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ABSTRACT  

Title: Parametric investigation of entropy production in Jeffrey nanofluid past on 

exponential stretchable surface with convective conditions. 

 

This study presents a parametric investigation of entropy production in a Jeffrey 

nanofluid flow over an exponentially stretchable surface, considering convective boundary 

conditions. Under the boundary layer and Rosseland's approximations, a mathematical model 

of the flow problem under consideration is developed. Utilizing the Jeffrey fluid model, which 

characterizes the non-Newtonian behavior of the nanofluid, the governing nonlinear PDEs are 

transformed into a set of ODEs through appropriate similarity transformations. Then the ODEs 

are solved by applying homotopy analysis method. The effects of physical parameters on 

dimensionless temperature, concentration, and velocity are demonstrated and examined. 

Additionally, the study investigates how different parameters affect the system's average 

entropy generation number, skin friction, Sherwood number, Nusselt number, and entropy 

generation number. A Mathematica program was used to make graphs that show the results of 

all physical parameters.  
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CHAPTER 1  

INTRODUCTION AND LITRATURE REVIEW 

1.1 Jeffrey nanofluid 

          The Jeffrey fluid, a non-Newtonian fluid model, is utilized to describe how some 

viscoelastic fluids behave. These fluids have special qualities that enable them to be used in 

many scientific and engineering domains. Among the non-Newtonian viscoelastic fluid models 

that best captures retardation and relaxation times are the Jeffrey fluid models. Engineered 

devices in chemical and power engineering, medical, electronics, and other industries use 

nanofluids, which are mixtures of base fluid plus a small concentration of nano-sized metal 

particles or metal oxides. Choi [1] was the first to establish the innovative concept and inquiry 

on nanofluid. Anitha et al. [2] used the Buongiorno model, a Jeffrey nanofluid in a permeable 

microchannel is analyzed. The results showed that a higher Hall parameter improves secondary 

flow, and the Jeffrey nanofluid performs better thermally and generates more entropy than a 

Newtonian fluid. B.K. Sharma et al. [3] examined the effects of sun radiation and 

microorganisms on heat generation, mass, and entropy in Jeffrey fluid, enhancing knowledge 

of non-Newtonian nanofluids for thermal energy applications. Kumar et al. [4] investigated the 

consequences of a magnetohydrodynamic Jeffery nanofluid on concentration, thermal 

radiation, melting heat transfer, and melting point while taking into account Deborah number, 

melting point, thermophoresis, and chemical reaction. Sharma et al. [5] explored the Jeffrey 

hybrid-nanofluid flow's melting heat transfer in the solar collectors with parabolic troughs by 

examining the temperature profiles, drag coefficient, Nusselt number variations, and velocity. 

Kodi et al. [6] investigated unstable natural convection flow of MHD in porous media, 

considering the impacts of heat radiation, chemical processes, Hall current, and Soret reactions. 

This research gave sensors useful information on solar physics, magnetohydrodynamics, and 

energy generation. Ahmed et al. [7] investigated how power-law lubrication affected the 

magneto Slip and the material qualities of Jeffrey cause greater skin friction, as revealed by the 
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Jeffrey fluid stagnation point flow. Trivedi et al. [8] investigated surface movement-related to 

heat transfer in Jeffrey nanofluid flow using MD-BSQLM for non-dimensionalized governing 

equations. The findings indicate that while time improves fluid temperature and concentration, 

activation energy increases the concentration of nanoparticles. We give numerical solutions and 

discuss their physical implications. D. K. Almutairi [9] researched on nanoparticle suspension 

enhances thermal phenomena in several fields. This study investigated heat transfer in Jeffrey 

nanofluids with different thermal conductivity levels. According to the findings, heat transfer 

and velocity profiles increase as Reynolds numbers rise. S. Bajwa et al. [10] examined, taking 

into account magnetohydrodynamics and porosity effects, the velocity characteristics of 

unsteady Jeffrey fluid flow over an infinite horizontal porous plate. It discovers that while time, 

oscillation frequency, and porosity have contradictory effects, velocity declines as parameters 

increase. Babu et al. [11] explored the influence of physical factors and dimensionless numbers 

on the heat transfer properties of a non-Newtonian incompressible Jeffrey fluid flowing across 

a stretching surface. Aleem et al. [12] evaluated the impacts of dimensionless numbers and 

physical parameters on the properties of an incompressible non-Newtonian Jeffrey fluid's heat 

transfer flow across the surface of stretching. Aziz-Ur-Rehman et al. [13] explained the 

experimental results when the fractional parameter goes towards an integer order, the study 

presents Fractional Calculus (FC), a novel method for accounting for memory effects in 

dynamic systems. It shows how effective FC is at precisely capturing memory effects.  

Muhammad et al. [14] used magnetic field effects to study the flow properties of Jeffrey 

nanofluid as influenced by motile bacteria and activation energy. The findings have 

ramifications for manufacturing and energy systems since they demonstrate how the buoyancy 

ratio and bioconvection Rayleigh number affect temperature, concentration, fluid velocity, and 

motile microorganisms.  

 

1.2 Exponential stretching sheet 

A mathematical model used in fluid dynamics and heat transport is an exponential 

stretching sheet. It represents the viscous fluid flow across a flat surface using the fluid's 

velocity increasing exponentially along the surface. This model may be used to analyze 

scenarios such as polymer film making and glass manufacturing. It is an important tool in 
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engineering and physics because researchers use it to acquire insights on boundary layer 

behavior, temperature distribution, and heat or mass transfer in such flows. Alharbi et al. [15] 

emphasized the improved heat transmission of nanoliquids. The study took into consideration 

heat radiation, bioconvection using motile microorganisms, exponential heat sink/source, and 

activation energy while examining a Maxwell-Sutter by nanofluid on a surface. The velocity 

distribution reduces with the magnetic parameter, according to numerical data, while heat flux 

is enhanced by greater Biot numbers and thermophoresis parameters, which affect energy and 

microbe profiles depending on different parameter values. Magyari [16] used analytical and 

numerical techniques to study steady planar boundary layers on an exponentially stretched 

surface, comparing the mass and heat transfer characteristics to earlier power-law boundary 

conditions. B. Biliana et al. [17] researched the heat transmission and continuous laminar flow 

of an inflexible viscous fluid under thermal radiation by examining temperature and velocity 

profiles as well as solving equations with the Keller-box technique. Ishak [18] examined 

radiation's impact on a viscous fluid's magnetohydrodynamic flow through the boundary layer 

and discovered that as radiation and magnetic parameters increased, the local heat transfer rate 

decreased. Amjad et al. [19] conducted research on the tangent hyperbolic flow of nanofluid in 

magnetohydrodynamics across an exponentially stretched sheet. Using proper similarity 

transformations, the controlling a nonlinear PDE system is transformed into a nonlinear ODE 

system. To resolve the system of converted modelled equations, the MATLAB built-in 

procedure bvp4c was used. Prasannakumara et al. [20] used heat sink/source, bio convection, 

and Studying the nanofluid flow using thermophoretic particle deposition via porous surfaces. 

Increased porosity decreases skin friction, decreases mass transfer, and lowers velocity, 

according to the results. Saleem et al. [21] analyzed the influence on a Nano-Williamson fluid 

on an exponential stretched surface in a material that is permeable of nonlinear warmth 

radiation, mixed convection, and electromagnetic force.. Konwar et al. [22] examined the 

effects of conductivity, Prandtl number, Schmidt number, permeability, magnetic field, 

viscosity, and mixed convection factors on heat and mass transfer in a porous media. H. Basha 

[23] studied the magnetohydrodynamic flow of a non-Newtonian Jeffrey nanofluid across a 

stretchy surface and discovered that changes in the fluid's properties affect the thermal boundary 

layer's thickness as well as the concentration of nanoparticles. Habib et al. [24] showed how 

viscous dissipation affected the magnetohydrodynamic flow of carbon nanoparticle-containing 

Jeffry fluid, and the results showed that a number of variables affect the temperature and 

velocity profiles. P. Chandrakala  [25] investigated the hybrid nanofluid flow with copper and 

aluminium oxide nanoparticles, showing decreased concentration, decreased velocity, and 
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enhanced temperature distribution that are advantageous for chemical engineering and solar 

thermal systems. R. Razzaq [26] studied the Tiwari-Das hybrid nanofluid flow around an 

expanding/shrinking sheet containing copper nanoparticles and aluminium oxide in this paper. 

It looks at things like heat sources, magnetic fields, thermal radiation, and viscous dissipation. 

The findings indicate that while heat and radiation improve the energy profile, fluid velocity 

falls in a magnetic field. Abbas et al. [27] looked at slip phenomena, heat generation, magnetic 

and chemical dipoles, and the flow of a Sutterby-Casson fluid across a curved sheet. The 

concentration rises with Brownian factor values, according to the results. Dadhich et al. [28] 

examined the mass/heat transmission and stability of motile gyrotactic bacteria in a dissipative 

Sisko nanofluid, with possible applications in nano-engineering and microfluidic devices. 

 

 

 

 

1.3   Entropy generation 

Entropy generation is the difference between entropy in and entropy left a system as a result of 

irreversible processes. Many disciplines of science and engineering, including thermodynamics, 

fluid mechanics, and heat transport, rely on the idea of entropy formation. It is used to identify 

the limitations of energy conversion and heat transport and to analyze the effectiveness of 

various processes. Makhdoum et al. [29] explored the effect of entropy production and 

nanoparticle aggregation on nanofluid stagnation point flow across a stretched sheet with an 

angled Lorentz force. As well as being described, it is widely accepted that increasing the 

number of nanoparticles in a nanofluid enhances its ability to conduct heat. The cause of this 

extraordinary growth is still unknown. As a result, understanding the kinematics of nanoparticle 

accumulation is critical for calculating the proper thermal effect of nanoscale particles. Obalalu 

et al. [30] investigated the generation of entropy in nanofluid processes, concentrating on 

electromagnetohydrodynamic radiative Casson flow caused by a stretching Riga plate. It 

employs the Galerkin Weighted Residual Method to numerically solve dimensionless variables 

and presents an exponentially decaying Grinberg term. The findings indicate that the melting 

parameter increases fluid velocity while the Casson parameter decreases it. Zhao et al. [31] 

studied the application of mixed convective entropy optimized nanomaterial magneto 

hydrodynamics to produce entropy and warmth in the movement of Ree-Eyring fluid within 
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two spinning discs using artificial neural networks. Findings reveal different patterns in the 

temperature and velocity domains. R. Mahla [32] investigated Hall current, Soret number, and 

inclined magnetic field effects, the irreversibility of mixed convective flow of a Jeffrey fluid in 

a channel that is inclined under Navier-slip circumstances. The findings indicate that as 

parameters are increased, entropy production rises. Zada et al. [33] examined the Jeffrey-Hemal 

flow phenomenon, with a particular emphasis on the movement of nanofluids across channels 

that are converging and diverging. It investigated the behavior of water nanofluids and 

magnetized copper oxide while taking solar radiation and Joule heating into account. The study 

examined the impact of entropy and physical factors on temperature, and velocity using 

MATLAB and the thermodynamics' second law. Shoaib et al. [34] examined entropy 

production in the flow of the Jeffrey nanomaterial model (EFJNM). The outcomes demonstrate 

excellent performance for a variety of scenarios, with MSEs ranging from 10^-9 to 10^-11. The 

study also shows relationships between the accuracy of the suggested ABP-LMNNs and 

entropy creation, velocity, entropy production rate, temperature, and concentration. Mishra et 

al. [35] evaluated the consequences of hybrid nanofluid and magnetic field on the production 

of entropy in synthetic cilia and discovered that entropy generation decreases as chemical 

reaction and field parameters increase. 

 

 

 

 

 

1.4 Magnetohydrodynamic (MHD) 

The study of how magnetic fields affect the behavior of electrically conductive fluids, 

including plasmas, liquid metals, and seawater, is known as magnetohydrodynamics (MHD). It 

explores the intricate relationships between magnetic forces and fluid motion, revealing 

phenomena in a variety of fields, from industrial applications like fusion energy research to 

astronomical processes like stellar dynamics. Mng'ang'a et al. [36] used 

magnetohydrodynamics to investigate the Jeffrey fluid's Couette flow in a porous material and 

found that as inclination angles increase, so do concentration, velocity, and thermal fields. 

Thenmozhi et al. [37] analyzed a mathematical model for assessing a heat transfer system 

employing Jeffrey fluid and porous stretching sheets is discussed in this communication. Using 
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numerical approaches such as similarity, transformation, and shooting, the model was turned 

into an ordinary differential equation. The results show that increasing the parameters of the 

Jeffrey fluid, heat source, porosity in the stretched sheet, and magnetic field qualities decreases 

temperature while increasing convection rate. Rehman et al. [38] for both Newtonian and non-

Newtonian fluids, research showed that cylindrical surfaces perform better in terms of 

temperature regime and heat transfer rate. Magnetic fields also enhance these benefits, 

contributing to our understanding of thermophysical elements of flow fields. Awang et al. [39] 

explored the effect of nanoparticle shape on the Cu-Al2O3/water-EG Jeffrey hybrid nanofluid 

flow, and discovered that the highest possible Nusselt number and skin friction coefficient are 

found in blade-shaped nanoparticles. Ullah et al. [40] studied the magnetohydrodynamics 

Jeffrey fluid's erratic two-dimensional squeezing flow between parallel plates in a rotating 

frame. The properties of heat transmission are analyzed using the Cattaneo-Christov heat flux 

model. The skin friction coefficient falls with k1 and sq, whereas the velocity profile rises with 

Deborah number and squeezing parameter. Anusha et al. [41] explored the 

magnetohydrodynamics flow and Jeffrey fluid heat transfer, by using carbon nanotubes, 

demonstrating the potential of these materials to enhance mechanical characteristics and heat 

performance, maybe aid in cancer treatments, and have an impact on heat sink/source and 

thermal radiation parameters. Khan et al. [42] four possibilities were studied in relation to the 

flow of Jeffrey fluid through disk-cone devices. The disc surface exhibits more significant 

changes in retardation when magnetic and Maxwell variables are increased, according to the 

results. Mopuri et al. [43] used an electrically conducting, viscous, incompressible, non-

Newtonian Jeffrey fluid across a porous material, the study investigated the unsteady MHD 

natural convective boundary layer flow. It revealed possible applications in industrial processes 

such as food processing and polymer manufacture. Kumar et al. [44] considered variables like 

radiation, activation energy, and Soret and Dufour numbers, research creates a mathematical 

model for the continuous incompressible flow through a Darcy permeable material of a Jeffrey 

fluid across a vertically stretched sheet. 

