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ABSTRACT 

Title: An Improved Classification of Underwater Ship-Engine Audios Using Siamese 

Network 

Developing a reliable ship classification system using underwater acoustics is crucial due to 

limited labeled data, dynamic underwater conditions, and noise interference, reducing reliance 

on human sonar operators vulnerable to weather and fatigue. Improving underwater acoustic 

target classification requires addressing shortcomings in feature extraction, dataset availability, 

feature diversity, and classifier selection, but integrating multiple techniques must balance gains 

against increased costs, time, and system complexity. This study proposes a novel feature 

extraction technique that reduces the computational cost, complexity and increases the 

robustness of model. In this proposed technique, audios are segmented into chunks and 

spectrograms are calculated for them. The dataset is arranged in the form of triplets that are fed 

into the siamese network that are based on triplet loss, generates feature vectors. The goal of 

the siamese network is to learn an embedding space in which similar classes are grouped 

together and dissimilar classes are further separated. These extracted features may be fed into a 

classifier. Classifier will then classify the correct classes on the basis of given results. The 

model’s performance is evaluated on Shipears dataset. Furthermore, accuracy, precision, recall, 

f1-score and ROC curve are used to evaluate the performance of popular classifiers, k-NN, 

SVM, RF, DT. Overall accuracy of our model reaches 96.4167% which reduces the complexity.  
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

Underwater acoustic target recognition has recently drawn attention from scientific and 

technical experts as a result of the advancements in science and technology. Recognizing 

underwater acoustic targets is a very becoming essential. Underwater acoustic target detection 

is challenging than traditional speech recognition due to the distorted radiated noise caused by 

the complex underwater habitat. The gradual progress of technical improvement is driving the 

demand for robust underwater acoustic target detection methods. [1-3]. Underwater acoustic 

ship-engine classification is often carried out by skilled sonar operators, who work long hours 

and are susceptible to weather changes. Therefore, it is important to create a reliable 

recognizing system to do the task now done by people in identifying ship-radiated noise [4]. 

Through local connections and weight sharing, deep learning offers an effective method 

for classifying targets in the realm of image processing. It involves the design of classifiers and 

feature extraction. Deep learning might increase classification accuracy and efficiency by 

avoiding feature loss and dimension catastrophe in comparison to conventional approaches. 

The typical approach would be to convert audio data into image data when using deep learning 

to classify underwater targets. The target is then classified using the pre-processed image data 

that was given to the classifier [2]. 
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The basic structure for classification of underwater ship-engine audios is shown in 

figure 1.1. First, the ship-radiated noise is given as input, then features are extracted through 

some feature extraction techniques. Data augmentation technique may be used to generate fake 

samples in case of limited dataset. The classifier with the help of extracted features, classify 

the true classes for ship-engines. 

 

 

Figure 1.1: Basic structure of classification of underwater ship-engine 

Two important steps from the above figure are: [3] first, the hydroacoustic signals are 

processed using techniques to extract interesting features. Classification algorithms 

(classifiers) are then used using the recovered features as input, in order to classify the ship-

engine. Scholars have put through comprehensive research on ship-engine classification deep 

learning methods and the research mainly emphasis on feature extraction module. Feature 

extraction is a process of either removing redundant or extracting only the relevant information 

from original data to achieve dimensionality reduction. 
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The improvements are continuously made to the feature extraction and classifier 

training processes to increase classification accuracy [4]. Underwater audio data is limited, due 

to security reasons or expensive to record in terms of resources. Many scholars have used 

publicly available dataset, and some of them have used their own dataset which they donot 

share. There are two ways to overcome this problem; data augmentation or, diversify the 

features. Former technique generates fake samples from the existing limited samples while 

latter diversify the features enough so that the classifier could easily and accurately classify the 

dataset. 

To increase classification accuracy, our strategy employs Siamese vector and 

multimodal feature extraction methods. To see how approaches affect the model, we will use 

the technique to diversity the characteristics rather than data augmentation. In order to examine 

the impact of classification accuracy on underwater data, we will be using different popular 

classification algorithms. We’ll use the accessible ShipEars dataset to evaluate the model's 

performance. A training set was created by randomly selecting 80% of the feature samples from 

the recorded audios, and a testing set was created by randomly selecting 20% of the feature 

samples from the training set.  

1.2 Motivation 

Underwater classification of ship-engine is performed by domain specialists [6]. Long-

time work and weather conditions. More accurate underwater acoustic classification methods 

must be investigated. Deep learning methods are created for assistance of human experts. For 

example, monitors or tests to assist doctors. Underwater audio dataset is limited, usually 

expensive or not available due to security [5]. There are two ways to overcome this problem: 
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1.2.1 Data Augmentation 

Neural network training demands a large amount of data. Learned networks exhibit 

poor generalization and underdetermination of parameters in the low-data environment. This 

is lessened via data augmentation, which makes better use of already-existing data [22]. Data 

augmentation is used to create new data points from preexisting data in order to fictitiously 

increase the volume of data. This includes adding modest adjustments to data or creating new 

data points with deep learning models. In order to improve the model's ability to generalize to 

new cases, it is intended to produce variants of the original data that yet reflect the same 

underlying patterns. For example, data augmentation comes in handy when working with little 

amounts of labelled training data. 

1.2.2 Diversify Features 

Building strong machine learning models requires diversifying its features, which aids in 

the model's good generalization to various patterns found in the data. The following techniques 

aim to diversify features in order to achieve precise class identification: 

i) Engineering Features: Higher-order polynomial features can be introduced to capture 

non-linear relationships. Terms of interaction means, merge two or more characteristics 

to capture their combined impact. Moreover, binding or discretization means to identify 

non-linear patterns, divide continuous features into discrete bins. 

ii) Scaling Features: Preprocessing methods like normalization and standardization are 

frequently employed to get numerical features ready for machine learning models. In 

order to guarantee that every numerical feature contributes equally to the model, 

normalization scales the features to a standard range, usually between 0 and 1. 

However, standardization makes the features comparable by changing their mean and 

standard deviation to zero and one, which helps with gradient descent optimization.  

iii) Managing Data Inequalities: Consider using techniques like oversampling the minority 

class or under sampling the majority class, especially if the distribution of classes is 

unequal, to guarantee that each class in dataset has enough exposure to samples. Under 
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sampling refers to lowering the number of samples in the majority class, whereas 

oversampling implies creating artificial samples of the minority class in order to balance 

the class distribution. In order to identify trends or patterns throughout time, temporal 

aspects must also be included when working with time-series data. 

 

1.2.3 Constraints of Underwater Acoustic Target Recognition (UATR) 

Underwater ship-engine audio classification comes with its own set of difficulties and 

limitations. It takes a combination of feature engineering, machine learning, and signal 

processing methods to overcome these limitations. When developing and accessing 

classification models, it's critical to take into account the particulars of the underwater 

environment as well as the distinctive qualities of ship-engine audios. To overcome these 

obstacles, cooperation with subject matter experts and having access to a variety of 

representative datasets are also essential. The following are some typical constraints related to 

the categorization of underwater ship-engine audios: 

i) Background noise: Ship-engine audios can be impacted by ambient noise from nearby 

sources, such as other ships, marine life, or underwater currents, much like other 

underwater acoustic applications. Moreover, it can be difficult to distinguish the target 

ship's engine noises from background noise, which reduces classification accuracy. 

ii) Variability in Engine Designs and Ship Types: Engine designs and operational 

parameters vary throughout ship types. However, it may be more challenging to develop 

a universal categorization model that is effective in a variety of marine conditions due 

to variations in ship types and engine configurations. 

iii) Changes in Depth and Distance: Depth, distance, and the acoustic characteristics of the 

water all affect how sound travels underwater. However, depth and distance from the 

recording sensor can affect the strength and frequency of ship-engine noises, making it 

difficult to classify them consistently. 

iv) Insufficient Training Information: Because of the limited access to active ships and 

regulated testing facilities, gathering labelled training data for ship-engine audios might 
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be difficult. Accurate and reliable classification model training may be hampered by a 

lack of training data. 

v) Temporal Dynamics: The noises produced by ship engines can have temporal dynamics, 

changing in character as the engine runs through various stages (such as starting, 

cruising, and idling). Accurate categorization depends on capturing and comprehending 

the temporal dynamics, and models must take these variances into account. 

vi) Conditions with Hydroacoustic: Underwater sound transmission can be affected by 

hydroacoustic factors like pressure, temperature, and salt of the water. However, the 

changes in hydroacoustic circumstances may have an impact on the features and quality 

of audio recordings of ship engines. 

vii)  Deployment Challenges for Sensors: It can be difficult to deploy sensors in the 

undersea environment, particularly in places where there is a lot of shipping traffic. 

Inadequate sensor deployment could lead to coverage gaps in monitoring, which would 

reduce the classification system's overall efficacy. 

1.2.4    Applications of Underwater Acoustic Target Recognition (UATR) 

The applications demonstrate the variety of ways that underwater ship-engine audios can 

be applied for real-world issues, such as scientific research, marine safety, and environmental 

preservation. 

i. Environmental Surveillance: Investigating the sounds that ships make underwater can 

reveal important information about the ways that maritime activities affect marine 

ecosystems, which include habitats and marine life. One type of underwater noise 

pollution that is particularly important in this regard is ship-engine noise. Marine 

biodiversity and ecosystems can be conserved and protected by effectively managing 

and controlling the environmental impact of ship-engine noise pollution by monitoring 

and knowledge of its consequences. 

ii. Underwater Cartography and Navigation: Underwater navigation systems can be 

improved by ship-engine audio data, which gives autonomous underwater vehicles 

(AUVs) and remotely operated vehicles (ROVs) more information. Identification and 

characterization of underwater pathways and structures are made possible by the 
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analysis of ship-engine noises in underwater route and infrastructure mapping. The 

efficiency and effectiveness of marine activities are improved by this data, which makes 

it easier to navigate and explore underwater habitats with greater accuracy. 

iii. Marine Bioacoustics and Marine Biology: Bioacoustics research uses audio data from 

ship engines to identify and analyses marine creatures. By identifying and examining 

marine species based on their acoustic traits, researchers can learn more about their 

behavior and communication. By tracking how marine animals and other species 

respond to ship noises, behavioral studies may be conducted, which improves our 

knowledge of marine ecosystems and helps conservation efforts. 

iv. Monitoring of Underwater Infrastructure: The monitoring of underwater infrastructure, 

such as cables and pipelines, to spot possible issues or damage, is made possible via 

ship-engine audio data. One can monitor construction operations, including dredging 

and other underwater engineering projects, by listening for ship-engine noises. This 

promotes efficient management of marine building operations, guarantees the integrity 

and safety of submerged infrastructure, and makes it easier to identify problems in a 

timely manner. 

v. Defense and Security: Audio monitoring of ship engines can be employed for security 

purposes, assisting in the identification and detection of vessels entering sensitive or 

prohibited regions. Moreover, ship-engine audio monitoring helps to improve maritime 

security protocols. 

vi. Scientific Investigations: The sounds produced by ship engines can be used to gather 

important information about the properties of various ocean locations and the study of 

underwater acoustics. Tracking the audio from ship engines can help determine how 

marine activities affect the climate. 

vii. Monitoring of Maritime Traffic: In crowded maritime locations, ship-engine sound 

analysis can be utilized to identify and track vessels, aiding in efficient traffic 

management and monitoring. Moreover, by giving real-time information on the 

movements of other vessels, the use of ship-engine audios aids in the prevention of 

collisions between them. 
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1.3 Problem Background 

Understanding the underwater environment and all of its facets is essential to preserving 

and improving it. A crucial component of this information has to do with sound, whether it 

comes from natural or artificial sources. When researching maritime biodiversity and 

conducting vessel monitoring, the challenge of recognizing and classifying pertinent sounds is 

important. 

Underwater sound recognition, thus, is a useful adjunct to existing ocean monitoring 

methods that rely on the classification of underwater images [1-3]. Researchers have worked 

on several kinds of projects over the years to identify ship-engine's sounds. Sonars and 

operators skilled in identifying different kinds of vessels from sonar echo signals were first 

used for these tasks. However, since it's a low automated task that requires the operator to 

concentrate on a specific task, human error can always occur. Passive hydrophone-based 

solutions are chosen for sustainability considerations, as active sonar-like systems are now 

known to pose a threat to various fish and cetacean species. This is the reason why underwater 

noise signals captured by passive hydrophone devices are increasingly being recognized using 

machine learning (ML)-based techniques. 

Usually, these methods are divided into two stages. In order to categorize or identify 

certain targets, first the hydroacoustic signals are processed in order to extract features of 

interest, a process known as feature extraction. Afterwards, classification algorithms, or 

classifiers, are used using the retrieved features as input. Figure 1.2 shows the overall flow of 

underwater classification.  

Figure 1.2: Marine acoustic signature recognition [3] 
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The feature extraction technique, sample set management, and classifier design are 

important areas of study in undersea classification research. Power spectrum analysis works 

well as a feature extraction technique for ship-radiated noise because of its short-time stability. 

An intricate distribution in the time domain of signal energy is transformed into a 

comparatively straightforward distribution in the frequency domain by power spectrum 

analysis. As a reliable feature for classification, the power spectrum represents the ship's 

radiated noise signal.  For the classifier to successfully classify ship targets, the power spectrum 

is employed as an input [11]. Additionally, the use of the short-time Fourier transform (STFT), 

also known as low-frequency analysis and recording (LOFAR), it is possible to obtain the 

spectrogram of ship radiated noise signals. To categorize civil ships, large ships, and ferries, 

researchers [23] developed a deep learning recognition technique based on time-domain data 

and the LOFAR spectrum. Underwater acoustic signal characteristics are frequently extracted 

using wavelet analysis, allowing for the acquisition of energy distributions with various time-

frequency resolutions inside a single spectrogram. Wavelet analysis was utilized to extract 

features from submerged audio sources. But the aforementioned feature extraction approach 

lacks flexibility in terms of handling various feature kinds since it uses a model with a set of 

parameters to extract the desired features. 

