
i 
 

Analysis of Peristaltic Eyring-Powell Fluid with an 

Inclined Magnetic Field in a non-Uniform Porous 

Channel 

 

 

 

 

 
BY 

SARA JABEEN  
 

 

 

 

 

 

 

 

 

 

 

 

NATIONAL UNIVERSITY OF MODERN LANGUAGES 

ISLAMABAD 
AUGUST 2024 



ii 
 

 

Analysis of Peristaltic Eyring-Powell Fluid with an Inclined 

Magnetic Field in a non-Uniform Porous Channel 

 

 

 

 
BY 

SARA JABEEN 

MS MATH, NATIONAL UNIVERSTY OF MODERN LANGUAGES ISALMABAD 2024 

 

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF 

 

 

MASTER OF SCIENCE 

In MATHEMATICS 

 

 
TO 

FACULTY OF ENGINEERING AND COMPUTING 
 

 

 

 

 

 

 

 

 

 

NATIONAL UNIVERSITY OF MODERN LANGUAGES ISLAMABD 

© Sara Jabeen 2024 



iii 
 

 

 

THESIS AND DEFENSE APPROVAL FORM 

 

 
The undersigned certify that they have read the following thesis, examined the defense, 

are satisfied with overall exam performance, and recommend the thesis to the Faculty of 

Engineering and Computing for acceptance. 

 

 

Thesis Title: Analysis of Peristaltic Eyring-Powell Fluid with an Inclined Magnetic Field in a non-

Uniform Porous Channel 

 

Submitted By: Sara Jabeen 
 

Registration #: 66 MS/MATH/F22 

 
Master of Science in Mathematics (MS Math)  

 

Title of the Degree  

 
Mathematics  

 

Name of Discipline  

 

Dr. Hadia Tariq  
 

   
Name of Research Supervisor Signature of Research Supervisor 

 

 

 

Dr. Sadia Riaz  
 

   
Name of HOD (Math) 

Signature of HOD (Math) 

 

Dr. Noman Malik     
Name of Dean (FEC) Signature of Dean (FEC) 

 

 

Date: 6𝑡ℎ August, 2024 



iv 
 

 

 

 

AUTHOR’S DECLARATION 

 

 

 
I Sara Jabeen 

Daughter of Nasir Ali 

 Registration # 66 MS/Math/F22 

Discipline Mathematics 

Candidate of Master of Science in Mathematics (MS MATH) at the National University of 

Modern Languages do hereby declare that the thesis Analysis of Peristaltic Eyring-Powell fluid 

with Inclined Magnetic Field in a Non-Uniform Porous Channel submitted by me in partial 

fulfillment of MS Math degree, is my original work, and has not been submitted or published 

earlier. I also solemnly declare that it shall not, in future, be submitted by me for obtaining any 

other degree from this or any other university or institution. I also understand that if evidence of 

plagiarism is found in my thesis/dissertation at any stage, even after the award of a degree, the 

work may be cancelled and the degree revoked. 

 

 

 

 

 

 

Signature of Candidate 

 

 

 

Sara Jabeen 
Name of Candidate 

 

6th August, 2024 
Date 



v 
 

 

 

 

ABSTRACT 

 
Title: Analysis of Peristaltic Eyring-Powell Fluid with an Inclined Magnetic Field in a Non-

Uniform Porous Channel 

The main focus of this thesis is to investigate the peristaltic transport of an Eyring-Powell fluid in 

a non-Uniform porous channel under an inclined magnetic field. The study also takes into 

consideration wall properties. The governing equations for the conservation of mass and 

momentum for Eyring-Powell fluid in a symmetric channel are introduced. Stream functions are 

used to reduce the number of dependent variables of governing PDEs. Perturbation method is used 

to solve these equations in order to obtain velocity and temperature profiles. The effects of diverse 

parameter on streamlines, velocity, pressure and temperature are investigated. The software 

Mathematica is used to create the graphs.



vi 

 

 

 

 

TABLE OF CONTENTS 

 

 

 
CHAPTER TITLE 

 

 

 PAGE 

 AUTHOR’S DECLARATION   iv 

 ABSTRACT  v 

 TABLE OF CONTENTS  vi 

 LIST OF FIGURES  ix 

 LIST OF SYMBOLS  xii 

 ACKNOWLEDGEMENT  xiii 

 DEDICATION  Xiv 

    

1 INTRODUCTION AND LITERATURE REVIEW  1 

 1.1 Introduction  1 

 1.2 Peristalsis  1 

 1.3 Eyring-Powell Fluid Model  3 

 1.4 Porous Medium  5 

 1.5 Magnetic Hydrodynamics  6 

 1.6 Non-Uniform Channel  8 

 1.7 Contribution to thesis  9 

 1.8 Thesis Organization  9 

2 BASIC DEFINATIONS AND EQUATIONS  10 

 2.1 Fluid Mechanics  10 

 2.2 Fluid  11 

 2.3 Properties of Fluids  11 

  2.3.1 Dimensions and Units  11 

  2.3.2 Density  12 

  2.3.3 Pressure  12 

  2.3.4 Specific Heat  12 



vii 

 

 

 

  2.3.5 Thermal Conductivity  12 

  2.3.6 Heat Flux  13 

  2.3.7 Thermal Diffusivity  13 

  2.3.8 Viscous Dissipation  13 

  2.3.9 Viscosity  14 

 2.4 Newton’s law of Viscosity  14 

 2.5 Newtonian Fluids  14 

 2.6 Non-Newtonian Fluids  15 

 2.7 Navior Stocks Equation  15 

 2.8 Law of Conservation of mass  15 

 2.9 Law of Conservation of energy  15 

 2.10 Velocity Field  16 

  2.10.1 Scalar Field  16 

  2.10.2 Vector Field  16 

  2.10.3 Tensor Field  17 

 2.11 Stress  17 

  2.11.1 Cauchy Stress Tensor  17 

  2.11.2 Extra Stress Tensor  18 

 2.12 Flow  18 

  2.12.1 Stream line  18 

  2.12.2 Steady flow  18 

  2.12.3 Unsteady flow  19 

  2.12.4 Laminer flow   19 

  2.12.5 Turbulent flow  19 

  2.12.6 Uniform flow  19 

  2.12.7 Non-uniform flow  20 

  2.12.8 Compressible flow  20 

  2.12.9 Incompresssible flow  20 

 2.13 Heat Transfer  20 

  2.13.1 Conduction  21 

  2.13.2 Convection   21 

  2.13.3 Radiation  21 

 2.14 Dimensionless Numbers  21 



viii 

 

 

 

  2.14.1 Prandtl number  21 

  2.14.2 Reynold number  22 

  2.14.3 Eckert number  22 

  2.14.4 Brinkman number  22 

 2.15 Basic Equations  23 

  2.15.1 Equation of Continuity  23 

  2.15.2 Momentum Equation  23 

  2.15.3 Energy Equation  24 

 2.16 Perturbation Method  24 

3 MHD PERISTALTIC TRANSPORT OF EYRING-

POWLL FLUID WITH HEAT/MASS TRANSFER, WALL 

PROPERTIES AND SLIP CONDITIONS  

 

25 

 3.1 Introduction  25 

 3.2. Mathematical Formulations  25 

 3.3 Solution Methodology  30 

 3.3.1 Zeroth Order System and Solutions  31 

 3.3.2 First Order System and Solutions  31 

 3.4 Results and Discussion  33 

 3.5 Conclusion  48 

4 ANALYSIS OF PERISTALTIC EYRING-POWELL 

FLUID WITH AN INCLINED MAGNETIC FIELD IN A 

NON-UNIFORM POROUS CHANNEL 

 49 

 4.1 Introduction  49 

 4.2 Mathematical Formulations  50 

 4.3 Method of Solution  53 

 4.3.1 Zeroth Order System  54 

 4.3.2 First Order System  54 

 4.4 Results and Discussion  55 

5 CONCLUSION AND FUTURE WORK  69 

 5.1 Conclusion  69 

 5.2 Future Work  70 

 

REFERENCES                                        71



ix 

 

 

 

 

                                          LIST OF FIGURES 
 

 

 

 

 

 

 

 

FIGURE NO. TITLE PAGE 

3.1 Variation of Eyring-Powell fluid parameter A on 

streamlines 

35 

3.2 Variation of Eyring-Powell fluid parameter B on 

streamlines 

35 

3.3 Variation of Magnetic parameter M on streamlines 36 

3.4 Variation of amplitude ratio 𝛽1 on streamlines 36 

3.5 Variation of compliant wall properties on streamlines 37 

3.6 Variation of Eyring-Powell fluid parameter A on 

velocity field 

38 

3.7 Variation of Eyring-Powell fluid parameter B on 

velocity field 

38 

3.8 Variation of Magnetic parameter M on velocity field 39 

3.9 Variation of amplitude ratio 𝛽1  on velocity field 39 

3.10 Variation of wall properties  on velocity field 40 

3.11    Variation of Eyring-Powell fluid parameter A on  

Temperature field 

40 

3.12 Variation of Eyring-Powell fluid parameter B on  

Temperature field 

41 



x 

 

 

 

 

3.13 Variation of Magnetic parameter M on  

Temperature field 

41 

3.14 Variation of amplitude ratio 𝛽1  on  

Temperature field 

42 

3.15 Variation of amplitude ratio 𝛽2  on  

Temperature field 

42 

3.16 Variation of Brinkman number Br on  

Temperature field 

43 

3.17 Variation of wall properties  on  

Temperature field 

43 

3.18 Variation of Eyring-Powell fluid parameter A on  

Concentration field 

44 

3.19 Variation of Eyring-Powell fluid parameter B on  

Concentration field 

44 

3.20 Variation of Magnetic parameter M on  

Concentration field 

45 

3.21 Variation of amplitude ratio 𝛽1 on  

Concentration field 

45 

3.22 Variation of amplitude ratio 𝛽3 on  

Concentration field 

46 

3.23 Variation of Brinkman number Br on  

Concentration field 

46 

3.24 Variation of Schmidt number Sc on  

Concentration field 

47 

3.25 Variation of Wall properties on  

Concentration field 

47 

4.1 Geometry of Problem 49 

4.2 Effect of Eyring-Powell fluid parameter A on streamlines 58 

4.3 Effect of Eyring-Powell fluid parameter B on streamlines 58 

4.4 Effect of Magnetic parameter M on streamlines 59 

4.5 Effect of Porous parameter k on streamlines 59 

4.6 Effect of inclined parameter 𝛽 on streamlines 60 

4.7 Effect of wall properties on streamlines 60 



xi 

 

 

 

 

4.8 Effect of Eyring-Powell fluid parameter A on 

velocity profile 
61 

4.9 Effect of Eyring-Powell fluid parameter B on 

velocity profile 
61 

4.10 Effect of Magnetic parameter M on velocity 

profile 
62 

4.11 Effect of Porosity parameter k on velocity 

profile 
62 

4.12 Effect of Inclined parameter 𝛽 on velocity 

profile 
63 

4.13 Effect of Non-uniform parameter m on velocity 

profile 
63 

4.14 Effect of Wall properties on velocity profile 64 

4.15 Effect of Eyring-Powell fluid parameter A on 

temperature profile 
64 

4.16 Effect of Eyring-Powell fluid parameter B on 

temperature profile 
65 

4.17 Effect of Magnetic parameter M on temperature 

profile 
65 

4.18 Effect of inclined parameter 𝛽 on temperature 

profile 
66 

4.19 Effect of porosity parameter 𝑘 on temperature 

profile 
66 

4.20 Effect of Non-uniform  parameter 𝑚 on 

temperature profile 
67 

4.21 Effect of Brinkman number 𝐵𝑟 on temperature 

profile 
67 

4.22 Effect of Wall properties on temperature profile 68 



xii 
 

 

 

 

 

LIST OF SYMBOLS 
 

 

 

 
 A , B Material Derivatives 

𝜌 Density 

p Pressure 

𝜇 Viscosity 

a Width 

b Amplitude 

c Wave Speed 

𝜆 Wavelength 

 𝛽0 Applied Magnetic Field 

n Dimensional parameter 

𝜓, 𝜑 Stream Function 

𝐸1,𝐸2, 𝐸3 Wall Properties 

𝑢 Velocity of Fluid in x Direction 

v Velocity of fluid in y Direction 

𝑅𝑒 Reynold Number 

𝛼 Inclination of the Channel 

Ec             Eckert Number 

k Porosity parameter 

𝛿 Wave Number 



xiii 
 

 

 

ACKNOWLEDGMENT 

 

 

 
I want to thank and honor Allah Ta'ala for making this study possible and fruitful. Without the 

sincere support provided by numerous sources for which I would want to sincerely thank you this 

project could not have been completed. However, a lot of people helped me succeed, and I will 

always be grateful for their support. I owe a debt of gratitude to Dr. Hadia Tariq, whose counsel, 

insight, and steadfast support have been invaluable to me during this study process. I consider 

myself extremely fortunate to have had you as my mentor because your knowledge and guidance 

have been helpful. 



xiv 

 

 

 

 

 

 

 

 

DEDICATION 

 

 
This thesis is dedicated to my parents, and my teachers who always supported and taught me 

to work hard for the things that I aspire to achieve. All of them have been a source of motivation 

and strength during moments of despair and discouragement



1 
 

 

 

 

CHAPTER 1  

 

INTRODUCTION AND LITERATURE REVIEW 

1.1 Introduction 

             The study of fluid motion and the forces acting on it is the focus of fluid mechanics. Like 

all mathematical representations of the real world, fluid mechanics is predicated on a few basic 

beliefs about the materials being studied. Interestingly, the concepts of fluid mechanics are not 

limited to ordinary liquids and gases; they also apply to a wider variety of materials. If fluids can 

be thought of as continuous media, then this field aims to characterize macroscopic fluid flow 

and related phenomena. This presumption means that any fluid component with a tiny volume is 

large enough to hold a significant number of molecules. 

