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ABSTRACT 

 

Title: Gesture Generation from Urdu text based on Deep Learning Approach 

When interacting with Artificial Intelligence (AI) machines such as robots and digital assistants, 

nonverbal cues, including gestures, are crucial alongside speech. Research to endow computers 

with human-like abilities has been ongoing for years, but most gesture generation studies have 

been constrained by dependencies on speech input, the English language, and specific speakers. 

This thesis aims to address these limitations by developing a gesture-generation model that 

produces high-quality gestures in response to Urdu textual input without requiring speaker 

assistance. 

 
We have developed our gesture model using Convolutional Neural Network (CNN) and Long 

Short-Term Memory (LSTM) algorithms, training it on a custom-created dataset. The 

implementation results demonstrate the model's effectiveness, achieving a Percentage of 

Corrected Keypoints (PCK) value of 75% and a mean absolute error rate of 0.3. These outcomes 

confirm the model's success in generating accurate and reliable gestures for AI interactions in 

the Urdu language. This research not only tackles the technical challenges of gesture generation 

but also contributes to the broader goal of enhancing AI's ability to interpret and respond to 

human nonverbal cues across different languages and cultural contexts. 
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CHAPTER 1 

 

 

 

INTRODUCTION 
 

 

 

 

 

1.1 Overview 

 
 

When two people communicate or talk they do it via two channels, one is the uttered 

speech or audio by any individual and the other is the movements of the body parts, especially 

upper body parts. This nonverbal communication channel improves the chance of mutual 

understanding between two individuals as it accompanies the uttered words. Technology is 

getting advanced day by day because it reduces human efforts and time, so every individual is 

expected to perform all the required tasks using advanced technology. Machines are getting 

human appearance in the form of Robots and Virtual agents [1] as well as in terms of behavior 

they are more expected to do as human beings. 

 

 

 
Artificial Intelligence and its domains including Deep Learning and Machine Learning 

are playing a crucial role in minimizing the space between Human Beings [2] and Artificial 

Machines and giving more and more abilities like human beings to machines. Much work has 

been done to produce human-like behavior for artificial machines but most of the work has 

certain limitations and constraints where language is the main entity [3]. English is considered 

as official language so most of the deep learning and machine learning models are built on 

English language words while other cultural and local languages are never taken under 

consideration. This research is proposed to mainly focus on the Urdu language and to build a 

deep learning model that produces artificial robotic gestures [4] from Urdu language text. 
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1.2 Motivation 

 
 

Advances in technology have turned the whole world into a global village and intelligent 

systems are being placed to perform most of the industrial [5], academic, and domestic tasks. 

People all over the world use their cultural and local languages as their common means of 

communication. Asian people use to speak approximately 1/3rd of all the languages that are 

spoken. Urdu is one of the common languages spoken in Asian countries [6], especially in 

Pakistan. There were a lot of additional Urdu-related activities in the United Kingdom cities 

where most immigrants had settled. Mushairas were held often (and still are) [7], drawing 

sizable crowds. Our newly formed Anjuman-e-Tariqa-e-Urdu [8], whose president was the late 

Raja of Mahmudabad, held regular meetings at the Islamic Cultural Center, which is currently 

the location of the well-known Regents Park Mosque. Urdu literature piqued the interest of 

British publishers [9], who were eager to take on such works. 

 

 

 
The average literacy rate in Pakistan is about 59.3% [10] which means that half of the 

population is not educated. The consumption of advanced technology depends on education 

because the means of communication with advances in technology is in the English Language 

so as a result almost half of the population [11] fails to get benefit from technology. Artificial 

Intelligence is automating the whole world. All tasks are now being performed with a single 

click but unfortunately, uneducated people in certain areas are unable to get benefits from the 

advances in Artificial Intelligence. This research is to focus on this problem and integrate the 

cultural Urdu language with Computer Science. Hence this research is designed to propose a 

deep learning model that generates artificial gestures using Urdu language. Hybrid Deep 

Learning approaches [12] are promising to produce quality results in most of the deep learning 

applications including voice recognition, recognition of certain complex patterns, Image 

processing tasks, and especially Natural Language Processing. The Hybrid Approach [13]is 

used in this present research to produce gestures using the Urdu Text Dataset which is collected 

and prepared in this present research. 
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1.3 Gestures and its Types 

 
 

A gesture is an instinctive movement made with the upper body parts including hands, 

arms [14], and shoulders while speaking. The process of continuously mapping these 

movements into key points of certain Dimensions is known as an artificial gesture. 

 

 

 
1.3.1 Beat Gestures 

 
 

Beat gestures are the kind gestures that have a rhythm in them, and they are close to the 

pace of the spoken language. Specific words and phrases that need to be highlighted come under 

the beat gestures. Examples of beat gestures include Repetition, Rhythm and timing, 

coordination with speech, natural and unconsciousness, [15] emphasis etc. 

 

 

 

 

 
 

 

Figure 1.1: Beat Gestures [15] 

 

 

 

1.3.2 Iconic Gestures 

 
 

Iconic gestures are used when it is required to visually represent any object in visual 

form. These gestures are more understood universally as they simply give a symbol of what 

they represent, and they are closer to the speech of any speaker. Characteristics of iconic 

gestures include Representation, Imitation, Multimodality, and Spontaneity whereas cupping 

of hands together, Rotation of hand to show the indication of a shape, pointing to a shape, and 
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drawing an outline of any shape virtually are some examples of iconic gestures [16]as shown 

in Figure 1.2. 

 

 

 

 
 

 
Figure 1.2: Iconic Gestures [16] 

 

 

 

1.3.3 Pointing Gestures 

 
 

Pointing gestures are used to withdraw attention towards any object such as indicating 

or directing any specific location, when there need to highlight the importance of some kind of 

object these pointing gestures are used, to make any request or some kind of assistance, showing 

agreement or disagreement in any aspect [17]as shown in Figure 1.3. 

 

 

 

 

 

 

 

 

 
Figure 1.3: Pointing Gestures [17] 
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1.3.4 Emblematic Gestures 

 
 

These types of gestures are the special signs that are understood by a community, or a 

specific group and they commonly include non-verbal symbols and have specific meanings. 

The meaning of these gestures can be culturally specific, and the use of such gestures can evolve 

with time and can be changed across generations. Examples of emblematic gestures include 

Thumbs up, Okay sign, Shaking and nodding of the head, high-five, and peace (V-sign) [18] as 

shown in Figure 1.4. 

 

 

 

 
 

 
Figure 1.4: Emblematic Gestures [18] 

 

 

 

1.3.5 Illustrative Gestures 

 
 

Illustrative gestures are the kind of gestures that include the movement of body-specific 

arms and hands. They are usually used to convey ideas or relationships between two things. 

Characteristics of illustrative gestures are Spatial Representation Enhancing Description, and 

Cultural Variability. Some common examples of these gestures include Showing the size or 

length of some shapes, Movement Depiction making outlines, and demonstrating some shapes 

in the air to show them virtually [19] like in Figure 1.5. 
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Figure 1.5: Illustrative Gesture [19] 

 

 

 

1.3.6 Regulatory Gestures 

 
 

Regulatory gestures or movements are used to convert or direct the flow of a 

conversation specifically used to indicate the intentions and to influence the behavior of others 

during communication. Some common characteristics of regulatory gestures include taking– 

turn signals, requesting permission, and management of flow, directing and directing attention, 

controlling the speaking time, and establishing a hierarchy. Some common examples of these 

gestures are nodding the head, raising and waiving a hand, making a shushing motion [20], etc. 

 

 

 

 

 
 

 

Figure 1.6: Regulatory Gestures [20] 
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1.3.7 Descriptive Gestures 

 
 

As clear by its name Description gestures are the gestures that are used while describing 

something which includes attributes of any object. The key features or common characteristics 

of descriptive gestures include providing context, clarifying the concepts and the variability, 

etc. There are some other examples of these gestures such as Demonstrations of motion 

mimicking any shape,[21] etc. as shown in Figure 1.6. 

 

 

 

 

 

 

 

 

Figure 1.7: Descriptive Gestures [21] 

 

 

 

1.3.8 Adaptors 

 
 

These are the kind of gestures which are used to fulfill personal needs and undertake 

several situations. These kinds of gestures are related to discomfort when to show some kind of 

discomfort these gestures are used. Some characteristics of adaptors include observing 

behaviors, to show variations that are individual, self-smoothing, and dependent on some 

context. Some examples of these gestures include playing with hair,[22] biting nails rubbing 

nails etc 
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Figure 1.8: Adaptors [22] 
 

 

 

 

1.3.9 Affective Gestures 

 
 

Affective gestures are the types of gestures that mostly include facial expressions to 

convey emotions. Characteristics of such motions are facial expressions, body movements, non- 

verbal communication that include emotions and cultural variability, etc. There are some other 

examples of such gestures such as raising eyebrows, smiling, seeking of head, [23] etc. as 

shown in Figure 1.8. 

 

 

 
Figure 1.9: Affective Gestures [23] 

 

 

 

1.3.10 Emotional Gestures 

 
 

Emotional gestures are used to convey feelings and emotions which may include 

behaviors, body movements, etc. The common characteristics of these gestures are body 
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language, Voice and tone pitch, micro-expressions, etc. Examples of such gestures are tears, 

laughter, hugging, nodding [24] etc. are shown in Figure 1.9. 

 

 

Figure 1.10: Emotional Gestures [24] 

 

 

 

1.4 Problem Background 

 
 

Convolutional Neural Network has demonstrated strong performance in text 

processing and semantic analysis, and hybrid deep learning algorithms have been well-proven 

in a variety of applications, including picture and text categorization. Consequently, it is 

possible to generate gestures using hybrid deep-learning techniques. This study's primary goals 

are to present the hybrid deep-learning gesture model and examine how text input and a 

sequential model might enhance gesture quality. Using cutting-edge technologies like 

humanoid robots, which are made specifically to carry out human tasks, has been reducing the 

barriers to human collaboration in recent years. However, it has some drawbacks and 

difficulties, like the accuracy of the gestures that are made, which determines the quality. 

[25,26]. Numerous methods exist for producing gestures from speech, all of which are inspired 

by the way humans communicate, which combines speech and co-verbal movements [27, 28, 

29]. Text is another significant entity that is frequently used by artificial systems, in addition to 

speech. Local and cultural languages are used as a common language of communication by 

people all over the world. Approximately one-third of the world's languages are spoken by 

Asians. One of the common languages spoken in Asian nations, particularly in Pakistan, is 

Urdu. In the UK cities where most of the immigrants had settled, there were plenty of extra 

Urdu-related events. Musha'iras drew large crowds and were held frequently (and still do). As 

an illustration: A consumer can configure a humanoid robot to wait on them and bring them the 

item they choose from the menu. The customer may use text to guide their decision. The 
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gesture-generating technique from text input modality has very little literature available [30]. 

