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ABSTRACT 

Title: Efficient Content-Defined Chunking for Data De-duplication in IoT-assisted Cloud 

Computing 

Consistently, a large number of data is being created because of the utilization of rising 

innovations including SaaS products and IoT, etc. The produced data has a lot of redundant 

items. It is challenging to store and deal with duplicate data. Data De-duplication is a solution 

to resolve this problem. It is referred to as a method in which only one copy of data is stored on 

the server to avoid storing excessive copies of data. It’s a highly effective approach used to 

reduce data storage costs as well as make it easier to manage those data. To overcome this issue, 

one of the approaches called the block-level approach mainly involves the process of chunking, 

hashing, and indexing those hashes. A chunk of data called a block is converted to a fingerprint 

and saved in a lookup table. The concerning issue is that as the number of blocks increases, the 

size of the lookup table also grows which results in additional cost in terms of searching and 

memory occupation. This work will focus on evaluating an appropriate amount of chunks or 

blocks to create a balance between redundant data on storage devices and the size of the lookup 

table. The data used for this purpose belongs to the healthcare sector. The patient’s body is 

connected to various sensors that take readings from the body and transmit them to the fog 

server. The fog server will further transfer this data to the cloud server. Before transmitting data 

to the fog server, duplicated data readings are sent in the form of Boolean digit ‘1’ while critical 

data is sent in its original form to overcome duplication issues. An MQTT-based pub-sub 

architecture is used to transmit healthcare IoT data in JSON format every second via an MQTT 

broker to connected receivers. The experimental results indicate that the proposed HDDS 

scheme outperforms its counterparts.   
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

In this chapter, firstly the concept of data duplication and de-duplication is explained. 

Afterwards, the motivation behind this research is explained. Subsequently, the architecture and 

applications of data duplication are explained. After this, issues during the de-duplication 

process are discussed. Then, the background and main problem are explained. Furthermore, the 

research questions and objectives are stated. At the end, the thesis organization is stated. 

1.2 Data De-duplication 

The amount of digital data has increased immensely during the past few years. 

According to the statistics generated, the amount of data produced globally was 64.2 zettabytes 

in 2020 [1], and over the next 5 years, it is expected to reach more than 180 zettabytes. The 

actual data produced in 2020 was significantly higher than originally expected. On account of 

the Pandemic condition, more people worked and learned from home which as a result produced 

dramatically higher data volumes on the servers. Hence, how to oversee capacity cost-actually 

has become perhaps the most difficult and significant undertaking in this big data era. 

De-duplication is an ideal method to oversee data duplication. It packs the information 

by removing copy duplicates of data. De-duplication decreases the extra room up to 90 to 95 

percent [2] data transfer capacity rate and provides better storage management [3]. The 

procedure of de-duplication is tracking down various duplicates of similar data, keeping only 

one, and eliminating other copy duplicates [4] as shown in Figure 1.1. 
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Figure 1.1: Duplicated and De-duplicated Data 

 

1.3 Motivation 

As a result of exponential data growth produced every year, a need to optimize data 

storage management techniques along with less de-duplication overhead has become the most 

prominent issue of the modern era. Getting along with technologies like the Internet of things 

(IoT) and SAAS products, it has become a challenge for cloud service providers to maintain, 

secure, and provide retrieval of data with less cost and transfer delays. Hence, in this work, the 

aim is to identify and optimize the Content Defined Chunking (CDC) approach to achieve 

variable-sized chunking with better DER to assist cloud service providers with better data 

management and to help out researchers and data scientists in their future work.   

1.3.1 Architecture of Data De-duplication 

Data de-duplication strategies are carried out based on the kind of data. The normally 

utilized data types are text, image, video, etc. Every data type has an individual and unique 
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storage format and elements. The de-duplication procedure utilizes an alternate procedure for 

each kind of data to identify and dispense with copy duplicates [5]. Identifying and contrasting 

the data is troublesome assuming that the data is in various forms. Bit-level portrayal is utilized 

to play out the de-duplication interaction [6]. 

The Replication Factor (RF) is the base number of duplicates of similar data [7]. The 

Cloud storage system keeps a replication factor for all data. On the off chance that any data is 

more prominent than the replication factor, the de-duplication procedures and algorithms take 

out that data to decrease the capacity necessity, cost, and data transfer rate. An RF of one means 

there is only one copy of a row in a cluster, and there is no way to recover the data if the node 

is compromised or goes down. RF=2 means that there are two copies of a row in a cluster. An 

RF of at least three is used in most systems. However, most cloud systems do not support the 

complete removal of redundancy to have a backup or availability. Figure 1 shows that a client 

sends a request for a write operation to node A. As we have a Replication Factor (RF) of 3. It 

is replicated to the maximum of 3 of the nodes. However, node A is acting as a coordinator 

node, not a replicator node as shown in Figure 1.2. 

 

 

  Figure 1.2: Replication Factor  
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Client-side and server-side de-duplication are the two approaches that can be used to 

remove duplicate data on storage devices. Server-side data de-duplication is a two-venture 

process in which copy information is recognized and afterwards, extra room is recovered to 

eliminate the copy information. Client-side information de-duplication stores the information 

straightforwardly in a de-duplicated format [8]. De-duplication can be implemented at the File 

level and Block level. The file level mainly focuses on the storage of a single copy of the file 

on the storage. As compared to Block level, generally, the four major steps involved in most 

block-level data de-duplication approaches are chunking, fingerprinting, indexing of 

fingerprints, and storage management [9]. 

1.3.1.1 Chunking:  

Data de-duplication through chunking involves dividing the data into fixed-size or 

variable-size chunks, and identical chunks are stored only once, reducing redundancy [9]. 

1.3.1.2 Fingerprinting:  

Fingerprinting generates unique identifiers (hashes or fingerprints) for data chunks, 

enabling quick comparison and identification of duplicate content without storing the actual 

data [9]. 

1.3.1.3 Indexing of Fingerprints and Storage Management: 

Indexing involves maintaining a database of fingerprints and their corresponding 

locations in the storage. Efficient storage management relies on referencing this index to 

identify and eliminate duplicate chunks, optimizing storage space [9]. 

Most of the current de-duplication strategies are still lacking productivity in view 

because of the bad marks of data comparing, hashing, and matching algorithms as well as 

security vulnerability issues. 
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1.3.2 Advantages of Data De-duplication 

      Removal of redundancy of data is essential as it significantly reduces the cost of storage 

space and reduces how much bandwidth is wasted on data transfer to/from data access and 

storage locations. Therefore, it saves money. The application areas are referred to below: 

i) Cloud-based storage providers 

Cloud Storage providers like Amazon S3, Google Cloud Storage, Microsoft Azure, 

Alibaba Cloud, and Bitcasa are some specialist organizations embracing data de-duplication 

algorithms [10]. The aim is to assist in the improvement of such algorithms to achieve better 

storage management and cost-effective services. 

ii) On-premises storage 

The goal is to provide solutions to organizations who instead of using cloud services 

mostly rely on their on-premises storage mediums as shown in Figure 1.3. On the other hand, 

the aim is to also assist organizations who believe in performing de-duplication on data before 

storing it on the cloud to avoid bearing high costs in advance and storing it without duplicate 

copies [11]. 

iii)  Save Storage Space 

The one of the advantage of data de-duplication is keeping storage space safe. By 

finding and removing duplicate patterns of similar data, additional data files can be stored 

in a similar storage place, overcoming the requisite for extra storage capacity [12]. 
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Figure 1.3: On-Premises Data De-duplication 

iv) Reduction in storage Cost 

Low storage needs assistance in saving cost, and needs low budget for maintenance 

purposes. As data remains high in volume it takes up a lot of space for storage. Besides this, 

data remains consistent and can be easily retrieved [13]. 
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v)    Better Backup and Recovery 

  In backup and data retrieval operations, it remains easy to process de-duplicated data as 

compared to duplicated one. So when duplicated files are reduced, maintaining backup remains 

easy and economical [14].  

vi) Efficient use of Bandwidth 

         In case, the data is transferred to the cloud, de-duplication reduces the data volume which 

is required to be sent through the network. This results in decreased bandwidth utilization and 

lower network-associated costs [14].  

vii) Faster Data Transfer 

  When identical files are removed, the process of transferring data becomes easier since 

only a unique data packet is sent or stored. Small data packets take less time to back up and 

enhance system performance [15]. 

viii) Increase Scalability 

   With de-duplication,  high data is handled in storage space effectively as it keeps data 

growth efficiently without relative enhancement in hardware and operational costs [16]. 

ix) Lower Communication Cost 

 When sensor devices in a system generate replicated data, before transmitting in its 

original form, it is reduced which reduces communication cost and it makes de-duplication 

highly effective in IoT based environment [17]. 
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x) Data Transfer Rate 

  De-duplication allows the transmission of data between various storage systems or 

clouds because one copy of data needs to be sent. Unique data blocks need to be transferred. It 

also assists in utilizing lower energy because fog servers transmit unique data to cloud 

repositories [17]. 

1.3.3  Constraints in the Data De-duplication Process 

 The data de-duplication process, while instrumental in reducing redundancy and 

optimizing storage efficiency, is not without its challenges and constraints. As organizations 

grapple with ever-expanding volumes of data, understanding and navigating the limitations of 

de-duplication mechanisms becomes crucial. This paper delves into the intricacies of the 

constraints inherent in the data de-duplication process, shedding light on factors that impact its 

effectiveness. From issues related to scalability and processing overhead to considerations of 

data security and the trade-offs between de-duplication techniques, a comprehensive 

exploration of these constraints is paramount for devising robust data management strategies. 

By identifying and addressing these challenges, organizations can enhance the efficacy of their 

de-duplication efforts and optimize resource utilization in the face of burgeoning data volumes. 

Data de-duplication has various advantages but some constraints still exist during this 

mechanism which is addressed below: 

i) Performance issue 

De-duplication can lead to higher computational overhead, particularly in real-time 

environments. The mechanism of checking data chunks to recognize repetitive data packets can 

slow down data processing and recovery tasks [18]. 
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ii)     Processing Capacity 

   The deduplication-based algorithms are exhaustive consume more resources, and need 

substantial processing energy to check, compare, and perform duplication removal from the 

dataset. So the need for powerful hardware cannot be ignored [19]. 

 

 

iii)    Scalability issues 

    As data size increases, the procedure of de-duplication becomes further challenging. The 

Scalability issues exist and it needed to make use of some dispersed de-duplication clarifications 

or some sort of dedicated storage systems [20]. 

iv)    Maintenance of De-duplication Key 

  Maintaining and managing keys for duplication-free data is vital for data access and 

from a security perspective. So it needs to be checked from time to time for its efficient 

management [21]. 

v)       Files Fragmentation 

 

 The de-duplication procedure classifies data into a small number of chunks or blocks, 

which might increase the complexity of the data retrieval process, predominantly if any slice of 

the data is missing or corrupted [22]. 
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1.4)    Cloud Computing Architecture 

Cloud computing is an innovative technology framework that permits users to use 

computing resources over the internet from anywhere [23]. The cloud computing architecture 

comprises of following entities as shown in Figure 1.4. 

1.4.1)   Front end Side 

The front end is also known as the client side end which usually interacts with users or 

clients. The front end contains all applications that a user needs to access the cloud [14]. 

 

 

Figure 1.4: Cloud Computing Architecture 
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1.4.2)  Back-end Side 

 The back-end side is well known as the server side. This Component of architecture 

can perform various functions including data storage retrieval, authentication, and verification 

operations. 

1.4.3)  Infrastructure 

 This component represents servers, storage devices, VMs, networks, and hardware 

components that are essential for providing cloud services. 