 

1.2 Peristalsis 

             In fluid mechanics, peristalsis can be defined as the self-propagation motion of fluids that 

relies on the wave-like action of contraction and relaxation. Peristalsis is of utmost importance in 

multiple domains of life prominently in the functioning of the human body and specific 

technological applications. Peristaltic mechanism found in digestive systems, blood circulation, 

artificial muscles, insect locomotion, environmental monitoring and pharmaceutical 

manufacturing. The mechanism of peristalsis was mathematically presented by Latham [1] who 

has investigated the theoretical and experimental results of the movement of urine through the 

ureter by using Newtonian compressible fluids. Peristalsis is mostly studied in non-Newtonian 

fluids because of its wave-like motion and gradual changes in viscosity and shear stress can 
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handle these fluids in a more delicate manner.  

 

 

          Later, Shapiro et al. [2] conducted research on the mechanism of peristalsis in situations 

involving long wavelengths and low Reynolds numbers. Researchers use these conditions 

because low Reynolds numbers represent that inertial effects in flow are negligible and long 

wavelengths tell us pressure to be considered uniform. Rani and Sarojamma [3] investigated the 

peristaltic Casson fluid transport in a two-dimensional asymmetric channel. It also looked at the 

occurrences of reflux and entrapment in symmetric channels, with a particular emphasis on low 

Reynolds number and long-wavelength situations. The work of Burns and Parkes [4] involved 

peristaltic motion in two-dimensional and axisymmetric cases, adopting low Reynolds numbers 

and linearized boundary conditions. Bhatti et al. [5] discussed how peristaltic blood circulation 

of Ree-Eyring fluid and wall characteristics were affected by the incorporated effects of 

hydrodynamic magnetization and partial sliding. Sucharita et al. [6] investigated the analytical 

approaches for peristaltic movement and heat exchange of a Herschel-Bulkley fluid in a sloped 

non-uniform duct with wall properties. 

 

 

        Rajashekar et al. [7] analyzed the behavior of blood flow in two layers employing the 

Herschel-Bulkley fluid in an axisymmetric tube. They assessed the outcomes using long 

wavelength measurements and low Reynold numbers assumptions. The study identifies 

differences in flux, dynamics of frictional forces and increase in pressure. It was noticed that the 

Herschel-Bulkley model exhibits dissimilar behavior as comparison to alternative Newtonian and 

Power-Law models. Mansour and Abou-Zeid [8] investigated the impact of mass and heat 

transmission on Williamson fluid's peristaltic flow in the irregular  vertical tube. The temperature 

rised as the Eckert number (Ec) and Weissenberg number (We) grew, while the concentration 

follows an opposite trend. Additionally, axial velocity decreased with the rising Eckert number, 

Gasthof number, and modified Grasthof number while it increases with increasing Schmidt 

number (Sc) and Sherwood number (Sr). Baligha et al. [9] examined how Herschel-Bulkley fluid 

flow in a tube was affected by temperature and velocity slip. They discovered that frictional forces 

behave differently with temperature and that the pressure rise in a fluid under peristaltic forcing 

higher than in a fluid. Puranik et al. [10] analyzed the effects of a Newtonian fluid in peristaltic 
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flow through impermeable eccentric cylinders by using perturbation technique. They found that 

as the Grashof number rises, velocity, pressure gradient and temperature also rise in eccentric 

cylinders relative to concentric ones.  

 

1.3 Eyring-Powell Fluid Model 

2         Eyring and Powell created the Eyring-Powell fluid model in 1944. The behavior of fluid 

flows in the endoscope was studied by Akbar et al. [11] to understand the levels of shear stress 

and interaction with heating mechanisms. Although the model of Eyring-Powell fluid is 

mathematically an intricate model, however, it is favored above alternative non-Newtonian 

models primarily for two reasons. Firstly, this model is created using the liquids kinetic theory 

except from the power law model which is used in non-Newtonian fluids. Secondly, this model 

illustrates the nature of both Newtonian and non-Newtonian fluids for low and high shear rates.  

 

 

          This model can be utilized in certain circumstances to explain the viscoelastic behavior of 

polymer solutions, viscous suspension across a broad range of shear rates, molecular diffusion, 

and lubrication technology. Modeling peristaltic transport in a variety of applications requires the 

use of Eyring-Powell fluids, which exhibit shear-thinning behavior and are non-Newtonian fluids. 

Their excellent representation of the rheological characteristics of fluids subjected to peristaltic 

motion enhances biological and medical device predictions. This is crucial for the administration 

of medications, gastrointestinal functions, and prosthetic organs. Eyring-Powell fluid models help 

us better explained and conduct peristaltic transport overall. This model helps in understanding 

the fluid dynamics included in food propulsion through the digestive system, contributing to 

better insights into nutrient absorption and digestion. Qasim and Noreen [12] had examined the 

peristaltic transport of incompressible magneto hydrodynamic Eyring-Powell fluid in the planar 

channel. Khan et al. [13] looked at the way entropy formation influences a steady, non-Newtonian 

Eyring-Powell fluid in two dimensions in a permeable channel by employing homotopy analysis 

and shooting technique. It was noticed that the Bejan number had a minimum value at the top 

plate and a maximum value at the middle of the channel, and that the Eyring-Powell fluid 

characteristics limit the flow. 
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          Ahmad et al. [14] created a mathematical model for the Peristaltic Powell-Eyring      

nanomaterial and studied the transfer of mass and heat with a magnetic field. Applications of this 

paradigm include enzymatics, thermal technology, medicinal research, and cancer therapy. Iqbal 

et al. [15] analyzed the effect of various factors on  viscosity properties and peristaltic flow of 

Powell-Eyring nanofluid. The outcome revealed that changes in fluid properties, heat sources, 

and sinks increase heat transmission rates, concentration dispersion, and mass transfer rates. 

Bhattacharyya et al. [16] examined  mass transfer and heat characteristics of the Eyring-Powell 

fluid's peristaltic transit in a uniform or non-uniform conduit while taking Joule heating and wall 

flexibility into account. M.Gudekote et al. [17] investigated the peristaltic flow properties of an 

Eyring Powell fluid through  a non-uniform channel. Variable viscosity, variable heat 

conductivity, and slip were all taken into account in the research. Akbar et al. [18] discussed the 

thermodynamical analysis for dynamic Powell Eyring magneto nanofluid enhanced peristaltic 

movement with mass transfer in electroosmosis. The electro-kinetic pumping phenomena when 

combined with the peristaltic phenomenon enhances the efficiency of smart pumps for medical 

and nanotechnology applications.  

 

 

3         Nadeem et al. [19] included 𝐴𝑙2𝑂3 for the porosity (V) parameter and studied the non-

Newtonian viscoelastic Eyring Powell Nanofluid's mathematical behavior. M.Boujelbene et al. 

[20] investigated the transport of Eyring-Powell fluid peristaltically over a uniform conduit. The 

study was carried out with wall characteristics present and varied liquid properties. Akram et al. 

[21] examined that in an asymmetric channel with magnetic flux, partial slip influnces Eyring-

Powell nanofluid double diffusion convection on peristaltic flow. Choudhari et al. [22] used a 

non-Newtonian third-grade fluid to model the peristalsis process while taking into account the 

fluid's properties, electroosmosis, slip, and chemical interactions. It looked at how variations 

affect concentration, temperature, velocity, and trapping. Yasin et al. [23]  investigated the strong 

force fields while examining the effects of Slip and Hall current on MHD Eyring-Powell fluid 

transfer.  
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1.4 Porous medium 

             Materials that are porous, such as rocks or sponges, are full of microscopic voids. Water, 

air, and other materials can be contained in these areas. Filters and several other processes depend 

on them, as does groundwater flow. The analysis of fluid mechanics by using porous media is of 

significant importance in different technological fields including biological applications. Porous 

mediums are used in fluid mechanics due to their ability to change the behavior of fluid flows in 

different ways. It can enhance heat and mass transfer, reduce drag in fluid flow, used for filtration 

and separation processes. 

 

 

         Darcy [24] defined the flow rate in the porous material. He looked at the resistance factor 

caused by the porous medium’s permeability experimentally. Funmilay and Moses [25] 

investigated heat exchange by naturally occurring convection on an unstable magneto 

hydrodynamic stream of non-Newtonian fluids using a porous channel. Nazeer et al.[26] analyzed 

the thermal transportation of the Jeffrey fluid in a porous media with pliable walls and discovered 

that radiation modifies temperature profiles and lowers fluid velocity by adding thermal energy. 

M. Eldesoky et al. [27] examined the viscous Maxwell fluid's peristaltic motion in a porous media 

and found that reverse flow and net flow rate were highly influenced by physical characteristics.  

Javed et al. [28] examined how biological fluid flow in curved channels was affected by porosity. 

They discovered that sinusoidal waves boost porosity effects, increasing effectiveness and 

opening up new bioengineering possibilities for chemical processes and medication delivery 

systems. Noreen et al. [29] looked at how an inclined magnetic field affected the heat transfer 

behavior of Carreau fluids in an inclined asymmetric channel. It approximates solutions to 

complex problems by using perturbation techniques. The study reveals temperature properties 

and velocity distribution control, which was useful in the design of peristaltic pumps for non-

Newtonian physiological liquids. 

 

 

        Ahmed et al. [30] analyzed the characteristics of heat and mass transport in an asymmetric 

porous channel while a nanofluid is peristaltically flowing with the effect of magnetic and adding 

temperature-dependent viscosity. Vijayaragawan et al. [31] examined the peristaltic motion of a 

Jeffrey fluid in a permeable medium while taking into account the fluid's graphical 



6 
 

 

 

representations, velocity slip parameters, and an external magnetic field. Jagadesh et al. [32] 

studied free convective peristaltic pumping of a Casson fluid. This study reveals that increasing 

Casson and magnetic parameters enhances heat transfer rate and streamlines. 

 

 

1.5 Magnetic Hydrodynamics 

            In the domain of fluid mechanics, MHD investigates the dynamics of liquid metals, ionized 

gases and electrically conducting fluids under the influence of magnetic fields. The interaction of 

magnetic field with electrically conducting fluids create a vast domain for investigation and 

inventive advancements. Researchers use MHD to examine the diverse array of phenomena with 

applications extending from biomedical applications to space exploration. Applications for 

magnetohydrodynamic flows are many and include cancer therapy, materials processing, 

biomedical flow control, MHD energy generators, MHD drug targeting, magnetofluid rotary 

blood pumping, and separation devices. Devakar et al. [33] analyzed the effects of magneto 

hydrodynamics on peristaltic movement of couple stress fluid by using two concentric inclined 

channels, one in endoscope and other has traveling down its wall. It was observed that the 

magnetic push opposes the flow, and the peristaltic flow's pumping rate increases as the tube 

moves from horizontal to vertical. Khan and Rafaqat [34] explored the peristaltic flow caused by 

surface acoustic waves and its implications in geophysics and the aircraft industry, using 

magnetohydrodynamics (MHD) and heat transfer in compressible fluids. 

 

 

        Nabil T. M. El-Dabe et al. [35] examined the heat radiation and Ohmic dissipation effects 

of the MHD cyclical flow of a stable, incompressible power-law nanofluid in a non-Darcy porous 

medium.Rafiq et al. [36] discussed the activation energy’s impact, variable characteristics and 

magneto hydrodynamics on the Jeffery fluid’s peristaltic flow using porous wall channel. The 

study offered that the current analysis may be applied to investigate numerous human 

physiological systems specifically, the blood flow. Abd-Alla et al. [37] examined the impact of 

heat and mass transfer on the magneto hydrodynamic Jeffery nanofluid’s peristaltic flow through 
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inclined symmetric channels with porous media. Hayat et al. [38] looked at the MHD hybrid 

nanomaterial's peristaltic movement in an asymmetric porous channel. Convection, radiation, 

dissipation, and Hall current were all taken into account when building the analysis. Hafez et al. 

[39] explored  how heat and mass transfer affect a Casson fluid's hydro-magnetic peristaltic flow 

in a system that was inclined and rotated. Mathematica software was used in the study to examine 

numerical findings and equations. The findings indicate that while the permeability parameter 

increased the confined bolus size, velocity slip reduces it.  

 

 

        Tanveer et al. [40] examined the entropy generation phenomena that results from a 

peristaltic process on a curved surface. In this study, the effects of changing viscosity, convective 

circumstances, and MHD on the governing system of equations was used. Hussein and T.Eldabe 

[41] investigated the peristaltic flow under the effect of variable electrical conductivity along a 

vertical asymmetric channel equipped with a  third order magnetic nanofluid model immersed in 

a permiable material. J. Iqbal and F. M. Abassi [42] investigated the features of 

magnetohydrodynamics (MHD) peristaltic transport by taking into account the characteristics of 

aluminum and zinc oxide nanoparticles floating in water via an asymmetrically bent conduit. 

Magesh et al. [43] used asymmetric channels, magnetic fields, gravity, and graphical 

representations to study the peristaltic transport of an Oldroyd-B fluid in an inclined channel. 