Moreover, In the previous studies, the training set was randomly selected from 80% of 

the feature samples. The training samples comprised records from all dataset. Even yet, the 

classifier will never see the sample it obtained from this record and may encounter recorded 

data of new vessels when it is actually in operation [5]. 

However, underwater dataset is limited and needs an approach to handle it. Researchers 

have worked on different methods related to small dataset. GAN, or generative adversarial 

networks, are an effective method to get around the problems that arise with working with 

small datasets. The generator and discriminator neural networks in a GAN are simultaneously 

taught through advertising. Without being aware of the target data, the erstwhile blind forger 

attempts to create samples from a low-dimensional latent vector to a high-dimensional vector. 

The latter, an investigator, determines if the generator's output is genuine or fraudulent. 

Following training, the generator may create believable examples that resemble the target 
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samples [25]. Generally speaking, GANs are unsupervised learning algorithms made to 

produce artificial data. They lack a mechanism by default for integrating labelled data, which 

is necessary for classification jobs. Classification performance may be impacted by biassed or 

inadequate representations of the classes as a result. GAN’s intrinsic instability makes them 

difficult to train. Instable training has the potential to impair model convergence and reduce 

classification efficacy. GANs might have trouble with unequal class. However, to address these 

problems, there are more methods that deal with small dataset which are not explored in domain 

of underwater classification.  

1.4 Problem Statement 

Underwater audio data is limited and not available due to security reasons. The scarcity 

of data used for classification can be addressed by either data augmentation or by extracting 

feature that are unique and diverse enough to recognize unseen data. Moreover, the feature 

extraction approach uses a model with a set of parameters to extract the necessary 

characteristics, it is not flexible enough to handle different kinds of features. Moreover, human 

mistake can always happen because it's a low automated operation that needs the operator to 

focus on a particular task [2-4].  

 

1.5 Research Questions 

i. What is the impact of using features only from Siamese network on accuracy? 

ii. What is the impact of applying different classification methods on Siamese network? 

1.6 Aim of Research 

This study aims to use the feature from Siamese networks to diversify feature extracted 

for recognition. Moreover, to enhance the accuracy and effectiveness of classifying underwater 

ship-engine audio signals using siamese networks compared to traditional classification 
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methods or other deep learning architectures. Siamese networks operate well in learning 

scenarios that include one or few shots and have a small amount of labelled data available. The 

idea would be to use the siamese architecture to learn from tiny datasets efficiently, without 

requiring large numbers of labelled samples. The main objective would be to outperform 

current techniques in the classification of underwater ship-engine audio signals. Moreover, the 

siamese network approach's performance would probably be compared in the study to baseline 

techniques like conventional machine learning classifiers. Through the accomplishment of 

these goals, the study hopes to further the development of underwater acoustic signal 

processing and classification methods, which may find use in a range of marine-related fields 

and enterprises. 

1.7 Research Objectives 

i. To propose the modified USCSN (underwater ship-engine classification using siamese 

network) with Siamese based feature extraction technique. 

ii. To evaluate the performance of the proposed model by incorporating different 

classification methods. 

1.8 Scope of Research: 

 Underwater classification methods are developing due to particular challenges in 

marine environment. Underwater ship identification and classification is crucial for maritime 

security operations, which include spotting and tracking vessel movements in restricted or 

sensitive areas, enforcing maritime laws and regulations, and stopping illicit activities like 

piracy, smuggling, and illegal incursions. 

Underwater ship classification systems are also used by port authorities and coastal 

security organizations to track marine traffic entering and leaving ports, spot suspicious or 

possibly dangerous vessels, and guarantee the protection of port infrastructure, ships, and 

workers. Furthermore, swift and precise ship classification can greatly increase the likelihood 
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that search and rescue operations will be successful. Especially in delicate marine ecosystems 

and protected regions, underwater ship categorization is essential to environmental monitoring 

and preservation initiatives. Authorities can prevent pollution events, evaluate the possible 

effects of maritime operations on marine environments, and enforce environmental restrictions 

to minimize harm to marine biodiversity by identifying and tracking ships. Underwater ship 

classification also provides information about the makeup and behavior of maritime traffic, 

which is useful for managing marine resources effectively. 

Encouraging scientific research into the undersea environment, preserving cultural 

legacy, safeguarding marine ecosystems, underwater ship classification, and sustainable marine 

resource management all depend on underwater ship classification. Authorities are able to 

maintain safe and responsible maritime operations while preserving the marine environment 

and its various ecosystems by precisely identifying and monitoring ships underwater. 

1.9 Research Organization: 

The thesis's remaining sections are arranged as follows:  

Following a brief history of the subject,  

Chapter 2 looks at analogous issues with underwater classification methods. A 

classification and discussion of the positive and negative aspects of the existing techniques are 

provided. A thorough operational working comparison of the several underwater network 

protocols is also given. Chapter 2 finally addresses the research gap that was utilized to create 

and refine the routing protocol.  

Chapter 3 focuses on overall work of underwater classification method. It discusses the 

problems and solutions for the existing underwater techniques. The flow of the operational 

framework is explained in detail in Chapter 3. It provides information on the parameters 

utilized in the simulation of the proposed method as well as the dataset description, proposed 

method layers, and classifiers explanation.  
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Chapter 4 dealt with performance simulation studies of the proposed model. We investigate 

the effects of applying several metrics for performance, such as accuracy, confusion matrix. 

Additionally, a comparison of the classifiers is provided, along with an explanation and a 

number of figures. SNE-plot that describe the effect of accuracy on proposed model. However, 

the ROC curve testing explains the true positive rate over the thresholds.  

 The work's principal discoveries and contributions are outlined in Chapter 5, along with 

some possible future possibilities. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Overview 

Deep learning technology is currently in demand across numerous industries. It has made 

a new path for the underwater acoustic ship engine classification. An integral component of 

this understanding pertains to sound, regardless of its natural or artificial origins [2]. When 

researching maritime biodiversity and conducting vessel monitoring, the challenge of 

identifying and categorizing pertinent sounds is crucial. 

As result, marine acoustic signature recognition enhances other ocean surveillance methods 

that rely on the classification of underwater images. It can even enhance maritime surface 

imagery from sources like drones or cameras. It is important to remember that underwater 

photography has a maximum depth of about fifty meters, yet sound waves in seawater can 

travel thousands of km. 

Researchers have worked on a number of projects over the years to identify vessel sounds. 

Sonars and operators skilled in identifying different kinds of vessels from sonar echo signals 

were first used for these tasks. However, since it's a low automated task that requires the 

operator to concentrate on a specific task, human error can always occur. Passive hydrophone-

based solutions are chosen for sustainability considerations, as active sonar-like systems are 

now known to pose a threat to various fish and cetacean species [3]. 

 

 



15 
 

  
 

2.2     Underwater Recognition Techniques 

Various technologies and approaches are used in underwater recognition techniques to 

recognize and classify objects, structures, or living organisms. These methods are essential in 

areas including oceanography, underwater archaeology, marine biology, and naval operations. 

Mostly, the scholars have used conventional neural network (CNN) to underwater acoustic ship 

engine classification [1].  

2.2.1 Deep Learning Techniques 

Vaz et al. [3] proposed CNN architecture with three convolutional layers and two fully 

connected layers. The underwater acoustic target detection framework was based on the 

combination of a CNN as the classifier and a mel spectrogram of the sound input with its first 

and second derivatives as features. Furthermore, this encourages the use of the method for real-

time classification by employing brief analysis windows. First the audio signals were converted 

into spectrograms. The first and second derivatives of the mel spectrogram can be added to the 

feature extraction process to add details on the dynamic behavior of the parameters along the 

frequency axis for cepstral coefficients. Before being transformed to decibels, the derivatives 

were calculated from the difference between the mel spectrogram coefficients along the 

frequency axis. The mel spectrogram of each recording is then subjected to a rectangular 

window function with a defined length in frames, which divides the mel spectrogram into a 

group of windows of the same size.  

The CNN architecture was used to classify the marine audios. Three convolutional layers 

and two fully connected layers make up the CNN architecture. 48 filters were used by the 

second and third convolutional layers, compared to 24 filters by the first. The zero-padding 

was equal to two, and the filter size is five by five. The stride of 1 was used by the filter to slice 

along the input. ReLU serves as an activation function in the first fully connected layer as well 

as the three convolutional layers. The SoftMax function was a common activation function in 

multiclass classification, is applied to the output layer. The number of classes is taken into 

consideration while sizing the fully connected output layer. The methodology was tested on 
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Ship-Ears dataset [5]. This dataset comprises of 90 acoustic recordings from 11 different ship 

types over a 15-to-10-minute period. They can be divided into four categories based on the 

types of ships, namely A, B, C, and D, and E for ambient noise, according to the annotation in 

the original dataset. Second dataset for generalization was marine dataset. Performance using 

Ship Ear’s dataset was better with the feature combination of the mel spectrogram and the first 

and second derivatives than with the mel spectrogram alone. The two model’s respective 

average accuracy was 88.8 percent and 83.2 percent. Second dataset was extended by using the 

data augmentation techniques. Three popular data augmentation techniques were used to 

artificially expand the dataset in order to balance the data on dolphins and humpback whales. 

Classification method CNN was also used for animal classification. The accuracy of animal 

classification was 78 percent. 

Hong et al. [4] proposed three step feature extraction technique Long Mel (LM), Mel 

Frequency Cepstral Coefficient (MFCC), Chroma, Spectral Contrast, Tonnetz, and Zero-cross 

ratio (CCTZ). A lot of effort goes into trying to separate manually created features from ship-

radiated noise and input them into various classifier types. One the one hand, Support Vector 

Machines (SVM) and Principal Component Analysis (PCA) techniques are commonly 

employed in the conventional machine learning feature extraction procedure. For instance, a 

strategy that uses SVM and the wave structure directly was proposed by researchers. Research 

was conducted on an extraction technique based on PCA and spectrum. 

Two features that were frequently utilized in Environment Sound Classification (ESC) tasks 

with acceptable performance were those obtained from Mel filters of Mel Frequency Cepstral 

Coefficients and Log-Mel Spectrogram (LM). The influence of MFCC and its first-order 

differential MFCC or second-order MFCC features was demonstrated for underwater acoustic 

target detection, despite the fact that such characteristics originate from the speech or sound 

field. Furthermore, a large body of research suggests that the fusion feature can provide a more 

thorough depiction of ambient noises. Researchers utilizes the fusion feature of zero-crossing 

wavelength, peek-to-peek amplitude, and zero-crossing-wavelength difference for the 

identification of underwater sound targets. The baseline machine learning approach for ShipEar 

[5] might be a GMM-based classifier trained using the conventional expectation maximization 

(EM) technique; this approach has the best classification rate at 75.4 percent. Given the low 

success rate of machine learning-based approaches, deeper learning model-based approaches 
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merit more investigation. An 84 percent accuracy rate was attained by a proposed feature 

optimization method that used Deep Neural Networks (DNN) and an optimizing loss function. 

For UATR, Deep Belief Nets were suggested. A UATR technique based on Restricted 

Boltzmann Machine achieves 93.17 percent accuracy on the ShipEars dataset [5]. The 

methodology was tested on Ship-Ears dataset [5]. This dataset comprises of 90 acoustic 

recordings from 11 different ship types over a 15- to 10-minute period. They can be divided 

into four categories based on the types of ships, namely A, B, C, and D, and E for ambient 

noise, according to the annotation in the original dataset. Warping the features, masking blocks 

of frequency channels, and masking blocks of time steps make up the augmentation policy. The 

ShipEar dataset's accuracy findings of 94.3 percent demonstrated that the suggested method 

achieved state-of-the-art accuracy. 

Han et al. [2] proposed joint neural network that combines a large short-term memory 

network with a one-dimensional convolutional neural network. Deep neural networks 

automatically extract deep information to identify underwater audio targets. New methods were 

put out over time to increase the categorization accuracy of underwater sound targets. For the 

purpose of training a deep belief network, researchers employed a competitive learning process 

on the spectrum of ship radiated noise to improve the cluster performance. Based on the 

cepstrum, a convolutional neural network (CNN) was suggested for the simultaneous detection 

and range of broadband acoustic noise sources. Subsequently, a deep autoencoder neural 

network and a deep long short-term memory (LSTM) network were integrated to categories 

the ship-radiated noise spectrogram. Additionally, a multimodal deep learning approach was 

put forth, using the ship-radiated noise spectrogram as the input for the acoustic modality.  

A combined model for underwater acoustic target detection was put forth, based on a 

waveform and a T-F mode. Two divisions of the model are T-F and wave branches. As the core 

of the T-F branch, ConvNeXt was an advanced lightweight deep neural network. To train the 

joint model, a synchronous deep mutual learning approach based on deep mutual learning 

(DML) was presented. In order to recognize underwater acoustic targets, the suggested joint 

model may automatically learn to extract deep characteristics from each branch and incorporate 

heterogeneous modes. Real-world scenario datasets were utilized to confirm the efficacy of the 

suggested model. The optimal recognition accuracy of 85.20 percent was attained by the joint 

model utilizing synchronous deep mutual learning. This was enhanced by 2.05 percent using 
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the MSRDN and 1.25 percent using the separable convolution autoencoder (SCAE). 