1.5     Problem background 

A hash chunk (fingerprint) is essential for the hashing, lookup, and matching stages in 

data de-duplication. The number of chunks in a de-duplication framework is typically very large 

to keep a hash table-based index structure in memory. Hence, either the size of the index table 

needs to be optimized or it needs to be stored on secondary storage, which affects the system 

efficiency, as the load factor of a reliable hashing index table normally needs to be very less to 

keep the lookup time limited. The problem arises when the chunk sizes go so large that they 

continue to have redundant data. On the other hand, if too small chunks are produced which 

eventually are converted to fingerprints (hashes) each chunk will have its hash value to be put 

into the lookup table. A challenge to have an optimized size of chunks along with minimum 

redundancy requires a spot on. The problem with smaller hashes is that they have a higher 

probability of collision. In other words, as the hash size decreases, the likelihood of two 

different pieces of data producing the same hash value increases. This can lead to data integrity 

issues, where different pieces of information are mistakenly identified as identical due to their 

hash collisions. 
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1.5.1   Negative Impact of the Problem  

 The main issues highlighted throughout the research study are described below. The 

problem arises can increase the load, have high storage cost, and lagged de-duplication process. 

These issues have bad impact and decrease the efficiency of the implemented approach. 

 i)     High Storage Cost 

  When identical data chunks takes place in the server resultantly redundant data stores 

and take extra space. The numerous copies of the same data, each have its hash value, leads to 

higher storage requirements. The higher computational load and resource consumption related 

to byte pair comparison can also increase computational costs. 

ii)       Increased load 

The process of using byte pair comparison in the whole byte stream proved to be 

computationally exhaustive. This shows that the system needs to do extra operations to check 

suitable cut points in the data. This mechanism has a higher computational load and overall 

slows down the de-duplication procedure. It significantly affects the overall efficiency of the 

system. The extra operations needed for byte pair comparison can lead to over-resource 

consumption, comprising CPU and memory consumption. Resultantly it has higher resource 

usage and could impact the system’s ability to tackle other tasks. The higher load produced by 

byte pair comparability leads to a slower de-duplication process. In cases where data de-

duplication needs to be done fast, including in real-time or in resource-constrained 

environments, a slower de-duplication mechanism causes significant drawbacks. The extra 

operations needed for byte pair comparison can lead to over-resource consumption, comprising 

CPU and memory consumption. Resultantly it has higher resource usage and could impact the 

system’s ability to tackle other tasks [24]. 
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v) Slow De-duplication Process 

   The higher overhead produced by byte pair comparability leads to a slower de-duplication 

process. In cases where data de-duplication needs to be done fast, a slower de-duplication 

mechanism causes significant drawbacks [25]. 

1.6 Problem Statement 

In terms of IoT Data scenario, the data collected through sensor nodes continuously send 

large amount of data to the cloud server resulting in saving too much of redundant data. This 

redundancy leads to significant waste of storage space and increase communication costs. 

Existing approach [26] handles data redundancy using link list however the processing cost 

increases as soon as the link list start to grow.  

1.7 Research Questions 

This study focuses on the following research questions. 

RQ1.  What is the effect of replacing values into bits using larger group of health care data 

upon its size? 

RQ2. How to reduce data transfer cost by creating data chunks of multiple nodes? 

1.8 Aim of Research 

Data de-duplication has been the most widely area to be worked on. Recently, due to an 

enormous amount of data, the performance of the data de-duplication process has been affected. 
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This research aims to highlight and overcome memory consumption while maintaining 

maximum throughput. 

1.9 Research objectives 

     The given below objectives are stated to design and develop the process of data de-

duplication. 

 To minimize data size and data transfer cost. 

 To manage and transfer data of multiple nodes collectively, in order to minimize time 

consumption. 

1.10 Scope of Research 

The idea behind this is to consider the identification of cut points in data. Also 

considering the size of the data stream that needs to be reduced while maintaining maximum 

throughput. The duplication in data is reduced to optimize storage, reducing communication 

cost and focusing on storing only crucial data of patients which subsequently improve 

healthcare services.  

1.11 Thesis organization 

The remaining thesis is organized as follows: Chapter 2 outlines current techniques 

based on Data De-duplication, their comparison, and major issues in this area. Chapter 3 

illustrates the proposed techniques methodology. Chapter 4 illustrates details about the 

proposed scheme along with an explanation, Chapter 5 is about results and discussion of the 

proposed scheme, and in Chapter 6 conclusion and future work are added. In the end, references 

are given.



 
 

 

CHAPTER 2 

LITERATURE REVIEW 

2.1 Overview 

In this section, at the start, data duplication and de-duplication mechanism is described. 

Then, the concepts of cloud computing and the Internet of Things are described. Furthermore, 

existing literature on Data de-duplication in IoT-assisted Cloud Computing is discussed. A table 

is also presented that provides a comparison between schemes to enhance understanding. 

Finally, the whole chapter is summarized. 

2.2 Data De-duplication 

Data de-duplication is a technique used in data management and storage to eliminate 

redundant copies of data. This process reduces the overall volume of data so that it can be stored 

more efficiently, saving storage space and reducing costs. De-duplication works by scanning a 

set of data and identifying duplicate chunks of data. After the duplicates are found, they are 

removed, and a single copy is kept, often with a pointer to that data for any other instances 

where that data is used [27]. 

The best way to manage data duplication is using de-duplication. By eliminating copies 

of data, the de-duplicated information is stored [28]. De-duplication involves finding several 

copies of the same data, maintaining only one, and getting rid of the others as shown in Figure 

2.1. De-duplication improves storage management, reduces unnecessary space by 90 to 95 

percent, and increases the data transfer capacity rate [29].  
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Figure 2.1: Data De-duplication  

The exact mechanism for data de-duplication can vary. Some systems use file-level de-

duplication, which compares entire files and removes duplicates. Others use block-level de-

duplication, where files are broken down into blocks, and identical blocks are removed. Some 

systems even use a sub-block level or byte-level de-duplication, breaking data into even smaller 

pieces.  

Data de-duplication is particularly useful in backup and archiving processes, where the 

same files or blocks may be stored multiple times. By keeping only one instance of each file or 

block, storage requirements can be greatly reduced.  The data de-duplication requires processing 

power to analyze data and identify duplicates, and it can be computationally intensive 

depending on the amount and type of data. Therefore, the benefits in terms of storage space 

must be balanced to overcome the computational overhead of the de-duplication process.  
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2.2.1 Techniques of Data De-duplication 

One of the techniques includes Content-defined chunking (CDC) which is an algorithm 

used for data de-duplication. The process divides data into chunks in a way that is dependent 

on the data content itself, rather than on arbitrary, fixed-size blocks. 

This method helps to ensure that changes to data do not significantly affect the division 

of chunks. Consider, for instance, if small piece of data was added at the beginning of a large 

file. If fixed-size block de-duplication were used, this would shift all the blocks, and all of the 

subsequent blocks would be considered new, even though most of the data is identical. In 

contrast, with content-defined chunking, the boundaries between chunks are determined by the 

data itself, so a small change would only affect a few chunks near the change [30]. 

The chunks in CDC are usually determined by identifying 'breakpoints' in the data. A 

common method involves applying a Rabin fingerprint (a type of rolling hash function) to a 

sliding window of bytes and choosing breakpoints where the fingerprint meets certain criteria. 

The advantage of this method is that it is fast and doesn't require knowledge of the data structure. 

The result is a set of variable-length chunks that are well-suited to data de-duplication, since 

small changes to the data will only change a few chunks, rather than the entire file or block of 

data [31]. The CDC can be more efficient for de-duplication purposes, it can also be more 

computationally intensive to determine the chunk boundaries, compared to fixed-size block de-

duplication 

2.3 Cloud Computing 

Cloud computing is the on-demand delivery of IT resources over the Internet. Instead 

of buying, owning, and maintaining physical data center and servers, businesses can access 

technology services, such as computing power, storage, and databases, from a cloud provider 

[32]. There are several types of cloud computing which are described below. 
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2.3.1 Infrastructure as a Service (IaaS) 

This is the most basic category of cloud computing services, which allows to rent IT 

infrastructure servers, virtual machines (VMs), storage, networks, and operating systems from 

a cloud provider on a pay-as-you-go basis [33]. 

2.3.2. Platform as a Service (PaaS) 

Platform as a service refers to cloud computing services that supply an on-demand 

environment for developing, testing, delivering, and managing software applications. PaaS is 

designed to make it easier for developers to quickly create web or mobile apps, without 

worrying about setting up or managing the underlying infrastructure of servers, storage, 

network, and databases needed for development [34]. 

2.3.3. Software as a Service (SaaS) 

In SaaS, the service provider delivers software and applications through the internet. 

These are usually provided on a subscription basis and are centrally hosted. Examples include 

email and collaboration software, customer relationship management (CRM) software, and 

virtual meeting software [35]. 

2.3.4. Function as a Service (FaaS) 

 

FaaS, or server-less computing, allows developers to execute portions of application 

code (functions) in response to events. It's called server less as the business that owns the system 

does not have to purchase, rent, or provision servers or virtual machines for the back-end code 

to run on [36].  
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2.4.   Deployment Models 

          The deployment model refers to the potential ways that the services of Cloud computing 

are executed and utilized. It also informs about the access level and management mechanism of 

data.  Based on its features and provided functionality, three different deployment models are 

described below in detail. 

2.4.1 Public Cloud 

The public cloud deployment method is described as the services are owned and 

operated by third-party cloud service providers. The third-party provides resources such as 

computing resources and storing data online on a cloud repository. These services are shared 

among different organizations and customers. This model is cost-efficient and economical. 

However, this deployment model is not considered highly strong and may have some security 

breaches. So intruders might get data after some malicious attacks [37]. 

2.4.2. Private Cloud 

A private cloud refers to cloud computing resources used exclusively by a single 

business or organization. A private cloud can be physically located at the company’s on-site 

data center, or it can be hosted by a third-party service provider. It is considered highly secured 

and data is maintained in it easily [38]. 

2.4.3 Hybrid Cloud 

 

Hybrid clouds are a combination of public and private clouds, bound together by 

technology that allows data and applications to be shared between them. By allowing data and 

applications to move between private and public clouds, a hybrid cloud gives businesses greater 
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flexibility, and more deployment options, and helps optimize existing infrastructure, security, 

and compliance [39]. 

Benefits of cloud computing include cost-efficiency (no need to invest heavily in 

owning and maintaining servers), speed (most cloud computing services are provided self-

service and on-demand), scalability (services can be scaled up or down to fit needs), 

productivity (removes the need for many IT management chores), performance (benefit from 

massive economies of scale), and reliability (data can be mirrored at multiple redundant sites 

on the cloud provider’s network) [40]. 

2.5    Internet of Things 

The Internet of Things (IoT) is a system of interrelated physical devices, vehicles, 

buildings, and other items embedded with sensors, software, network connectivity, and 

necessary electronics that enable these objects to collect, exchange, and act on data [41]. The 

"things" in IoT often refer to devices that wouldn't ordinarily have internet connectivity 

capability, thereby allowing them to generate and exchange data with a network or other 

devices. These connected devices collect useful data with the help of various existing 

technologies and then autonomously flow the data between other devices. Current market 

examples include home automation also known as smart home devices such as the control and 

automation of lighting, heating, ventilation, and air conditioning systems, and appliances such 

as washers/dryers, robotic vacuums, air purifiers, ovens, or refrigerators/freezers that use Wi-

Fi for remote monitoring [42]. The internet of things is also a key component of home security 

systems, wearable technology devices, connected cars, industrial applications, and more. It's 

increasingly being used in environments like urban planning and management, healthcare, and 

agriculture. 

The concept of IoT promises to revolutionize our lives and the way we interact with our 

environment by automating routine tasks, optimizing resource usage, and providing new 

insights and services. However, it also presents challenges in terms of privacy, security, 

interoperability, power efficiency, and data management [43]. 
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2.6.   IoT-assisted Cloud Computing 

Internet of Things (IoT) assisted cloud computing refers to the integration of IoT devices 

with cloud computing infrastructure. This convergence enables data from IoT devices to be 

easily stored, processed, and accessed in the cloud, and it allows for powerful computation, 

analytics, and machine learning tasks to be performed on this data. Here's a more detailed 

explanation of each component [44]. 

