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ABSTRACT

Title: On a New Class of q-Starlike Functions with respect to Boundary Point

The aim of this research is to introduce and discuss properties of new subclasses of analytic

functions in the open unit disc. The concepts of q-calculus will be used to define the q-extensions

of already existing results for starlike functions. We will investigate the results thoroughly which

are previously find by the researcher such as integral representation theorem, Fekete-Szegö

Inequality, coefficient bounds and differential subordination results related to the class of starlike

functon with respect to a boundary point. The new class of q-starlike functions with respect to a

boundary point subordinated with exponential function will be introduced. Coefficient estimates,

integral representation theorem, Fekete-Szegö inequality, covering and differential subordination

results will be examined for our new class. The relevant connections of our new classes and

results to known ones are also pointed out.
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

1.1 Overview

This chapter provides a complete introduction and literature review, with an emphasis on

key concepts in Geometric Function Theory. It includes the classes of analytic and univalent

functions, and it also covers investigation of relevant subclasses. A brief discussion is also given

to the Hankel determinant and coefficient bounds for these classes. This chapter also reviews

basic concepts of quantum calculus.

1.2 Riemann Mapping Theorem

In 1851, Bernard Riemann’s discover a result known as the Riemann Mapping Theorem,

see [1]. As a result of this discovery, we can use an open unit disc M = {η ∈ C : |η |< 1} as a

domain rather than a complex arbitrary domain. This theorem is essential as the foundation of

Geometric Function Theory. The foundation of univalent function theory was developed in the

19th century by the important contributions of Cauchy, Riemann, and Weierstrass.
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1.3 Analytic Function and Univalent Function

In 1907, Koebe [2, 3] proposed analytical and univalent functions in M. Within an open

unit disc M, he discovered functions that are analytic, univalent and normalized. Researchers

have studied these functions comprehensively, see [1, 2, 3]. In 1983, Duren [1] defined analytic

functions for the first time. He proposed the class A, comprising functions that are analytic

and normalized such that g(0) = 0 and g ′(0) = 1. A function in class A that are analytic can

be represented in series form as, g(η) = η +∑
∞
k=2 ckηk,η ∈ M, where M = {η ∈ C : |η | <

1}. In Geometric Function Theory, analytic functions are essential because they provide a

comprehensive framework for studying how functions behave in the complex plane. If a function

is differentiable at every point in a region, that region is said to be analytic for that function,

see [1]. Analytic functions are classified into numerous classes, which are then subclassified

depending on the structure of their image domains and other geometry. The geometric shape of

the image domain is extremely important in the comprehensive analysis of analytic functions.

Therefore, it has been a topic of discussion among scholars to introduce and investigate new

geometrical structures related to analytic functions. In 1936, Robertson [4] advances the ideas

behind the theory of univalent functions. A function is considered univalent in a region, if it is

injective that is it takes distinct values for different inputs within that region. In 1964, MacGregor

[5] presented a brand-new category of univalent functions.

1.4 Univalent and Analytic Function’s Subclasses

Koebe [6] discovered the univalent function theory, a classic Analysis that is complex topic, in

1907. He proposed that the functions that are analytic, univalent in M, and satisfy normalization

conditions are in class S of functions. The main focus of this current analysis will be on the

subclasses of class S functions. In Geometric Function Theory, the class S of standardized

univalent processes plays a significant role. Class K comprises close-to-convex functions, class C

comprises convex functions, class C* comprises quasi-convex functions, and class S* comprises

starlike functions. These are the four main subclasses of class S. This classification began

during efforts to provide evidence for the Bieberbach conjecture [7]. Alexander [4] established
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a relationship known as the Alexander relation in 1915 to connect two groups of convex and

starlike functions. In 1921, Nevanlinna [8] developed starlike functions in M. Univalent functions

of order α that are convex of order α and starlike with negative coefficients are determined by

Silverman [9] in 1975.

1.5 Coefficient Bounds

The problem of determining coefficient bounds is important part in Geometric Function

Theory, and functions are further classified into several subfamilies of class A. The Bierberbach

theorem, first published in 1916 by German mathematician Ludwig Bierberbach, is an important

component of class S. He computed the second coefficient c2 for univalent functions in class

S. This theorem set the groundwork for Bieberbach’s conjecture, which resulted in significant

advances in the industry, see [7].

The widely recognized coefficient conjecture regarding the function g within the class S states

that, if g ∈ S, then kth coefficient of g, ck holds the inequality |ck| ≤ k for k = {2,3, ....}, where

Koebe function and one of its rotation gives sharp results. In 1916, Bieberbach [10, 11] proved

the second coefficient c2 of g, which holds the inequality |c2| ≤ 2 and Koebe is the extremal

function for this coefficient inequality. While mathematicians have made multiple attempts

to demonstrate this idea, it has proven to be a challenging task. In 1923, Karl Loewner [12]

demonstrated the third coefficient, c3 of univalent function g as |c3| ≤ 3. The fourth coefficient

problem stayed unsolved till 1955, when Garabedian and Schiffer [13] showed that the fourth

coefficient c4 of g holds the inequality |c4| ≤ 4. Later on, mathematician Louis de Branges [14]

successfully proved the general form of the Bieberbach conjecture in 1985, which states that

|ak| ≤ k, where k = {2,3, ....}, when g is a rotation of a Koebe function then the inequality is

strict for every k, see [15]. In 2016, Darus [16] collected the class of second and third coefficient

estimations of q-starlike and q-convex functions. Seoudy et al. [17] obtained the second and

third coefficient valuations for the category of q-starlike and q-convex functions of intricate

arrangement in 2016.
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1.6 Hankel Determinant

The Hankel determinant refers to the determinant of the Hankel matrix. Pommerenke [18]

introduced the concept of the Hankel determinant for specific univalent functions, in 1967. The

Hankel determinant is important for investigating singularities and the analyzing power series

with integral coefficients. A well-known Fekete-Szegö inequality for univalent function g is

|c3 − c2
2|= H2(1). In general, it is written as |c3 −λc2

2| for a specified λ , which might be real or

complex. Fekete-Szegö developed a challenging inequality for 0 ≤ λ < 1. The Fekete-Szegö

problem involves determining the optimal constant λ and ensuring that the inequality remains

less than or equal to λ for all analytic functions. In 1976, Hankel determinant of certain analytic

functions were studied by Noonan and Thomas [19]. In 1967, the Hankel determinant for the

coefficients of analytic function, g(η) = η +∑
∞
k=2 ckηk,η ∈ M, where M = {η ∈ C : |η |< 1}

is defined by Pommerenke [18]. The qth Hankel determinant for q ≥ 1 and k ≥ 0 is defined as,

Hq(k) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ck ck+1 . . . ck+q−1

ck+1 ck+2 . . . ck+q

. . . . . .

. . . . . .

. . . . . .

ck+q−1 ck+q . . . ck+2(q−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (1.1)

where q and k are positive integers, for more details, see [18, 20]. Hayman [21] investigated the

second Hankel determinant for univalent functions in 1968. Growth rate of Hq(k) for a univalent

analytical function with defined bounds was determined in 1983 by Noor [22] as k → ∞..

In 2000, Ehrenborg [23] conducted research on the Hankel determinant of exponential

polynomials. Following that, in 2007, Janteng et al. [24] established a sharp upper limit for the

functional |c2c4 − c2
3| concerning starlike and convex functions. Then, in 2009, Babalola [25]

introduced the Hankel determinant of order 3 for the renowned classes of starlike and convex

functions within the disc M. The Hankel determinant of a convex function is H3(1)≤ 15
24 , while

that of a starlike function is H3(1)≤ 16.

In 2019, Lecko et al. [26] discovered the acute turn for the Three-order Hankel determinant

for the starlike function of hierarchy 1
2 and obtained a sharp inequality. In 2022, Shi et al. [27]

discovered the bounds of Hankel’s determinant of order three in an open unit disc for particular

subfamilies of convex and star-shaped operations connected with exponential functions. In 2022,
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Joshi et al. [28] found the third Hankel determinant in the open unit disc M for the class of

starlike functions associated with exponential functions.

1.7 q-Calculus

Quantum Calculus can be described as a variant of ordinary calculus that operates without

the concept of limits. The q-derivative and q-integral are the major techniques that Jackson

[29, 30] introduced for the first time in 1909 and 1910 respectively. The theory of partitions

was developed by Euler in 1740 which was the origin of q-analysis. C. F. Gauß (1777–1855)

made major contributions to the development of calculus of quantum. The history of quantum

computation can be linked to the contributions of Euler and Bernoulli. Researchers have

expressed a strong interest in quantum calculus because of its multiple uses in Mathematics,

mechanics, and physics.