 

 

            Tanveer and Jarral [44] looked at the effects of inclined magnetohydrodynamics (MHD) 

with slip boundary conditions in a tapered asymmetric porous channel with peristalsis. It 

displayed physical properties and generates numerical solutions using Mathematica software. In 

peristaltic flow for non-Newtonian Jeffrey fluid, the research emphasized the interaction of Joule 

heating, Darcy resistance, and tilted magnetic field effects. Y.Elmhedy et al. [45] looked at the 

impact of magnetic fields and heat transfer in peristaltic flow of a model of a Rabinowitsch fluid 

in an inclined channel. It used an incompressible Rabinowitsch fluid to study peristalsis with heat 

transmission when a magnetic field is present. Computational simulations were used in the study 

to examine flow rates as well as the effects of magnetic field and heat transfer factors.  
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1.6 Non-Uniform Channel 

             In the context of fluid dynamics, a non-uniform channel defines a conduit through which 

fluid flows, showcasing changes in shape, area and other features along its length. This variation 

in geometry tells the difference between non-uniform and uniform channels, where cross 

sectional properties remain unchanged. In Biological systems, Peristaltic motion is a common 

way of fluid conveyance. The geometry of these systems is mostly non-uniform, providing 

researchers better means to replicating fluid behavior within a biological framework. Akram et 

al. [46] analyzed the impacts of warmth and concentrated fluctuation on the non-uniform inclined 

channel peristaltic transport of nanofluids.R Shukla et al. [47] examined the influence of the 

roughness parameter on a Newtonian fluid's peristaltic movement in an irregular channel with a 

sinusoidal shape has been investigated. The flexible characteristics of the liquid, analytical 

findings for the unstable motion of a Rabinowitsch fluid were derived by C Rajashekhar et al. 

[48].  

 

 

          It is believed that the Rabinowitsch fluid flows via an inclined, non-uniform channel and 

originates in both homogeneous and heterogeneous chemical processes.Khan et al. [49] 

investigated how Double diffusive convection and an angled magnetic field in nanofluids 

influence the peristaltic pumping of fourth-grade fluid in non-uniform channels. It was observed 

that increased thermophoresis effects decreased fluid viscosity, lowering the percentage of less 

dense nanoparticles, but elevated Brownian motion increased nanoparticle density and therefore 

the nanoparticle fraction.  

 

          Ibrahim and Abou-zeid [50] examined the mixed convection magnet Nano's flow 

mechanism in Prandtl fluid, offering information for the use of drug-carrying systems in hypoxic 

tumor environments. Manjunatha et al. [51] analyzed how the Jeffery fluid’s flow in a non-

uniform conduit was affected by mass and heat transfer. Concentration profiles enhanced the 

confined bolus volume, but variable viscosity raised the temperature, velocity, and Nusselt 

number fields. 
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1.7 Contribution to thesis 

           A thorough analysis of Hina's work is included in this thesis. It investigates the effects of 

the partial slip, wall characteristics, and magnetic field on the Eyring-Powell fluid's peristaltic 

flow. Important influences of viscous dissipation are investigated in the formulation in 

mathematics. With the long wavelength and low Reynolds number conditions met, a perturbation 

solution is obtained. The computational study was performed using Mathematica software, and 

the findings will be shown graphically. 

 

1.8 Thesis Organization 

The material below provides a clear overview of the thesis' contents. 

 

Chapter 2 presents basic concepts and dimensionless parameters that are utilized to obtain 

numerical results for the flow problem. 

 

 

Chapter 3 provides the review of work done by Hina [55] which gives thorough analysis of 

the heat transmission, slip conditions, and wall properties associated with MHD peristaltic flow 

of Eyring-Powell fluid. 

 

 

 Chapter 4 extends the review work by considering the impact of inclined magnetic field on the 

Eyring-Powell fluid peristaltic motion in a non-uniform permeable medium.   

 Chapter 5 concludes by discussing the overall study project and the potential applications of 

the findings for future work. 

 In the end, all the references utilized in this research are listed.  



10 
 

 

 

 

                                    CHAPTER 2 

 

                    Basic Definitions and Concepts 

        Basic definitions and instructions are provided in this chapter to aid readers in understanding the 

analysis. 

 

2.1 Fluid mechanics 

             The study of mechanics is concerned with the influence of forces on bodies which we  

experience in both nature and technology. It has been divided into statics and dynamics. 

Stationary bodies fall under the category of statics whereas bodies in motion are concerned with 

dynamics.  The study of the effects of forces on fluids (at rest as well as in motion) is known as 

Fluid Mechanics. In multiple domains of life, fluid mechanics plays a significant role in fostering 

progress and maximizing efficiency. 

 

 

       It has been applied in such areas as designing vehicles, predicting weather patterns, 

developing flow measurement devices, the aerodynamics of large buildings, and understanding 

the behavior of biological fluids such as blood, air or synovial fluid. There are two methods to 

study fluid mechanics: Macroscopic and microscopic methods. 
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         In the microscopic approach, we study the behavior of fluids on the molecular level while 

in the macroscopic approach, we study the average behavior of fluids. Mostly, Fluid mechanics 

is supposed to describe at the macroscopic level,  [52]. 

 

 

2.2 Fluid 

          In simple words, Fluid can be defined as “any substance which can flow”. A precise 

definition of a fluid is that it is a substance that undergoes continuous deformation irrespective of 

how negligible shear stress may be. Two categories of fluids exist. Liquids have a constant 

volume and are made up of molecules that are packed relatively closely together with strong 

cohesive forces. In contrast, the molecules in gases are widely separated, have no defined volume, 

and very little cohesive force, [52].  

 

2.3   Properties of fluids 

         A system's features are referred to as its properties. A system is characterized as a group of 

objects having an established identity that interact with their environment. Here, fluid is taken to 

be a uniform, continuous substance devoid of small pores, [52]. 

 

2.3.1  Dimensions and Units 

             Dimensions are defined as the degree to which the physical quantity is expressed by 

raising the fundamental quantities. Mass, length, and time dimensions are denoted by the symbols 

[M], [L], and [T], respectively. Units are the indeterminate magnitudes that are attributed to 

dimensions.  

 

 

 



12 
 

 

 

2.3.2  Density 

       Density is a term used to express the relationship between the volume (or amount of space) 

occupied by an item or substance and its mass (or quantity of stuff it contains). Density can be 

expressed as 𝜌,  

𝜌 =
𝑚𝑎𝑠𝑠

𝑣𝑜𝑙𝑢𝑚𝑒
=

𝑚

𝑉
. 

 

 

SI unit for density is  
𝑘𝑔

𝑚3 and dimension is [𝑀𝐿−3],  [53]. 

 

2.3.3  Pressure 

        Pressure is the force that a thing applies to another. The force exerted on the item is per unit 

Area and perpendicular to its surface, [53]. P is the one who represents it.  

𝑃 =
Force

Area
=

𝐹

𝐴
. 

SI unit of pressure is  
𝑁

𝑚2  and dimension is[𝑀𝐿−1𝑇−1]. 

 

2.3.4 Specific Heat 

        Specific heat is the amount of heat energy required to increase the temperature of a substance 

by one degree for a unit mass. Constant pressure (𝐶𝑝) and constant volume (𝐶𝑣) are the two forms 

of specific temperatures, [53]. 

 

2.3.5  Thermal Conductivity 

             The capacity of a substance to transfer heat, or how well it permits heat flow under 

temperature gradients, is measured by its thermal conductivity, [53]. It is represented by 𝑘. 
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Greater values correspond to improved heat conduction. 

𝑘 =
𝑄𝐿

𝐴Δ𝑇
 , 

here Q denotes flow of heat per unit time, Cross-sectional area is represented by A and 

Δ𝑇 represents difference in temperature. Thermal conductivity’s SI unit is 
𝑘𝑔𝑚

 𝑠3𝑘
. 

 

2.3.6  Heat Flux 

             Heat flux is a measure of how much heat moves over a surface in a specific amount of 

time. It is the rate of heat transfer across a surface per unit area. It is represented by 𝑞. Watts per 

square meter (
𝑊

𝑚2) is the unit of measurement. 

2.3.7  Thermal Diffusivity 

             A fundamental feature that characterizes a fluid's capacity to transfer heat in relation to 

its capacity to store thermal energy is called thermal diffusivity. It is defined as the thermal 

conductivity (k) is divided by the the product of the specific heat capacity and fluid's density (ρ)  

at constant pressure (𝐶𝑝), represented by  α. 

𝛼 =
𝑘

𝜌𝐶𝑝
. 

 

2.3.8  Viscous Dissipation 

        In fluid mechanics, [54] the term "viscous dissipation" describes the process by which 

internal friction in a moving fluid transforms mechanical energy into heat. It results from the 

dissipation of kinetic energy caused by viscous strains brought on by fluid velocity gradients. The 

terms that indicate the rate of energy dissipation per unit volume in various directions inside the 

fluid are used to mathematically characterize this process. 
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2.3.9  Viscosity 

         Fluid resistance to flow is measured by a property called viscosity. There are two types of 

viscosity. Dynamic and Kinematic Viscosity. The reluctance of one fluid layer to slide on top of 

another is known as dynamic viscosity. The fluid's dynamic viscosity is divided to its density is 

known as kinematic viscosity, [54]. 

𝜇 represents dynamic viscosity. SI unit of dynamic viscosity is 
𝑁𝑠

𝑚2 and its dimension is 

[𝑀𝐿−1𝑇−1]. 

Kinematic viscosity is represented by 𝜈. SI unit of kinematic viscosity is 
𝑚2

𝑠
 and its dimension is 

[𝐿2𝑇−1]. 

 

 

 

2.4  Newton Law of Viscosity 

 
         It asserts that the rate of shear strain and the shear stress on a fluid elementary layer are 

exactly proportionate [53]. The viscosity coefficient is the same as the proportionality constant. 

Mathematically, it is expressed as 

 

𝜏 = 𝜇
𝑑𝑢

𝑑𝑦
, 

where 𝜏 represent shear stress, dynamic viscosity is represented by 𝜇 and 
𝑑𝑢

𝑑𝑦
 is the gradient of 

velocity perpendicular to  flow direction. 

 

 

 

2.5  Newtonian fluids 

 
       Newtonian fluids can have constant viscosity, and there is a linear and direct relationship 

between shear stress and deformation rate. Newtonian behavior is observed in fluids where 

particle interaction does not influence flow behavior. Examples are water and air [53]. 
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2.6  Non-Newtonian Fluids 

 

                Non-Newtonian fluids have variable viscosity according to their situation and stress-

deformation rate nonlinear connection, [53]. These fluids are also known as second-grade fluids. 

These fluids change their flow behavior under different conditions. Examples are toothpaste and 

ketchup. 

 

 

2.7  Navior Stocks Equation 
  

             The Navier-Stokes equations determine how fluid materials move.The flow of 

compressible and incompressible fluids is governed by a system of nonlinear partial differential 

equations. The equations have the names of the two individuals who independently created them 

during the 1800s: George Gabriel Stokes and Claude-Louis Navier. 

       Mathematically,  

𝜌 (
𝜕𝒗

𝜕𝑡
+ 𝒗. 𝛁𝒗) = −𝛁𝑝 + 𝜇𝛁2𝒗 + 𝑓, 

where, 𝜌 denotes density, 𝒗 represents velocity vector, 𝑝 be the pressure and f represents external 

force acting on a fluid,  [54]. 

 

 

 

2.8  Law of Conservation of mass 
 

              The law of mass conservation in fluid mechanics explains that the total mass of a fluid 

passing through a closed system does not change over time. According to this theory, mass can 

only change in form or be redistributed within the system—it cannot be generated or lost. When 

examining fluid flow processes, it acts as a fundamental guideline that guarantees mass continuity 

throughout the system, [52]. 

  

 

2.9  Law of Conservation of energy 
 

              According to fluid mechanics, the total energy in a closed system of moving fluid stays 
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constant throughout time. This is known as the law of conservation of energy. Although energy 

can take on several forms, such as kinetic, potential, or internal energy, its overall value never 

changes. This idea directs fluid flow investigations, making sure that energy transformations are 

taken into consideration in computations and models, [54]. 

 

 

2.10  Velocity Field 
 

          In a given space, the distribution of particle or fluid element velocities is described by a    

velocity field. Every point in the field is represented by a vector that shows the motion's direction 

and speed. Fields are crucial to several branches of physics, including as general relativity, 

quantum physics, and electromagnetic. In many branches of research and engineering, these 

mathematical domains may be utilized to represent and examine physical phenomena. There are 

three types of fields. Scalar, vector and tensor fields. 

 

 

 

2.10.1   Scalar Field 
 

           A scalar field describes the distribution of a scalar quantity by giving each point in a space 

a single numerical value. Scalar quantity is one which have only magnitude. Scalar fields are 

essential to the representation of scalar characteristics in fluid mechanics, such as temperature 

and pressure.  

 

Since they provide a thorough understanding of the distribution of these variables within a fluid. 

They support forecasts and optimizations in a variety of engineering applications by assisting in 

the analysis of fluid flow. 

 

 

 

2.10.2   Vector Field 

 
 

         A vector field shows the variation in space as well as the direction of an intrinsic property, 

such force or velocity, by assigning a vector to each point in a given region. Vector field have 

both magnitude and direction. Vector fields are important for the study of fluid mechanics 

because they allow the representation and analysis of fluid forces, velocities, and flow patterns. 
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They make it easier to comprehend fluid behavior, which helps with the design and improvement 

of technical applications like fluid flow in pipes and aerodynamics. 

 

 

2.10.3   Tensor Field 
 

          A mathematical concept called a tensor field, which gives a tensor to every point in a space, 

is frequently used to simulate and examine the distribution of physical variables in several 

dimensions. Tensor fields are used in fluid mechanics to characterize and examine intricate 

physical phenomena including fluid flow, stress, and strain. They offer a thorough depiction of 

the spatial variation and interplay of various variables inside a fluid. 