1.5 Convective condition 

A convective boundary condition is a condition placed at the margins of an area where 

fluid motion is used to transmit mass or heat. This condition accounts for the convective mass 
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or heat transfer caused by the fluid movement. Convection may occur in a variety of settings, 

including meteorology, fluid dynamics and engineering. Raje et al. [45] investigated the 

temperature, Bejan number, fluid velocity, number of entropy generation and other factors 

within the entropy production of a Jeffrey fluid flow that is not Newtonian in a round pipe. 

Samuel et al. [46] higher Prandtl numbers lead to lower thermal fields, according to research 

on the effects of the binary action  on heat and mass transfer in magnetohydrodynamics flow of 

Jeffrey fluid. K. Kaladhar [47] investigated the Jeffrey fluid's entropy generation in natural 

convection Navier-slip flow in a vertical tube with an angled magnetic field: application to 

industrial fluids and polymer industries. Dimensionless equations are solved via spectral quasi-

linearization. Siddique et al. [48] investigated how the free convection flow of an 

incompressible Jeffrey fluid over a hot plate is affected by magnetohydrodynamics and heat 

absorption. The exact answers for momentum and heat profiles are obtained by applying the 

Laplace transform approach. The memory effect of heat and momentum fields is shown to be 

better captured by the Prabhakar-like fractional model. Reddappa et al. [49] observed how the 

magnetohydrodynamic flow of a water-based Jeffrey nanofluid was affected by a second-order 

chemical reaction, emphasizing the significance of these nanoparticles in a variety of domains. 

Zhang et al. [50] examined the dynamics and effects of viscoelastic nanofluids on thermal 

radiation, convective heating, and Stefan blowing conditions in nanotechnology and 

biomedicine. Hussain et al. [51] investigated the incompressible Jeffrey nanofluid's 

hydromagnetic flow in two dimensions over an exponentially extending surface, examining 

Brownian motion, mass, heat transfer, effects of thermophoresis, viscous dissipation, and heat 

radiation. 

 

 

 

1.6 Contribution to thesis 

             This thesis begins with a review of the work done by Hussain et al. [51] following that, 

viscous dissipation, thermophoresis, heat radiation, and Brownian motion are all considered 

when analyzing the Jeffrey fluid's flow analysis. The course that results from a sheet that is 

expanding exponentially. Boundary layer and the presumptions of Rosseland are applied when 

performing the mathematical formula. With regard to dimensionless temperature solution 

formulations, concentration, and velocity, the homotopy analysis method (HAM) is applied. 
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With the use of graphs, the domains of concentration and temperature are displayed and talked 

about for a range of leading parameters. Also calculated and analyzed using graphs are skin-

friction, entropy, Sherwood number, Nusselt number, and average entropy. Tabulated and 

analyzed nearby Nusselt number comparison in a restricted case is performed. 

1.7 Thesis Organization 

This is how the remaining thesis is structured: 

Chapter 2 provides a few fundamental definitions and dimensionless parameters that are 

employed in the research to get the flow problem's numerical results. 

Chapter 3 discusses in detail the radiative hydromagnetic Jeffrey nanofluid flow across an 

exponentially extending sheet by Hussain et al. [51]. 

Chapter 4 provides the extension work based on Hussain et al. [51]. 

Chapter 5 makes closing comments regarding the entire study project and the potential 

applications for this research in the future. 

References The Bibliography is a list of references that were consulted for this thesis.
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CHAPTER  2  

BASIC DEFINITION AND EQUATION  

This chapter provides readers with a fundamental understanding by supplying 

definitions and guidelines that are necessary to comprehend the analyses that are offered in the 

next chapters. 

 

 

2.1 Fluid  

A fluid is a liquid that can flow and take the shape of its container. The shape of a fluid 

can change when shear stress is applied, unlike solids, which have a fixed shape, see [52] and 

[53]. 

 

Examples 

They include, 

 Liquid and Water  

 Oil and Gases 

 Air and Helium. 

 

 

2.2 Newtonian fluid  

A Newtonian fluid is one whose viscosity doesn't change with the amount of shear 

rate or shear stress that is given to it. Put more simply, a Newtonian fluid's viscosity remains 

constant regardless of the rate of deformation. Because of their constant viscosity, Newtonian 
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fluids are easy to analyze in mechanic’s applications. They frequently come up in both daily 

living and industrial operations, see [53]. 

 

Examples 

 Water  

 Fuels derived from petroleum, such as petrol 

 

 

2.3 Non-Newtonian fluid 

 Non-Newtonian fluids are defined as those whose viscosity varies in reaction to shear 

rate or applied stress. Their viscosity is based on several elements such as temperature, pressure, 

and shear rate, unlike Newtonian fluids, see [53]. 

 

Examples 

 Shear-Thinning Liquids: 

 Tomato Sauce and Ketchup 

 Shampoo and Conditioner 

 Shear-Deforming Liquids 

 Mixture of corn flour and water 

 Viscoelastic Fluids 

 Polymer Solutions 

2.4 Flow 

Essential characteristics such as density, viscosity, pressure, and velocity all affect flow, 

which is the movement of fluids such as liquids, gases, and plasmas. In the fields of 

environmental science, engineering, physics, and meteorology, it is essential to comprehend 

and analyze flow behavior, see [52]. 
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2.4.1  Steady flow 

When flow parameters at a fixed place in a system stay constant across time, it is referred 

to as steady flow in fluid dynamics, see [54]. 

 

Examples 

 River Flow 

 Electrical Circuit Testing 

 Wind Tunnel Testing 

 Pipe System Flow 

 

2.4.2  Unsteady flow 

 When there is an unsteady flow, as opposed to a steady flow, which shows continuous 

variations, the flow parameters such as temperature, pressure, density, and velocity shift with 

time, see [55]. 

 

Examples 

 Traffic Flow 

 Ocean Waves 

 Pulsatile Blood Flow 

 Temporary Fluid Flows 

 

 

2.4.3  Laminar flow 

         Laminar flow is the orderly, smooth movement of fluid particles in parallel strata with 

minimal mixing between adjacent levels. There is little to no turbulent motion when fluid 

particles travel along well-defined pathways in laminar flow, see [52]. 
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2.4.4  Turbulent flow 

 

One kind of fluid flow known as turbulent flow is defined by the unpredictable and 

chaotic movement of fluid particles, such as eddies, vortices, and changes in pressure and 

velocity. Unlike laminar flow, which has clearly defined streamlines, turbulent flow is 

characterized by the fast mixing and swirling particles of fluid throughout the flow domain, see 

[52]. 

 

 

2.4.5  Incompressible flow 

            In fluid system analysis, incompressible flow is a prevalent assumption that simplifies 

mathematical equations by assuming a constant fluid density. Although compressibility effects 

must be taken into account for precise forecasts, it is helpful for low-speed flows and slight 

pressure or temperature changes, see [56]. 

Examples 

 Water and air 

 Hydraulic systems  

 

 

2.4.6  Compressible flow 

 

 

             Compressible flow, which is important in high-velocity systems like rocket engines or 

supersonic aircraft, is a type of fluid dynamics where density changes considerably. In order to 

forecast system behavior with accuracy, sophisticated mathematical models are needed, see 

[57]. 
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2.5  Newton’s law of viscosity: 

 

According to the related statement, the fluid's shear stress is thought to be directly and 

proportionately connected to the gradient in velocity. To put it another way, the fluid's shear 

stress grows linearly with the velocity gradient. 

                                                         𝜏 ∝
𝑑𝑢

𝑑𝑦
,                                                                                  (2.1) 

or 

                                                         𝜏 = 𝜇
𝑑𝑢

𝑑𝑦
,                                                                               (2.2) 

where the shear stress imparted to the fluid element is indicated by 𝜏, see [58]. 

 

 

2.6  Field 

Electric, magnetic, gravitational, and thermal fields are examples of physical processes 

that can be described using fields, which are quantifiable attributes assigned to particular values 

at every location in space and time. In physics, engineering, and technology, they are crucial, 

see [58]. 

 

2.6.1  Scaler field 

 

In fluid dynamics, scalar fields—physical entities that have a single value assigned to 

each point in space—are used to characterize attributes such as concentration, temperature, 

pressure, and density, see [58]. 

 

2.6.2  Vector field 

 

In fluid dynamics, vector fields are physical values that are allocated to each point in 

space together with a magnitude and direction. These numbers are crucial for characterizing the 

fluid's acceleration, force, vorticity, and velocity, see [58]. 
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2.6.3  Tensor field 

 

Tensor fields are frequently used in fluid dynamics to describe stress, strain, and 

deformation within the fluid medium. The stress tensor field, for instance, explains how stress is 

distributed throughout the fluid, see [58]. 

 

 

2.7  Boundary layer 

  

A boundary layer is a thin layer of fluid that forms close to a surface when the flow 

characteristics change from surface values to free stream flow characteristics, see [59]. 

 

2.7.1  Momentum boundary layer  

 

The momentum boundary layer, formed by viscous effects near a solid surface, is crucial 

for predicting drag forces and optimizing aerodynamic or hydrodynamic designs, see [59]. 

 

 

2.7.2  Thermal boundary layer 

Temperature differences among a solid surface and a fluid generate the thermal 

boundary layer, which is an essential part of heat exchangers and affects surface temperatures, 

see [59]. 

 

2.7.3  Concentration Boundary Layer 

 

Understanding the concentration boundary layer, which is impacted by diffusivity and 

flow features is essential for comprehending procedures for mass transfer in biological 

structures, pollutant dispersion, and chemical reactor design, see [59]. 
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2.8  Heat source 

             Any process or thing that releases thermal energy into its environment is a heat source. 

This transfer of energy can occur naturally, as in the case of the sun's heat, or it can be 

purposeful, like when a furnace heats a space. The characteristics of heat sources can differ 

greatly, ranging from electrical resistance heating to combustion processes, see [60]. 

2.8.1  Conduction 

Heat transmission through a substance by conduction occurs when molecules collide, 

causing vibrations and heat energy. Metals are excellent heat conductors due to their free 

electron flow within their structures, see [60]. 

 

Examples 

 Heat transmission from gripping a hot object through a metal handle. 

 Heat sinks' role in cooling electrical components. 

 Heat transfer via construction materials such as concrete or bricks. 

 

2.8.2  Convection 

 

Heat is transferred through fluid movement as a result of temperature changes through 

convection, which can be induced by outside forces or naturally occur as a result of temperature 

gradients, see [60]. 

 

Examples 

 Warm air flowing through a room and emerging from a radiator. 

 Earth's atmosphere's thermal circulation affects weather patterns. 
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2.8.3  Radiation 

 

Radiation is a type of heat transmission that happens when electromagnetic waves—

such as infrared radiation—move through a vacuum in the absence of a medium while being 

affected by the temperature and emissivity of the object, see [60]. 

 

Examples 

 The surface of the Earth is heated by sunlight. 

 Microwaves are emitted by microwave ovens to cook food 

 

 

2.9  Dimensionless Number 

 

2.9.1  Reynolds Number 

 

The Reynolds number is the ratio of inertial forces to viscous forces. For fluid systems 

where viscosity is a major factor in controlling fluid velocities or flow patterns, the 

dimensionless Reynolds number is employed for classification, see [61]. 

                                                         𝑅𝑒 =
𝜌.𝑣.𝑙

𝜇
,                                                                   (2.3) 

or 

                                                         𝑅𝑒 =
𝑣.𝑙

𝜐
,                                                                      (2.4) 

where 𝜌 be the fluid's density, 𝑣 represents flows characteristic velocity, 𝐿 be a characteristic 

length scale and 𝜇 is the fluid's dynamic viscosity. 

 

 

2.9.2  Prandtl Number  

 

The dimensionless Prandtl number in heat transport and fluid mechanics is a quantity 

that is used to describe how important thermal diffusivity is in relation to momentum diffusivity 
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(viscosity) in a fluid flow. The Prandtl number can be calculated using the following formula: 

It is momentum diffusion (kinematic viscosity, 𝑣) divided by thermal diffusion (α), see [61]. 

                                                 𝑃𝑟 =
𝑣

𝛼
.                                                                                      (2.5)   

 

                                   

2.9.3  Eckert Number 

 

In fluid dynamics, the dimensionless Eckert number (𝐸𝑐) is used to describe the 

proportionate contribution of heat transfer to the kinetic energy of a fluid flow. Its definition is 

the following: the ratio of the flow's kinetic energy to its enthalpy, or heat, transfer: 

                                           𝐸𝑐 =
kinetic energy

enthalpy transfer
 .                                                                    (2.6) 

The Eckert number is typically employed in relation to convective heat transfer. It aids in 

comprehending how kinetic energy effects in a flow outweigh heat transfer effects, see [61]. 

 

 

2.9.4  Lewis Number 

 

The ratio of mass diffusivity to thermal diffusivity in a mixture of fluids is described by 

the dimensionless Lewis number (𝐿𝑒) which is utilized in the mechanics of fluids and heat 

transfer. It measures the fluid's relative rates of mass and heat transmission, see [61]. 

The following is the definition of the Lewis number: 

                                        𝐿𝑒 =
𝛼

𝐷
,                                                                            (2.7) 

 

where 𝛼 represents thermal diffusivity and 𝐷 represent mass diffusivity. 

 

 

2.9.5  Biot Number 

 

In heat transfer analysis, the Biot number (Bi) is a dimensionless metric. It shows how 

much heat is transferred by convection relative to thermal conduction inside a material, see 

[61]. 