Quantum Calculus is a significant subject of research in classical mathematical analysis.

It aims to provide a theoretical overview of the integration and differentiation procedures. A

broad field of mathematical study with ancient roots is quantum calculus. It is more difficult

than other math disciplines due to the complex calculations and computations. This research

aims to evaluate the geometric properties of analytic functions by employing the q-derivative.

Ismail et al. [31] defined q-starlike functions using the q-derivative in 1990. This is the first

time q-calculus is introduced in Geometric Function Theory. He achieved this through the use

of the difference operator. When he first presented his class, he called it a "class of q-starlike

functions". In 1999, Dziok and Srivastava [32] used the function of generalized hypergeometric

to present a class of analytic functions with negative coefficients.

In 2011, Srivastava [33] investigated generalizations and Extensions of q in the Bernoulli

[34], Genocchi [35] and Euler [36] Polynomials, laying the structure for applying Geometric

Function Theory’s q-calculus. Purohit [37] introduced a new class of multivalently analytic

functions in the open unit disc. He also researched coefficient inequalities and several distortion

theorems related to this function class. He was also the pioneer in utilizing a specific operator

of the q-derivative in his research. His contribution to the field of analytic function theory

was significant as he provided q-extensions for many results. In 2013, Aldweby and Darus

[38] use a generalized operator involving a basic hypergeometric function to analyze a class



6

of complex-valued harmonic univalent functions. They also provide the required coefficient

conditions for functions in their class. Darus [16] introduces the class involving q-starlike and

q-convex function in 2016 including Operator derivative of q. In 2016, Seoudy et al. [17]

introduced novel classes of q-starlike and q-convex functions of complex order that include the

q-derivative operator. Recently, q-calculus has been used by several scholars to make significant

contributions in the field of Geometric Functions Theory, for more details, see [39, 40, 41, 42].

1.8 Starlike Function with respect to a Boundary Point

In 1981, Robertson [43] advances the description of the class of starlike functions and

proposed a new class of starlike functions with regard to a boundary point. It is the geometric

description of a function g ∈ A such that g(M) is starlike in relation to the boundary point and

lies in the half plane. Silverman and Silvia [44] defined the class of univalent functions on M

whose image is star-shaped relative to the boundary point in 1990. Starlike function with regard

to a boundary point that are defined through subordination are studied by Mohd and Darus [45]

in 2012 and results related to these functions are also proved by them. Lyzzaik [46] was the

first to validate the characterisation of this class in 1984. In 1986, Todorov [47] associated

this category with the functional g(η)/(1−η) and derived a systematic formula along with

coefficient estimates for the above mentioned class. Then, Silverman and Silvia [44] provided

a comprehensive definition of the class of univalent functions on M, the image of which is

star-shaped with regard to the boundary point. Subsequently, this class of starlike functions has

attracted the attention of geometric function theorists and other scholars. Recently, scholars such

as Noor et al. [48, 49], Bulut [50] and Ramachandran et al. [51] have employed q−calculus

inside the domain of Geometric Function Theory to create new results.

The aforementioned scholar’s research inspired us to introduce a new q-starlike class S∗b,q

functions relative to a boundary point subordinate to the exponential function. Fekete-Szegö

inequality, coefficient inequalities, covering results and differential subordination results will be

find for our newly defined class. We will show that our newly defined class will be advancement

of the class Ge of starlike function with regards to boundary point subordinated to exponential

function. It will also be demonstrated that our new findings are an improvement of previously

obtained results in the article [52]. Analytic methodologies, To achieve the desired outcomes,
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q-calculus concepts and subordination techniques will be used.

1.9 Preface

This research focuses on the class of functions that are starlike in relation to a boundary point

connected with exponential functions. The brief chapter-wise summary of the current thesis is as

below:

In chapter 2, several key ideas of Geometric Function Theory are covered. The categories

of univalent and analytical functions that are standardized in the disc M are explained. The

subcategories of functions with one value and the group P of caratheodory functions are studied.

The subordination technique is used to derive results that is pivotal in the study of analytic

functions. The class of starlike functions in relation to a boundary point involving exponential

functions is also given. Fekete-Szego inequality and Hankel determinant have been discussed

in this chapter. A brief introduction to q-calculus and the q-function classes is presented. The

concepts and outcomes discussed in this chapter are widely recognized and appropriately cited,

with no advance results.

In chapter 3, the class of starlike functions with respect to a boundary point subordinated to

exponential functions Ge will be presented. The results in accordance to this class like integral

representation theorem, Fekete-Szegö problem, covering and differential subordination results

will be investigated.

In chapter 4, a new class will be introduced by using the ideas of q-calculus, that is the

class S∗b,q of q-starlike functions with regard to a boundary point. The properties that are related

to our newly defined class will be discussed. The results like integral representation theorem,

coefficient inequalities, Fekete-Szegö problem, covering and differential subordination results

corresponding to the class S∗b,q will be derived.

In chapter 5, our research is concluded.
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CHAPTER 2

PRELIMINARY CONCEPTS

2.1 Overview

This chapter aims at providing a foundation for further research by covering key terminologies

and classical results. The research looks into a detailed discussion of normalized analytic

univalent functions and caratheodory functions. The study also covers special functions, linear

operators, and preliminary lemmas. Additionally, the preliminaries of q-calculus are briefly

discussed, followed by an analysis of some recent classes of analytic functions.

2.2 Analytic Functions

In 1907, analytic and univalent functions are discovered by Koebe [2, 3] iFor the first time,

M appears on the open unit disc. Analytical operations are essential because they provide a

comprehensive framework for studying how functions behave in the complex plane.

Definition 2.2.1. [1] A function with complex values g(η) is regarded as analytical at one point

η0 if its derivative is present elsewhere other than at that particular location η0 but also in the

neighbourhood of η0. If a function g(η) is analytic at every point within its domain, it is termed

as an analytic function in that domain.

Definition 2.2.2. [1] An analytic function g(η) that is normalized by the condition, g(0) = 0
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and g ′(0) = 1 is said to be in class A of functions and are represented as :

g(η) = η +
∞

∑
k=2

ckη
k,η ∈ M. (2.1)

In this thesis, g ∈ A unless and until mentioned separately.

Definition 2.2.3. (Riemann Mapping Theorem) [3] Suppose η0 be a point in a simply connected

domain D and is a proper subset of a complex plane. Next, there’s a unique function g that

conformally represents the domain D into the accessible unit disk M with certain properties as,

g(0) = 0 and g ′(η)> 1. Instead of using an arbitrary domain D, we use an open unit disc M in

Geometric Functions Theory. The Riemann Mapping Theorem offered a strong framework for

investigating Geometric Function Theory.

2.3 Univalent Functions

In Geometric Function Theory, univalent functions have a special role. If a function is

injective that is, it takes different values for different inputs inside the region, it is called univalent

in that region. These functions are of particular interest due to their conformal mapping.

Definition 2.3.1. [3, 6] Assume that g be a complex-valued analytic function that is defined on

the complex plane’s domain D. Then, for any two unique points η1 and η2 in D, g is said to be

univalent in D if g(η1) and g(η2) are also distinct. Also, if g(η1) = g(η2), then η1 = η2. If a

function g(η) is univalent throughout the complex plane, it is referred to as univalent function in

the entire plane.

2.4 The Univalent Function’s Class S

The functions which are analytical and univalent within the visible unit disk M and normalized

are in group S of operations. The S class in which normalized univalent operations play crucial

role in Geometric Function Theory.

Definition 2.4.1. Suppose g be a function that belong to the class A of functions and is univalent

in the open unit disc M, then g ∈ S. Koebe function is the famous example of class S of functions
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and is defined by,

K(η) =
1
4

(
1+η

1−η

)2

− 1
4
=

η

(1−η)2 =
k=∞

∑
k=1

kη
k,η ∈ M. (2.2)

2.5 Catheodory Function’s Class P

Functions with a positive real portion, called caratheodory functions, are included in the class

P. Numerous subclasses of univalent functions are developed based on this class. We look on

fundamental ideas that are relevant to class P and are necessary for our work.

Definition 2.5.1. Suppose that p be an analytic function in the open unit disk M, with p(0) = 1,

Re(p(η))> 0 and have the Taylor series expansion as:

p(η) = 1+
∞

∑
k=1

pkη
k,η ∈ M. (2.3)

The Mobius function is a common example of a function in class P,

M0(η) =
1+η

1−η
= 1+2

∞

∑
k=1

η
k,η ∈ M. (2.4)

2.6 Subordination

The theory of subordination was initially presented by Lindelof [53] in 1909. Later, Lit-

tlewood [54] and Rogosinski [55, 56] made additional advancements. In Geometric Function

Theory, subordination is a useful method for connecting two functions that are defined on distinct

domains.