The scope of recently proposed gesture models is limited since they rely on speaker-specific 

data, which can be in the form of text or audio [31, 32]. based on what is currently known about 

generalization models. [33]. Thus, designing such generic input-based models is necessary. 

Since gestures generated by any kind of input require a certain order. 

 

 

 
Many sequential models from deep learning, like Long Short-Term Memory and Recurrent 

Neural Networks, are employed in situations like this when long-term dependencies are 

necessary. Accuracy and output quality may both rise with the integration of a sequential model. 

 

 

 
1.5 Problem Statement 

 
 

Gestures are crucial in conveying the meaning of words during communication. 

Previous deep learning and machine learning approaches are well proven in creating gestures, 

yet they undergo certain limitations like speech-input, language, and dependency of an 

individual speaker [34]. Addressing these issues, this research thesis aims to produce gestures 

in response to Urdu textual input. By turning the video data into text, the model creates the 

gesture based on Urdu language. 

 

 

 
1.6 Research Questions 

 
 

i. How to modify the gesture generation model to use the Urdu Text Input Modality? 

ii. How does the Hybrid CNN-LSTM deep learning model impact gesture quality from 

Urdu text? 
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1.7 Aim of Research 

 
 

Designing and developing a modified Deep Learning model to produce human-like 

gestures for Artificial Intelligent Systems is the goal of this research project. This research's 

primary goal is to enhance the quality of artificial gestures through the sequential model, which 

addresses the need for real-time hand or gesture tracking systems, vision, and gesture 

recognition systems. 

 

 

 
1.8 Research Objectives 

 
 

i. To propose a gesture generation model utilizing Urdu text input modality. 

ii. To enhance gesture quality using a hybrid CNN-LSTM deep learning model with Urdu 

text input. 

 

 

 
1.9 Scope of Research Work 

 
 

The study's focus is restricted to arm, hand, wrist, and shoulder gestures; other body 

parts are not included in this scope. Furthermore, the only textual input used for gesture 

recognition is in the English language, which does not take into consideration the variety of 

languages and [35] non-textual input techniques that are frequently employed in real-world 

situations. The quality and diversity of the data sets utilized for training and evaluation will 

determine how effective the research is, and this may provide challenges in fully capturing the 

range of real-world gesture variability. Furthermore, this study is not intended to address 

hardware or device-specific issues that may affect the accuracy of gesture detection. 

 

 

 
1.10 Thesis Organization 

 
 
The remaining Thesis is organized as described below: 
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The research domain and a thorough summary of the body of current literature are 

presented in Chapter 2. Literature is categorized according to a variety of methods and 

approaches, including models, algorithms, and specifically the methodology that was 

employed. In addition, Chapter 2 lists the current limitations and difficulties that offer a 

foundation for more study and the knowledge gap that results in the creation of a modified text- 

based gesture model. 

 

In-depth information about the research methodology is provided in Chapter 3, which 

also offers solutions to address the current constraints and a comprehensive overview of all 

benchmark methodologies now in use. The approach chosen to carry out this research is 

described in this chapter. It also provides information on the implementation tools and the 

evaluation process for the suggested paradigm. 

 

Since Chapter 4 provides a detailed overview of the model's suggested design, it can 

be regarded as the thesis' central chapter. discussing the tools, models, and algorithms needed 

to put the suggested architecture for creating gesture models into practice. This chapter 

discusses specifics of data and whether the requirements for data processing are satisfied. 

Additionally, this chapter's flowcharts, figures, and diagrams help readers better comprehend 

the architecture of the model. 

 

The reader will receive an assessment of the suggested model in Chapter 5 along with 

the parameters that were used to assess the model's recommended architecture. The efficacy of 

this architecture is further ensured by a comparison of the suggested model with benchmark 

data sets supplied in this chapter. The accuracy that was attained by comparing the suggested 

method to different models is shown in a table. 

 

An overview of the research work's contributions and recommendations for further 

work are provided in Chapter 6. 



 

CHAPTER 2 

 

 

 

LITERATURE REVIEW 
 

 

 

 

 

2.1 Overview 

 
 

The gesture of robots has been analyzed by scholars in past years and this is the topic 

on which most research is being performed. In this chapter, a brief review of the previous 

techniques to produce movements is provided. Generating Robotic life-like gestures is difficult 

i.e. movements synchronization concerning voice. The presented research in this thesis gives a 

distribution and makes a study available based on a Convolution Neural Network to produce 

gestures in section 2.2, and sections 2.3 and 2.4, respectively, cover methods pertaining to 

Morphemic Analysis and Generative Adversarial Networks (GANs). Section 2.5 explains 

techniques from Data-Driven Approaches. Highlighted Research gaps and directions are 

discussed in section 2.9. Finally, there is a summary of this chapter in Section 2.10. 

 

 

 
2.2 Convolutional Neural Networks 

 
 

Gesturet popular deep learning method for surface electromyography(seMG)-based 

gesture detection is CNN architecture, which is split into two groups according to various 

assessment techniques. Improving intra-session evaluation recognition accuracy is the main 

goal of the first study [36, 37, 38]. Atzori et al. [39] created spatially and temporally resolved 

sEMG pictures and trained a CNN algorithm to extract high-level characteristics. To extract 

spatial information from the instantaneous sEMG pictures, Geng et al. [40, 41] developed a 

unique CNN model and attained state-of-the-art performance. The difference between sessions 

or subjects is the focus of the second investigation [42, 43]. The CNN model is adapted by Park 

and Lee [44] to improve the qualities that are learned for inter-subject evaluation. Domain 
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adaptation based on GengNet [45] was used by Du et al. [46] to increase inter-session accuracy. 

After Zhai et al. [47] retrieved useful information from the sEMG spectrogram to produce 

sEMG images, CNN-based architecture was used to simulate the link between gesture labels 

and sEMG images. Ordo nez and Roggen [48] proposed a deep hybrid CNN-Recurrent Neural 

Network (RNN) for activity recognition with multimodal wearable sensors. This design 

provided a natural sensor fusion and described the temporal information of the activity. [49] 

Wang et al. [50] proposed a novel CNN-Long Short-Term Memory (LSTM) model to solve the 

pose estimation and gesture detection problems with only RGB videos. The CNN block was 

utilized to extract the spatial characteristics of each frame, and the sequentially supervised 

LSTM (SS-LSTM) was proposed to supervise the learning process, which replaced the class 

label with extra information. Wang et al. used the Hidden Markov Model method to model and 

reconstruct the dynamic gesture trajectories. An invariant curve moment represents the global 

feature, and a direction that characterizes the gesture trajectory for recognition represents the 

local feature. Oreifej et al.[51] used the histogram approach instead of the sequence model to 

express the spatial and temporal information present in the depth sequence to achieve the 

identification goal. Chen et al. [52] used the Fourier descriptor method to extract the feature 

vector, the hidden Markov chain was utilized for recognition, and the hand segmentation 

approach was utilized to extract the shape and time features from the data set. The biorthogonal 

wavelet transform was used by Rahman et al. [53] to preprocess the image before constructing 

a multi-class support vector machine for recognition. These methods have some accuracy 

already, but not enough to be considered robust. Cheng et al. [52] used convolutional neural 

networks in conjunction with images of sEMG features to enhance the recognition effect and 

identify gestures. This successfully addressed the sEMG gesture recognition shortcomings of 

conventional machine learning. They also combined the extraction of deep abstract features 

with the 1-dim convolutional kernel. Liao et al. compared the front-end networks and 

investigated the single multi-box detector (SSD) method. MobileNets was the preferred front- 

end network, and the MobileNets-SSD network was improved. effectively fixes the problem of 

hand shading. Li et al. extracted the sEMG signals of the forearm muscles based on hand 

movements of humans, using three feature values: wavelength, root mean square, and nonlinear 

feature sample entropy in the time domain. In the end, hand motion recognition with a high 

accuracy rate was achieved by Generalized Regression Neural Network (GRNN) and Support 

Vector Machine (SVM). Huang et al. improved the You Only Look Once (YOLO) v3 algorithm 

based on an empirical criterion to determine whether a worker meets the requirements for 

wearing a helmet. More noteworthy was the advancement over the initial YOLO v3 algorithm. 
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Huang et al. developed a framework for semantic segmentation of visual networks with 

cooperative target detection. By adding parallel semantic segmentation branch operations to the 

target detection network, a novel multi-vision task combining object categorization, detection, 

and semantic segmentation is implemented. It effectively improves vision tasks under difficult 

conditions. Yang et al. proposed a multistream residual network (MResLSTM) for dynamic 

hand action recognition. The network integrates residual and convolutional short-term memory 

models into a single, coherent architecture by using a clockwise grouped convolution and 

channel shuffling technique to reduce the number of network calculations. The result is an 

extremely accurate identification. Weng et al. developed a cascaded two-level convolutional 

neural network model and introduced an Angle-Net model to precisely estimate the grasping 

angle in response to the inaccuracy of previous pose detection techniques. It effectively fixes 

the problem of multiple objects piled on top of each other, hiding the target and making it 

difficult for the robot to locate it during a grasp. A weighted adaptive algorithm that integrates 

multiple factors has been developed by Duan and colleagues to improve RGB-D information 

processing. Finally, trials are used to verify the resilience and viability of the algorithm. Liu et 

al. proposed a novel end-to-end dual-stream topology called the fusion of space-time network. 

This network closely combines spatial and temporal data to acquire rich spatio-temporal 

information and generate excellent recognition results. Karpathy et al. suggested a multi- 

resolution CNN network that can manage enormous volumes of data. Its performance has 

significantly improved as compared to the network that used strong features. Simonyan and 

associates constructed a CNN model with two streams. The two-channel model consists of a 

temporal network trained on the optical flow frame and a spatial network trained on the original 

frame. To employ a segment-based sampling and aggregation module, Wang et al. developed 

the temporal segment network (TSN), a novel video-based action detection framework. The 

dual-stream convolutional network served as its model. Model the long-distance time structure. 

Molchanov et al. combined a high-resolution network (HRN) and a low-resolution network 

(LRN) to create a new CNN-based categorization network. The recognition result is obtained 

by probabilistic fusion of the two branches. Deep learning-based gesture recognition is the 

industry standard in computer vision due to its many scalability and stability advantages. 

Ginosar et al. generated a dataset of ten speakers' conversational gesture motions as determined 

by an automated posture identification system. Additionally, they trained models for gesture 

generation based on convolutional neural networks (CNNs). After being trained with data from 

a single speaker, the gesture generation model predicts the 2D coordinates of the speaker's 

hands and arms based on the aural characteristics of speech. 
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2.3 Recurrent Neural Networks 

 
 

The RNN architecture has been applied to sEMG-based hand tasks such as posture 

estimation and sEMG feature extraction. Hioki and Kawasaki [54] developed a neural network 

with recurrent structure to forecast finger joint angles from sEMG signals. Quivira et al. [55] 

presented a sEMG-based hand position estimation method using RNN with LSTM cells. With 

the use of sEMG signals, it developed a model that accurately represented the kinematics of the 

hand stance and predicted the kinematics of the hand joints. Multiple views: Bootstrapping 

allows the identification of hand important spots by first creating labels in multiple hand views. 