18 

 

 

 

                                   𝐵𝑖 =  
ℎ𝑙

𝑘
,                                                                                                 (2.8) 

 

where ℎ be the coefficient of heat transfer, 𝑙 is a typical length and 𝑘 is the material thermal 

conductivity. 

 

 

2.9.6  Thermophoresis parameter 

 

Thermophoresis parameter, often known as 𝑁𝑡, is a dimensionless number that is 

utilized in thermophoresis research. The movement of particles in a fluid caused by temperature 

gradients is known as thermophoresis. The ratio of the particle's diffusion coefficient to its 

thermophoretic mobility is known as the thermophoresis parameter, see [61]. 

                                     𝑁𝑡 = 
𝜇𝑇

𝐷
,                                                                                                (2.9) 

where the particles thermophoretic mobility is represented by 𝜇𝑇 and the particles diffusion 

coefficient is represented by D. 

 

 

2.10  Homotopy analysis method 

 

An effective method for analytically resolving extremely nonlinear differential 

equations is the examination of homotopy methodology. This technique was first presented by 

Liao (1992), and many researchers have since adopted it since it ensures convergence of the 

intended answer and gives them a considerable deal of latitude in selecting initial guesses for 

the desired solution. 

Consider the differential equation as an example of the homotopy analysis method. 

 

                          𝒩[𝑢(𝑥)] = 0,                                                                                               (2.10) 

 

where the nonlinear operator 𝒩 is used. Let 𝑢0(𝑥) be the initial estimate of u(x), ℒ be an 

auxiliary linear operator, and 𝑐0 be a constant (referred to as the convergence-control 

parameter), in that order. Homotopy theory's embedding parameter 𝑞 ∈  [0,1] can be used to 

create a family of equations, 
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                (1 − 𝑞)ℒ[𝑈(𝑥; 𝑞) − 𝑢0(𝑥)] = 𝑐0𝑞𝒩[𝑈(𝑥; 𝑞)],                                                  (2.11) 

 

referred to as the zeroth-order deformation equation, the value of which fluctuates continuously 

in relation to the embedding parameter q ∈ [0,1]. The linear equation is as follows. 

 

                  ℒ[𝑈(𝑥; 𝑞) − 𝑢0(𝑥)] = 0.                                                                                       (2.12) 

 

When 𝑞 =  0, the original nonlinear equation 𝒩[𝑢(𝑥)] = 0 is identical to 𝑈(𝑥;  1)  =  𝑢(𝑥). 

With a known initial guess, 𝑈(𝑥;  0)  =  𝑢0(𝑥) when 𝑞 =  0. Thus, when 𝑞 rises over 0 to 1, 

the resolution 𝑈(𝑥;  𝑞) varies from the selected initial guess 𝑢0(𝑥) of the zeroth-order deformed 

equation to the resolution 𝑢(𝑥) the nonlinear equation under consideration. 

 

 

By extending 𝑈(𝑥;  𝑞) within a Taylor series concerning 𝑞 =  0, the Maclaurin-homotopy 

series is obtained. 

 

                           𝑈(𝑥; 𝑞) = 𝑢0(𝑥) + ∑ 𝑢𝑚(𝑥)𝑞
𝑚∞

𝑚=1 .                                                         (2.13) 

 

We get the homotopy-series solution should the deformation equation of zeroth order known as 

parameter for convergence-control 𝑐0 be suitably chosen such that the previously described 

series converges when 𝑞 =  1 

 

 

                             𝑢(𝑥) = 𝑢0(𝑥) + ∑ 𝑢𝑚(𝑥).
∞
𝑚=1                                                                    (2.14) 

 

The governing equation of 𝑢𝑚(𝑥) can be obtained immediately from the deformation equation 

of zeroth order. 

                             ℒ[𝑢𝑚(𝑥) − 𝒳𝑚𝑢𝑚−1(𝑥)] = 𝑐0𝑅𝑚[𝑢0, 𝑢1, … , 𝑢𝑚−1],                     (2.15) 

 

referred to as the mth-order deformation equation, in which 𝒳1 = 0 and 𝒳𝑘 = 1for 𝑘 > 1. 
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CHAPTER 3 

 RADIATIVE HYDROMAGNETIC FLOW OF JEFFREY 

NANOFLUID OVER AN EXPONENTIALY STRETCHING 

SHEET 

  

3.1 Introduction  

An incompressible Jeffrey nanofluid's two-dimensional hydromagnetic flow across an 

exponentially expanding surface is investigated. Brownian motion, thermophoresis effects, 

thermal radiation, and viscous dissipation are all taken into consideration while doing heat and 

mass transfer analysis. Under the boundary layer and Rosseland’s approximations, a 

mathematical model of the flow problem under consideration is built. The controlling 

transformations are used to turn nonlinear partial differential equations into ordinary differential 

equations. The series forms of the solution for temperature, concentration, and velocity are 

obtained. Dimensionless temperature and concentration effects of physical factors are 

demonstrated and explored. The current series solutions are validated with a limiting case see 

[51]. 

 

 

 

Figure: (3) Geometry of the problem. 
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3.2 Mathematical formulation 

Jeffrey nanofluid's two-dimensional hydromagnetic flow across an exponentially 

stretched surface is analyzed. The effects of heat and mass transfer are examined. Normal to 

the direction of flow, a magnetic field that is applied to intensity 𝐵0 comes into contact with. 

There are no effects of Joule heating and a modest magnetic Reynolds number. Additionally, 

the induced magnetic field is negligible and weaker than the magnetic field that is applied. 

Moreover, the consequences of viscous dissipation are considered.  

The prescribed velocity pattern of the boundary layer flow is described as follows; 

 

                 𝑽 =  [𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦), 0].                                                                          (3.1) 

 

For an incompressible Jeffrey fluid, the constitutive general equation is defined as; 

                 𝝉 = −𝑝𝑰 + 𝑺,                                                                                                   (3.2) 

 

                 𝑺 =
𝜇

1+𝜆
[𝑨𝟏 + 𝜆1 (

𝜕𝑨𝟏

𝜕𝑡
+ 𝑽.𝜵)𝑨𝟏],                                                             (3.3) 

                                                

where 𝝉 denotes the  Cauchy stress tensor, 𝑺 represents extra stress tensor, I  the identity tensor, 

𝜆 and 𝜆1 are Jeffrey fluid's material parameters and  𝑨𝟏 is the first tensor of Rivlin-Ericksen is 

provided by:                 

                                    𝑨𝟏 = 𝑳 + 𝑳
𝑇,                                                                                               (3.4) 

 

through 

 

    𝑳 = 𝑔𝑟𝑎𝑑𝑽 =

[
 
 
 
𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦
0

𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦
0

0 0 0]
 
 
 

   and   𝑳𝑇 = (𝑔𝑟𝑎𝑑𝑽)𝑇 = [

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑥
0

𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑦
0

0 0 0

],                              

 

 

                 𝝉𝑥𝑥 = −𝑝 + [2
𝜕𝑢

𝜕𝑥
+ 𝜆1 (2𝑢

𝜕2𝑢

𝜕𝑥2
+ 2𝑣

𝜕2𝑣

𝜕𝑥𝜕𝑦
)]

𝜇

1+𝜆
 ,                                    (3.5) 
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         𝝉𝑦𝑦 = −𝑝 + [
2𝜕𝑣

𝜕𝑦
+ 𝜆12𝑢

𝜕2𝑣

𝜕𝑥𝜕𝑦
+ 2𝑣

𝜕2𝑣

𝜕𝑦2
]
𝜇

1+𝜆
   ,                                                (3.6) 

and 

                 𝑑𝑖𝑣𝒒 = −𝑘 (
𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
) .                                                                               (3.7) 

 

 

The governing equation of flow are given below: 

 

Continuity equation: 

 

                                                 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0.                                                                           (3.8) 

 

Momentum equation: 

 

 𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
=

𝜈

1+𝜆
(
𝜕2𝑢

𝜕𝑦2
+ 𝜆1 (

𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝑢

𝜕3𝑢

𝜕𝑥𝜕𝑦2
−
𝜕𝑢

𝜕𝑥

𝜕2𝑢

𝜕𝑦2
+ 𝑣

𝜕3𝑢

𝜕𝑦3
)) −

𝜎𝐵0
2

𝜌𝑓
𝑢.                       (3.9) 

 

Energy equation: 

 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2
+ 𝜏 (𝐷𝐵

𝜕𝐶

𝜕𝑦

𝜕𝑇

𝜕𝑦
+

𝐷𝑇

𝑇∞
(
𝜕𝑇

𝜕𝑦
)
2

) +
𝜈

𝐶𝑝(1+𝜆)
(
𝜕𝑢

𝜕𝑦
)
2

+
𝜈𝜆1

𝐶𝑝(1+𝜆)

𝜕𝑢

𝜕𝑦

𝜕

𝜕𝑦
(𝑢

𝜕𝑢

𝜕𝑥
+

𝑣
𝜕𝑢

𝜕𝑦
) −

1

(𝜌𝐶)𝑝

𝜕𝑞𝑟

𝜕𝑦
 .                                                                                                                                                     (3.10) 

 

Concentration equation: 

 

                                                      𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷𝐵

𝜕2𝐶

𝜕𝑦2
+

𝐷𝑇

𝑇∞

𝜕2𝑇

𝜕𝑦2
.                                                   (3.11) 

 

In above Eqs. (3.8) − (3.11) 𝑢 and 𝑣 are the components of velocity in the 𝑥 and 𝑦 directions, 

𝜈  represents the kinematic viscosity, 𝛼 the thermal diffusivity, 𝜆 the ratio of relaxation to 

retardation times, 𝜆1 the retardation time,  𝜎 the Steffan-Boltzman constant, 𝜌𝑓 the density of 

fluid,  𝜏 =
(𝜌𝑐)𝑝

(𝜌𝑐)𝑓
  the nanoparticle heat ability divided by the base fluid heat ability, 𝐷𝐵 the  
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diffusion coefficient of Brownian motion, 𝐷𝑇 the coefficient of thermophoretic diffusion and 

𝑞𝑟 the flow of radiative heat. 

 

For the flow analysis under consideration, the boundary conditions are 

 

 𝑢 = 𝑈𝑤(𝑥) = 𝑈0𝑒
𝑥

𝑙 ,   𝑇 = 𝑇𝑤 = 𝑇∞ + 𝑇0𝑒
𝐴𝑥

𝑙  ,   𝐶 = 𝐶∞ + 𝐶0𝑒
𝐵𝑥

𝑙     𝑣 = 0, at   𝑦 = 0,       (3.12)                                     

                                                        

 

                      𝑢 → 0,   𝑇 → 𝑇∞, 𝐶 → 𝐶∞         when       𝑦 → ∞.                                       (3.13) 

 

 

In above equation 𝑇∞ and 𝐶∞ are the ambient fluid temperature and concentration far away 

from the sheet  and A, B, 𝑇0, 𝐶0 are the constants. 

 

Using the Roseland approximation, the radiation-induced heat flow can be shown as follows: 

 

                                     𝑞𝑟  =  − 
4σ

3𝑘∗
 
∂𝑇4

∂y
 ,                                                                      (3.14) 

 

where 𝜎 is a representation of the Stefan-Boltzmann constant, while the letter 𝑘∗ stands for the 

absorption coefficient. The temperature is expanded as 𝑇4 about the reference temperature 𝑇∞ 

using Taylor's series to produce the following expression: 

 

                                   𝑇4 = 4𝑇∞
3𝑇 − 3𝑇∞

4.                                                                (3.15) 

 

Differentiating the above Eqs. (3.15) w.r.t 𝑦, 

 

                                  
𝜕𝑇4

𝜕𝑦
= 4𝑇∞

3 𝜕𝑇

𝜕𝑦
.                                                                                 (3.16) 

and 

                                   𝑞𝑟 = −
16𝜎𝑇∞

3

3𝑘∗
𝜕𝑇

𝜕𝑦
.                                                                     (3.17) 

 

By utilizing Roseland's approximation, Eqs. (3.10) becomes, 
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𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= (𝛼 +

16𝜎𝑇∞
3

3𝑘∗(𝜌𝑐)𝑝
)
𝜕2𝑇

𝜕𝑦2
+ 𝜏 (𝐷𝐵

𝜕𝐶

𝜕𝑦

𝜕𝑇

𝜕𝑦
+

𝐷𝑇

𝑇∞
(
𝜕𝑇

𝜕𝑦
)
2

) +
𝜈

𝐶𝑝(1+𝜆)
(
𝜕𝑢

𝜕𝑦
)
2

+

𝜈𝜆1

𝐶𝑝(1+𝜆)

𝜕𝑢

𝜕𝑦

𝜕

𝜕𝑦
(𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
).                                                                                                  (3.18) 

 

 

By considering the following similarity transformations,  

 

                            𝑢 = 𝑈0 𝑒
𝑥

𝑙  𝑓′(𝜉),   𝑣 = −√
𝑣𝑈0

2𝑙
𝑒
𝑥

2𝑙 (𝑓(𝜉) + 𝜉𝑓′(𝜉)),                     (3.19) 

 

                           𝜉 = 𝑦√
𝑈0

2𝑣𝑙
 𝑒

𝑥

2𝑙 ,     𝑇 = 𝑇∞ + 𝑇0 𝑒
𝐴𝑥

2𝑙  𝜃(𝜉),                                               (3.20) 

and 

 

                            𝐶 = 𝐶∞ + 𝐶0 𝑒
𝐵𝑥

2𝑙  𝜑(𝜉).                                                                                   (3.21) 

 

Using above transformation (3.19)  − (3.21), the continuity Eqs. (3.8) is identically 

satisfied. While the Eqs. (3.9) – (3.11) take the following form, 

 𝑓′′′ + (1 + 𝜆)𝑓𝑓′′ − 2(1 + 𝜆)𝑓′
2
+ 𝛽 (

3

2
𝑓′′

2
−
1

2
𝑓𝑓′′′′ + 𝑓′𝑓′′′)  − 𝑀(1 + 𝜆)𝑓′ = 0,  

                                                                                                                                                 (3.22)                                                                 