Definition 2.6.1. [57] Suppose f1 and f2 are two functions in the class A. Then f1 is subordinate

to f2, written as f1 ≺ f2 if there exist a Schwarz function w(η) that is analytic and univalent in

M with w(0) = 1 and |w(η)|< 1 such that f1(η) = f2(w(η)) , η ∈ M.
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2.7 Certain Subclasses of The Class S

The S class contains several subcategories, including the quasi-convex, convex, close-to-

convex, and starlike functions classes. This section delves into two fundamental subclasses,

starlike and convex functions. The discussion also explores the connection between these classes

and Caratheodory functions, along with their established properties.

2.7.1 Convex and Starlike Functions

S∗ represents the category of star-shaped functions, which has the following definition:

Definition 2.7.1. [3, 1] A starlike function maps an open unit disc, denoted by M, into a complex

domain D, which has a geometric property known as starlike domain relative to the origin. A

complex domain D in the complex plane is classified as starlike when there exists a complex

number η0 (typically symbolizing the origin, η0 = 0), such that the line segment linking η0 to

any other point η lies wholly inside D. In simpler words, D is considered starlike if, for every

point η within D, the line segment extending from the origin (or some designated central point)

to η is completely contained within D. That is, ∀η ∈ D,λη ∈ D, where 0 ≤ λ ≤ 1, if η0 ∈ D.

The analytic description of starlike functions is as follows [8]:

S∗ =
{

g ∈ A : Re
ηg ′(η)

g(η)
> 0,η ∈ M

}
. (2.5)

The C of convex functions’ class is defined as stated below:

Definition 2.7.2. [3, 1] A convex function transfer an open unit disc M onto a complex domain

D, which possesses a specific geometric property known as convexity with respect to the

origin. In simpler terms, a complex domain D is considered convex when the entire line

segment connecting any two points η1 and η2 within D is entirely contained within D. That is,

[λη1 +(1−λη2)] ∈ D,∀η ∈ D, where η1 and η2 are both in D with 0 ≤ λ ≤ 1.

The anlytical description of convex function’s class is as follows:

C =

{
g ∈ A : Re

(ηg ′(η)) ′

g ′(η)
> 0,η ∈ M

}
. (2.6)

In 1915, Alexander [58] proposed a relation between these two classes and is given by,

g ∈C ⇔ ηg ′(η) ∈ S∗. (2.7)
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Figure 2.1: Convex Domain

Figure 2.2: Starlike Domain

Figure 2.1 shows convex domain while figure 2.2 shows that domain is starlike.

2.7.2 Subclass of Convex Function

The convex function’s class that are subordinated to the exponential function and satisfy the

Schwarz function is defined by Mendiratta et al. [59], denoted as,

Ce =

{
g ∈ A : 1+

ηg ′′(η)

g ′(η)
≺ eη

}
. (2.8)

2.7.3 Class of Starlike Functions

Mendiratta and associates. [59] specified a subclass of a starlike functions connected with

exponential function and is denoted by S∗e . Its mathematical representation is as under:

S∗e =
{

g ∈ A :
ηg ′(η)

g(η)
≺ eη

}
,η ∈ M. (2.9)
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2.7.4 Starlike Function with respect to a boundary point

In 1981, Robertson [43] proposed a new class S∗b of starlike function with regards to a

boundary point. Mathematically, it is given by:

S∗b :=
{

g ∈ A : Re
{

2ηg ′(η)

g(η)
+

1+η

1−η

}
> 0
}
. (2.10)

2.7.5 Starlike Function with respect to a boundary point associated with

exponential function

In 2022, Lecko et al. [52], for g ∈ A, defined the class Ge, which is as under

Ge =

{
g ∈ A :

2ηg ′(η)

g(η)
+

1+η

1−η
≺ eη ,η ∈ M

}
. (2.11)

2.8 Hankel Determinant

The Hankel determinant refers to the determinant of a Hankel matrix. Pommerenke [18] pro-

posed the Hankel determinant for certain univalent functions. The Hankel determinant is useful

for studying singularities and analyzing power series with integrals coefficients. Noonan and

Thomas [19] determined the Hankel determinant of certain analytic functions. In 1968, Hayman

[21] studied the hankel determinant of second order for univalent functions. Bounds regarding

the third Hankel determinant for particular kinds of analytical functions were determined by

Prajapat and associates. [60, 61]. The qth Hankel determinant for q ≥ 1 and k ≥ 0 is defined as,

Hq(k) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ck ck+1 . . . ck+q−1

ck+1 ck+2 . . . ck+q

. . . . . .

. . . . . .

. . . . . .

ck+q−1 ck+q . . . ck+2(q−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.12)

where q and k are positive integers, for more details, see [18, 20].
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The Hankel determinant of different order was discovered for various values of q and k.

Given q = 2 and k = 1, the Hankel determinant is given by

H2(1) =

∣∣∣∣∣∣c1 c2

c2 c3

∣∣∣∣∣∣ ,= (c1c3 − c2
2),(c1 = 1).@ (2.13)

This determinant is a a special method for determining a function’s maximum value |c3 −µc2
2|

where µ is either complex or real in S. We call this the Fekete-Szego issue. Researchers have

looked into Fekete-Szego inequalities for various classes of univalent analytic functions, see

[62, 63, 64, 65, 66, 67]. Now for q = 2 and k = 2, the Hankel determinant is as under

H2(2) =

∣∣∣∣∣∣c2 c3

c3 c4

∣∣∣∣∣∣ ,= (c2c4 − c2
3). (2.14)

In 2018, Zaprawa [68] finds the Hankel determinant H2(3) for the coefficients of a function g

which relates to the class S.

H2(3) =

∣∣∣∣∣∣c3 c4

c4 c5

∣∣∣∣∣∣ ,= (c3c5 − c2
4). (2.15)

Researchers have determined the formula for the Hankel determinant of third order in their

respective studies, see [69, 70, 71] and is given by

H3(1) =

∣∣∣∣∣∣∣∣∣
c1 c2 c3

c2 c3 c4

c3 c4 c5

∣∣∣∣∣∣∣∣∣ , (2.16)

it follows that

H3(1) = c1(c3c5 − c2
4)− c2(c2c5 − c3c4)+ c3(c2c4 − c2

3). (2.17)

2.9 Quantum Calculus or q-Calculus

Quantum calculus involves the q-analogs of mathematical concepts that able to retrieved

as the limit q → 1−. The Euler made notable contributions to the advancement of q-calculus

in the 18th century, and it was further advanced by Jackson [29, 30] before the 20th century.

Researchers are becoming interested in this field because of its potential uses in Mathematics

and Physics. Jackson [29, 30] systematically developed the q-derivative and q-integral.
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In Geometric Function Theory, researchers examined subclasses of univalent functions

utilizing q-calculus’s preliminary steps. Ismail [31] developed and analyzed generalized starlike

functions using q-calculus. The q-close-to-convex functions were recently defined, and various

interesting findings were achieved, see [72]. Raghavendar and Swaminathan [73] examined some

of the fundamental characteristics of these functions. The q-analogues of integral transforms have

also been introduced. The genesis of fractional q-difference calculus are explained by Agarwal

[74] and Al-Salam [75]. Later, Selvakumaran et al. [76], Ramachandranet. [77], Purohit and

Raina [72] employed the fractional q-operator to describe various classes of analytic functions

and their convexity properties. Subsequently, the fractional q-operator is utilized to characterize

different classes of analytic functions and investigate their convexity properties, for details, see

[76, 77, 72].

2.10 q-Derivative

Jackson [29] introduced the q-derivative in 1909.

Definition 2.10.1. Suppose that g(η) ∈ A, then q-derivative of g is defined as

Dqg(η) =

{
g(η)−g(qη)

(1−q)η
,η ̸= 0

}
,andDqg(0) = g ′(0),0 < q < 1. (2.18)

It is observed that if q approches to 1−, [n]q → n and Dqg(η)→ g ′(η), where g ′(η) is ordinary

derivative.

lim
q→1−

Dqg(η) = lim
q→1−

g(η)−g(qη)

(1−q)η
= g ′(η), (2.19)

(2.18) and (2.1) gives

Dqg(η) =
∞

∑
k=1

[k]qckη
k−1, (2.20)

where

[k]q =
1−qk

1−q
,k ∈ N. (2.21)

Definition 2.10.2 (q-exponential function). A q-analog of the q−exponential function is the

ordinary exponential function. It is defined in terms of the q-exponential series and is often

denoted as expq(η). The q-exponential function is defined as :

expq(η) =
∞

∑
k=0

ηk

[k]q!
. (2.22)
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2.11 q−Convex Function

In 1989, Srivastava and Owa [78] discovered the class of q−convex function.