 

 

2.11  Stress 
 

             The force per unit area that fluid particles apply to a surface inside the fluid is referred to 

as stress. External pressures applied to an object within the material itself might result in stress. 

It is made up of normal stress, which operates perpendicular to the surface, and shear stress, which 

acts parallel to the surface, giving information on the distribution and influence of forces in the 

fluid. Stress is represented by 𝜎. 

𝑆𝑡𝑟𝑒𝑠𝑠 = 𝜎 =
𝐹𝑜𝑟𝑐𝑒

𝐴𝑟𝑒𝑎
. 

The SI unit of stress is 
𝑁

𝑚2, [54]. 

 

 

2.11.1   Cauchy Stress Tensor 
 

                The stress within a material at a particular position is described by the Cauchy stress 

tensor. It is essential for assessing and forecasting the mechanical behavior of materials under 

diverse circumstances and pertains to the force per unit area operating on numerous planes at that 

moment. The components of Cauchy stress tensor represents normal and shear stresses, [54]. 
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2.11.2   Extra Stress Tensor 
   

                In fluid mechanics, the extra stress tensor is especially employed to account for 

additional stress contributions caused by fluid motion, [54]. The constitutive equations that 

control the connection between stress and strain in a fluid frequently include the extra strain 

tensor. 

 

 

 

2.12  Flow 
 

              "Flow" in fluid mechanics describes the movement of a fluid, which can be either a liquid 

or a gas, [54]. Understanding fluid flow is essential to comprehending how fluids behave and 

interact with their environment. Analysis of the fluid's temperature, pressure, density, and 

velocity distributions as well as the forces and energy involved in the fluid's motion are all part 

of the study of fluid flow. 

 

 

 

2.12.1   Stream line 
 

          Imaginary lines called streamlines show the routes taken by fluid particles as they pass 

through a fluid. The direction of the fluid velocity at any given position is indicated by the tangent 

to the streamline [54]. 

 

 

 

2.12.2   Steady Flow 
   

            Fluid flow that exhibits constant velocity, pressure, and other flow rates over time is 

referred to as steady flow. Every area of the flow experiences homogeneous fluid properties and 

a steady flow rate, and the parameters of the flow are stable throughout time. An accurate estimate 

for fluid systems in equilibrium is steady flow, [54]. 
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2.12.3   Unsteady flow 
   

            Unsteady flow is the one in which properties like velocity, pressure are vary with time. It 

involves periodic fluctuations, happening throughout dynamic processes, temporary situations, 

or exogenous disruptions, comparing with steady flow when fluid characteristics stay constant 

over time, [54]. 

 

 

 

2.12.4   Laminar Flow 
   

            Laminar flow is a kind of fluid flow where the fluid moves smoothly or along predictable 

patterns. It usually occurs in small, very viscous pipelines with low fluid velocity. It is 

characterized by a constant, regular flow that is usually seen at low speeds and in circumstances 

when the fluid's viscosity outweighs the effects of inertial forces, [54]. 

 

 

 

2.12.5   Turbulent flow 
   

          According to fluid mechanics, turbulent flow is the chaotic, erratic movement of fluid 

particles characterized by variations in density, pressure, and velocity. When inertial forces 

outweigh viscosity, it often occurs at greater velocities and involves intricate vortices, eddies, and 

mixing between neighboring layers, [54]. 

 

 

2.12.6   Uniform Flow 
    

            In fluid mechanics, a fluid motion that is steady and constant with a velocity that doesn't 

change over time or across a cross-section is referred to as uniform flow. For conceptual ease, 

this condition—which assumes a constant density—is frequently employed in fluid mechanics 

investigations as a simplifying assumption. Uniform flow is appropriate for long straight lengths 

in open-channel flows with little acceleration or deceleration effects, [54]. 
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2.12.7   Non-Uniform flow 
   

                Non-uniform flow describes a situation in which the fluid's velocity changes at various 

points within the flow, either throughout the cross-sectional area or along the channel's length. 

Non-uniform flow involves variations in pressure, density, and/or velocity over time and space. 

This kind of flow is typical in natural water courses, pipes that have varying diameters, and other 

scenarios where fluid velocity is affected by friction, obstructions, or geometric changes, [54]. 

 

 

2.12.8   Compressible flow 
   

               Compressible flow refers to major variations in temperature, pressure, and density which 

impact the fluid's volume. For high-speed situations such as aerodynamics, compressibility effects 

become significant, whereas incompressible flow implies small density fluctuations. This is why this 

kind of flow is important. Understanding compressible flow is very important when examining how 

gases behave while traveling at high speeds, [52]. 

 

 

2.12.9   Incompressible flow 
  

               Incompressible flow describes the flow of a fluid in which small variations in density 

occur. The fluid's density keeps almost constant in these flows, and changes in temperature and 

pressure rarely affect the fluid's volume. Incompressible flow is frequently used to analyze low-

speed gas flows or liquid flows, which makes mathematical computations easier to understand 

and offers a helpful approximation in a variety of fluid dynamics and engineering settings, [52]. 

 

 

 

2.13  Heat Transfer 
 

         In fluid mechanics, the act of transferring thermal energy between two fluid regions a liquid 

or a gas or between a fluid and its solid boundaries is referred to as heat transfer. Numerous 

technical applications, including as the design and analysis of heat exchangers, boilers, cooling 

systems, and many other thermal systems, depend heavily on this phenomena, [53]. 

 

There are three modes of heat transfer. 
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2.13.1   Conduction 
   

               Thermal energy can move through a material or between two materials that are in direct 

contact when using this type of heat transfer, [53]. Conduction happens in fluids but is typically 

less important than in solids. For instance, heat conduction can occur across solid-fluid 

boundaries or within a fluid. 

 

 

2.13.2   Convection 
   

            Convection is the movement of fluid particles carrying heat, and can be forced by external 

sources like fans or pumps, or it can happen naturally as a result of floatability brought on by 

temperature changes.  

 

 

2.13.3 Radiation 
 

              Heat is transferred by electromagnetic waves and is known as radiation. Despite not 

needing a solid medium to propagate, fluid systems can nonetheless experience it. Thermal 

radiation is both absorbed and emitted by fluids. Radiation may become an important heat 

transmission method in some situations, such as hot regions. 

 

 

2.14  Dimensionless numbers 

 

 

 2.14.1 Prandtl number 

  

           The Prandtl number Pr, which is dimensionless in fluid mechanics, indicates how 

important thermal diffusivity is in relation to momentum diffusivity (viscosity) in a fluid. It bears 

Ludwig Prandtl's name, a German scientist and engineer. 
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Prandtl number =
kinematic viscosity

Thermal diffusitivity
, 

𝑃𝑟 =
𝜈

𝛼𝑓
=

𝜇/𝜌

𝑘/𝜌𝐶𝑝
, 

𝑃𝑟 =
𝜇𝐶𝑝

𝑘
. 

 

 

2.14.2   Reynolds number 
   

             In fluid mechanics, the Reynolds number, or Re, is a dimensionless variable that is used 

to forecast flow patterns in various fluid flow scenarios. It bears the name of Osborne Reynolds, 

an Irish physicist who first proposed the idea. The Reynolds number, which is a measure of the 

ratio of viscous to inertial forces, aids in identifying the laminar, transitional, or turbulent flow 

type inside a fluid. Viscous forces 

Reynolds number =
Inertial forces

Viscous forces
 , 

𝑅𝑒 =
𝜌𝑣2/𝐿

𝜇𝑣/𝐿
=

𝑣𝐿

𝜐
. 

 

 

 

2.14.3   Eckert number 

  

                The Eckert number (Ec) represents the ratio of kinetic energy to enthalpy change in a 

fluid flow, a dimensionless metric. It can be defined as the relationship between the fluid's kinetic 

energy and the convective heat transfer rate. The Eckert number is helpful in examining how 

kinetic energy affects heat transfer and is frequently used in research involving high-speed flows. 

𝐸𝑐 =
𝑐2

𝐶𝑝𝑇0
. 

 

 

 

2.14.4   Brinkman number 
   

                In the processing of polymers, the Brinkman number (Br) is a dimensionless quantity 

that is associated with heat transfer through a wall to a viscous fluid in motion, [54]. It bears the 
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name Henri Brinkman in honor of the Dutch mathematician and scientist. 

 

𝐵𝑟 =
𝜇𝑢2

𝑘(𝑇𝑤 − 𝑇0)
= 𝑃𝑟𝐸𝑐, 

where 𝜇, 𝑘, 𝑇𝑤, 𝑇0 are dynamic viscosity, thermal conductivity, wall temperature and bulk fluid 

temperature. 

 

 

 

2.15 Basic Equations: 

 

 

 

2.15.1   Equation of Continuity:  

 

 
                According to the continuity equation, the rate of mass flow into and out of a particular 

region, plus any buildup within the zone, must equal one another. 

Mathematically, 

∇. (𝜌𝑽) +
𝜕𝜌

𝜕𝑡
= 0. 

 

For incompressible fluids, when density remains constant. 

∇. 𝑽 = 0. 

 

 

 

2.15.2   Momentum Equation 
   

               This equation is derived from Newton 2nd law of motion. According to this equation, an 

object's net force is equal to the product of its mass and acceleration, [53].  

 

The momentum equation for an incompressible fluid can be expressed as 

𝜌
𝑑𝒗

𝑑𝑡
= 𝑑𝑖𝑣𝝉 + 𝑝𝒃. 

𝜌
𝑑𝑣

𝑑𝑡
  represents local rate of change of momentum with time. 𝑑𝑖𝑣𝜏 represents surface force and 
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𝑝𝑏 represents body force. 

 

 

2.15.3   Energy Equation 
    

            It is derived from first law of thermodynamics. This law states that “The quantity of heat 

energy introduced to a thermodynamic system less the work the system does on its surroundings 

is the increase in internal energy of the system”, [53]. 

𝜌𝐶𝑝

𝑑𝑇

𝑑𝑡
= −𝑑𝑖𝑣 𝒒 + 𝝉. 𝒍. 

𝜌𝐶𝑝
𝑑𝑇

𝑑𝑡
   represents total internal energy, −𝑑𝑖𝑣 𝒒 represents heat flux, 𝝉. 𝒍 denotes viscous 

dissipation. 

 

 

2.16  Perturbation Method 
 

             

             Perturbation method is used to estimate solutions to problems that are hard to solve 

directly. These techniques have two main applications. First, simulating real-world applications 

like high Reynolds number flow that inherently provide such a small parameter. One of the main 

reasons perturbation methods are a mainstay of applied mathematics is that this type of 

application is rather widespread.  

 

                    In addition with numerical techniques, perturbation methods are used in a second 

way. There are two main disadvantages to numerical calculation, despite the fact that computed 

solutions to a problem can be quite accurate and available for very complicated systems; 

perturbation methods can assist with both of them.  

 

                     When performing numerical computations, there is always a chance that the code is 

incorrect. One useful check is to drive one or more of the problem's physical parameters to 

extreme values and contrast the numerical outcomes with a perturbation solution calculated when 

that parameter is small (or large). 

 



25 
 

 

 

 

 

 

                                              CHAPTER 3  
 

 

 

 

MHD Peristaltic Transport of Eyring-Powell Fluid with Heat/Mass 

Transfer, Wall Properties and Slip Conditions 

 

3.1 Introduction  

           This chapter provides a detailed review of the research work done by S.Hina [55]. The 

objective of this work was to investigate the influence of mass and heat transfer occurring 

simultaneously on the peristaltic transport of Eyring-Powell fluid while taking slip effects and 

wall features into account. The problem formulation also takes into account viscous dissipation 

effects. A regular perturbation strategy is used to derive the series solutions of the generated 

differential systems. The heat transfer coefficient, stream function, temperature, axial velocity, 

and concentration are obtained, and the findings are described graphically. 

 

3.2 Mathematical Formulation 

             This paper showed how heat and mass transfer affect Eyring-Powell fluid peristaltic flow 

in a 2𝑑1 wide channel. The study takes into account the concentration slip, temperature jump 

condition, and velocity slip. The velocity is made up of two components: v is the transverse 

element in the y-direction and u is the axial element in the x-direction. The wave's shape develops 

alongside the walls:  

 

                                     𝑦∗ = ±𝜂(𝑥∗, 𝑡∗) = ± [𝑑1 + 𝑎 sin
2π

𝜆
(𝑥∗ − 𝑐𝑡∗)],                                                       (3.1) 
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where, 𝑑1 stands for the mean half of the channel's width, λ for the wavelength, c for the velocity 

of peristaltic wave, and t for the time. 

 

Shear in non-Newtonian flow is studied using the Eyring-Powell fluid model. 

 

The fluid model of Eyring-Powell has a stress tensor that is 

                    𝜏 = [𝜇 +
1

𝛽𝛾̇
sinh−1 (

1

𝑐1
𝛾̇) 𝐴1],                                                                                      (3.2) 

                 𝛾̇ = √
1

2
𝑡𝑟(𝐴1)2 ,         𝐴1 = (𝑔𝑟𝑎𝑑 𝑽) + (𝑔𝑟𝑎𝑑 𝑽)𝑇 ,                                                     (3.3) 

 

where sinh−1 can be expanded upto second order.  

               sinh−1 (
1

𝑐1
𝛾) ≅

𝛾

𝑐1 
−

𝛾3

6𝑐1
3  ,                      

𝛾5

𝑐1
5 << 1                                                                       (3.4) 

here, β and 𝑐1 are the Eyring-Powell fluid parameters, while μ is the dynamic viscosity. 

