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ABSTRACT

Title: On a new class of q̃-Starlike Function Associated with Sine Inverse Hyperbolic

Function

The aim of this thesis is to present and describe new subclass of univalent functions within the

open unit disk. The q-extension of the starlike functions subordinated to inverse sine hyperbolic

function will be determined by applying q-calculus. Furthermore, we will look into noteworthy

properties, including coefficient bounds, the Fekete-Szegö inequality, and the Zalcman functional.

The upper bounds on Hankel Determinants for functions belong to this newly defined class will

also be explored. It will be demonstrated that recently acquired results are more advanced than

those previously obtained by a large number of researchers in the field of Geometric Function

Theory. The special cases of newly derived results will be presented in the form of corollaries.
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

1.1 Overview

This chapter offers a thorough overview of the introduction and extensive review of literature

of Geometric Function Theory. It includes primary concepts and ideas within classes and their

subclasses of this theory. Since the class which contains functions which are analytic, univalent

work as infrastructure in Geometric Function Theory, so this chapter explores the foundation

of these classes and investigation of related subclasses. Hankel determinant, Fekete-Szegö

inequality and coefficient bounds for the classes are also briefly introduced. This chapter also

turns over the crucial ideas of quantum calculus.

1.2 Pioneers of Function Theory

Geometric Function Theory mainly concerned with analytic functions, is an intriguing area

of mathematics developed around 20th century. It is concerned with the geometric assets of

analytic functions. The functions whose ranges define star, close-to-star, convex, close-to-convex

etc geometries are called geometric functions and the study of geometric functions is called

Geometric Function Theory. The prominent contributors known for their endeavors to develop

the framework of function theory are Cauchy, Riemann and Weierstrass. Their ideas and methods
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are unique in a way that they explicate analytic functions by offering details with some distinct

perspectives to give an advanced pattern to complex analysis.

1.3 Riemann Mapping Theorem

A theorem that Bernard Riemann came up with in 1851, known as Riemann Mapping

Theorem [1], is the setting stone of this theory simply defined as any arbitrary domain (of

analytic functions) can be replaced or substituted with the open unit disk Ψ = { r̂ : |r̂| < 1 }. This

theorem serves a primary role in the base of Geometric Function Theory, see [2]. C. F. Gauss

(1777-1855) [3], who had already established the basic ideas associated with function theory

which includes Cauchy Integral Theory and complex integration [4], was the mathematician

most significantly inspired Riemann in the development of function theory.

1.4 Analytic and Univalent Functions

In Geometric Function Theory, functions are categorized into various classes and sub-classes

based upon their properties. All functions which are analytic and normalized belong to class

A, the most famous class in this theory. Analytic functions are those functions which are

differentiable at a point as well as in the neighbourhood of that point and if their derivative exists

at each point in a region then they will be called analytic in that region. Base of modern function

theory is laid on analytic functions defined in a chosen domain. By normalization, it means that

the function maps origin to origin means φ (0)=0 and its derivative at origin is 1 that is φ ′(0)=1.

Whenever two functions (let us say ĝ and k̂) are in class A, we say that ĝ is subordinated to k̂,

mathematically symbolized as ĝ ≺ k̂ if ĝ(r̂) = k̂(ω(r̂)) such that ω(r̂) is an analytic function,

with the conditions that it maps origin to origin i.e ( ω(0)=0 ) and |ω(r̂)| ≤ 1, see [5]. The most

significant class in this theory is S, having normalized univalent functions. In 1907, Koebe

studied about univalent functions in unit disk Ψ [6]. The analytic functions which assume no

more than one value in open unit disk (i.e. there exists a one-one mapping from any arbitrary

domain to open unit disk) are referred as univalent functions. Various nice geometries have been
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possessed by ranges of these functions and hence geometry of image plays a vital role in their

detailed analysis, see [2].

1.5 Subclasses of Analytic and Univalent Functions

A well-known subject in complex analysis, the idea of univalent functions was established by

Koebe [7] in 1907. According to what he proposed, functions in class S are analytic, univalent

in Ψ and also fulfill requirements of normalization. Class S has been categorized into the

class containing convex functions denoted by C, S∗ ( this class deals with the functions having

star geometry i.e. starlike functions ), the class having functions possessing close-to-convex

geometry is represented by K and C∗ ( quasi-convex functions’ class ). There exists a well-known

Alexander relation [8] among S∗ ( class containing starlike functions ) and C ( the class which

has convex functions ) given in 1915. Later Libra defined an operator and these two classes were

shown to be closed under this operator.

1.6 Class of Starlike Functions

Starlikeness is a fundamental geometrical characteristics. A part of the complex plane or the

domain is said to possess star geometry with respect to the reference (fixed) point, say r̂o, if each

point in it is associated with r̂o, by a straight line and all such line segments entirely fall within

the domain [6, 7]. Geometrically, the domain will be star-shaped or starlike when comparing to

that fixed point if all points of the domain can be seen from that reference point. The star-like

univalent functions’ class is comprised of all those functions belong to the class S, satisfying the

requirement r̂ real of r̂φ ′(r̂)
φ(r̂) is positive where r̂ belongs to open unit disk Ψ, see [9]. The univalent

function φ satisfying Re φ (Ψ) > 0 was proposed by two researchers Ma and Minda [10] where

φ (Ψ) possesses star geometry satisfying φ (0)-1=0 and φ ′ at zero is positive. Additionally φ (Ψ)

is symmetric about the real axis. They defined the general sub-class of starlike function as:

S∗(φ) =
{

h ∈ S :
(

r̂h′(r̂)
h(r̂)

)
≺ φ(r̂)

}
Starlike classes for different functions φ (r̂) were took into consideration by a number of
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researchers and their study investigated the geometrical traits, radius findings and coefficient

estimations for the functions of those classes. S∗L, the class introduced and investigated by Sokol

and Stankiewicz [11], consists of normalized analytic functions ( let say b) in Ψ that satisfy the

following criteria: ∣∣∣∣∣
([

r̂b′(r̂)
b(r̂)

]2

−1

)∣∣∣∣∣< 1, r̂ ∈ Ψ (1.1)

A function in the class S∗L is called Sokol-Stankiewicz starlike function. For the function

φ(r̂) if we consider 1+ sin(r̂), we get a new class S∗(1+ sin(r̂)) which was examined by Cho

et al [12]. The function class given by S∗e was considered by Mendiratta et al and this class was

generalized by Srivastava et al, see [13]. Inspired by the classes defined above, K . Arora and

S .S. Kumar [14] considered the function 1+ sinh−1(r̂) and introduced a new class of starlike

function.

1.7 Coefficient Bounds

The problem of discovering coefficient bounds for the analysis of geometry of complex-

valued functions contributes a fundamental role in this theory. Throughout the long history a

celebrated result is the Bieberbach conjecture [2] posed in 1916 and taken up by many researchers

from 1916-1985. It states that for each function φ ∈ S, |an| ≤ n for n = 2,3,... Bieberbach, himself

proved that |a2| ≤ 2 whereas Loewner [15] settled third in 1923. In 1955, Garabedian and Schiffer

[16] solved the fourth coefficient bound whereas an easy illustration of the same conclusion was

presented by Charzynski and Schiffer [2] in 1960. The proofs for the 5th and 6th were appeared

over a few years later. Then in 1985 de-branges defined the known coefficient assumption for

the function, for detail see [17]. To put it concisely, numerous attempts of researchers have

solved this conjecture for a few values of n and all values of n for certain sub-classes of univalent

functions. Bieberbach postulated in 1916 that the univalent function’s nth coefficient is smaller

than or equals to that of the famous Koebe function. In 1932, Littlewood and Parley proved that

for odd univalent function, for each n, the modulus of c̃ (being coefficients of analytic function)

is less than an absolute constant B, whose value by their method came to be less than 14 [2]. But

this conjecture was not supposed to be hold true for certain subclasses of S and become a source

of problem called as Fekete-Szegö problem.
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1.8 Fekete-Szegö Problem

An inequality found by Fekete and Szegö in 1933 for the coefficients of functions which are

univalent analytic has connection to the conjecture proposed by Bieberbach is called Fekete-

Szegö inequality [18] and this problem is referred to as calculating similar estimates for different

various classes of functions. The inequality becomes an equality for some functions making it

sharp and hence termed as extremal functions. Extremal functions serve an important part in the

analyzation of functions which are analytic in open unit disk.

1.9 Hankel Determinant

Since coefficient problems are essential for the study of analytic and univalent functions,

Hankel determinant is one of that coefficient problem. Herman Hankel presented a Hankel

matrix, a square matrix with the property that coefficients are arranged in ascending order from

left to right as well as top to bottom. Hankel determinant assists a researcher in identifying the

properties of the function. The determinant of the Hankel matrix is called Hankel determinant

problem. The Hankel matrix is given by as follow:
p̌q p̌q+1 · · · p̌q+y−1

p̌q+1 p̌q+2 · · · p̌q+y
...

... . . . ...

p̌q+y−1 p̌q+y · · · p̌q+2y−2

 (q,y ∈ N) (1.2)

Alongwith Fekete-Szegö problem, many researchers investigated and calculated the upper

bounds of the determinant of Hankel matrix for different subclasses of functions which are

analytic and univalent.

In 1967, Pommerenk formally presented Hankel determinant of the univalent functions [19].

The Hankel determinant of order third and its upper bound for the subclass of class S was initially

investigated by Babalola [2]. Noor also discussed this problem for other intriguing classes

containing analytic functions [20]. The Hankel determinant for exponential polynomials was

studied by Ehrenborg [21] in 2000 and with the help of his work Hankel transform was thorough

presented by Layman [22]. Research of determinant of Hankel matrix for functions which are
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starlike and convex was performed by Janteng et al, see [23].

The third order Hankel determinant for starlike functions of order 1
2 and also its sharp bound

was presented by Lecko et al in 2009 [24]. Joshi et al [25] in 2022 discovered the Hankel

determinant of order third of starlike functions’ class subordinated with exponential functions.

1.10 Quantum Calculus

Quantum theory is a vital tool for handling intricate and challenging information. Quantum

calculus, called as q-calculus, is a traditional infinitesimal calculus but it revolves around the

derivation of q-analogous results without the notion of limits [26]. q-calculus appeared as an

influential topic of research due to demand of mathematics that models quantum computing. It

emphasizes on generalization of integration and differentiation procedures. The core ingredient

of quantum calculus is nothing but Bernoulli and Euler function. There is a significant interest

in implementing q-calculus as it has vast applications in several areas like quantum mechanics,

analytic number theory, multiple hypergeometric functions. Because of its numerous uses, it has

caused utmost importance to research in q-calculus.

Here derivatives are considered as differences while antiderivatives are referred as sums.

The systematic introduction of q-calculus, q-derivatives and q-integral concepts, all credited to

Jackson [27, 28]. In 1740s the concept of partitions, ways of expressing a number as sums of

non-negative integer, was developed by Euler. Then in 1748, he introduced an operator which

lead to the q-difference operator. This is the root of q-calculus but till 1800s his work was

not gathered and published as the work of Euler was written in Latin, see [29]. The results of

Euler was then generalized by Gauβ in many areas of mathematics. Saeed et al [30] in 2020

presented the q-analog of the functions that are starlike associated to the famous trigonometric

sine function.

With the help of q-difference operator, a number of subclasses of A consisting of analytic

functions were studied and examined with elaboration. The usage of q-difference operator in

this theory was initiated by a researcher named Ismail et al who defined and created the starlike

functions’ class [31]. Through the use of difference operator with an appropriate alteration in

regard with domain of the function, he produced a newly made class called as the q-starlike

functions’ class. Characteristics of functions belonging to q-starlike and q-convex classes were
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examined and explored. Apart from exploring the famous inequality named as Fekete-Szegö,

he additionally develop the set of q-starlike functions subordinated with some trigonometric

functions. Different authors investigated some properties, such as the renowed problem of

Fekete-Szegö, the conditions which are both necessary and sufficient, the growth and distortion

bound, radii of starlikeness including the problem with partial sum for this class.

1.11 Preface

To specify and look into some subclasses of analytic functions with the help of subordination

technique is the core aim of this thesis. It is carved up into five chapters. Below is the concise

prolution of every chapter.

In Chapter 2, the primary concern is on fundamental ideas in Geometric Function Theory,

which builds an adequate framework for the subsequent chapters. It begins by looking at the

concepts of functions which are analytic as well as univalent functions following conditions

of normaliztaion within open unit disk and then followed by providing an overview of their

numerous subclasses. Preliminary lemmas that will be used in later chapters are introduced at

the end of this chapter. Interestingly, this chapter also presents a thorough analysis of theories

and concepts related to this field.

Chapter 3 includes the examination of the class of starlike function associated with inverse

sine hyperbolic function. It involves investigation of certain main results related to coefficient

bounds, Fekete-Szegö and Hankel determinant problem.

Chapter 4 focuses on new class of q-starlike functions associated with inverse sine hyper-

bolic function. The chapter will incorporate conclusions from research for functions in this class.

It will be demonstrated via corollaries that the recently derived results are consistent with those

that have already been established by other scholars.

In Chapter 5, conclusions of the aforementioned research will be presented.
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CHAPTER 2

PRELIMINARY CONCEPTS

2.1 Overview

This chapter’s goal is to go over some important terms and traditional findings in an effort

to lay the groundwork for future research. Normalized analytical univalent functions and the

Caratheodory functions will be examined through a thorough analysis in this study. We’ll take

into account a few special functions, linear operators, some initial lemmas alongwith a quick

review of q-calculus. As analysis describes functions and their properties and geometry studies

about spatial structures so the relationship between geometry and analysis is probably the exciting

part of Geometric Function Theory.