2.6.1. Internet of Things (IoT) 

This term refers to the network of physical objects ("things") that are embedded with 

sensors, software, and other technologies to connect and exchange data with other devices and 

systems over the internet. These devices can range from everyday household items like smart 

fridges and thermostats to industrial IoT devices like sensors monitoring temperature, pressure, 

or humidity in an industrial site [45]. 

2.6.2. Cloud Computing 

      This is the delivery of different services through the Internet, including data storage, servers, 

databases, networking, and software. Rather than keeping files on a proprietary hard drive or 

local storage device, cloud-based storage makes it possible to save them to a remote database 

[46]. When these two concepts are combined, it's often referred to as "IoT-assisted cloud 

computing" or "Cloud-based IoT". In this model, data generated by IoT devices is transmitted 

to the cloud, where it can be processed and analyzed. This allows for real-time processing and 

analytics, which can lead to more effective decision-making [47]. For example, an IoT-assisted 

cloud computing application could involve a network of sensors in a manufacturing plant that 

sends data about machine operation to the cloud. Therefore, the data can be analyzed to predict 

when a machine is likely to fail, allowing for proactive maintenance [48]. 
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 The combination of IoT and cloud computing also allows for easier scalability, as new 

IoT devices can be added to the network without needing significant upgrades to storage or 

processing infrastructure since the cloud can easily scale to accommodate the extra data [49]. 

The IoT-Cloud or Cloud of Things is presented in Figure 2.2. 

 

 

Figure 2.2: IoT Cloud or Cloud of Things 

2.7    Data De-duplication in IoT-assisted Cloud Computing 

 Data de-duplication is a process that eliminates redundant copies of data and reduces 

storage overhead. In the context of IoT-assisted cloud computing, data de-duplication plays a 

crucial role due to the enormous amount of data generated by IoT devices [50]. IoT devices, 

such as sensors, smart appliances, wearables, etc., continuously generate data that gets sent to 

the cloud for processing and storage. Given the sheer volume of IoT devices and the frequency 
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at which they generate data, there can often be a lot of redundancy. This redundancy could be 

due to multiple devices recording similar information, or a single device recording the same 

data point over time when no change has occurred [51]. Data de-duplication in this context 

would involve analyzing the incoming data from these devices and removing any duplicates 

before storing it in the cloud. This process can significantly reduce the amount of data that needs 

to be stored, leading to cost savings in storage expenses, improved efficiency in data 

transmission and processing, and quicker data retrieval times. It can also enhance the 

performance of data analytics by reducing the volume of data that needs to be processed [52].  

There are different methods of data de-duplication, such as file-level de-duplication 

(where entire duplicate files are removed), block-level de-duplication (where duplicate blocks 

of data within a file are removed), and byte-level de-duplication (where duplicate bytes of data 

are removed). The choice of method can depend on various factors such as the nature of the 

data, the specific requirements of the system, and the resources available [53]. However, data 

de-duplication has many benefits, but it also has certain challenges and considerations, such as 

ensuring data integrity, managing the de-duplication process efficiently, and maintaining the 

security and privacy of the data [54]. 

2.8   Existing Studies in Data De-duplication in IoT-assisted Cloud 

Computing 

 In recent years, the proliferation of digital data has been immense. Global data 

production surged to 64.2 zeta-bytes in 2020 and is forecasted to surpass 180 zeta-bytes in the 

next half-decade. The COVID-19 pandemic, which spurred widespread remote work and 

learning, greatly contributed to this data explosion, outpacing previous estimates. As a result, 

effective management of storage costs has become a significant challenge in the era of big data 

[55]. In response to this data boom, there's been a surge in the exploration of data de-duplication 

frameworks. Given the vast data volumes, perfecting processes like chunking, fingerprint 

generation, and fingerprint lookup has become critical. These steps often pose a bottleneck to 

the adaptability and throughput of de-duplication frameworks. Previous research has provided 

numerous insights and improvements into these processes [56]. 
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Chunking is a particularly critical step that impacts the hash table size directly. Chunks 

can be either fixed or variable in size. Research suggests that variable-sized chunks can uncover 

more duplicates and address the boundary shift issue, thereby enhancing de-duplication 

efficiency. However, data De-Duplication concerning Cloud of Things is still infancy. So, this 

chapter specifically defines the existing literature relevant to data de-duplication in the context 

of IoT-Cloud [57]. On the basis of data de-duplication, the de-duplication mechanism is 

categorized into two levels: i) File Level Data De-duplication ii) Block Level Data De-

duplication  

The author in [58] introduced a new parallel chunking method using the PCI algorithm. 

This algorithm does not include hash functions but works well with hardware implementation. 

The proposed system not only achieves high computational speed but great scalability as well. 

2.8.1 File Level Data De-duplication 

In this category, data de-duplication is performed at file level. A file is matched with 

other files and identifies similar data between them. Then, redundant copies of data are deleted. 

The schemes of this category are presented comprehensively as following. 

           This paper [59] presents a new method for content-defined chunking (CDC) called Rapid 

Asymmetric Maximum (RAM), designed to increase the efficiency of data de-duplication 

systems. The proposed RAM algorithm eschews the use of hashes, which are often 

computationally expensive and instead utilizes the byte values to determine the cut points of 

chunks. The algorithm employs a fixed-size window and a variable-sized window to locate a 

maximum-valued byte, which is then designated as the cut point. 

 In SD-IoV, the sensor nodes continuously transmit redundant data to the cloud server 

which increases duplication communication, and storage overhead. To overcome this issue, the 

proposed scheme EFDS uses a hash table for the identification of similar data. The data files 

are transmitted to the cloud through the SDN controller. The SDN controller converts files into 

small blocks. For each sub-block, the Rabin fingerprint is calculated and checks a hash table 

that already comprises the same fingerprint or not to determine identical data. If no fingerprint 
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exists, it shows that the data is not identical and is saved in the available index. In the second 

case, the data file is included in the linked list created for duplicate blocks at the corresponding 

index of the hash table. This index determines the fingerprint of duplicated data. The EFDS 

ensures efficient resource utilization but the drawback of this is that the problem is that with 

time when the number of duplicates increases, it also increases the size of the duplicate 

reference list. ultimately time needed for maintaining a link list and lookup also increases [26]. 

This maximum-valued byte is included in the chunk and situated at the boundary of the 

chunk. This unique configuration reduces the number of comparisons necessary, thus improving 

computational efficiency while maintaining the desirable properties of CDC. When compared 

with existing hash-based and hashes de-duplication systems, RAM demonstrates higher 

throughput and saves more bytes per second, marking it as a promising method for improving 

the efficiency of data de-duplication. This article proposes FastCDC, a new and efficient 

approach to Content-Defined Chunking (CDC), aimed at improving performance in data de-

duplication systems. Traditional CDC methods tend to cause high CPU overhead as they 

compute and judge rolling hashes of the data stream byte-byte. FastCDC addresses this 

inefficiency through the combined application of five key techniques: gear-based fast rolling 

hash, simplifying and enhancing Gear hash judgement, skipping sub-minimum chunk cut-

points, normalizing the chunk-size distribution within a specified region, and rolling two bytes 

at a time to increase CDC speed. These techniques result in FastCDC being between 3 to 12 

times faster than existing CDC methods while achieving a similar, if not higher, de-duplication 

ratio as the classic Rabin-based CDC. Furthermore, when implemented in Destor, an open-

source de-duplication project, FastCDC increases the de-duplication throughput by 1.2 to 3 

times compared to Destor based on state-of-the-art clunkers. Overall, the proposed FastCDC 

method represents a significant advancement in the efficiency and speed of data de-duplication 

systems [60]. 

To overcome storage cost by employing a data de-duplication mechanism in IoT-assisted 

cloud and to increase security, Rasina et al. has presented a scheme that employs a Residue 

Number System (RNS) for a key generation mechanism.  The secret key is divided into reduced, 

independent portions that can work simultaneously. It splits a secret key into smaller, 

independent parts that can be processed concurrently, so it becomes difficult for adversaries to 

detect the entire key. The produced keys use Elliptic Curve Cryptography for encryption and 

decryption mechanism, an extremely effective public-key encryption mechanism that provides 
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high security with reduced keys, overall lowering computational overhead. For de-duplication, 

the technique includes a de-duplication process by combining the idea of RNS with Cosine 

based Similarity checking. This mechanism proficiently detects identical data, decreasing 

storage space and improving resource utilization in the cloud. For data integrity, a hash key 

verification mechanism is introduced. In case data is uploaded to the cloud, a hash value is 

generated. While downloading, a hash is checked to authenticate data. If the hash remained the 

same it depicts that no tamper attack is done on it. Upon downloading data from the cloud, the 

hash value is checked to verify the data's integrity. If the hash values remain the same, the data 

is considered authentic and has not been tampered [61]. 

In the same context of resolving duplication issues in a cloud environment while 

maintaining security and data privacy. Darong et al. make use of convergent encryption that 

assists in generating encrypted keys based on data. This technique helps in the detection of 

identical data and reduces storage costs by eliminating it. This approach facilitates the 

identification of duplicate data by utilizing a common label, which simplifies the detection 

process and significantly reduces storage overhead. In essence, it ensures that redundant copies 

of the same data are eliminated, optimizing storage resources in cloud environments. Besides 

this, the bloom filter is used for verification of users trying to access data, and only authorized 

can access it. The advantage of the scheme is that de-duplicated data is only presentable to legal 

users. The limitation of the scheme is that while performing cryptographic operations, delays 

can occur particularly when dealing with large volumes of data [62]. 

 

Ahmed Sardar M. Saeed et al. put forward a novel proposition aimed at enhancing certain 

parameters in Content Defined Chunking (CDC). CDC is a method in which dynamic or 

variable-sized segmentation is performed, pivoting on the internal characteristics of the data 

content. Their innovation was directed towards elevating the Data Elimination Ratio (DER) in 

de-duplication processes.  In this method, chunk boundaries are discerned based on the 

recurrence rate of each byte pair. This ensures that alterations in one chunk do not ripple out to 

impact other chunks, confining the effect within the initial chunk. During the procedure of 

determining byte pair frequency, an analysis is carried out at the character or byte level. Along 

with this, the discussed research also provided a comparative analysis of their results with other 

CDC-based algorithms, such as the BSW and TTTD algorithms, illustrating the effectiveness 

of their approach. The impact of hash algorithms on storage size was assessed by calculating 

the Hashing index table size, given by the formula: Number of Bytes per Fingerprint × Total 
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Number of Chunks after de-duplication. The limitation of this approach lies in the fixed 

production of five hashes per chunk, which could be excessive for particularly small chunks, 

potentially leading to inefficiencies [63].  

 

Subsequently, Ahmed Sardar M. Saeed et al. proposed another solution aimed at 

reducing the size of the index table. This time, rather than concentrating on chunking, they 

introduced a mathematically bounded linear hash function to create hashes of chunks. The 

proposed approach resulted in a significant improvement, accelerating hashing times by more 

than double compared to MD5 and SHA-1, and reducing the hash table size by 50%. This 

strategy employs a hierarchical hash-matching procedure. Each chunk generates five hash 

values with fewer bits (i.e., 16 bits) compared to the larger SHA-1 (160 bits) and MD5 (128 

bits). This involves a multilevel lookup process where an incoming chunk is first compared 

based on size. If the chunks are of identical size, then the first hash is compared, followed by 

the second, and so on. If all five hashes align, the match is considered successful, obviating the 

need for byte-to-byte comparison [64]. 

This paper [65] introduces a novel jump-based chunking (JC) approach for data de-

duplication systems aimed at improving throughput and reducing CPU overhead. Traditional 

content-defined chunking (CDC) methods, which calculate rolling hashes of the input data 

stream byte, can be computationally expensive and significantly degrade system throughput. 