Wavebranch's core was suggested to be a lightweight MSRDN. The primary focus was on 

designing a lightweight framework based on the original redundancy architecture. Two datasets 

were used to evaluate the performance of proposed model. The ONC dataset was created by 

Ocean Networks Canada. Following the label system, the ONC dataset was divided into four 

target groups, each with roughly 62.5 hours of recordings. The first twelve months' worth of 

recordings are utilized for training, while the rest are used for testing. A dataset for underwater 

acoustic benchmarking called DeepShip was been proposed. DeepShip was made up of 47 

hours and 4 minutes of actual underwater recordings from 265 distinct ships that fall into four 

categories. Another source of the data was Ocean Networks Canada. 

To improve the recognition impact, they retrieved many features for feature fusion as the 

network input. They employed three characteristics that were frequently used in music theory 

in addition to more classic ones like Mel-spectrogram and Mel-Frequency Cepstral 

Coefficients: chromatogram, spectral contrast, and tonnetz. The methodology was tested on 

Ship-Ears dataset [5].  

Hu et al. [6] proposed Deep convolutional neural networks and ELM, a technique for 

feature extraction and identification of data on underwater noise. Deep convolutional neural 

networks are neural networks that have two or more convolutional and sampling layers 

throughout the whole network. 

Lou et al. [7] proposed a target recognition approach based on integrated characteristics 

with automated coding and reconstruction in order to categories ship-radiated noise signals. A 

feature extractor based on auto-encoding was created in the proposed recognition approach. 

The feature extractor automatically encodes the combined data of the power spectrum and 

demodulation spectrum of ship radiated noise without supervision and extracts the deep data 

structure layer by layer to produce the signal feature vector using the restricted Boltzmann 

machine (RBM). To achieve target recognition, a Back Propagation (BP) neural network 

receives the extracted feature vector. The extended sample set was created using a method of 

data augmentation developed by RBM auto-encoder, which boosts the performance of the 

recognition system. 
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Doan et al. [8] suggests a productive method for classifying UA signals that makes use of 

a dense convolutional neural network (CNN) that was skillfully built to automatically learn 

representative features without the need for domain transformation and feature engineering 

expertise. In practical terms, the network architecture utilising the skip-connection technique 

permits the network to reuse all previous feature maps generated at multiscale representations. 

In order to identify 12 kinds of UA signal, proposed model examines a deep neural network 

with dense architecture called underwater acoustic target classification DenseNet (UATC-

DenseNet). A fibre receiver on the ground retransmits data from optical to local area network 

(LAN) transmission. Following that, the signal data are kept in a multistore device that has 

three hard drive discs. A switch in the multistore enables the surveillance system to access and 

examine either the stored data set or the real-time signal.  

The data set was splitted into 70 percent for training and 30 percent for testing at random. 

In the initial investigate, where the size of 1-D kernels configured in the convolutional layers 

varies in the set, the impact of the kernel size parameter on the overall accuracy is thoroughly 

examined. The model classifies more accurately the higher the kernel size. Many temporal 

correlations are then recorded at various feature representations and subsequently merged using 

the astutely used skip-connection strategy in UATCDeepNet. Expanding the network to three 

convolutional blocks results in a notable improvement in accuracy, with an approximate 

improvement of 1.90 percent of the mean. The suggested network significantly outperforms 

several well-known machine learning techniques in the final experiment, such as random 

forest, DT with ten compact classification trees and KNN. Tenfold cross validation was carried 

out using the 14 features that the MFCC approach had collected. By means of a passive sonar 

system's performance evaluation on our real-world data set, the suggested CNN-based 

classifier achieves a classification rate of up to 98.85 percent.  

Xiao et al. [9] an attention module was used to look into the neural network's inner workings 

and a target recognition attention-based neural network (ABNN) was developed for the 

pressure spectrogram with multi-source interference. To interpret the classification concept of 

DNN, an attention-based neural network was presented for underwater audio target detection. 

An attention module was included in the ABNN architectures as a preliminary step before a 

conventional DNN made up of connected layers. The attention module mines useful 

information from the input spectrum using a trainable attention vector layer, a Gaussian layer, 
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and a merge layer. It then outputs attention maps in real time to show the frequency zones of 

importance. The fully linked layers function as a classifier to complete particular jobs, like 

target identification and detection. The performance was assessed using the South China 

dataset. An experiment measuring ship-radiated noise was carried out in the South China Sea's 

shallow waters.  The experimental area's seabed topography. With their main and auxiliary 

engines deactivated, two experimental ships, A and B, floated at either end point or travelled at 

a speed of three meters per second along tracks 1 and 2. Both of the lines have a comparatively 

level bathymetry. Eighty meters below the surface, a hydrophone was set up as a submersible 

buoy. The source was located between 1-4 km away from the hydrophone, with a water depth 

of 120-134 meters. The spectrograms show that over 17 interfering vessels were found in the 

experimental area by the radar and automatic identification system (AIS), which has an 11 km 

detection range. In this study, target detection and recognition from a pressure spectrogram are 

carried out utilizing ABNN in the face of multi-source interference. Two-second windows were 

chosen, zero-padded, and short-time Fourier converted for a portion of the near-field signal 

data recorded at 12 kHz. As a result, the signal data were imported into a spectrum dataset of 

1254 frames. Just 245 frequencies between 10 to 100 Hz were selected as the input features for 

the DNN due to the importance of low-frequency characteristics of ships. Based on data 

collected during a sea experiment in September 2020, the ABNN demonstrated a steady 

concentration on the target ship's frequency domain feature and suppressed background noise 

and interference from other marine vessels. The model controls the sensitivity of frequency 

components by weighting the input features with a dense layer of length 248 that was activated 

by SoftMax. The focus on target characteristics and suppression of multi-source interference, 

the visualization of problematic features during target detection or recognition, the ability to 

resolve multiple targets using only single-target data, and the model's suitability for use as a 

dedicated feature extraction model are the characteristics that define ABNN. As the training 

loss steadily drops throughout DNN training, the ABNN progressively concentrates its learning 

on the features that are highly connected with the training objectives. The ABNN performs well 

in multi-target resolution and target detection and recognition. The class was defined as the 

highest value among these components. The test datasets showed 98.0 percent and 97.3 percent 

detection accuracy after twenty thousand epochs. 

Jiang et al. [1] proposed the modified DCGAN model to supplement data for targets with 

small sample sizes. They focused on investigating on the classification of underwater targets 
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using a deep learning algorithm. We have presented the modified DCGAN model to enrich the 

underwater target dataset by creating fake data with high quality and variety based on genuine 

target data, thereby addressing the issues of short sample size and imbalanced categories of 

underwater target data. For underwater target categorization, we have presented the S-ResNet 

model, which combines CNN with SqueezeNet, a popular kind of lightweight neural network. 

They discovered that our suggested model achieves high classification accuracy at a 

considerable reduction in model complexity. The primary goal was to suggest a modified 

DCGAN model to supplement underwater target data, which might enhance the training 

stability and quality for underwater targets with a small dataset. Additionally, an S-ResNet 

model was presented in order to achieve good classification accuracy at a large reduction in 

model complexity. Furthermore, field tests involving five distinct categories of submerged 

targets have been conducted to confirm the efficacy of suggested models. 

They had created a new fire module as the constructive unit block for the S-ResNet 

classification model, which was inspired by the concept of the SqueezeNet fire module. 

Through convolutional kernel decomposition and compression ratio hyperparameter, the S-

ResNet classification model can further enhance the performance of quantitative neural 

networks without adding more CNN parameters. Less parameters are a benefit of the S-ResNet 

classification model over the traditional convolutional neural network. In the suggested model, 

SoftMax was combined with the cross-entropy loss function.  Measured data from lake and sea 

trials were used to demonstrate the efficacy of the proposed models. Three distinct locations in 

China were used for the experiments, Jiao Zhou Bay in Shandong Province, Yangjiahe 

Reservoir in Shaanxi Province, and Danjiangkou Reservoir in Henan Province. Five distinct 

target types are represented by the data gathered: a motorboat, two different kinds of ferries, a 

speedboat, and a frogman. Naturally, with more generated trained data, the frogman's 

classification accuracy improves dramatically from 83.6 percent to 94.8 percent. Furthermore, 

despite the fact that no further trained data are produced for these targets, the classification 

accuracy of other targets was either maintained or increased by 4.3 to 2.5 percent. However, 

because of the extremely limited energy resources and hassle of changing batteries in an 

underwater environment, even though the proposed model has greatly decreased model 

complexity, the complexity still needs to be further lowered for practical implementations. 
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The researchers [10] proposed feature extraction using the GRU-CAE collaborative deep 

learning network, template creation, and template matching are included as three stages. The 

sample set of underwater acoustic targets includes a restricted number of categories of targets, 

each of which has a specific label. In addition, the sample set of underwater acoustic targets 

includes categories of unknown labels, which can be either finite or infinite. The goal of 

underwater acoustic target open set identification was to identify specific subsets of underwater 

acoustic targets while rejecting recognition of subsets with uncertain labels. 

There are three basic steps in the underwater acoustic target open set recognition process 

using the GRU-CAE cooperative deep learning network. In order to extract the deep 

collaboration features, the GRU-CAE cooperative deep learning network must first be built, 

and its parameters must then be optimized by training. Deep collaborative features are the name 

given to the deep features. The feature template was built in the second step. The feature 

template was computed as the mean of the deep collaborative features of the training set 

samples. Thirdly, open set identification using template correspondence. European template 

matching distance, or Euclidean distance, was calculated between the test set's deep 

cooperative features and the feature template. The category of the test set samples was then 

determined by choosing the optimal thresholds. The primary determinant of underwater 

acoustic target open set identification performance was the intra- and inter-class compactness 

and separability of deep collaborating characteristics. Consequently, in order to extract deep 

collaborative features with improved intraclass compactness and interclass separability, GRU 

and CAE networks are chosen to construct a collaborative network. The performance of the 

suggested method's recognition was tested using experimental data from 5 different types of 

underwater sound targets. 

Three forms of ship radiated noise and marine environmental noise are present in the 

training set data and the closed set test set; four types of ship radiated noise and marine 

environmental noise are present in the open set test set. The open set test set now includes a 

class of data E that did not exist in the training set.  Additionally, distinct people from the same 

class are included in both the training and test sets, and the marine background noise in each 

set was captured at a different time. Every kind of ship emitted noise, and these data were 

gathered from several different ships. Every ship's radiated noise sample lasts for one second. 

The training set contains every ship class of the closed set recognition test. The three different 
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collaborative network types have closed set identification accuracy that was 2 percent to nine 

percent greater than that of the CNN or GRU network models. 

Authors of [11] developed a ResNet-based underwater acoustic target recognition (UATR) 

technique. The classic time-frequency (T-F) analysis method struggles to simultaneously 

extract different signal characteristics, therefore the proposed method uses a multi-window 

spectral analysis (MWSA) method to overcome this problem. For the classifier's input, MWSA 

performs multiple window processing to create spectrograms with various T-F resolutions. The 

methodology was tested on Ship-Ears dataset [5]. This dataset comprises of 90 acoustic 

recordings from 11 different ship types over a 15- to 10-minute period. They can be divided 

into four categories based on the types of ships, namely A, B, C, and D, and E for ambient 

noise, according to the annotation in the original dataset. A conditional deep convolutional 

generative adversarial network model was created for high-quality data augmentation due to 

the insufficient amount of ship-radiated noise sample. 

In [13] proposed cross entropy loss function based on trigonometric function to solve 

imbalanced dataset.  Authors in [14] proposed an underwater acoustic target multi-attribute 

correlation perception method based on deep learning. The attributes include ship types, ship 

size, propeller type, etc. Researchers [15] also focuses multi-attribute and using its power 

spectral density for signal energetics, temporal coherence for machinery tonal sound, and 

spectral coherence for propeller amplitude-modulated cavitation noise, the underwater sound 

emitted by a ship with a variable pitch propeller was examined and measured. Tonal signals 

that are frequency modulated are likewise described in terms of frequency variations. 

Ayvaz et al. [12] proposed the zero-crossing extraction and used energy level detection in 

order to identify areas that were voiced or unvoiced in the recorded speech signal. The voiced 

signals were discovered and used for segmentation. Furthermore, each segmented window was 

subjected to the MFCC technique. The MFCC data that had been retrieved were also utilised 

as training inputs for neural networks. The Mel Frequency Cepstral Coefficients (MFCCs), 

which are employed in a number of speech processing approaches, could potentially serve as 

the foundation for the feature extraction method. For identifying underwater audio data, 

MFCCs may be modified [16]. 
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Researchers in [22] suggested an approach based on CNN and ELM for the feature 

extraction and identification of underwater noise data. Depth convolution network was used to 

provide an autonomous underwater acoustic signal feature extraction approach. An extreme 

learning machine was the foundation of an underwater target recognition classifier. 

Convolution neural networks are capable of performing both feature extraction and 

classification, but their primary function depends on a full connection layer that was trained 

using gradient descent; as a result, their ability to generalize is limited and suboptimal, 

necessitating the use of an extreme learning machine (ELM) during the classification stage. 

CNN removes the fully connected layers after first learning robust and deep features. To 

perform an excellent classification, ten ELM fed with CNN features was utilized as the 

classifier. In comparison to the conventional Mel frequency central coefficients and Hilbert-

Huang feature, the recognition rate improved significantly in experiments conducted on the 

real data set of civil ships, yielding a 93.04 percent recognition rate. Xinwei Luo et al. [23] 

gives the comprehensive survey of underwater acoustic target classification methods. The 

current tendency in UATR development was to mix machine learning techniques with manual 

characteristics, owing to the scarcity of training data. In the study, feature extraction techniques 

and their corresponding properties for underwater audio target recognition were presented.  