2.2 Analytic Functions

The main goal of this theory, as its name suggests, is the geometric attributes of analytic

functions. It usually looks at how complex function behaviour distorts shapes and how they

translate one geometric form to another. Moreover, Geometric Function Theory always pointed

towards a certain domain, known as open unit disk. An open unit disk is referred as a disk

centered at the origin, having radius 1 without including its boundary points.

Definition 2.2.1. [32] A function which is complex-valued φ(r̂) is called to be an analytic
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function at r̂o in a domain if it is defined and has a derivative at and in neighbourhood of r̂o. A

function φ(r̂) whose derivative exists at all points of domain is considered to be analytic in that

domain.

Because of analyticity they can be expressed in Taylor series. Their series representation

form centred at r̂o is as follow:

φ(r̂) =
∞

∑
k=0

φ k(r̂0)

k!
(r̂− r̂0)

k

Definition 2.2.2. [33] A function which is analytic and satisfy the conditions of normalization

which are φ(0) = 0 and φ ′(0)−1 = 0 in a domain which is an open unit disk Ψ is said to be in

class A. They have their series form as:

φ(r̂) = r̂+
∞

∑
n=2

ǎnr̂n

where r̂ ∈ Ψ and ǎ1 = 1.

2.3 Univalent Functions

In 1907, Koebe studied about univalent functions in unit disk Ψ.

Definition 2.3.1. [34] A function which is analytic and an injective function is known as univalent

function or univalent mapping. Preisely, a function( let say φ ) defined in a domain is said to be

univalent if it maps distinct element of its domain to distinct elements of its codomain.

In mathematical form, for every two distinguish complex numbers r̂1 and r̂2 in a domain, we

have φ(r̂1) ̸= φ(r̂2). Alternatively, we can also say that no different images of domain can ever

be mapped to the same output under φ , being univalent mapping. The large family of univalent

functions is leaded by its member, the Koebe function.

2.4 Normalized Univalent Functions’ class, S

The functions that are analytic as well as univalent in a domain which is open unit disk Ψ

belong to the most significant class, denoted by S. Also, the functions satisfy φ(0) = 0 and
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φ ′(0) = 1 which make them normalized univalent functions, see [34]. Koebe function is this

class’s extremal function.

k(r̂) =
r̂

(1− r̂)2

It maps |r̂|< 1 to the entire complex plane without (−∞, −1
4 ].

2.5 Caratheodory Functions

The Caratheodory functions’ class contains all such functions having real part positive. Many

subclasses of univalent functions are likely to be related with this class.

Definition 2.5.1. [33] Consider p(r̂) ∈ P to be an analytic function with positive real part i.e.

Real (p(r̂))> 0 and (r̂ ∈ Ψ) and represented in the form

p(r̂) = 1+
∞

∑
j=1

p j r̂ j

This class was initially created by Caratheodory known as Caratheodory class or class of

functions having real part positive.

The function po(r̂) = 1+r̂
1−r̂ known as Mobius function plays a crucial role compare favourably

to the Koebe function for the class S. Many several kinds of functions having geometric qualities

like starlikeness, convexity, close-to-convexity are intimately related to this class and they are of

vital importance in the study of univalent functions.

2.6 Certain subclasses of univalent functions

Since Geometric Function Theory is related to geometry of functions, so univalent functions

are divided into different subclasses based upon their geometries. For the sake of refinement,

smoothness and improvement of many known results-especially to facilitate the development

of a new subclass-the numerous research topics are being reinvestigated for various classes of

functions. The main subclass, Starlike functions’ class, has been defined here.
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Definition 2.6.1. [33, 32] A function φ(r̂) in S is called to be starlike( with reference to origin )

if tw ∈ Ψ whenever t ∈ [0,1] and w ∈ φ(Ψ) where Ψ represents open unit disc. Analytically, we

say that φ ∈ S∗ if and only if real part of quantity r̂φ ′(r̂)
φ(r̂) is positive i.e.

Real
[

r̂φ(r̂)
φ(r̂)

]
> 0

The starlike functions’ class of order α represented by S∗(α) where 0 ≤ α ≤ 1 is simply a

generalization of S∗ [35]. Indeed, a function φ(r̂) ∈ S∗(α) iff

Real
(

r̂φ(r̂)
φ(r̂)

)
> α

in Ψ. We set S∗(0) = S∗ which is recognized as starlike functions’s class with respect to the

origin.

2.7 Subordination

The notion of subordination was adopted for defining many of classes of functions examined

in Geometric Function Theory. The subordination relation helps us in a way that one can start

from a given function (let say k̂) and examine the behaviour of all functions subordinated to k̂. It

is defined with the help of Schwarz function.

Definition 2.7.1. [36] Whenever two functions (let us say ĝ and k̂) are in class A, we say that ĝ

is subordinated to k̂, mathematically symbolized as ĝ ≺ k̂ if ĝ(r̂) = k̂(ω(r̂)) such that ω(r̂) is an

analytic function in unit disk, following the criteria that ω (0)= 0 and | ω(r̂) | ≤ 1.

2.8 Subclass of Starlike Function Subordinated to Inverse Sine Hyperbolic

Function

In 2022, Kush Arora and S. Sivaprasad Kumar introduced a new class S∗ρ of starlike functions

associated with 1+ sinh−1(r̂) defined as under:

S∗ρ =

{
r̂φ ′(r̂)
φ(r̂)

≺ 1+ sinh−1(r̂), ∀r̂ ∈ Ψ

}
(2.1)
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2.9 Quantum Calculus

The modern name for the study of calculus without bounds is quantum calculus. In the early

20th century, Frank Hilton Jackson introduced the quantum calculus, commomly referred as the

q-calculus, however Jacobi and Euler had already solved this sort of calculus.

This calculus without limits introduced q-version of series, or power series containing q-

version of the common operations of calculus. Such series have applications in theory of numbers

and combinatories (q-binomial theorem) [37].

2.10 q̃e-derivative

The q̃e-derivative operator or Jackson derivative, symbolized by Dq̃e , is a basic idea in q̃e-

calculus, an area of mathematics which defines a parameter q̃e in order to generalize ordinary

calculus. Dq̃e is a q̃e-analog of the ordinary derivative. From now onwards, q̃e ∈ (0,1) unless

otherwise stated.

Definition 2.10.1. [37] Consider φ(r̂) to be a complex-valued function. Then the q̃e-derivative

of φ(r̂) is defined as follow:

Dq̃e(φ(r̂)) =
φ(q̃er̂)−φ(r̂)
(q̃e −1)r̂

, q̃e ∈ (0,1)

and

Dq̃e(φ(r̂)) =
dφ(r̂)

dr̂
, q̃e = 1

It can be seen clearly that if q̃e approaches to 1−, we will have

lim
q̃e→1−

Dq̃e(φ(r̂)) = lim
q̃e→1−

φ(q̃er̂)−φ(r̂)
(q̃e −1)r̂

= φ
′(r̂)

The function Dq̃e(φ(r̂)) has its Maclaurin series represented as:

Dq̃e(φ(r̂)) =
∞

∑
h=1

[h]q̃e ǎhr̂h−1

where

[h]q̃e =


q̃e

h−1
q̃e−1 ,h ∈ C

∑
h−1
h=0 q̃e

h ,h ∈ N.
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2.11 q̃e-Starlike Function

Definition 2.11.1. A complex-valued function φ ∈ S is called to be in q̃e-starlike functions’s

class represented by S∗q̃e
, in Ψ if it satisfies

φ(0) = 0

and

φ
′(0)−1 = 0

Also ∣∣∣∣ r̂Dq̃e(φ(r̂))
φ(r̂)

− 1
1− q̃e

∣∣∣∣≤ 1
1− q̃e

(r̂ ∈ Ψ)

2.12 Fekete-Szegö Inequality

In complex analysis, there are various significant ramifications and uses for the Fekete-Szegö

inequality. For particular subclasses, like the classes which contain starlike or convex functions,

their coefficient bounds can be derived using it. There are certain functions for which this

inequality turns out to be an equality implies that the Fekete-Szegö inequality is sharp. These

functions, known as extremal functions, greatly aided in analyzing the behaviour of functions

that are analytic in a domain which is open unit disk.

Definition 2.12.1. [38] A famous result |ǎ3 −η ǎ2
2| ≤ 1+2e

−2η

1−η ,0 ≤ η ≤ 1 in complex analysis

is called as Fekete-Szegö inequality. For a specific group of analytic functions, it gives an upper

constraint on the determinant’s absolute value, and pertains specifically to functions that are

specified in Ψ = {|r̂| ≤ 1, r̂ ∈ C} and meet the criteria φ(0) = 0 and φ ′(0) = 1.

2.13 Hankel Determinant

The Hankel matrix’s determinant is known as the Hankel determinant. While studying power

series with integer coefficient and in the concept of singularities, Hankel determinants can be
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beneficial. In 1966, Pommerenke [39] conducted an extensive study on the determinants of

Hankel matrices of starlike functions. The study of the Hankel determinant of exponential

functions was carried by Ehrenborg [21]. The Hankel determinant of 2nd order for univalent

functions was investigated by Hayman [40] in 1968. Noonan and Thomas [41] defined q̃e-th

version of Hankel determinant as:

|Hq̃e,s(φ)|=

∣∣∣∣∣∣∣∣∣∣∣∣

y̌s y̌s+1 y̌s+2 ... y̌s+q̃e−1

y̌s+1 y̌s+2 y̌s+3 ... y̌s+q̃

... ... ... ... ...

y̌s+q̃e−1 y̌s+q̃e y̌s+q̃e+1 ... y̌s+2q̃e−2

∣∣∣∣∣∣∣∣∣∣∣∣
(y̌1 = 1, q̃e,s ∈ N)

In particular,

H2,1(φ) =

∣∣∣∣∣∣y̌1 y̌2

y̌2 y̌3

∣∣∣∣∣∣= y̌1y̌3 − y̌2
2 = y̌3 − y̌2

2

Finding H2,1 for numerous subclasses of univalent and multiunivalent functions have been the

focus of investigation by various authors. A problem of determining a sharp upper bound of

|p̌3 −η p̌2
2| is occasionally referred to as the Fekete-Szegö problem, where η is real or complex.

Some familiar classes of univalent functions, notably starlike and convex functions, have had

the problem of finding functional’s sharp bound |p̌3 −η p̌2
2| entirely resolved, see [42, 43, 44].

Janteng et al [23] have determined the sharp upper bound to |H2,1| for the family of functions

{φ ∈ A : Re(φ ′(r̂))> 0, r̂ ∈ Ψ}. Also,

H2,2(φ) =

∣∣∣∣∣∣y̌2 y̌3

y̌3 y̌4

∣∣∣∣∣∣= y̌2y̌4 − y̌2
3

Similarly, by using Hankel matrix the third order Hankel determinant [45] is calculated as follow:

H3,1(φ) =

∣∣∣∣∣∣∣∣∣
y̌1 y̌2 y̌3

y̌2 y̌3 y̌4

y̌3 y̌4 y̌5

∣∣∣∣∣∣∣∣∣= y̌5(y̌3y̌1 − y̌2.y̌2)− y̌4(y̌1y̌4 − y̌2y̌3)+ y̌3(y̌2y̌4 − y̌3.y̌3)

Hence

H3,1(φ) = y̌5(y̌3 − y̌2
2)− y̌4(y̌4 − y̌2y̌3)+ y̌3(y̌2y̌4 − y̌2

3) , y̌1 = 1

This implies that

|H3,1(φ)|= |y̌5||(y̌3 − y̌2
2)|+ |y̌4||(y̌4 − y̌2y̌3)|+ |y̌3||(y̌2y̌4 − y̌2

3)|

For more details, see [58,59].
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2.14 Zalcman Functional

In 1960, Zalcman [34] presented a surprising conjecture for univalent functions, the modified

version of which was proved by Ma [46] in 1999. Zalcman conjecture states that for any t ≥ 2,

coefficients of univalent functions on the domain which is open unit disk fulfill the following

sharp inequality.

|ǎ2
t − ǎ2t−1| ≤ (t −1)2

where ǎt and ǎ2t−1 represent the coefficients of function and this equality holds exclusively for

the well-known famous function of class S, Koebe function.

2.15 Preliminary Lemmas

These are the lemmas that will be necessary in order to obtain results in the chapters that

follow.

Lemma 2.15.1. [47, 6] If p(r̂) = 1+∑
∞
h=1 d̆hr̂h ∈ P, then

2d̆2 = d̆2
1 +ψ(4− d̆2

1),

4d̆3 = d̆3
1 +2d̆1(4− d̆2

1)ψ − d̆1(4− d̆2
1)ψ

2 +2(4− d̆2
1)(1−|ψ|2)ϒ,

for some ψ(|ψ| ≤ 1),ϒ(|ϒ| ≤ 1).

Lemma 2.15.2. [6] Consider the function p(r̂) ∈ P whose series form is p(r̂) = 1+∑
∞
h=1 d̆hr̂h.

Then,

|d̆h| ≤ 2 (h ∈ N)

Lemma 2.15.3. [6] Suppose the function p(r̂) ∈ P defined as p(r̂) = 1+∑
∞
h=1 d̆hr̂h. Then,

|λ d̆h − d̆kd̆h−k| ≤

2|2−λ | ,λ ≤ 1

2λ λ ≥ 1.
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CHAPTER 3

CLASS OF STARLIKE FUNCTION SUBORDINATED WITH

SINE INVERSE HYPERBOLIC FUNCTION

3.1 Overview

The objective of this chapter is to examine a number of fundamental and classical findings

that act as essential components for further investigation. The first part of the chapter goes

over starlike function associated with the inverse sine hyperbolic function. Added to that, a

number of substantial findings will be investigated such as the bounds of the coefficients, the

widely acknowledged inequality proposed by Fekete and Szegö, the Zalcmann functional, and

the famous Hankel determinants.