The proposed JC approach challenges the necessity of this byte-by-byte calculation. The 

innovative feature of JC is the introduction of a jump condition, which allows the sliding 

window to skip over specific lengths of the input data stream if the rolling hashes satisfy this 

condition. This paper also examines the impact of the cut condition and the jump condition on 

chunk size. Theoretical studies and experimental results demonstrate that JC not only enhances 

efficiency and reduces CPU overhead, but also maintains the high de-duplication ratio crucial 

for effective data de-duplication. The results show JC improves throughput by approximately 

two times on average compared with traditional CDC methods. 

The paper presents SE-PoW, a novel system for data de-duplication in IoT networks. 

This system enhances security through a dual-level Proof-of-Ownership algorithm and dual 

encryption techniques. It improves system efficiency, reducing upload time overhead by up to 

61.9% compared to existing methods [66]. 
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The author in [67] introduces a new multi-user up-datable encryption scheme for secure 

de-duplication that allows efficient user revocation. By allowing the data owner to update the 

remote cipher-text with an update token, this method reduces communication and computation 

costs, while maintaining high security and efficiency.  

The researcher [68] discussed InDe, an in-line de-duplication system, which uses the F-

greedy and F-greedy+ rewrite algorithms to reduce data fragmentation and improve restore 

speeds. For determining average rewriting data chunks, the Equation 2.1 is used. Nrw represents 

previous the total number of data chunk in previous history of backup. By dynamically adjusting 

the number of old container references, InDe improves restore speeds by 1.3x - 2.4x while 

maintaining similar backup performance. 

𝐻𝑟𝑤 =
𝑁𝑟𝑤

𝑡𝑜𝑡𝑎𝑙 𝑠𝑒𝑔𝑒𝑚𝑛𝑡𝑠 
  (2.1) 

The paper [69] introduces the Per-File Parity (PFP) scheme to improve the reliability of 

deduplication-based storage systems by providing parity redundancy protection for each file. 

PFP outperforms existing solutions in system reliability, with a minor 5.7% performance 

degradation. The primary objective of their study was to devise methods for reducing the 

number of hash chunks stored in memory, while also enhancing the efficiency of the hash table 

lookup process. They also focused on accommodating variable-sized chunks, which can impact 

the size of the hash table.  

In [70], the proposed SDD-RT-BF scheme aims to provide data security and an effective 

de-duplication mechanism in a distributed environment. The proposed scheme model comprises 

three important phases including authorized de-duplication, ownership proof, and updating key. 

When the developer of the file uploads the data file to CSP, a unique token is created for the 

file which is used for verification purposes.  The file is divided into smaller blocks and 

encrypted by using a protection key and transmitting an authentication request to a Master 

Controller (MC). MC, which manages a Radix Trie (RT), creates a role key and sends it to U1 

for re-encryption of data. The second phase involves proof of ownership as it deals with the 

security of data. A user provides its token and identifier to CSP, which confirms its validity. If 

the user is legal, CSP picks block indexes and directs them to the user. The third and last is the 

role key update that deals with the dynamic updating of user rights. The proposed scheme has 
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a lower computational time and higher de-duplication ratio. 

The proposed scheme QuickCDC skip similar data packet that considerably increases 

chunking speed. By checking and avoiding identified duplicate packets, QuickCDC eliminates 

the time needed for exhaustive handling, making it for datasets with low duplication. It 

integrates regulating mask bits dynamically to increase chunking precision and ratio of data de-

duplication. These mask bits assist in improving chunk borders that are correctly associated 

with the data, avoiding issues that overcome de-duplication precision. By dynamically adjusting 

mask bits, the error jumps are minimized. Error jumps refer to the incorrect chunking 

boundaries of data packets. The advantage of the scheme is that the de-duplication mechanism 

is fast and error jumps are low. The dynamic adjustment of mask bits requires extra memory 

[71]. 

The scheme ensures data security in a distributed environment by using cryptographic 

hashes and detecting duplicate data in the data stream.  Convergent encryption (CE) is utilized 

to detect identical data whenever data is uploaded. A tag T is produced based on data. Whenever 

the same data is again observed in the data stream, the tag for that data will be the same showing 

duplication. This duplicated data is not again transmitted to ensure a de-duplication. To 

maintain privacy, CEK mechanism is introduced which ensures that only legal users can decrypt 

and have access to the data. The encrypted key is updated so no intruder can access this data 

[72].  

The scheme is a three-tier data infrastructure to store de-duplicated data in a cloud 

repository. The proposed technique uses four main entities which are KGC, CS, DO, and DU. 

KGC provides key pairs to authenticated users for security purposes. Cloud server is responsible 

for storage and retrieval of data. Data owners can upload data anytime and authorized users can 

access it. The data stream is split into chunks by utilizing the cuckoo algorithm. When an owner 

intends to store a data file, firstly it is checked for duplication in the server.  For this purpose, 

Merkle Hash tree is utilized in which hash values are computed for data blocks. if the same data 

exists there, the system indicates it by placing a pointer, else it is saved in encrypted format. 

The scheme considers dividing data chunks in an optimum as per the context of data [73]. 

To overcome data duplication in medical records at a large scale, this approach uses a 
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rewriting scheme based on similarity. When data is stored, the upcoming data is matched with 

the previous one, and chunks that are different from the previously stored data are stored while 

similar data chunks are removed. The fragments created during de-duplication are reduced. To 

provide security from unauthorized access, blockchain technology is employed. The content of 

the file is determined by using a combination of fingerprint and offset. These contents are stored 

in the blockchain FISCO BCOS system. By storing data readings on the blockchain platform, 

data integrity is assured. Any malicious or tampering attack is identified by auditing. To 

increase the speed of the de-duplication mechanism, the concept of parallelization is introduced. 

The concepts of multi-core and multi-processor are utilized to process data for de-duplication. 

Overall, ESDedup has a better and faster mechanism for de-duplication but complexity 

increases as the environment diversity increases and it is costly to deploy [74]. 

In the healthcare sector, to overcome duplicate ratios in stored data, Xiao et al. [75] 

presented a scheme in which semantic awareness analysis is performed to eliminate 

redundancy. The data features are analyzed and checked for similar data within the same file 

contents and in different files. To find the similarity between two chunks, Equation 2.2 is used. 

𝐻1(𝐶𝑖,
𝑘, 𝐶𝑗,

𝑞) = {
ℎ1𝐶𝑖

𝑘 ∩, 𝐶𝑗,
𝑞 > ℎ

1, 𝐶𝑖
𝑘 = 𝐶𝑗

𝑞 
                        (2.2) 

𝐶𝑖
𝑘  Shows the first data chunk and 𝐶𝑖

𝑘  represents the second data chunk.  𝐶𝑖
𝑘 ∩, 𝐶𝑗,

𝑞
 

represents an intersection between two blocks for similar data content. The data having a high 

volume of redundant data is compressed by using the LZ compression approach. For low-ratio 

duplicate values, the Merkle tree mechanism is used. For security and maintaining patient data 

privacy, an auditing framework is employed. The scheme has low storage costs but takes a long 

time to process huge volumes of data. 

2.8.2   Block-Level Data De-duplication 

Block-level schemes use the mechanism to compare data within the blocks, sub-blocks, 
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and other stored blocks for the identification of duplicated values. This category is considered 

more effective than file-level data duplication. 

To overcome duplication, data is transmitted to the cloud repository. In this scheme, 

data owners create and upload data to the cloud repository. The cloud service provider (CSP) 

creates hash codes along with an index table by using a scalable index table technique. It lowers 

false positive rates by recognizing identical data chunks. When data rises in volume, the index 

table increases its size to handle more data, keeping a minimum false-positive ratio because of 

its huge size. Furthermore, the TL-CH technique adopts a procedure of dividing the byte stream 

to create exclusive signatures, reducing the time to match and overcoming data collision issues 

commonly raised in traditional hash functions including MD5 and SHA-1. Additionally, to 

enhance data security, an improved map chaotic data encryption algorithm is used for 

encrypting healthcare data. This encryption mechanism comprises chaotic systems and dynamic 

sequences to considerably enhance the key space and avoid adversary attacks [76]. 

In the technique HealthDep, de-duplication is assured and health records are securely 

maintained. To optimize data management, the data is divided into two categories which are 

sensitive medical data and less sensitive medical data. The highly sensitive data is encrypted by 

employing conventional encryption methods. In the case of less sensitive health data, Multi-

Level Encryption is used. This data is then transmitted to the database for storage, where data 

is verified and checked for duplicated instances. After detecting duplicating chunks, unique data 

records are stored which reduces data volume and enhances storage efficiency. But to 

implement this approach, extra resources are required which makes the technique costly to 

deploy [77]. 

The scheme intends to maintain data integrity and privacy while overcoming the de-

duplication ratio in data. For de-duplication purposes, the client lightweight component C is 

used which communicates with a cloud service provider and index service. Three cases are 

considered in this scheme which includes popular, and unpopular data upload and popularity-

based transition. For all cases, data popularity is checked, and based on outcomes, action is 

performed. For popular data blocks, associated IDs are stored in a hash table. From a security 

perspective, data with low privacy is protected using CE encryption and for high privacy data, 

SE is used. The scheme has achieved a high de-duplication ratio but if the entity like index 
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service (IS) is compromised, then user’s data can be damaged [78]. 

2.9   Comparison of Data de-duplication in IoT-assisted Cloud Computing-

based Strategies 

In this section, the comparison of existing techniques is presented with their 

contribution, advantages, and limitations. A summary of current research on data de-duplication 

with file and block level de-duplication is presented in Table 2.1. 

 

Table 2.1: Summary of Deduplication-based Strategies 

Scheme Basic idea Mechanism Advantages Limitations 

File Level Data De-duplication 

RAM [59] 

 

 

 

 

  

Uses Content-

Defined 

Chunking 

Technique 

This paper 

proposes a high-

throughput hash 

less chunking 

method called 

Rapid Asymmetric 

Maximum (RAM) 

The proposed 

algorithm has higher 

throughput and bytes 

saved per second 

compared to other 

chunking algorithms.  

Although the 

proposed 

algorithm 

shows 

promising 

results, it may 

not perform 

equally well on 

all types of 

datasets or 

environments. 

FastCDC 

[60] 

 

Use of five key 

techniques, 

namely, gear-

based fast rolling 

hash, simplifying 

and enhancing 

the Gear hash 

judgement, 

skipping sub-

minimum chunk 

cut-points, 

normalizing the 

chunk-size 

distribution 

This study 

proposes, a Fast 

and efficient 

Content-Defined 

Chunking 

approach, for data 

de-duplication-

based storage 

systems. 

 

FastCDC is 3-12X 

faster than the state-

of-the-art CDC 

approaches, while 

achieving nearly the 

same and even higher 

de-duplication ratio 

as the classic Rabin-

based CDC. 

 

These results 

may not 

necessarily hold 

in all settings. 
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Improvised- 

ECC-IRNS 

[61] 

Improve Data 

Storage In a 

Cloud-Based IoT 

Environment by 

Resolving 

Duplication. 

The RNS method is 

utilized for key 

generation, cosine 

method is used for 

similarity in the 

data.  

Increases security, 

overcome data 

storage requirement, 

and reduces data 

duplication ratio. 

The Cosine 

mechanism for 

checking 

duplication is 

not reliable in 

case of a 

complex 

environment. 

Bloom Filter 

based de-

duplication 

scheme [62] 

Reduce identical 

data while 

maintaining 

privacy. 

To resolve identical 

data, the Bloom 

filter is used. By 

employing a 

cryptographic 

signature and 

validation 

mechanism, access 

to data is granted 

only to legal users.  

Fast data retrieval. 

Provides higher 

security to data. 

Reduced storage 

cost. 

Not appropriate 

to use in a 

resource-

constrained 

environment. 

Complexity 

increases as 

data grows. 

BFBC [63] Chunking based 

on the frequency 

of a pair of bytes 

This research 

presents a novel 

bytes frequency-

based chunking 

(BFBC) algorithm 

that optimizes data 

de-duplication 

performance. 