(1 + 𝜆) (1 +
4

3
𝑅𝑑)𝜃′′ + (1 + 𝜆)𝑃𝑟(𝑓𝜃′ − 𝐴𝑓′𝜃) + (1 + 𝜆)𝑃𝑟𝑁𝑏𝜃′𝜙′ + 𝜙(1 +

 𝜆)𝑃𝑟𝑁𝑡𝜃′2 + 𝑃𝑟𝐸𝑐 (𝑓′′2 +
𝛽

2
𝑓′′(3𝑓′𝑓′′ − 𝑓𝑓′′′)) = 0,                                                    (3.23) 

and 

𝜙′′ + 𝑃𝑟𝐿𝑒(𝑓𝜙′ − 𝐵𝑓′𝜙) +
𝑁𝑡

𝑁𝑏
𝜃′′ = 0,                                                                                         (3.24) 

 

Use of same similarity transformations (3.19)  − (3.21) to the boundary conditions (3.12) and 

(3.13), we obtain;  
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                       𝑓 = 0,  𝑓′ = 1, 𝜃′ = 1, 𝜙′ = 1    at   𝜉 = 0,                                        (3.25) 

and  

                    𝑓′ → 0, 𝜃 → 0, 𝜙 → 0,   when          𝜉 → ∞,                                                      (3.26) 

 

where 𝛽 represent Deborah number, Prandtl number is denoted by 𝑃𝑟, 𝑀 represent magnetic 

characteristic, 𝐿𝑒 be the Lewis number, 𝐸𝑐 is the number assigned to Eckert, 𝑁𝑡 represent the 

thermophoresis parameter, 𝑁𝑏 denote the Brownian motion parameter. These parameters are 

presented as follows, 

 

                           

𝑃𝑟 =
𝜈

𝛼
, 𝑀 =

𝜎𝐵0
2𝑈𝑤

𝜌𝑓
𝑐
,   𝛽 =

𝜆2𝑈𝑤𝑒
𝑥
𝑙⁄

𝑙
, 𝐸𝑐 =

𝑈0
2

𝐶𝑝𝑇0
(
𝑈𝑤

𝑈0
)
(
4−𝐴

2
)

,
 
 

𝐿𝑒 =  
𝛼

𝐷𝐵
,        𝑁𝑏 =

(𝜌𝑐)𝑝𝐷𝐵𝐶0𝑒
𝐵𝑥
2𝑙

(𝜌𝑐)𝑓𝜈
,       𝑁𝑡 =

(𝜌𝑐)𝑝𝐷𝑇𝑇0𝑒
𝐴𝑥
2𝑙

(𝜌𝑐)𝑓𝜈𝑇∞
.
}
 
 

 
 

                     (3.27)                                                                            

                                   

 

Moreover, Here, the local Nusselt, Sherwood, and skin friction coefficients are defined: 

 

                      𝑁𝑢𝑥 =
𝑥𝑞𝑤

𝑘(𝑇𝑤−𝑇∞)
, 𝐶𝑓 =

𝜏𝑤

𝜌𝑓𝑈𝑤
2(𝑥)

, 𝑆ℎ𝑥 =
𝑥𝑞𝑚

𝐷𝐵(𝐶𝑤−𝐶∞)
 ,                                (3.28) 

 

 

where 𝑞𝑚 is the flux of surface mass, 𝑞𝑤 be the surface heat flux and 𝜏𝑤 is the shear stress along 

the stretching surface. 

  

Due to similarity transformations, Eq. (3.28) attain the following forms, 

 

 

                                       

√2𝑅𝑒𝑥𝐶𝑓𝑥 =
1

1+𝜆1
(𝑓′′(0) + 𝛽𝑓′′(0)),

𝑁𝑢𝑥

𝑅𝑒𝑥
1
2⁄
= −√

𝑥

2𝑙
(1 +

4

3
𝑅𝑑) 𝜃′(0),   

𝑆ℎ𝑥

𝑅𝑒𝑥
1
2⁄
= −√

𝑥

2𝑙
𝜙′(0),

}
 
 

 
 

                                           (3.29) 

 

where 𝑅𝑒𝑥 =
𝑈𝑤(𝑥)𝑥

𝑣
 be the Reynolds number. 
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3.3 Solutions through homotopy analysis method  

To move further with the initial hypotheses, the homotopic solutions, and extra linear 

operators for the momentum, energy, and concentration equations selected in the manner 

described below:  

 

             𝑓0(𝜉) = 1 − 𝑒−𝜉 ,     𝜃0(𝜉) = 𝑒
−𝜉  , 𝜙0(𝜉) = 𝑒−𝜉 ,                                      (3.30) 

and 

 

            𝐿(𝑓) = 𝑓′′′ − 𝑓′,      𝐿(𝜃) = 𝜃′′ − 𝜃,    𝐿(𝜙) = 𝜙′′ − 𝜙.                                (3.31) 

 

The auxiliary linear operators and initial guesses given above satisfy the properties listed below; 

          𝐿(𝑓)(𝐵1 + 𝐵2𝑒
𝜉 + 𝐵3𝑒

−𝜉) = 0,                                                                    (3.32) 

 

         𝐿(𝜃)(𝐵4𝑒
𝜉 + 𝐵5𝑒

−𝜉) = 0,                                                                              (3.33) 

and 

 

         𝐿(𝜙)(𝐵6𝑒
𝜉 + 𝐵7𝑒

−𝜉) = 0,                                                                                (3.34) 

 

where 𝐵𝑖(𝑖 = 1 − 7) are indicated as arbitrary constants.  

  

The problem for zeroth order can be expressed as 

 

       (1 − 𝑞)𝐿(𝑓)[𝑓(𝜉; 𝑞) − 𝑓0(𝜉)] = 𝑞ℎ𝑓𝑁𝑓[𝑓(𝜉; 𝑞)],                                             (3.35) 

 

      (1 − 𝑞)𝐿(𝜃)[�̃�(𝜉; 𝑞) − 𝜃0(𝜉)] = 𝑞ℎ𝜃𝑁𝜃[�̃�(𝜉; 𝑞), �̃�(𝜉, 𝑞), �̃�(𝜉, 𝑞)],                 (3.36) 

and 

                  (1 − 𝑞)𝐿(𝜙)[�̃�(𝜉; 𝑞) − 𝜃0(𝜉)] = 𝑞ℎ𝜃𝑁𝜃[𝑓(𝜉; 𝑞), �̃�(𝜉, 𝑞), �̃�(𝜉, 𝑞)],               (3.37) 

 

along with associated conditions: 
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𝑓(0; 𝑞) = 0,         𝑓 ′̃(0; 𝑞) = 1
 

 𝜃 ′̃(0; 𝑞) = −𝛣𝑖1 (1 − �̃�(0; 𝑞))
 

𝜙′̃(0; 𝑞) = −𝛣𝑖2 (1 − �̃�(0; 𝑞))}
 
 

 
 

                                                                        (3.38) 

and 

 

                          𝑓′̃(∞; 𝑞) = 0, �̃�(∞; 𝑞) = 0, �̃�(∞; 𝑞) = 0,                                                   (3.39) 

 

Non-linear operators are defined as; 

 

𝑁𝑓[𝑓(𝜉, 𝑞)] =
𝜕3�̃�(𝜉,𝑞)

𝜕𝜉3
+ (1 + 𝜆) (𝑓(̅𝜉, 𝑞) 

𝜕2�̃�(𝜉,𝑞)

𝜕𝜉2
) − 2(1 + 𝜆) ( 

𝜕�̃�(𝜉,𝑞)

𝜕𝜉
)
2

+

𝛽 (
3

2
(
𝜕2�̃�(𝜉,𝑞)

𝜕𝜉2
)
2

−
1

2
𝑓(̅𝜉, 𝑞)

𝜕4�̃�(𝜉,𝑞)

𝜕𝜉4
+
𝜕�̃�(𝜉,𝑞)

𝜕𝜉

𝜕3�̃�(𝜉,𝑞)

𝜕𝜉3
) − (1 + 𝜆)𝑀 

𝜕�̃�(𝜉,𝑞)

𝜕𝜉
  ,                          (3.40) 

 

𝑁𝜃[�̃�(𝜉, 𝑞), 𝑓(𝜉, 𝑞), �̃�(𝜉, 𝑞)] = (1 + 𝜆) (1 +
4

3
𝑅𝑑)

𝜕2�̃�(𝜉,𝑞)

𝜕𝜉2
+ (1 + 𝜆)𝑃𝑟𝑁𝑏

𝜕�̃�(𝜉,𝑞)

𝜕𝜉

𝜕�̃�(𝜉,𝑞)

𝜕𝜉
(1 +

𝜆) Pr(
𝜕�̃�(𝜉,𝑞)

𝜕𝜉
𝑓(𝜉, 𝑞) − 𝐴

𝜕�̃�(𝜉,𝑞)

𝜕𝜉
�̃�(𝜉, 𝑞)) + (1 + 𝜆)𝑃𝑟𝑁𝑡 ( 

𝜕�̃�(𝜉,𝑞)

𝜕𝜉
)
2

+ 𝑃𝑟𝐸𝑐 ( 
𝜕2�̃�(𝜉,𝑞)

𝜕𝜉2
)
2

+

𝑃𝑟𝐸𝑐𝛽

2
(3

𝜕�̃�(𝜉,𝑞)

𝜕𝜉

𝜕2�̃�(𝜉,𝑞)

𝜕𝜉2
− 𝑓(𝜉, 𝑞)

𝜕2�̃�(𝜉,𝑞)

𝜕𝜉2
) ,                                                                             (3.41)     

and 

𝑁𝜙[�̃�(𝜉, 𝑞), 𝑓(𝜉, 𝑞), �̃�(𝜉, 𝑞)] =
𝜕2�̃�(𝜉,𝑞)

𝜕𝜉2
+ 𝑃𝑟𝐿𝑒 (𝑓(𝜉, 𝑞)

𝜕�̃�(𝜉,𝑞)

𝜕𝜉
− 𝐵

𝜕�̃�(𝜉,𝑞)

𝜕𝜉
�̃�(𝜉, 𝑞)) +

𝑁𝑡

𝑁𝑏

𝜕2�̃�(𝜉,𝑞)

𝜕𝜉2
  ,                                                                                                                                (3.42) 

 

where 𝑁𝜙, 𝑁𝜃 and 𝑁𝑓 are nonlinear operators and ℎ𝜙, ℎ𝜃 and ℎ𝑓 are non-zero associated 

parameters, an embedding parameter 𝑞𝜖 [0, 1]. By putting values of 𝑞 = 0 and 𝑞 = 1. we get, 

 

                                          

𝑓(𝜉; 0) = 𝑓0(𝜉), �̃�(𝜉; 0) = 𝜙0(𝜉)
 

�̃�(𝜉; 0) = 𝜃0(𝜉), 𝑓(𝜉; 1) = 𝑓(𝜉) 
 

 �̃�(𝜉; 1) = 𝜙(𝜉), �̃�(𝜉; 1) = 𝜃(𝜉)  }
 
 

 
 

                                         (3.43) 

 

By applying Taylor series expansion on 𝑓(𝜉, 𝑞), 𝜃(𝜉, 𝑞) and 𝜙(𝜉, 𝑞), we get: 
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                               𝑓(𝜉, 𝑞) = 𝑓0(𝜉) + ∑ 𝑓𝑚
∞
𝑚=1 (𝜉)𝑞𝑚,                                                    (3.44) 

 

                               𝜃(𝜉, 𝑞) = 𝜃0(𝜉) + ∑ 𝜃𝑚
∞
𝑚=1 (𝜉)𝑞𝑚,                                                    (3.45) 

 

                               𝜙(𝜉, 𝑞) = 𝜙0(𝜉) + ∑ 𝜙𝑚
∞
𝑚=1 (𝜉)𝑞𝑚,                                                 (3.46) 

 

and 

                                          

𝑓𝑚(𝜉) =
1

𝑚!

𝜕𝑚𝑓(𝜉;𝑞)

𝜕𝜉𝑚
|
𝑞=0 

 

𝜃𝑚(𝜉) =
1

𝑚!

𝜕𝑚𝜃(𝜉;𝑞)

𝜕𝜉𝑚
|
𝑞=0 

 

𝜙𝑚(𝜉) =
1

𝑚!

𝜕𝑚𝜙(𝜉;𝑞)

𝜕𝜉𝑚
|
𝑞=0

  
}
 
 
 
 

 
 
 
 

                                                      (3.47) 

 

The convergence of above series highly depends upon the suitable values of  ℎ𝑓 , ℎ𝜃  and ℎ𝜙. 

Considering that ℎ𝑓 , ℎ𝜃  and ℎ𝜙 are selected properly such that (3.44) − (3.46) converge at 𝑞 =

1 and then we have                            

                               𝑓(𝜉) = 𝑓0(𝜉) + ∑ 𝑓𝑚
∞
𝑚=1 (𝜉),                                                                (3.48) 

 

                               𝜃(𝜉) = 𝜃0(𝜉) + ∑ 𝜃𝑚
∞
𝑚=1 (𝜉),                                                    (3.49) 

 

                               𝜙(𝜉) = 𝜙0(𝜉) + ∑ 𝜙𝑚
∞
𝑚=1 (𝜉),                                                  (3.50) 

 

The general form of solution can be expressed as 

                                          𝑓𝑚(𝜉) = 𝑓
∗
𝑚
(𝜉) + 𝐶1 + 𝐶2𝑒

𝜉 + 𝐶3𝑒
−𝜉                                        (3.51)   

 

                                          𝜃𝑚(𝜉) = 𝜃
∗
𝑚(𝜉) + 𝐶4𝑒

𝜉 + 𝐶5𝑒
−𝜉                                              (3.52) 

 

                                          𝜙𝑚(𝜉) = 𝜙
∗
𝑚
(𝜉) + 𝐶6𝑒

𝜉 + 𝐶7𝑒
−𝜉                                             (3.53) 

  

where 𝑓∗
𝑚
(𝜉),  𝜃∗𝑚(𝜉) and 𝜙∗

𝑚
(𝜉) are the unique solutions. 