Definition 2.11.1. Suppose that g ∈ A. Then g ∈Cq if∣∣∣∣∣ηD2
qg(η)

Dqg(η)
− 1

1−q

∣∣∣∣∣≤ 1
1−q

,η ∈ M,0 < q < 1. (2.23)

2.12 q-Starlike Function

The q-starlike function’s class was proposed by Ismail et al. [31] in 1990.

Definition 2.12.1. Let g ∈ A, then g ∈ S∗q if∣∣∣∣ηDqg(η)

g(η)
− 1

1−q

∣∣∣∣≤ 1
1−q

,η ∈ M,0 < q < 1. (2.24)

The class S∗q(α) of q-starlike functions of order α were discovered in 2016, by Wongsaijai and

Sukantamala [79], where 0 ≤ α < 1.

S∗q(α) =

{
g ∈ A : Re

{
ηDqg(η)

g(η)

}
> α,η ∈ M

}
. (2.25)

2.13 Preliminary Lemmas

Lemma 2.13.1. [80] Let p ∈ P as in (2.3). Then |pk| ≤ 2, ∀ k ≥ 1.

For this result, Mobius function given in (2.4) is the extremal function.

Lemma 2.13.2. [81] Suppose that g ∈ S∗(ψ) and |η0|= r < 1. Then

− fψ(−r)≤ |g(η0)| ≤ fψ(r). (2.26)

Equality holds for some η0 = 0 iff g is a rotation of fψ .

Lemma 2.13.3. [81] Let g ∈ S∗(ψ) and |η0|= r < 1. Then∣∣∣∣arg
{

g(η0)

η0

}∣∣∣∣≤ max
|η |=r

{
arg
{

fψ(η)

η

}}
. (2.27)

Equality holds for some η0 = 0 iff g is a rotation of fψ .
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Lemma 2.13.4. [81] If p ∈ P, then for γ ∈ C,

|p2 − γ p2
1| ≤ 2max{1, |2γ −1|} , (2.28)

if γ ∈ R, then

|p2 − γ p2
1| ≤


-4γ +2,γ ≤ 0

2, 0≤ γ ≤ 1

4γ −2,γ ≥ 0

 . (2.29)

Lemma 2.13.5. [82] Let p(η) ∈ P as given in (2.3). If 0 ≤ β ≤ 1 and β (2β −1)≤ δ ≤ β , then

|p3 −2β p1 p2 +δ p3
1| ≤ 2. (2.30)

Lemma 2.13.6. [83] Suppose g be a function with g(0) = 1. Then g ∈ P, if and only if

g(η)≺ 1+Aη

1+Bη
, (2.31)

where −1 ≤ B < A ≤ 1.

Lemma 2.13.7. [84] Let w(η) be analytic in M with w(0) = 0. Then if |w(η)| achieves its

maximum value on the circle |η |= r < 1 at a point η0, we can write

η0w ′(η0) = kw(η0), (2.32)

where k ∈ R and k ≥ 1.

Lemma 2.13.8. [85] Consider an analytic function φ(η) defined in M with φ(0) = 0. Assume

that |φ(η)| reaches its maximum value on the circle |η |= r at a point η1 ∈ M, then it follows

η1Dqφ(η1) = kφ(η1), (2.33)

where k ∈ R and k ≥ 1.
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CHAPTER 3

STARLIKE FUNCTION WITH RESPECT TO A BOUNDARY

POINT

In this chapter, we will analyse the class of starlike functions related to boundary points that

are subordinated to exponential function and is given by:

Ge =

{
g ∈ A :

2ηg ′(η)

g(η)
+

1+η

1−η
≺ eη ,η ∈ M

}
. (3.1)

Results related to this class will be discussed more briefly which are recently found by Lecko et

al. [52].

3.1 Representation Result

In this section, representation result related to class Ge will be evaluated.

Theorem 3.1.1. A function g ∈ Ge if and only if there exists p ∈ A such that p ≺ eη and

g(η) = (1−η)exp
(

1
2

∫
η

0

P(t)−1
t

dt
)
. (3.2)

Proof. Suppose that g ∈ Ge, then p is defined by

P(η) = 2η
g ′(η)

g(η)
+

1+η

1−η
, (3.3)

is holomorphic and p ≺ eη . Also, (3.3) gives us

P(η)−1 = 2η
g ′(η)

g(η)
+

1+η

1−η
−1, (3.4)
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that is

p(η)−1 = 2η
g ′(η)

g(η)
+

2η

1−η
.

This implies that
P(η)−1

η
= 2

g ′(η)

g(η)
+

2
1−η

, (3.5)

which results in ∫
η

0

P(t)−1
t

dt =
∫

η

0
2

g ′(t)
g(t)

dt +
∫

η

0

2
1− t

dt. (3.6)

This indicates that ∫
η

0

P(t)−1
t

dt = 2log((g(η))−2log(1−η). (3.7)

This precedes to ∫
η

0

P(t)−1
t

dt = log
(

g(η)

1−η

)2

. (3.8)

This leads us to

exp
(∫

η

0

P(t)−1
t

dt
)
=

(
g(η)

1−η

)2

, (3.9)

which implies that

[g(η)]2 = [(1−η)]2exp
(∫

η

0

P(t)−1
t

dt
)
. (3.10)

This implements that

g(η) = (1−η)exp
(

1
2

∫
η

0

P(t)−1
t

dt
)
. (3.11)

which is our required result.

Now conversely, let (3.2) holds that is

g(η) = (1−η)exp
(

1
2

∫
η

0

P(t)−1
t

dt
)
, (3.12)

which results in
g(η)

1−η
= exp

(
1
2

∫
η

0

P(t)−1
t

dt
)
. (3.13)

It leads to

ln
(

g(η)

1−η

)
= ln

(
exp
(

1
2

∫
η

0

P(t)−1
t

dt
))

, (3.14)

which implies

ln(g(η))− ln(1−η) =
1
2

∫
η

0

P(t)−1
t

dt. (3.15)

Taking derivative on both sides of (3.15) results in

g ′(η)

g(η)
+

1
1−η

=
1
2

(
P(η)−1

η

)
.
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This gives us
2ηg ′(η)

g(η)
+

2η

1−η
= P(η)−1. (3.16)

By simplifying (3.16), we get

p(η) =
2ηg ′(η)

g(η)
+

1+η

1−η
, (3.17)

which completes the theorem.

3.2 Covering Results

In this section, covering results related to class Ge will be investigated.

Theorem 3.2.1. Let 0 < r < 1. If g ∈ Ge, then

I.
√

−ψe(−r)
r (1− r)≤ |g(η)| ≤

√
ψe(r)

r (1+ r), |η |= r.

II. |arg g(η0)
(1−η0)

| ≤ 1
2 max
|η |=r

{
argψe(η)

η

}
, |η0|= r.

Proof. As g ∈ Ge,

I. Suppose a function

h(η) =
η(g(η))2

(1−η)2 ,η ∈ M. (3.18)

Clearly, h is a holomorphic function in M. Taking the derivative of (3.18), we will get

h ′(η) =
(1−η)2 d

dη
[η(g(η))2]−η(g(η))22(1−η)(−1)

(1−η)4

=
(1−η)(g(η))2 +2η(1−η)(g(η))(g ′(η))+2η(g(η))2

(1−η)3

=
(g(η))2(1+η)+2η(1−η)(g(η))(g ′(η))

(1−η)3 .

(3.19)

By using (3.18) and (3.19), one can easily get,

ηh ′(η)

h(η)
=

η(1+η)(g(η))2 +2η2(1−η)g(η)g ′(η)

η(g(η))2(1−η)

=
1+η

1−η
+

2ηg ′(η)

g(η)
.

(3.20)
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It is straight forward from (3.20) that g ∈ Ge iff

ηh(η)

h(η)
≺ eη . (3.21)

By using Lemma 2.13.2, we obtain

−ψe(−r)≤ |h(η)| ≤ ψe(r), |η |= r. (3.22)

By using (3.18), we have

−ψe(−r)≤
∣∣∣∣η(g(η))2

(1−η)2

∣∣∣∣≤ ψe(r), |η |= r. (3.23)

This implies that
−ψe(−r)

r
≤
∣∣∣∣ (g(η)

(1−η)

∣∣∣∣2 ≤ ψe(r)
r

, |η |= r.