The proposed triple 

hash function 

algorithm is five 

times faster than 

SHA1 and MD5 and 

achieves a better de-

duplication 

elimination ratio 

(DER) than other 

CDC algorithms. 

Comparison at 

character level 

has expensive 

computation 

cost. 

Multi-Hash 

Function 

[55] 

Multiple Hashes 

of a single chunk  

This study 

introduces a novel 

and effective 

mathematical 

bounded linear 

hashing algorithm 

specifically 

designed for use in 

data de-duplication 

systems. 

Our suggested 

system reduces the 

high latency imposed 

by de-duplication 

procedures, primarily 

the hashing and 

matching phases. 

Due to the 

enormous 

number of 

chunk hash 

values, looking 

up and 

comparing hash 

values takes 

longer for large 

datasets. 

JC Scheme 

[65] 

Content Define 

Chunking using 

input data stream 

byte by byte 

This study 

proposed a jump-

based chunking 

(JC) approach. 

.JC improves the 

throughput by about 

2× on average 

compared with the 

state-of-the-art CDC 

approaches while 

still guaranteeing a 

high de-duplication 

ratio 

Complexity of 

scheme makes 

it difficult to 

implement. 
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SE-PoW [66] Message-locked 

encryption 

(MLE) to encrypt 

data. 

The paper 

introduces SE-

PoW, a novel 

efficient, and 

location-aware 

hybrid encrypted 

de-duplication 

scheme with dual-

level security-

enhanced Proof-of-

Ownership (PoW) 

in edge computing. 

SE-PoW reduces up 

to 61.9% upload time 

overheads compared 

with existing 

methods, which 

represents a 

significant 

performance 

enhancement. 

The proposed 

system is 

complexed in 

terms of 

implementation 

 

Secure de-

duplication 

with efficient 

user 

revocation in 

cloud storage 

[58] 

A multi-user up-

datable 

encryption 

scheme. 

The paper proposes 

a multi-user 

updatable 

encryption scheme 

that allows the data 

owner to update the 

remote cipher text 

under a new group 

key by sending an 

update token to the 

cloud. 

Secure de-

duplication requires 

the data owner to 

download, decrypt, 

re-encrypt, and 

upload data to the 

cloud when updating 

data authority. 

The proposed 

scheme 

significantly 

reduces 

communication 

and 

computation 

costs as the data 

owner only 

needs to send a 

token to the 

cloud to update 

the data 

authority. 

InDe [68] 

 

A greedy 

algorithm to 

detect valid 

container 

utilization 

The paper 

contributes an 

innovative system, 

InDe, which 

addresses data 

fragmentation in in-

line de-duplication. 

 

 

 

The proposed InDe 

system improves the 

restore speed by 1.3x 

- 2.4x compared to 

two state-of-the-art 

algorithms (Capping 

and SMR) while 

maintaining similar 

backup performance. 

Complex in 

terms of 

implementing 

the new 

algorithms, F-

greedy and F-

greedy+. 

 

PFP [69] A data de-

duplication 

chunking 

technique 

The paper proposes 

the Per-File Parity 

(PFP) scheme, a 

new approach to 

improve the 

reliability of 

deduplication-

based storage 

systems. 

The Per-File Parity 

scheme improves the 

reliability of 

deduplication-based 

storage systems by 

providing parity 

redundancy 

protection for all 

files. 

One limitation 

could be the 

average 5.7 

percent 

performance 

degradation to 

the 

deduplication-

based storage 

system. 
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EFDS [26] 

 

By employing 

hash table 

approach, 

duplicate data 

generated by 

sensors is 

identified and 

eliminated. 

Rabin fingerprints 

are calculated and a 

hash table in 

maintained. For 

duplicate sub files, 

linked list is used, 

The de-duplicate 

data is transmitted 

to cloud repository.   

Resource 

consumption is low. 

Efficient 

identification and 

handling of duplicate 

data. 

For large data 

volume, 

performance 

starts 

degrading. 

 

SDD-RT-BF 

[70] 

 

 

  

Utilizing a 

Secure 

framework for 

data de-

duplication in a 

distributed 

environment  

For data integrity 

and minimizing 

duplication Bloom 

filter, Radix Trie, 

and cryptographic 

strategies are 

employed. 

Overcome 

duplication ratio. 

Maintains data 

integrity. 

Complexity 

increases for 

large volumes 

of data. 

To maintain 

Radix Trie, 

additional 

memory is 

required.  

QuickCDC 

[71] 

 

Dynamically 

setting mask bits 

to correct 

identification of 

chunk 

boundaries. 

Uses feature vector 

and mask bits for 

data chunking, 

which results in 

appropriate packet 

size, identifies 

similar data chunks 

from the dataset, 

and skips them 

Higher chunking 

speed. 

Can accurately 

identify and 

overcome duplication 

ratio. 

 Resource 

consumption is 

high. 

  

ESDedup 

[74] 

Block chain 

based scheme to 

provide security 

to data and de-

duplication is 

assured in 

healthcare sector.  

Checked data for 

duplication by 

matching 

similarity. 

Similarity based 

rewriting algorithm 

is utilized to 

remove identical 

chunks and store 

only one copy. 

Reduced data 

redundancy and 

storage overhead. 

Ensures data security 

and integrity. 

Data reliability 

is minimized. 

SLRE [75] Ensures 

duplication free 

data healthcare 

storage on cloud. 

For duplicates 

identification, 

content defined 

entropy and 

similarity is 

checked. 

Effective resource 

consumption. 

Overcome storage 

overhead. 

Not appropriate 

to use for fault 

tolerant 

systems. 



35 
 

 

Secure de-

duplication 

key 

management 

mechanism 

[72] 

Ensures de-

duplicated data 

and privacy is 

assured by the 

CEK mechanism 

The data is 

transmitted by 

using tags based on 

content, when the 

same data is again 

received it is 

detected due to 

again same tag, and 

the duplicated copy 

of data is not 

transmitted. 

De-duplication is 

ensured by the use of 

tags, Effectively 

managing Proofs of 

Ownership without 

showing data to 

users. 

Management 

and updating of 

keys cause 

performance 

overhead. 

Limited 

scalability due 

to its 

complexity. 

High network 

traffic can lead 

to latency. 

SEEDDUP 

[73] 

Uses a 

combination of 

cryptographic 

approaches to 

save duplication-

free data in the 

cloud.  

Data is divided into 

chunks. By 

employing the 

Merkle hash tree, 

de-duplication is 

ensured. Key centre 

issues keys which 

are upgraded from 

time to time and 

data is saved in the 

cloud in encrypted 

format. 

Efficient resource 

consumption. 

Protects against 

security attacks. 

Higher 

complexity. 

Performance 

slows down in 

case of high 

data volume. 

 

Block Level Data De-duplication 

A Design of 

Parallel 

Content-

Defined 

Chunking 

System 

Using Non-

Hashing 

Algorithms 

on FPGA  

 

Use of PCI 

algorithm 

This research 

presents a novel 

parallel chunking 

method designed 

specifically for 

hardware 

implementation, 

filling a significant 

gap in the current 

understanding and 

usage of content-

defined chunking 

(CDC) algorithms. 

The proposed design 

achieves not only 

high computational 

speed but also great 

scalability. 

This research 

primarily 

focuses on the 

application of 

the PCI 

algorithm. 

Other non-

hashing 

methods for the 

CDC could 

behave 

differently 

when 

implemented 

similarly. 

 

TL-CH [76] Efficient storage 

of duplication-

free data by using 

encryption 

methods to make 

it secure. 

Uses encryption 

mechanism to 

protect healthcare 

data and scalable 

data index table to 

manage de-

duplicated data. 

Ensures data 

integrity of 

healthcare data.  

Handle data 

when index 

table size rises, 

it increases the 

cost to maintain 

it. 
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HealthDep 

[77] 

Manage data by 

relying on a 

smartphone and 

using ARM Trust 

zone for security 

purposes of 

devices. 

Categorization of 

healthcare data 

based on data 

readings severity, 

checked for 

duplication, and 

encryption 

mechanism is 

employed to 

encrypt data to 

maintain data 

privacy.  

Storage- efficient 

scheme. 

Provides security to 

healthcare data. 

 

 

Integration of 

the Healthcare 

system and 

HER is quite 

complex. 

The assumption 

considered in 

this approach 

cannot be 

useful in real-

time scenarios. 

Perfectdedup 

[78] 

Ensures de-

duplication and 

offer privacy to 

data with low and 

high privileged 

data differently. 

Employ Perfect 

Hash Function for 

identification of 

popular data blocks 

and comprises of 

an Index Service 

for secure 

popularity 

transitions. The 

clients have 

flexibility to adjust 

dynamic threshold. 

Reduced data 

duplication. 

Low chances of data 

leakage. 

Computation 

overhead 

increases as the 

number of 

user’s 

increases.  

   

The existing schemes are stated above along with the pros and cons. The scheme in [58] 

does not make use of a hash key its primary focus remains on hardware configuration. In [59] 

using variable and fixed windows is employed for determining cut points. FastCDC [60] 

increases de-duplication accuracy and speeds up this process, in [61] involves using the 

mechanism of RNS & ECP for encryption, the hash key is used for data integrity and to perform 

verification while [62] scheme ensures security while resolving duplication issue, the 

cryptographic procedure is used for this process which may result in potential delays. In [63], 

to make the CDC better, the DER approach is used but fixed hashes result in low efficiency. To 

reduce hash table size, the bounded linear hash function is employed [79]. It includes a jump 

condition to avoid input data stream length while maintaining a rolling hash  [65]. In [66] a dual 

encryption mechanism is introduced for security enhancement for deduplication-based data. To 

enhance de-duplicated data security,  cipher text is upgraded with the help of a token [67]. To 

overcome data fragmentation issues, F-greedy and F-greedy+ algorithms are employed [68]. In 

[69], the author focuses on increasing the efficiency of the hash table lookup process. The false 

positive rate is increased by dividing data and creating signatures for them [76]. In [70], 

different roles are given to users, and tokens are generated for them so authorized users can get 



37 
 

 

access as per their requirements. The healthcare data is categorized into high-sensitive and 

lower-sensitive data. Both categories are checked for similar data and dealt with by using 

different encryption mechanisms [77]. QuickCDC focuses on skipping the same data and the 

ratio of error jumps is reduced [71].  

The scheme [62] shows higher efficiency in the de-duplication mechanism and reduces 

storage cost, while [63] has a low hash lookup time and balanced table size but is inappropriate 

to use for highly diverse data. In [66] [70] provides higher security to data to avoid any attack.  

The communication overhead is quite low in [67]. The [69] has high performance and lower 

performance degradation in highly diverse environments. The [70] requires more computational 

time. The [77] has good performance but resource consumption is high and not suitable for a 

resource-restricted environment. QuickCDC has a high de-duplication speed because setting 

mask bit [71], [65] [71] has better throughput. Each scheme has its benefits and limitations. On 

the whole, if scalability is the main concern in this case, [62] [79] [69] are better choices. If data 

privacy is the main concern  [66] [70] should be considered. The [68] [71] is more economical 

and efficient resource consumption. The performance overhead is high in [64], while [65] 

performs de-duplication with efficient resource utilization but it has high latency and is not 

appropriate in case of high data volume. The cost of deployment is high but provides fast speed 

in the duplication mechanism [66]. The data is provided with different levels of privacy based 

on popularity but the computational overhead is high and if any entity becomes malicious, the 

user data can be compromised [78]. 