29 

 

 

 

3.4 Results and discussion    

           When calculating series solutions in the homotopy analysis method, the auxiliary 

parameters ℎ𝑓 , ℎ𝜃 and ℎ𝜙  are essential. These factors are essential for regulating and ensuring 

that the series solutions converge. Convergent solutions can only be obtained by carefully 

choosing the values for these parameters. Using the 21st order of HAM approximations, we 

plotted the ℎ − curves to determine these auxiliary parameters' appropriate values. In Figure 1, 

these ℎ − curves are displayed. The ranges −0.80 ≤ ℎ𝑓  ≤ −0.10, −0.90 ≤ ℎ𝜃  ≤  −0.10, and 

−0.90 ≤ ℎ𝜙  ≤  −0.10 correspond to the appropriate values for ℎ𝑓 , ℎ𝜃 and ℎ𝜙. Variations in 

the temperature profile without dimensions 𝜃(𝜉) for various values of the magnetic parameter 

(𝑀), parameter for thermophoresis (𝑁𝑡), Parameter of Brownian motion (𝑁𝑏), Eckert number 

(𝐸𝑐), radiation parameter (𝑅𝑑), and the ratio of relaxation to retardation times 𝜆 are shown in 

Figures (3.2) − (3.8). Figure (3.2) shows that the thermal boundary layers' temperature and 

thickness increase with an increase within the relaxation to retardation time ratio. The lowest 

temperature ever measured and the thinnest layer of thermal boundary occur at  𝜆 = 0 The 

thermal boundary layer's thickening and temperature rise that have been seen can be explained 

by an increase in  𝜆, which is associated with a decrease in retardation time and an increase in 

relaxation time. Figure (3.3) displays variations in the temperature profile for various magnetic 

parameter values. It was found that when magnetic parameters increase, so do the thermal 

boundary layer's thickness and temperature. The hydrodynamic flow state is restored when 𝑀 =

0 .The Lorentz force and the magnetic parameter are related; a stronger Lorentz force is 

indicated by a higher magnetic parameter, and a weaker Lorentz force is indicated by a lower 

magnetic parameter. The temperature and thickness of the thermal boundary layer rise as a 

result of the increased Lorentz force. Greater viscous diffusivity and decreased thermal 

diffusivity are characteristics of fluids with higher Prandtl values. The thickness of the thermal 

boundary layer decreases as a result of this alteration. The thermal boundary layer thickness 

and temperature both rise with increasing thermophoresis and Brownian motion parameter 

values, as Figure (3.5) and (3.6) demonstrate. Temperature rises with the Eckert number, as 

shown in Figure (3.7), where 𝐸𝑐 = 0 denotes a situation in which viscous dissipation effects 

are nonexistent. Figure (3.8) analyzes the radiative parameter's influence on the temperature 

field. We found that raising the radiative parameter improves the temperature field. In essence, 

the fluid receives more heat from a greater radiative parameter, which raises the fluid's 

temperature. 
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              Figures (3.9) through (3.13) depict the changes in the distribution function of 

concentration 𝜙(𝜉) for various relaxation to retardation time ratio values 𝜆, Prandtl number 𝑃𝑟, 

Lewis number 𝐿𝑒, thermophoresis parameter 𝑁𝑡, and Brownian motion parameter 𝑁𝑏. Figure 

(3.9) clearly shows that the ratio of relaxation to retardation times increases with concentration 

and the corresponding boundary layer thickness; a comparison between Figures (3.2) and (3.9) 

reveals that the effects of the ratio of relaxation to retardation times on temperature and 

concentration are significantly opposite; Figure (3.10) shows that the concentration boundary 

layer thickness decreases with a larger Prandtl number. Figure (3.11) showed us that a lower 

concentration field is the result of a greater Lewis number. The Brownian diffusion coefficient, 

which falls with greater Lewis numbers, is inversely proportional to the Lewis number. Both 

the concentration and the corresponding thickness of the boundary layer fall as a result of this 

reduced Brownian diffusion coefficient. Figure (3.12) illustrates how the concentration and 

thickness of the border layer of the thermophoresis increase with increasing values of the 

parameter. The concentration peaks are notably located at 𝑁𝑡 =  1.5 and 𝜉 = 2.0. Variations in 

the concentration profile for 𝑁𝑏 = 0.1, 0.5, 0.8, 1.2  and 1.5 are shown in Figure (3.13). We 

found that concentration and the thickness of its border layer decrease as the Brownian motion 

parameter increases. Furthermore, it can be shown that the concentration level quickly reduces 

when 𝑁𝑡 =  0.1 yet, this diminution becomes minor after 𝑁𝑡 =  0.5 (refer to Figure (3.13). The 

differences in Nusselt and Sherwood numbers for various values of 𝑁𝑏 vs 𝑁𝑡 are seen in the 

figures (3.14) and (3.15). Figure (3.14) demonstrates that by increasing the value of  (𝑁𝑏) the  

Nusselt numbers decreases. Figure (3.15) shows that  the Sherwood numbers increases with the 

increase in (𝑁𝑏). 

 

               Table (3.1) provides the computed values of −𝑓′′(0), −𝜃′(0), and 𝜙′(0) for 

parameters 𝜆= 0.3,   𝛽 = 0.2,   𝑀 = 0.5,   𝑃𝑟 = 0.7,   𝐿𝑒,   𝑁𝑡 = 0.2,   𝑁𝑏 = 0.2,   𝐸𝑐 =

0.3,   𝑅𝑑 = 0.3,   𝐴 = 0.1,   𝐵 = 0.2, and ℎ𝑓 = 0.5, ℎ𝜃 = 0.5, ℎ𝜙 = 0.5.  When  ℎ𝑓 = −0.5,

ℎ𝜃  = −0.5 and ℎ𝜙 = −0.5, the sequence comes together throughout the entire area of 𝜉 see 

Table (3.1). The values of 𝑓 ′′(0) converge from the 11th order of HAM approximations for 

various values of 𝑅𝑑, 𝐸𝑐 𝑎𝑛𝑑 𝑃𝑟, Table (3.2) offers a comparison analysis of the existing fixes 

for 𝐴 = 𝐵 = 1.0 and 𝜆 = 𝑀 = 𝛽. The table shown indicates a strong correlation between our 

present findings and those of Bidin and Nazar [62], Magyari&keller [16], A Ishak [18] and E1- 

Aziz 
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Table: (3.1)   The table for [𝑚/𝑚]  solution for homotopy with varying approximation order 

when 𝜆= 0.3,   𝛽 = 0.2,   𝑀 = 0.5,   𝑃𝑟 = 0.7= 𝐿𝑒,   𝑁𝑡 = 0.2,   𝑁𝑏 = 0.2,   𝐸𝑐 = 0.3,   𝑅𝑑 =
0.3,   𝐴 = 0.1,   𝐵 = 0.2, and ℎ𝑓 = 0.5, ℎ𝜃 = 0.5, ℎ𝜙 = 0.5.  

 

 

 

 

 

 

Table: (3.2)  Comparison values of −𝜃′(0) with Bidin and Nazar [62], Magyari&keller [16], 

A Ishak [18] and E1- Aziz for different values of 𝑃𝑟 when 𝐸𝑐 = 0, 𝑅𝑑 = 0, 𝜆 = 0, 𝑀 = 0, 𝛽 =

𝑁𝑡 = 0,𝑁𝑏 = 0, 𝐴 = 1, 𝐵 = 0, 𝐿𝑒 = 0 

 

 

[𝒎 𝒎⁄ ] −𝒇′′(𝟎) −𝝓′(𝟎) −𝜽′(𝟎) 

[2/2] −1.434353 −0.3537 −0.24171 

[4/4] −1.434981 −0.2719 −0.20340 

[6/6] −1.434975 −0.3664 −0.19154 

[8/8] −1.434975 −0.2308 −0.18783 

[10/10] −1.434975 −0.2082 −0.18690 

[12/12] −1.434975 −0.2051 −0.18599 

[14/14] −1.434975 −0.2051 −0.18599 

𝑹𝒅 𝑷𝒓 𝑬𝒄 Magyari&keller 

[16] 

E1- Aziz Biddin&Nazar 

[62] 

A Ishak 

[18] 

Present 

Values 

0 1 0 −0.954782 −0.954785 −0.9548 −0.9548 −0.9547 

0 2 0     −1.4715 −1.4715 −1.4714 

0 3 0 −1.869075 −1.869072  −1.8691 −1.8690 

0 5 0 −2.500135 −2.500132   −2.5001 −2.5001 
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Figure: (3.1) Function 𝑓(𝜉), 𝜃(𝜉) and 𝜙(𝜉) for h-curve at 21st order of approximations. 

 

Figure: (3.2) Profile of dimensionless temperature 𝜃(𝜉) for various values of 𝜆. 
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Figure: (3.3)  Profile of dimensionless temperature 𝜃(𝜉) for various values of 𝑀. 

 

 

 

 

 

Figure: (3.4) Profile of dimensionless temperature 𝜃(𝜉) for distinct values of 𝑃𝑟. 
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Figure: (3.5) Profile of dimensionless temperature 𝜃(𝜉) for distinct values of 𝑁𝑡. 

 

 

 

 

 

 

Figure: (3.6) Profile of dimensionless temperature 𝜃(𝜉)  for various values of 𝑁𝑏. 
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Figure: (3.7)   Profile of dimensionless temperature 𝜃(𝜉) for distinct values of 𝐸𝑐. 

 

 

 

 

Figure: (3.8) Profile of dimensionless temperature 𝜃(𝜉) for different values of 𝑅𝑑. 
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Figure: (3.9) Profile of dimensionless concentration 𝜙(𝜉) for distinct values of 𝜆. 

 

 

 

 

 

Figure: (3.10) Profile of dimensionless concentration 𝜙(𝜉) for distinct values of 𝑃𝑟. 
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Figure: (3.11) Profile of dimensionless concentration 𝜙(𝜉) for various values of 𝐿𝑒. 

 

 

 

 

Figure: (3.12)  Profile of dimensionless concentration 𝜙(𝜉) for various values of 𝑁𝑡. 
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Figure: (3.13)  Profile of dimensionless concentration 𝜙(𝜉) for various values of 𝑁𝑏. 

 

 

 

 

 

Figure: (3.14)  Profile of  Nusselt and Sherwood numbers for different values of 𝑁𝑏 vs 𝑁𝑡. 
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Figure: (3.15)  Profile of  Nusselt and Sherwood numbers for various values of 𝑁𝑏 vs 𝑁𝑡. 
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CHAPTER 4  

PARAMETRIC INVESTIGATION OF ENTROPY 

PRODUCTION IN JEFFREY NANOFLUID PAST ON 

EXPONENTIAL STRETCHABLE SURFACE WITH 

CONVECTIVE CONDITIONS 

 

4.1 Introduction 

           This study explores the two dimensional, steady and incompressible flow through an 

exponentially extending surface of Jeffrey nanofluid with convective conditions. The effects of 

Joule dissipation, viscous and thermal radiation will be taken into account. A similarity 

transformation is used to convert partial differential equation into ordinary differential equation. 

Solutions will be obtained analytically by using Homotopy analysis method. The collected 

results' profiles for temperature, concentration, and velocity are displayed visually. 

Furthermore, the effects of different parameters are discovered for the Nusselt number and skin 

friction, entropy generation and averaged entropy number.  

 

 

Figure: (4)   Geometry of the problem. 

𝑩𝟎 

𝒖 = 𝒖𝟎𝒆
𝒙/𝒍 
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4.2 Mathematical formulation  

          The two-dimensional steady, incompressible Jeffrey's nanofluid flow on an exponential 

stretching sheet is taken under consideration as well as applying a normal magnetic field to the 

flow. The analysis takes into account the effect of viscous dissipation, which transforms kinetic 

energy into thermal energy. In addition, thermal radiation is considered, which impacts the 

fluid's heat transfer process. The surface extends within the in the y path, with the surface 

velocity indicated as 𝑢 = 𝑢𝑤 = 𝑢0𝑒
𝑥/𝑙, the surface temperature −𝑘

𝜕𝑇

𝜕𝑦
= ℎ1[𝑇𝑓 − 𝑇] and the 

surface concentration is −𝐷
𝜕𝐶

𝜕𝑦
= ℎ2[𝐶𝑓 − 𝐶] at 𝑦 = 0 and 𝑢 → 0, 𝑇 → 𝑇∞, 𝐶 → 𝐶∞ as  𝑦 →

∞. The generation of entropy inside the system is the main subject of the research. The goal is 

to find out how various parameters impact the Jeffrey nanofluid system's entropy production. 

 

The prescribed velocity pattern of the boundary layer flow is described as follows. 