Sometimes underwater dataset is limited and need to expand for the features extraction 

process and proper evaluation. Ashraf H et al. [24] focuses on expanding dataset using 

generative adversarial network and then extract features. Researchers also used basic audio 

features to extract useful features for the classification of audio files [18-21]. 

2.2.2 Siamese Network 

A popular method of neural network architecture that is intended to recognize and 

distinguish between input pairs is the Siamese network. It is frequently employed for a variety 

of applications, including facial recognition, signature verification, picture similarity, 

classification and identification. The network as shown in figure 2.1 is made up of two identical 

subnetworks called twins that have the same characteristics and weights. The two input samples 

(anchor and positive) are processed by these subnetworks, which result in embeddings. Making 
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the embeddings of dissimilar inputs (negative pairs) far apart and comparable inputs (positive 

pairs) close to one other is the aim [17].  

 
 

 

 

An expansion of the Siamese network, the Siamese triplet network is made to learn 

embeddings for three input samples: an anchor, a positive example that resembles the anchor, 

and a negative example that differs from the anchor. The objective was to maximize the 

distance in the embedding space between the anchor and the negative example and minimize 

the distance between the anchor and the positive example. Common applications of this kind 

of network include picture retrieval, face recognition, and human re-identification. 

Dali Liu et al. [17] proposed Siamese Network that includes two identical one-

dimensional convolutional neural networks, which was capable of identifying envelope 

modulation on noise (DEMON) spectra of noise emitted by underwater targets. While the 

conditions of the samples that were obtained were quite uniform, the parameters of the 

underwater samples varied greatly. Conventional underwater target recognition involves 

expensive multi-state sample network training. This article used samples from a single state to 

train the network. Being able to recognize samples with various parameters was anticipated. 

Target datasets with various Doppler shifts, signal-to-noise ratios, and interference levels were 

created in order to assess how well the suggested Siamese network generalized. The 

experimental results demonstrated that the suggested network's classification accuracy reached 

95.3 percent when it came to identifying samples with Doppler shifts. The classification 

accuracy for SNRs was 85.5 percent. The suggested model's exceptional generalizability 

demonstrates its applicability for real-world engineering applications. 

Figure 2.1: Siamese Network architecture [17] 
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Xingping Dong et al. [25] proposed a unique triplet loss to extract expressive deep 

feature for object tracking by incorporating it into the Siamese network architecture in place of 

pairwise loss for training. Their method was able to combine the original samples with 

additional parts for training, resulting in a more robust feature without the need for additional 

inputs. In addition, they provide a theoretical study that combines back-propagation with 

gradient comparison to demonstrate the efficacy of our approach. We use the suggested triple 

loss for three Siamese network-based real-time trackers in our studies. Furthermore, our 

variations outperform baseline trackers on a number of well-known tracking criteria, operating 

at almost the same frame rate and achieving comparable accuracy to more modern, state-of-

the-art real-time. 

A new approach was put up by Bhrugu Bhatt et al. [26] to use Few-Shot Learning, a 

machine learning technique that performs binary classification using a small support set, to 

tackle a two-fold challenge. Due to patient privacy concerns, traditional machine learning 

techniques use very large medical training datasets, which can result in expensive computing 

costs. In addition, convolutional neural networks (CNNs) like VGG19 and GoogLeNet were 

contrasted to see if FSL on the CNMC dataset resulted in any appreciable improvement. After 

10 epochs of training, our Siamese network currently has an 85 percent testing accuracy. But 

transfer learning has also demonstrated that it was possible to achieve excellent accuracy rates 

with little data and less computationally demanding training. GoogLeNet and VGG-19, which 

were trained for 50 epochs with image transformation preprocessing, yielded accuracy rates of 

99 percent and 96 percent, respectively.  

Siamese network achieved about 99 percent accuracy in different tasks such as face 

recognition, detection of remote sensing images, verification system [27-31].  The goal of 

auditory-to-score alignment was to produce an exact mapping between a performance's audio 

and the composition's score. Conventional alignment techniques rely on Dynamic Time 

Warping (DTW) and use manually designed characteristics that aren't adjustable to suit various 

acoustic circumstances. Ruchit Agrawal et al. [32] proposed the technique that uses audio to 

assess alignment and learnt frame similarity to get over this restriction. Their main focus was 

the offline audio to piano score alignment. Experiments conducted on music data from various 

acoustic settings show that our method provides stable alignments while being flexible enough 
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to be used to different domains. It also achieves higher alignment accuracy than a traditional 

DTW-based method that relies on handcrafted characteristics.  

Abbas A et al. [33] presented a method for kinship recognition that combines a Siamese 

network with a pre-trained LAT model. The comprehensive experimental outcomes were 

employed to verify the efficacy of their suggested paradigm. Additionally, their model 

surpassed the state-of-the-art models that were previously used using a similar technique, as 

seen by the comparative study with previously conducted studies, yielding an overall accuracy 

of 76.38 percent. Loris Nanni et al. [34] create a dissimilarity space by combining a Siamese 

neural network with several clustering methods. This space was then utilized to train an SVM 

for automated animal audio classification. The two animal audio datasets that were utilized are 

the publicly available bird and cat noises. Utilizing several clustering techniques, we reduce 

the dataset's spectrograms to a number of centroids, which are then utilized to create the 

dissimilarity space via the Siamese network. Their research demonstrates that the suggested 

dissimilarity space-based strategy works effectively on both classification tasks without the 

need for ad hoc clustering method optimization. 

In order to enhance the fine-tuning performance, a semi-supervised strategy based on 

the similarity of deep features was proposed by Shengzhao Tian et al. [35]  for mining and 

labelling partial unlabeled samples. Four underwater acoustic target recognition models have 

their performance baselines created based on a series of short sample datasets with varying 

amounts of labelled data. Using the suggested framework significantly enhances the 

recognition effect of four models as compared to the baselines. Xiao Cheng et al. [36] proposed 

an innovative deep learning technique that abstracts time-domain signal characteristics was 

examined using a hybrid routing network. Because the learned properties of various branches 

are exchanged, the used network, which has several routing structures and possibilities for the 

auxiliary branch, promotes outstanding effects. The experiment demonstrates that the 

employed network has greater advantages when it comes to the task of classifying underwater 

signals. Honka T et al. [37] proposed a method on one-shot learning with Siamese networks 

for audio in the environment and results proved that it was the valid approach for classifying 

the environment audio. Siamese network achieves 98 percent in underwater visual loop 

detection [38]. In order to address the issues with the current conventional MOTs, Lee et al. 

[39] suggest a new MOT system. To overcome the structural simplicity, the feature pyramid 

https://www.nature.com/articles/s41598-023-44641-2#auth-Shengzhao-Tian-Aff1
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Siamese network was suggested. The feature pyramid network (FPN) served as the model for 

the FPSN, which expands the Siamese network by creating a new multi-level discriminative 

feature and applying FPN to the basic Siamese design. As a result, FPSN-MOT takes motion 

information into account in addition to appearance features. Lastly, the public MOT challenge 

benchmark problems are used to test FPSN MOT, and the results are compared to those of other 

techniques.  

Their study suggests a Siamese distillation network to increase tracker efficacy in 

maritime conditions. Comprehensive experimental findings show that this network works 

better than other trackers in terms of accuracy.  To be more precise, this network outperformed 

other Siamese networks with an accuracy value of 0.612, which increased its performance over 

the baseline network by 2.5 percent [40]. Dawkins et al. [41] introduces the FishTrack23 

dataset, which offers a vast amount of expertly annotated fish ground truth tracks in images 

and videos that were gathered from a variety of diverse backgrounds, places, gathering 

circumstances, and organizations. A lightweight Siamese network based on a hybrid excitation 

model was suggested by [42] as a solution to the mismatch between deep learning models and 

limited characteristics underwater objects. Yin et al. [43] uses five categories to group 17 well-

known trackers, and five data sets to evaluate each tracker's performance using Siamese 

Network. Tracking algorithm was used for the Siamese Region Proposal Network [44].  

Zhang et al. [45] proposed a new Siamese anchor free network that utilizes an enhanced 

head network and crisscross attention. The template image and search region's features are 

extracted using ResNet-50, and the feature maps were then fed into a recurrent attention module 

to improve discrimination. Their modified head network receives the improved feature maps 

as input. Regression branches were used to remove low quality bounding boxes. Chen et al. 

[46] proposed pseudo-Siamese neural network that was specialized for underwater noise 

characteristics and was based on self-supervised picture denoising. In addition, the pyramid 

hierarchical structure was intended to simultaneously take into account feature information 

under various scales, which helps to reduce image noise. Their model was capable of greatly 

reducing the noise resulting from the scattering of undersea contaminants. [47-52] Siamese 

Network shows state-of-art performance in object tracking. 
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The authors of [53] demonstrates that employing a variation of the triplet loss to achieve 

end-to-end deep metric learning works far better than the majority of other published 

approaches for both pretrained and newly trained models. Three primary sections comprise 

their experimental evaluation. The initial segment assesses various iterations of the triple loss, 

encompassing certain hyper-parameters, and determines the optimal configuration for 

individual ReID. They conduct the evaluation on a train/validation split that they construct 

using the MARS training set. The performance they can achieve depending on the chosen 

triplet loss variant. On the CUHK03, Market-1501, and MARS test sets, they presented state-

of-the-art results using both a pretrained and a freshly trained network. The many triple training 

variations are tested in their early experiments. They randomly sampled a validation set of 

roughly twenty percent of people from the MARS training set so as to avoid doing model-

selection on the test set, leaving the remaining eighty percent people for training. The 

researcher conducted all of these tests using the smaller LuNet, which was trained from scratch 

on photos that had been downscaled by a factor of two in order to make this exploration 

tractable. In their trials, they did not undertake any data augmentation because their aim was to 

investigate triplet loss formulations rather than achieve optimal performance. 

One of the greatest text classification techniques was the kNN algorithm, which was a 

well-known pattern recognition technique. It was among the most straightforward machine 

learning methods for categorization. The paper [54] provides an overview of the kNN algorithm 

and its related literature, delves into the algorithm's concept, steps, and implementation code, 

and evaluates the benefits and drawbacks of the several improvement strategies. The evolution 

of the kNN algorithm, as well as significant published publications, were also introduced. Main 

concept of kNN algorithm was, the k neighbors who were closest to the sample data to be 

sorted were identified by calculating the distance between the sample to be sorted and the 

training sample of the known category. The categories to which the neighbors belong decide 

which categories the sample data to be sorted falls into. The selection of the value of k was 

crucial. 

If the value of k was too large and the sample's classification belongs to the training set, 

which contains fewer data classes, then the fact was not similar to the training set when 

choosing k neighbors. Similarly, if the K value selection was too small, the number of neighbors 
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was too small, which would reduce the classification accuracy but also amplify the noise data 

interference. The algorithm was best for classification tasks as well as regression. 

Unlike the image recognition field, underwater audio target detection lacks the vast 

quantity of high-quality labelled samples needed to train robust deep neural networks. 

Additionally, gathering and annotating a large number of base class data in advance was 

challenging. Consequently, it was challenging to utilize traditional few-shot learning 

techniques for underwater audio target detection. The research in [55] proposed learning 

framework for underwater acoustic target recognition model with few data, modelled after 

advanced supervised learning frameworks. In the meantime, a semi-supervised adjusting 

approach based on the similarity of deep features was proposed to enhance the performance by 

mining and labelling of partly unlabeled samples. Four underwater acoustic target recognition 

models had their performance baselines created based on a series of short sample datasets with 

varying amounts of labelled data. Using the suggested framework significantly enhances the 

recognition effect of four models as compared to the baselines. In particular, the joint model's 

recognition accuracy was improved from the baselines by about two percent to twelve percent.  

Model dependence on the number of labelled samples can be effectively reduced when 

the model performs better on just ten percent of the labelled data than it does on the entire 

dataset. The issue of underwater acoustic target recognition lacking labelled samples was 

resolved. 

2.3 Applications of Siamese Network 

 Siamese network-based underwater ship-engine classification has great potential for a 

wide range of applications across multiple sectors. A key use case is maritime security, where 

precise categorization of ship-engine noises can help identify and track questionable vessel 

operations, unapproved incursions, or possible security risks in delicate maritime areas or 

territorial seas. Siamese network-based categorization systems help to improve maritime 

domain awareness and protect vital maritime assets and infrastructure by offering early 

detection and alerting capabilities. 
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 Underwater ship-engine categorization also has uses in environmental protection and 

monitoring. Researchers and environmental authorities can evaluate the effects of maritime 

traffic on marine ecosystems, identify regions of high ecological importance, and put policies 

in place to reduce pollution, habitat degradation, and disturbance of marine species by 

examining the acoustic signatures produced by ship engines. Furthermore, by categorizing 

ship-engine noises, environmental standards can be more easily monitored and enforced, 

promoting environmentally friendly maritime practices and reducing the negative impacts of 

human activity on marine habitats. 

 Siamese network-based classification algorithms are also useful for scientific research, 

monitoring fisheries, and managing marine resources. Authorities can effectively detect and 

control maritime traffic, enforce fishing rules, and evaluate the effects of anthropogenic 

activities on fish stocks and marine environments by accurately distinguishing ship types and 

activities based on their acoustic signatures. Furthermore, underwater ship-engine 

classification advances marine science, oceanography, and underwater technology by offering 

insightful information about marine spatial patterns, ocean currents, and underwater acoustic 

environments. All things considered, the great range of applications highlights the significance 

and possible social advantages of underwater ship-engine classification with Siamese 

networks. 