2.10   Research Gaps 

Data duplication in the healthcare sector can cause serious problems. The crucial data 

can be overlooked or high energy consumption leads to early depletion of energy. To reduce 

duplication while keeping efficiency high, there is a high need for of implementing an optimized 

approach that ensures de-duplication. Instead of transmitting fixed data chunks, variable-sized 

chunks should be used. The byte pair comparison causes high energy consumption and memory 

overhead. The cut points in the data stream are required to be tackled intelligently. In case, data 

cut points are not appropriately done then some of the information in a packet is missing, which 

reduces the performance of a scheme. Besides this long hash table takes extra time for lookup 
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and degrades the performance of the scheme. Longer hash values can reduce the likelihood of 

collisions and improve data integrity, they also come with drawbacks such as increased 

computational overhead and storage requirements. Therefore, finding the optimal balance 

between hash size and efficiency is crucial in designing robust and efficient systems. It is 

recommended to address this issue by exploring methods to mitigate collision risks with smaller 

hashes while also optimizing the performance of longer hashes for practical implementation. 

These factors need to be handled smartly so that the duplication is managed in a better way 

without taking a longer time to process data, lowers communication costs, and consumes little 

energy.  

 

2.11 Summary 

In this chapter, a detailed review of existing literature is presented. The main terms used 

throughout the thesis are explained well. The previous schemes are described in the context of 

data duplication. Afterwards, the research gap is explained which exists in current techniques. 

A table of comparison is shown with their basic idea, mechanism advantages, and drawbacks. 

Afterwards, the whole chapter is concluded. 

 

 

 

 

  

 



 
 

 

CHAPTER 3 

 

   

 

 

METHODOLOGY 

  

  
 

3.1 Overview 

In this chapter, the detailed research methodology of the proposed solution is presented 

which is employed throughout the research. The chapter comprises information about the 

literature review study, problem identification, and evaluation metrics, along with dataset and 

simulation tool to evaluate the proposed scheme. In the end, the entire chapter is concisely 

concluded.  

3.2 Operational Framework 

In this era of advancing technology, the healthcare sector has also shifted to the online 

paradigm for monitoring patients remotely and deciding on better treatment for them. For this 

purpose, various sensors are attached to the bodies of patients to observe and evaluate patients' 

health purpose. Typically, the data gathered by these sensors takes sixteen or thirty two bits. In 

many cases, the obtained data lies within the usual range, and storing this data recurrently can 

be ineffective and resource-intensive. For this purpose, the concept of data de-duplication is 

employed in data storage and management to remove repetitive data copies. By eliminating 

these redundancies, the total data quantity is diminished, leading to more efficient storage 

utilization and cost reductions. The de-duplication procedure involves observing the data set to 

check repeating data values. Once identified, these duplicated chunks of data are reduced in 

size, sustaining just one instance, in the proposed scheme to reduce resource consumption and 

increase efficiency. The study of data de-duplication in healthcare within the context of IoT-

assisted cloud computing is essential because of the above-mentioned issues. The Working 

Framework of the Research is presented in Figure 3.1. 
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Figure 3.1: Working Framework of the Research  
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3.3    Research Design and Development 

 To resolve the above-mentioned problem, the proposed solution passes through three 

important levels which are elaborated here. The wearable devices are injected into the skin of 

patients or attached to their bodies to obtain various required health-related readings. Our 

primary objective is to manage data de-duplication, regardless of whether the devices are 

wearable or non-wearable. However, using them has hazards, including tissue damage and 

infection, so medical practitioners must exercise caution. This data is transmitted repetitively to 

the fog server. Not all transmitted data is crucial, most of the time variation exists in a few 

device values while other data remain in the normal form. So transmission of normal data again 

and again causes redundancy and duplication. To resolve this issue, the proposed scheme 

Healthcare Data De-duplication Scheme (HDDS) is introduced. In the current research, intra-

operative and preoperative information of patients are considered who are undergoing a surgical 

process.  

The use of invasive and non-invasive sensing devices to capture patients' vital signs for 

the purpose of collecting healthcare data. Despite its intention to address data redundancy and 

duplication, the Healthcare Data De-duplication Scheme (HDDS) still needs to get initial data 

from these devices. These tools are necessary to immediately collect and record precise 

physiological data from patients' bodies, which serves as the foundation for additional 

processing and analysis. Sensing instruments are therefore still essential for efficient healthcare 

monitoring during surgical procedures, even with HDDS optimization. The Research Design 

and Development phase of the proposed scheme is shown in Figure 3.2. 

In the first phase, the aggregated healthcare data sets from vital devices are loaded from 

the corresponding dataset. This dataset is related to blood pressure, ECG, glucose level, White 

blood cells, Haemoglobin, Platelet, and Hematocrit etc. These vital data vary from each other 

as some have two parts, totalling producing 32-bit long data packets. 

In the second phase, this data is sent to the fog server for storage and then checked for 

usual and unusual health-related values. In the third phase, repeated data that is in the usual 

range is replaced by a smaller chunk consisting of a single Boolean digit 1. Transmitting data 

chunks of a single bit in this case, instead of the original full data packet, reduces the load on 
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the server and efficiently stores the data in a cloud repository while serious healthcare data is 

sent in its original form to the cloud server. Moreover, this approach not only cuts down energy 

consumption, communication costs, and storage space but also gives suitable and critical patient 

reports to medical staff. That helps them in the identification of patients’ health situations more 

effectively and follows more efficacious treatment options. 

 

 

Figure 3.2: Research design and development Plan for HDDS 
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3.4 Detailed study of Literature 

The up-to-date research papers on de-duplication within the context of IoT -assisted 

cloud computing are considered. The paper’s title, abstracts, proposed solution, and conclusion 

are thoroughly studied to build an idea of the relevant domain. Around 50 research papers are 

studied and 23 papers are the supreme appropriate. Based on the conclusion drawn through 

these papers, the research problem is formulated. These research papers are found based on 

keywords and the most recent papers are also checked in the reference list of relevant research 

papers. Subsequently, based on the literature review, the problem background is developed and 

the main problem is identified. Afterwards, a table with having analysis of suitable schemes 

comprised of the main research idea, procedure, advantages, and issues of these papers is 

presented. 

3.4.1 Problem identification 

Based on the studied literature, the problem statement is formulated. The negative 

impact of the problem includes high storage, higher energy consumption, and high 

communication costs. These outcomes of the problem provide the basis to address this critical 

issue and take efficient steps to mitigate it. 

3.4.2 Evaluation Metrics 

To check the proficiency of the proposed scheme, it is compared with the existing robust 

schemes. The metrics are selected which are most crucial from a de-duplication perspective. 

These parameters consist of Average Execution Time, Size of Data after Post Execution, and 

compressed patient data file size. Through graphs, the performance of the proposed scheme is 

shown along with other schemes. 
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3.4.3 Experimental Dataset and Selection of Simulation Tool 

To evaluate the effectiveness of the proposed scheme, the simulation method is 

employed. The Python programming language is utilized for simulation. The dataset used for 

the research is available at https://physionet.org/content/vitaldb/1.0.0/. The vital signs data 

consists of ECG, BP, body temperature oxygen saturation level, and many others. For each 

patient, a 2000 dataset of each patient is maintained. It includes 12 waveform tracks, as well as 

184 numeric data tracks, gathered using various anaesthesia instruments attached to the 

patient’s body during the surgery mechanism. These vital signs data contains 1-second interval. 

The present data is not pre-processed keeping in view the real-world scenario. 

3.5    Summary 

          In this section, a comprehensive pathway is elaborated that is followed in the research 

work. From the operational framework to the simulation tool, every step is described in detail. 

The evaluation metrics and characteristics of the dataset implemented are described thoroughly 

to enhance understanding. 

  

https://physionet.org/content/vitaldb/1.0.0/


 
 

 

CHAPTER 4 

   

 

 

 

HEALTHCARE DATA DE-DUPLICATION SCHEME 
  

  
 

4.1 Overview 

In this chapter, the proposed scheme is described which is used to resolve the issue of 

data duplication. Afterwards, the system model of the scheme with all relevant entities is 

described. Then, an algorithm is stated as well and its steps are defined well to increase 

readability. Finally, the whole chapter is concluded. 

4.2   Healthcare Data De-duplication Scheme (HDDS) 

         In this section, the proposed scheme Healthcare Data De-duplication Scheme (HDDS) is 

described which aims to overcome the issue of data duplication. In the context of the healthcare 

sector, the vital devices are attached to the body of patients to be monitored and treatment is 

provided to them as per their health condition. In the current research dataset of patients are 

used that are undergoing surgery. The intra-operative and preoperative clinical information is 

gathered through vital devices. These attached devices vary in nature. Some sensor devices 

generate data packets of 16 bits because they produce only a single portion of the data. Some 

device such as BP tracking, sugar tracking, etc. produces data in 2 halves. Each one of them 

occupies 16 bits so jointly it takes 32-bits. The attached vital devices continuously send body 

readings to the fog server which sends it further. 

Repeatedly transmitting these readings takes up high storage space and drains energy 

quickly. Some data readings display instabilities among the patients, while other data values 

remain constant. These data readings that continuously experience variation are termed 
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unusual data. To overcome above mentioned issues, the concept of content-defined chunking is 

employed. The data readings are split based on actual data content. The variable-sized chunks 

are created depending on the nature of the data. After that duplicated data chunks in the data 

are checked. The content of each chunk is examined to determine duplicated values.  For usual 

duplicated data readings, instead of sending the whole data packet of all bits, transmit a smaller 

chunk of Boolean digit 1, to indicate that the data reading remains within the normal range. So 

transmitting a data chunk of 1 bit and then keeping meta-data about this duplicated content 

reduces the load and saved into the cloud repository. On the other hand. it not only reduces data 

file size, communication cost, and storage space also this relevant and vital information is useful 

for medical staff to focus on serious data that assist them in diagnosis and taking better treatment 

approaches as per the condition of the patients.  

This approach of content-defined chunking and transmitting smaller Boolean digits to represent 

duplicated data within normal ranges offers several advantages. Firstly, it significantly reduces 

the storage space required, as only relevant and varying data is stored rather than repetitive 

information. This optimization also translates into reduced communication costs, as smaller 

chunks of data are transmitted, minimizing bandwidth usage. 

Moreover, by focusing on unusual data readings and transmitting only the necessary 

information, the energy consumption of devices is minimized, prolonging battery life and 

reducing the need for frequent recharging or battery replacements. 

Additionally, the use of metadata to keep track of duplicated content enables efficient retrieval 

and analysis of data. Medical staff can quickly identify and prioritize unusual or significant data 

readings, allowing them to focus their attention on patients who require immediate attention or 

intervention. This targeted approach to data analysis can lead to more timely and accurate 

diagnoses, as well as more tailored treatment approaches based on individual patient needs. 

Overall, the implementation of content-defined chunking and selective transmission of data 

chunks offers a practical and efficient solution to the challenges of storing, transmitting, and 

analyzing medical data in a resource-constrained environment. It not only optimizes resource 

usage but also enhances the effectiveness of healthcare delivery by providing medical staff with 
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timely and relevant information for decision-making and patient care. The working flow of the 

proposed scheme is shown in Figure 4.1 

 

Figure 4.1: Working Flow of Proposed Scheme 

The conventional methods of de-duplication, such as byte pair comparison throughout 

the byte stream introduce extra computations that the system needs to perform to identify cut 

points in the data. These extra computations increase overhead, which is unwanted, particularly 

in resource-restricted healthcare environments. The content-defined chunking approach used in 

this scheme reduces the extra computation by focusing on the actual repetitive data values and 

replacing them with Boolean 1 rather than checking it byte by byte. It not only lessens the 

computational overhead but is also suitable for functioning within healthcare to ensure an 

effective de-duplication mechanism. 
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4.3   System Model 

The System model for the proposed scheme comprises vital devices, a Fog Server, a 

Cloud server, and a cloud repository. The vital devices attached to the body of patients. This 

data has identical readings related to patients’ health history. The purpose of these sensor 

devices is to take data commonly from patients’ bodies and transfer it to the fog server. The fog 

server in the system model is responsible for storing data of these vital devices and after 

removing duplicates transmits it to the cloud server. For removing redundancy in this data, 

Boolean digit 1 is used. This de-duplicated data is further stored in the cloud server. From the 

cloud server, authorized persons such as doctors no nurses can access it. Along with it, this de-

duplicated medical history of patients is also stored in the cloud repository. In case data is 

required later on, it can be retrieved from the cloud repository. The System model of the 

proposed scheme is presented in Figure 4.2. 
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Figure 4.2: System Model
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4.4   Flowchart of HDDS 

 The healthcare dataset of patients is loaded that are undergoing surgical procedures. After 

loading the dataset, the vital sign values including Blood pressure, ECG, Sugar level, pulse 

rate, and some other data files associated with vital signs are checked and stored in the fog 

server. The normal range varies for each of the vital signs. So they are checked against 

corresponding standard values. If they fall in the normal range then it is termed non-critical or 

normal readings. The Flowchart of the proposed technique HDDS is shown in Figure 4.3.  