         

              grad 𝑽 = [

𝜕𝑢∗

𝜕𝑥∗

𝜕𝑢∗

𝜕𝑦∗

𝜕𝑣∗

𝜕𝑥∗

𝜕𝑣∗

𝜕𝑦∗

]           and         (𝑔𝑟𝑎𝑑 𝑽)𝑇 = [

𝜕𝑢∗

𝜕𝑥∗

𝜕𝑢∗

𝜕𝑦∗

𝜕𝑣∗

𝜕𝑥∗

𝜕𝑣∗

𝜕𝑦∗

]

𝑇

                                       (3.5) 

                                𝐴1= [
2

𝜕𝑢∗

𝜕𝑥∗

𝜕𝑢∗

𝜕𝑦∗
+

𝜕𝑣∗

𝜕𝑥∗

𝜕𝑣∗

𝜕𝑥∗ +
𝜕𝑢∗

𝜕𝑦∗ 2
𝜕𝑣∗

𝜕𝑦∗

],                                                                                       (3.6)    

                  𝛾 = √2 (
𝜕𝑢∗

𝜕𝑥∗)
2

+ (
𝜕𝑢∗

𝜕𝑦∗ +
𝜕𝑣∗

𝜕𝑥∗)
2

+ 2 (
𝜕𝑣∗

𝜕𝑦∗)
2

  .                                                                   (3.7) 

 

The components of stress tensor are 

 

𝜏𝑥∗𝑥∗ = (𝜇 +
1

𝛽𝑐1 
)

𝜕𝑢∗

𝜕𝑥∗ −
2

6𝛽𝑐1
3 [2 (

𝜕𝑢∗

𝜕𝑥∗)
3

+
𝜕𝑢∗

𝜕𝑥∗ (
𝜕𝑢∗

𝜕𝑦∗ +
𝜕𝑣∗

𝜕𝑥∗)
2

+ 2
𝜕𝑢∗

𝜕𝑥∗ (
𝜕𝑣∗

𝜕𝑦∗)
2

],                                 (3.8) 
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𝜏𝑥∗𝑦∗ = (𝜇 +
1

𝛽𝑐1
) (

𝜕𝑢∗

𝜕𝑦∗ +
𝜕𝑣∗

𝜕𝑥∗) −
1

6𝛽𝑐1
3  [2 (

𝜕𝑢∗

𝜕𝑥∗)
2

(
𝜕𝑢∗

𝜕𝑦∗ +
𝜕𝑣∗

𝜕𝑥∗) + (
𝜕𝑢∗

𝜕𝑦∗ +
𝜕𝑣∗

𝜕𝑥∗)
3

+ 2 (
𝜕𝑣∗

𝜕𝑦∗)
2

(
𝜕𝑢∗

𝜕𝑦∗ +
𝜕𝑣∗

𝜕𝑥∗)],     

                                                                                                                                                         (3.9)    

                                       

𝜏𝑦∗𝑦∗ = 2 (𝜇 +
1

𝛽𝑐1 
)

𝜕𝑣∗

𝜕𝑦∗ −
2

6𝛽𝑐1
3 [2 (

𝜕𝑣∗

𝜕𝑦∗)
3

+
𝜕𝑣

𝜕𝑦∗ (
𝜕𝑢∗

𝜕𝑦∗ +
𝜕𝑣∗

𝜕𝑥∗)
2

+ 2
𝜕𝑣∗

𝜕𝑦∗ (
𝜕𝑢∗

𝜕𝑥∗)
2

].                               (3.10) 

 

The governing equations to describe the flow problem for the fluid model Eyring-Powell is 

provided as 

 

 Equation of continuity is given as : 

 

                                               
𝜕𝑢∗

𝜕𝑥∗ +
𝜕𝑣∗

𝜕𝑦∗ = 0,                                                                                   (3.11) 

 

The x-component of momentum equation is given as 

𝜌 (
𝜕𝑢∗

𝜕𝑡∗
+ 𝑢∗

𝜕𝑢∗

𝜕𝑥∗
+ 𝑣

𝜕𝑢∗

𝜕𝑦∗
) = −

𝜕𝑝∗

𝜕𝑥∗
+ (𝜇 +

1

𝛽𝑐1 
) (

𝜕2𝑢∗

𝜕𝑥∗2 +
𝜕2𝑢∗

𝜕𝑦∗2) 

−
1

3𝛽𝑐1
3

𝜕

𝜕𝑥∗
[{2 (

𝜕𝑢∗

𝜕𝑥∗
)

2

+ 2 (
𝜕𝑣∗

𝜕𝑦∗
)

2

+ (
𝜕𝑢∗

𝜕𝑦
+

𝜕𝑣∗

𝜕𝑥∗
)

2

}
𝜕𝑢∗

𝜕𝑥∗
] 

            −
1

6𝛽𝑐1
3

𝜕

𝜕𝑦∗ [{2 (
𝜕𝑢∗

𝜕𝑥∗)
2

+ 2 (
𝜕𝑣∗

𝜕𝑦∗)
2

+ (
𝜕𝑢∗

𝜕𝑦∗ +
𝜕𝑣∗

𝜕𝑥∗)
2

} (
𝜕𝑢∗

𝜕𝑦∗ +
𝜕𝑣∗

𝜕𝑥∗)] −  𝜎𝛽0
2𝑢,                                (3.12) 

 

 

The y-component of momentum equation is as under 

𝜌 (
𝜕𝑣∗

𝜕𝑡∗
+ 𝑢∗

𝜕𝑣∗

𝜕𝑥∗
+ 𝑣∗

𝜕𝑣∗

𝜕𝑦∗
) = −

𝜕𝑝∗

𝜕𝑦∗
+ (𝜇 +

1

𝛽𝑐1 
) (

𝜕2𝑣

𝜕𝑥∗2 +
𝜕2𝑣∗

𝜕𝑦∗2) 

−
1

3𝛽𝑐1
3

𝜕

𝜕𝑦∗
[{2 (

𝜕𝑢∗

𝜕𝑥∗
)

2

+ 2 (
𝜕𝑣∗

𝜕𝑦∗
)

2

+ (
𝜕𝑢∗

𝜕𝑦∗
+

𝜕𝑣∗

𝜕𝑥∗
)

2

}
𝜕𝑣∗

𝜕𝑥∗
] 

                               −
1

6𝛽𝑐1
3

𝜕

𝜕𝑦∗ [{2 (
𝜕𝑢∗

𝜕𝑥∗)
2

+ 2 (
𝜕𝑣∗

𝜕𝑦
)

2

+ (
𝜕𝑢∗

𝜕𝑦∗ +
𝜕𝑣∗

𝜕𝑥∗)
2

+} (
𝜕𝑢∗

𝜕𝑦∗ +
𝜕𝑣∗

𝜕𝑥∗)],                  (3.13) 
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The energy equation is given as below 

𝜌𝐶𝑝 (
𝜕𝑇

𝜕𝑡∗
+ 𝑢

𝜕𝑇

𝜕𝑥∗
+ 𝑣

𝜕𝑇

𝜕𝑦∗
) = 𝑘 (

𝜕2𝑇

𝜕𝑥∗2 +
𝜕2𝑇

𝜕𝑦∗2) + (𝜇 +
1

𝛽𝑐1 
) [4 (

𝜕𝑢∗

𝜕𝑥∗
)

2

+ (
𝜕𝑢∗

𝜕𝑦∗
+

𝜕𝑣∗

𝜕𝑥∗
)

2

] 

−
2

3𝛽𝑐1
3 (

𝜕𝑢∗

𝜕𝑥∗
)

2

{2 (
𝜕𝑢∗

𝜕𝑥∗
)

2

+ 2 (
𝜕𝑣∗

𝜕𝑦∗
)

2

+ (
𝜕𝑢∗

𝜕𝑦∗
+

𝜕𝑣∗

𝜕𝑥∗
)

2

} 

                                  −
1

6𝛽𝑐1
3 (

𝜕𝑢∗

𝜕𝑦∗
+

𝜕𝑣∗

𝜕𝑥∗
)

2

{2 (
𝜕𝑢∗

𝜕𝑥∗
)

2

+ 2 (
𝜕𝑣∗

𝜕𝑦∗
)

2

+ (
𝜕𝑢∗

𝜕𝑦∗
+

𝜕𝑣∗

𝜕𝑥∗
)

2

},                           (3.14) 

 

 

And the concentration equation is described as  

                   
𝜕𝐶

𝜕𝑡∗ + 𝑢∗ 𝜕𝐶

𝜕𝑥∗ + 𝑣∗ 𝜕𝐶

𝜕𝑦∗ = 𝐷 (
𝜕2𝐶

𝜕𝑥∗2 +
𝜕2𝐶

𝜕𝑦∗2) +
𝐷𝐾𝑇

𝑇𝑚
(

𝜕2𝑇

𝜕𝑥∗2 +
𝜕2𝑇

𝜕𝑦∗2).                                     (3.15)  

 

Here 𝜌 is the density, Electrical conductivity of fluid is represented by 𝜎 , 𝛽0 represents applied 

magnetic field, 𝐶𝑝 is specific heat, D is the coefficient of mass diffusivity, 𝑇𝑚 is the mean 

temperature, 𝐾𝑇 thermal diffusion ratio, C is concentration of fluid. 

 

The boundary conditions are of the form 

𝜕

𝜕𝑥
(τ

𝜕2

𝜕𝑥∗2 + 𝑚
𝜕2

𝜕𝑡∗2 + 𝑑
𝜕

𝜕𝑡
) 𝜂 = (𝜇 +

1

𝛽𝑐1 
) (

𝜕2𝑢∗

𝜕𝑥∗2 +
𝜕2𝑢∗

𝜕𝑦∗2) − 𝜎𝛽0
2𝑢∗ −  

  𝜌 (
𝜕𝑢∗

𝜕𝑡
+ 𝑢

𝜕𝑢∗

𝜕𝑥
+  𝑣∗ 𝜕𝑢∗

𝜕𝑦∗) −
1

6𝛽𝑐1
3

𝜕

𝜕𝑦∗ [{2 (
𝜕𝑢∗

𝜕𝑥∗)
2

+ 2 (
𝜕𝑣∗

𝜕𝑦∗)
2

+ (
𝜕𝑢∗

𝜕𝑦∗ +
𝜕𝑣∗

𝜕𝑥∗)
2

} (
𝜕𝑢∗

𝜕𝑦∗ +
𝜕𝑣∗

𝜕𝑥∗)] 

−
1

3𝛽𝑐1
3

𝜕

𝜕𝑥∗ [{2 (
𝜕𝑢∗

𝜕𝑥∗)
2

+ 2 (
𝜕𝑣∗

𝜕𝑦∗)
2

+ (
𝜕𝑢∗

𝜕𝑦∗ +
𝜕𝑣∗

𝜕𝑥∗)
2

}
𝜕𝑢∗

𝜕𝑥∗] ,                                         𝑎𝑡  𝑦∗ = ±𝜂,          (3.16)                         

 

 

𝜇 ± 𝛽1 (
𝜕𝑢∗

𝜕𝑦∗ +
𝜕𝑣∗

𝜕𝑥∗) [(𝜇 +
1

𝛽𝑐1 
) −

1

6𝛽𝑐1
3 {2 (

𝜕𝑢∗

𝜕𝑥∗)
2

+ 2 (
𝜕𝑣∗

𝜕𝑦∗)
2

+ (
𝜕𝑢∗

𝜕𝑦∗ +
𝜕𝑣∗

𝜕𝑥∗)
2

} = 0]   at 𝑦∗=±𝜂,   (3.17) 

              

 𝑇 ± 𝛽2
𝜕𝑇

𝜕𝑦
= 𝑇0,   𝐶 ± 𝛽3

𝜕𝐶

𝜕𝑦
= 𝐶0          𝑎𝑡    𝑦∗ = ±𝜂,                                                                      (3.18)       
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where τ  is elastic tension, d is wall damping coefficient, m is plate mass per unit area, 𝑇0, 𝐶0   are 

temperature and concentration at walls, 𝛽1, 𝛽2, 𝛽3 are temperature, concentration and velocity 

slips. 

 

Let us now provide the stream function 𝜓∗ as 

𝑢 =
𝜕𝜓∗

𝜕𝑦∗
,         𝑣∗ = −

𝜕𝜓∗

𝜕𝑥∗
, 

 

and the dimensionless quantities are: 

𝑥 =
𝑥∗

𝜆
 , 𝑦 =

𝑦∗

𝑑1
 , 𝜓 =

𝜓∗

𝑐𝑑1
 , 𝑡 =

𝑐𝑡∗

𝜆
 , 𝑝 =

𝑝∗𝑑1
2

𝑐𝜆𝜇
 , 𝐵 =

1

𝜇𝛽𝑐1
 , 𝛿 =

𝑑1

𝜆
, 

  𝐴 =
𝐵𝑐2

2𝑑1
2𝑐1

2  , 𝑅𝑒 =
𝜌𝑐𝑑1

𝜇
, 𝜃 =

𝑇 − 𝑇0

𝑇0
 , 𝑀2 = √

𝜎

𝜇
𝛽0𝑑1, 𝑃𝑟 =

𝜇𝐶𝑃

𝜅
 , 

 𝐸𝑐 =
𝑐2

𝐶𝑝𝑇0
 , 𝐸1 = −τ

𝑑1
3

𝜆3𝜇𝑐
, 𝐸2 =

𝑚𝑐𝑑1
3

𝜆3𝜇
, 𝐸3 =

𝑑𝑑1
3

𝜆2𝜇
, 𝛽𝑖

∗ =
𝛽𝑖

𝑑1
  (𝑖 = 1 − 3) 

                               𝑆𝑐 =
𝜇

𝐷𝜌
, ∈=

𝑎

𝑑1
 𝑆𝑟 =

𝜌𝐷𝐾𝑇𝑇0

𝜇𝑇𝑚𝐶𝑜
.                                                                           (3.19)                   

 

 

         The Eyring-Powell fluid model's material parameters are B and A, Wave number is 

represented by δ, wall elastance measure 𝐸1, parameter of mass per unit area is 𝐸2, and wall 

damping value is 𝐸3.  Prandtl number (Pr), Eckert number (Ec), Schmidt (Sc), Soret (Sr), 

Reynolds (Re) are all dimensionless numbers and  temperature distribution and mass 

concentration are given by 𝜃 and φ respectively. 