2.4 Comparison of Underwater Classification Techniques 

Researchers have conducted much study in the field of underwater classification 

methods and classifiers, as evidenced by the survey and literature mentioned above. Feature 

extraction techniques have greater impact on model’s performance. However, the selection of 

dataset and classifier have also impact on accuracy. Table below shows the summary of 

proposed models, dataset selection and their limitations. 
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Table 2.1: Summary of models  

Ref Proposed Model Dataset Limitation 

[3] Feature extraction mel-

sepctogram+ 1st 

derivative+ 2nd derivate 

 Classification by CNN 

CNN acts as classifier 

ShipEars data set 

including 11 types of 

ships, 5 classes 

This dataset comprises of 

90 acoustic recordings 

from 11 different ship 

types over a 15- to 10-

minute period. They can 

be divided into four 

categories based on the 

types of ships, namely A, 

B, C, and D, and E for 

ambient noise, according 

to the annotation in the 

original dataset. 

When using the first and 

second derivatives of the Mel-

spectrogram to integrate it for 

feature extraction, 

dimensionality and 

computational complexity are 

increased, which may result in 

overfitting. Because 

derivatives are susceptible to 

noise, interpretability and 

classification performance may 

suffer. This method may lose 

information and ignore fine-

grained details while capturing 

temporal dynamics, which 

could reduce the ability of 

derived features to 

discriminate. 

[2] Five Feature extraction 

techniques  

Classification using 

Joint CNN-LSTM 

The intricate architecture and 

large number of parameters in 

the CNN-LSTM combined 

model for classification may 

cause overfitting. Its scalability 

and applicability in real-time 

applications may however be 

limited by the substantial 

computer resources needed for 

training and inference. 

[4] Log Mel+ MFCC 

+CCTZ as feature 

extraction method 

ResNet as classifier 

ResNet-18 because of its 

complex architecture, it needs 

a lot of memory and processing 

power. 

[5] Cepstral coefficients as 

feature extraction 

method   

GMM as classifier 

The efficacy of the GMM 

classifier is limited for non-

Gaussian or complicated data 

distributions since it assumes a 

Gaussian distribution within 

each class. 

[7] Restricted Boltzmann 

Machine as feature 

extraction 

RBMs' computationally 

demanding training procedure 

and sensitivity to 

hyperparameters might cause 

them to converge slowly and 

have trouble training with 

large-scale datasets. 
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[11] ResNet based UTAR 

Multi-window spectral 

analysis as feature 

extraction  

 

Overfitting may result from 

multi-window spectral 

analysis's increased feature 

dimensionality and 

computational overhead. 

Furthermore, it can be difficult 

to choose the right window 

sizes and overlaps, which 

affects how robust the 

extracted features are across 

various datasets. 

[6] CNN ad ELM as 

feature extraction 

technique 

Civil ship dataset The random initialization of 

hidden layer weights is a 

crucial component of ELM's 

performance, and it can result 

in less-than-ideal outcomes or 

uneven performance between 

runs. 

[1] DCGAN model 

S-ResNet as classifier 

There were five distinct 

target types: a motorboat, 

a speedboat, two types of 

ferries, and a frogman. 

Because there are extremely 

little energy supplies available 

and changing batteries in an 

underwater environment is 

inconvenient, the complexity 

was not fully decreased for 

practical applications. 

[8] UATC-DenseNet 

model 

 

11 UA signals, one with 

noisy blank signal, 

consisting 4096 samples 

 

The dense connectivity 

network of the UATC-

DenseNet model may lead to 

greater computational 

complexity and memory needs, 

which could limit its scalability 

to big datasets or resource-

constrained contexts. 

[9] Attention based neural 

network 

Ship A and Ship B audio 

recorded in South China 

sea, consisting 1254 

frames 

Due to the added attention 

mechanisms, attention-based 

neural networks may be more 

computationally expensive and 

difficult to train, which could 

restrict their scalability and 

efficiency. 

[10] GRU-CAE 

collaborative deep 

learning network 

 

5 kinds of acoustic 

targets 

 

The GRU-CAE collaborative 

deep learning network may 

experience difficulties 

optimizing the recurrent and 

convolutional components 

simultaneously, which could 

result in inferior performance 

or possible convergence 

problems. 
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2.5   Research Gaps and Directions 

In the area of processing underwater acoustic signals, the classification methodology of 

these signals has always been an important study topic. Although comprehensive research has 

been made in this field, there are still some research gaps and directions that can be investigate. 

Through the extensive review on literature, here are some: 

i) Dataset Challenges: Addressing the scarcity of extensive and varied labelled datasets 

for the classification of underwater acoustic classification. Usually, the dataset is not 

available for security reasons. Establishing and disseminating uniform datasets for the 

purpose of comparing various techniques and methods.  

ii) Adaptation to Underwater Environments: Building deep learning models with 

features tailored to address the difficulties posed by underwater acoustic data, including 

signal attenuation, fluctuating environmental conditions, and background noise 

[26] Few-shot learning, 

VGG-19  

CNMC (cancer patients’ 

dataset) 

VGG-19's deep architecture 

and numerous parameters may 

result in high computational 

costs and memory needs, 

making it impractical for real-

time or resource-constrained 

applications. 

[34] A Siamese neural 

network + various 

clustering methods 

SVM as classifier 

Bird and cat audios Have difficulties interpreting 

the learnt representations and 

figuring out the ideal number 

of clusters, which could result 

in less interpretable models and 

worse-than-ideal clustering 

outcomes. Furthermore, adding 

computational overhead and 

complexity by combining 

Siamese networks with 

clustering may prevent 

scalability for big datasets or 

real-time applications. 



35 
 

  
 

iii) Transfer Learning: Examining how well pre-trained models perform on generic 

acoustic tasks when using transfer learning approaches to improve underwater acoustic 

categorization performance. 

iv) Robust Feature Extraction: Enhancing the flexibility of feature extraction techniques 

to shifts in source-receiver geometry, species behavior, and environmental fluctuations 

are key components of robust feature extraction. Diversify enough the features that can 

be easily classified by classifier. Establishing new methods for feature extraction for 

better performance.  

v) User Feedback Integration: Creating systems that are capable of taking into account 

user input and using human knowledge to enhance model performance and adjust to 

shifting underwater circumstances. 

2.6 Summary 

 The latest techniques for underwater classification and siamese network for recognition 

is discussed in this chapter. We have done the critical analysis of various techniques and 

conclude that the research mainly emphasis on modification of feature extraction techniques. 

Integration of different techniques lead to higher accuracy, however, increase in cost, time and 

complexity. In addition, a tabular representation of the models, datasets used, and drawbacks 

has been provided for comparison. Research gaps in earlier studies have also been mentioned, 

along with topics for further research.  
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CHAPTER 3 

METHODOLOGY 

 

 

3.1   Overview 

A new method of classification of ship-engine audios based on Siamese Network is 

designed and developed in this chapter. The primary objective of this study is to develop a 

technique for diversifying the features using a simple network so that the classifier can easily 

classify the correct labels for audios. Reducing the concept of multiple feature extraction 

techniques and deploying a network which will be used as feature extraction. The performance 

evaluation is checked on ShipEars [5] dataset.  The research strategy outlined in this chapter is 

thought of as an initial step that provides guidance for subsequent actions in order to meet 

predetermined goals. 

3.2   Proposed USCSN Model 

 The proposed underwater ship-engine classification using siamese network has been 

used take ship-radiated noise as input and convert them into spectrograms. The short time 

fourier transform (STFT), which produces a spectrogram, a two-dimensional (2D) image with 

the frequency content of the noise signal changing over time, will create the feature space [3]. 

STFT (Short-Time Fourier Transform) is more suitable for spectrograms as it is the 

compromise between time and frequency resolution that works with non-stationary signals. 

The STFT affords a so-called time-frequency localization, which works for high frequencies 

with better time resolution and low frequencies with better frequency resolution. While the 

Wigner-Ville Distribution (WVD) can get a high-resolution spectrogram but may involve 
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cross-term interferences, STFT is free of this cross-terms. On the other hand, the MFCCs [2] 

are indeed effective tool for speech recognition, but they are less straightforward for visualizing 

frequency content over time as opposed to STFT which delivers the job very well. The 

spectrograms and audio chunks have been sent to feature extraction module.  

Siamese network has been acting as feature extraction and [17] extract features and give 

results in form of 1-D vector. The features extracted by the Siamese network from 

spectrograms of ship engine sounds can represent various aspects of the audio signals that are 

relevant for distinguishing different engine sounds. These features may capture temporal 

patterns such as the rhythm, repetition, or duration of certain engine sounds. For example, 

different engine types might have distinct patterns in how their components interact over time. 

These features could represent frequency characteristics such as the dominant frequencies, 

harmonics, or spectral shapes associated with different engine types. Certain engine types 

might produce characteristic frequency peaks or distributions due to their machinery design 

and operation. 

Additionally, Features might encode information about the amplitude variations over 

time or frequency, which could reflect differences in engine behavior, power output, or 

environmental conditions. The features from siamese network may also capture transient 

events or unique spectral signatures that occur during specific engine operations, such as 

starting, accelerating, decelerating, or idling. Depending on the network architecture and 

training data, features might also indirectly encode non-acoustic factors such as engine size, 

load, condition, or surrounding environment, if these factors correlate with the observed 

acoustic patterns. Interpreting these features by various classification techniques on the basis 

of similarities involve analyzing their distributions, correlations, and relationships between 

them. The correct labels for each class will be easily classified by the classifier, and the results 
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will be displayed as shown in figure 3.1. The proposed model has been applied on ShipEars 

dataset to evaluate the performance.  

 

3.3 Dataset Description 

Audio recordings of ShipEars dataset [5] were taken at several locations along the 

Spanish Atlantic coast in northwest Spain between the autumn of 2012 and the summer of 

2013. A wide variety of vessels from the docks, such as tugboats, pilot boats, yachts, small 

sailboats, fishing boats, ocean liners, ferries of varying sizes, containers, ro-ros, total of 90 

recordings. Recordings from hydrophones positioned from docks to record various vessel 

speed noises and cavitation noises associated with docking or undocking movements were 

added to ShipEar. High background noise that is often audible is caused by waves pounding 

on the port infrastructure. Additionally, recordings of ships operating normally were added 

to ShipsEar. The hydrophones were deployed as shown in figure 3.2 by an auxiliary vessel, 

and the recordings were scheduled based on vessel movement data that was gathered from 

the port authorities and the automatic identification system for vessels. 

Figure 3.1: Proposed USCUS model 
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Figure 3.2: Hydrophone setup for underwater recordings of vessel noise [5] 

 ShipEars real-time dataset was available on internet. Other datasets were expensive 

and some were not publicly available. We have modified the ShipEars [5] dataset. We have 

divided the 90 recordings into 12 different classes instead of 5 classes in original ShipEars 

dataset; tugboat, dredger, mussel boat, trawler, motorboat, yacht, pilot boat, sailboat, 

passenger boat, ocean-Liner, ro-ro, ambient noise as shown in table 3.1. 

Table 3.1: Underwater ships categorization 

Classes Ships 

Class 1 Tugboat 

Class 2 Dredger 

Class 3 Mussel boat 

Class 4 Trawler 

Class 5 Motorboat 

Class 6 Yacht 

Class 7 Pilot boat 

Class 8 Sailboat 

Class 9 Passenger boat 

Class 10 Ocean-Liner 
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Class 11 Ro-ro  

Class 12 Ambient noise 

 

3.4    Operational Framework  

Siamese network used in this study has been used as feature extraction technique. Steps 

starting by analysis phase, design and development phase, and performance evaluation as 

shown in Figure 3.3 is the operational framework of this study. First, in the analysis stage, 

dataset of ship-engine audios is divided into 2 sec chunks. The spectrograms are generated 

using STFT. Secondly, prepare dataset for implementation. Generate triplets (three pairs) of 

dataset (anchor, positive example of a class, negative example of class). Split dataset randomly 

for training and testing. Then, implement the Siamese Network to extract the features and send 

them for classification to the classifier. In last phase of framework; performance evaluation of 

proposed model by using SNE-plots, confusion matrix, ROC curve, accuracy, precision, recall, 

f1-score. 

 

 

 

 

 

Figure 3.3: Operational Framework of the Research 
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Dataset contains 1 to 2 minutes of audios which are difficult to use and analyze for 

system. First the audios are divided to 2 seconds chunks and spectrograms are generated. A 

spectrogram is a two-dimensional representation of a signal in which the intensity denotes the 

amplitude or power of the frequencies contained in the signal, the x-axis indicates time, and 

the y-axis represents frequency as shown in figure 3.4. Second step of this phase is to make 

classes of spectrograms of audios and normalize the dataset using mean and variance. 

 

Figure 3.4 Spectrogram 

3.5    Research Design and Development Phase 

 The design and development of proposed model is divided into steps; generating 

triplets, split dataset into training and testing, implement siamese network, send data to 

classifier. 

3.5.1 Generating Triplets 

To prepare dataset of ShipEars [5] for implementation, first triplets are generated. 

Triplets are basically the 3 pairs of spectrograms. Triplets in a Siamese network are created by 

choosing positive, negative, and anchor samples from the dataset. Anchor image is randomly 

selected image from dataset. Positive image is the true example of the class. Negative image is 

the false or negative example of the class. There are three examples of triplets listed in figure 

3.5. 1st triplet is example of class 1, similarly 2nd triplet is example of class 2 and is 3rd triplet 

is example of class 3. The training objective for our model is to reduce the distance between 
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the anchor and the positive sample and increase the distance between the anchor and the 

negative sample. Through this iterative process, the network will create embeddings that better 

reflect the relationships between similar cases in the input, which improves its performance in 

tasks like similarity retrieval and classification. 