 

Figure 4.3: Flowchart of HDDS 

On the contrary, if these readings are greater or lower than the relevant standard level, they 

are well-known as critical values. The critical values are transmitted in their full bits. If the 
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readings are non-critical, in this scenario, instead of sending data in its full form, it is replaced 

with a small data chunk of Boolean digit 1. After removing redundancy from the healthcare 

data it is stored further in a cloud server where medical staff can access it to suggest better 

treatment and afterwards, it is saved in a cloud repository for future use.  

4.5    Algorithm for Healthcare Data De-duplication Scheme (HDDS) 

 For removing redundancy from healthcare data, an algorithm is presented. The thorough 

detail of the algorithm is shown in Figure 4.4. Then, we provided an in-depth explanation to 

improve understanding. 

tn = track names, ct = concat string 

1. Input:  List of Vital data 

2. Output: Concatenated string 

3. vf1, vf2, vf3, vf4, vf5 vitals data 

4. maxLen => pick the maximum data length 

5. For v till maxLen 

6.         check if all vitals data contains index v 

7.                 pick vitals data from each vf's 

       End For 

8.                 ignore nan values and pick column names of the values that 

are not nan 

9.                 get index i of column names from tn 

10.                 ct = create concat string where i is index and value is 

concatenated by semicolon. e.g i1;value,i2;value,i3;value 

11.               concat next vf's data to the ct 

12.               Transmit ct to client 

Figure 4.4: Algorithm for Aggregating Vital Data 

 

In 1-2 step, the input and output of the algorithm is stated. In step 3- vf1, vf2, vf3, vf4, 

and vf5 represent vital data such as blood pressure, pulse rate, sugar level, oxygen saturation, 

etc. level in the body. The maximum data length is determined for all the vital data sources and 

For loop is run for all vital signs. It is checked that all sets of vitals data are comprised of data 

at index v. It is done to ensure that data is available at the current iteration index in all vitals 

data sets. Among the data points at index v in each set, ignore if it has "nan" values (which 

signifies missing data). The columns' names of the values are obtained that are not ‘nan’. The 

column names got in the prior step to their corresponding indices in the track names. Join the 

data obtained from the next set of vitals data to the previous concatenated string. This step is 

done in every loop iteration, adding data for the next index (v) in each iteration. After processing 
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the entire data for the current index v from all vitals data sets, transmit the concatenated string 

further. “nan” values are basically empty columns in the dataset. So, we are ignoring those 

values and not passing to the concentrated strings. 

 

 

4.6     Algorithm for Removing Duplicate Data 

 

After the data is transmitted to the fog server. It is checked for duplicated values. For 

this purpose, an algorithm is presented in Figure 4.5 that depicts the functionality in detail. 

 

1. Input: Duplicated data 

2. Output: De-duplicated data 

3. fetch ct from Mqtt 

4. split column number and value 

3. check threshold value according to column 

5. if threshold satisfies then 

5.         replace value with bit 1 

6. else 

7. keep the same value 

8. save data to cloud server /json/file/vitalfile without other 

missing columns, to reduce the size of the data 

 

Figure 4.5:  Algorithm for Removing Duplicate Data 

 

 

In steps 3-8, the stored concatenated data string is fetched from Mqtt. The column and 

numbers are separated. These data values are checked against standard threshold values as per 

the nature of the data. In case of redundant readings, transmit only Boolean digit 1 otherwise 

the original data file is sent to the cloud server. 

 

 

4.7    Summary  

 This chapter aims to provide comprehensive information about the proposed scheme. 

Initially, the complete explanation of the proposed scheme is elaborated there. Then, the system 

model is presented with the functionality of all entities. Afterwards, a flowchart is illustrated 
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for the proposed scheme with an explanation. Then, algorithms for the proposed scheme are 

added with a complete explanation of all steps.  



 
 

 

CHAPTER 5 

 

 

RESULT AND ANALYSIS 

5.1 Overview 

In this chapter, the proposed technique HDDS is compared with some existing robust 

schemes. The results are formulated and analysis is performed by using the simulation method. 

For evaluation, crucial metrics are considered from the data de-duplication perspective. Along 

with it, information is given about the simulation environment and parameters that are 

considered to obtain results. 

5.2 Simulation Tools and Environment 

An MQTT-based pub-sub architecture is used to simulate the transmission of healthcare 

IoT data in JSON format at 1-second intervals by an MQTT broker, which is afterwards 

broadcast to connected MQTT receivers.  

The dataset includes intra-operative vital signs data and preoperative clinical 

information of patients. This setup comprises five separate patient files, each signifies vital 

health data for the patient in a hospital bed. These files are related to fog nodes as it is 

responsible for collecting patient data and combining it into a single string for transmitting it to 

the cloud. Relevant information to the vital data parameters, which can be considered as a 

"helper" or meta-data file, is kept distinctly in a file named "track_names.csv”. This file 

comprises details such as the device name, and description (i.e., the parameter being monitored, 

such as heart rate or ECG lead wave). The unit of measurement and minimum and maximum 

permissible ranges for each parameter are presented in the file. The fog node is responsible to 

retrieve the information from the "track_names.csv" file to compile it into a string.
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This string is separated by using various delimiters to differentiate between different 

parameters and patient data. Subsequently, the compiled data is sent to the cloud. The delimiter 

for index values is known as a semicolon, for example, "6;66.237030029296," where "6" 

signifies the index number corresponding to a specific parameter (e.g., "ECG"), and 

"66.237030029296" represents the parameter's value. The value delimiter is a comma that 

separates various health parameters within the string. For example, "6;66.237030029296,7:120" 

shows that "6" relates to ECG with a value, followed by "7" shows Blood Pressure with its 

corresponding value. Patient data is differentiated by using a colon, representing the start of 

data for the next patient. 

On the aggregate node at the cloud end, received data is parsed and separated using the 

delimiters. Additionally, a validation step is performed to ensure that the values fall within the 

predefined minimum and maximum ranges for each vital parameter. If a value falls within this 

range, it is replaced with "1" to indicate normal. Otherwise, the original value is retained and 

stored in the cloud.  

In the proposed scheme described, it seems that only the upper value for blood pressure 

(BP) is stored. This could be due to a design decision or requirement specific to the application. 

Storing only the upper value might be considered sufficient for monitoring purposes or for 

certain analytical needs. Additionally, storing both upper and lower values might introduce 

redundancy if they tend to change together within the normal range for a given patient. 

However, if there's a need to store both upper and lower values of BP, the proposed 

format can be adapted accordingly. One way to store both values within the existing format 

could be by allocating additional index numbers for the lower and upper values separately. For 

instance: 

- Let's say we use index "7" for blood pressure.  

- The original format might store the upper value like this: "7;120". 

- To include the lower value, you could designate another index, for example, "8" for 

the lower value. 
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- So, the lower value could be stored as "8;70", assuming the lower value of BP is 70. 

- Thus, the entire string representing BP for a patient might look like: "7;120,8;70". 

This way, both upper and lower values can be accommodated within the existing 

scheme, maintaining clarity and consistency in data storage and retrieval. 

The original data of patients is stored in Healthcare Data Repository (HDR). The results 

of proposed scheme HDDS is compared with Efficient File-Level De-Duplication Scheme 

(EFDS) [26] scheme. The Simulation parameters utilized to check the efficiency of the proposed 

technique are presented in Table 5.1. 

Table 5.1: Simulation parameters 

Parameters Unit Reference Threshold 

Values 

Patients Number - 5 

Simulation time sec 100 

White Blood Cell Count x1000/mcL 4~10 

Haemoglobin g/dl 13~17 

Hematocrit % 39~52 

Platelet count ×1000/mcL 130~400 

Erythrocyte 

Sedimentation Rate 

mm/hr 0~9 

Glucose mg/dl 70~110 

Albumin g/dl 3.3~5.2 

Total Bilirubin mg/dl 0.2~1.2 

Creatinine clearance mL/min 75~125 

Sodium mmol/L 135~145 

Potassium mmol/L 3.5~5.5 

ionized Calcium mmol/L 1.05~1.35 

Chloride mmol/L 98~110 

Ammonia mcg/dL 27.2~102 
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C-reactive protein mg/dL 0~0.5 

Lactate mmol/L 0.5~2.2 

Prothrombin time  INR 0.8~1.2 

Prothrombin time  % 80~120 

Prothrombin time sec 10.6~12.9 

Activated partial 

thromboplastin time 

sec 26.7~36.6 

Fibrinogen mg/dL 192~411 

Arterial pressure wave mmHg 40-50 

partial pressure of CO2 mmHg 35~48 

Bicarbonate mmol/L 18~23.0 

Diastolic arterial pressure mmHg 40-50 

Systolic arterial pressure mmHg 40-50 

Percutaneous oxygen 

saturation 

% 40-50 

Heart rate /min 40-50 

Respiratory rate (from 

ventilator) 

/min 40-50 

Respiratory rate based on 

capnography 

/min 40-50 
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5.3 Compressed Patient Data File Size 

The compressed size refers to the reduction in the size of the data file as compared to its 

original size. For this purpose, the data of 5 patients are considered comprises of 2000 datasets 

for each. Each dataset contains collected data from 70 to 75 attached vital devices. The 

simulation results demonstrated as shown in Figure 5.1 that HDDS has a higher compressed 

size as compared to the EFDS scheme. The EFDS scheme keeps a reference list of repeated 

values in the coming data. This reference list keeps increasing significantly as more repetition 

of data occurs, which eventually has a negative impact on the compression rate. The reason 

behind better compression size in HDDS adopts a predefined set of reference values, known as 

meta-data. This predefined reference list of reference values stays constant during the de-

duplication procedure, irrespective of the amount of duplicated data. Furthermore, HDDS also 

uses a mechanism in which when data values lie within a stable range are transmitted in the 

form of Boolean digit 1 instead of transmitting whole data. This technique additionally plays 

its role in the proficient compression of data.  

 

Figure 5.1: Compressed patients' data file size 
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The X-axis represents the number of patients and the Y-axis shows the size of the file 

in Kilobytes (KBs). When the original size of the file is 1059 KBs, after employing EFDS the 

size of the file is compressed to 920 whereas after using the HDDS strategy it is further reduced 

to 235. 

5.4 Average Execution Time 

 During the initial phase, the performance of EFDS is much better. At the start of the de-

duplication process, EFDS is performing more proficiently in terms of execution time as 

compared to HDDS. Duplication refers to the mechanism of removing normal repetitive data 

values collected by vital devices. With time the de-duplication process remains for a longer 

time and more identical data is discovered. To cope with this redundant data, both EFDS and 

HDDS schemes keep reference lists. When more duplicate data is received, the EFDS scheme 

needs more lookup and updates its reference. The continual updating of the reference list in 

EFDS has a bad impact on execution time. As more duplications occur in healthcare data, the 

time needed to EFDS for lookup and update the reference list surges fast. This increasing 

reference list increases complexity and takes more time to update. 

 

Figure 5.2: Average Execution Time 
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On the other hand, HDDS needs less execution time because it maintains a fixed, 

constant reference list during the whole execution procedure. The size of the reference list in 

HDDS remains consistent, irrespective of duplicated data that needs to be processed. Figure 5.2 

illustrates the performance of both schemes when the number of vital devices surges up to 73, 

the EFDS requires 0.05 seconds while HDDS needs 0.005 seconds. 