 

 

          Once the stream function is introduced, the continuity equation is immediately met. First, 

we non-dimensionalize the system and then apply the lubrication approach. The rulling equations 

are reduced in following factors. 

                    
𝜕𝑝

𝜕𝑥
= (1 + 𝐵)

𝜕3𝜓

𝜕𝑦3 −
𝐴

3

𝜕

𝜕𝑦
(

𝜕2𝜓

𝜕𝑦2)
3

− 𝑀2 𝜕𝜓

𝜕𝑦
,                                                                            (3.20)      
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𝜕𝑝

𝜕𝑦
= 0,                                                                                                     (3.21) 

 

                   
1

𝑃𝑟

𝜕2𝜃

𝜕𝑦2
+ 𝐸𝑐(

𝜕2𝜓

𝜕𝑦2
)2 [(1 + 𝐵) −

𝐴

3
(

𝜕2𝜓

𝜕𝑦2
)

2

] = 0,                                                              (3.22)  

  

                                      
𝜕2𝜑

𝜕𝑦2
+ 𝑆𝑐𝑆𝑟

𝜕2𝜃

𝜕𝑦2
= 0,                                                                                       (3.23) 

 

 

and the boundary conditions are: 

 

𝜕

𝜕𝑥
(𝐸1

𝜕2

𝜕𝑥2 + 𝐸2
𝜕2

𝜕𝑡2 + 𝐸3
𝜕

𝜕𝑡
) 𝜂 = (1 + 𝐵)

𝜕3𝜓

𝜕𝑦3 −
𝐴

3

𝜕

𝜕𝑦
(

𝜕2𝜓

𝜕𝑦2)
3

− 𝑀2 𝜕𝜓

𝜕𝑦
,      𝑎𝑡 𝑦 = ±𝜂                     (3.24) 

 

 

𝜕𝜓

𝜕𝑦
± 𝛽1 [(1 + 𝐵)

𝜕2𝜓

𝜕𝑦2 −
𝐴

3
(

𝜕2𝜓

𝜕𝑦2)
3

] = 0, 𝜃 ± 𝛽2
𝜕𝜃

𝜕𝑦
= 0, 𝜑 ± 𝛽3

𝜕𝜑

𝜕𝑦
= 0  𝑎𝑡 𝑦 = ±𝜂                        (3.25) 

 

 

Combing equations (3.20) and (3.21), we get the compatibility equation  

               

                     (1 + 𝐵)
𝜕4𝜓

𝜕𝑦4 −
𝐴

3

𝜕2

𝜕𝑦2 (
𝜕2𝜓

𝜕𝑦2)
3

− 𝑀2 𝜕2𝜓

𝜕𝑦2 = 0.                                                                            (3.26)   

 

 

3.3     Solution Methodology 

               To identify the system's solution involving the small Eyring-Powell fluid perimeter A, 

use the perturbation approach. 

 

                                    𝜓 = 𝜓0 + 𝐴𝜓1 + 𝑂(𝐴)2 + ⋯,                                                                             (3.27) 
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                                   𝜃 = 𝜃0 + 𝐴𝜃1 + 𝑂(𝐴)2+…,                                                                                 (3.28) 

                                   𝜑 = 𝜑0 + 𝜑1 + 𝑂(𝐴)2+…                                                                          (3.29)                                                     

 

 

3.3.1 Zeroth Order System  

 

               

                                     (1 + 𝐵)
𝜕4𝜓0

𝜕𝑦4 − 𝑀2 𝜕2𝜓0

𝜕𝑦2 = 0,                                                                           (3.30) 

 

                                   
1

𝑃𝑟

𝜕2𝜃0

𝜕𝑦2 + 𝐸𝑐(1 + 𝐵) (
𝜕2𝜓0

𝜕𝑦2 )
2

= 0,                                                                   (3.31) 

  

                                      
𝜕2𝜑0

𝜕𝑦2 + 𝑆𝑐𝑆𝑟
𝜕2𝜃0

𝜕𝑦2 = 0,                                                                                        (3.32)                              

 

with corresponding boundary conditions: 

 

𝜕

𝜕𝑥
(𝐸1

𝜕2

𝜕𝑥2 + 𝐸2
𝜕2

𝜕𝑡2 + 𝐸3
𝜕

𝜕𝑡
) 𝜂 = (1 + 𝐵)

𝜕3𝜓0

𝜕𝑦3 −
𝐴

3

𝜕

𝜕𝑦
(

𝜕2𝜓0

𝜕𝑦2 )
3

− 𝑀2 𝜕𝜓0

𝜕𝑦
,      𝑎𝑡 𝑦 = ±𝜂             (3.33) 

 

𝜕𝜓0

𝜕𝑦
± 𝛽1(1 + 𝐵)

𝜕2𝜓0

𝜕𝑦2 = 0, 𝜃0 ± 𝛽2
𝜕𝜃0

𝜕𝑦
= 0, 𝜑0 ± 𝛽3

𝜕𝜑0

𝜕𝑦
= 0    𝑎𝑡 𝑦 = ±𝜂.                                    (3.34) 

 

3.3.3 First Order System 

                           (1 + 𝐵)
𝜕4𝜓1

𝜕𝑦4 −
1

3

𝜕2

𝜕𝑦2 (
𝜕2𝜓0

𝜕𝑦2 )
3

− 𝑀2 𝜕2𝜓1

𝜕𝑦2 = 0,                                                                   (3.35) 

 

                            
𝜕2𝜃1

𝜕𝑦2 + 2𝐵𝑟(1 + 𝐵) (
𝜕2𝜓0

𝜕𝑦2

𝜕2𝜓1

𝜕𝑦2 ) −
𝐵𝑟

3
(

𝜕2𝜓0

𝜕𝑦2 )
4

= 0,                                           (3.36)   

 

                                                 
𝜕2𝜑1

𝜕𝑦2 + 𝑆𝑐𝑆𝑟
𝜕2𝜃1

𝜕𝑦2 = 0,                                                                            (3.37) 
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   and the corresponding boundary conditions: 

                        (1 + 𝐵)
𝜕3𝜓1

𝜕𝑦3 −
1

3

𝜕

𝜕𝑦
(

𝜕2𝜓0

𝜕𝑦2 )
3

− 𝑀2 𝜕2𝜓1

𝜕𝑦2 = 0     𝑎𝑡 𝑦 = ±𝜂                                     (3.38) 

 

                        

𝜕𝜓1

𝜕𝑦
± 𝛽1 [(1 + 𝐵)

𝜕2𝜓1

𝜕𝑦2
−

1

3
(

𝜕2𝜓1

𝜕𝑦2
)

3

] = 0,  𝜃1 ± 𝛽2
𝜕 𝜃1

𝜕𝑦
= 0,

 𝜑1 ± 𝛽3
𝜕𝜑1

𝜕𝑦
= 0  𝑎𝑡 𝑦 = ±𝜂.   

}                                (3.39) 
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3.4 Results and Discussion: 

 

        The physical interpretation of parameter behavior as it relates to the velocity 𝑢, 

concentration distribution 𝜙 temperature distribution 𝜃 and stream function 𝜙 is the focus of this 

section. An intriguing phenomena known as "trapping" occurs when streamlines split and enclose 

to create a bolus that moves with the wave. The streamlines for a range of effective parameter 

values are shown in Figure 3.1–3.5. The conduct of various factors on the velocity profile u is 

plotted in Figure 3.6–3.10. To analyze the impacts of different parameters on the temperature 

distribution 𝜃, Figure 3.11–3.17 are presented. To investigate the impact of factors on the 

concentration distribution𝜙, Figure 3.18–3.25has been created.  

 

 

        The effect of the fluid parameter A on the streamlines is seen in Figures 3.1a and 3.1b. It has 

been shown that increasing A causes a rise in the quantity of circulations and the size of the 

trapped bolus. Additionally, it is discovered that the boluses in the top and bottom sides of the 

channel are comparable in size and shape. The effect of Eyring-Powell fluid parameter B on 

streamlines is shown in Figures 3.2a and 3.2b. The quantity and count of boluses seem to go up 

as B goes up for some fixed A. We can infer from Figs. 3.3a and 3.3b that the amplitude ratio 

increases the quantity and count of boluses. When M is increased, the size of the bolus and the 

quantity of circulations decrease as shown in figures 3.4a and 3.4b. Additionally, it is discovered 

that bolus vanishes for a big enough Hartman number M. Figures 3.5a–3.5d demonstrate the 

influene of wall characteristics on stream functionality. It is noted that as wall flexibility 𝐸1 and 

mass per unit area of wall 𝐸2 are raised, the frequency of circulations increases and the bolus size 

increases.  

 

 

       The non-linear portion of the governing momentum equation appears when the Eyring-

Powell fluid parameter A rises, the axial velocity increases, grows, as shown in Figure 3.6–3.10. 

The impact of Eyring-Powell fluid parameter B is shown in Figure 3.7. When B is increased, axial 
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velocity seems to decrease. The impacts of M on velocity profile are seen in Figure 3.8. The axial 

path of velocity is the diminishing function of M. A Resistive force applied to the magnetic field 

resists the flow in a transverse direction, resulting in a decrease in velocity. Figure 3.9 shows the 

influence of the velocity slip parameter 𝛽1 on the axial velocity. The velocity slip parameter and 

the axial velocity profile are shown to be directly correlated. The slip effect's intensification 

reduces the channel walls' resistance, which finally causes the flow to accelerate. The impacts of 

wall characteristics on the axial velocity are seen in Figure 3.10. 𝐸1, 𝐸2 and 𝐸3. The flow in the 

axial direction is found to decrease with increase in either wall mass per unit area 𝐸2, wall 

elasticity 𝐸1,wall damping value𝐸3. 

 

 

         Figure 3.11–3.17 shows that the temperature in the channel's center is higher than that of 

the walls. In actuality, this is because the energy equation takes viscous dissipation effects into 

account. Figure 3.11 illustrates how temperature θ rises when Eyring-Powell fluid parameter A 

grows, while Figure 3.12 displays the same trend for parameter B. It is seen that as the velocity 

slip parameter 𝛽1 and Hartman number M  are increased, temperature rises (see Figures 3.13 and 

3.14. Figures 3.15 and 3.16 show that when higher values of the Brinkman number Br and thermal 

slip parameter 𝛽2 are taken into consideration, the temperature θ increases. The temperature 

profile shows the same behavior like velocity profile. Figure 3.17 represents that the temperature 

profile increases with an increase in both wall elasticity and wall mass per unit area whereas it 

has inverse relationship with the wall damping coefficient. 

 

               In contrast to the temperature θ, the concentration is lower in the center than it is at the 

walls. Figure 3.18 shows how concentration 𝜙 decreases when Eyring-Powell fluid parameter A 

grows, while Figure 3.19 displays the same trend for parameter B. As demonstrated in Figures 

3.20 and 3.21, there is a modest drop in 𝜙 when the velocity slip parameter 𝛽1 and with Hartman 

number M are increased.  

 

                  In figure 3.22, As the concentration slip parameter 𝛽3 increases, the concentration of 

species decrease. As seen in Figure 3.23, the behavior is viscous dissipation if the concentration 

is small. Figure 3.24 show that when we increase Sc number, concentration profile decreases. In 

a qualitative sense, wall attributes have the same influence on 𝜙  as they do on θ. 
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(a)                                                                   (b) 

 

 

Figure 3.1 Variations of A on contours as 𝐸1=0.2, 𝐸2=0.1, 𝐸3=0.01, t=0, M=2, 𝛽1=0.01, 

 𝜖 =  0.15, B=2 (a) A=0.1, (b) A=0. 

 

 

 
 

 

(a)                                                                       (b) 

 

 

Figure 3.2 Variation of B on contours as 𝐸1 = 0.2, 𝐸2 = 0.1, 𝐸3 = 0.01, t = 0, B = 2,  

M = 2, 𝛽1 = 0.01, 𝜖 = 0.15, A = 0.2 (a): B = 1.5 (b): B = 2.2. 
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(a)                                                                     (b) 

 

Figure 3.3 Variation of M on contours as 𝐸1 = 0.2, 𝐸2 = 0.1, 𝐸3 = 0.01, t = 0, A = 0.2, 𝛽1= 0.01, 

𝜖 = 0.15, B = 2 (a): M = 2.9(b): M = 2. 