Because of the particular difficulties associated with the underwater environment, 

handling missing values in underwater datasets which frequently comprise sensor data or 

environmental measurements requires careful thought. One method is to estimate missing 

values by applying domain-specific imputation techniques, such as utilising established 

physical or environmental correlations. When working with time-series data, temporal 

interpolation can be helpful since it allows missing values to be inferred using the patterns of 

nearby time points. The audio data was extracted from continuous audio signals recorded from 

hydrophones. In cases where the audio data is missing (e.g., a few bits are missing), two 

strategies were followed. If the data is missing for longer durations, that portion of the audio 

was skipped during segmentation into chunks. For cases where the audio data is missing for 

less than one second, time interpolation methods were used. 

 

Anchor Positive Negative 

Class 1 

Class 3 

Class 2 

Figure 3.5 Visualization of Triplets 

 



43 
 

  
 

3.5.2 Split Dataset into Training and Testing 

After generating the spectrograms, dataset then split into training and testing for future 

work. Eighty percent of data is randomly divided into training and remaining twenty percent 

of data is divided into testing.   

3.5.3 Implementation 

All three images have been passed through the same conventional neural network 

(CNN) in siamese network and shares same weights. The proposed structure of CNN network 

is shown in table 3.2.  

Table 3.2: Layer detail of Siamese Network 

Layer (type) Output Shape Parameters 

Conv2D (None,63,63,32) 320 

MaxPooling2D (None,31,31,32) 0 

Dropout (None,31,31,32) 0 

Conv2D (None,15,15,64) 18496 

MaxPooling2D (None,7,7,64) 0 

Dropout (None,7,7,64) 0 

Flatten (None,3136) 0 

Dense (None,1024) 3212288 

 

Following by 3 columns, layer, output shape and parameters. The layers column shows 

layers used in our model and its type. Whereas Output shape column and its parameters 

explains the batch size, spatial dimensions and number of filters or channels produced by the 

convolution. However, parameter column shows the parameters used in each layer. First, the 

convolution layer (Conv2D) with kernel size of 3x3, strides 2x2 and activation function 

Rectified Linear Unit (ReLu) is applied to input image. Output shape of Conv2D 
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(None,63,63,32) Conv2D, where “None” indicates the batch size, 63x63 are the spatial 

dimensions of feature maps and 32 represents the number of filters or channels. Next is max 

pooling layer (MaxPooling2D) with pool size of 2x2. This layer uses max pooling to decrease 

the feature maps' spatial dimensions. (None, 31, 31, 32) is the output shape that keeps the 

number of channels constant but reduces the spatial dimensions in half. Then Dropout of 0.25, 

is applied to randomly set a portion of input units to zero in order to prevent overfitting. 

However, no modification in the proportions of output shape. Conv2D of 64 with kernel size 

of 3x3, strides 2x2 and activation function Rectified Linear Unit (ReLu). Yet another 

convolutional layer with an increased filter. (None, 15, 15, 64) increases channel depth while 

decreasing spatial dimensions even more. Then MaxPooling2D with pool size of 2x2 decreases 

spatial dimensions even further to 7x7 while keeping channel depth. Again, dropout of 0.25 for 

regularization. Flatten layer that creates a 1D vector from the 3D output that may be fed into a 

fully connected layer. Output: (None, 3136) gives the 7x7x64 tensor a length of 3136 by 

flattening it. Then the dense layer which is the fully connected layer of 1024 neurons with 

activation function Rectified Linear Unit (ReLu). Dense layer prepares the vector for future 

processing by transforming it into a 1024-dimensional higher-dimensional space after it has 

been flattened. Moreover, total parameters used in siamese network are 3231104 in which all 

the parameters are trainable and non-trainable parameters are zero. 

 

The input image's convolutional layers extract progressively more abstract features, 

while the max pooling layers down sample the spatial dimensions to concentrate on the most 

significant features. In order to avoid overfitting, dropout layers add regularization. Ultimately, 

a dense layer is applied to the flattened vector to produce a high-dimensional embedding, which 

is where the network learns to identify similarities between images. Each layer's output shape, 

which is essential for comprehending the network's computational flow and design, represents 

the tensor dimensions following the application of the associated operations. 

Triplet loss function has been applied after all this process. Triplet loss is a vital learning 

component in Siamese networks, helping the network discover embeddings that accurately 

represent the similarity relationships between input samples. The network is motivated to 

minimize the intra-class distance while maximizing the inter-class distance in the learned 

embedding space by use of the triplet loss function, which compares the distances between 

anchor, positive, and negative examples. In order to facilitate tasks like classification or 
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similarity retrieval, this optimization process pushes the network to map similar objects closer 

together and dissimilar items farther apart. As a result, the triplet loss guides the network in 

identifying and representing significant links among input data, which improves the network's 

performance in a variety of similarity-based tasks. The triplet loss function is written in 

equation 3.2 [63]. In this triplet loss function for a Siamese network, d(a,p) denotes the distance 

between the anchor “a” and positive “p” sample, d(a,n) the distance between the anchor and 

negative “n” sample and d(a,nhard) is the distance between the anchor and a hard negative nhard 

sample. The margin ensures that the distance between positive pairs is larger than the distance 

of negative pairs by some buffer space. This loss penalizes the network if d(a,p) is not relatively 

smaller than d(a,n) and d(a, nhard) is not relatively larger than d(a,p). The goal is to maintain the 

distance above the margin between the anchor and the positive sample while maximizing the 

distance between the anchor and the hardest negative sample [53].  

 𝑚𝑎𝑥(𝑑(𝑎, 𝑝) –  𝑑(𝑎, 𝑛)  +  𝑚𝑎𝑟𝑔𝑖𝑛, 0)  +  𝑚𝑎𝑥(𝑑(𝑎, 𝑛_ℎ𝑎𝑟𝑑) –  𝑑(𝑎, 𝑝)  +

 𝑚𝑎𝑟𝑔𝑖𝑛, 0)                                                                                                               (3.2) 

 

Another CNN model been implemented without the Siamese network to extract useful 

features in image classification. We can easily compare the performance of two models, first 

with siamese network, then CNN network without siamese network using the accuracy. Loss 

function used in this CNN model is categorical cross entropy. The categorical cross-entropy 

loss function is used to measure the model’s performance through which the model’s 

predictions are compared with the actual class labels and used to optimize the model. This loss 

function is suitable for multi-class classification problems since it enables the model make 

necessary changes to its weights for more accurate prediction. Categorical cross-entropy loss 

function formula is written in equation 3.3 [64]. Where, N denotes number of samples, C is the 

number of classes, yic is binary indicator (returns 0 or 1) if class c is correct classification for 

sample i, pic is predicted probability whether sample i belongs to class c.  

𝐿 =  − ∑ ∑ 𝑦𝑖𝐶  log (𝑝𝑖𝑐)

𝐶

𝑐=1

𝑁

𝑖=1

 

 

(3.3) 
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Discussing the table 3.3, the layer column, which is followed by two columns, lists the 

kind of layers utilized in this model. On the other hand, the batch size, spatial dimensions, and 

number of filters or channels generated by the convolution are explained by the output shape 

column and its parameters. The model extracts feature maps by applying convolutional 

(Conv2D) layers to the input image and then processing the feature maps with pooling 

(MaxPooling2D) and fully connected (Dense) layers. First, the convolution layer (Conv2D) 

with kernel size of 3x3 with activation function ReLu is applied to input image. The output 

generated is 126x126 spatial dimensions of feature maps, 32 channels. The resulting feature 

maps are then down sampled by next max pooling (MaxPooling2D) layer with pool size of 

2x2. Resulting output (“None”, 63,63,32) will reduce the spatial dimensions in half. Along with 

that, the second convolutional layer uses 64 filters of size 3x3 for the refinement of feature 

extraction process as well. Thus, it produces the output shape of (None, 61, 61, 64). This layer 

is succeeded by the next max pooling layer, which effectively diminishes the spatial 

dimensions, thus resulting in an output shape of (None, 30, 30, 64). These layers jointly give 

rise to spatial refinement of the images by reducing the spatial feature size and increasing the 

depth of feature patches. When the convolutional and pooling layers are over, the network uses 

a flatten layer which is turned into a 1D vector shape of (None, 57600) in order to be an input 

to the fully connected layers. The last hidden layer, having the same number of neurons as the 

number of classes or similarity categories, finally returns the classification result in an output 

12 neuron dense layer by using activation function SoftMax. SoftMax function is employed to 

produce probabilities over all the classes from the obtained logits. This change enables each 

output neuron to become the measure of the input instance belonging to a specific class, which 

makes the neural network ideal for use in multi-classification problems. Moreover, total 

parameters used in CNN model are 7393293 in which all the parameters are trainable and non-

trainable parameters are zero.  

Table 3.3: Layer detail of CNN model 

Layer (type) Output Shape Parameters 

Conv2D (None,126,126,32) 320 

MaxPooling2D (None,63,63,32) 0 

Conv2D (None,61,61,64) 18496 

MaxPooling2D (None,30,30,64) 0 

Flatten (None,57600) 0 

Dense (None,128) 7372928 
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Dense (None,12) 1548 

 

3.5.4   Classifier 

After the implementation of siamese network, next step is to classify the classes. K-

nearest neighbor (KNN), support vector machine (SVM), random forest and decision tree have 

been used as the classifiers for our proposed model. The KNN algorithm is a basic machine 

learning method. The general concept is to find the distance between point A and every other 

point, eliminate the k points that are closest to the nearest point, and then count the k points 

that are part of the classification. Point A is included in the classification if it has the greatest 

proportion. We have used 5 neighbors in the algorithm. The majority voting concept is used by 

K-nearest neighbor classifiers to determine the class of a given data point. The classes of the 

five closest points are looked at if k is set to 5. Predictions are made based on the dominating 

class. In a similar vein, K-nearest neighbor regression uses the average of the five closest 

locations [55]. 

SVM is a supervised machine learning technique that is used for regression and 

classification problems. The classifier's main objective is to identify the hyperplane that divides 

the input data into the appropriate classes the best. The margin between the classes is 

maximized by selecting the hyperplane. What helps determine the position of the hyperplane 

are the data points that are closest to it, or support vectors. In order to define the margin and 

the decision border, these are essential. In high-dimensional spaces, SVM performs well. The 

kernel trick makes it versatile, enabling it to manage nonlinear interactions. Additionally, since 

it only uses a portion of the training set, it is memory-efficient. 

An ensemble learning method called Random Forest is used to solve regression and 

classification issues. A machine learning technique called ensemble learning uses several 

models to solve a single issue in order to increase accuracy. Specifically, ensemble 

classification uses several classifiers to get findings that are more accurate than those of a single 

classifier. Put another way, combining several classifiers reduces variation and could lead to 

more dependable findings, particularly when dealing with unstable classifiers [61]. Each tree 
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of decision tree in the forest partitions nodes with some randomly selected features after 

training on randomly selected samples from the training data. This is so because of their 

diversity and random nature; a collection of decision trees will produce predictions that are 

more dependable and accurate than single trees. Every tree in the forest votes for the class of 

its kind and the majority is selected as the final decision. The merging of the advantages of 

various models through an ensemble approach yields the ensemble's high accuracy, robustness 

against overfitting and the capacity to handle large datasets with increased dimensionality. 

 

One of the widely used techniques, which can be found in many domains such as machine 

learning, image processing, data mining and pattern recognition is the Decision Tree. Every 

test in the DT includes a comparison of a numerical feature to a threshold value. The DT is a 

sequential model that effectively and cohesively combines these simple tests. In contrast to the 

quantitative weights in neural network, it is much easier to lay the conceptual principles. DT is 

used for grouping mostly. Each of the trees is consist of nodes and branches. Every subset will 

define a value that is acceptable by the node, and each node represents features in a category 

of data that needs to be labeled. Decision trees have been applied in many areas due to their 

simplicity of analysis and ability to produce accurate results for different data types [62]. 

 

3.6    Simulation Framework 

Google colab has been used as network simulator to evaluate the performance of the 

proposed network. Backend is handled by tenserflow. Google offers a free cloud-based tool 

called google colab, sometimes known as Collaboratory, which enables users to write and run 

python code together in a Jupyter Notebook environment. Google collaboratory notebook is a 

virtual environment that gives users access to free GPU resources in Python. It is intended to 

make machine learning and data science activities easier. Users no longer need to set up and 

configure their own development environment because Colab runs in the cloud. It is therefore 

practical for rapid coding and teamwork. However, a number of well-known python libraries 

for data analysis, machine learning, and visualization including TensorFlow, PyTorch, 

Matplotlib, and others come pre-installed with colab. We uploaded our dataset on google drive 

and mount the drive to google colab to access data easily. Moreover, hyper parameters for 

Siamese network are set as; image dimension (128,128,1), batch size is 16, optimizer applied 
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is adam, epoch is 300, learning rate is 0.0001 and loss function is triplet loss. Similarly, hyper 

parameters for CNN model are set as; batch size is 32, epoch is 10, validation-split is 0.1 and 

loss function applied is categorical cross-entropy. 

This AI-based ship detection system can be deployed in various marine time 

environments, such as naval bases, commercial shipping lanes, and port authorities, to enhance 

security, monitor traffic, and assist in identifying various incoming vessels. It can also be used 

in marine conservation efforts to track and study the movements of different types of ships in 

ecologically sensitive areas, helping to prevent collisions with marine life or reduce underwater 

noise pollution. Additionally, it could be implemented in offshore oil and gas platforms to 

monitor nearby ship activity, ensuring operational safety and compliance with maritime 

regulations. 

Depending on the deployment environment, i.e., whether the model will run on an edge 

device (e.g., a specialized microcontroller, Raspberry Pi, or NVIDIA Jetson) near the 

hydrophones or on a remote server. The choice depends on the computational power required 

and the latency constraints. real-time inference capabilities can be implemented so that the 

captured audio can be immediately processed by the proposed AI model. This might involve 

running a small software application on the edge device or server that continuously listens to 

the audio stream and feeds it to the model. 