It follows

|1−η |
√

−ψe(−r)
r

≤ |g(η)| ≤ |1−η |
√

ψe(r)
r

, |η |= r.

Now applying the properties of ’mod’, we will get√
−ψe(−r)

r
(1− r)≤ |g(η)| ≤

√
ψe(r)

r
(1+ r), |η |= r. (3.24)

which is our required result.

II. By using (3.21), a function h that is denoted by (3.18) belongs to the S∗ class. By using

Lemma 2.13.3, we can write∣∣∣∣arg
η0(g(η0))

2

η0(1−η0)2

∣∣∣∣≤ max
|η |=r

{
arg
(

ψe(η)

η

)}
, (3.25)

that is ∣∣∣∣arg
g(η0)

(1−η0)

∣∣∣∣2 ≤ max
|η |=r

{
arg
(

ψe(η)

η

)}
. (3.26)

It follows that ∣∣∣∣arg
g(η0)

(1−η0)

∣∣∣∣≤ max
|η |=r

{
arg
(

ψe(η)

η

) 1
2
}

≤ 1
2

max
|η |=r

{
arg
(

ψe(η)

η

)}
,

(3.27)

which is the required result.
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3.3 Coefficient Bounds and Fekete-Szegö Inequalities

In this section, coefficient bounds and Fekete-Szegö inequalities related to class Ge will be

derived.

Theorem 3.3.1. If g ∈ Ge is of the form

g(η) = 1+
∞

∑
k=1

θkη
k,η ∈ M. (3.28)

Then

I. |θ1 +1| ≤ 1
2 ,

II. |θ1| ≤ 3
2 ,

III. |2θ2 −θ 2
1 +1| ≤ 1

2 ,

IV. |θ2| ≤ 3
4 ,

V. |3θ3 −3θ1θ2 +θ 3
1 +1| ≤ 1

2 .

Proof. By using (2.11), we have

Ge =

{
g ∈ A :

2ηg ′(η)

g(η)
+

1+η

1−η

}
≺ eη , (3.29)

then there exist w(η) in A such that

2ηg ′(η)

g(η)
+

1+η

1−η
= ew(η). (3.30)

By using (3.28) to the left side of (3.30), we will get

2ηg ′(η)

g(η)
+

1+η

1−η
= 1+2(θ1 +1)η +2[2θ2 −θ

2
1 +1]η2 +2[3θ3 −3θ1θ2 +θ

3
1 +1]η3 + ......

(3.31)

Define a new function p(η) by

p(η) =
1+w(η)

1−w(η)
= 1+ p1η + p2η

2 + p3η
3 + ....,η ∈ D. (3.32)

It is obvious that p(η) ∈ P. Moreover, (3.32) follows

(1−w(η))p(η) = 1+w(η).
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It follows

p(η)−1 = w(η)(1+ p(η)).

This implies

w(η) =
p(η)−1
p(η)+1

. (3.33)

By using the value of p(η) from (3.32) in (3.33), we will get

w(η) =
p1

2
η +

(
p2

2
−

p2
1

4

)
η

2 +

(
p3

2
− p1 p2

2
+

p3
1

8

)
η

3 + .....,η ∈ M. (3.34)

As, we know that

ew(η) = 1+w(η)+
(w(η))2

2
+

(w(η))3

6
+ .....,η ∈ M. (3.35)

By substituting (3.34) into (3.35), we will get

ew(η) = 1 +
p1

2
η +

(
p2

2
−

p2
1

8

)
η

2 +

(
p3

2
− p1 p2

4
+

p3
1

48

)
η

3 + ..... (3.36)

Substituting (3.31) and (3.36) in (3.30), we will get

1+2(θ1 +1)η +2[2θ2 −θ
2
1 +1]η2 +2[3θ3 −3θ1θ2 +θ

3
1 +1]η3 + .....= 1+

p1

2
η

+

(
p2

2
−

p2
1

8

)
η

2 +

(
p3

2
− p1 p2

4
+

p3
1

48

)
η

3 + ..... (3.37)

Through a comparison of the respective coefficients in equation (3.37), we will get

2(θ1 +1) =
p1

2
, (3.38)

2(2θ2 −θ
2
1 +1) =

p2

2
−

p2
1

8
, (3.39)

2(3θ3 −3θ1θ2 +θ
3
1 +1) =

p3

2
− p1 p2

4
+

p3
1

48
. (3.40)

I. From (3.38), we have

θ1 +1 =
p1

4
. (3.41)

Taking ’mod’ on both sides of (3.41), we will get

|θ1 +1|= |p1|
4

. (3.42)

By using Lemma 2.13.1, (3.42) becomes

|θ1 +1| ≤ 1
2
, (3.43)

which is the required inequality.
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II. Taking ’mod’ on both sides of (3.41), and using the properties of ’mod’, we will obtain

|θ1| ≤
|p1|

4
+1. (3.44)

By using Lemma 2.13.1, (3.44) will become

|θ1| ≤
2
4
+1, (3.45)

it follows

|θ1| ≤
3
2
, (3.46)

which is the required result.

III. Using (3.39), we have

2(2θ2 −θ
2
1 +1) =

p2

2
−

p2
1

8
. (3.47)

Taking ’mod’ on both sides of (3.47) gives us

2(|2θ2 −θ
2
1 +1|) =

∣∣∣∣ p2

2
−

p2
1

8

∣∣∣∣ . (3.48)

It follows

|2θ2 −θ
2
1 +1|= 1

4

∣∣∣∣p2 −
p2

1
4

∣∣∣∣ . (3.49)

By using Lemma 2.13.4, we will get

|2θ2 −θ
2
1 +1|= 1

4
(2), (3.50)

which will give

|2θ2 −θ
2
1 +1|= 1

2
, (3.51)

which is the required result.

IV. By using (3.38), we can write

θ1 =
p1

4
−1. (3.52)

Using (3.52) in (3.39), we have

4θ2 =
p2

2
− p1, (3.53)

it follows

4|θ2|=
∣∣∣ p2

2
− p1

∣∣∣
≤
∣∣∣ p2

2

∣∣∣+ |p1|.
(3.54)
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By using Lemma 2.13.1, we will get

4|θ2| ≤
2
2
+2

≤ 3.
(3.55)

This implies

|θ2| ≤
3
4
, (3.56)

which is the required inequality.

V. By using (3.40), we have

2(3θ3 −3θ1θ2 +θ
3
1 +1) =

p3

2
− p1 p2

4
+

p3
1

48
. (3.57)

It follows ∣∣3θ3 −3θ1θ2 +θ
3
1 +1

∣∣= 1
4

∣∣∣∣p3 −
2p1 p2

4
+

p3
1

24

∣∣∣∣ . (3.58)

By applying Lemma 2.13.5, we will get∣∣3θ3 −3θ1θ2 +θ
3
1 +1

∣∣≤ 1
4
(2)

≤ 1
2
,

(3.59)

which completes the proof.

3.4 Differential Subordination Results

In this section, differential subordination results related to class Ge will be find.

Theorem 3.4.1. Assume that g(0) = 1. If g satisfy the subordination condition,

2ηg ′(η)

g(η)
+

1+η

1−η
≺ 1+η

1−η
,η ∈ M. (3.60)

Then,

p(η) =
η (g(η))2

(1−η)2 ≺ eη ,η ∈ M. (3.61)
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Proof. Suppose,

p(η) =
η (g(η))2

(1−η)2 = ew(η),η ∈ M. (3.62)

This gives us,
p ′(η)

p(η)
=

1+η

η(1−η)
+

2g ′(η)

g(η)
= w ′(η), (3.63)

η p ′(η)

p(η)
=

1+η

(1−η)
+

2ηg ′(η)

g(η)
= ηw ′(η). (3.64)

It can be written as,
1+η

(1−η)
+

2ηg ′(η)

g(η)
= ηw ′(η). (3.65)

On contrary, we assume that |w(η0)| = 1 such that η0w ′(η0) = kw(η0), where k ≥ 1. If

w(η0) = eιθ , then by applying Lemma 2.13.7, we have

Re
(

2ηg ′(η)

g(η)
+

1+η

1−η

)
= kw(η0)

= keιθ

= k(cosθ + ιsinθ).

(3.66)

For θ = π

Re
(

2ηg ′(η)

g(η)
+

1+η

1−η

)
=−k < 0, (3.67)

which is contradiction to our hypothesis because k ≥ 1.

By employing Lemma 2.13.6, we have

Re
(

2ηg ′(η)

g(η)
+

1+η

1−η

)
> 0, (3.68)

which equivalently gives (3.60).