These detections are then used in a multi-view geometry to triangulate in three dimensions. 

"There often exists an unconcluded view, even in cases where there is significant occlusion in 

a particular image of the hand. Based on this observation, Tomas et al. [56] present a novel 

technique called multi-view bootstrapping for generating motions with a multi-camera 

configuration. To improve the detector's performance during training, the newly formed 

triangulations were used as new labels. The resulting key-point detector offered precision on 

par with real-time RGB operation when compared to deep sensors. Amor et al. [57] recorded 

sEMG signals using a Myo armband to identify sign language. They then extracted features 

from sequential data using an RNN architecture to interpret motions in sign language. The 

hybrid CNN-RNN architecture has shown promising results in video and wearable sensor 

recognition. Ebrahimi Kahou et al. [58] introduced a hybrid CNN-RNN architecture for facial 

expression analysis. The CNN and RNN modules of the architecture were trained 

independently. Wu et al. [59] developed a hybrid deep learning system that consists of two 

hybrid CNN-RNN architectures and a regularized fusion layer in order to extract spatial, short- 

term, and long-term characteristics. 

 

 

 
Features were extracted in the presented work in Phinyomark feature set of each 

channel to generate new sEMG images because the electromyogram signal is noisier than other 

wearable sensor signals [60]. We then utilize deep neural networks to extract meaningful 

information between each channel. Nevertheless, compared to regular photos or video frames, 

the resulting sEMG image is monochrome and has substantially lower pixel resolutions. We 

add a locally connected layer and meticulously adjust the settings of each layer in our suggested 

attention-based hybrid CNN-RNN architecture, which has been used for the first time in sEMG- 
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based gesture detection. A Transformer-based design was put up by Taylor et al. with the 

express purpose of capturing spatiotemporal patterns in gesture data. Their model demonstrated 

the promise of transformer-based techniques in this domain by achieving state-of-the-art 

outcomes in terms of both naturalness and diversity of generated gestures. The Attention-based 

LSTM architecture, which Cao et al. introduced, is a variation of the LSTM architecture that 

includes methods to selectively attend to distinct parts of input sequences. This enables the 

model to focus on relevant context during gesture production. There is potential for this 

attention process to enhance the coherence and fluidity of created motions. The application of 

Long Short-Term Memory (LSTM) networks for gesture generation was first described by 

Graves et al. Their model produced realistic and coordinated hand motions, demonstrating an 

impressive ability to capture temporal dependencies. The foundation for further research on 

using RNNs for gesture synthesis was established by this work. To increase gesture synthesis 

performance even with a limited amount of annotated data, Smith et al. proposed transfer 

learning techniques that make use of pre-trained models on larger datasets. This addresses the 

problem of data scarcity. To provide more realistic and expressive gesture generation, Liu et al. 

concentrated on creating multi-modal gestures by creating a hierarchical RNN architecture that 

could capture dependencies across various body parts and modalities. In their 2019 study, 

Zhang et al. examined the application of variational recurrent neural networks (VRNNs) to 

produce gestures, utilizing latent variables to capture the variability and underlying structure of 

gesture sequences. Their method made it easier to create a wide variety of realistic movements 

and provided fresh perspectives on probabilistic modeling methods for gesture synthesis. Jiang 

et al. addressed concerns about cultural sensitivity in gesture synthesis by examining the 

creation of gestures that are appropriate for different cultures. Their research demonstrated how 

crucial cultural context is for gesture generation applications. By including a self-attention 

mechanism into the LSTM design for gesture production, Park et al. contributed to the field. 

Their model produced more logical and contextually appropriate gesture synthesis by learning 

to dynamically balance the significance of various input items. 
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2.4 Generative Adversarial Networks 

 
 

The generator takes samples from a noise distribution (z) to produce data and samples. 

Samples produced by the generator are referred to as fake samples (labeled as 0), and samples 

derived from the original data are referred to as real samples (labeled as 1). In a minimax game 

between the generator and the discriminator, the generator's goal is to trick the discriminator by 

generating samples that are almost identical to the original, while the discriminator's job is to 

identify actual samples from fake ones. Deep neural networks (DNNs) have been used in 

several recent research to study speech-driven head motions and positions.[61] Using solely 

completely connected layers, only bidirectional long-short term memory (BLSTM) units, and 

a hybrid technique that combines fully linked layers and BLSTMs, Ding et al. [62] investigated 

DNNs. These models, which were designed to reduce the sum of squared errors (SSE) between 

the predictions and the original head movements, mapped speech filter bank properties to head 

movements. Their findings showed that employing the BLSTM model alone outperformed 

using the fully connected DNN alone. The combination strategy helped them perform at their 

peak.[63] Greenwood et al. [64] mapped the filter bank features taken from speech to head 

postures, creating distinct deep models for the speaking and listening turns. They facilitated the 

comparison of a conditional variational auto-encoder (CVAE) and a BLSTM model by 

presenting the statistical characteristics of the moments for the produced head movements. The 

issue of predicting human mobility is connected to the recognition of human gestures and 

activities. In motion forecasting, the aim is to predict a sequence of future poses conditioned on 

the input, given a sequence of human skeleton poses. Because human motion is stochastic and 

has non-linear dynamics, this is a non-trivial challenge. After deep learning techniques 

demonstrated remarkable results across a broad range of computer vision challenges Martinez 

et al. [65] used the Human 3.6M dataset to train a sequence-to-sequence Gated Recurrent Unit 

(GRU) network and obtain state-of-the-art short-term motion prediction results.[66] By using 

an encoder-decoder architecture, Butepage et al. [67] were able to learn a reliable feature 

representation of the human skeletal data and predict future 3D poses. In early sEMG-based 

gesture recognition frameworks, a great deal of research has been done on the handcrafted 

features and conventional machine learning classifiers. Three types of hand-crafted sEMG- 

based features now in use are time domain, frequency domain, and time-frequency domain 

features [68]. Numerous researchers concentrated on either presenting novel sEMG features 

based on their expertise in the field or examining current features to suggest novel feature sets. 
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Li et al. proposed a unique GAN architecture designed for challenges involving gesture 

generation. Their program learned to generate believable and varied gestures that closely 

mirrored human movements by redefining the generation process as a game between a 

generator and a discriminator. The groundwork for later studies on the application of GANs to 

gesture synthesis was established by this work. A conditional GAN (cGAN) framework was 

presented by Zhang et al. to facilitate the creation of gestures that are contingent on features or 

circumstances. Their methodology acquired more control over the generated movements by 

supplying extra information, including position labels or semantic descriptors, which made 

applications requiring customized gesture synthesis easier to implement. A Progressive GAN 

architecture was developed especially for synthesizing high-resolution gesture sequences with 

realistic motion dynamics and fine-grained details by Tulyakov et al. When it came to the 

temporal coherence and visual clarity of the generated gestures, their model fared better than 

earlier methods. To increase the diversity of synthesized gestures, Yoo et al. implemented 

approaches for data augmentation and style transfer. This allowed the model to generate many 

gestures even with a small amount of training data. Kwon et al. used the GAN framework with 

cross-modal constraints to study the creation of multi-modal gestures. Their model learned to 

produce synchronized multi-modal outputs by modeling gestures in conjunction with 

accompanying textual or audio cues. This made the model useful for applications in multimedia 

content creation and gesture-based communication systems. A brand-new adversarial imitation 

learning system for gesture generation was presented by Chen et al. Their model was able to 

replicate the gates and facial expressions of human demonstrations, producing a highly accurate 

synthesis of a wide range of realistic gestures. By incorporating a novel self-attention 

mechanism into the GAN architecture for gesture creation, Park et al. contributed to the field. 

Their model's capacity to dynamically weigh the significance of different spatial and temporal 

characteristics led to a more coherent and contextually appropriate synthesis of gestures. Jeremy 

Chu et al suggested a conditional GAN called Word Gesture-GAN. It accepts any text as input 

and produces realistic word-gesture motions in two dimensions: temporal (timestamps of touch 

points) and spatial (touch point coordinates). To provide for control over the variation in 

generated gestures, it uses a Variational Auto-Encoder to extract and incorporate variations of 

user-drawn gestures into a Gaussian distribution. The model is useful for developing and 

accessing gestural input systems since it performs better than other gesture production models 

currently in use. Minho Le et al. proposed a system that combines a GAN and an autoencoder 

to generate a series of sequential human behaviors that are conditioned on beginning states and 

class labels. The autoencoder and GAN are cooperatively optimized during the end-to-end 
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training procedure. Even though it isn't particularly gesture-focused, it shows how effective 

GANs are at producing sequential movements. Kalyan Chatterjee et al. proposed a hand gesture 

classification using a Convolutional Neural Network (CNNs) coupled with Generative 

Adversarial Network (GANs). This work uses GANs in conjunction with Convolutional Neural 

Networks (CNNs) to produce a variety of hand motion sets, however it is not solely GAN- 

focused. Enhancing usability for marginalized communities is the aim, with a focus on hand 

gesture recognition's importance. 

 

 

 
2.5 Database- Driven Approach 

 
 

Combining different rules may cause contradictory expressions to be synthesized [69]. 

Scholars have recently focused on the impact of communicative functions (CF) on the inference 

of animation. A system that is intended to choose motions from recorded multimodal nonverbal 

behaviors in accordance with CF is described in the work. Additional research focuses on 

examining how CF contributes to head animation computation and gesture performance 

generation [70]. Human audiovisual data becomes available with the introduction of motion 

capture technologies and video-based tracking devices. Many academics use statistical 

frameworks to extract the intricate temporal relationships from the available human data to 

create realistic and organic animations. Speech-driven and text-driven statistical frameworks 

are two categories into which existing data-driven systems can be divided based on the input 

signals; these categories will be discussed in the following sections. Albert Dipanda, Cyrille 

Mignot, and Ammar Ahmad, provide an overview of hand object modeling, along with a range 

of applications to help with the hand gesture problem. They have been greatly influenced by 

advancements in monitoring, particularly in the detection of the entire human body, as there are 

similarities in the assessment of the human body and hand. Due to the occurrence of manual 

poses and the difficulties in rendering and manipulating hand objects, the exacerbated weight 

of amplitude generated by increased power, the connectional specification on space of hand 

objects, results in self-occlusion. A framework for early gesture recognition was proposed by 

Rohit Agrawal et al. [19]. A sequence-to-sequence motion forecasting model was trained with 

a partially observed gesture represented by a set of poses, and it generated a sequence of 

anticipated poses. The partially observed ground truth gesture and the predicted pose sequence 

were combined and fed into a random forest gesture categorization algorithm. It demonstrates 



21 
 

that the sequence-to-sequence model's output was added to the partially seen gesture to greatly 

increase recognition accuracy. Gesture classification accuracy rose from 45% to 87% in studies 

using the MSRC-12 gesture recognition dataset when a partially observed gesture of 50 frames 

was enhanced with an extra 25 frames of anticipated motion, and to 93% when augmented with 

100 frames of predicted motion. There are some statistical and machine learning approaches. 