3.6.1 Performance Metrics 

Underwater classification of ship engine is significant and becoming the hot research 

topic. As the technology is advancing, new techniques are also developing to make robust 

systems. Globally, underwater recognition systems have become a significant subset of 

general-purpose marine essential technologies, operating in numerous nations. Underwater 

target recognition has extensive application in several domains such as underwater defense and 

marine geological investigation. The major objectives of the research have been to improve the 

hydroacoustic signal processing and feature extraction techniques, optimize the sonar signal 
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collection capability, and increase the accuracy of the system target recognition. A generation 

of hydroacoustic scientists has been plagued by low efficiency and accuracy due to the fact that 

the traditional underwater target recognition system only performs simple processing of the 

sonar collection signal. The sonar operator then judges the recognition of the characteristics of 

the hydroacoustic signal based on his personal experience [17]. The effect of accuracy will be 

seen by the proposed siamese network, which operates based on similarity. The sample to be 

compared will be further away from the sample of a different class. 

Equation 3.4 [3] explains that the number of ship-engines correctly classified into the 

class to which they belong is represented by the true positives (TP), and the number of ship-

engine correctly classified as not corresponding to a class is represented by the true negatives 

(TN). Furthermore, the number of ship-engine that are mistakenly identified as belonging to a 

class is represented by the false positives (FP), while the number of ship-engine that are 

improperly labelled as not belonging to a class is represented by the false negatives (FN). 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

True-positives being the only correctly categorized windows of each class under 

investigation are normally used to calculate precision and recall for each class. The exactness 

of a prediction is a measure of how precisely it predicts for the particular category as mentioned 

in equation 3.5 [3]. 

  Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

 It determines the recall which is the percentage of true positives as mentioned in equation 

3.6 [3]. 

    Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

(3.4) 

(3.5) 

(3.6) 
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The harmonic mean is utilized in order to receive the F1-score for the precision and recall 

as mentioned in equation 3.7 [3]. 

                                 F1-score = 2 × (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
) 

Moreover, plotting the true positive rate (TPR) vs the false positive rate (FPR) creates a 

ROC curve. The fraction of observations that were accurately predicted to be positive out of 

all positive observations is known as the true positive rate (TP/(TP + FN)). In a similar vein, 

the false positive rate (FP/(TN + FP)) represents the fraction of observations that are mistakenly 

anticipated to be positive out of all negative observations. For instance, in diagnostic testing, 

the true positive rate is the proportion of individuals who are accurately diagnosed as having 

the disease under investigation. 

3.6.2 Underwater Methods for Classification 

Underwater classification methods of deep learning are widely used. While acoustic 

signals are time-sequential signals, they typically provide additional information in their 

frequency domain. As a result, before feeding raw data into recognition models, it must be pre-

processed and features extracted in order to minimize data dimensions and decrease noise [23]. 

Feature extraction is the cornerstone of underwater target recognition. Time-domain feature 

extraction, spectrum estimation methods, time-frequency analysis, and other approaches are 

the main feature extraction techniques used by researchers. As the submerged acoustic datasets 

grow, the first feature extraction techniques become less and less efficient.  

Thus, developing novel techniques for underwater target recognition is crucial. 

Traditional underwater techniques focus on data augmentation [11] to extend the dataset. 

Moreover, developed integration of multimodal feature extraction techniques which leads to 

high complexity, cost and computational cost [7]. However, we proposed Siamese networks as 

feature extraction technique that are based on metric learning and are capable of comparing 

(3.7) 
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two instances in order to determine how similar they are. Siamese networks, in contrast to 

conventional machine learning techniques, are able to identify new targets from small amounts 

of data after being taught on an extensive number of previous samples [58].  

3.7 Proposed Siamese Network 

Proposed Siamese Network has one anchor or reference image that has been taken 

randomly from the dataset as an input. Second image is positive example of anchor image; 

positive image means image from same class as anchor image. Third image is negative example 

of anchor image; negative image means image from different class as anchor image. The aim 

of siamese network is to minimize the distance between anchor and positive image and 

maximize the distance between anchor and negative image as shown in figure 3.6. 

 

 

 
Figure 3.6: Siamese Tripplet Network 
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Applications in environmental monitoring, animal or object tracking [59], marine 

resource management, and maritime surveillance are all highly promising for our suggested 

methodology. Through precise categorization of ship-engine noises in submerged settings, our 

method can help with illicit activity detection, abnormal activity recognition, and maritime law 

enforcement. Siamese networks are also well-suited for deployment on fixed sensor arrays or 

autonomous underwater vehicles (AUVs) due to their scalability and flexibility, which allows 

for real-time monitoring and surveillance of maritime traffic. Moreover, precise temperature 

structure restoration and multi-view feature extraction are two more applications for the 

siamese network [60]. In summary, our study advances the current understanding of underwater 

acoustic signal processing and categorization methods, which has applications in improving 

maritime security, safeguarding marine environments, and encouraging sustainable marine 

development. 

A Siamese network is designed to learn feature representations by comparing pairs of 

inputs, typically for tasks like similarity learning or matching. Two identical subnetworks with 

the same weights that analyse two input samples independently are trained as part of the 

Siamese network's feature selection process. Through the use of layers such as convolutional, 

pooling, and fully connected layers, which convert the inputs into feature vectors, the network 

retrieves feature from various sources. To find the degree of similarity between the inputs, these 

vectors are then compared, frequently using a distance metric such as Euclidean distance. High-

dimensional representations of the key patterns and relationships found in the data are usually 

the features extracted by a Siamese network; these representations emphasise certain attributes 

such as shape, texture, or other pertinent properties that distinguish or correlate the input. 

3.8 Summary 

This chapter addresses the issues in existing underwater classification methods and 

provides the proposed solution. Dataset description and proposed model is also explained. 

Moreover, the operational framework provides the flow the of overall work with detailed steps. 

Furthermore, this section provides the working of Siamese network along with CNN model, 

classifiers and performance metrices.  
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CHAPTER NO 4 

 

 

PERFORMANCE EVALUATION OF UNDERWATER SHIP-

ENGINE CLASSIFICATION USING SIAMESE NETWORK 

(USCSN) 
 

 

 

4.1 Overview 

            Chapter 4 presents a thorough analysis of the simulation findings and conclusions to 

underwater ship-engine classification using siamese network. The comparison of two 

classifiers has been discussed. This chapter discussed the results of using various performance 

measurements, including confusion matrix and accuracy. In addition, an explanation, several 

diagrams, and a comparison of the classifiers are given. SNE-plot that illustrates how accuracy 

affects the suggested model. The genuine positive rate above the thresholds is explained by the 

ROC curve testing, though. 

4.2      Results and Analysis: 

To evaluate the performance of proposed model, following matrices are used; accuracy, 

precision, recall, f1-score. Additionally, comparison of siamese network and CNN network 

have been reviewed through confusion matrix. Moreover, ROC testing, quantile plot has been 

plotted. ShipEars dataset discussed in pervious chapter is used to analyze results. 

Moreover, the parameter setting of siamese network is shown in table 4.1 below in 

which the batch size, image dimension, learning rate are shown. 
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Table 4.1: Hyperparameter setting of Siamese Network  

Hyperparameter Value 

Input shape (128,128,1) 

Batch size 16 

Epoch 300 

Learning rate 0.0001 

Optimizer Adam 

Loss Triplet loss 

 

The parameter setting of CNN model without using siamese network is shown in table 

4.2. 

Table 4.2: Hyperparameter setting of CNN model  

Hyperparameter Value 

Batch size 32 

Epoch 10 

Validation split 0.1 

Optimizer Adam 

Loss Categorical Cross entropy 

 

 

4.3 Comparison of Classifiers: 

 

 In SVM, the linear Kernel works fine with the data that can be segmented into straight 

line or with linearly separable data itself. It is less power-thirsty and compact and also performs 

well on the datasets with big dimensions and sparsity, as in the case of text classification of 

high-dimensional feature vectors. The classification report of linear kernel is explained in table 

4.3. While linear kernel management achieved a general accuracy of 89%, it showed good class 

separation performance. Most of the classes have high precision recall and also a good F1-

scores, but there is a problem with classes 1 and 7 as they have lower performance, this means 



56 
 

  
 

that these special categories are difficult to be different from others. This model works well for 

scenarios involving easier and linearly separable conditions but tends to face certain challenges 

which emanate from more intricate boundaries. 

 

 

Table 4.3: Classification report of linear kernel SVM  

Classes Precision Recall F1-score 

1 0.67 0.57 0.62 

2 1.00 0.71 0.83 

3 0.75 0.86 0.80 

4 1.00 1.00 1.00 

5 1.00 1.00 1.00 

6 0.78 1.00 0.88 

7 0.62 0.76 0.67 

8 1.00 1.00 1.00 

9 1.00 1.00 1.00 

10 1.00 1.00 1.00 

11 1.00 1.00 0.97 

12 1.00 1.00 1.00 

 

A polynomial function that fits the relationship between classes is a sufficient condition 

for applying the polynomial kernel to periodically create polynomial decision boundaries. It is 

the least versatile kernel among all kernels, but it has a higher level of flexibility than the linear 

kernel because of the degree parameter, which facilitates different forms of complexity. When 

the polynomial relationship is better at describing the nonlinear relationships between features 

in the data set, then the polynomial kernel is very efficient. The classification report of 

polynomial kernel is explained in table 4.4. With the correction 90 percent for overall 

polynomial kernel the improvement in performance of the classifier is fair, as compared to the 

linear kernel. Referring to almost every class, it is very good for remembering and details, 

providing advanced non-linear relationship recognition. 
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Table 4.4: Classification report of polynomial kernel SVM 

Classes Precision Recall F1-score 

1 0.62 0.71 0.67 

2 1.00 0.86 0.92 

3 0.88 1.00 0.96 

4 1.00 1.00 1.00 

5 1.00 1.00 1.00 

6 0.86 0.86 0.86 

7 0.67 0.57 0.62 

8 1.00 1.00 1.00 

9 1.00 1.00 1.00 

10 1.00 1.00 1.00 

11 0.94 1.00 1.00 

12 0.86 0.86 0.86 

 

 

On the contrary, the radial basis function (RBF) kernel is best in this instance when the 

decision boundary is non-linear. Through the mapping of the input data into a higher-

dimensional space, the RBF kernel in an effective manner is capable of detecting the 

nonparametric and complicated patterns. It is the best fit for the data sets with intricate 

interdependencies that cannot be reflected by the limits of a straight-line boundary due to its 

flexibility. The technology is comprehensively used in the scenarios where the data depicts 

complex patterns like image classification and bioinformatics. The classification report of 

radial basis kernel is explained in table 4.5. RBF also reaches 90 % of accuracy, revealing that 

non-linear decision boundaries are effectively dealt with by this kernel. As far as most classes 

are concerned this model performs quite reliably; however, in the case of classes 6 and 7 it 

displays poor precision and recall. The RBF kernel, that possesses the feature of accurately 

capturing the intricate patterns, provides with consistent performance across the dataset as a 

whole.  
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Table 4.5: Classification report of radial basis kernel SVM 

Classes Precision Recall F1-score 

1 0.88 1.00 0.93 

2 1.00 0.86 0.92 

3 0.86 0.86 0.86 

4 1.00 0.86 0.92 

5 1.00 1.00 1.00 

6 0.58 1.00 0.74 

7 0.90 0.97 0.93 

8 1.00 0.57 0.73 

9 1.00 1.00 1.00 

10 1.00 1.00 1.00 

11 0.88 1.00 0.93 

12 1.00 0.71 0.83 

 

An overall accuracy of 89% in figure 4.4 and management of most classes in the K-NN 

classifier played well in this context. Although the concept of a recall was assumed by people, 

its implication is not desired. The model is off target with accuracy of 57 for class 7, 

foregrounding the prospect that it is extremely difficult to determine all instances originating 

from a given class. The classification report of KNN is explained in table 4.6. 

 

 Table 4.6: Classification report of KNN 

Classes Precision Recall F1-score 

1 0.86 0.86 0.86 

2 0.88 1.00 0.93 

3 0.86 0.86 0.86 

4 0.71 0.71 0.71 

5 1.00 1.00 1.00 

6 1.00 1.00 1.00 

7 0.80 0.57 0.67 

8 1.00 1.00 1.00 
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9 0.70 0.86 0.80 

10 1.00 0.80 0.93 

11 0.94 0.80 0.93 

12 1.00 1.00 1.00 

 

The classification report of random forest is explained in table 4.7. The report on 

random forest classifier shows good performance, the overall accuracy being 86 percent and 

excellent precision and recall for many others classes. It also should be noted that it's weak, 

class 12, and a poor F1-score of 0. 55 which suggests low performance, for example: not all 

instances of this class may be labeled properly. 

 

Table 4.7: Classification report of Random Forest 

Classes Precision Recall F1-score 

1 1.00 0.71 0.83 

2 0.78 1.00 0.88 

3 1.00 0.86 0.92 

4 0.83 0.71 0.77 

5 1.00 1.00 1.00 

6 1.00 0.71 0.71 

7 0.71 1.00 0.82 

8 1.00 1.00 1.00 

9 1.00 0.86 1.00 

10 0.88 1.00 0.93 

11 0.78 1.00 0.88 

12 0.75 0.43 0.55 

 

The classification report of decision tree is explained in table 4.8. However, the decision tree 

classifier, basically has lower accuracies, recall, and precision for most classes apart from 

overall accuracy of 52%. This illustrates the power of the grouping method, for example, 
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random forest but not the decision tree for more accurate classification on its own. This is also 

a symptom of poor complexity performance and of increased uncertainty or randomness of 

predictions. 