The class containing starlike functions subordinated with inverse sine hyperbolic function

was defined by Kush Arora and S. Sivaprasad Kumar [14].

Definition 3.1.1. A function φ belongs to A is in S∗ρ then(
r̂φ ′(r̂)
φ(r̂)

)
≺ 1+ sinh−1(r̂), ∀ r̂ ∈ Ψ (3.1)

3.2 Coefficient Inequalities

For the class S∗ρ the related results are as follow.
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Theorem 3.2.1. If φ(r̂) ∈ S∗ρ then

|ǎ2| ≤ 1, |ǎ3| ≤
1
2
= 0.5, |ǎ4| ≤ 0.5767, |ǎ5| ≤ 0.6070.

Proof. By definition (
r̂φ ′(r̂)
φ(r̂)

)
≺ 1+ sinh−1(r̂)

Since φ ∈ S∗ρ , by using the technique of subordination, we can write(
r̂φ ′(r̂)
φ(r̂)

)
= 1+ sinh−1(σ(r̂)). (3.2)

Consider the function defined as

p(r̂) =
1+σ(r̂)
1−σ(r̂)

= 1+ d̆1r̂+ d̆r r̂2 + d̆3r̂3 + d̆4r̂4 + ..., (3.3)

where p(r̂) is an analytic function in Ψ following the condition that p(0) = 1. The above implies

as

σ(r̂) = (p(r̂)−1)(p(r̂)+1)−1, (3.4)

Simplification will give us the following as:

σ(r̂) =

(
d̆1

2

)
r̂+

(
d̆2

2
−

d̆2
1

4

)
r̂2 +

(
d̆3

2
+

d̆3
1

8
− d̆1d̆2

2

)
r̂3+(

3d̆2
1d2

8
− d̆1d̆3

2
−

d̆4
1

16
−

d̆2
2

4
+

d̆4

2

)
r̂4 + ... (3.5)

As we have,

1+ sinh−1(σ(r̂)) = 1+σ(r̂)− (σ(r̂))3

6
+

3(σ(r̂))5

40
− ...

So, we will get

1+ sinh−1(σ(r̂)) = 1+

(
d̆1

2

)
r̂+

(
d̆2

2
−

d̆2
1

4

)
r̂2 +

(
d̆3

2
− d̆1d̆2

2
+

5d̆3
1

48

)
r̂3+(

d̆4

2
− d̆1d̆3

2
+

5d̆2
1 d̆2

16
−

d̆4
1

32
−

d̆2
2

4

)
r̂4 + ... (3.6)

Also,we have

r̂φ ′(r̂)
φ(r̂)

= 1+(ǎ2)r̂+(2ǎ3− ǎ2
2)r̂

2+(3ǎ4−3ǎ2ǎ3+ ǎ3
2)r̂

3+(4ǎ5−4ǎ2ǎ4−2ǎ2
3− ǎ4

2+4ǎ3ǎ2
2)r̂

4+...
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Now substitute values in (4.2) we will have,

1+(ǎ2)r̂+(2ǎ3 − ǎ2
2)r̂

2 +(3ǎ4 −3ǎ2ǎ3 + ǎ3
2)r̂

3 +(4ǎ5 −4ǎ2ǎ4 −2ǎ2
3 − ǎ4

2 +4ǎ3ǎ2
2)r̂

4 + ...

= 1+

(
d̆1

2

)
r̂+

(
d̆2

2
−

d̆2
1

4

)
r̂2 +

(
d̆3

2
− d̆1d̆2

2
+

5d̆3
1

48

)
r̂3

+

(
d̆4

2
− d̆1d̆3

2
+

5d̆2
1 d̆2

16
−

d̆4
1

32
−

d̆2
2

4

)
r̂4 + ...

Comparison of both sides of above equation will result in,

ǎ2 =
d̆1

2
, (3.7)

2ǎ3 − ǎ2
2 =

d̆2

2
−

d̆2
1

4
, (3.8)

3ǎ4 −3ǎ2ǎ3 + ǎ3
2 =

d̆3

2
− d̆1d̆2

2
+

5d̆3
1

48
, (3.9)

4ǎ5 −4ǎ2ǎ4 −2ǎ2
3 − ǎ4

2 +4ǎ3ǎ2
2 =

d̆4

2
− d̆1d̆3

2
+

5d̆2
1 d̆2

16
−

d̆4
1

32
−

d̆2
2

4
, (3.10)

From (3.7) we get coefficient ǎ2 as

ǎ2 =
d̆1

2
. (3.11)

On solving (3.8) we get ǎ3,

ǎ3 =
d̆2

4
. (3.12)

By solving (3.9) we determine ǎ4

3ǎ4 = 3ǎ2ǎ3 − ǎ3
2 +

d̆3

2
− d̆1d̆2

2
+

5d̆3
1

48
,

Now substitute the values of ǎ2 and ǎ3 in ǎ4, we get

ǎ4 =
d̆3

6
− d̆1d̆2

24
−

d̆3
1

144
. (3.13)

Now for ǎ5, we will use equation (3.10),

4ǎ5 = 4ǎ2ǎ4 +2ǎ2
3 + ǎ4

2 −4ǎ3ǎ2
2 +

d̆4

2
− d̆1d̆3

2
+

5d̆2
1 d̆2

16
−

d̆4
1

32
−

d̆2
2

4

Now we will substitute values of ǎ2, ǎ3 and ǎ4 in ǎ5, we will get

ǎ5 =
d̆4

8
− d̆1d̆3

24
−

d̆2
1 d̆2

192
+

5d̆4
1

1152
−

d̆2
2

32
. (3.14)

Now from (3.7) we have

ǎ2 =
d̆1

2
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Applying Lemma 2.15.2, we will get

|ǎ2|=

∣∣∣∣∣ d̆1

2

∣∣∣∣∣≤ |d̆1|
2

≤ 2
2
= 1

|ǎ2| ≤ 1. (3.15)

From (3.8), we have:

ǎ3 =
d̆2

4

Using Lemma 2.15.2 leads us to

|ǎ3|=

∣∣∣∣∣ d̆2

4

∣∣∣∣∣= |d̆2|
4

≤ 2
4
=

1
2

|ǎ3| ≤
1
2
. (3.16)

From (3.13) we have

ǎ4 =
d̆3

6
− d̆1d̆2

24
−

d̆3
1

144

Taking modulus on both sides, we get

|ǎ4|=

∣∣∣∣∣ d̆3

6
− d̆1d̆2

24
−

d̆3
1

144

∣∣∣∣∣
Now applying Lemma 2.15.1, we have

|ǎ4|=
∣∣∣∣ d̆3

1 +2d̆1(4− d̆2
1)ψ − (4− d̆2

1)d̆1ψ2 +2(4− d̆2
1)(1−|ψ|2)ϒ

24

− d̆1

24

(
d̆2

1 +ψ(4− d̆2
1

2

)
−

d̆3
1

144

∣∣∣∣
After doing simplification and combining like terms,we will get

|ǎ4|=

∣∣∣∣∣ d̆3
1

72
+

(4− d̆2
1)d̆1ψ

16
−

(4− d̆2
1)d̆1ψ2

24
+

2(4− d̆2
1)(1−|ψ|2)ϒ

24

∣∣∣∣∣
Using triangular inequality and let d̆1 = d̆ ∈ [0,2], |ψ|= t, we have

|ǎ4| ≤
d̆3

72
+(4− d̆2)

(
d̆t
16

+
d̆t2

24
+

1
12

)
We assume that

G(d̆, t) =
d̆3

72
+

(4− d̆2)d̆t
16

+
(4− d̆2)d̆t2

24
+

(4− d̆2)

12

Upon partial differentiation we get

∂G
∂ t

=
2(4− d̆2)d̆

24
+

2td̆(4− d̆2)

24
+

d̆(4− d̆2)

48
> 0
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It implies that G(d̆, t) is an increasing function in [0,1]. So,

max(G(d̆, t)) = (G(d̆,1)) =
d̆3

72
+

(4− d̆2)d̆
16

+
(4− d̆2)d̆

24
+

(4− d̆2)

12

Set

K(d̆) =
d̆3

72
+

5d̆(4− d̆2)

48
+

(4− d̆2)

12

Now differentiating the above equation,we get

K′(d̆) =
−13d̆2

48
− d̆

6
+

20
48

If we set K′(d̆) = 0, we get two roots that is d̆1 =
−4+2

√
69

13 and d̆2 =
−4−2

√
69

13 . Calculations show

that K(d̆) has its maximum value at a root d̆1 =
−4+2

√
69

13 . So on substitution of d̆1 in the function

K(d̆), we get

|ǎ4| ≤ K(d̆1) = 0.5767

Hence we have:

|ǎ4| ≤ 0.5767

Now from (3.14) we have

ǎ5 =
d̆4

8
− d̆1d̆3

24
−

d̆2
1 d̆2

192
+

5d̆4
1

1152
−

d̆2
2

32
.

By using Lemma 2.15.1 and substituting values of d̆2 and d̆3, we will get

ǎ5 =
d̆4

8
− d̆1

24

(
d̆3

1 +2(4− d̆2
1)d̆1ψ − (4− d̆2

1)d̆1ψ2 +2(4− d̆2
1)(1−|ψ|2)ϒ

4

)
−

d̆2
1

192

(
d̆2

1 +ψ(4− d̆2
1)

2

)
+

5d̆4
1

1152
− 1

32

(
d̆2

1 +ψ(4− d̆2
1)

2

)2

Now after doing simplification and combining like terms, ǎ5 will become

ǎ5 =
d̆4

8
−

19d̆4
1

1152
−

5d̆2
1ψ(4− d̆2

1)

128
+

ψ2d̆2
1(4− d̆2

1)

96
−

ψ2(4− d̆2
1)

2

128
−

2d̆1(4− d̆2
1)(1−|ψ|2)ϒ
96

Taking modulus on both sides and let d̆1 = d̆,we have

|ǎ5|=
∣∣∣∣ d̆4

8
− 19d̆4

1152
− 5d̆2ψ(4− d̆2)

128
+

ψ2d̆2(4− d̆2)

96
−

ψ2(4− d̆2)2

128
− 2d̆(4− d̆2)(1−|ψ|2)ϒ

96

∣∣∣∣
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By using Lemma 2.15.2 on above and let |ψ|= t

|ǎ5| ≤
1
4
+

19d̆4

1152
+

5d̆2t(4− d̆2)

128
+

t2d̆2(4− d̆2)

96
+

t2(4− d̆2)2

128
+

2d̆(4− d̆2)

96

Suppose that

H(d̆, t) =
1
4
+

19d̆4

1152
+

5d̆2t(4− d̆2)

128
+

t2d̆2(4− d̆2)

96
+

t2(4− d̆2)2

128
+

d̆(4− d̆2)

48

On partial differentiation of H(d̆, t), we have

∂H
∂ t

=
5d̆2(4− d̆2)

128
+

2td̆2(4− d̆2)

96
+

2t(4− d̆2)2

128

As ∂H
∂ t > 0, clearly implies that in [0,1] the function H(d̆, t) will increase. So,

max(H(d̆, t)) = H(d̆,1) =
1
4
+

19d̆4

1152
+

5d̆2(4− d̆2)

128
+

d̆2(4− d̆2)

96
+

(4− d̆2)2

128
+

d̆(4− d̆2)

48

Set

I(d̆) =
1
4
+

19d̆4

1152
+

19d̆2(4− d̆2)

384
+

(4− d̆2)2

128
+

d̆(4− d̆2)

48

Differentiating the above equation, we get

I′(d̆) =
−29d̆3

288
− 3d̆2

48
+

13d̆
48

+
4
48

Put I′(d̆) = 0, we get three roots as d̆1 =−1.8387 , d̆2 = 1.5151 and d̆3 =−0.2971. As d̆ belongs

to the interval [0,2] so the values d̆1 = −1.8387 and d̆3 = −0.2971 will not be considered as

critical points. Calculations show that I(d̆) has its maximum value at its root d̆2 = 1.5151.

|ǎ5| ≤ I(d̆2) = 0.6070

Hence we have

|ǎ5| ≤ 0.6070

3.3 Fekete-Szegö Inequality

The investigation of inequality given by Fekete and Szegö for the class S∗ρ is as follow:
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Theorem 3.3.1. If φ(r̂) ∈ S∗ρ , then we have |ǎ3 − ǎ2
2| ≤

1
2

Proof. Using (3.7) and (3.8), we will get

|ǎ3 − ǎ2
2|=

∣∣∣∣∣ d̆2

4
−

d̆2
1

4

∣∣∣∣∣= 1
4
|d̆2 − d̆2

1 |

Using Lemma 2.15.3 with λ = 1, h=2 and k=1, we have

|ǎ3 − ǎ2
2| ≤

2
4
=

1
2

So

|ǎ3 − ǎ2
2| ≤

1
2

(3.17)

Hence proof is completed.