The latent link between speech and gesture in statistical systems is modeled by the statistics of 

the underlying gesture distribution. Statistical techniques assume less about the speech-gesture 

link than rule-based systems do. Instead, they either apply a prior probability distribution or 

precompute conditional probabilities for the gesture data. One of the first statistical systems 

was put forth by Kipp, who created a gesture profile by evaluating an annotated co-speech 

dataset and modeling a person's gestures. Using the video annotation application ANVIL, the 

data was tagged to create a gesture profile with distinct attributes including handedness, timing, 

and communicative function. After that, the gesture profiles were developed using statistical 

models that drew inspiration from research on dialogue act and speech recognition. Conditional 

probabilities on gesture bi-grams and the occurrence of the gesture given semantics from input 

text were used to determine the plausibility of a gesture. The product was statistical models that 

formed a person's gesture profile based on their unique handedness, timing, and transitions. 

After that, realistic motions were produced from the annotated input speech using the profiles. 

There were several phases to the generating process: 1) Assigning semantic tags to input text; 

2) Generating all possible gestures, adding them to an intermediate graph representation, and 

labeling the graph with probability estimates; 3) Using text-gesture associations and timing 

profiles, respectively, to filter and temporally arrange gestures. An XML action script that may 

be utilized in a system for downstream animation was the outcome in the end. Neff et 

al. expanded on this strategy by presenting a statistical system that not only included a 

character-specific animation lexicon but also learnt gesture profiles. The system was divided 

into two stages. A hand-annotated video corpus of a character in ANVIL served as the basis for 

the pre-processing phase. Like Kipp's annotation procedure, but with an extra English-speaking 

character. Based on the annotated data, an animation lexicon and gesture profile (a statistical 

model) were developed. The latter included information about hand orientation, torso posture, 

and after strokes (i.e., repeated hand movements that follow a notable stroke) for every gesture 

lexeme. There were two different routes in the fully automated generation phase: 1) re-creation, 

which was helpful for verifying the annotations, was able to recreate the gestures (shown in the 

video) in the animation system after receiving an annotated video as input; 2) gesture creation 

that might produce gestures without the need for visual input by using newly annotated text. To 
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create a gesture script, either path made use of the character's gesture profile. Bergman et al. 

and Kopp et al. proposed a statistical approach for the conversion of speech that describes 

objects into gestures. By combining relative and imagistic representations of knowledge for 

content planning and concrete speech and gesture formulation, the proposed method produced 

synchronized speech and gesture. Using virtual reality (VR), the researchers conducted dyadic 

talks in which one speaker provides spatial directions to another. The purpose of the study was 

to determine which contextual elements influence how speech and gesture are formed to 

describe tangible items. They created a Bayesian network for gesture formulation as part of 

their methodology. A probability distribution over gesture attributes including indexing, 

positioning, shaping, drawing, and posing was established by the Bayesian network. The 

idiosyncratic patterns for mapping visuospatial referents onto gesture morphology—that is, the 

unique ways in which people might index, shape, or draw gestures while describing referent 

objects—were also taken into consideration by the probability distribution. Fine-grained 

features such as hand shape, wrist location, palm direction, extended finger direction, 

movement trajectory, and direction were produced using gesture formulation. The framework 

used the rule-based Articulated Communicator Engine to achieve synchronized speech and 

gesture for the final animation. Levine et al. developed a hidden Markov model to choose the 

best motion clip from a motion capture database. To choose the gesture sub-units from the 

motion capture that would best fit the current utterance's tone and ensure a smooth transition, 

the trained HMM looked for prosody cues. But because prosody and gesture sub-units were 

closely linked, the system became dependent on the quantity and quality of training data, which 

led to overfitting. Levine et al. proposed "gesture controllers" that separated the kinematic 

characteristics of gestures—such as speed and spatial extent—from their shape, making it an 

improvement over the prior system. Using a conditional random field (CRF) that examined the 

audio characteristics in the input speech and discovered a distribution over a range of hidden 

states, gesture controllers deduced the kinematics of gestures. By encoding the latent structure 

of gesture kinematics without considering the gesture's morphology, the hidden states lessened 

overfitting by lowering the number of erroneous correlations. Ultimately, a Markov Decision 

Process (MDP) selected the relevant gesture clips by using an optimal policy that it had learnt 

using the reinforcement learning algorithm. It did this by taking the hidden states and their 

distribution as input. Chiu et al. maintained the use of features to train a probabilistic model for 

gesture production. They limited the scope of their research to learning prosodic gestures, 

rhythmic movements, or beats. A modified Hierarchical Factored Conditional Restricted 

Boltzmann Machine served as the foundation for the gesture generator. Using an unsupervised 
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learning approach, they trained a conditional Restricted Boltzmann Machine to create a 

compact motion representation initially. The gesture representation was then generated for each 

time step until the entire motion sequence was finished by the HFCRBM generator using an 

autoregressive process that took in the preceding gesture representation and a series of audio 

features taken from the original speech. Lastly, they lessened wrist joint acceleration when it 

was beyond a certain threshold, which helped to smooth out discontinuities between frames. 

But because their methodology was limited to rhythmic gestures, it ignored other frequently 

occurring gesture categories such pantomimes, iconic, deictic, symbolic, and metaphoric 

gestures. Hasegawa et al. proposed a bi-directional LSTM in an autoregressive manner to 

produce gestures from auditory utterances. Over a considerable amount of time, the bi- 

directional LSTM learnt audio-gesture connections with both forward and backward 

consistencies. Using a headset and marker-based motion capture, a novel audio gesture dataset 

was used to train the model. At each LSTM timestep, the model used the input of speech 

attributes to predict a complete skeletal human position. Then, to smooth out discontinuities in 

the resulting pose sequences, temporal filtering was applied. Methods that employed audio as 

the main modality resulted in precisely timed hand movements that were mostly in line with 

beat gestures and were frequently strongly connected with acoustics. The absence of a text 

transcript, however, means that they were not aware of the context and structural elements of 

the text, such as punctuation and semantic meaning. A system like this can lead to more 

expressive and meaningful motions. Thus, we will now go over a few strategies that employed 

text as the main input modality. A text-based gesture generating technique for operating a 

humanoid robot was presented by Ishi et al. By linking words to concepts, concepts to gesture 

categories (such as iconic, metaphoric, deictic, beat, emblem, and adaptor), and gesture 

categories to gesture motions, they modeled the translation of text to gesture motion. They also 

generated conditional probabilities to simulate the relationship between gesture categories and 

motion clusters that were precomputed using the k-means clustering algorithm, as well as the 

relationship between word concepts and gesture categories. Bhattacharya et al. used text 

transcripts to generate expressive emotive gestures for virtual agents in storytelling and 

dialogue scenarios. The actors in MPI-EBEDB, a dataset of multiple emotion categories 

(sadness, relief, amusement, anger, disgust, fear, joy, neutral, pride, sadness, shame, and 

surprise), performed these emotions. They used transformer-based encoders and decoders in 

their method. where the text transcript phrases (encoded as GloVe embeddings) were sent into 

the encoder, which created an encoding and concatenated it with the agent attributes (gender, 

handedness, desired emotion, and narration/conversation). The Transformer decoder was used 
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to produce the joint positions for the subsequent pose by feeding it the encoded concatenation 

and 3D joint locations from the previous stance. The procedure was repeatedly carried out until 

the entire pose sequence was produced. Systems for creating gestures that are text-based or 

audio-based offer an intriguing trade-off. Although they lack semantic context, audio-based 

generators can produce rhythmic or kinematic gestures (like beats) thanks to their access to 

prosody and intonation. On the other hand, text-based generators lack prosodic and intonation 

information, but they do have access to semantic context, which aids in the generation of 

gestures that convey meaning (such as iconic or metaphoric). Consequently, a gesture generator 

can learn to generate semantically appropriate and rhythmic co-speech gestures by fusing the 

textual and auditory modalities. While producing meaning-carrying gestures solely through 

auditory means is theoretically feasible, it is improbable since prosody is appropriate for 

kinematics but insufficient to deduce shape, which is linked to meaning [LWH 12]. To the best 

of our knowledge, meaningful gestures from spoken audio alone have not been proven through 

empirical research. Rather, it seems that the most promising method for producing meaningful 

gestures to yet is the combination of text and music. As a result, we concentrate on methods 

that integrate these two modalities to produce expressive gestures that convey meaning. A 

method that produced co-verbal gestures by fusing the speech prosody and text was presented 

by Chiu et al. A fully connected network was used for representation learning in their model, 

which they named the Deep Conditional Neural Field, and a Conditional Random Field was 

used for temporal modeling. To predict a series of gesture signs—a collection of predetermined 

hand motions—the model used prosody features, part-of-speech tags, and a text transcript as 

input for the gesture prediction task. The next natural step was to use the representation power 

of deep learning models for multimodal input (text and audio) to generate co-speech gestures. 

Yoon et al., Ahuja et al., and Kucherenko et al. were the three distinct research groups that 

suggested the first deep-learning-based gesture generators that generated continuous motions 

using both audio and text. Next, we talk about their groundbreaking work fusing text and audio, 

and then later initiatives in the field. Given that co-verbal gestures are impromptu, incredibly 

unique, and nonperiodic, animating them remains a very difficult task. Rule-based methods use 

motion recording to produce well-formed gestures, however they are rigid and don't provide a 

variety of motions. 



25 
 

2.6 Sign Language Processing (SLP) 

 
 

Rule-based and statistical-based methods can be used to categorize machine learning- 

based algorithms. Iwai et al. used a glove-based machine learning system, one of the statistically 

based techniques, to categorize hand motions [32]. They first used the nearest-neighbor method 

to extract features, and then they used a decision tree algorithm to classify the data. Wilson and 

colleagues used a statistically based concealed. They obtained good results with the RGB hand 

motion dataset by concentrating primarily on the max-pooling layer of the CNN [37]. The 

primary issue with this research is the difficulty in identifying hand gestures that include 

orientation fluctuations and partial occlusions. Tao et al. used a CNN model with multi-view 

augmentation to identify kinetic-sensor-based hand motions for American Sign Language 

(ASL) to get over this difficulty [38]. Facial expression manipulation has been studied with 

audio-based motion generation [5], and gesture production has been studied with a similar 

methodology [17]. An objective function is defined as a model. 

