(1+q+q2+q3) 4¢*(1+q) |’

R e | R Cee 1B
A+q PV N\ 82 rqrq?+ad) /) |72 P\ “16—24q

plles] |l )'}

4(1+9+9>+q*)  4q*(1+q

-3-69—¢°—¢’
2
P2 p1< “l6—24q  J|"

1|3l |paf’ H
4(14q+¢>+q*)  4q*(1+q) |/’

—2—-3q
8¢>(14+q+9q>+¢q°)

_q 2
~ (149 “””

using Lemma (2.10.1) and Equations (2.12) and (2.14),then we get

] ¢ 2-3q (2)(2) (2)°
dad — | < (1+q) {( a 8¢*(1+q+¢>+¢?) (2)+4(1+q+q2+q3)+4q2(1+q)}’
—2—-3q

1 1
+ + ,
P(1+q+a¢>+¢%)| (1+q+q>+g%) q2(1+q)}

4
. v v 2 q 1 1 (—2—-3q) }
drds —az”| < + + — . (5.28
2 = 57| < 1+q[1+q+q2+q3 ?(1+q)  |¢?(1+q)(1+q9+q*>+7°) ©:28)
This is the desired result. 0

In this Theorem, when q — 1™, we arrive at the well-known outcome that is stated in the

following corollary.

Corollary 5.3.2.1. If {(1) € S}, then

11

v v v 2
— < —
|drdy —az| < T:
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Theorem 5.3.3. If { (1) € S; 4 (1+tanh(qt)) , then

1 1
_|_
q(1+q>2(1+q+q2+q3 q*(1+q)

93,1 (p)] < qﬁ[

_I_

2 1

§> ’4q(1+q)2+
2

Jr3(1+q+qz+q3)Jr
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1 1 1 1 1
(1+q+q2+q?) (’5_ 4q(1+q) ‘ " '3+4q(1+q)
1 1
6(1+q+a>+¢%) 4q(1+q)(1+q+q>+q°)
] 1 1
‘4q(1+q)2 el tara+a) 4+ rat@+a)
1 (’2q(1+q)—2' ’q(H—q)—l
*(1+q)(1+q+q>+¢?) q(1+q) q(1+q)

vl )]

Proof. Third order Hankel determinant is defined as:

93.1() = d3(dady — @3%) — dy(dy — dads) + ds(ds3 — da?),
taking modulus on both sides, then we get

93,1 ()| = |dal| (d2ds — d3?)| + |aa|| (as — azaz)| + |as|| (a3 — a3)],

by implementing results Theorem 5.2.1, Theorem 5.2.3, Theorem 5.3.1 and Theorem 5.3.2, then
we obtained
2 4
q q 1 1 (-2-3q) D
; < + + +
[93:1(6)] (q(1+q)) (1+q{1+q+q2+q3 *(1+q)  [P?(1+q)(1+q+q*+q°)
( q {1 1 +1+ 1 +2D(3{ 1 N
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1 1 2

1
- + + +
6(1+q+q>+q*) 4q(1+q)(1+q+q>+q*)| 3(1+q+9>+q°) '4q(1+q)2
1 1

q4
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_ N\ 2
qugll(;:?zl) 2'+‘q(;(1rj)q) 1'+‘q(11+q)‘+1D (q(1q+q))’
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(—2—-3q)
P(I1+q)(1+9+q*+q3)

6
q 1 1
, + +
931 (6)] < q(1+q)? (1+q+q2+q3 2(1+q)
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q® (1 1 +1+ 1 +2)( 1 N
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1 1
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] 1
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1 1 1
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‘ ! ’+1)} (5.29)
q(1+q) ’ '
This is the desired result. 0O

In this Theorem, when q — 1, we arrive at the well-known outcome that is stated in the

following corollary.

Corollary 5.3.3.1. If {(1) € S}, then

25
93,1 (8)] < T 0.78125.

5.4 Zalcman Functional

The result is evaluated:
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Theorem 5.4.1. If { (1) € S; o (14 tanh(qt)) , then

q4

ql+q+q>+q3)

&3> —ds| <

Proof. Using (5.17) and (5.20), then we get
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using Lemma (2.10.3), then we get

4

@5 =] < 5
SO,
2 q*
d3” —ds| < T3+ i) (5.30)
This is the desired result. 0

In this Theorem, when q — 17, we arrive at the well-known outcome that is stated in the

following corollary.

Corollary 5.4.1.1. If {(1) € S¢ , then
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CHAPTER 6

CONCLUSION

The main goal of this thesis is to find bounds on the initial coefficients of analytic, univalent,
normalized functions in the open unit disk.We started by reiterating key concepts and initial
findings from Geometric Function Theory. These fundamental ideas serve as the basis for our
groundbreaking discoveries, and we also looked at modern developments in Quantum Calculus.
Apart from a detailed examination of the impact of the g-derivative operator on Geometric
Function Theory. Additionally, using g-Calculus, we have created new families of analytic
functions connected to symmetric points.

The research centers on a specific category of univalent functions known as starlike functions,
which are related to symmetric points. Expanding on the work on the S} class of starlike functions
associated with symmetric locations done by Khan et al. [35], 1 had explored into expanding
this class. A new class expressing starlike functions with regard to symmetric points subordinate
to the hyperbolic tangent function was introduced, an extension of the original S category.

I had provided a g-extension of these function classes by constructing the S; (¢) class, which
comprises q-starlike functions subordinate to the g-hyperbolic tangent function. The g-derivative
operator was employed to define these classes, and their properties were analyzed using subordi-
nation techniques.

I investigated several essential characteristics of functions within the newly defined class, includ-
ing the Fekete—Szego inequality, the Zalcman functional, and coefficient bounds. Futhermore, i
had analyzed the Hankel determinants of second and third order for these functions. The results

show that these new classes offer advancements above those that already exist, extending beyond
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previously established theorems in Geometric Function Theory. I verified the consistency of our
findings with known results by examining the limit as @ — 1. I expect that this research will

make a significant contribution to the field of Geometric Function Theory.

6.1 Future Work

This thesis explores a important category in univalent function theory: starlike functions
related to symmetric points, specifically those subordinate to the hyperbolic tangent function.
I extend these classes utilizing the idea of convexity. Additionally, we draw conclusions for
the more comprehensive category of g-convex functions and examine both the geometric and
analytical relationships between the functions discussed in this work and the newly introduced

class.
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