 

Table 4.8: Classification report of Decision Tree 

Classes Precision Recall F1-score 

1 0.83 0.71 0.77 

2 0.57 0.57 0.57 

3 0.33 0.14 0.20 

4 0.25 0.14 0.18 

5 0.99 0.71 0.83 

6 0.38 0.86 0.40 

7 0.50 0.29 0.59 

8 0.55 0.86 0.67 

9 0.40 0.71 0.33 

10 0.50 0.14 0.63 

11 0.45 0.71 0.56 

12 0.50 0.14 0.22 

Moreover the, training and testing results of all classifiers are shown in table 4.9. As 

our dataset is non-linear so linear kernel couldn’t accurately classify the classes and might 

confuse with other classes. Radial basis kernel and polynomial kernel on the other hand reached 

expected accuracy. The results shows that KNN classifier performs well with 95.857%. 

Table 4.9: Classifiers accuracy in training and testing 

Classifier Kernel 
Accuracy 

Training 

Accuracy 

Testing 

SVM Linear  98.276% 89.286% 

SVM Polynomial 94.540% 90.476% 

SVM Radial basis 99.425% 90.476% 

KNN - 96.839% 95.857 % 
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RF - 100% 86.00% 

DT - 100% 52.00% 

 

4.4 Comparison of Siamese Network with CNN model: 

The accuracy recorded of the proposed siamese network by using the confusion matrix 

is 96.4167% as shown in figure 4.1. True labels are shown in the diagonal by dark blue color.  

Light blue color or white color shows false label. “1” written in dark blue color represents that 

the predicted label shows 100% accuracy with true label. For instance, dredger in predicted 

and true tables marked as “1”, which shows that our model perfectly classifies the true class of 

dredger. However, tugboat marked as “0.71” in diagonal means that our model correctly 

classifies 71% for tugboat and confuses 29% tugboat with pilotboat. Similarly, our model 

correctly classifies 86% for ambient noise and confuses 14% ambient noise with yacht.  

 

Figure 4.1: Confusion Matrix for Siamese Network 
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The accuracy recorded of the CNN network by using the confusion matrix is 94.0476% 

as shown in figure 4.2. Labels marked close to 1 are close to accuracy.  “1” written in diagonal 

in dark blue color represents that the predicted label shows 100% accuracy with true label. For 

instance, mussel boat in predicted and true tables marked as “1”, which shows that our model 

perfectly classifies the true class of mussel boat. However, CNN model correctly classifies 57% 

for ambient noise and confuses 43% ambient noise with yacht. Our model out performs the 

CNN network by 2.3691%.  

 

 

 

 

  

Figure 4.2: Confusion Matrix for CNN 

4.5 Receiver Operator Characteristic (ROC) Curve Testing 

 The ROC curve is a graphical plot that illustrates how well the classifiers can diagnose 

problems. False positives, or misclassified samples, divided by total negatives, or false 

positives plus true negatives, is known as the false positive rate. Put simply, the number of 
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times the response is recorded as yes when it is actually no. The ratio of accurately identified 

samples, or true positives, to total positive samples, or true positives plus false negatives, is 

known as the true positive rate. Put another way, the number of times the response is reported 

as yes when it is a yes. 

The figure 4.3 illustrates the true positive rate close to 1.0 and false positive rate below 

the threshold 0.5 against threshold. We might repeatedly assess a logistic regression model with 

various classification criteria in order to calculate the points in a ROC curve. ROC curve of 

class 1 to 12, true positive rate is high and false positive rate is low for our proposed model. 

 

Figure 4.3: ROC curve testing of the proposed model 

     Visually comparing the quantiles of an observed dataset to those of a theoretical distribution 

is necessary to interpret a Q-Q display. It can evaluate how well the observed dataset fits the 

expected distribution and spot deviations from normalcy or other assumptions by analyzing the 
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linearity of the points and deviations from the diagonal line. Figure 4.4 shows the examines the 

arrangement of the points on the Q-Q plot. A straight line connecting the points indicates that 

the observed dataset closely resembles the theoretical distribution. The quantiles of the 

observed dataset are represented on the y-axis of the Q-Q plot, whilst the quantiles of the 

theoretical distribution, such as the standard normal distribution, are represented on the x-axis. 

Although the ends of the Q-Q plot frequently begin to diverge from the straight line, typically 

distributed data appears as roughly a straight line on a Q-Q plot. 

The points on the Q-Q plot will sit along the diagonal line (y = x) if the observed dataset exactly 

matches the theoretical distribution. This would suggest a tight match between the two 

distributions. 

 

Figure 4.4: Q-Q plot  

           While both Convolutional Neural Networks (CNNs) and Support Vector Machines 

(SVMs) are effective machine learning models, their architectures and uses are very different. 

CNNs are deep learning models created especially to handle data that resembles a grid, like 

pictures. Their effectiveness for tasks like image and audio identification stems from their 

ability to automatically learn spatial hierarchies of features through layers of convolutional 

filters. On the other hand, SVMs are conventional machine learning algorithms that operate by 

determining the best hyperplane in a high-dimensional space to divide data points belonging to 

various classes. SVMs are good at binary classification and perform well on small to medium-

sized datasets, but CNNs perform better on large-scale jobs where feature extraction is 

important since they are better at handling complicated, high-dimensional data [65]. 
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4.6 Summary 

This chapter discusses the simulation results and proposed technique’s performance. 

Modified shipears dataset is used for evaluation. A comparative analysis of the suggested 

strategy with pertinent schemes has also been done, taking performance metrics into account. 

The results demonstrate that the suggested model outperformed the terms for every 

performance indicator. 
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CHAPTER 5 

 

 

CONCLUSION AND FUTURE WORK 

 

 

5.1 Overview 

This chapter discusses the conclusion and future work of the research work. The main 

aim of this research was to introduce the new technique for classification of ship-engine. The 

proposed siamese network acts as the feature extraction technique. It performs well for small 

dataset by creating triplets from each class. On the similarity basis, siamese network uses triplet 

loss function to create more distance between samples of different class and reduce distance 

between sample of same class. Additionally, four classifiers, SVM, k-NN, RF and DT were 

used to classify the classes based on results generated by siamese network. Evaluation matrices 

and plots demonstrate how well the suggested network operates.  

5.2 Summary and Contribution 

Our research's primary contribution is the suggestion to use Siamese networks for the 

underwater classification of audio signals from ship engines. Siamese networks present a 

potentially effective way to tackle the problems related to ship-engine sound classification in 

underwater settings. Siamese networks are naturally suited for jobs with few labelled samples, 

unlike traditional classification techniques that require labelled training data for every type of 

ship. They can also efficiently learn from tiny datasets using one-shot or few-shot learning 

paradigms. The twin network design of Siamese networks is typified by the simultaneous 

training of two identical subnetworks on pairs of input samples. Each input sample is mapped 
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by the Siamese network during training into a high-dimensional embedding space, where 

samples belonging to the same class are densely packed together and samples belonging to 

different classes are separated by a greater margin. Because of this, even with a small amount 

of labelled data, the Siamese network can discriminatively classify ship-engine audio signals 

by successfully capturing their inherent similarities and variances. Siamese networks can also 

be trained with contrastive or triplet loss functions to maximize the embedding space and push 

different samples farther apart and comparable samples closer together.  

The proposed siamese network outperforms the other methods by 96.4167% accuracy. 

Siamese networks perform greatly better in view of learning correlations or similarities 

between multiple classes of data. Whereas traditional CNNs are mostly used for detection as 

well as classification of objects, Siamese networks are especially suited for matching and 

comparison of object pairs on the basis of their similarity. One of the main advantages of 

Siamese networks is the ability to learn from few labelled datasets and the less available of 

pairings than typical CNNs which requires massive labelled datasets. Some of them are 

particularly helpful in the circumstances that labelled data is pricey or in shortage. Siamese 

networks apply well in face recognition systems as well as signature verification, and image 

comparison tasks because of their capability to adapt to changing input data and increase their 

accuracy during generalization without any modifications. 

Not only do they have the possibility of using various tasks such as contrastive or triplet 

loss for loss functions, they also maximize the similarity between similar pairings, minimizing 

the similarity between different pairs, resulting in discrete embeddings. To conclude, Siamese 

networks are of great importance for applications where important task is learning association 

or pair between data items.  

However, in order to thoroughly assess the effectiveness of the suggested Siamese 

network model for underwater ship-engine sound classification, we want to compare various 

classification techniques, including Support Vector Machines (SVM), k-Nearest Neighbors (k-

NN), Random Forest and Decision Tree. We may evaluate the Siamese network's efficacy in 

managing the inherent difficulties of underwater acoustic signal classification, such as a lack 

of labelled data, noise, and environmental variability, by comparing its performance through 

different classifiers. 
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We can understand the relative performance in terms of classification accuracy, 

robustness to noise, scalability, and generalization ability by comparing these classifiers' 

performance with that of the Siamese network. By choosing SVMs (Support Vector Machines) 

as the classification algorithm for underwater ship-engine identification, robust decision 

boundaries are created in a high-dimensional space making it possible to differentiate between 

the patterns of different types of ship engines, even in the context of high background noise 

and acoustic variability. KNN (K-Nearest Neighbors) has the advantages of simplicity and high 

performance when dealing with data that is well-clustered like this, which make it a good 

choice for ship-engine sound classification that is based on the proximity to the known 

examples. Decision Trees are a valuable tool because they can be easily interpreted and 

analyzed, thus the analyst is able to see the decision-making process as well as to identify the 

specific acoustic features that distinguish one engine type from another. The Random Forest 

approach provides class enhancement which results from ensemble learning being a 

combination of many decision trees to improve accuracy, reduce overfitting and therefore 

facilitate in the proper management of complex and noisy underwater acoustic data sets. For 

underwater ship-engine classification jobs, this comparison analysis will offer useful 

information for choosing the best classification method based on particular needs and 

limitations. The results shows that k-NN classifier with 95.857% performs well than other 

classifiers. 

5.3 Future Work 

One of the drawbacks of triplet networks in the categorization of the underwater ship 

engine is their dependence on pre-selected triplets that are used for training but correctly 

curated samples in noisy environments are quite hard to find. Besides, a small size of dataset 

gives rise to another problem namely, how many triplet pairs will be necessary to train suitably 

embedding, and in the field of underwater acoustics, it is often difficult to collect sufficient 

labeled data. Not only that, issues like the network being vulnerable to adversarial attacks are 

also raised, which means that small changes in the input data could lead to classification errors 

lowering the reliability of the system in safety critical scenarios. Such limitations emphasize 

the necessity of the careful preparations of the dataset, careful selection of the triplet vector, 

and the efficient use of the security measures to make this domain approach closer to becoming 

reality. 
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Future work in the domain of underwater ship-engine classification by Siamese networks 

may concentrate on many aspects to propel the frontiers and tackle current obstacles. Here are 

a few possible avenues for further investigation: 

• Data Enrichment and Generated Synthetic Data: Examine methods for creating 

artificial ship-engine sound to enhance current datasets. This can enhance the resilience 

of Siamese network models to changes in ship types, engine settings, and environmental 

factors, as well as help address problems associated with sparsely labelled data. 

• Integration of Sensors with Multi-Modal Fusion: Examine how to improve ship-

engine classification performance by integrating several sensing modalities, such as 

optical, audio, and environmental sensor data. Create fusion strategies to increase 

classification accuracy and reliability by utilizing complimentary data from various 

sensor types. 

• Both Domain Adaptation and Transfer Learning: To generalize Siamese network 

models across various underwater settings, ship types, and acoustic sensor 

configurations, investigate transfer learning and domain adaption strategies. Formulate 

plans for knowledge transfer from labelled source domains with limited labelled data 

to unlabeled target domains. 

• Deployment in Real-Time and Autonomous Function: Create and put into service 

real-time ship-engine classification systems that may be deployed autonomously on 

underwater sensor platforms, like stationary sensor arrays or autonomous underwater 

vehicles (AUVs). Provide hardware architectures and effective algorithms that are 

suited for embedded, low-power computing in submerged situations. 

• Finding anomalies and diagnosing faults: Expand the capability of ship-engine 

classification frameworks to encompass anomaly detection and failure diagnosis. 

Provide algorithms that, when compared to typical auditory patterns, can identify 

anomalous engine behavior, mechanical issues, or environmental disruptions. 

• Deep Learning Frameworks and Model Enhancement: Examine cutting-edge 

regularization strategies, optimization tactics, and deep learning architectures 

specifically designed for underwater ship-engine classification applications. Examine 

methods for hardware acceleration, quantization, and model compression to facilitate 

effective deployment on underwater platforms with limited resources. 
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• Adversarial Security and Robustness: Examine how resilient Siamese network 

models are to security risks and hostile attacks in submerged environments. Provide 

defenses against hostile perturbations to lessen their effects on classification 

performance and protect the integrity and dependability of ship-engine classification 

systems. 

• Explainability and Interpretability: Improve the ship-engine classification models' 

interpretability and explainability to shed light on the features that discriminate and the 

decision-making process. To increase trust and comprehension of the categorization, 

look into methods for displaying and analyzing the learnt representations of Siamese 

network models. 

• Validation studies and field trials: To assess how well Siamese network-based ship-

engine classification systems function in actual underwater conditions, conduct field 

tests and validation investigations. Assess the practical usability and efficacy of the 

suggested solutions in cooperation with government agencies, research institutes, and 

stakeholders in the maritime industry. 

 

In order to provide dependable and effective methods for identifying and monitoring ships 

in the underwater environment, future research in the field of underwater classification of ship-

engine using Siamese networks can advance marine science, underwater technology, maritime 

operations, and maritime security by addressing these research directions. Moreover, different 

datasets can be used in future for better comparison. 
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