 

 

 

 

 

 
Figure 2.1: The Architecture of the Gesture Generation Process [17] 

 

 

 

The relationship between utterances and motions as well as the sequential relationship 

among motions. A series of animation segments are then collected, and gesture animation is 

created by optimizing the objective function. This approach is like prior efforts. This 

architecture is compatible with Hidden Markov models (HMM), which have been used to 

produce arm gestures [17] and head motions [6, 19]. Two types of features, such as hand- 

crafted and deep-learned features, have also been studied for skeleton-based action recognition. 
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The 3D joint positions of the human body were utilized in manually constructed feature-based 

methods to calculate skeletal quad [8], points in a Lie group [29], Action let Ensemble [32], 

and Eigen Joints [35]. Dan Huang [30] presented a variation adversarial autoencoder-based 

approach for 6D posture estimation that is limited to using RGB data. 

 

 

 
This network's encoder and decoder have structural symmetry, and the encoder uses a 

hierarchical stream-by-stream approach to extract features. The orientation feature is implicitly 

represented using the latent space that was obtained from the RGB image. It is practically 

possible to realize the 6D posture estimation of the item based on the template matching 

method. Several CNN- and Recurrent Neural Network-based architectures are used in deep 

learning-based techniques [6], Dan Gelb, Henrique Weber, and Claudio Rosito-Jung (2016) [5], 

Research indicates that a new wave of processing and display technologies has sparked the 

development of user interfaces that transform commonplace objects, such as tables and walls, 

into immersive planes. When the hand is laid flat, the color information and depth may 

effectively divide the hand's shape at different distances from the surface. This is part of the 

goal of making computing resources available, adaptable, and allocated. 

 

 

 
The spoken words were interpreted by the encoder, and human emotions were 

produced by the decoder. The model created frame-by-frame poses of gestures against a natural 

language without requiring any prior information. The resulting 2-D poses were then 

transformed into 3-D by using a Robot Prototype. Co-speech gestures have been studied by 

many psychologists. This large body of research has mostly relied on examining a small number 

of chosen subjects using synchronized story retellings recorded in laboratory settings. By 

adjusting the noise in the hand skeleton data, they concentrated on the noisy dataset and, for the 

14 and 28 gestures in the DHG dataset, respectively, obtained accuracy of 80.44% and 85.92%. 

To identify a temporal 3D position, Nunez et al. suggested combining CNN and LSTM models. 

They reported 85.46% and 81.10% accuracy for the 14 and 28 gestures in the DHG dataset, 

respectively [17]. 
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To generate node and edge properties for spatial and temporal domains, we first used 

a deep neural network and subsequently a spatial-temporal and temporal-spatial branch. The 

analysis for these investigations was done by hand. Rather, we want to evaluate natural 

conversational gestures through a data-driven approach. [17] In order to cut down on noise, Ma 

et al. used an unscented kalman filter in conjunction with an LSTM for classification [25]. Wep 

extracted three broad deep learning features and concatenated them to create the final feature 

vector to improve the system's generalization. We applied a spatial-temporal mask to lower the 

computational cost, and for the MSRA dataset, we achieved 94.12% accuracy; for the DHG 

dataset, we reached 92.00% and 88.78% accuracy. Similarly, using the SHREC’17 dataset, they 

obtained 97.01% and 92.78% accuracy for the 14 and 28 gestures, respectively. 

 

 

 
2.6 Comparisons of Deep Learning SLP models-based Schemes. 

 
 

Table 2.1 Summary of Deep Learning SLP Models 
 

References Author Techniques Results Limitations 

[33] Dan Huang, Adversial Mean=38.56 Only use offline detection 

 Hyemin Ahn, Autoencoders, Self-  of 6D pose. 

 Shile Li, Supervised Learning   

 Yueming Hu    

 and Dongheui    

 Lee    

[32] Abu Saleh Spatial Attention 99% accuracy  

 Musa Miah, Model, Feature  

 Md. Al Mehedi extraction using  

 Hasan, Jungpil CNN  

 Shin, Yuichi   

 Okuyama and   

 Yoichi Tomioka   
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[78] ABU SALEH 

MUSA MIAH, 

MD. AL 

MEHEDI 

HASAN, and 

JUNGPIL SHIN 

Multi-branch 

attention-based 

graph and a general 

deep learning model 

to recognize hand 

gestures by 

extracting all 

possible types of 

skeleton-based 

features. 

Model achieved 

94.12%, 92.00%, 

and 97.01% 

accuracy 

3D hand skeleton 

information from gestures 

to develop a sign 

language-based 

communication system. 

[80] Shichen Zhang, 

Tianlei Wang 

and Jiuwen Cao 

Auto encoder MMRAEs not 

only improve the 

overall accuracy, 

but also 

effectively reduce 

the network size. 

Not focus on constrained 

modeling based MMRAEs 

172 by exploiting the 

feature correlation within 

the same class as well as 

cross-classes. 

[48] Ikhsanul 

Habibie, 

Michael Nef, 

and Christian 

Theobalt 

audio-gesture clips 

from a database 

using a KNN 

algorithm and GAN 

model 

This approach 

outperforms the 

state of the-art 

both in terms of 

naturalness and 

audio- 

synchronicity 

Limitation of search-based 

algorithm is the potentially 

expensive computation 

time compared to single- 

pass inference approaches 

of the purely learning- 

based counterparts. 

[81] Mireille Fares, 

Catherine 

Pelachaud and 

Nicolas Obin 

CNN and 

transformer decoder 

RMSE errors are 

much smaller 

than LSTM-based 

baseline model of 

prediction. Model 

received similar 

values for the 5 

factors. 
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[82] Uttaran 

Bhattacharya, 

Nicholas 

Rewkowski, 

Abhishek 

Banerjee, Pooja 

PHOENIX 14T Training of the 

model was done 

via skeleton 

annotations. 

High Complexity. 

[83]  PHOENIX 14T Gloss 

information was 

not used. 

High Complexity. 

[84]  Czech news Give better. 

Results even 

Skeleton parts 

are missing. 

 

 

 

 

 

 

2.8 Research Gap and Direction 

 
 

Several issues  were found during a thorough review of the literature on gesture- 

generating models, which prompted the creation of the text-to-gesture generation model that 

will be covered in the upcoming chapters. The intricacy of the model, the scope of the input 

modalities, and the caliber of the gestures that are produced as output are the current problems. 

 

 

 
Here is a list of several issues and holes that have been identified: 

 

 
• Since the field of artificial intelligence is centered on human-machine interaction, there 

is less and less room between virtual agents and robots, particularly humanoid robots. 

Thus far, speech has been the basis for this exchange. There hasn't been much research 
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done on the text, which must be investigated because it's a valuable entity that forms the 

basis of this interaction. 

• Since gestures are a simple means of communication between robots and artificial 

intelligence, several models regarding deep learning and machine learning have been 

put out to create artificial gestures. However, these models fall short of human-like 

motions in terms of quality. As Artificial Intelligence Models learn from data, which is 

provided to them during phase, data should be sufficient but not less for training. 

Therefore, this problem needs the attention of researchers. 

• Recurrent Neural Networks (RNN) is the most popular algorithm in the domain of 

Artificial Intelligence and Deep learning, and it has been proved well to show good 

performance when processing sequential data. Sequencing the motions is the key to 

using individual gestures to produce motion. Consequently, research into the potential 

effects of a sequential model on the sequence and quality of generated gestures is 

necessary. 

• Standard English language keywords are the only ones included in the gesture 

generating models that are currently available, whether based on text input or voice. 

Even if most people can understand English, additional languages are still required as 

the foundation for artificial intelligence models. 

 
Several proposed Models have been developed to generate gestures. These models 

and techniques have certain constraints and limitations. As discussed in section 2.3 the S2G 

model proposed in [2] acquires correctly predicted Key-Points using a Convolutional Neural 

Network (CNN). This research is being conducted to identify a few of the above-mentioned 

gaps. There is hardly any work found in the literature survey which is conducted that produces 

gestures other than the English language Considering the Urdu-speaking culture and viewing 

the importance of other languages than English this work is directed to propose a Text-to 

Gesture generation model that produces gestures corresponding to Urdu text. 

 

 

 
2.8 Summary 

 
 

This chapter offers a thorough literature review of gestures and the models that are 

currently in use, which establishes a strong research base. This chapter offers a critical analysis 
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of the models that are now in use about various methodologies. Additionally, a theoretical 

discussion of each technique's strengths and weaknesses is provided. Lastly, their shortcomings 

and restrictions are addressed, which ought to serve as a challenge for more study. 



 

CHAPTER 3 

 

 

 

METHODOLOGY 
 

 

 

 

 

3.1 Overview 

 
 

This chapter discusses details of the research approach that was used to create the text- 

to-Gesture model and examines the architecture of the suggested deep learning model. This 

chapter carefully examines the several stages that make up the research technique. The 

difficulties encountered throughout the research process are explained, offering an 

understanding of the study's endeavor. This chapter provides a thorough review of the 

procedures taken in the research process as well as an in-depth discussion of the design phase. 

The principal aim of the framework that has been suggested is to produce expressive gestures 

from Urdu text and evaluate its effectiveness by measuring the percentage of Corrected Key 

points (PCK). A crucial component is the creation of our own dataset, which is designed to 

produce improved and notable features for model training, together with the use of the best 

techniques for hyperparameter tuning. In this chapter, the necessary conditions are covered in 

detail, providing insight into the data pretreatment methods used to reduce data complexity to 

facilitate feature extraction and feature vector embedding. This chapter also briefly discusses 

the size, scope, and instances that make up the dataset. 

 

 

 
3.2 Research Methodology 

 
 

This section elaborates the methodology and organizational framework utilized in the 

suggested study project. It discusses the step-by-step processes used to reduce the deviation 

from the objectives. Three distinct phases of the investigation are depicted in Fig. 3.1 
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The first stage, called the Analysis Phase, entails a thorough review of current plans 

and various approaches to gesture generation. This includes the fields of morphological 

analysis, neural networks,[71] generative adversarial networks (GANs), and several database- 

driven approaches. Neural Networks are particularly well-suited to managing intricate 

calculations with little data by using parallel processing. Superior motions are produced by 

Morphemic Analysis, which synchronizes with spoken or textual utterances by understanding 

words at their origin. Gesture generation is a strong suit for GANs-based techniques, which 

take advantage of their dual neural network architecture to process information in parallel. 

Database-driven techniques are useful for analyzing complex data and producing several 

results. The literature proposes several data-driven methodologies for gesture generation. We 

find gaps and limits in the literature by carefully examining it; one such drawback is the lack 

of gesture production from Urdu text. The problem statement and the objectives are shaped by 

these limitations. 