3.4 Hankel Determinants

For the class S∗ρ , the following are the related results:

Theorem 3.4.1. If φ(r̂) ∈ S∗ρ , then |ǎ2ǎ3 − ǎ4| ≤ 0.4254

Proof. From (3.7), (3.8) and (3.14),we obtain:

|ǎ2ǎ3 − ǎ4|=

∣∣∣∣∣ d̆1

2
(
d̆2

4
)−

(
d̆3

6
− d̆1d̆2

24
−

d̆3
1

144

)∣∣∣∣∣
|ǎ2ǎ3 − ǎ4|=

∣∣∣∣∣ d̆3
1

144
+

d̆1d̆2

6
− d̆3

6

∣∣∣∣∣
Substitution of d̆2 and d̆3 by considering Lemma 2.15.1, we have

|ǎ2ǎ3 − ǎ4|=
∣∣∣∣ d̆3

1
144

+
d̆1

6

(
d̆2

1 +ψ(4− d̆2
1)

2

)

− 1
6

(
d̆3

1 +2(4− d̆2
1)d̆1ψ − (4− d̆2

1)d̆1ψ2 +2(4− d̆2
1)(1−|ψ|2)ϒ

4

)∣∣∣∣
On solving and combining like terms, we get

|ǎ2ǎ3 − ǎ4|=

∣∣∣∣∣7d̆3
1

144
+

(4− d̆2
1)d̆1ψ2

24
−

(4− d̆2
1)(1−|ψ|2)ϒ

12

∣∣∣∣∣
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Now by applying triangular inequality and let d̆1 = d̆, and |ψ|= t

|ǎ2ǎ3 − ǎ4| ≤
7d̆3

144
+(4− d̆2)

(
d̆t2

24
+

1
12

)
We assume that

J(d̆, t) =
1

144
(
7d̆3 +6(4− d̆2)d̆t2 +12(4− d̆2)

)
Upon partial differentiation, we get

∂J
∂ t

=
d̆t(4− d̆2)

12
> 0

It clearly shows about increasing function of J(d̆, t) in [0,1]. So,

max(J(d̆, t)) = J(d̆,1) =
1

144
(
7d̆3 +6(4− d̆2)d̆ +12(4− d̆2)

)
Set

L(d̆) =
1

144
(
7d̆3 +6(4− d̆2)d̆ +12(4− d̆2)

)
Differentiating the above, we have

L′(d̆) =
1

144
(
3d̆2 −24d̆ +24

)
Set L′(d̆) = 0,we get two roots as d̆1 = 4+ 2

√
2 and d̆2 = 4− 2

√
2 On checking we come to

know that L(d̆) has maximum value at d̆2. So,

|ǎ2ǎ3 − ǎ4| ≤ L(d̆2) = 0.4254

Hence, we have

|ǎ2ǎ3 − ǎ4| ≤ 0.4254

Theorem 3.4.2. If φ(r̂) ∈ S∗ρ , then |ǎ2ǎ4 − ǎ2
3| ≤ 0.3382

Proof. From (3.7), (3.8) and (3.14),we obtain:

|ǎ2ǎ4 − ǎ2
3|=

∣∣∣∣∣∣ d̆1

2

(
d̆3

6
− d̆1d̆2

24
−

d̆3
1

144

)
−

(
d̆2

4

)2
∣∣∣∣∣∣

|ǎ2ǎ4 − ǎ2
3|=

∣∣∣∣∣ d̆1d̆3

12
−

d̆2
1 d̆2

48
−

d̆4
1

288
−

d̆2
2

16

∣∣∣∣∣
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By using Lemma 2.15.1 substitute values of d̆2 and d̆3 we have

|ǎ2ǎ4 − ǎ2
3|=

∣∣∣∣ d̆1

12

(
d̆3

1 +2(4− d̆2
1)d̆1ψ − (4− d̆2

1)d̆1ψ2 +2(4− d̆2
1)(1−|ψ|2)ϒ

4

)
−

d̆2
1

48

(
d̆2

1 +ψ(4− d̆2
1)

2

)
−

d̆4
1

288
− 1

16

(
d̆2

1 +ψ(4− d̆2
1)

2

)2 ∣∣∣∣
After simplification,we get

|ǎ2ǎ4 − ǎ2
3|=

∣∣∣∣∣−5d̆4
1

576
−

(4− d̆2
1)d̆

2
1ψ2

48
+

d̆1(4− d̆2
1)(1−|ψ|2)ϒ

24
−

ψ2(4− d̆2
1)

2

64

∣∣∣∣∣
|ǎ2ǎ4 − ǎ2

3|=
1

576

∣∣−5d̆4
1 −12d̆2

1ψ
2(4− d̆2

1)+24d̆1(4− d̆2
1)(1−|ψ|2)ϒ−9ψ

2(4− d̆2
1)

2∣∣
Applying Lemma 2.15.2 and letting d̆1 = d̆ and |ψ|= t, we get

|ǎ2ǎ4 − ǎ2
3| ≤

1
576

(
5d̆4 +12d̆2t2(4− d̆2)+24d̆(4− d̆2)+9t2(4− d̆2)2)

Suppose that

H(d̆, t) =
1

576
(
5d̆4 +12d̆2t2(4− d̆2)+24d̆(4− d̆2)+9t2(4− d̆2)2)

Upon partial differentiation, we get

∂H
∂ t

=
(4− d̆2

1)

576

(
12d̆2(2t)+9(2t)(4− d̆2)

)
∂H
∂ t

=
(4− d̆2

1)

576

(
24d̆2t +18t(4− d̆2)

)
> 0

So H(d̆, t) is an increasing function in [0,1]. Hence,

max(H(d̆, t)) = H(d̆,1) =
1

576
(
5d̆4 +12d̆2(4− d̆2)+24d̆(4− d̆2)+9(4− d̆2)2)

Set

M(d̆) =
1

576
(
5d̆4 +12d̆2(4− d̆2)+24d̆(4− d̆2)+9(4− d̆2)2)

Now after differentiating and solving,we get M′(d̆) as follow:

M′(d̆) =
1

576
(
8d̆3 −72d̆2 −48d̆ +96

)
Put M′(d̆) = 0, we have

8d̆3 −72d̆2 −48d̆ +96 = 0
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On solving we will get three roots as d̆1 = −1.4006, d̆2 = 9.4987 and d̆3 = 0.9020. Since d̆

belongs to interval [0,2] so d̆1 =−1.4006, d̆2 = 9.4987 will not be considered as critical values

and calculations show that the maximum value of the function exists at d̆3 = 0.9020

|ǎ2ǎ4 − ǎ2
3| ≤ M(d̆3) = 0.3382

Hence

|ǎ2ǎ4 − ǎ2
3| ≤ 0.3382

Theorem 3.4.3. If φ(r̂) ∈ S∗ρ , then |H3,1(φ)| ≤ 0.6271

Proof. The upper bound of third order Hankel determinant is given by:

|H3,1(φ)| ≤ ||(ǎ3 − ǎ2
2)||ǎ5|+ |(ǎ4 − ǎ2ǎ3)||ǎ4|+ |(ǎ2ǎ4 − ǎ2

3)||ǎ3|

Substitute the value of |ǎ2|, |ǎ3|, |ǎ4|and|ǎ5| from Theorem 3.2.1, use |(ǎ3 − ǎ2
2)| from Theorem

3.3.1, put |(ǎ4 − ǎ2ǎ3)| from Theorem 3.4.1 and (ǎ2ǎ4 − ǎ2
3)| by using Theorem 3.4.2, we have

|H3,1(φ)| ≤ 0.4257(
1
2
)+0.5767(0.4257)+

1
2
(0.3382)

Calculations gives value of H3,1(φ) as

|H3,1(φ)| ≤ 0.6271

This completes the proof.

3.5 Zalcman Functional

Theorem 3.5.1. If φ(r̂) ∈ S∗ρ , then |ǎ5 − ǎ2
3| ≤ 0.8570.

Proof. From (3.8) and (3.14), we have the following:

ǎ5 − ǎ2
3 =

d̆4

8
− d̆1d̆3

24
−

d̆2
1 d̆2

192
+

5d̆4
1

1152
−

d̆2
2

32
−

d̆2
2

16

ǎ5 − ǎ2
3 =

d̆4

8
− d̆1d̆3

24
−

d̆2
1 d̆2

192
+

5d̆4
1

1152
−

3d̆2
2

32
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Substitution of d̆2 and d̆3 by using Lemma 2.15.1 give us:

ǎ5 − ǎ2
3 =

[
d̆4

8
− d̆1

24

(
d̆3

1 +2(4− d̆2
1)d̆1ψ − (4− d̆2

1)d̆1ψ2 +2(4− d̆2
1)(1−|ψ|2)ϒ

4

)
−

d̆2
1

192

(
d̆2

1 +ψ(4− d̆2
1)

2

)
+

5d̆4
1

1152
− 3

32

(
d̆2

1 +ψ(4− d̆2
1)

2

)2]
After simplification, we will get

ǎ5 − ǎ2
3 =

[
d̆4

8
−

37d̆4
1

1152
−

9(4− d̆2
1)d̆

2
1ψ

128
+

d̆2
1ψ2(4− d̆2

1)

96
+

d̆1(4− d̆2
1)(1−|ψ|2)ϒ

48

−
3ψ2(4− d̆2

1)
2

128

]
Now taking modulus on both sides and let d̆1 = d,we have

|ǎ5 − ǎ2
3|=

∣∣∣∣ d̆4

8
− 37d̆4

1152
− 9(4− d̆2)d̆2ψ

128
+

d̆2ψ2(4− d̆2)

96
+

d̆(4− d̆2)(1−|ψ|2)ϒ
48

− 3ψ2(4− d̆2)2

128

∣∣∣∣
An application of Lemma 2.15.2 on above and take |ψ|= t we will have the following:

|ǎ5 − ǎ2
3| ≤

1
4
+

37d̆4

1152
+

9(4− d̆2)d̆2t
128

+
d̆2t2(4− d̆2)

96
+

d̆(4− d̆2)

48
+

3t2(4− d̆2)2

128

We assume that

L(d̆, t) =
1
4
+

37d̆4

1152
+

9(4− d̆2)d̆2t
128

+
d̆2t2(4− d̆2)

96
+

d̆(4− d̆2)

48
+

3t2(4− d̆2)2

128

Upon partial differentiation, we get

∂L
∂ t

=
9d̆2(4− d̆2)

128
+

2t(4− d̆2)d̆2

96
+

6t(4− d̆2)2

128

As ∂L
∂ t > 0, so it implies of L(d̆, t) being an increasing function in [0,1]. Hence

max(L(d̆, t)) = L(d̆,1)

L(d̆,1) =
1
4
+

37d̆4

1152
+(4− d̆2)d̆2

(
9

128
+

1
96

)
+

d̆(4− d̆2)

48
+

3(4− d̆2)2

128

Set

B(d̆) =
1
4
+

37d̆4

1152
+(4− d̆2)d̆2

(
31
384

)
+

d̆(4− d̆2)

48
+

3(4− d̆2)2

128

Simplification of B(d̆) yields

B(d̆) =
1

1152
(
−29d̆4 −24d̆3 +156d̆2 +96d̆ +720

)
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Differentiate B(d̆) and we will get

B′(d̆) =
1

1152
(
−116d̆3 −72d̆2 +312d̆ +96

)
Set B′(d̆) = 0

−116d̆3 −72d̆2 +312d̆ +96 = 0

From the above equation, we will get three roots as d̆1 = −1.8387 , d̆2 = 1.5151 and d̆3 =

−0.2971. d̆1 and d̆3 will not be considered as critical points as d̆ ∈ [0,2] and hence calculations

show that the function B(d̆) has maximum value at its critical point d̆2.

|ǎ5 − ǎ2
3| ≤ B(d̆2) = 0.8570

Hence

|ǎ5 − ǎ2
3| ≤ 0.8570

This completes the proof.
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CHAPTER 4

q̃e-STARLIKE FUNCTION ASSOCIATED WITH q̃e-SINE

INVERSE HYPERBOLIC FUNCTION

4.1 Overview

The aim of this chapter is to introduce a new class of univalent functions which is q̃e-starlike

function correspond to q̃e-series of inverse sine hyperbolic function. This chapter provides a

number of significant findings such as the bounds on the coefficients, the widely acknowledged

inequality proposed by Fekete and Szegö, the Zalcmann functional, and the famous Hankel

determinants.

The novel q̃-starlike functions’ class subordinated with q̃-inverse sine hyperbolic function is

given as follow.

Definition 4.1.1. A function φ belongs to A is in S∗ρ q̃e
then(

r̂Dq̃eφ(r̂)
φ(r̂)

)
≺ 1+ sinh−1(q̃er̂) , q̃e ∈ (0,1) (4.1)

for all r̂ ∈ Ψ.

4.2 Coefficient Inequalities

For the class S∗ρ q̃e
, the obtained results of coefficient bounds for function are as follow.
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Theorem 4.2.1. If φ(r̂) ∈ S∗ρ q̃e
then q̃e

|ǎ2| ≤ 1, |ǎ3| ≤
1

(1+ q̃e)
, |ǎ4| ≤

(94332+72732q̃e −729q̃e
2 −729q̃e

3)

48000(1+ q̃e)(1+ q̃e + q̃e
2)

|ǎ5| ≤
(1536+6732q̃e +8343q̃e

2 +4953q̃e
3 +540q̃e

4 +270q̃e
5)

1536(q̃e
3 + q̃e

2 + q̃e +1)(1+ q̃e + q̃e
2)(1+ q̃e)

Proof. By definition (
r̂Dq̃eφ(r̂)

φ(r̂)

)
≺ 1+ sinh−1(q̃er̂)

Since φ ∈ S∗ρ q̃e
, so by using the principle of subordination, we have(

r̂Dq̃eφ(r̂)
φ(r̂)

)
= 1+ sinh−1(q̃e(σ(r̂))). (4.2)

Consider the function

p(r̂) =
1+σ(r̂)
1−σ(r̂)

= 1+ d̆1r̂+ d̆2r̂2 + d̆3r̂3 + d̆4r̂4 + ..., (4.3)

where p(r̂) is an analytic function in Ψ following the condition p(0) = 1.We can have

σ(r̂) =
(p(r̂)−1)
(p(r̂)+1)

(4.4)

Simplification of above yields,

σ(r̂) =

(
d̆1

2

)
r̂+

(
d̆2

2
−

d̆2
1

4

)
r̂2 +

(
d̆3

2
+

d̆3
1

8
− d̆1d̆2

2

)
r̂3+(

3d̆2
1d2

8
− d̆1d̆3

2
−

d̆4
1

16
−

d̆2
2

4
+

d̆4

2

)
r̂4 + ... (4.5)

As we know,

1+ sinh−1(q̃e(σ(r̂))) = 1+ q̃e(σ(r̂))− (q̃e(σ(r̂)))3

6
+

3(q̃e(σ(r̂)))5

40
− ...