Theorem 3.4.2. Let g(0) = 1. If g fulfills the requirement of subordination,

2ηg ′(η)

g(η)
+

1+η

1−η
≺ eη +η ,η ∈ M. (3.69)

Then,

p(η) = η

(
g(η)

1−η

)2
(∫

η

0

(
g(t)
1− t

)2

dt

)−1

≺ eη ,η ∈ M. (3.70)

Proof. Suppose

p(η) = η

(
g(η)

1−η

)2
(∫ z

0

(
g(t)
1− t

)2

dt

)−1

≺ eη ,η ∈ M, (3.71)
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p(η) = η

(
g(η)

1−η

)2
(∫

η

0

(
g(t)
1− t

)2

dt

)−1

= ew(η),η ∈ M, (3.72)

where w(η) is analytic in M, (3.72) gives us

p ′(η)

p(η)
=

1
η
+

2
1−η

+
2g ′(η)

g(η)
−
(

g(η)

1−η

)2
(∫

η

0

(
g(t)
1− t

)2

dt

)−1

= w ′(η)

=
1+η

η(1−η)
+

2g ′(η)

g(η)
−
(

g(η)

1−η

)2
(∫

η

0

(
g(t)
1− t

)2

dt

)−1

= w ′(η).

(3.73)

Using (3.70) in (3.73), we have

p ′(η)

p(η)
=

1+η

η(1−η)
+

2g ′(η)

g(η)
− p(η)

η
= w ′(η). (3.74)

It follows that
η p ′(η)

p(η)
+ p(η) =

1+η

(1−η)
+

2ηg ′(η)

g(η)
= ηw ′(η). (3.75)

We can also write (3.75) as

1+η

(1−η)
+

2ηg ′(η)

g(η)
= ηw ′(η). (3.76)

On contrary, we assume that η0 ∈ M, such that |w(η0)|= 1, η0w ′(η0) = kw(η0), where k ≥ 1.

By using Lemma 2.13.7, if w(η0) = eιθ , then

Re
(

2ηg ′(η)

g(η)
+

1+η

1−η

)
= kw(η0)

= keιθ

= k(cosθ + ιsinθ).

(3.77)

For θ = π , we have

Re
(

2ηg ′(η)

g(η)
+

1+η

1−η

)
= k(−1+0),

=−k < 0,
(3.78)

which is contradiction to our given hypothesis, since k ≥ 1. By using Lemma 2.13.6, we will get

Re
(

2ηg ′(η)

g(η)
+

1+η

1−η

)
> 0, (3.79)

which implies (3.69), which is the required result.
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CHAPTER 4

q-STARLIKE FUNCTIONS WITH RESPECT TO A BOUNDARY

POINT

Using q-calculus principles, a new class of q-starlike functions S∗b,q in relation to a boundary

point will be introduced. The properties of our newly defined class will be examined. We

will investigate the results for the class S∗b,q like coefficient estimates, Fekete-Szegö problem,

differential subordination results and many others.

4.1 q-Starlike Functions with respect to a Boundary Point

The noval class of q-starlike functions with respect to a boundary point is given by :

Definition 4.1.1. One describes a function g as being in class S∗b,q such that

2η
Dq[g(η)]

g(η)
+

1+η

1−η
≺ eqη ,η ∈ M. (4.1)

4.2 Representation Theorem

For class S∗b,q, the representation result will be derived in this section.
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Theorem 4.2.1. A function g ∈ S∗b,q if and only if there exists p ∈ A such that p ≺ eqη and

g(η) = (1−η)

(
exp

∫
η

0

Pq(t)−1
t

dqt
) lnq

2(q−1)
. (4.2)

Proof. Suppose g ∈ S∗b,q, then a function p is given by,

Pq(η) = 2η
Dq[g(η)]

g(η)
+

1+η

1−η
, (4.3)

is holomorphic and p ≺ eqη . Also, (4.3) leads us to

Pq(η)−1 = 2η
Dqg(η)

g(η)
+

1+η

1−η
−1

= 2η
Dqg(η)

g(η)
+

2η

1−η
.

(4.4)

The equation (4.4) can be written as

Pq(η)−1
η

= 2
Dqg(η)

g(η)
+

2
1−η

. (4.5)

Taking q-integral on both sides of (4.5), we will get∫
η

0

Pq(t)−1
t

dqt =
∫

η

0
2

Dqg(t)
g(t)

dqt +
∫

η

0

2
1− t

dqt

= 2
(q−1)

lnq
log(g(η))−2

(q−1)
lnq

log(1−η)

= log(g(η))2 (q−1)
lnq − log(1−η)2 (q−1)

lnq

= log
(

g(η)

1−η

) 2(q−1)
lnq

.

(4.6)

Taking exponential on both sides of (4.6) leads us to(
g(η)

1−η

) 2(q−1)
lnq

= exp
∫

η

0

Pq(t)−1
t

dqt. (4.7)

It gives us

g(η)

1−η
=

(
exp

∫
η

0

Pq(t)−1
t

dqt
) lnq

2(q−1)
. (4.8)

It follows that,

g(η) = (1−η)

(
exp

∫
η

0

Pq(t)−1
t

dqt
) lnq

2(q−1)
, (4.9)

which is our required equation.

Now conversely, let (4.2) holds that is

g(η) = (1−η)

(
exp

∫
η

0

Pq(t)−1
t

dqt
) lnq

2(q−1)
. (4.10)
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The equation (4.2) can also be written as

g(η)

1−η
=

(
exp

∫
η

0

Pq(t)−1
t

dqt
) lnq

2(q−1)
. (4.11)

Taking ’ln’ on both sides of (4.11), we will get

ln
(

g(η)

1−η

)
= ln

(
exp

∫ z

0

Pq(t)−1
t

dqt
) lnq

2(q−1)
, (4.12)

this results in

ln(g(η))− ln(1−η) =
lnq

2(q−1)

∫
η

0

Pq(t)−1
t

dqt, (4.13)

(4.13) becomes

Dq (ln(g(η)))−Dq (ln(1−η)) =
lnq

2(q−1)
Dq

(∫ z

0

Pq(t)−1
t

dqt
)
,

we get
lnq

q−1

(
Dqg(η)

g(η)

)
− lnq

q−1

(
(−1)
1−η

)
=

lnq
2(q−1)

(
Pq(η)−1

η

)
. (4.14)

Simplifying (4.14), we will get

lnq
q−1

(
Dqg(η)

g(η)
− (−1)

1−η

)
=

lnq
2(q−1)

(
Pq(η)−1

η

)
,

implies that
Dqg(η)

g(η)
+

1
1−η

=
Pq(η)−1

2η
.

This gives us

2η
Dqg(η)

g(η)
+

2η

1−η
= Pq(η)−1. (4.15)

It follows that,

Pq(η) = 2η
Dq[g(η)]

g(η)
+

1+η

1−η
, (4.16)

which imply (4.3).

Taking limit q tends to 1− in the above result give the result proven in [52], as shown below:

Corollary 4.2.1.1. [52] If g ∈ Ge. Then, g(η) = (1−η)exp
(

1
2
∫ η

0
P(t)−1

t dt
)

.
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4.3 Covering Results

This section will discover the covering results for class S∗b,q.

Theorem 4.3.1. Let 0 < r < 1. If g ∈ S∗b,q, then

I.
√

−ψe(−r)
r (1− r)≤ |g(η)| ≤

√
ψe(r)

r (1+ r), |η |= r.

II. |arg g(η0)
(1−η0)

| ≤ 1
2 max
|η |=r

{
argψe(η)

η

}
, |η0|= r.

Proof. Let g ∈ S∗b,q,

I. Suppose a function

h(η) =
η(g(η))2

(1−η)2 ,η ∈ M. (4.17)

Clearly h ∈ H, taking the q-derivative of (4.17), we will get

Dqh(η) =
q(1−η)(g(η))2 +q(1+q)η(1−η)g(η)Dqg(η)+(1+q)η(g(η))2

(1−η)(1−qη)2 .

(4.18)

By using (4.17) and (4.18), we will easily get

ηDqh(η)

h(η)
=

q(1+q)η(1−η)2Dqg(η)

g(η)(1−qη)2 +
(1−η)(q+η)

(1−qη)2 . (4.19)

It is straight forward from above equation that g ∈ S∗b,q iff

ηDqh(η)

h(η)
≺ eqη . (4.20)

By using the result of Lemma 2.13.2, we obtain

−ψe(−r)≤ |h(η)| ≤ ψe(r), |η |= r. (4.21)

By using (4.17) in (4.21), we have

−ψe(−r)≤
∣∣∣∣η(g(η))2

(1−η)2

∣∣∣∣≤ ψe(r), |η |= r. (4.22)

This implies that
−ψe(−r)

r
≤
∣∣∣∣ (g(η)

(1−η)

∣∣∣∣2 ≤ ψe(r)
r

, |η |= r.