 

 

 
The next stage, which is called the Design and Development Phase, is the most 

important one since it involves building models and architecture while considering all the 

necessary resources, such as datasets and model parameters. The model is tuned to take textual 

input because it recognizes that textual information can yield superior motions. A sequential 

approach is used to improve gesture output because movements and text sentences—which are 

shown as word vectors in a sequential order—are synchronous. Convolutional neural networks 

(CNNs) are used to extract significant features [72] from the input text. After then, a sequential 

long short-term memory (LSTM) is fed these features to generate two-dimensional important 

points of gestures. To ensure robustness and dependability, the text-to-gesture model is put 

through a rigorous testing process that includes multiple epochs and train-test splits. 
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3.3 Requirement Analysis 

 
 

Any suggested proposal must first undergo a thorough analysis of needs, which entails 

a thorough investigation and gathering of all relevant resources. This stage consists of several 

smaller processes, such as requirements collection, prioritization, documentation, validation, 

and general management. To put the intended text-to-gesture model into practice, the most 

important prerequisite is a large dataset in addition to a system that has GPUs and a few other 

essential requirements for the experiment. In Section 3.2.2, these needs are explained in more 

detail. 

 

 

 
3.3.1 Dataset 

 
 

This section outlines how the dataset was created. It consists of 15 videos, each lasting 

30 minutes. This video records an Urdu professor's speech, with the camera staying in one place 

the entire time. The Open Pose identification technology made it easier to extract 2D essential 

points from the videos. Thirty key points representing the articulation of the arms, hands, 

elbows, wrists, and shoulders were identified. In contrast to other datasets, our collection 

highlights the linguistic subtleties in the Urdu language, providing a unique basis for our text- 

to-gesture model. The construction of this dataset is essential to adjusting our research to the 

unique nuances of Urdu communication patterns, which are in perfect alignment with the 

research objectives. The dataset was created by distilling the content of 15 videos with a single 

speaker. The output is a thorough compilation that includes speaker frames, important points, 

and related language expressions. We arranged 23 different CSV files, each containing an 

average of 4,000 occurrences, within each word dataset. Two columns make up the structure of 

these files: one column contains the extracted word, and the other column has the matching 

time. When no word was found for a given frame, the keyword "BLANK" was assigned to 

provide clarification. The entire repertory consists of 49 unique key points that cover both x 

and y coordinates in two dimensions. 
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3.3.2 System Requirements 

 
 

System requirements outline the necessary capabilities that a system must have in order 

to run a certain piece of software. These parameters usually include storage capacity, operating 

systems, dependencies, CPU specifications, and graphics card concerns. Several crucial 

conditions have to be met in order for the suggested system [73] used in this study to be put 

into practice, as listed below: 

 

i.Python 2.7: The foundation for executing the suggested model in this study is provided by the 

notable Python release of 2010, [74] namely version 2.7. 

ii.Cuda 9.0: With the Compute Unified Device Architecture (Cuda 9.0), [75] programmers may 

leverage NVIDIA GPUs' computing capacity for a variety of applications, including deep 

learning. 

iii. CuDNN: Cuda Deep Neural Network Library (CuDNN): CuDNN makes it easier to do 

complex deep learning operations, such as pooling, normalisation, and applying different 

activation functions. It is interoperable with frameworks [76] like PyTorch, Caffe, and NXNet 

and speeds up these operations on GPUs. 

iv.Open CV: The Open-Source Computer Vision (OpenCV) library is essential [77] for managing 

image processing tasks, especially when using gesture frames for training. 

 

 

 
3.4 Pre-Processing 

 
 

'Pre-processing' refers to a set of procedures, various approaches, and methods that are 

used on unprocessed data to prepare it for use according to certain specifications. 

Computational interventions are necessary to ensure the quality and effectiveness of data for 

analytical purposes. Pre-processing, which includes tasks like data normalization and 

formatting to meet a deep learning model's training criteria, is a crucial and essential stage in 

the field of deep learning. This aspect is essential to improving the model's accuracy. 
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The ground truth for the model's training in this study, which focused on general text 

inputs, was gestures rather than speaker information. 30 two-dimensional (2D) key points 

representing the arms, hands, wrists, elbows, and shoulders made up the dataset, making the 

equivalent 60 points in total. It became necessary to eliminate speaker-specific data from words 

and gestures in the dataset because gestures in the Text-Gesture generation model are intended 

to be universal. To remove the information that detailed the intricacies of the speaker's actions, 

the procedure depicted in Figure 3.1 was taken. 

 

 

 
3.4.1 Assessment of Speaker-Specific Gestures 

 
 

Frames, words, and salient moments from Open Pose were included in the Gestures 

Data, which concentrated on a single speaker. The key to the suggested research, though, is to 

create motions that are not particular to any one speaker. Thus, to enable a more detailed 

examination of the various gesture kinds and the essential points they correspond with, it 

became necessary to exclude speaker-centric data from the gesture’s dataset. Specifically, the 

shoulders, arms, wrists, and hands are covered by these important areas. 

 

 

 
3.4.2 Extracting Gestures 

 
 

Words, gesture images, and important points are all included in the Gestures Dataset. 

Words were taken out in a predetermined amount of time, and every word has a motion attached 

to it. Given that the speaker is a professor, his dataset contains phrases and gestures that are 

unique to his position as a teacher. There are probably some words that lecturers use frequently, 

like greets, introductions, audience interactions, and summaries of earlier lectures. The 

maximum number of common words were selected, and the corresponding gestures were 

identified for each word to anonymize the data. Due to a lack of resources, I ran this experiment 

solely using my dataset. 
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3.4.3 Selecting the Gestures 

 
 

Based on research on a single speaker, each word in the Words and Motions dataset has 

at least three motions associated with it. To optimize the model's training for a specific motion, 

the Structural Similarity Index (SSIM) was used to identify the optimal gesture image based on 

similarity value. 

 

 

 
3.4.4 Structural Similarity Index 

 
 

In the field of image processing, the Structural Similarity Index (SSIM) is an essential 

metric for evaluating image similarity. It is notable as one of the significant milestones in Deep 

Learning, allowing the investigation of similarity correlations between images. This flexible 

measure is useful not only for assessing image-focused Deep Learning Models but also for 

picture production and restoration applications. Using three essential dimensions – Contrast, 

Structure, and Luminance – SSIM fully captures image similarity. By using a set of weighted 

functions, deviations in these crucial dimensions are evaluated to calculate the SSIM Index. 

The resulting SSIM Index values are -1 to 1, where 0 represents total dissimilarity, 1 perfect 

similarity, and -1 no discernible similarity between two photos. The SSIM Index was utilized 

in this investigation to assess the degree of similarity [78] between three speaker gesture 

photographs. Pairwise comparisons between the first and second images, the second and third 

images, and the third and first images were carried out. The gesture image that was closest to a 

1 in the SSIM Index value was chosen. Following that, the model was trained using the relevant 

key points and terms. 

 

 

 
3.4.5 Train and Test Split 

 
 

The extensively used Train-Test Split methodology is used to evaluate the performance 

of Deep Learning and Machine Learning Algorithms. This simple process consists of dividing 

the entire dataset into two halves. The Deep Learning Model is trained using the first, 
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sometimes referred to as the training set. The results of the second, known as the test set, are 

used to assess the model's performance because it is not viewed by the model during training. 

A train-test split ratio of 80:20 is used in this study, meaning that 80% of the data is used to 

train the model and the remaining 20%  for testing. 

 

 

 
3.5 Proposed Text-to-Gesture Model 

 
 

The suggested model makes use of two well-known Deep Learning algorithms for 

gesture creation, which are well-known for their effectiveness in a range of real-world 

situations. In particular, the Long Short Term Memory network (LSTM) and the Convolutional 

Neural Network (CNN) are used. Text data is processed by CNN as a series of inputs, which 

then turn into word vectors. To record and transmit time series data, five up and five down 

block operations are carried out [79]. A three-layered LSTM network with a dense layer and a 

flattened layer comes next. Gestures are ultimately produced using 60 key-point joint 

coordinates shown in Figure 3.2. 

 
 

 
Figure 3.2: Proposed Model 
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3.5.1 Word Embedding 

 
 

The translation of textual terms into vectors is an essential step in the domain of Deep 

Learning and Machine Learning Models when working with text and semantic data. Machine 

learning models can successfully understand meaning and context when words are represented 

in a continuous vector space, which offers a mapping from higher dimensions to lower 

dimensions. The Word2Vec method is used by the suggested Text-to-Gesture model to translate 

textual words into vectors. To turn a single input word into real-word vectors, this requires 

using one million English word vectors trained with Wikipedia subword 2017 via the Fast Text 

Python Library. The goal of Word2Vec, a well-known Deep Learning word embedding model, 

is to build continuous vector representations based on word occurrences in text. Word2Vec is 

incorporated into the Text-to-Gesture model that is being presented because of its noteworthy 

contributions to Natural Language Processing domains like Sentimental Analysis, Text 

Classification, and Machine Translation. 

 

 

 
3.5.2 Convolutional Neural Network 

 
 

One of the most popular algorithms in many Deep Learning and Machine Learning 

Models is the Convolutional Neural Network (CNN). This is especially true for applications or 

issues involving data visualization, image classification, and object or edge recognition in 

images. 

 

 

 
Like an animal's Virtual Cortex, which is made up of several layers of neurons, a CNN 

also has layers like the Pooling Layer and Convolutional Layer. Either completely or partially 

connected networks exist between these tiers. CNNs have transformed computer vision by 

exhibiting remarkable capabilities across a range of tasks. The following are the reasons why 

the beneficial applications of CNN have been selected for this proposed study. 
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3.5.3 Operations for Down Sampling and Up-Sampling 

 
 

Down sampling is a technique used in convolutional neural networks that aims to lessen 

the feature map's structural complexity. This process is usually performed after the 

convolutional layer and reduces the number of layers that follow without sacrificing important 

characteristics. In contrast, down sampling is represented by up sampling, which is often 

referred to as devolution or Transposed Convolution. Down sampling procedures are essential 

for collecting layered representations and spatial resolutions in visual data when using 

convolutional neural networks. Using a convolutional neural network architecture with five 

down sampling block operations, the feature vector in the proposed research is reduced to 300 

× N/32, where N is the total number of frames in the input sequence. The time series data is 

then reintegrated using five up-sampling block operations, each of which uses a skip connection 

to send information to send contextual information to the portion of the decoder. 

 

 

 

 

3.5.4 Long Short-Term Memory Network (LSTM) 

 
 

The Text-to-Gesture Model is based on the three-layered Long Short-Term Memory 

Network (LSTM) architecture. LSTM is a subtype of Recurrent Neural Network (RNN) that is 

distinguished by its exceptional accuracy in processing Sequential Data, including audio, video, 

and semantic text. This improved version finds extensive application in tasks such as text and 

speech recognition [80], robotics, and handwritten character and digit identification. It is 

categorically designed to capture and keep long-term dependencies. 