So,we will get

1+ sinh−1(q̃e(σ(r̂))) = 1+

(
d̆1

2

)
q̃er̂+

(
d̆2

2
−

d̆2
1

4

)
q̃er̂2 +

(
q̃ed̆3

2
− q̃ed̆1d̆2

2
+

q̃ed̆3
1

8

−
q̃e

3d̆3
1

48

)
r̂3 +

(
q̃ed̆4

2
−

q̃ed̆2
2

4
− q̃ed̆1d̆3

2
+

3q̃ed̆2
1 d̆2

8
−

q̃ed̆4
1

16
−

3q̃e
3d̆2

1 d̆2

48
+

3q̃e
3d̆4

1
96

)
r̂4 + ...

As

Dq̃e(φ(r̂)) =
φ(r̂)−φ(q̃er̂)
(1− q̃e)r̂

,
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So we get

r̂Dq̃eφ(r̂)
φ(r̂)

= 1+(ǎ2)q̃er̂+(q̃e(1+ q̃e)ǎ3 − q̃eǎ2
2)r̂

2 +

(
q̃e(1+ q̃e + q̃e

2)ǎ4 − q̃e(2+ q̃e)ǎ2ǎ3

+ q̃eǎ3
2

)
r̂3 + q̃e

(
q̃e

3ǎ5 +(−ǎ2ǎ4 + ǎ5)q̃e
2 +(−ǎ2

3 + ǎ3ǎ2
2 − ǎ2ǎ4 + ǎ5)q̃e +3ǎ3ǎ2

2 −2ǎ2ǎ4

− ǎ4
2 − ǎ2

3 + ǎ5

)
r̂4 + ...

Substitution of values in (4.2) will give us

1+(ǎ2)q̃er̂+(q̃e(1+ q̃e)ǎ3 − q̃eǎ2
2)r̂

2 +(q̃e(1+ q̃e + q̃e
2)ǎ4 − q̃e(2+ q̃e)ǎ2ǎ3 + q̃eǎ3

2)r̂
3+

q̃e

(
q̃e

3ǎ5 +(−ǎ2ǎ4 + ǎ5)q̃e
2 +(−ǎ2

3 + ǎ3ǎ2
2 − ǎ2ǎ4 + ǎ5)q̃e +3ǎ3ǎ2

2 −2ǎ2ǎ4 − ǎ4
2 − ǎ2

3

+ ǎ5

)
r̂4 + ...= 1+

(
d̆1

2

)
q̃er̂+

(
d̆2

2
−

d̆2
1

4

)
q̃er̂2 +

(
q̃ed̆3

2
− q̃ed̆1d̆2

2
+

q̃ed̆3
1

8
−

q̃e
3d̆3

1
48

)

r̂3 +

(
q̃ed̆4

2
−

q̃ed̆2
2

4
− q̃ed̆1d̆3

2
+

3q̃ed̆2
1 d̆2

8
−

q̃ed̆4
1

16
−

3q̃e
3d̆2

1 d̆2

48
+

3q̃e
3d̆4

1
96

)
r̂4 + ... (4.6)

Comparison of both sides of above equation will result in :

ǎ2q̃e =
q̃ed̆1

2
, (4.7)

q̃e(1+ q̃e)ǎ3 − q̃eǎ2
2 = q̃e

(
d̆2

2
−

d̆2
1

4

)
, (4.8)

q̃e

(
(1+ q̃e + q̃e

2)ǎ4 − (2+ q̃e)ǎ2ǎ3 + ǎ3
2

)
= q̃e

(
d̆3

2
− d̆1d̆2

2
+

d̆3
1

8
−

q̃e
2d̆3

1
48

)
, (4.9)

q̃e

(
ǎ5q̃e

3 − ǎ2ǎ4q̃e
2 + ǎ5q̃e

2 − ǎ2
3q̃e + ǎ3ǎ2

2q̃e − ǎ2ǎ4q̃e + ǎ5q̃e +3ǎ3ǎ2
2 −2ǎ2ǎ4 − ǎ4

2

− ǎ2
3 + ǎ5

)
= q̃e

(
d̆4

2
−

d̆2
2

4
− d̆1d̆3

2
+

3d̆2
1 d̆2

8
−

d̆4
1

16
−

3q̃e
2d̆2

1 d̆2

48
+

3d̆4
1 q̃e

2

96

)
(4.10)

From (4.7) we get coefficient ǎ2 as

ǎ2 =
d̆1

2
(4.11)

On solving (4.8) we get ǎ3,

ǎ3 =
d̆2

2(1+ q̃e)
(4.12)

By solving (4.10) we determine ǎ4

q̃e(1+ q̃e + q̃e
2)ǎ4 = q̃e

(
(2+ q̃e)ǎ2ǎ3 − ǎ3

2 +
d̆3

2
− d̆1d̆2

2
+

d̆3
1

8
−

q̃e
2d̆3

1
48

)
, (4.13)
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Now substitute the values of ǎ2 and ǎ3 in ǎ4, we get

ǎ4 =
1

((1+ q̃e + q̃e
2)

(
d̆3

2
− q̃ed̆1d̆2

4(1+ q̃e)
−

q̃e
2d̆3

1
48

)
(4.14)

Now for ǎ5,we will use equation (4.10),

ǎ5(q̃e
4 + q̃e

3 + q̃e
2 + q̃e) =

(
ǎ2ǎ4q̃e

3 + ǎ2
3q̃e

2 − ǎ3ǎ2
2q̃e

2 + ǎ2ǎ4q̃e
2 −3ǎ3ǎ2

2q̃e +2ǎ2ǎ4q̃e+

ǎ4
2q̃e + ǎ2

3q̃e +
q̃ed̆4

2
−

q̃ed̆2
2

4
− q̃ed̆1d̆3

2
+

3q̃ed̆2
1 d̆2

8
−

q̃ed̆4
1

16
−

3q̃e
3d̆2

1 d̆2

48
+

3d̆4
1 q̃e

3

96

)
Now we will substitute values of ǎ2, ǎ3 and ǎ4 in ǎ5, and after calculations we will get

ǎ5 =
1

(q̃e
3 + q̃e

2 + q̃e +1)

(
d̆4

2
−

q̃ed̆2
2

4(1+ q̃e)
− q̃e(1+ q̃e)c̆1d̆3

4(1+ q̃e + q̃e
2)

+
d̆2

1 d̆2q̃e
2(3−6q̃e

2 −3q̃e
3)

48(1+ q̃e)(1+ q̃e + q̃e
2)

+

q̃e
2(2q̃e

2 +2q̃e +1)d̆4
1

96(1+ q̃e + q̃e
2)

)
Now from (4.12) we have

ǎ2 =
d̆1

2
Applying Lemma 2.15.2 ,we will get

|ǎ2|=

∣∣∣∣∣ d̆1

2

∣∣∣∣∣≤ |d̆1|
2

≤ 2
2
= 1

|ǎ2| ≤ 1. (4.15)

From (4.13), we have:

ǎ3 =
d̆2

2(1+ q̃e)

Using Lemma 2.15.2 leads us to

|ǎ3|=

∣∣∣∣∣ d̆2

2(1+ q̃e)

∣∣∣∣∣= |d̆2|
2(1+ q̃e)

≤ 2
2(1+ q̃e)

=
1

1+ q̃e

|ǎ3| ≤
1

1+ q̃e
(4.16)

From (4.15) we have

ǎ4 =
1

((1+ q̃e + q̃e
2)(1+ q̃e)

(
d̆3(1+ q̃e)

2
− q̃ed̆1d̆2

4
−

q̃e
2(1+ q̃e)d̆3

1
48

)
Applying Lemma 2.15.1 on above equation, we get

ǎ4 =
1

(1+ q̃e + q̃e
2)

[(
d̆3

1 +2(4− d̆2
1)d̆1ψ − (4− d̆2

1)d̆1ψ2 +2(4− d̆2
1)(1−|ψ|2)ϒ

8

)
−

q̃ed̆1

4(1+ q̃e)

(
d̆2

1 +ψ(4− d̆2
1

2

)
−

q̃e
2d̆3

1
48

]
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After doing simplification and combining like terms,we will get

ǎ4 =
1

48(1+ q̃e)(1+ q̃e + q̃e
2)

(
(6− q̃e

2 − q̃e
3)d̆3

1 +6(2+ q̃e)(4− d̆2
1)d̆1ψ −6(1+ q̃e)

(4− d̆2
1)d̆1ψ

2 +12(1+ q̃e)((4− d̆2
1)(1−|ψ|2)ϒ

)
Taking modulus on both sides and let d̆1 = d̆, we have

|ǎ4| ≤
1

48(1+ q̃e)(1+ q̃e + q̃e
2)

∣∣∣∣(6− q̃e
2 − q̃e

3)d̆3 +6(2+ q̃e)(4− d̆2)d̆ψ −6(1+ q̃e)

(4− d̆2)d̆ψ
2 +12(1+ q̃e)((4− d̆2)(1−|ψ|2)ϒ

∣∣∣∣
Now |ψ|= t, we have

|ǎ4| ≤
1

48(1+ q̃e)(1+ q̃e + q̃e
2)

(
(6− q̃e

2 − q̃e
3)d̆3 +6(2+ q̃e)(4− d̆2)d̆t +6(1+ q̃e)

(4− d̆2)d̆t2 +12(1+ q̃e)((4− d̆2)

)
We assume that

Gq̃e(d̆, t) =
1

48(1+ q̃e)(1+ q̃e + q̃e
2)

(
(6− q̃e

2 − q̃e
3)d̆3 +6(2+ q̃e)(4− d̆2)d̆t +6(1+ q̃e)

(4− d̆2)d̆t2 +12(1+ q̃e)((4− d̆2)

)
Upon partial differentiation, we get

∂Gq̃e

∂ t
=

1
48(1+ q̃e)(1+ q̃e + q̃e

2)

(
6(2+ q̃e)(4− d̆2)d̆ +12(1+ q̃e)(4− d̆2)d̆t

)
> 0

This implies that Gq̃e(d̆, t) is an increasing function in [0,1]. So,

max(Gq̃e(d̆, t)) = Gq̃e(d̆,1)

Gq̃e(d̆,1) =
1

48(1+ q̃e)(1+ q̃e + q̃e
2)

(
(6− q̃e

2 − q̃e
3)d̆3 +6(2+ q̃e)(4− d̆2)d̆ +6(1+ q̃e)

(4− d̆2)d̆ +12(1+ q̃e)((4− d̆2)

)
Set

Kq̃e(d̆) =
1

48(1+ q̃e)(1+ q̃e + q̃e
2)

(
(6− q̃e

2 − q̃e
3)d̆3 +6(2+ q̃e)(4− d̆2)d̆ +6(1+ q̃e)

(4− d̆2)d̆ +12(1+ q̃e)((4− d̆2)

)
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Upon Differentiation and simplification of above we will have

K′
q̃e
(d̆) =

1
48(1+ q̃e)(1+ q̃e + q̃e

2)

(
−(36+3q̃e

2+3q̃e
3+36q̃e)d̆2−24(1+ q̃e)d̆+72+48q̃e

)
We can write above as,

K′
q̃e
(d̆) =

1
48(1+ q̃e)(1+ q̃e + q̃e

2)

(
Ad̆2 +Bd̆ +C

)
where

A =−(36+3q̃e
2 +3q̃e

3 +36q̃e)

B =−24(1+ q̃e)

and

C = 72+48q̃e

After calculations, it can be observed that
(
Ad̆2 +Bd̆ +C

)
> 0 for d̆ ∈ (0,0.9] and q̃e ∈ (0,1).