 

 

  
 

 

(a) (b) 

 

 

Figure 3.4 Variation of 𝛽1 on contours as 𝐸1 = 0.2, 𝐸2 = 0.1, 𝐸3 = 0.01, M = 2, t = 0, 

A = 0.2, B = 2, M = 2,  (a): 𝛽1 = 0 (b): 𝛽1 = 0.03. 
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(a)                                                                                (b) 

    

(c)                                                                         (d) 

Figure 3.5 Variation of wall properties on contours as t = 0, B = 2, M = 2, ϵ = 0.15, 𝛽1 = 0.01, A = 

0.1 (a): 𝐸1 = 0.2, 𝐸2 = 0.3, 𝐸3 = 0.01, (b): 𝐸1 = 0.3, 𝐸2  = 0.1, 𝐸3 = 0.01, (c): 𝐸1 = 0.2, 𝐸2 = 0.1, 𝐸3= 

0.01, (d): 𝐸1 = 0.2, 𝐸2 = 0.1, 𝐸3 = 0.05. 
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Figure 3.6 Variation of A on velocity field at A= 0, 0.2, 0.04 

 

 
Figure 3.7 Variation of B on velocity field at B= 0, 0.5,1 
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Figure 3.8 Variation of M on velocity field at M= 1, 2, 3 

 

Figure 3.9 Variation of 𝛽1 on velocity field at 𝛽1= 0, 0.02, 0.04 
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Figure 3.10 Variation of wall properties on velocity field 

 

 

 

 
 

Figure 3.11 Variation of A on temperature field at A= 0, 0.1, 0.2 
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Figure 3.12 Fluctuations of B on temperature field at B= 1, 2, 3 

 

 

 

 

  

 
       

Figure 3.13 Fluctuations of M on temperature field at M= 1, 1.2, 1.4 
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Figure 3.14 Fluctuations of 𝛽1 on temperature field at 𝛽1= 0, 0.05, 0.10 

 

 

 

 

 
 

 

Figure 3.15 Variation of 𝛽2 on temperature field at 𝛽2= 0, 0.03, 0.06 
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Figure 3.16 Fluctuations of Br on temperature field at Br= 1, 1.2, 1.4 

 

 

 
 

Figure 3.17 Variation of wall properties on profile of temperature 
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Figure 3.18 Variation of A on concentration field at A= 0, 0.1, 0.2 

                                 
Figure 3.19 Variation of B on concentration profile at B= 0, 2, 3 
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Figure 3.20 Variation of M on concentration field at M= 1, 1.2, 1.4 

 

Figure 3.21 Variation of 𝛽1 on concentration field at 𝛽1= 0, 0.1, 0.2 
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      Figure 3.22 Variation of 𝛽3 on concentration field at 𝛽3= 0, 0.02, 0.03 

  

 
 

 

Figure 3.23 Variation of Br on concentration field at Br= 1, 1.2, 1.4 
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Figure 3.24 Variation of Sc on concentration file at Sc= 1, 1.2, 1.4 

 

 

 
 

 

Figure 3.25 Variation of wall properties on concentration profile 
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3.5 Conclusion 
          

         By taking into account wall characteristics and heat/mass transfer, the slip effects on the 

magnetohydrodynamic (MHD) peristaltic flow of an Eyring-Powell fluid are examined. Viscous 

dissipation effects of considerable magnitude are taken into account in the mathematical 

formulation. The lubrication assumptions are used to generate a perturbation solution.Variations 

in embedded parameters, in particular those of the Eyring-Powell fluid, have a considerable 

impact on the flow fields. Comparing hydrodynamic flow to magnetohydrodynamic flow, it is 

found that the axial velocity in the former is higher. The flow is also accelerated in the axial 

direction when velocity slip is present. In order to improve heat transfer from the channel walls, 

viscous dissipation is quite important. 
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CHAPTER 4 

 

 

 

Analysis of Peristaltic Eyring-Powell Fluid with an Inclined 

Magnetic Field in a Non-Uniform Porous Channel 

 

 
4.1 Introduction 

 
              This system investigates the properties of the Eyring-Powell fluid's stable, laminer 

rheology from a peristaltic non-uniform inclined channel. A body force term of the momentum 

equation is used to simulate the magneto hydrodynamics (MHD) and porosity effects, while the 

rheological equations are stated in the Cartesian system. The form of the system of partial 

differential equations represents the projected model. Temperature and velocity profiles are used 

to visually represent the data. A comparative analysis with the published literature validates the 

current findings. 

                    

Figure 4.1 Geometry of Problem 
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4.2 Mathematical Formulation 

 
             This study examines how heat and mass transfer affect an Eyring-Powell fluid peristaltic 

flow in a two-dimensional, axisymmetric channel. The fluid is thought to drive electrically when 

a porous material and an angled magnetic field exist. Through the channel walls, the flow 

produces sinusoidal waves that propagate at a constant speed c.  The wave shapes along the wall 

are given as 

                                        ℎ(𝑥, 𝑡) = 𝑏 sin
2𝜋

𝜆
(𝑥 − 𝑐𝑡) + 𝑑(𝑥),                                                           (4.1) 

where 

                                            𝑑(𝑥) = 𝑚𝑥 + 𝑎,                  𝑚 ≪ 1. 

 𝜆 is the wavelength, wave amplitude is represented by b, t is the time, n is the dimensional 

parameter and a is the width. 

 

The velocity pattern of peristaltic flow is 

                                              𝑽 = [𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦)]                                                                           (4.2) 

 

The equations of continuity, momentum and energy are as follows 

                                                  ∇. 𝑽 = 0,                                                                                          (4.3) 

                                          𝜌
𝑑𝑽

𝑑𝑡
= 𝑑𝑖𝑣𝝉 + 𝜌𝒃,                                                                                      (4.4) 

                                  𝜌𝐶𝑝
𝑑𝑇

𝑑𝑡
= −𝑑𝑖𝑣𝒒 + 𝝉. 𝑳,                                                                                    (4.5) 

where 

                                                     𝒒 = −𝒌𝑔𝑟𝑎𝑑𝑇,  

 

and the body forces under consideration are: 

                                     𝜌𝒃 = −𝜎𝛽0
2𝑽 −

𝜇

𝑘
𝑽 ,                                                           

 

with same tensor as given in chapter 3 from equations (3.2) to (3.10). 
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The Eyring-Powell fluid model's governing equations are provided as: 

 

                                                    
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0,                                                                                      (4.6) 

 

 

The x-component of the momentum equation is as under: 

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) = −

𝜕𝑝

𝜕𝑥
+ (𝜇 +

1

𝛽𝑐1 
) (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
) 

−
1

3𝛽𝑐1
3

𝜕

𝜕𝑥
[{(

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)

2

+ 2 (
𝜕𝑣

𝜕𝑦
)

2

+ 2 (
𝜕𝑢

𝜕𝑥
)

2

}
𝜕𝑢

𝜕𝑥
] 

−
1

6𝛽𝑐1
3

𝜕

𝜕𝑦
[{2 (

𝜕𝑢

𝜕𝑥
)

2

+ (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)

2

+ 2 (
𝜕𝑣

𝜕𝑦
)

2

} (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)] 

                                 +𝜌𝑔 sin 𝛼 − 𝜎𝛽0
2 cos 𝛽(𝑢 cos 𝛽 − 𝑣 sin 𝛽) −

𝜇

𝐾
𝑢,                                              (4.7)              

 

The y-component of the momentum equation is given as: 

𝜌 (
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) = −

𝜕𝑝

𝜕𝑦
+ (𝜇 +

1

𝛽𝑐1 
) (

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
) 

−
1

3𝛽𝑐1
3

𝜕

𝜕𝑦
[{(

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)

2

+ 2 (
𝜕𝑢

𝜕𝑥
)

2

+ 2 (
𝜕𝑣

𝜕𝑦
)

2

}
𝜕𝑣

𝜕𝑥
] 

−
1

6𝛽𝑐1
3

𝜕

𝜕𝑦
[{2 (

𝜕𝑢

𝜕𝑥
)

2

+ (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)

2

+ 2 (
𝜕𝑣

𝜕𝑦
)

2

} (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)] 

                            +𝜌𝑔 cos 𝛼 − 𝜎𝛽0
2 sin 𝛽(𝑢 cos 𝛽 − 𝑣 sin 𝛽) −

𝜇

𝐾
𝑣,                                                     (4.8) 

 

The energy equation is given as below: 

                 𝜌𝐶𝑝 (
𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
) = 𝑘 (

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
) + (𝜇 +

1

𝛽𝑐1 
) [4(

𝜕𝑢

𝜕𝑥
)2 +  (

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)

2

] −

                                                           
2

3𝛽𝑐1
3 (

𝜕𝑢

𝜕𝑥
)2 {2 (

𝜕𝑣

𝜕𝑦
)

2

+ 2 (
𝜕𝑢

𝜕𝑥
)

2

+ (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)

2

} 

                                       −
1

6𝛽𝑐1
3 (

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)

2

{2 (
𝜕𝑢

𝜕𝑥
)

2

+ (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)

2

+ 2 (
𝜕𝑣

𝜕𝑦
)

2

} ,                                      (4.9) 
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Here 𝑝 be the pressure, applied magnetic field is represented by 𝛽0, 𝜎 is the electrical conductivity 

of fluid.  

 

The following are the Boundary Conditions: 

  𝜕

𝜕𝑥
(τ

𝜕2

𝜕𝑥∗2 + 𝑚
𝜕2

𝜕𝑡∗2 + 𝑑
𝜕

𝜕𝑡
) ℎ = (𝜇 +

1

𝛽𝑐1 

) (
𝜕2𝑢

𝜕𝑥∗2 +
𝜕2𝑢

𝜕𝑦∗2)- 𝜌 (
𝜕𝑢

𝜕𝑡
+  𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦∗
) −     

1

6𝛽𝑐1
3

𝜕

𝜕𝑦∗
[{2 (

𝜕𝑢

𝜕𝑥∗
)

2

+

2 (
𝜕𝑣

𝜕𝑦∗)
2

+ (
𝜕𝑢

𝜕𝑦∗ +
𝜕𝑣

𝜕𝑥∗)
2

} (
𝜕𝑢

𝜕𝑦∗ +
𝜕𝑣

𝜕𝑥∗)] −
1

3𝛽𝑐1
3

𝜕

𝜕𝑥∗ [{2 (
𝜕𝑢

𝜕𝑥∗)
2

+ 2 (
𝜕𝑣

𝜕𝑦∗)
2

+ (
𝜕𝑢

𝜕𝑦∗ +
𝜕𝑣

𝜕𝑥∗)
2

}
𝜕𝑢

𝜕𝑥∗] −

𝜌𝑔 sin 𝛼 − 𝜎𝛽0
2 cos 𝛽(𝑢 cos 𝛽 − 𝑣 sin 𝛽)

𝜇

𝐾
𝑢,                              at   y=h,                                      (4.10) 

                                

                                    𝑢 = 0,          𝑇 = 𝑇1,                         𝑎𝑡  𝑦 = ℎ,                                                (4.11)        

                                     
𝜕𝑢

𝜕𝑦
= 0 ,         

𝜕𝑇

 𝜕𝑦
= 𝑇0,                     𝑎𝑡  𝑦 = 0,                                                (4.12) 

 

where the variables 𝑇0  and 𝑇1 represent the temperature at the lower and higher walls, d 

represents the wall damping coefficient, m be the mass of the plate per unit area, and τ stands for 

elastic strain. 

 

The stream function ψ is now introduced as: 

                                          𝑢 =
𝜕𝜓

𝜕𝑦
,          𝑣 = −

𝜕𝜓

𝜕𝑥
 .                                                                        (4.13) 

 

The dimensionless quantities are: 

𝑥′ =
𝑥

𝜆
 , 𝑦′ =

𝑦

𝑑1
 , 𝜓′ =

𝜓

𝑐𝑑1
 , 𝑡′ =

𝑐𝑡

𝜆
 , 𝑝′ =

𝑝𝑑1
2

𝑐𝜆𝜇
 , 𝐵 =

1

𝜇𝛽𝑐1
 , 𝐴 =

𝐵𝑐2

2𝑑1
2𝑐1

2 ,  

𝛿 =
𝑑1

𝜆
 , 𝜃 =

𝑇 − 𝑇0

𝑇0
 , 𝑅𝑒 =

𝜌𝑐𝑑1

𝜇
 , 𝑀2 = √

𝜎

𝜇
𝛽0𝑑1, 𝑃𝑟 =

𝜇𝐶𝑃

𝜅
 , 𝐸𝑐 =

𝑐2

𝐶𝑝𝑇0
 , 

              𝑘 =
𝐾

𝑑1
2  , 𝐹 =

𝑐𝜐

𝑔𝑑1
2, 𝐸1 = −τ

𝑑1
3

𝜆3𝜇𝑐
, 𝐸2 =

𝑚𝑐𝑑1
3

𝜆3𝜇
, 𝐸3 =

𝑑𝑑1
3

𝜆2𝜇
                                                       (4.14) 

 

           In previously indicated values A and B are the material variables for the Eyring-Powell 

fluid model, Pr the Prandtl number, δ the wave number, Re the Reynolds number, Ec the Eckert 

number, θ the temperature distribution, mass per unit area parameter 𝐸2, wall elastance 
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parameter 𝐸1and wall damping value 𝐸3. 