 

                                    𝑽 =  [𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦), 0].                                                       (4.1) 

 

The constitutive equation for an incompressible Jeffrey fluid is defined below, 

                                   𝝉 = −𝑝𝑰 + 𝑺,                                                                                 (4.2) 

 

and 

 

                                  𝑺 =
𝜇

1+𝜆
[𝑨𝟏 + 𝜆1 (

𝜕𝑨𝟏

𝜕𝑡
+ 𝑽.𝜵)𝑨𝟏],                                                 (4.3) 

 

where 𝝉 represent the Cauchy stress tensor, 𝑨𝟏 is the first Rivlin-Ericksen tensor, 𝑺 denotes the 

extra stress tensor, I is the identity tensor, 𝜆 and 𝜆1 are Jeffrey fluid's material parameters, which 

is given by: 

 

                                                       𝑨𝟏 = 𝑳 + 𝑳𝑇,                                                                            (4.4) 

 

 

 



42 

 

 

           𝑳 = 𝑔𝑟𝑎𝑑𝑽 =

[
 
 
 
𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦
0

𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦
0

0 0 0]
 
 
 

   and   𝑳𝑇 = (𝑔𝑟𝑎𝑑𝑽)𝑇 = [

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑥
0

𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑦
0

0 0 0

],                           

 

 

                 𝝉𝑥𝑥 = −𝑝 + [2
𝜕𝑢

𝜕𝑥
+ 𝜆1 (2𝑢

𝜕2𝑢

𝜕𝑥2
+ 2𝑣

𝜕2𝑣

𝜕𝑥𝜕𝑦
)]

𝜇

1+𝜆
,                                  (4.5) 

 

                𝝉𝑦𝑦 = −𝑝 + [
2𝜕𝑣

𝜕𝑦
+ 𝜆12𝑢

𝜕2𝑣

𝜕𝑥𝜕𝑦
+ 2𝑣

𝜕2𝑣

𝜕𝑦2
]
𝜇

1+𝜆
      ,                                               (4.6) 

and 

 

                 𝑑𝑖𝑣𝒒 = −𝑘 (
𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
) .                                                                               (4.7) 

 

The governing equation of flow are given below; 

 

Continuity equation 

 

                                        
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 ,                                                                                    (4.8) 

 

 

Momentum equation 

 

 𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
=

𝜈

1+𝜆
(
𝜕2𝑢

𝜕𝑦2
+ 𝜆1 (

𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝑢

𝜕3𝑢

𝜕𝑥𝜕𝑦2
−
𝜕𝑢

𝜕𝑥

𝜕2𝑢

𝜕𝑦2
+ 𝑣

𝜕3𝑢

𝜕𝑦3
)) −

𝜎𝐵0
2

𝜌𝑓
𝑢,                   (4.9) 

 

 

Energy equation 

 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2
+ 𝜏 (𝐷𝐵

𝜕𝐶

𝜕𝑦

𝜕𝑇

𝜕𝑦
+

𝐷𝑇

𝑇∞
(
𝜕𝑇

𝜕𝑦
)
2

) +
𝜈

𝐶𝑝(1+𝜆)
(
𝜕𝑢

𝜕𝑦
)
2

+
𝜈𝜆1

𝐶𝑝(1+𝜆)

𝜕𝑢

𝜕𝑦

𝜕

𝜕𝑦
(𝑢

𝜕𝑢

𝜕𝑥
+

𝑣
𝜕𝑢

𝜕𝑦
) −

1

(𝜌𝐶)𝑝

𝜕𝑞𝑟

𝜕𝑦
 +

𝜎𝐵0
2

𝜌𝐶𝑝
𝑢2 ,                                                                                                                                 (4.10) 
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Concentration equation 

 

                                    𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷𝐵

𝜕2𝐶

𝜕𝑦2
+

𝐷𝑇

𝑇∞

𝜕2𝑇

𝜕𝑦2
 ,                                                                     (4.11) 

 

where 𝑢 and 𝑣 are the velocity components in the x and y directions, 𝜈 the kinematic viscosity, 

𝜆 the ratio of relaxation to retardation times, 𝜆1 the relaxation time, 𝜌𝑓 the density of fluid, 𝜎 

the Steffan-Boltzman constant, 𝛼 the thermal diffusivity, 𝜏 =
(𝜌𝑐)𝑝

(𝜌𝑐)𝑓
  the ratio of nanoparticle 

heat capacity and the base fluid heat capacity, 𝐷𝐵 the Brownian diffusion coefficient, 𝐷𝑇 the 

thermophoretic diffusion coefficient and 𝑞𝑟 the radiative heat flux. 

 

For the flow analysis under consideration, the boundary conditions are; 

 

𝑢 = 𝑈𝑤(𝑥) = 𝑈0𝑒
𝑥

𝑙 , −𝑘
𝜕𝑇

𝜕𝑦
= ℎ1[𝑇𝑓 − 𝑇], −𝐷

𝜕𝐶

𝜕𝑦
= ℎ2[𝐶𝑓 − 𝐶], 𝑣 = 0, at y=0                  (4.12)                                             

                                                   

and 

 

                          𝑢 → 0, 𝑇 → 𝑇∞, 𝐶 → 𝐶∞ when 𝑦 → ∞  .                                               (4.13)    

                   

 

In above Eqs. (4.12) and (4.13) , the ambient fluid temperature and concentration far from the 

sheet are denoted by 𝑇∞ and 𝐶∞. and 𝑇𝑓, 𝐶𝑓 are temperatures. 

 

 Using the Roseland approximation, the radiation-induced heat flow can be shown as follows: 

 

                                         𝑞𝑟  =  − 
4σ

3𝑘∗
 
∂𝑇4

∂y
  ,                                                                     (4.14) 

 

 

where 𝜎 is a representation of the Stefan-Boltzmann constant, while the letter 𝑘∗ stands for the 

absorption coefficient. The temperature is expanded as 𝑇4 about the reference temperature 𝑇∞ 

using Taylor's series to produce the following expression: 
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                                        𝑇4 = 4𝑇∞
3𝑇 − 3𝑇∞

4.                                                       (4.15) 

 

Differentiating the above Eq. (4.15) w.r.t 𝑦, 

 

                                       
𝜕𝑇4

𝜕𝑦
= 4𝑇∞

3 𝜕𝑇

𝜕𝑦
.                                                                             (4.16) 

 

and 

 

                                                   𝑞𝑟 = −
16𝜎𝑇∞

3

3𝑘∗
𝜕𝑇

𝜕𝑦
 .                                                              (4.17) 

 

By utilizing Roseland’s approximation Eq. (4.10) becomes, 

 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= (𝛼 +

16𝜎𝑇∞
3

3𝑘∗(𝜌𝑐)𝑝
)
𝜕2𝑇

𝜕𝑦2
+ 𝜏 (𝐷𝐵

𝜕𝐶

𝜕𝑦

𝜕𝑇

𝜕𝑦
+

𝐷𝑇

𝑇∞
(
𝜕𝑇

𝜕𝑦
)
2

) +
𝜈

𝐶𝑝(1+𝜆)
(
𝜕𝑢

𝜕𝑦
)
2

+

𝜈𝜆1

𝐶𝑝(1+𝜆)

𝜕𝑢

𝜕𝑦

𝜕

𝜕𝑦
(𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) +

𝜎𝐵0
2

𝜌𝐶𝑝
𝑢2,                                                                                          (4.18) 

By considering similarity transformation;  

 

                    𝑢 = 𝑈0𝑒
𝑥

𝑙𝑓′(𝜉),   𝑣 = −√
𝑣𝑈0

2𝑙
𝑒
𝑥

2𝑙(𝑓(𝜉) + 𝜉𝑓′(𝜉)),                                            (4.19)       

  

  

                             𝜉 = 𝑦√
𝑈0

2𝑣𝑙
𝑒
𝑥

2𝑙,      𝑇 = 𝑇∞ + (𝑇𝑓 − 𝑇∞)𝜃(𝜉),                                                  (4.20) 

 

and 

 

 

                                𝐶 = 𝐶∞ + (𝐶𝑓 − 𝐶∞)𝜙(𝜉)                                                                        (4.21) 
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Using above transformation (4.19)  − (4.21), the continuity equation (4.8) is identically 

satisfied. While the Eqs. (4.9) – (4.11) take the following form, 

𝑓′′′ + (1 + 𝜆)𝑓𝑓′′ − 2(1 + 𝜆)𝑓′
2
+ 𝛽 (

3

2
𝑓′′

2
−
1

2
𝑓𝑓′′′′ + 𝑓′𝑓′′′)  − 𝑀(1 + 𝜆)𝑓′ = 0,  

                                                                                                                                                 (4.22)           

(1 + 𝜆) (1 +
4

3
𝑅𝑑)𝜃′′ + (1 + 𝜆)𝑃𝑟(𝑓𝜃′ − 𝐴𝑓′𝜃) + (1 + 𝜆)𝑃𝑟𝑁𝑏𝜃′𝜙′ + 𝜙(1 +

 𝜆)𝑃𝑟𝑁𝑡𝜃′2 + 𝑃𝑟𝐸𝑐 (𝑓′′2 +
𝛽

2
𝑓′′(3𝑓′𝑓′′ − 𝑓𝑓′′′)) + 𝑃𝑟𝐸𝑐𝑀𝑓′2 = 0,                               (4.23) 

and   

  𝜙′′ + 𝑃𝑟𝐿𝑒(𝑓𝜙′ − 𝐵𝑓′𝜙) +
𝑁𝑡

𝑁𝑏
𝜃′′ = 0,                                                                              (4.24) 

 

Use of same similarity transformations (4.19)  − (4.21), to the boundary 

conditions (4.12)  and  (4.13), we obtain  

 

𝑓′(𝜉) = 1,   𝑓′(0) = 1, 𝑓(0) = −𝑣𝑤√
2𝑙

𝑣𝑢0

1

𝑒
𝑥
2𝑙⁄

 
𝜃′(0) = −𝐵𝑖1(1 − 𝜃(0)), 𝜙

′(0) = −𝐵𝑖2(1 − 𝜙(0))

}          at     𝜉 = 0                          (4.25) 

  

𝑓′ → 0, 𝜃 → 0, 𝜙 → 0    as  𝜉 → ∞,                                                                                    (4.26)                                        

where 𝛽 represents Deborah number, 𝑃𝑟 denotes the number of Prandtl, the magnetic parameter 

is M, 𝐿𝑒 is the Lewis number, 𝐸𝑐 is the Eckert number, 𝑁𝑏 is the Brownian motion parameter, 

𝑁𝑡 is the thermophoresis parameter. These parameters are presented as, 

 

                           

𝑃𝑟 =
𝜈

𝛼
, 𝑀 =

𝜎𝐵0
2𝑈𝑤

𝜌𝑓
,   𝛽 =

𝜆2𝑈0𝑒
𝑥
𝑙⁄

𝑙
,

𝐸𝑐 =
𝑢0

2𝑒
2𝑥

𝑙⁄

𝐶𝑝(𝑇𝑓−𝑇∞)
, 𝐿𝑒 =  

𝛼

𝐷𝐵
, 𝑁𝑏 =

𝜏𝐷𝐵(𝐶𝑓−𝐶∞)

𝜈
,

𝑁𝑡 =
𝜏𝐷𝑇(𝐶𝑓−𝐶∞)

𝜈𝑇∞
. }

 
 

 
 

                                                (4.27) 
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4.3     Entropy Generation 

 The local entropy generation rate per unit volume for the Jeffrey nanofluid is as follows 

𝑆𝐺 =
𝑘

𝑇∞
(
𝜕𝑇

𝜕𝑦
)
2

+
𝜇

𝑇∞(1+𝜆)
[(
𝜕𝑢

𝜕𝑦
)
2

+ 𝜆1 (𝑢
𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝑣

𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2
)] +

𝑅𝐷𝐵

𝐶∞
(
𝜕𝐶

𝜕𝑦
)
2

+
𝑅𝐷𝐵

𝑇∞

𝜕𝑇

𝜕𝑦

𝜕𝐶

𝜕𝑦
+

 +
𝜎𝐵0

2

𝑇∞
𝑢2                                                                                                                                      (4.28) 

After applying (4.19) − (4.21) and simplifying we get, 

 

𝑁𝑠 =
𝑆𝐺

𝑆𝐺0
=

𝐾(𝑇𝑓−𝑇∞)
2

𝑇∞
2𝑙2

[
𝑅𝑒

2
𝜃′2 +

𝐵𝑟𝑅𝑒

𝛺(1+𝜆)
[𝑓′′2 +

𝛽𝑓′′(3𝑓′𝑓′′−𝑓𝑓′′′)

2
]] + 𝜖

Σ2

𝛺2
𝑅𝑒

2
𝜙′2 + 𝜖

Σ

Ω

𝑅𝑒

2
𝜃′𝜙′ +

+𝑅𝑒𝐵𝑟
M

Ω
𝑓′2.                                                                                                                      (4.29)     

where 𝑆𝐺0 =
𝐾(𝑇𝑓−𝑇∞)

2

𝑇∞
2𝑙2

 .                                                                                                      (4.30)                                                                 

where 𝑆𝐺 is the Entropy generation rate, 𝑅𝑒 is the  Reynolds number and Br is the Brinkman  

number. 

The average entropy is given by; 

 

𝑁𝑠𝑎𝑣𝑔 = ∫𝑁𝑠  𝑑∀                                                                                                               (4.31) 

                    

where ∀ represents the boundary layer thickness. 

 

4.4     Solutions through homotopy analysis method 

To move further with the homotopic solutions, the preliminary estimates, and extra 

linear operators for the concentration, momentum, and energy equations selected in the manner 

described below:  

 

             𝑓0(𝜉) = 1 − 𝑒−𝜉 ,     𝜃0(𝜉) = 𝑒
−𝜉  , 𝜙0(𝜉) = 𝑒−𝜉 ,                                     (4.32) 
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and 

 

            𝐿(𝑓) = 𝑓′′′ − 𝑓′,      𝐿(𝜃) = 𝜃′′ − 𝜃,    𝐿(𝜙) = 𝜙′′ − 𝜙.                                (4.33) 

 

The above initial guesses and auxiliary linear operators satisfies the below mentioned 

properties; 

 

             𝐿(𝑓)(𝐵1 + 𝐵2𝑒
𝜉 + 𝐵3𝑒

−𝜉) = 0,                                                                   (4.34) 

 

              𝐿(𝜃)(𝐵4𝑒
𝜉 + 𝐵5𝑒

−𝜉) = 0,                                                                          (4.35) 

and 

 

             𝐿(𝜙)(𝐵6𝑒
𝜉 + 𝐵7𝑒

−𝜉) = 0,                                                                            (4.36) 

 

where 𝐵𝑖(𝑖 = 1 − 7) are indicated as arbitrary constants.  