Also,
(
Ad̆2 +Bd̆ +C

)
< 0 for d̆ ∈ (0.9,2) and q̃e ∈ (0,1). This implies that K′

q̃e
(d̆) > 0 for

d̆ ∈ (0,0.9] and q̃e ∈ (0,1) and K′
q̃e
(d̆) < 0 for d̆ ∈ (0.9,2) and q̃e ∈ (0,1). It implies Kq̃e(d̆)is

increasing function in (0,0.9] and decreasing in (0.9,2). Hence,

|ǎ4| ≤ Kq̃e(0.9) =
1

48(1+ q̃e)(1+ q̃e + q̃e
2)

(
(6− q̃e

2 − q̃e
3)(0.9)3 +6(2+ q̃e)(4− (0.9)2))

(0.9)+6(1+ q̃e)(4− (0.9)2)(0.9)+12(1+ q̃e)((4− (0.9)2)

)
After solving all terms inside, we will get |ǎ4| as,

|ǎ4| ≤
1

48000(1+ q̃e)(1+ q̃e + q̃e
2)

(
94332+72732q̃e −729q̃e

2 −729q̃e
3
)

(4.17)

By solving (4.11) we will get ǎ5 as:

ǎ5 =
1

96(q̃e
3 + q̃e

2 + q̃e +1)(1+ q̃e + q̃e
2)(1+ q̃e)

[
48d̆4(1+ q̃e)(1+ q̃e + q̃e

2)−24q̃ed̆2
2

(1+ q̃e + q̃e
2)−24q̃e(1+ q̃e)

2d̆1d̆3 +2q̃e
2d̆2

1 d̆2(3−6q̃e
2 −3q̃e

3)+ q̃e
2(1+ q̃e)

(2q̃e
2 +2q̃e +1)d̆4

1

]
Now by using lemma 2.15.1, substitute value of d̆2 and d̆3 and we will get the following:

ǎ5 =
1

96(q̃e
3 + q̃e

2 + q̃e +1)(1+ q̃e + q̃e
2)(1+ q̃e)

[
48(1+2q̃e+2q̃e

2+ q̃e
3)d̆4−24q̃e

(
1+ q̃e

+ q̃e
2
)(

d̆2
1 +ψ(4− d̆2

1)

2

)2

−6q̃e(1+ q̃e)
2d̆1

(
d̆3

1 +2(4− d̆2
1)d̆1ψ − (4− d̆2

1)d̆1ψ
2 +2(4− d̆2

1)

(1−|ψ|2)ϒ
)
+2q̃e

2(3−6q̃e
2−3q̃e

3)d̆2
1

(
d̆2

1 +ψ(4− d̆2
1)

2

)
+ q̃e

2(1+ q̃e)(2q̃e
2+2q̃e+1)d̆4

1

]
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Solving all terms inside brackets we will get

ǎ5 =
1

96(q̃e
3 + q̃e

2 + q̃e +1)(1+ q̃e + q̃e
2)(1+ q̃e)

(
48(1+2q̃e +2q̃e

2 + q̃e
3)d̆4 − d̆4

1(12q̃e+

14q̃e
2+9q̃e

3+2q̃e
4+ q̃e

5)−6q̃e(1+ q̃e+ q̃e
2)ψ2(4− d̆2

1)
2−ψ d̆2

1(4− d̆2
1)(24q̃e+33q̃e

2+24q̃e
3

+6q̃e
4 +3q̃e

5)+6q̃e(1+ q̃e
2 +2q̃e)d̆2

1ψ
2(4− d̆2

1)−12q̃e(1+ q̃e)
2d̆1(4− d̆2

1)(1−|ψ|2)ϒ
)

Now by applying triangular inequality with lemma 2.15.2 and let d̆1 = d̆ and |ψ|= t

|ǎ5| ≤
1

96(q̃e
3 + q̃e

2 + q̃e +1)(1+ q̃e + q̃e
2)(1+ q̃e)

(
48(1+2q̃e +2q̃e

2 + q̃e
3).2+ d̆4(12q̃e+

14q̃e
2 +9q̃e

3 +2q̃e
4 + q̃e

5)+6q̃e(1+ q̃e + q̃e
2)t2(4− d̆2)2 + td̆2(4− d̆2)(24q̃e +33q̃e

2 +24q̃e
3

+6q̃e
4 +3q̃e

5)+6q̃e(1+ q̃e
2 +2q̃e)d̆2t2(4− d̆2)+12q̃e(1+ q̃e)

2d̆(4− d̆2)

)
We assume that

Hq̃e(d̆, t) =
1

96(q̃e
3 + q̃e

2 + q̃e +1)(1+ q̃e + q̃e
2)(1+ q̃e)

(
48(1+2q̃e+2q̃e

2+ q̃e
3).2+ d̆4(12

q̃e +14q̃e
2 +9q̃e

3 +2q̃e
4 + q̃e

5)+6q̃e(1+ q̃e + q̃e
2)t2(4− d̆2)2 + td̆2(4− d̆2)(24q̃e +33q̃e

2

+24q̃e
3 +6q̃e

4 +3q̃e
5)+6q̃e(1+ q̃e

2 +2q̃e)d̆2t2(4− d̆2)+12q̃e(1+ q̃e)
2d̆(4− d̆2)

)
Upon partial differentiation we have

∂Hq̃e

∂ t
=

1
96(q̃e

3 + q̃e
2 + q̃e +1)(1+ q̃e + q̃e

2)(1+ q̃e)

(
0+0+(2t)6q̃e(1+ q̃e+ q̃e

2)(4− d̆2)2

+ d̆2(4− d̆2)(24q̃e +33q̃e
2 +24q̃e

3 +6q̃e
4 +3q̃e

5)+6q̃e(1+ q̃e
2 +2q̃e)d̆2(2t)(4− d̆2)

)
> 0

So Hq̃e(d̆, t) is clearly an increasing function in [0,1]. Hence,

maxHq̃e(d̆, t) = Hq̃e(d̆,1)

Hq̃e(d̆,1)=
1

96(q̃e
3 + q̃e

2 + q̃e +1)(1+ q̃e + q̃e
2)(1+ q̃e)

(
96(1+2q̃e+2q̃e

2+ q̃e
3)+ d̆4(12q̃e

+14q̃e
2 +9q̃e

3 +2q̃e
4 + q̃e

5)+6q̃e(1+ q̃e + q̃e
2)(4− d̆2)2 + d̆2(4− d̆2)(24q̃e +33q̃e

2

+24q̃e
3 +6q̃e

4 +3q̃e
5)+6q̃e(1+ q̃e

2 +2q̃e)d̆2(4− d̆2)+12q̃e(1+ q̃e)
2d̆(4− d̆2)

)
Let us assume

Iq̃e(d̆) =
1

96(q̃e
3 + q̃e

2 + q̃e +1)(1+ q̃e + q̃e
2)(1+ q̃e)

(
96(1+2q̃e +2q̃e

2 + q̃e
3)+ d̆4(12q̃e

+14q̃e
2 +9q̃e

3 +2q̃e
4 + q̃e

5)+6q̃e(1+ q̃e + q̃e
2)(4− d̆2)2 + d̆2(4− d̆2)(24q̃e +33q̃e

2

+24q̃e
3 +6q̃e

4 +3q̃e
5)+6q̃e(1+ q̃e

2 +2q̃e)d̆2(4− d̆2)+12q̃e(1+ q̃e)
2d̆(4− d̆2)

)
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Differentiating above, we have I′q̃e
(d̆) as following:

I′q̃e
(c̆) =

1
96(q̃e

3 + q̃e
2 + q̃e +1)(1+ q̃e + q̃e

2)(1+ q̃e)

(
4d̆3(12q̃e+14q̃e

2+9q̃e
3+2q̃e

4+ q̃e
5)

+6q̃e(1+ q̃e + q̃e
2)2(4− d̆2)(−2d̆)+(24q̃e +33q̃e

2 +24q̃e
3 +6q̃e

4 +3q̃e
5 +6q̃e +6q̃e

3

+12q̃e
2)(2d̆(4− d̆2)+ d̆2(−2d̆))+12q̃e(1+ q̃e)

2((4− d̆2)+ d̆(−2d̆)
)

Simplification will give us

I′q̃e
(d̆)=

1
96(q̃e

3 + q̃e
2 + q̃e +1)(1+ q̃e + q̃e

2)(1+ q̃e)

(
d̆3(−48q̃e−100q̃e

2−60q̃e
3−16q̃e

2−

8q̃e
5)−36d̆2q̃e(1+ q̃e)

2 + d̆(144q̃e +264q̃e
2 +144q̃e

3 +48q̃e
4 +24q̃e

5)+48q̃e(1+ q̃e)
2
)

We will have

I′q̃e
(d̆) =

1
96(q̃e

3 + q̃e
2 + q̃e +1)(1+ q̃e + q̃e

2)(1+ q̃e)

(
Ad̆3 +Bd̆2 +Cd̆ +D

)
where

A = (−48q̃e −100q̃e
2 −60q̃e

3 −16q̃e
2 −8q̃e

5)

B =−36q̃e(1+ q̃e)
2

C = (144q̃e +264q̃e
2 +144q̃e

3 +48q̃e
4 +24q̃e

5)

and

D = 48q̃e(1+ q̃e)
2

Certain calculations show that Ad̆3 +Bd̆2 +Cd̆ +D is greater than zero for d̆ ∈ (0,1.5] and

q̃e belongs to (0,1). Also Ad̆3 +Bd̆2 +Cd̆ +D is less than zero for d̆ ∈ (1.6,2). This means

I′q̃e
(d̆)> 0 for d̆ ∈ (0,1.5] and I′q̃e

(d̆)< 0 for d̆ ∈ (1.6,2). This means that

|ǎ5| ≤ Iq̃e(1.5)

From Iq̃e(d̆), we will get the following form after simplication of terms inside paranthesis:

Iq̃e(d̆) =
1

96(q̃e
3 + q̃e

2 + q̃e +1)(1+ q̃e + q̃e
2)(1+ q̃e)

(
(96+288q̃e +288q̃e

2 +192q̃e
3)

+ d̆4(−12q̃e −25q̃e
2 −15q̃e

3 −4q̃e
4 −2q̃e

5)− d̆3(12q̃e(1+ q̃e)
2)

+ d̆2(72q̃e +132q̃e
2 +72q̃e

3 +24q̃e
4 +12q̃e

5)+ d̆(48q̃e(1+ q̃e)
2)

)
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Hence

Iq̃e(1.5) =
1

96(q̃e
3 + q̃e

2 + q̃e +1)(1+ q̃e + q̃e
2)(1+ q̃e)

(
96+

1683q̃
4

+
8343q̃e

2

16
+

4953q̃e
3

16
+

135q̃e
4

4
+

135q̃e
5

8

)
Further simplification gives us:

Iq̃e(1.5) =
(1536+6732q̃e +8343q̃e

2 +4953q̃e
3 +540q̃e

4 +270q̃e
5)

1536(q̃e
3 + q̃e

2 + q̃e +1)(1+ q̃e + q̃e
2)(1+ q̃e)

So

|ǎ5| ≤
(1536+6732q̃e +8343q̃e

2 +4953q̃e
3 +540q̃e

4 +270q̃e
5)

1536(q̃e
3 + q̃e

2 + q̃e +1)(1+ q̃e + q̃e
2)(1+ q̃e)

Hence, the proof is completed.

If we take q̃e → 1− in the results that we have proved above, it will lead us to the results that

are already proved for the class S∗ρ which can be seen in the following corollary.

Corollary 4.2.1.1. If φ(r̂) ∈ S∗ρ then

|ǎ2| ≤ 1, |ǎ3| ≤
1
2
, |ǎ4| ≤ 0.5767, |ǎ5| ≤ 0.6070.

4.3 Fekete-Szegö Inequality

For the class S∗ρ q̃e
, this inequality will be investigated as follow:

Theorem 4.3.1. If φ(r̂) ∈ S∗ρ q̃e
, then |ǎ3 − ǎ2

2| ≤
1

q̃e+1

Proof. By using (4.12) and (4.13), we have

|ǎ3 − ǎ2
2|=

∣∣∣∣∣ d̆2

2(q̃e +1)
−

d̆2
1

4

∣∣∣∣∣= 1
4(q̃e +1)

∣∣2d̆2 − d̆2
1(q̃e +1)

∣∣
Using Lemma 2.15.3 with λ = 2, h=2 and k=1 and for q̃e ∈ (0,1), we have

|ǎ3 − ǎ2
2| ≤

2(2)
4(q̃e +1)

=
4

4(q̃e +1)
=

1
q̃e +1

So

|ǎ3 − ǎ2
2| ≤

1
q̃e +1

(4.18)

Hence proof is completed.
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Take q̃e → 1− in the above results and it will give us the already proved result as can be seen

in the following corollary.

Corollary 4.3.1.1. If φ(r̂) ∈ S∗ρ , then |ǎ3 − ǎ2
2| ≤

1
2 .