 

 

 
The input, forget, and output gates are the three types of gates found in each cell that 

make up the LSTM Network design: 

 

 

 
Input Gate: This component determines which portion of the input should be kept, ignored, or 

retrained. It oversees controlling the flow of information into the cell state. It is made up of a 
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Sigmoid Activation Function that multiplies candidate values obtained from the input at hand 

by element-wise means using weights that have been acquired. The LSTM Network retains 

relevant details by filtering out irrelevant information using an additional operation. Long-term 

dependency is retrained with the help of this method. 

 

Forget Gate: Essential to the operation of the Long Short-Term Memory (LSTM), the Forget 

Gate eliminates extraneous data from the cell and dynamically modifies the memory 

representation to concentrate on the important components of the input sequence. This skill is 

essential for handling data that is consecutive. 

 

Output Gate: Choosing which parts of the cell to use to generate the output, the Output Gate 

oversees transferring crucial data from the present state to the following layer. This gate, which 

includes a Sigmoid Activation function, conducts element-wise product operations, allowing 

the LSTM Network to use information selectively to produce the desired output. 

 

 

 
3.5.5 Sigmoid and Tanh Activation Functions 

 
 

To add non-linearity and manage information flow in the LSTM, activation functions 

are necessary. Tanh and Sigmoid are two of these functions used by the LSTM network. 

Sigmoid is deliberately used in the input, output, and forget gates. It maps values between 0 

and 1, as specified by the equation 𝜎(x) = 1 / (1 + 𝑒^−𝑥), acting as a real gate. The LSTM 

network's hidden and cell states both exhibit non-linearity, which is introduced by the 

hyperbolic tangent function, Tanh. This function accepts both positive and negative numbers 

and translates input values to the real range between -1 and 1. Tanh (x) = (e^x − e^−x) / (𝑒^𝑥 

+ 𝑒^−𝑥) provides its definition. Tanh and Sigmoid activation functions are essential for 

preserving specific information, identifying intricate patterns, and adding non-linearity to the 

LSTM output when processing sequential data. Moreover, these roles support the maintenance 

of both Long and Short-Term Memory, where Long-Term Memory spans the whole LSTM 

network while Short-Term Memory is contained in a single cell. 
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3.5.6 Dense Layer 

 
 

The 3-layer LSTM network model in the proposed research incorporates a Dense Layer 

into its Text-to-Gesture Model. Every neuron in this dense layer connects to every other neuron 

in the layer above. Non-linearity is added to the final output layer by multiplying weights and 

inputs from the previous layer and then applying activation functions. This layer adjusts bias 

and weight values to learn complex patterns within sequential data, which makes it an excellent 

fit. The quantity of neurons in the output layer and this layer match. 

 

 

 
3.5.7 Flatten Layer 

 
 

In a neural network model, the flattened layer serves as a transitional layer that converts 

multi-dimensional data into a single-dimensional or flat vector. The flattened layer transforms 

the neural network output into a single 1-D vector by adjusting its shape using variables like 

width, depth, and height. This layer reshapes and resizes the neural network output, but it 

doesn't change the output values or carry out intricate operations. The flattened layer plays a 

crucial role in the suggested text-to-gesture paradigm by translating the output into 60 2-D 

gestures and producing a series of gestures according to the number of input sequence words. 

 

 

 
3.5.8 Process of Generating Gestures 

 
 

The training of the Text-to-Gesture model uses 90 2-D key-point joint coordinates about 

the arms, hands, wrists, and shoulders. The mapping that the model does is as follows: G: R 

300×N → R 90×N, where N is the number of words in the input sequence, 300 is the 

dimensions of the input vector, and 90 is the number of gestures used. Upon obtaining a text 

sequence as input, the algorithm accurately predicts key points to generate a corresponding 

gesture image for every word. 
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3.6 Adam Optimizer 

 
 

The fine-tuning of model parameters and hyperparameters becomes crucial in Deep 

Learning and Machine Learning applications that deal with large volumes of high-dimensional 

data. To achieve this fine-tuning, optimizers are essential. They work to maximize both 

accuracy and loss by figuring out the best values for model parameters and hyperparameters. 

The Text-to-Gesture model that is put forward here utilizes adaptive moment estimation or the 

Adam Optimizer. The AdaGrad and RMSProp algorithms, which are specifically made to 

handle huge datasets and choose the best learning rates, are combined into one optimizer. The 

Adam optimizer starts by setting starting weights and then applies the backpropagation 

technique to compute gradients concerning the loss function. It then calculates the moving 

average of gradients and bias-correlated averages, repeatedly adjusting weights until the 

intended result is obtained. 

 

 

 
3.7 Summary 

 
 

An extensive summary of the methods and procedures used to create the Text-to- 

Gesture model is given in this chapter. It starts by going over the process for eliminating speaker 

data from the generated dataset. It also explores the strategies used to build the model, tackling 

the difficulties brought on by the sizable sequential dataset. A brief explanation is given on the 

application of optimization methods and activation functions. Lastly, for a thorough 

comprehension, the Text-to-Gesture Generation cycle is described and illustrated through 

diagrams. 



 

CHAPTER 4 

 

 

 

RESULTS AND ANALYSIS 
 

 

 

 

 

4.1 Overview 

 
 

This chapter explores the outcomes of the Text-to-Gesture model's implementation, 

concentrating on the primary job of producing gestures from Urdu text. The paradigm was 

introduced in Chapter 3. A thorough examination of the effect on gesture quality is provided, 

along with details on the experimental configurations, platform of implementation, and 

characteristics that are essential to assessing the model's efficacy. The chapter is structured so 

that Section 4.3 goes into the analysis and discussion and Section 4.2 gives specifics on the 

assessment parameters and the outcomes collected. Especially, Section 4.4 presents noteworthy 

accomplishments and makes analogies with other suggested gesture models. In Section 4.5, the 

chapter is succinctly summarized. 

 

 

 
4.2 Evaluation Parameters 

 
 

It is impossible to overestimate the importance of evaluation parameters in deep learning 

and machine learning models since they provide a qualitative way to assess a trained model's 

performance. These factors allow for comparative research with other state-of-the-art proposed 

models and provide a way to evaluate the model's efficacy. The evaluation of the Text-to- 

Gesture model presented here is done according to several parameters, which are explained in 

the sections that follow. 
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4.2.1 Percentage of Corrected Key Points (PCK) 

 
 

One important metric for evaluating the performance of AI models, especially those designed 

for computer vision applications, is the Percentage of Corrected Key Points (PCK). These 

models use key points that are taken from photos or moving objects to estimate the stance of 

people or other moving objects in real-time scenarios. 

 

 

 
Within the framework of the suggested Text to Gesture model, PCK was subjected to a series 

of steps in the evaluation process. 

 

Definition of Threshold Interval: To build a pose estimation, a threshold distance is defined, 

which gives a certain value for key points that are deemed valid when they are close to the 

Ground Truth. 

 

Accurate Key-Point Computation: The model computes the difference between the actual 

Ground Truth and each anticipated Key-Point. The estimated Key-Point is considered accurate 

if the distance is within the specified range. 

 

Determining the Percentage of Accurately Estimated Crucial Points: The proportion of 

corrected Key-Points out of all extracted Key-Points is calculated to determine the correctness 

of the model. The efficacy of the model in relation to the Ground Truth is shown by this 

percentage, which stands for the PCK. 

 

 

 
Establishing an appropriate threshold is a crucial step in computing a PCK value since it defines 

the region that Key-Points are deemed to have been correctly predicted. A moderate threshold 

was established during the assessment of the suggested model, and several thresholds were tried 
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to confirm performance. The big benefit is that only those Key-Points that fit inside a specific 

range and closely match the Ground Truth are considered as true. Precision is improved by 

using a close, narrow threshold [81]. α = 0.1 and 0.2 were the threshold values used to assess 

the suggested model. 

 
Correct Key-Points = No. of Key Points In between Threshold ................ (i) 

 

 
𝑃𝐶𝐾 = 

𝑁𝑜 .𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝐾𝑒𝑦𝑃𝑜𝑖𝑛𝑡𝑠  
∗ 100 ................................................... (ii)

 
𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝐾𝑒𝑦𝑃𝑜𝑖𝑛𝑡𝑠 

 
 
 

 

4.2.2 Mean Absolute Error (MAE) 

 
 

One important measure used to verify the performance of the suggested model is the 

Mean Absolute Error (MAE), which is often accepted and applied for assessing the performance 

of Deep Learning and Machine Learning models, especially when it comes to regression 

assignments. In situations when a model is involved in continuous value prediction, MAE is 

beneficial. The absolute discrepancies between the predicted values and the ground truth, or 

actual dataset, are computed using this metric. Among its many advantages are its insensitivity 

to outliers and its ability to provide information on the model's development by averaging the 

separately computed absolute errors. 

 

 

 
The variables 'actual' and 'predicted' indicate the original and predicted values of any marked 

variable or instance, while 'n' indicates the total number of instances in the dataset. The 

calculated error value is represented by MAE in this equation. The following procedures were 

necessary to calculate the MAE for the suggested gesture model: 

• Retrieving the real values from every dataset object. 

• Figuring out the absolute difference between each data point's actual value and its 

expected value as predicted by the model. 
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• Calculating the average by adding up all of the generated values. 

 

It is important to remember that a lower MAE is seen as better when evaluating the MAE value 

for model evaluation. A reduced MAE indicates that the model's projected values are reasonably 

close to the ground truth values. Furthermore, it shows that in real-time circumstances, the unit 

of measurement and the target variable are constant. 

 

 
𝑀𝐴𝐸 = ( ) ∗ ∑ |𝑦𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑| ............................................ (iii) 

𝑛 

 
 
 

 

4.3 Experimental Settings 

 
 

During the experimentation and implementation phase following are some important settings 

used for this experimenting research: 

 

 

 
Table 4.1: Experimental Setting 

 

Setting Value Description 

Batch Size 30 A batch size of 30 is utilized, implying that the 

model's parameters are updated after 

processing every 30 samples. 

Device Cuda The proposed model is trained on a system 

equipped with a Graphics Processing Unit 

(GPU) supporting the Cuda framework, 

facilitating parallel computing. 

1 
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Epochs 75 100 epochs are employed for fine-tuning the 

model, indicating that the entire dataset is 

iteratively passed 75 times through the model 

during training. This prolonged training period 

is necessary due to the substantial dataset 

discussed in Chapter 3. 

Models saveInterval 10 The interval for saving the model is set to 10, 

signifying that weights and bias values are 

stored on disk after every 10th iteration during 

training. 