It follows

|1−η |
√

−ψe(−r)
r

≤ |g(η)| ≤ |1−η |
√

ψe(r)
r

, |η |= r.
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Now applying the properties of mod, we will get√
−ψe(−r)

r
(1− r)≤ |g(η)| ≤

√
ψe(r)

r
(1+ r), |η |= r, (4.23)

which is our required result.

II. By using (4.20), a function h defined by (4.17) belongs to the class S. By using Lemma

2.13.3, we will get ∣∣∣∣arg
η0(g(η0))

2

η0(1−η0)2

∣∣∣∣≤ max
|η |=r

{
arg
(

ψe(η)

η

)}
, (4.24)

which gives us ∣∣∣∣arg
g(η0)

(1−η0)

∣∣∣∣2 ≤ max
|η |=r

{
arg
(

ψe(η)

η

)}
. (4.25)

This implies ∣∣∣∣arg
g(η0)

(1−η0)

∣∣∣∣≤ max
|η |=r

{
arg
(

ψe(η)

η

) 1
2
}

≤ 1
2

max
|η |=r

{
arg
(

ψe(η)

η

)}
,

(4.26)

which proofs the theorem.

4.4 Coefficient Bounds and Fekete-Szegö Inequalities

This section will describe the coefficient bounds and Fekete-Szegö inequalities for class S∗b,q.

Theorem 4.4.1. If g ∈ S∗b,q is of the form

g(η) = 1+
∞

∑
k=1

θkη
k,η ∈ M. (4.27)

Then

I. |θ1 +1| ≤ q
2 ,

II. |θ1| ≤ q
2 +1,

III. |(1+q)θ2 −θ 2
1 +1| ≤ q

2 ,
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IV. |θ2| ≤ 3q
2(1+q) +

q(q−1)
2(1+q) ,

V. |(1+q+q2)θ3 − (2+q)θ1θ2 +θ 3
1 +1| ≤ q

2 .

Proof. In view of

S∗b,q =
{

g ∈ H :
2ηDqg(η)

g(η)
+

1+η

1−η

}
≺ exp(qη), (4.28)

there exists w ∈ H such that

2ηDqg(η)

g(η)
+

1+η

1−η
= exp(qw(η)). (4.29)

As from (4.27), we have

g(η) = 1+
∞

∑
k=1

θkη
k. (4.30)

By using (4.30) in the left side of (4.29), by simple computation we can easily obtain

2ηDqg(η)

g(η)
+

1+η

1−η
= 1+2(θ1 +1)η +2[(1+q)θ2 −θ

2
1 +1]η2

+2[(1+q+q2)θ3 − (2+q)θ1θ2 +θ
3
1 +1]η3 + .....,η ∈ M. (4.31)

Define a new Function p by

p(η) =
1+w(η)

1−w(η)
= 1+ p1η + p2η

2 + p3η
3 + ....,η ∈ M. (4.32)

It is clear that p ∈ P. Moreover, by rearranging (4.32), we get

w(η) =
p(η)−1
p(η)+1

. (4.33)

By using the value of p(η) from (4.32) in (4.33), we will get

w(η) =
p1

2
η +

(
p2

2
−

p2
1

4

)
η

2 +

(
p3

2
− p1 p2

2
+

p3
1

8

)
η

3 + .....,η ∈ M. (4.34)

As

eqw(η) = 1+qw(η)+
q2(w(η))2

2
+

q3(w(η))3

6
+ .....,η ∈ M. (4.35)

By substituting (4.34) into (4.35), it gives

eqw(η)= 1+
qp1

2
η+

[
q
(

p2

2
−

p2
1

4

)
+

q2 p2
1

8

]
η

2+

[
q
(

p3

2
− p1 p2

2
+

p3
1

8

)
+

q2

2

(
p1 p2

2
−

p3
1

4

)
+

q3 p3
1

48
η

3 + .....,η ∈ M. (4.36)
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Using (4.31) and (4.36) in (4.29), we will get

1+2(θ1+1)η+2[(1+q)θ2−θ
2
1 +1]η2+2[(1+q+q2)θ3−(2+q)θ1θ2+θ

3
1 +1]η3+.....= 1+

qp1

2
η

+

[
q
(

p2

2
−

p2
1

4

)
+

q2 p2
1

8

]
η

2+

[
q
(

p3

2
− p1 p2

2
+

p3
1

8

)
+

q2

2

(
p1 p2

2
−

p3
1

4

)
+

q3 p3
1

48

]
η

3+.....,η ∈M.

(4.37)

Upon comparing the coefficients of (4.37), we will get

2(θ1 +1) =
qp1

2
, (4.38)

2[(1+q)θ2 −θ
2
1 +1] = q

(
p2

2
−

p2
1

4

)
+

q2 p2
1

8
, (4.39)

2[(1+q+q2)θ3 − (2+q)θ1θ2 +θ
3
1 +1] = q

(
p3

2
− p1 p2

2
+

p3
1

8

)
+

q2

2

(
p1 p2

2
−

p3
1

4

)
+

q3 p3
1

48
.

(4.40)

I. Now, (4.38) can be written as

θ1 +1 =
qp1

4
. (4.41)

Applying ’mod’ on both sides of (4.41) and using Lemma 2.13.1, we have

|θ1 +1| ≤ q(2)
4

, (4.42)

it gives us

|θ1 +1| ≤ q
2
, (4.43)

which is required result.

II. From (4.41), it follows that

|θ1| ≤
q|p1|

4
+1. (4.44)

By using Lemma 2.13.1, (4.44) implies that

|θ1| ≤
q
2
+1, (4.45)

which proofs the result.

III. By solving (4.39), we can easily obtain

2[(1+q)θ2 −θ
2
1 +1] =

q
2

[
p2 −

(
1
2
− q

4

)
p2

1

]
. (4.46)
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By taking "mod" on both sides of (4.46) and using Lemma 2.13.4, we will get

2|(1+q)θ2 −θ
2
1 +1| ≤ q.

This implies that

|(1+q)θ2 −θ
2
1 +1| ≤ q

2
, (4.47)

which proofs our result.

IV. BY using (4.38), we can write

θ1 =
qp1

4
−1. (4.48)

Using (4.48) in (4.40) and then solving, we will get

(1+q)θ2 =
q
2

( p2

2
− p1

)
+

(q2 −q)p2
1

8
. (4.49)

Applying the modulus operation to both sides of (4.49) and utilizing Lemma 2.13.1, we

will have

(1+q)|θ2| ≤
3q
2
+

q(q−1)
2

. (4.50)

This implies

|θ2| ≤
3q

2(1+q)
+

q(q−1)
2(1+q)

, (4.51)

which is required resullt.

V. Using (4.40), we can write

2|(1+q+q2)θ3−(2+q)θ1θ2+θ
3
1 +1|=

∣∣∣∣ p3q
2

− p1 p2

2

(
2q−q2

2

)
+

p3
1

8

(
6q+q3 −6q2

6

)∣∣∣∣ .
(4.52)

By applying Lemma 2.13.5, we will get

2|(1+q+q2)θ3 − (2+q)θ1θ2 +θ
3
1 +1| ≤ q

2
(2). (4.53)

This implies that

|(1+q+q2)θ3 − (2+q)θ1θ2 +θ
3
1 +1| ≤ q

2
, (4.54)

which proves the theorem.

Taking the limit on q leads to 1− in the above results, this gives the results proved in [52], as

given in the corollary.
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Corollary 4.4.1.1. [52] If g ∈ Ge. Then

I. |θ1 +1| ≤ 1
2 ,

II. |θ1| ≤ 3
2 ,

III. |2θ2 −θ 2
1 +1| ≤ 1

2 ,

IV. |θ2| ≤ 3
4 ,

V. |3θ3 −3θ1θ2 +θ 3
1 +1| ≤ 1

2 .

4.5 Differential Subordination Results

This section will discuss differential subordination results for class S∗b,q.