4.4 Hankel Determinants

For the class S∗ρ q̃e
, we have the following results:

Theorem 4.4.1. If φ(r̂) ∈ S∗ρ q̃e
, then

|ǎ2ǎ3 − ǎ4| ≤
(
q̃e

3 +25q̃e
2 +60q̃e +36

)
48(1+ q̃e)(1+ q̃e + q̃e

2)

Proof. From (4.12), (4.13) and (4.15), we obtain:

|ǎ2ǎ3 − ǎ4|=

∣∣∣∣∣ d̆1

2
(

d̆2

2(1+ q̃e)
)− 1

(1+ q̃e + q̃e
2)
(
d̆3

2
− q̃ed̆1d̆2

4(1+ q̃e)
−

q̃e
2d̆3

1
48

)

∣∣∣∣∣
|ǎ2ǎ3 − ǎ4|=

∣∣∣∣∣ d̆1d̆2

4(1+ q̃e)
− 1

(1+ q̃e + q̃e
2)
(
24(1+ q̃e)d̆3 −12q̃ed̆1d̆2 − q̃e

2(1+ q̃e)d̆3
1

48(1+ q̃e)
)

∣∣∣∣∣
Simplification will give us:

|ǎ2ǎ3 − ǎ4|=
1

48(1+ q̃e)(1+ q̃e + q̃e
2)

∣∣∣∣12d̆1d̆2(1+2q̃e)+12q̃e
2d̆1d̆2 −24(1+ q̃e)d̆3

+ q̃e
2(1+ q̃e)d̆3

1

∣∣∣∣
Now substitute values of d̆2 and d̆3 using lemma 2.15.1, we will get:

|ǎ2ǎ3 − ǎ4|=
1

48(1+ q̃e)(1+ q̃e + q̃e
2)

∣∣∣∣12d̆1(1+2q̃e)

(
d̆2

1 +ψ(4− d̆2
1)

2

)
+6q̃e

2d̆1

(
d̆2

1+

ψ(4− d̆2
1)

)
−24(1+ q̃e)

(
d̆3

1 +2(4− d̆2
1)d̆1ψ − (4− d̆2

1)d̆1ψ2 +2(4− d̆2
1)(1−|ψ|2)ϒ

4

)

+ q̃e
2(1+ q̃e)d̆3

1

∣∣∣∣
Simplifying terms inside we will have:

|ǎ2ǎ3 − ǎ4|=
1

48(1+ q̃e)(1+ q̃e + q̃e
2)

∣∣∣∣d̆3
1(q̃e

3 +7q̃e
2 +6q̃e)+ d̆1ψ(4− d̆2

1)(6q̃e
2 −6)

+6(1+ q̃e)d̆1ψ
2(4− d̆2

1)−12(1+ q̃e)(4− d̆2
1)(1−|ψ|2)ϒ)

∣∣∣∣
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Using triangluar inequality and let d̆1 = d̆, |ψ|= t

|ǎ2ǎ3 − ǎ4| ≤
1

48(1+ q̃e)(1+ q̃e + q̃e
2)

(
d̆3(q̃e

3 +7q̃e
2 +6q̃e)+ d̆t(4− d̆2)(6q̃e

2 −6)

+6(1+ q̃e)d̆t2(4− d̆2)+12(1+ q̃e)(4− d̆2)

)
We assume that

Jq̃e(d̆, t) =
1

48(1+ q̃e)(1+ q̃e + q̃e
2)

(
c̆3(q̃e

3 +7q̃e
2 +6q̃e)+ d̆t(4− d̆2)(6q̃e

2 −6)

+6(1+ q̃e)d̆t2(4− d̆2)+12(1+ q̃e)(4− d̆2)

)
Using partial differentiation of above, we have

∂Jq̃e

∂ t
=

1
48(1+ q̃e)(1+ q̃e + q̃e

2)

(
d̆(4− d̆2)(6q̃e

2 −6)+12d̆t(1+ q̃e)(4− d̆2)

)
> 0

It implies Jq̃e(d̆, t) is an increasing function in [0,1]. So,

max(Jq̃e(d̆, t)) = Jq̃e(d̆,1)

Substituting 1 in place of t in Jq̃e(d̆, t), we will get the following:

Jq̃e(d̆,1) =
1

48(1+ q̃e)(1+ q̃e + q̃e
2)

(
d̆3(q̃e

3 +7q̃e
2 +6q̃e)+ d̆(4− d̆2)(6q̃e

2 −6)

+6(1+ q̃e)d̆(4− d̆2)+12(1+ q̃e)(4− d̆2)

)
Combining like terms inside brackets, we have the following form:

Jq̃e(d̆,1) =
1

48(1+ q̃e)(1+ q̃e + q̃e
2)

(
d̆3(q̃e

3 +7q̃e
2 +6q̃e)+ d̆(4− d̆2)(6q̃e

2 +6q̃e)

+12(1+ q̃e)(4− d̆2)

)
Since it is only a function of d̆, so we consider

Lq̃e(d̆) =
1

48(1+ q̃e)(1+ q̃e + q̃e
2)

(
d̆3(q̃e

3 +7q̃e
2 +6q̃e)+ d̆(4− d̆2)(6q̃e

2 +6q̃e)

+12(1+ q̃e)(4− d̆2)

)
Differentiation of Lq̃e(d̆) gives us

L′
q̃e
(d̆) =

3c̆2(q̃e
3 +7q̃e

2 +6q̃e)+(4−3d̆2)(6q̃e
2 +6q̃e)−24d̆(1+ q̃e)

48(1+ q̃e)(1+ q̃e + q̃e
2)
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Again simplifying terms inside brackets, we get the following L′
q̃e
(d̆)

L′
q̃e
(d̆) =

d̆2(3q̃e
3 +3q̃e

2)−24d̆(1+ q̃e)+24q̃e(1+ q̃e)

48(1+ q̃e)(1+ q̃e + q̃e
2)

L′
q̃e
(d̆) =

1
48(1+ q̃e)(1+ q̃e + q̃e

2)
(Ad̆2 +Bd̆ +C)

where

A = (3q̃e
3 +3q̃e

2)

B =−24(1+ q̃e)

and

C = 24q̃e(1+ q̃e)

Certain calculations show that Ad̆2 +Bd̆ +C > 0 for d̆ ∈ (0,1] and q̃e ∈ (0,1). Also Ad̆2 +Bd̆ +

C < 0 for d̆ ∈ (1,2). This means L′
q̃e
(d̆) > 0 for d̆ ∈ (0,1] and L′

q̃e
(d̆) ≤ 0 for d̆ ∈ (1,2). This

implies Lq̃e(d̆) is increasing in (0,1] and decreasing in (1,2). Hence,

|ǎ2ǎ3 − ǎ4| ≤ Lq̃e(1) =
7q̃e

2 + q̃e
3 +6q̃e +18q̃e

2 +18q̃e +36+36q̃e

48(1+ q̃e)(1+ q̃e + q̃e
2)

, q̃e ∈ (0.9,1)

Hence

|ǎ2ǎ3 − ǎ4| ≤
q̃e

3 +25q̃e
2 +60q̃e +36

48(1+ q̃e)(1+ q̃e + q̃e
2)

(4.19)

This completes the proof.

As we take q̃e approaches to 1− in the above proof, we will get the result which is already

proved for the class S∗ρ as shown in the preceeding corollary.

Corollary 4.4.1.1. If φ(r̂) ∈ S∗ρ , then |ǎ2ǎ3 − ǎ4| ≤ 0.4254.

Theorem 4.4.2. If φ(r̂) ∈ S∗ρ q̃e
, then

|ǎ2ǎ4 − ǎ2
3| ≤

(0.6561q̃e
4 +1.3122q̃e

3 +100.1013q̃e
2 +176.4708q̃e +111.012)

96(1+ q̃e)2(1+ q̃e + q̃e
2)

Proof. From (4.12), (4.13) and (4.15), we get the following:

|ǎ2ǎ4 − ǎ2
3|=

∣∣∣∣∣ d̆1

2(1+ q̃e + q̃e
2)
(
d̆3

2
− q̃ed̆1d̆2

4(1+ q̃e)
−

q̃e
2d̆3

1
48

)−
d̆2

2
4(1+ q̃e)2

∣∣∣∣∣
|ǎ2ǎ4 − ǎ2

3|=

∣∣∣∣∣ 1
2(1+ q̃e + q̃e

2)
(
d̆1d̆3

2
−

q̃ed̆2
1 d̆2

4(1+ q̃e)
−

q̃e
2d̆4

1
48

)−
d̆2

2
4(1+ q̃e)2

∣∣∣∣∣
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|ǎ2ǎ4 − ǎ2
3|=

∣∣∣∣∣ 1
2(1+ q̃e + q̃e

2)
(
24(1+ q̃e)d̆1d̆3 −12q̃ed̆2

1 d̆2 − q̃e
2(1+ q̃e)d̆4

1
48(1+ q̃e)

)−
d̆2

2
4(1+ q̃e)2

∣∣∣∣∣
|ǎ2ǎ4 − ǎ2

3|=
1

48(1+ q̃e)22(1+ q̃e + q̃e
2)

∣∣∣∣24(1+ q̃e)
2d̆1d̆3 −12q̃e(1+ q̃e)d̆2

1 d̆2 − q̃e
2

(1+ q̃e)
2d̆4

1 −24d̆2
2(1+ q̃e + q̃e

2)

∣∣∣∣
Now put value of d̆2 and d̆3, we get:

|ǎ2ǎ4 − ǎ2
3|=

1
96(1+ q̃e)2(1+ q̃e + q̃e

2)

∣∣∣∣6(1+ q̃e)
2d̆1

(
d̆3

1 +2(4− d̆2
1)d̆1ψ − (4− d̆2

1)d̆1ψ
2

+2(4− d̆2
1)(1−|ψ|2)ϒ

)
−12q̃e(1+ q̃e)d̆2

1

(
d̆2

1 +ψ(4− d̆2
1)

2

)
− q̃e

2(1+ q̃e)
2d̆4

1

−24(1+ q̃e + q̃e
2)

(
d̆2

1 +ψ(4− d̆2
1)

2

)∣∣∣∣
|ǎ2ǎ4− ǎ2

3|=
1

96(1+ q̃e)2(1+ q̃e + q̃e
2)

∣∣∣∣6(1+ q̃e)
2d̆4

1 +12(1+ q̃e)
2(4− d̆2

1)d̆
2
1ψ −6(1+ q̃e)

2

(4− d̆2
1)d̆

2
1ψ

2 +12(1+ q̃e)
2d̆1(4− d̆2

1)(1−|ψ|)2
ϒ−6q̃e(1+ q̃e)d̆4

1 −6q̃e(1+ q̃e)d̆2
1ψ(4− d̆2

1)

− q̃e
2(1+ q̃e)

2d̆4
1 −6(1+ q̃e+ q̃e

2)d̆4
1 −6(1+ q̃e+ q̃e

2)ψ2(4− d̆2
1)

2−12(1+ q̃e+ q̃e
2)d̆2

1ψ(4− d̆2
1)

∣∣∣∣
|ǎ2ǎ4− ǎ2

3|=
1

96(1+ q̃e)2(1+ q̃e + q̃e
2)

∣∣∣∣(6(1+ q̃e)
2−6q̃e(1+ q̃e)− q̃e

2(1+ q̃e)
2−6(1+ q̃e+

q̃e
2))d̆4

1 +(12(1+ q̃e)
2 −6q̃e(1+ q̃e)−12(1+ q̃e + q̃e

2))d̆2
1ψ(4− d̆2

1)−6(1+ q̃e)
2(4− d̆2

1)d̆
2
1

ψ
2 −6(1+ q̃e + q̃e

2)ψ2(4− d̆2
1)

2 +12(1+ q̃e)
2d̆1(4− d̆2

1)(1−|ψ|2)ϒ
∣∣∣∣

After simplification of terms inside brackets, we will get

|ǎ2ǎ4 − ǎ2
3|=

1
96(1+ q̃e)2(1+ q̃e + q̃e

2)

∣∣∣∣− (7q̃e
2 +2q̃e

3 + q̃e
4)d̆4

1 +(6q̃e −6q̃e
2)d̆2

1(4− d̆2
1)

−6(1+ q̃e
2 +2q̃e)(4− d̆2

1)d̆
2
1ψ

2 −6(1+ q̃e + q̃e
2)ψ2(4− d̆2

1)
2

+12(1+ q̃e
+2q̃e)d̆1(4− d̆2

1)(1−|ψ|2)ϒ
∣∣∣∣

Now by applying triangular inequality and let d̆1 = d̆ and |ψ|= t, we have:

|ǎ2ǎ4 − ǎ2
3| ≤

1
96(1+ q̃e)2(1+ q̃e + q̃e

2)

(
(7q̃e

2 +2q̃e
3 + q̃e

4)d̆4 +(6q̃e −6q̃e
2)d̆2t(4− d̆2)

+6(1+ q̃e
2 +2q̃e)(4− d̆2)d̆2t2 +6(1+ q̃e + q̃e

2)t2(4− d̆2)2

+12(1+ q̃e
2 +2q̃e)d̆(4− d̆2)

)
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We assume that

Lq̃(d̆, t) =
1

96(1+ q̃e)2(1+ q̃e + q̃e
2)

(
(7q̃e

2 +2q̃e
3 + q̃e

4)d̆4 +(6q̃e −6q̃e
2)d̆2t(4− d̆2)

+6(1+ q̃e
2 +2q̃e)(4− d̆2)d̆2t2 +6(1+ q̃e + q̃e

2)t2(4− d̆2)2

+12(1+ q̃e
2 +2q̃e)d̆(4− d̆2)

)
Upon partial differentiation, we get:

∂Lq̃e

∂ t
=

1
96(1+ q̃e)2(1+ q̃e + q̃e

2)

(
(6q̃e −6q̃e

2)d̆2(4− d̆2)+12(1+ q̃e
2 +2q̃e)(4− d̆2)d̆2t

+12(1+ q̃e + q̃e
2)t(4− d̆2)2

)
> 0

So Lq̃e(d̆, t) is an increasing function in [0,1]. So,

max(Lq̃e(d̆, t)) = Lq̃(d̆,1)

Simplifying all terms, we have:

Lq̃e(d̆,1)=
1

96(1+ q̃e)2(1+ q̃e + q̃e
2)

(
(q̃e

4+2q̃e
3+13q̃e

2−12q̃e)d̆4−((12q̃e
2+24q̃e+12)d̆3

+(−48q̃e
2 +24q̃e −24)d̆2 +(48q̃e

2 +96q̃e +48)d̆ +(96q̃e
2 +96q̃e +96)

)
Let us consider

Mq̃e(d̆))=
1

96(1+ q̃e)2(1+ q̃e + q̃e
2)

(
(q̃e

4+2q̃e
3+13q̃e

2−12q̃e)d̆4−((12q̃e
2+24q̃e+12)d̆3

+(−48q̃e
2 +24q̃e −24)d̆2 +(48q̃e

2 +96q̃e +48)d̆ +(96q̃e
2 +96q̃e +96)

)
Now,

M′
q̃e
(d̆)=

1
96(1+ q̃e)2(1+ q̃e + q̃e

2)