 

 

 

 

 

4.4 Results and Discussions 

 
 

Two performance evaluation matrices (PCK)—the mean absolute error (MAE) and the 

percentage of corrected key points—were used to assess the suggested Text Gesture Model. In 

the PyTorch [82] environment, the model was implemented. The maximum percentage we were 

able to obtain for crucial points that were accurately predicted throughout numerous epochs is 

shown in Figure 4.2. Important information about hands, arms, wrists, and shoulders made up 

our dataset. Since every joint is next to every other joint, establishing a strict threshold might 

not lead to any confusion when aiming for optimal performance. The graph exhibits the model's 

efficiency by plotting the value of PCK versus the number of training epochs. 
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Figure 4.1: PCK of Generated Gestures 
 

 

                                                           

 

Figure 4.2: MAE of Generated Gestures 
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The results presented in Figures 4.1 and 4.2 clearly indicate the effectiveness of our 

proposed Text to Gesture Model in the Urdu language. Achieving an accuracy of 75% based 

on the percentage of corrected key points is a significant milestone, demonstrating that the 

model can reliably interpret and generate gestures from Urdu text input. The minimum error 

rate of 0.3 further supports the precision of our system, indicating that the gestures produced 

closely match the expected key points extracted from the original videos. This level of accuracy 

is notable, especially given the nuanced and expressive nature of gestures, which are crucial for 

conveying meaning and context in communication. The implementation focused on extracting 

key points from critical parts of the body involved in gesturing, namely the hands, arms, 

shoulders, elbows, and wrists. This comprehensive approach ensures that the generated gestures 

are detailed and accurate, capturing the essential movements and positions required for effective 

communication. The quality of these generated gestures, as evidenced by the high percentage 

of corrected key points, suggests that the model can produce fluid and natural movements that 

are representative of human gestural communication. Moreover, the consistency of the model's 

performance across different samples within the dataset underlines its robustness. The high 

accuracy achieved highlights the model's capability to generalize well across various inputs, 

ensuring that the gestures remain coherent and contextually appropriate regardless of the 

specific text provided. This consistent performance is crucial for applications where reliable 

and accurate gesture generation is necessary, such as in virtual assistants, language learning 

tools, and interactive multimedia systems. The results, therefore, affirm the success of our 

approach in creating a functional and accurate Text to Gesture Model for the Urdu language, 

paving the way for further advancements in this field. Furthermore, the successful 

implementation of our Text to Gesture Model in the Urdu language signifies a significant step 

forward in bridging the gap between textual inputs and non-verbal communication modalities. 

By accurately translating text into expressive gestures, our model opens new avenues for 

enhancing human-computer interaction, particularly in multicultural and multilingual contexts 

where language barriers exist. 
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Table 4.2: Comparison of Proposed Hybrid DL to Gesture Model 
 

 
PCK MAE Threshold Language Speaker 

Specific 

Our 

Hybrid 

Model 

0.75 0.323 α = 0.1, 0.2 Urdu No 

T2G 0.288 0.958 α = 0.1, 0.2 English Yes 

S2G 0.4 0.707 α = 0.1, 0.2 English Yes 

 

 

 
Table 4.2 illustrates that by using the same parameters quality gestures can be achieved 

if a model is trained in different languages. Except for our model, every other model made use 

of the identical benchmark dataset, which included ten speakers' precise motions of every 

individual speaker the model was trained on every individual speaker also the recorded videos 

in all datasets were in English language but our dataset was comprised of only one speaker who 

was an Urdu Language Professor delivering a lecture and the speaker information was kept 

hidden from the model so our proposed model is not specific to any particular speaker. 

 

 

 
4.5 Summary 

 
 

In Chapter 4, "Results and Analysis," the implementation outcomes of the Text-to- 

Gesture model are thoroughly examined with an emphasis on the model's primary purpose of 

producing gestures from Urdu text. To evaluate the model's performance, the chapter offers a 
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thorough analysis of gesture quality, experimental settings, and important assessment criteria. 

The painstaking procedures that go into PCK evaluation highlight how useful it is for figuring 

out whether critical point predictions are accurate. Concurrently, the addition of MAE as a 

regression task metric offers information about the accuracy of the model. The final section of 

the chapter focuses on the experimental settings, clarifying important variables like batch size, 

device specs, epochs, and model save intervals. This ensures that the robustness and efficacy 

of the model are thoroughly investigated during the phases of experimentation and 

implementation. 



 

CHAPTER 5 

 

 

 

CONCLUSION AND FUTURE WORK 

 

 

 

5.1 Overview 

 
 

This study's focus was on investigating the issue of speaker-specific movements and 

gesture accuracy. The results included the development of a deep learning model and methods 

that can produce gestures independent of speakers and increase accuracy in terms of PCK value. 

To the best of our knowledge, the suggested model is unique in that it produces hand gestures 

against a text input modality and without the assistance of a human. The goal of the suggested 

Text to Gesture model is to improve and amplify the earlier motions using fresh approaches 

and methods. A more detailed synopsis of the research is given in Section 5 of this chapter 2. 

This research's major contributions are outlined in Section 5. Section 3 outlines specific 

concerns and potential avenues for improving the research. The main goal of this thesis is to 

create a Text to Gesture generating model with a PCK value that can increase accuracy. 

Additionally, the impact of the suggested model is examined by a comparative analysis using 

the most advanced approaches currently accessible. 

 

 

 
5.2 Summary of the Contribution 

 
 

The proposed Text to Gesture model has enhanced the gesture model [33] in following 

significant ways. 
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i. Gestures are independent of any speaker: The methods that were currently available 

trained models on speaker-specific data and generated gestures. This raises the likelihood 

of a model limitation. The suggested model uses approaches to eliminate speaker 

information from the dataset to minimize this problem and optimize the model's flexibility. 

The method utilized in [33] to extract speaker information from the ten people's gestures is 

shown in Figure 3.4 

 
ii. High Accuracy: One key result of deep learning and machine learning is accuracy, which 

indicates the effectiveness and performance of the model. The suggested gesture generating 

model consists of two main Deep Learning Algorithms and is based on the Hybrid Deep 

Learning methodology. Long Short-Term Memory Network with Convolutional Neural 

Network Its comparison with other cutting-edge methods of manufacturing movements 

made evident how accurate the model described in this research thesis was. The Mean 

Absolute Error (MAE) has been minimized and the PCK value has increased by up to 10% 

with the proposed model. Sections of the preceding chapter demonstrate the effects of 

employing a sequential Deep Learning Algorithm (LSTM) on the obtained results. 

 
iii. Gestures against Urdu Text: Text is extremely important in many domains, such as 

documentation and knowledge sharing. Interaction between natural and artificial entities, 

such as humans and computers, depends heavily on hand gestures. For many practical 

applications, it is consequently necessary to generate hand movements from text. An 

immersive method of enabling user-computer interaction is through gestures against words. 

Existing models and methods for generating gestures rely on vocal input; nevertheless, these 

schemes typically don't offer many benefits. As a result, the model used in this study is 

based on text input and generates high-quality motions. 

 

 

 
Since deep learning and artificial intelligence approaches have the potential to reduce the gap 

between humans and machines, the suggested text-to-gesture model is based on a hybrid deep 

learning approach and has outperformed other methods in terms of results. Undoubtedly, a great 

deal of work has gone into this research, but there are still a number of different approaches to 

investigate it 
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5.3 Applications 

 
 

There are several uses for artificial intelligence in every aspect of daily life. The 

suggested study is within the purview of artificial intelligence, enabling its use in a variety of 

real-world contexts. Following is a list of a few of them: 

 

 

 
i. Translating Sign Language: Hard-of-hearing groups can benefit from support using a 

Text to Gesture, and deaf individuals can be accommodated in an inclusive atmosphere. 

This model offers implementation for the conversion [83] of text to signs. 

 

 
ii. Visual characters and Assistants: In virtual reality (VR) and [84] augmented reality 

(AR) environments, gesture models are widely used to teach animated characters and 

avatars to match textual content. This can enable the greatest amount of human-virtual 

assistant engagement. 

 
iii. Robotics: The gesture model can be implemented and integrated into artificial robots 

to enable efficient human-computer interaction by interpreting textual commands and 

matching the right gesture to each word. 

 

 

iv. Modern Assistive Technological Systems: People manage with assistive devices [85] 

that serve as their personal assistants. These devices can be integrated with a gesture 

generation model, which translates text messages into gestures that allow users to 

interact with their surroundings naturally. 

 
v. Healthcare: By precisely executing actions, gesture models can be included and 

implanted into rehabilitation activities to offer instantaneous instruction. 
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vi. Entertainment: Text to Gesture models can be used in games and other entertaining 

applications that convey stories [86] and support young learners in developing in a 

productive and engaging setting. 

 
vii. Artificial Intelligence-based Interfaces: Sentiment analysis [87] is applied to the 

context and exchanges between the user and an artificially intelligent tool, such as chat- 

gpt, to enable expressive use of AI. 

 

 

viii. Story Telling: When presenting stories, artificial gestures can be employed, with text 

input provided via storybooks. 

 

 

 
5.4 Limitation 

 
 

Although the methodology for gesture generation provided in this research thesis produces 

high-quality gestures, it has several drawbacks. Key points on the wrists, arms, hands, and 

shoulders were among the limited gesture characteristics in the dataset utilized to train the 

model. The input text contained only Urdu language terms. These restrictions may encourage 

more research directions to be investigated. 

 

 

 
5.5 Future Work 

 
 

There are no restrictions on the field of study. The only subject of computer science that 

offers researchers and academics a variety of avenues for investigation is artificial intelligence. 

The research described in this thesis can also be expanded in several ways to enhance the 

model's performance and gesture quality. Below is a discussion of a few of them: 
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i. Language: The suggested approach can generate gestures in opposition to the Urdu 

language-based text input modality. By providing the model with words from any 

language other than Urdu as input, this work can be improved. This can be accomplished 

by using the dataset of characters in that language to train the model. It should be noted 

that gestures from various languages can differ from one another. 

 

 
ii. Including Facial Expressions with Hand Gestures: Given that it contains Key-Points 

about arms, wrists, hands, and shoulders, the Proposed Gesture Model is trained in a 

limited set of movements. This gives guidance on how to enhance the gesture model 

and add facial expressions to the dataset. For instance, if a positive word is used, its 

context can be changed, and NLP tasks can be carried out to generate a facial smile that 

corresponds to the movement of that text. In this regard, a few researchers have 

suggested certain methods. 

 

 

iii. Evaluation Measures: Since percentage of corrected key points (PCK) is the most 

widely used performance evaluation metric for joint key points data, the proposed Text 

to Gesture Model's performance is assessed using PCK. More performance metrics that 

assess a gesture model's effectiveness can be created and improved to advance study in 

this area. Multi-model performance evaluation will rise as a result. 

 
iv. Real-Time Gestures: The gesture model presented in this study generates gestures 

using a supplementary dataset after the model has been trained. This provides a novel 

avenue for research, and models can be created and enhanced to generate gestures in 

response to real-time input. Since this behavior is now being examined, numerous 

initiatives have been made in this regard. 
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