        

The problem for zeroth order can be expressed as 

 

           (1 − 𝑞)𝐿(𝑓)[𝑓(𝜉; 𝑞) − 𝑓0(𝜉)] = 𝑞ℎ𝑓𝑁𝑓[𝑓(𝜉; 𝑞)],                                          (4.37) 

 

            (1 − 𝑞)𝐿(𝜃)[�̃�(𝜉; 𝑞) − 𝜃0(𝜉)] = 𝑞ℎ𝜃𝑁𝜃[�̃�(𝜉; 𝑞), �̃�(𝜉, 𝑞), �̃�(𝜉, 𝑞)],           (4.38) 

and 

            (1 − 𝑞)𝐿(𝜙)[�̃�(𝜉; 𝑞) − 𝜃0(𝜉)] = 𝑞ℎ𝜃𝑁𝜃[𝑓(𝜉; 𝑞), �̃�(𝜉, 𝑞), �̃�(𝜉, 𝑞)],          (4.39) 

 

along with associated conditions: 

 

 

           

𝑓(0; 𝑞) = 0,          𝑓 ′̃(0; 𝑞) = 1
 

𝜃 ′̃(0; 𝑞) = −𝛣𝑖1 (1 − �̃�(0; 𝑞))
 

 𝜙′̃(0; 𝑞) = −𝛣𝑖2 (1 − �̃�(0; 𝑞))}
 
 

 
 

                                                                       (4.40)                                                                          
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The general form of solution can be expressed as 

 

                       𝑓𝑚(𝜉) = 𝑓
∗
𝑚
(𝜉) + 𝐶1 + 𝐶2𝑒

𝜉 + 𝐶3𝑒
−𝜉                                                            (4.41)   

 

                      𝜃𝑚(𝜉) = 𝜃
∗
𝑚(𝜉) + 𝐶4𝑒

𝜉 + 𝐶5𝑒
−𝜉                                                                     (4.42) 

and 

 

                     𝜙𝑚(𝜉) = 𝜙
∗
𝑚
(𝜉) + 𝐶6𝑒

𝜉 + 𝐶7𝑒
−𝜉                                                                  (4.43) 

where 𝑓∗
𝑚
(𝜉),  𝜃∗𝑚(𝜉) and 𝜙∗

𝑚
(𝜉) are the special solutions. 
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4.5     Results and Discussion 

The auxiliary parameters ℎ𝑓 , ℎ𝜃 and ℎ𝜙 are encountered when homotopy analysis method has 

been utilized to compute the series solutions. These parameters have essential importance for 

adjusting and controlling the convergence of series solutions. The appropriate values of these 

parameters are required for the convergent solutions. Using the 21st order of HAM 

approximations, we plotted the ℎ − curves to find the proper values for these auxiliary 

parameters. In Figure (4.1), ℎ − curves are displayed and the  ranges of h-curves are −0.60 ≤

ℎ𝑓  ≤ −0.10, −0.70 ≤ ℎ𝜃  ≤  −0.10, and −0.75 ≤ ℎ𝜙  ≤  −0.10 correspond to the 

appropriate values for ℎ𝑓 , ℎ𝜃 and ℎ𝜙. By using the homotopy padé approximation on the series 

solutions obtained by the homotopy technique, the convergence rate was further enhanced. 

Table (4.1) shows the convergence of – 𝑓′′(0), −𝜃′(0) and –𝜙′(0)  when ℎ = 0.5,  𝐸𝑐 = 0.2,

𝜆 = 0.3, 𝑀 = 1, 𝑃𝑟 = 1, 𝑅𝑑 = 0.3, 𝛽 = 0.2, 𝑁𝑡 = 0.2 = 𝑁𝑏, 𝐴 = 0.1, 𝐵 = 0.2, 𝐿𝑒 = 1.  

       Variation in dimensionless velocity profile 𝑓′(𝜉) for various values of magnetic parameter 

(𝑀), Deborah number (𝛽) and the ratio of relaxation to retardation time (𝜆) are shown in 

Figures (4.2) − (4.4). Figure (4.2) shows that by increasing the value of magnetic parameter 

(𝑀) the velocity profile drops. From a physical standpoint, the magnetic field is a kind of 

external force that is projected perpendicular to the fluid's motion. It produces the Lorentz force, 

a type of resistance force that slows down the fluid's particle movement and lowers its velocity 

because the force's direction is opposite to the fluid's motion. Figure (4.3) shows that by 

increasing the value of relaxation to retardation time (𝜆) the velocity profile decreases. Figure 

(4.4) shows that as the value of Deborah number (𝛽) rises, the velocity profile does as well. 

Physically, a rise in Deborah's values corresponds to an increase in the retardation time. 

Retarding the time, on the other hand, causes the fluid's elasticity to rise and its viscosity to fall, 

which in turn causes the fluid's velocity to rise. 

 

 

       Variation in dimensionless temperature 𝜃(𝜉) for various values of  magnetic parameter 

(𝑀), Prandtl number (𝑃𝑟), ratio of relaxation to retardation time (𝜆), Eckert number (Ec), 

parameter of thermophoresis (𝑁𝑡), parameter of Brownian motion (𝑁𝑏), Deborah number (𝛽) 

and radiative parameter (𝑅𝑑) are shown in figures (4.5) − (4.12). Figure (4.5) demonstrates 

how the dimensionless temperature rises as the magnetic parameter (𝑀) increases because the 
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Lorentz force increases with a rise in the magnetic parameter's value. Figure (4.6) shows that 

by raising the Prandtl number's value (𝑃𝑟) the dimensionless temperature decreases. The 

Prandtl number is a dimensionless physical quantity that roughly represents the ratio of heat 

diffusivity to momentum diffusivity. Figure (4.7) indicates that as the value of the ratio of 

relaxation to retardation time (𝜆) grows, the dimensionless temperature also rises. Figure (4.8) 

demonstrates that the dimensionless temperature rises as the Eckert number (𝐸𝑐) grows. 

Measured by the Eckert number, the kinetic energy of the flow in relation to the enthalpy 

differential across the thermal boundary layer. It is used to characterize heat dissipation in fast 

speeds flows where viscosity of dissipation is significant. Figure (4.9) indicates that as the 

thermophoresis parameter (𝑁𝑡) is increased, dimensionless temperature rises as well. Figure 

(4.10) demonstrates that when the value of the Brownian motion parameter (𝑁𝑏) rises, 

dimensionless temperature does as well. Figure (4.11) indicates that by increasing the value of  

Deborah number (𝛽) the dimensionless temperature decreases. A material's ability to adapt to 

applied stresses and deformations is measured by its Deborah number, which is the ratio of the 

relaxation time. Deborah number and viscosity characteristic are closely correlated; a higher 

Deborah number indicates a higher fluid viscosity, that consequently results in a decrease in the 

temperature distribution. Figure (4.12) demonstrates how the dimensionless temperature rises 

as the radiative parameter (𝑅𝑑)  value increases.  

 

 

Variation in dimensionless concentration 𝜙(𝜉) for various values of  magnetic 

parameter (𝑀), Prandtl number (𝑃𝑟), ratio of relaxation to retardation time (𝜆), Eckert number 

(Ec), parameter of thermophoresis (𝑁𝑡), parameter of Brownian motion (𝑁𝑏), Deborah number 

(𝛽) and Lewis number (𝐿𝑒) are shown in figures (4.13) − (4.20). Figure (4.13) illustrates 

that as the magnetic parameter (𝑀) grows, the dimensionless concentration does as well. The 

dimensionless concentration rises when the magnetic field gets stronger and the Lorentz force 

increases. Figure (4.14) shows that through raising the Prandtl number's value (𝑃𝑟) the 

dimensionless concentration  decreases. Figure (4.15) shows that the dimensionless 

concentration increases with an increase in the value of ratio of relaxation to retardation time 

(𝜆). Figure (4.16) shows that by increasing the value of Eckert number (𝐸𝑐) the dimensionless 

concentration decreases. Increase in the Eckert number increases viscous dissipation which 

slows down the concentration. Figure (4.17) indicates that as the thermophoresis parameter 

(𝑁𝑡) is increased, dimensionless concentration rises as well. Figure (4.18) shows that the 
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dimensionless concentration falls as the Brownian motion parameter (𝑁𝑏) increases. Figure 

(4.19) demonstrates that by raising the value of  Deborah number (𝛽) the dimensionless 

concentration decreases. Figure (4.20) shows that by rising the value of Lewis number (𝐿𝑒) 

the dimensionless concentration decreases. 

 

 

Impact of different values of ratio of relaxation to retardation time (𝜆) and Deborah 

number (𝛽) on skin friction (−𝑅𝑒𝑥
1

2𝐶𝑓𝑥) are shown in figures (4.21) and (4.22) when plotted 

against magnetic parameter (𝑀). Figure (4.21) shows that the skin friction enhancing with 

increase in  magnetic parameter (𝑀) and ratio of relaxation to retardation time (𝜆). Figure 

(4.22) shows that the Deborah number (𝛽) and magnetic field parameter (𝑀)  both have 

increasing effects on skin friction.  

 

 

            Impact of different values of ratio of relaxation to retardation time (𝜆), Prandtl number 

(𝑃𝑟), Eckert number (𝐸𝑐), parameter of thermophoresis (𝑁𝑡), parameter of Brownian motion 

(𝑁𝑏), Deborah number (𝛽) and of  radiative parameter (𝑅𝑑) on Nusselt number (𝑅𝑒𝑥
−1

2 𝑁𝑢𝑥) 

are shown in figures (4.23) − (4.29) when plotted against magnetic parameter (𝑀). Figure 

(4.23) shows that the Nusselt number decreases with increase in  magnetic parameter (𝑀) and 

ratio of relaxation to retardation time (𝜆). Figure (4.24) demonstrates that when the magnetic 

parameter increases, the Nusselt number drops. (𝑀). By increasing values of Prandtl number 

(𝑃𝑟) Nusselt number increases for small value of magnetic parameter (𝑀) but for higher values 

of magnetic parameter (𝑀) Nusselt number decreases. As the magnetic parameter (𝑀) and 

Eckert number (𝐸𝑐) increase, the Nusselt number decreases, as seen in Figure (4.25). The 

Nusselt number decreases when the thermophoresis parameter (𝑁𝑡) and magnetic parameter 

(𝑀) increase, as seen in Figure (4.26). Figure (4.27) shows that the Nusselt number decreases 

with increase in  magnetic parameter (𝑀) and Brownian motion parameter (𝑁𝑏). Figure (4.28) 

demonstrates that as the magnetic parameter increases, the Nusselt number rises as well. (𝑀) 

and Deborah number (𝛽). The Nusselt number rises when the radiative parameter (𝑅𝑑) and 

magnetic parameter (𝑀) increase, as seen in Figure (4.29). 
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               Impact of different values of relaxation to retardation time ratio (𝜆), Prandtl number 

(𝑃𝑟), Eckert number (𝐸𝑐), parameter of thermophoresis (𝑁𝑡), Brownian motion parameter 

(𝑁𝑏), Deborah number (𝛽) and of  Lewis number (𝐿𝑒) on Sherwood number (𝑅𝑒𝑥
−1

2 𝑆ℎ𝑥) are 

shown in figures (4.30) − (4.36) when plotted against magnetic parameter (𝑀). Figure (4.30) 

shows that the Sherwood number increases with increase in  magnetic parameter (𝑀) and ratio 

of relaxation to retardation time (𝜆). Figure (4.31) demonstrates that the Sherwood number 

rises as the Prandtl number (𝑃𝑟) and magnetic parameter (𝑀) do. As the magnetic parameter 

(𝑀) and Eckert number (𝐸𝑐) increases, the Sherwood number increases, as seen in Figure 

(4.32). The Sherwood number decreases when the thermophoresis parameter (𝑁𝑡) and 

magnetic parameter (𝑀) increases, as seen in Figure (4.33). Figure (4.34) shows that the 

Sherwood number increases with increase in  magnetic parameter (𝑀) and Brownian motion 

parameter (𝑁𝑏). Figure (4.35) indicates that as the magnetic parameter (𝑀) and Lewis number 

(𝐿𝑒)  grow, the Sherwood number increases. The Sherwood number grows when the Deborah 

number (𝛽) and magnetic parameter (𝑀) increases, as seen in Figure (4.36). 

 

 

Impact  of magnetic parameter (𝑀), ratio of relaxation to retardation time (𝜆), 

thermophoresis parameter (𝑁𝑡), Brownian motion parameter (𝑁𝑏), Deborah number (𝛽), 

group parameter  𝐵𝑟 Ω⁄  , epsilon (𝜖), Reynolds number (𝑅𝑒𝐿) and sigma  (Σ) on entropy 

generation number (𝑁𝑠) are shown in Figures (4.37) − (4.45). Figure (4.37) shows that by 

increasing the value of magnetic parameter (𝑀) the entropy generation number increases. 