          After applying the lubrication assumptions, creating the stream function, which 

automatically solves the continuity equation, and non-dimensionalization, problem is reduced as: 

                          
𝜕𝑝′

𝜕𝑥′
= (1 + 𝐵)

𝜕3𝜓′

𝜕𝑦,3
−

𝐴

3

𝜕

𝜕𝑦′
(

𝜕2𝜓′

𝜕𝑦′2)
3

− (𝑀 cos 𝛽)2 𝜕𝜓′

𝜕𝑦′
−

1

𝑘

𝜕𝜓′

𝜕𝑦′
+

sin 𝛼

𝐹
,                  (4.15) 

                                                     
𝜕𝑝′

𝜕𝑦′ = 0,                                                                                        (4.16) 

                           
1

𝑃𝑟

𝜕2𝜃

𝜕𝑦2 + 𝐸𝑐(
𝜕2𝜓′

𝜕𝑦′2)2 [(1 + 𝐵) −
𝐴

3
(

𝜕2𝜓′

𝜕𝑦′2)
2

] = 0,                                                   (4.17) 

 

and the boundary conditions become: 

𝜕

𝜕𝑥
(𝐸1

𝜕2

𝜕𝑥′2 + 𝐸2

𝜕2

𝜕𝑡′2 + 𝐸3

𝜕

𝜕𝑡′
) ℎ = (1 + 𝐵)

𝜕3𝜓′

𝜕𝑦′3 −
𝐴

3

𝜕

𝜕𝑦′
(

𝜕2𝜓′

𝜕𝑦′2 )

3

 

                          −(𝑀 cos 𝛽)2 𝜕𝜓′

𝜕𝑦′ −  
1

𝑘

𝜕𝜓′

𝜕𝑦′ ,           𝑎𝑡  𝑦′ = ℎ                                                            (4.18) 

                          
𝜕𝜓′

𝜕𝑦′ = 0,            𝜃 = 1,                   𝑎𝑡 𝑦′ = ℎ                                                            (4.19) 

                     𝜓′ = 0,    
𝜕2𝜓′

 𝜕𝑦′2 = 0,          
𝜕𝜃

𝜕𝑦′ = 0,                  𝑎𝑡 𝑦′ = 0                                                (4.20) 

Combining (4.15) and (4.16), compatibility equation takes the form 

                  (1 + 𝐵)
𝜕4𝜓′

𝜕𝑦′4 −
𝐴

3

𝜕2

𝜕𝑦′2 (
𝜕2𝜓′

𝜕𝑦′2)
3

− 𝑁1
2 𝜕2𝜓′

𝜕𝑦′2=0,                                                                    (4.21) 

where            

                                      𝑁1 = 𝑀2cos2𝛽 +
1

𝑘
.                             

 

 

4.3 Method of Solution 

 
             Due to the involvement of small parameter ‘A’ in the governing equations, To solve the system 

concerning the small Eyring-Powell fluid perimeter A, we can use the perturbation technique. 

 

                                    𝜓′ = 𝜓′
0 + 𝐴𝜓′

1 + 𝑂(𝐴)2,                                                                                           (4.22) 

 

                                     𝜃′ = 𝜃′
0 + 𝐴𝜃′

1 + 𝑂(𝐴)2.                                                                                            (4.23) 

 



54 
 

 

 

 

 

4.3.1 Zeroth –Order System 

 

The form of the zeroth order system is                                 

                                     (1 + 𝐵)
𝜕4𝜓′

0

𝜕𝑦′4 − 𝑁1
2 𝜕2𝜓′

0

𝜕𝑦′2 = 0,                                                                    (4.24) 

                                        
𝜕2𝜃′

0

𝜕𝑦′2 + 𝐵𝑟(1 + 𝐵) (
𝜕2𝜓′

0

𝜕𝑦′2 )
2

= 0,                                                               (4.25) 

 

   and the boundary conditions are 

            
𝜕

𝜕𝑥
(𝐸1

𝜕2

𝜕𝑥′2 + 𝐸2
𝜕2

𝜕𝑡′2 + 𝐸3
𝜕

𝜕𝑡′) ℎ = (1 + 𝐵)
𝜕3𝜓′

0

𝜕𝑦∗3 − 𝑁1
2 𝜕𝜓′

0

𝜕𝑦∗ ,          𝑎𝑡    𝑦′ = ℎ                 (4.26) 

                             𝜓′
0

= 0,        
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                              𝜃′
0 = 1,            

𝜕𝜓′
0

𝜕𝑦′ = 0,                   𝑎𝑡   𝑦′ = ℎ.                                                 (4.28) 

 

 

4.3.2 First order system: 

The first order system is of the form 

                               (1 + 𝐵)
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= 0,                                             (4.30) 

                        

and the boundary conditions are 
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𝜕𝑦′2 = 0     𝑎𝑡 𝑦′ = ℎ,                                          (4.31)   

                        𝜓′
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1
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1 = 0                            𝑎𝑡 𝑦′ = ℎ.                                                      (4.33) 
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4.4 Results and Discussion 

 
                The behavior of the parameters used in the axial velocity (u), temperature (𝜃) , pressure 

and streamlines expressions is explained in this section. In particular, inclination of magnetic 

field (𝛽), Brinkman number (Br), and Magnetic parameter (M), non-uniform term (m), porosity 

parameter (k) are examined. To examine the effects of these settings, graphs were made using the 

MATHEMATICA programming language. 

 

 

              Trapping is one of the most significant phenomena in peristaltic movement. The 

formation of a circulating bolus caused by streamlines splitting under specific circumstances is 

referred to as trapping. The trapped bolus travels at the same speed as the wave because it is 

completely encircled by the peristaltic waves. In Figure 4.2(a) and (b) the influence of Eyring-

Powell fluid parameter A is portrayed. The size of the confined bolus and the number of 

streamlines both decrease as A rises. The impact of Eyring-Powell fluid parameter B on the 

streamline patterns can be seen in Figures 4.3(a) and 4.3(b). It can be seen that increasing B both 

the number of circulations and the size of the trapped bolus decreases.  

 

 

            Figure 4.4(a) and (b) show that by increasing the value of magnetic parameter, bolus size 

and number of circulations decreases. Figure 4.5(a) and (b) shows the same behavior when the 

value of porosity parameter increases. From figures 4.6(a) and (b) we conclude that by increasing 

the value of 𝛽, the volume of the trapped bolus increases. The impact of wall properties is given 

in figure 4.7(a)-(b), by enhancing the values of the wall properties, there is a decrease in the size 

of trapped bolus. 
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            Velocity field is the most noticeable feature of fluids flow. Firstly analytical solution for 

velocity is calculated, and then other flow variables are determined. It is shown in figure 4.8 that 

by increasing the value of A the velocity profile decreases. Figure 4.9 demonstrates how the fluid's 

velocity decreases when the Eyring-Powell fluid parameter B value rises. Figure 4.10 depicts that 

rise in the value of M shows reduction in the velocity because with the increase in the value of M 

resistive force increases. Figure 4.11 show that there is a decrease in flow resistance and an 

increase in fluid velocity within the channel as the porosity of the walls increases. It is seen from 

figure 4.12 that velocity profile increases with rise in inclination angle 𝛽 because magnetic field's 

inclination can change the Lorentz force, lessen magnetic drag, and produce secondary flow 

patterns, all of which increase fluid velocity. Figure 4.13 show that as m increases, velocity 

increases because when we increase non-uniformity, then the regions experiences lower viscosity 

leading to an increase in overall velocity. Effects of wall properties on axial velocity is sketched 

in figure 4.14. It reveals that the flow in the axial direction is accelerated by increases in wall 

elasticity𝐸1, wall damping parameter 𝐸3 ,wall mass per unit area 𝐸2. 

 

           Figure 4.15 to 4.22 show the significance of different emerging flow characteristics on the 

fluid’s temperature 𝜃. Figure 4.15 shows that as the value of parameter A increase, temperature 

decreases. Figure 4.16 display the trend of temperature profile when the fluid parameter B is 

increased. Figure 4.17 demonstrates that reduction in temperature profile as increase in value of 

magnetic parameter. Figure 4.18 depicts that the rise in inclination angle 𝛽 also gives an increase 

in temperature profile. It is seen in figure 4.19 that as porosity of walls increases temperature 

increases because thermal conductivity reduces and surface area for heat exchange increases. 

Figure 4.20 depicts that as m increase, there is an increase in temperature distribution. As the 

value of Brinkman number increases temperature increases because when viscous dissipation 

enhances, there is a larger energy conversion from kinetic to thermal energy, which raises fluid 

temperature as shown in figure 4.21. Figure 4.22 shows that the fluid's temperature decreases as 

a result of a steady increase in wall mass per unit area 𝐸2, wall elasticity 𝐸1, or wall damping 

parameter 𝐸3. 
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(a)                                                                        (b) 

 

Figure 4.2 Effect of A on contours as 𝐸1=0.1, 𝐸2=0.2, 𝐸3=0.3, 𝜖 =  0.5, t=0.16, B=2, M=2, 

β =0.01, k= 1.25, x=0.2, m =0.5 (a) A=0, (b) A=0.1 

 

 

  

 

(a)                                                                  (b) 

 

Figure 4.3 Effect of B on contours as 𝐸1 = 0.1 𝐸2= 0.2, 𝐸3= 0.3, 𝜖 = 0.5, t = 0.16, 

A = 0.01, B = 2, M = 2, β = 0.01, k= 1.25, m =0.5 (a) B = 2 (b) B = 3. 
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(a)                                                              (b)                                  

 
Figure 4.4 Effect of M on contours as  𝐸1 = 0.1, 𝐸2 = 0.2, 𝐸3 = 0.3, 𝜖 = 0.5, t = 0.16, 

A = 0.01, B = 2, β = 0.01, k= 1.25, m =0.5, x=0.2 (a) M = 2, (b) M = 3. 

 

  
                                         

(a)                                                                        (b) 

 

Figure 4.5 Effect of k on streamlines when 𝐸1 = 0.1, 𝐸2 = 0.2, 𝐸3 = 0.3, 𝜖 = 0.5, t = 0.16, 

 B = 2, A = 0.01, β = 0.01, M= 2, m =0.5, x=0.2 (a) k = 1.25, (b) k = 3.5. 
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(a)                                                                       (b)  

 

Figure 4.6 Effects of β on contours as 𝐸1 = 0.1, 𝐸2 = 0.2, 𝐸3 = 0.3, 𝜖 = 0.5, t = 0.16, A = 0.01, B = 

2, 𝑀 = 2, k= 1.25, x=0.2, m =0.5, (a) β = 0.01, (b) β = 0.4. 

 

  
 

(a)                                                                    (b) 

 

 

Figure 4.7 Effect of wall properties on contours as 𝜖 = 0.5, t = 0.16, 

B = 2, A = 0.1,M = 2, β = 0.01, 1.25, m =0.5, (a) 𝐸1 = 0.1, 𝐸2 = 0.2, 𝐸3 = 0.3, 

(b) 𝐸1 = 0.2, 𝐸2 = 0.3, 𝐸3 = 0.3. 



60 
 

 

 

 

 

 
Figure 4.8 Effect of Eyring-Powell fluid parameter on velocity field 

 

 

 
 

Figure 4.9 Effect of Eyring-Powell fluid parameter on velocity field. 
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Figure 4.10 Effect of magnetic parameter on velocity field. 

 

 

 
Figure 4.11 Effect of porosity parameter on velocity field. 
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Figure 4.12 Effect of inclined parameter on velocity field. 
 

 

 

 
 

Figure 4.13 Effect of non-uniform parameter on velocity field. 
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Figure 4.14 Effect of wall properties on velocity field. 
 

 

 

 
 

Figure 4.15 Effect of Eyring-Powell fluid parameter A on temperature profile. 
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Figure 4.16 Effect of Eyring-Powell fluid parameter B on temperature field. 

 
 

 
 

Figure 4.17 Effect of magnetic parameter on temperature field. 
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Figure 4.18 Effect of inclined parameter on temperature field 

 
 

 

 
 

Figure 4.19 Effect of porosity parameter on temperature field. 
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Figure 4.20 Effect of non-uniform parameter on temperature field. 

 

 
  

 

 
Figure 4.21 Effect of Brinkman Number on temperature field. 
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Figure 4.22 Effect of wall properties on temperature field. 
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CHAPTER 5 

 

 

 

CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

           The purpose of this thesis is to investigate how porosity and an angled magnetic field affect the 

peristaltic flow of Eyring-Powell fluid. The complexity of problem can be addressed by using 

perturbation techniques, by using the lubrication approach. Graphical representation of velocity, 

stream function and temperature distribution are generated by using Mathematica software, 

providing visual insights into the behavior of peristaltic flow under different conditions. The 

overall conclusion drawn from the current work is summarized as following: 

             It is observed that by enhancing the value of parameters A, B and magnetic parameter M, 

the velocity of fluids decreases. While an increase in value of inclination angle 𝛽, porosity of 

wall, value of m, wall properties such as elasticity, damping parameter, accelerate the flow in an 

axial direction based on mass per unit area. As the magnetic parameter and Eyring-Powell fluid 

parameter A increase, the temperature profile falls. However, as the temperature rises, so do the 

larger values of the Brinkman number (Br), inclination angle β, porosity parameter k, and Eyring-

Powell fluid parameter B. 
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                 The Eyring-Powell fluid parameter A and magnetic parameter influences the trapping 

effect, with higher values leading to a large bolus, while increasing B and value of inclination 

angle, size of bolus and number of streamlines decreases.  

5.2 Future Work  

           The model could be expanded by adding additional factors such as energy activation and 

viscous dissipation. This could involve exploring different fluid models like Williamson and 

Walter’s B fluid models as well as other non-Newtonian fluid models, to analyze the influence 

of inclined magnetic field and boundary slip. As our current study focused on non-uniform 

inclined channel, furture research could explore alternative geometries such as curved or planar 

channels. Additionally, incorporating boundary conditions such as slip and convective boundary 

conditions could provide furture insights into the behavior of peristaltic flow in practical 

scenarios.
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