(
(4q̃e

4+8q̃e
3+52q̃e

2−48q̃e)d̆3−(36q̃e
2+72q̃e+36)d̆2

+(−96q̃e
2 +48q̃e −48)d̆ +(48q̃e

2 +96q̃e +48)
)

M′
q̃e
(d̆) =

1
96(1+ q̃e)2(1+ q̃e + q̃e

2)
(Ad̆3 +Bd̆2 +Cd̆ +D)

where

A = (4q̃e
4 +8q̃e

3 +52q̃e
2 −48q̃e)

B =−(36q̃e
2 +72q̃e +36)
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C = (−96q̃e
2 +48q̃e −48)

D = (48q̃e
2 +96q̃e +48)

Certain calculations show that Ad̆3 +Bd̆2 +Cd̆ +D is greater than zero for d̆ ∈ (0,0.9] and q̃e

belongs to (0.95,1). Also, Ad̆3 +Bd̆2 +Cd̆ +D is less than zero for d̆ ∈ (0.9,2). This means

M′
q̃e
(c̆) > 0 for d̆ ∈ (0,0.9] and M′

q̃e
(d̆) ≤ 0 for d̆ ∈ (0.9,2). So, this implies that Mq̃e(d̆) is

increasing in (0,0.9] and decreasing in (0.9,2). This means that

|ǎ2ǎ4 − ǎ2
3| ≤ Mq̃e(0.9) =

1
96(1+ q̃e)2(1+ q̃e + q̃e

2)

(
(q̃e

4 +2q̃e
3 +13q̃e

2 −12q̃e)(0.9)4

− (12q̃e
2 +24q̃e +12)(0.9)3 +(−48q̃e

2 +24q̃e −24)(0.9)2 +(48q̃e
2 +96q̃e +48)(0.9)

(96q̃e
2 +96q̃e +96)

)
Hence

|ǎ2ǎ4 − ǎ2
3| ≤

(0.6561q̃e
4 +1.3122q̃e

3 +100.1013q̃e
2 +176.4708q̃e +111.012)

96(1+ q̃e)2(1+ q̃e + q̃e
2)

(4.20)

So, the proof is completed.

If we take q̃e approaches to 1− in the above proof, we will get the result which has already

been proved for S∗ρ as illustrated in the following corollary.

Corollary 4.4.2.1. If φ(r̂) ∈ S∗ρ , then |ǎ2ǎ4 − ǎ2
3| ≤ 0.3382.

Theorem 4.4.3. If φ(r̂) ∈ S∗ρ q̃ then

|H3,1(φ)| ≤
1536+6732q̃e +8343q̃e

2 +4953q̃e
3 +540q̃e

4 +270q̃e
5

1536(q̃e
3 + q̃e

2 + q̃e +1)(1+ q̃e + q̃e
2)(1+ q̃e)2 +(

94332+72732q̃e −729q̃e
2 −729q̃e

3)(q̃e
3 +25q̃e

2 +60q̃e +36
)

2304000(1+ q̃e)2(1+ q̃e + q̃e
2)2 +

(0.6561q̃e
4 +1.3122q̃e

3 +100.1013q̃e
2 +176.4708q̃e +111.012)

96(1+ q̃e)3(1+ q̃e + q̃e
2)

.

Proof. The upper bound of third order Hankel Determinant is given as follow:

|H3,1(φ)| ≤ |ǎ5||(ǎ3 − ǎ2
2)|+ |ǎ4||(ǎ4 − ǎ2ǎ3)|+ |ǎ3||(ǎ2ǎ4 − ǎ2

3)|
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Now substitute values in the above inequality from Theorem 4.2.1, Theorem 4.4.1 and Theorem

4.4.2, we will get the following:

|H3,1(φ)| ≤
1536+6732q̃e +8343q̃e

2 +4953q̃e
3 +540q̃e

4 +270q̃e
5

1536(q̃e
3 + q̃e

2 + q̃e +1)(1+ q̃e + q̃e
2)(1+ q̃e)2 +(

94332+72732q̃e −729q̃e
2 −729q̃e

3)(q̃e
3 +25q̃e

2 +60q̃e +36
)

2304000(1+ q̃e)2(1+ q̃e + q̃e
2)2 +

(0.6561q̃e
4 +1.3122q̃e

3 +100.1013q̃e
2 +176.4708q̃e +111.012)

96(1+ q̃e)3(1+ q̃e + q̃e
2)

.

which is our required proof.

If we take q̃e → 1− in the proof above, it yields us to the already proved results, as shown in

the corollary.

Corollary 4.4.3.1. If φ(r̂) ∈ S∗ρ , then |H3,1(φ)| ≤ 0.6271.

4.5 Zalcman Functional

Theorem 4.5.1. If φ(r̂) ∈ S∗ρ q̃e
, then

|ǎ5 − ǎ2
3| ≤ (16.875q̃e

5 +129.75q̃e
4 +405.5625q̃e

3 +713.4375q̃e
2 +516.75q̃e +192)

96((1+ q̃e)2(1+ q̃e
2)(1+ q̃e + q̃e

2)

Proof. Put values from (4.13) and (4.17) and do simplification, we will get the following:

ǎ5− ǎ2
3 =

1
96(1+ q̃e)2(1+ q̃e + q̃e

2)(1+ q̃e
2)

[
48d̆4(1+ q̃e)(1+ q̃e+ q̃e

2)−24q̃e(1+ q̃e)
2d̆1d̆3+

2q̃e
2(3−6q̃2−3q̃e

3)d̆2
1 d̆2+ q̃e

2(1+ q̃e)(2q̃e
2+2q̃e+1)d̆4

1 −(1+ q̃e+ q̃e
2)(24q̃e

2+24q̃e+24)d̆2
2

]
Using Lemma 2.15.1 in the above equation and it will become as follows:

ǎ5 − ǎ2
3 =

1
96(1+ q̃e)2(1+ q̃e + q̃e

2)(1+ q̃e
2)

[
48d̆4(1+ q̃e)(1+ q̃e + q̃e

2)−24q̃e(1+ q̃e)
2d̆1(

d̆3
1 +2(4− d̆2

1)d̆1ψ − (4− d̆2
1)d̆1ψ2 +2(4− d̆2

1)(1−|ψ|2)ϒ
4

)
+2q̃e

2(3−6q̃e
2 −3q̃e

3)d̆2
1(

d̆2
1 +ψ(4− d̆2

1)

2

)
+ q̃e

2(1+ q̃e)(2q̃e
2 +2q̃e +1)d̆4

1 − (1+ q̃e + q̃e
2)(24q̃e

2 +24q̃e +24)(
d̆2

1 +ψ(4− d̆2
1)

2

)2]
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After calculations of like terms, apply triangular inequality on both sides and use Lemma 2.15.2

and let d̆1 = d̆, |ψ|= t

|ǎ5− ǎ2
3| ≤

1
96(1+ q̃e)2(1+ q̃e + q̃e

2)(1+ q̃e
2)

[
96(1+ q̃e)(1+ q̃e+ q̃e

2)+ c̆4(q̃e
5+8q̃e

4+15q̃e
3

+26q̃e
2 +18q̃e +6)+(4− d̆2)d̆2t(3q̃e

5 +18q̃e
4 +36q̃e

3 +57q̃e
2 +36q̃e +12)

+6q̃e(1+ q̃e)
2(4− d̆2)d̆2t2 +12q̃e(1+ q̃e)

2d̆(4− d̆2)+6(1+ q̃e + q̃e
2)2t2(4− d̆2)2

]
Consider

Pq̃(d̆, t)=
1

96(1+ q̃e)2(1+ q̃e + q̃e
2)(1+ q̃e

2)

[
96(1+ q̃e)(1+ q̃e+ q̃e

2)+ d̆4(q̃e
5+8q̃e

4+15q̃e
3

+26q̃e
2 +18q̃e +6)+(4− d̆2)d̆2t(3q̃e

5 +18q̃e
4 +36q̃e

3 +57q̃e
2 +36q̃e +12)

+6q̃e(1+ q̃e)
2(4− d̆2)d̆2t2 +12q̃e(1+ q̃e)

2d̆(4− d̆2)+6(1+ q̃e + q̃e
2)2t2(4− d̆2)2

]
Partially differentiate the above with respect to t and we will have:

∂Pq̃e(d̆, t)
∂ t

=
1

96(1+ q̃e)2(1+ q̃e + q̃e
2)(1+ q̃e

2)

[
(4− c̆2)d̆2(3q̃e

5 +18q̃e
4 +36q̃e

3 +57q̃e
2+

36q̃e +12)+12q̃e(1+ q̃e)
2(4− d̆2)d̆2t +12(1+ q̃e + q̃e

2)2t(4− d̆2)2
]

Clearly Pq̃e(d̆, t) turns out to be an increasing function in the interval [0,1]. So,

max(Pq̃e(d̆, t)) = Pq̃e(d̆,1) = Pq̃e(d̆)

Hence combining like terms inside and simplied them, we will get

Pq̃e(d̆) =
1

96(1+ q̃e)2(1+ q̃e + q̃e
2)(1+ q̃e

2)

[
96(1+ q̃e)(1+ q̃e + q̃e

2)+ d̆4(−2q̃e
5 −4q̃e

4−

15q̃e
3 −25q̃e

2 −12q̃e)− d̆3(12q̃e(1+ q̃e)
2)+ d̆2(12q̃e

5 +24q̃e
4 +72q̃e

3 +132q̃e
2 +72q̃e)

+48q̃e(1+ q̃e)
2d̆ +96(1+ q̃e + q̃e

2)2
]

Differentiating above will lead us to the following:

P′
q̃e
(d̆) =

1
96(1+ q̃e)2(1+ q̃e + q̃e

2)(1+ q̃e
2)

[
d̆3(A)+ d̆2(B)+ d̆(C)+D

]
where

A =−8q̃e
5 −16q̃e

4 −60q̃e
3 −100q̃e

2 −48q̃e

,

B =−36q̃e(1+ q̃e)
2)
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,

C = (24q̃e
5 +48q̃e

4 +144q̃e
3 +264q̃e

2 +144q̃e)

and

D = 48q̃e(1+ q̃e)
2.

After caclculations, it is observed that d̆3(A)+ d̆2(B)+ d̆(C)+D is greater than zero for d̆ ∈

(0,1.5] and q̃e ∈ (0,1). Also, d̆3(A)+ d̆2(B)+ d̆(C)+D < 0 for d̆ ∈ (1.6,2). This means that

Pq̃e(d̆) is increasing in (0,1.5] and decreasing in (1.6,2). So,

|ǎ5 − ǎ2
3| ≤ Pq̃e(1.5) =

1
96(1+ q̃e)2(1+ q̃e + q̃e

2)(1+ q̃e
2)

[
96(1+ q̃e)(1+ q̃e + q̃e

2)+(1.5)4

(−2q̃e
5−4q̃e

4−15q̃e
3−25q̃e

2−12q̃e)−(1.5)3(12q̃e(1+ q̃e)
2)+(1.5)2(12q̃e

5+24q̃e
4+72q̃e

3

+132q̃e
2 +72q̃e)+48q̃e(1+ q̃e)

2(1.5)+96(1+ q̃e + q̃e
2)2
]

|ǎ5 − ǎ2
3| ≤ (16.875q̃e

5 +129.75q̃e
4 +405.5625q̃e

3 +713.4375q̃e
2 +516.75q̃e +192)

96(1+ q̃e)2(1+ q̃e
2)(1+ q̃e + q̃e

2)

Hence, the proof is completed.

Take q̃e → 1− in the above result and it gives us the already proved result for the class S∗ρ
which can be seen in the corollary below.

Corollary 4.5.1.1. If φ(r̂) ∈ S∗ρ , then |ǎ5 − ǎ2
3| ≤ 0.8570.
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CHAPTER 5

CONCLUSION

This thesis principally investigates the coefficient bounds of analytic, univalent and normal-

ized functions in the open unit disk. Some initail findings from the study of Geometric Function

Theory and primary concepts of q-calculus are examined, with a thorough analysis of the use of

q-derivative operator to analytic functions. By utilizing q-difference operator, a new q-starlike

functions’s class is presented.

This research explored the q-starlike class S∗ρ associated with inverse hyperbolic sine function

and the q-extension of this class. This class was introduced by Kush Arora and S. Sivaprasad

Kumar and in this research the work is further extended using concepts of q-calculus. The

class S∗ρ q̃e
is presented, which formally signifies q-starlike functions suborniate to the q-series of

inverse sine hyperbolic function. This class is introduced using q-difference operator and the

geometric techniques are used to investigate the properties of this class.

The notable characteristics of the functions of our recently introduced class are explored,

encompassing coefficient bounds, the famous Fekete-Szegö problem, Hankel determinanats of

second and third order, and the Zalcman functional. Observations have clearly demonstrated

that our newly defined class is more advanced and an extensive class providing a refinement

when contrasted to the existing one. The results presented advancements over theorems which

have already proved by various researchers in the area of Geometric Function Theory. In order

to validate the obtained results or findings limit q̃e → 1− has been taken which yields the

already known results. It is anticipated that this study will significantly contribute in the field of

Geometric Function Theory and provides a pathway for subsequent advances and breakthroughs
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in this field.

5.1 Future Work

The main focus of this study is the exploration of class of q-starlike functions associated to

q-version of inverse hyperbolic sine function. This class can be explored further by presenting

results for class of convex functions, quasi and close-to-convex functions by using subordination

technique. Further, utilizing the concepts of quantum calculus results that are obtained in

this study can be found for the classes containing q-convex functions, or the classes having

q-close-to-convex functions and functions belong to q-quasi class.
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