Figure (4.38) shows that the entropy generation  number increases with the increase in the 

value of  ratio of relaxation to retardation time (𝜆). Figure (4.39) shows that by increasing the 

value of thermophoresis parameter (𝑁𝑡) the number of  entropy generation increases. Figure 

(4.40) demonstrates that the generation of entropy number rises as the Brownian motion 

parameter's value (𝑁𝑏) grows. Figure (4.41) indicate that by increasing the value of Deborah 

number (𝛽) the number of entropy generations rises. Figure (4.42) indicates that the number 

of entropy generation grows as the value of the group parameter rises.. Figure (4.43) reveals 

that by increasing the value of epsilon (𝜖) the number of entropy generations grows. Figure 

(4.44) demonstrates that the entropy generation  number increases with the increase in the value 

Reynolds number (𝑅𝑒𝐿). Figure (4.45) shows that by increasing the value of sigma  (Σ) the 

entropy generation number increases. 
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           Impact  of ratio of relaxation to retardation time (𝜆), radiative parameter (𝑅𝑑), Deborah 

number (𝛽), parameter of thermophoresis (𝑁𝑡), parameter of Brownian motion  (𝑁𝑏), Lewis 

number (𝐿𝑒), group parameter  𝐵𝑟 Ω⁄  ,  epsilon (𝜖), Reynolds number (𝑅𝑒𝐿) and sigma  (Σ) on  

average entropy generation number (𝑁𝑠𝑎𝑣𝑔) are shown in Figures (4.46) − (4.55) when 

plotted against magnetic parameter (𝑀). The average number of entropy generation declines 

when the ratio of relaxation to retardation time (𝜆) and magnetic parameter (M) increases, as 

seen in Figure (4.46). Figure (4.47) shows that the average entropy generation number 

increases with the increase in  radiative parameter (𝑅𝑑) and magnetic parameter (M). Figure 

(4.48) shows that the number of  average entropy generation rises with the rise in  magnetic 

parameter (𝑀) and Deborah number (𝛽). The number of  average entropy generation decreases 

when the thermophoresis parameter (𝑁𝑡) and magnetic parameter (𝑀) increase, as 

demonstrated in Figure (4.49). Figure (4.50) illustrates that the average entropy generation 

number decreases with the increase in  Brownian motion parameter (𝑁𝑏) and magnetic 

parameter (M). Figure (4.51) shows that the average entropy generation number increases with  

the increase in  Lewis number (𝐿𝑒) and magnetic parameter (𝑀). Figure (4.52) shows that as 

the group parameter and magnetic parameter (𝑀) values rise, so does the average entropy 

generation number. Figure (4.53) shows that the average entropy generation number increases 

with  the increase in epsilon (𝜖) and magnetic parameter (𝑀). Figure (4.54) demonstrates that 

when sigma (𝛴) and the magnetic parameter (𝑀) grow, so does the average entropy production 

number. Figure (4.55) indicates that when the Reynolds number (𝑅𝑒𝐿) and magnetic parameter 

(𝑀) are increased, the average  number of entropy generation  rises. 
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Table :1 the table for [𝑚/𝑚]  homotopy Padé approximation of – 𝑓′′(0), −𝜃′(0) and –𝜙′(0)  

when ℎ = 0.5,  𝐸𝑐 = 0.2, 𝜆 = 0.3, 𝑀 = 1, 𝑃𝑟 = 1, 𝑅𝑑 = 0.3, 𝛽 = 0.2, 𝑁𝑡 = 0.2 = 𝑁𝑏,

𝐴 = 0.1, 𝐵 = 0.2, 𝐿𝑒 = 1. 

 

 

[𝒎/𝒎] −𝒇′′(𝟎) −𝜽′(𝟎) −𝝓′(𝟎) 

[2/2] −1.590467 −0.25513 −0.65602 

[4 4⁄ ] −1.592591 −0.23128 −0.33534 

[6/6] −1.592578 −0.22451 −0.43064 

[8/8] −1.592578 −0.22269 −0.41798 

[10/10] −1.592578 −0.22221 −0.41603 

[12/12] −1.592578 −0.22209 −0.41542 

[14/14] −1.592578 −0.22206 −0.41524 

[16/16] −1.592578 −0.22205 −0.41520 

[18/18] −1.592578 −0.22205 −0.41519 

[20/20] −1.592578 −0.22205 −0.41519 
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Figure: (4.1)   h-curve for function 𝑓(𝜉), 𝜃(𝜉)and 𝜙(𝜉) at 21st order of approximations.  

 

 

 

Figure: (4.2) Profile of dimensionless velocity 𝑓′(𝜉) for distinct values of 𝑀. 
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Figure: (4.3)  Profile of dimensionless velocity 𝑓′(𝜉) for distinct values of 𝜆. 

 

 

 

Figure: (4.4)  Profile of dimensionless velocity 𝑓′(𝜉) for distinct values of 𝛽. 
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Figure: (4.5)   Profile of dimensionless temperature 𝜃(𝜉) for distinct values of 𝑀. 

 

 

 

Figure: (4.6)   Profile of dimensionless temperature 𝜃(𝜉) for distinct values of 𝑃𝑟. 
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Figure: (4.7)      Profile of dimensionless temperature 𝜃(𝜉) for distinct values of 𝜆. 

 

 

 

Figure: (4.8)  Profile of dimensionless temperature 𝜃(𝜉) for various values of 𝐸𝑐. 
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Figure: (4.9)   Profile of dimensionless temperature 𝜃(𝜉) for various values of 𝑁𝑡. 

 

 

Figure: (4.10)    Profile of dimensionless temperature 𝜃(𝜉) for various values of 𝑁𝑏. 
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Figure: (4.11)    Profile of dimensionless temperature 𝜃(𝜉) for distinct values of 𝛽. 

 

 

 

Figure: (4.12)   Profile of dimensionless temperature 𝜃(𝜉) for distinct values of 𝑅𝑑. 
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Figure: (4.13)    Profile of dimensionless concentration 𝜙(𝜉) for distinct values of 𝑀. 

 

 

 

 

Figure: (4.14)   Profile of dimensionless concentration 𝜙(𝜉) for different values of 𝑃𝑟. 
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Figure: (4.15)  Profile of dimensionless concentration 𝜙(𝜉) for distinct values of 𝜆. 

 

 

 

Figure: (4.16)   Profile of dimensionless concentration 𝜙(𝜉) for distinct values of 𝐸𝑐. 
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Figure: (4.17)    Profile of dimensionless concentration 𝜙(𝜉) for distinct values of 𝑁𝑡. 

 

 

 

 

Figure: (4.18)    Profile of dimensionless concentration 𝜙(𝜉) for distinct values of 𝑁𝑏. 
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Figure: (4.19)  Profile of dimensionless concentration 𝜙(𝜉) for different values of 𝛽. 

 

 

Figure: (4.20)    Profile of dimensionless concentration 𝜙(𝜉) for different values of (𝐿𝑒). 
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Figure: (4.21)   Effect of  different values of 𝜆 on skin friction when plotted against magnetic 

parameter 𝑀.  

 

 

Figure: (4.22)  Effect of  different values of 𝛽 on skin friction when plotted against magnetic 

parameter 𝑀. 
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Figure: (4.23)  Effect of  different values of 𝜆 on Nusselt number when plotted against 

magnetic parameter 𝑀. 

 

 

 

 

Figure: (4.24)   Effect of  different values of 𝑃𝑟 on Nusselt number when plotted against 

magnetic parameter 𝑀. 
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Figure: (4.25)  Effect of  different values of 𝐸𝑐 on Nusselt number when plotted against 

magnetic parameter 𝑀. 

 

 

 

 

Figure: (4.26)    Effect of  different values of 𝑁𝑡 on Nusselt number when plotted against 

magnetic parameter 𝑀. 
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Figure: (4.27)   Effect of  different values of 𝑁𝑏 on Nusselt number when plotted against   

magnetic parameter 𝑀. 

 

 

 

 

Figure: (4.28)    Effect of  different values of 𝛽 on Nusselt number when plotted against 

magnetic parameter 𝑀. 
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Figure: (4.29)  Effect of  different values of 𝑅𝑑 on Nusselt number when plotted against 

magnetic parameter 𝑀. 

 

 

 

 

Figure: (4.30)  Effect of  different values of 𝜆 on Sherwood number when plotted against 

magnetic parameter 𝑀. 
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Figure: (4.31)    Effect of  different values of 𝑃𝑟 on Sherwood number when plotted against 

magnetic parameter 𝑀. 

 

 

 

 

Figure: (4.32)  Effect of  different values of 𝐸𝑐 on Sherwood number when plotted against 

magnetic parameter 𝑀. 
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Figure: (4.33)  Effect of  different values of 𝑁𝑡 on Sherwood number when plotted against 

magnetic parameter 𝑀. 

 

 

 

 

Figure: (4.34)  Effect of  different values of 𝑁𝑏 on Sherwood number when plotted against 

magnetic parameter 𝑀. 
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Figure: (4.35)  Effect of  different values of 𝐿𝑒 on Sherwood number when plotted against 

magnetic parameter 𝑀. 

 

 

 

 

Figure: (4.36)  Effect of  different values of 𝛽 on Sherwood number when plotted against 

magnetic parameter 𝑀. 



73 

 

 

 

 

 

 

 

Figure: (4.37)   Effect of different values of magnetic parameter (𝑀) on entropy generation  

number (𝑁𝑠).   

 

 

 

 

 

Figure: (4.38)    Effect of different values of ratio of relaxation to retardation time (𝜆) on 

entropy generation  number (𝑁𝑠).   
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Figure: (4.39) Effect of different values of thermophoresis parameter (𝑁𝑡) on entropy 

generation  number (𝑁𝑠).   

 

 

 

 

 

Figure: (4.40)    Impact of different values of Brownian motion parameter (𝑁𝑏) on entropy 

generation  number (𝑁𝑠).   
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Figure: (4.41)    Impact of different values of Deborah number (𝛽) on entropy generation  

number (𝑁𝑠).   

 

 

 

 

Figure: (4.42)    Impact of different values of group parameter on entropy generation  number 

(𝑁𝑠).   
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Figure: (4.43)    Impact of different values of (𝜖) on entropy generation  number (𝑁𝑠).   

 

 

 

 

 

 

Figure: (4.44)   Impact of different values of Reynolds number (𝑅𝑒𝐿) on entropy generation  

number (𝑁𝑠).   
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Figure: (4.45)    Impact of different values of (Σ) on entropy generation  number (𝑁𝑠).   

 

 

 

 

 

Figure: (4.46)   Impact of  different values of 𝜆 on average entropy generation  number 

(𝑁𝑠𝑎𝑣𝑔) when plotted against magnetic parameter 𝑀. 
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Figure: (4.47)    Impact of  different values of 𝑅𝑑 on average entropy generation  number 

(𝑁𝑠𝑎𝑣𝑔) when plotted against magnetic parameter 𝑀. 

 

 

 

 

 

Figure: (4.48)   Impact of  different values of 𝛽 on average entropy generation  number 

(𝑁𝑠𝑎𝑣𝑔) when plotted against magnetic parameter 𝑀. 
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Figure: (4.49)   Impact of  different values of 𝑁𝑡 on average entropy generation  number 

(𝑁𝑠𝑎𝑣𝑔) when plotted against magnetic parameter 𝑀. 

 

 

 

Figure: (4.50)   Impact of  different values of 𝑁𝑏 on average entropy generation  number 

(𝑁𝑠𝑎𝑣𝑔) when plotted against magnetic parameter 𝑀. 
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Figure: (4.51) Impact of  different values of 𝐿𝑒 on average entropy generation  number 

(𝑁𝑠𝑎𝑣𝑔) when plotted against magnetic parameter 𝑀. 

 

 

 

 

Figure: (4.52)   Impact of  different values of group parameter on average entropy generation  

number (𝑁𝑠𝑎𝑣𝑔) when plotted against magnetic parameter 𝑀. 
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Figure: (4.53)   Impact of  different values of (𝜖) on average entropy generation  number 

(𝑁𝑠𝑎𝑣𝑔) when plotted against magnetic parameter 𝑀.  

 

 

 

 

Figure: (4.54) Impact of  different values of (Σ) on average entropy generation  number 

(𝑁𝑠𝑎𝑣𝑔) when plotted against magnetic parameter 𝑀.   
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Figure: (4.55)   Impact of  different values of (𝑅𝑒𝐿) on average entropy generation  number 

(𝑁𝑠𝑎𝑣𝑔) when plotted against magnetic parameter 𝑀. 
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CHAPTER: 5  

CONCLUSION AND FUTURE WORK 

In this thesis investigation about Jeffrey nanofluid has been taken into account, while the effect 

of magnetic field, Joule dissipation, viscous and thermal radiation are also considered. The 

governing equation are reduced into non-dimensional form by using similarity transformation. 

Due to non-linear nature of equation a homotopy analysis method was employed and the 

obtained results are demonstrated through graphs. 

 

 

5.1 Significant results 

The main conclusion from current work is outlined below 

 

 As the value of magnetic field increases, the velocity profile decreases but 

temperature, concentration and entropy generation increases. 

 Nusselt number, velocity profile and average entropy decreases as the value of 

relaxation to retardation time increases while temperature, concentration, skin 

friction, Sherwood number and entropy generation increases. 

 A rise in the worth of Deborah number, the velocity profile, Nusselt number, 

Sherwood number, skin friction, entropy and average entropy increases but 

temperature and concentration decreases. 

 Sherwood number increases as the value of prandlt number increases but 

temperature, concentration and Nusselt number decreases. 

 As the value of Eckert number increases, temperature and Sherwood number 

rises while the concentration and Nusselt number decreases. 
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 Temperature, concentration and entropy generation increases by increasing the 

value of thermophoresis parameter but Nusselt number, Sherwood number and 

average entropy decreases. 

 As the value of Brownian motion parameter increases, temperature, Sherwood 

number and entropy generation increases while the concentration, Nusselt 

number and average entropy decreases. 

 Temperature, Nusselt number and average entropy grows by rising the value of 

radiative parameter. 

 Concentration decreases by increasing the value of Lewis number while 

Sherwood number and average entropy increases. 

 By increasing the value of group parameter entropy and average entropy 

increases. 

 Entropy generation and average entropy increases by increasing the value of 𝜖. 

 As the value of Σ increases, entropy generation and average entropy increases. 

 Entropy generation and average entropy increases by increasing the value of 

Reynolds number. 

 The entropy effects are enhanced by the magnetic parameter M, the group 

parameter Br/Ω, and the Reynolds number, leading to a rise in the local entropy 

generation number Ns. 

 

 

5.2 Future Work  

            With convective boundary conditions, the paper offers a thorough examination of 

entropy formation in Jeffrey nanofluid flow via an exponentially stretchy surface. To improve 

our comprehension and use of this subject, there are still a few unexplored areas for future 

investigation, including: 

 To gain a deeper comprehension of intricate fluid dynamics and heat transfer 

phenomena, there is potential for future study to extend the analysis to three-

dimensional flows. 
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 Examining non-Newtonian fluid models other than the Jeffrey model can provide 

information on how different complicated fluids behave in comparable situations. 

 Expanding the research to encompass the movement through porous materials may 

prove advantageous for uses in increased oil recovery, filtering procedures, and the 

extraction of geothermal energy. 

 A customized nanofluid formulation for a given application can be achieved by 

analyzing how various nanoparticle sizes and concentrations affect entropy production 

and heat transfer performance. 
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