Theorem 4.5.1. Given that g ∈ H, g(0) = 1. If g satisfies the requirement for subordination,

(1+q)ηDqg(η)

g(η)
+

1+qη

1−η
≺ 1+qη ,η ∈ M. (4.55)

Then,

p(η) =
(g(η))2

(1−η)2 ≺ eqη ,η ∈ M. (4.56)

Proof. Cosider (4.56), we can write it as

p(η) =
(g(η))2

(1−η)2 = eqw(η),η ∈ M, (4.57)

where w(η) is analytic and w(0) = 1 in M. Taking q-logarithmic differentiation of (4.57)

Dqlog(p(η)) = Dqlog

(
(g(η))2

(1−η)2

)
= Dqlog

(
eqw(η)

)
. (4.58)

This implies that(
lnq

1−q

)(
Dq p(η)

p(η)

)
=

(
lnq

1−q

)(
1
η
+

[2]qg(η)Dqg(η)

(g(η))2 −
[2]q(1−η)(−1)

(1−η)2

)
=

(
lnq

1−q

)
(qDqw(η)).

(4.59)
Dq p(η)

p(η)
=

1
η
+

(1+q)Dqg(η)

g(η)
+

1+q
1− z

= qDqw(η)

=
(1+q)Dqg(η)

g(η)
+

(1−η)+(1+q)η
η(1−η)

= qDqw(η)

=
(1+q)Dqg(η)

g(η)
+

1+qη

η(1−η)
= qDqw(η).

(4.60)
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Now, (4.60) can be written as

ηDq p(η)

p(η)
=

(1+q)ηDqg(η)

g(η)
+

1+qη

1−η
= qηDqw(η). (4.61)

Now
(1+q)ηDqg(η)

g(η)
+

1+qη

1−η
= qηDqw(η). (4.62)

On contrary, we assume that η0 ∈ M, such that |w(η0)|= 1, η0Dqw(η0) = kw(η0), where k ≥ 1.

Suppose w(z0) = eιθ , then by applying Lemma 2.13.8, we have

Re
(
(1+q)ηDqg(η)

g(η)
+

1+qη

1−η

)
= kw(η0)

= keιθ

= k(cosθ + ιsinθ).

(4.63)

For θ = π , we have

Re
(
(1+q)ηDqg(η)

g(η)
+

1+qη

1−η

)
= k(−1+0)

=−k < 0,
(4.64)

which is contradiction to our given hypothesis, since k ≥ 1.

By Lemma 2.13.6, it is clear that

Re
(
(1+q)ηDqg(η)

g(η)
+

1+qη

1−η

)
> 0, (4.65)

which shows that
(1+q)ηDqg(η)

g(η)
+

1+qη

1−η
≺ 1+qη ,η ∈ M, (4.66)

which proofs the theorem.

Taking q → 1− in the previous result gives the result as given in the corollary.

Corollary 4.5.1.1. [52] If g ∈ Ge. Then 2ηg ′(η)
g(η) + 1+η

1−η
≺ 1+η ,η ∈ M.

Theorem 4.5.2. Let g(0) = 1. If g satisfies the subordination condition,

(1+q)ηDqg(η)

g(η)
+

1+qη

1−η
≺ eη +η ,η ∈ M. (4.67)

Then,

p(η) = η

(
g(η)

1−η

)2
(∫

η

0

(
g(t)
1− t

)2

dt

)−1

≺ eqη ,η ∈ M. (4.68)
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Proof. We can write (4.68) as,

p(η) = η

(
g(η)

1−η

)2
(∫

η

0

(
g(t)
1− t

)2

dt

)−1

= eqw(η),η ∈ M, (4.69)

where w(η) is analytic and w(0) = 1 in M, (4.69) becomes,(
lnq

1−q

)(
Dq p(η)

p(η)

)
=

(
lnq

1−q

)(
1
η
+

[2]qg(η)Dqg(η)

(g(η))2

−
[2]q(1−η)(−1)

(1−η)2 −
(

g(η)

1−η

)2
(∫

η

0

(
g(t)
1− t

)2

dt

)−1

=

(
lnq

1−q

)
(qDqw(η)). (4.70)

It implies that

Dq p(η)

p(η)
=

1
η
+

[2]qg(η)Dqg(η)

(g(η))2 −
[2]q(1−η)(−1)

(1−η)2 −
(

g(η)

1−η

)2
(∫

η

0

(
g(t)
1− t

)2

dt

)−1

= qDqw(η)

=
1
η
+

(1+q)Dqg(η)

g(η)
+

1+q
1−η

−
(

g(η)

1−η

)2
(∫

η

0

(
g(t)
1− t

)2

dt

)−1

= qDqw(η)

=
(1−η)+(1+q)η

η(1−η)
+

(1+q)Dqg(η)

g(η)
−
(

g(η)

1−η

)2
(∫

η

0

(
g(t)
1− t

)2

dt

)−1

= qDqw(η)

=
1+qη

η(1−η)
+

(1+q)Dqg(η)

g(η)
−
(

g(η)

1−η

)2
(∫

η

0

(
g(t)
1− t

)2

dt

)−1

= qDqw(η).

(4.71)

Using (4.69) in (4.71), we have

Dq p(η)

p(η)
=

1+qη

η(1−η)
+

(1+q)Dqg(η)

g(η)
− p(η)

η
= qDqw(η), (4.72)

which leads to

ηDq p(η)

p(η)
+ p(η) =

1+qη

1−η
+

(1+q)ηDqg(η)

g(η)
= qηDqw(η). (4.73)

This implies that
1+qη

1−η
+

(1+q)ηDqg(η)

g(η)
= qηDqw(η). (4.74)

On contrary, we assume the existance of a η0 ∈ M such that |w(ηo)| = 1 and let w(η0) = eιθ .

From (4.74), we have

1+qη

1−η
+

(1+q)ηDqg(η)

g(η)
= qηDqw(η0). (4.75)
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Using lemma (2.13.8), we can write

Re
(

1+qη

1−η
+

(1+q)ηDqg(η)

g(η)

)
= kw(η0),k ≥ 1

= keιθ

= k(cosθ + ιsinθ).

(4.76)

For θ = π , we have

Re
(
(1+q)ηDqg(η)

g(η)
+

1+qη

1−η

)
= k(−1+0)

=−k < 0.
(4.77)

This is contradiction to our given hypothesis, since k ≥ 1.

By employing Lemma 2.13.6, we will get

Re
(
(1+q)ηDqg(η)

g(η)
+

1+qη

1−η

)
> 0. (4.78)

Consequently, we can write

(1+q)ηDqg(η)

g(η)
+

1+qη

1−η
≺ eη +η ,η ∈ M, (4.79)

we get the needed result.

The result demonstrated in [52] is obtained by utilizing q → 1− in the preceding result, as

indicated by the subsequent corollary..

Corollary 4.5.2.1. [52] If g ∈ Ge. Then, 2ηg ′(η)
g(η) + 1+η

1−η
≺ eη +η ,η ∈ M.
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CHAPTER 5

CONCLUSION

This thesis focuses on the analysis of coefficients for Analytical, univalent, and normalized

functions inside an open unit disc. The essential ideas of q-calculus and Geometric Function

Theory are reviewed, with an emphasis on investigating how q-calculus can be applied to

particular analytic functions. In relation to a boundary point, a new class of q-starlike functions

is introduced using the q-difference operator.

Our research primarily focuses on the q-extension of the group of starlike functions with

respect to boundary points. The work that is done by Lecko et al. [52] regarding the class

Ge of star-like functions concerning boundary points subject to the exponential function is

expanded. The previously described class’s q-version is presented that is S∗b,q of q-starlike

function associated to a boundary point. This class is defined by using q-derivative operator.

Subordination technique is used to define this class.

A few intriguing characteristics of the functions that belong to our new class, such as

the Fekete-Szegö problem, coefficient bounds, representation results, distortion bounds and

differential subordination results are derived. The results of this thesis have demonstrated

that the newly defined class is an important advancement over results proved by scholars in

Geometric Function Theory. Compared to the previous class Ge, our new class is more extensive

and developed, providing a refined foundation for studying complex functions. To validate

the correctness of our results, limit q approaches to 1− is used, our findings exhibited strong

similarity to the established results for class Ge which showed that our new results are more

advanced and refined as compared to the results proved in [52]. We hope that our contributions
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will significantly enhance the field of Geometric Function Theory, opening the path for future

advances and insights in this area of study.

5.1 Future Work

Investigating q-starlike functionals concerning a boundary point. The focus of this thesis is

related to the exponential function. Exploration of the results of our thesis for the classes of q-

quasi convex functions and q-close-to-convex functions can be done. New boundary point classes

can be examined using the subordination method and quantum calculus principles. comparing

them with the classes discussed in our research. Further, It is possible to deduce the outcomes of

the thesis for the classes for q-quasi convex functions, and q-close-to-convex functions.
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