5.5 Size of Data after Post Execution 

 The healthcare data is frequently aggregated by 73 vital devices attached to the patients 

after every second. There is a higher rate of duplicated data in it, which is not essential to 

transmit again and again to the cloud by fog sever as it reduces energy consumption, increases 

communication cost, and takes extra storage space. So the size of the data is reduced by 

removing duplicated values so that the above-mentioned parameters can be controlled. The 

basic motive behind de-duplication is to data size to optimize healthcare data transmission and 

storage. In Figure 5.3, the original data is shown along with de-duplicated data presented by 

using EFDS and HDDS schemes. The results showed that after the de-duplication mechanism, 

the smaller data size is in HDDS as compared to EFDS. 

 

Figure 5.3: Size of Data after Post Execution  
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After de-duplication, the size of the data is significantly smaller with HDDS compared 

to EFDS. The original data gathered from the 73 devices after an interval of every 1 second, 

needs 1364 bytes. Besides this after using the EFDS de-duplication mechanism the data size is 

reduced to 907 bytes while in HDDS it is further reduced to 326 bytes. The proposed scheme 

HDDS has a lower data size than EFDS which shows that ultimately HDDS has lower storage 

cost and lower communication cost. 

5.6    Patient Data with Minor Duplicates 

 When the dataset is randomized it presents that most of the data readings are not the 

same as it contains values with variation. There are a lower number of duplicate data values and 

very few null or missing readings. The performance of both schemes is better because of the 

low duplicate data ratio. When duplicated data is low in volume, EFDS reduces the duplication 

reference list to grow and the time needed for lookup is also reduced. In HDDS, when minor 

duplicated data appears in the dataset, it is converted into digit 1 and then transmitted further 

which reduces data size for duplicated values. While out-of-range data is transmitted in its full 

form. Figure 5.4 shows the performance of both HDDS and EFDS. 

 

Figure 5.4: Patient Data with Minor Duplicates 
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 The x-axis shows the number of readings from the dataset and the y-axis represents file 

size in KBs. When readings are 2000 in number the size of the file stored in the healthcare 

repository is 1188, while the EFDS has maintained a size of 457 and HDDS maintained the 

lowest size of 315. 

5.7    Patient Data with Major Duplicates 

          As in the previous performance metric, the case observed with data values having a lower 

duplication ratio is observed. In this scenario, the dataset with major duplicates is considered. 

When the duplication ratio is high, it shows that the data contains a higher ratio of similar data. 

The EFDS has to maintain a huge list of references for duplicated records. When the identical 

data starts rising, the performance of EFDS degrades. In the case of HDDS, instead of high 

duplicated values, the size of the file remains lower because of better management of duplicated 

data. The feature of data reduction for similar data by using the Boolean number system 

increases the efficiency of the proposed scheme. The file sizes in both schemes are shown in 

Figure 5.5. When readings in the dataset are 9000, the size of the stored file in the original form 

in a healthcare data repository takes 4745 KBs,  by employing the EFDS scheme it takes 1765 

KBs, and the proposed scheme HDDS maintained the lowest size of 1021 KBs. 

 

Figure 5.5: Patient Data with Major Duplicates 



63 
 

 

5.8    Execution Time for Processing Patients with Minor Duplicates 

When minor duplicates exist in the healthcare dataset as shown in case 1, there is not 

much processing needed, and handling a small number of duplicates is relatively easy and 

efficient. When duplicates are high in number, handling them is resource-intensive, particularly 

in EFDS. When duplicates are fewer, then the step of handling them is not exhaustive. So 

execution time remains the same for both schemes in case of minor duplicates. 

The performance of both schemes is illustrated in Figure 5.6. The x-axis shows data 

readings from the dataset and the y-axis represents execution time. When data values are about 

9000 in number, it takes 82 minutes for EFDS and 81 minutes for HDDS. 

 

Figure 5.6: Execution Time for Processing Patients with Minor Duplicates 

5.9    Execution Time for Processing Patients with Major Duplicates 

          When high Duplicate values are present in data, maintaining them takes time. In the case 

of EFDS while processing data, when duplicate values occur, these are added to the duplication 

reference list. So, when duplication starts to increase, the reference list keeps getting longer as 
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it needs to store references of increasing duplicate values. While HDDS takes only 1 bit for 

normal duplicate values. So transmitting Boolean digits needs a lower execution time. 

 The execution time of both schemes is presented in Figure 5.7. When the data readings 

are 6000 in number, the execution time for EFDS is 62 minutes and 54 for HDDS. 

 

Figure 5.7: Execution Time for Processing Patients with Major Duplicates 

5.10   Cumulative Execution Time for Processing Number of Blocks 

For this metric, the performance of both schemes is noticed with time. The graph is 

cumulative and showed progress collectively after sometime. At the start, EFDS maintained 

robust performance as the duplicate reference list is blank at so there is no need to check for 

duplicated values while processing. However, with time when more data is handled, the number 

of similar data starts increasing. It causes to increase in the reference list. The list keeps growing 

in size, as more data is processed. The EFDS needs to check duplicate values in the list with 
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each iteration. This gradually slower performance as the list increases and ultimately increases 

execution time for EFDS. 

On the other hand, HDDS demonstrated reliable performance over time, which shows 

that rising duplicate data does not affect processing speed. The reason behind this is that 

duplicated chunks are managed effectively. As compared to EFDS, which had to be looked up 

in a large reference list. In Figure 5.8, it is shown clearly that HDDS maintained lower execution 

time and even increased duplicate references. 

 

Figure 5.8: Cumulative Execution Time for Processing No. of Blocks per Minute 

5.11   Execution Time for Processing of Blocks per Minute 

 In this graph, processing time of both graphs per minute is shown. Initially, the reference 

list is empty thus there is nothing to check in the list, therefore EFDS processed data quickly, 

resulting achieved better performance. When time passes more data is processed, more 

duplication occurs, and ultimately reference list surges. EFDS needs to search within its large 

reference list to process duplicate data. This exhaustive processing degrades EFDS 

performance. While HDDS mechanism to handle duplicates is simple and easy. Due to it, 

HDDS maintains relatively consistent performance. Figure 5.9 shows showing progress of both 

schemes per minute. While EFDS performance has fluctuations while processing duplicate data. 
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In Figure 5.9, performances of both schemes are shown. In 4 minutes, the data size of 1800 is 

processed in HDDS while EFDS has processed 1400 data readings in 4 minutes. 

 

Figure 5.9 Execution Time for Processing No. of Blocks per Minute 

5.12 Discussion  

The proposed technique HDDS aims to resolve the issue of data duplication in the 

context of the healthcare sector.  To overcome this problem, data values are checked against 

standard threshold values. If the values have no significant change then it is simply replaced by 

a smaller chuck of Boolean digit 1, which untimely reduces data packet size and overall 

increases the efficacy of the proposed scheme. To check its effectiveness, it is compared with 

another deduplication-based scheme based on some vital evaluation parameters. The proposed 

scheme maintains a consistent list of meta-data regardless of environment variation and 

repetitive data. The proposed scheme considers healthcare sector data generated by 

approximately 73 vital devices that transmit the data after a 1-second interval. This data is 

effectively compressed and takes little time to transmit as compared to the existing scheme 

EFDS. The EFDS scheme takes extra time to look at, updating the reference list every time 

duplication occurs in healthcare data. The updating reference list takes extra time for 
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computation and increases the complexity. Besides this, as the number of vital devices increases 

the effectiveness of EFDS starts falling due to intensive computation. 

5.13 Summary 

 The HDDS technique is introduced to resolve de-duplication issues without utilizing too 

much time for Average Execution, reduce the size of data after Post Execution, and compress 

patient data file size, cumulative execution time, and execution time per minute. The simulation 

is performed in a Python environment to test the competency of the proposed scheme against 

another de-duplication solution EFDS. The simulation results proved that HDDS outperformed 

EFDS.  



 
 

 

CHAPTER 6 

CONCLUSION AND FUTURE WORK  

6.1 Overview 

This chapter aims to provide a summary of this research and future plans. The primary 

focus of this work is to overcome duplication issues in data of the healthcare sector and 

introduce a de-duplication mechanism so that crucial data is maintained well in the cloud 

repository. To evaluate the efficiency of the proposed technique HDDS, a simulation method is 

employed. For comparison with the base scheme, the most crucial parameters containing 

Average Execution Time, Compression Rate, and Size of Data after Post Execution are 

considered. By comparing the results of HDDS with earlier schemes, it is proved that HDDS 

has performed well. 

6.2 Summary of Research Work 

The Internet of Things (IoT) technology has brought revolution in the context of 

healthcare by collecting data from various wearable devices to a central database system. 

Though it has various advantages it also raises some challenges that need to be resolved to get 

full advantage from it.  When vital devices take readings from a patient’s organs and send them 

to a fog server, they contain data in different formats. Mostly, normal values are transmitted 

over 1 second, which unnecessarily takes up storage space. To overcome this issue, the 

proposed scheme Healthcare Data De-duplication Scheme (HDDS) is presented. The scheme 

reduces data size by replacing repetitive normal data with digit 1 of the Boolean system. So for 

such values, the idea of content-defined chunking is utilized.  A small chunk of digit 1 is 

transmitted and its meta-data is maintained for future use.  For such values, those are fluctuating 
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and showing abnormal behavior are transmitted in their unique format. So finally the de-

duplicated data is stored in the cloud repository. It not only resolves the issue of duplication but 

also reduces data size ultimately overcoming the issue of higher Execution Time, large size of 

Data after Post Execution, and compressed patient data file size. Some limitations exist in this 

thesis. The proposed scheme performs well for de-duplication but the security mechanism to 

keep patients medical history as confidential is not considered in this research. The 

communication cost after the de-duplication procedure is not extensively analyzed in this work. 

The vital data of a few patients are considered in this study, increasing the number of patients 

might raise new issues. Till now, no strategy has been considered to handle lost or missing data 

values. 

6.3 Future Work 

In the future, the number of patients will be increased to check the performance of the 

proposed scheme in a highly diverse environment. Some security mechanisms will be 

introduced to protect patients’ medical history. Some more advanced evaluation parameters will 

be used to check the effectiveness of the proposed scheme. Beyond this, the HDDS scheme is 

compared with more deduplication-based techniques. 
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GLOSSARY 

1. Internet of Things (IoT): Interconnected devices 

2. Content-Defined Chunking: Dynamic data partitioning 

3. Replication Factor: Redundancy level 

4. Infrastructure as a Service (IaaS): Cloud computing foundation 

5. Platform as a Service (PaaS): Cloud platform provision 

6. Function as a Service (FaaS): Serverless computing 

7. Software as a Service (SaaS): Cloud-based software 

8. Virtual Machines: Software-based emulation 

9. Per-File Parity: File-level redundancy 

10. Data Elimination Ratio: Redundancy reduction efficiency 

11. Jump-Based Chunking: Data partitioning method 

12. Rapid Asymmetric Maximum: Encryption algorithm 

13. Healthcare Data De-duplication Scheme: Medical data redundancy removal 

14. Efficient File-Level De-Duplication Scheme: Optimal file redundancy elimination 

15. Message Locked Encryption: Secure message encoding 

16. Secure Hash Algorithm: Cryptographic hash function 

17. Message Digest: Compact hash value 

18. Cloud Service Provider: Cloud computing vendor 
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19. Electronic Health Record: Digital health information 

20. Multi-Level Encryption: Layered data protection 

21. Elliptic-Curve Cryptography: Cryptographic curve method 

22. Replicator node: Copying server 

23. Co-ordinator node: Central control point 

24. Bandwidth: Data transfer capacity 

25. Fog servers: Edge computing servers 

26. Computational overhead: Processing resource burden 

27. Hash chunk: Hashed data segment 

28. Hash table: Data structure for hashing 

29. Index structure: Organized data index 

30. Load factor: System resource utilization 

31. Cut points: Data segmentation points 

32. Byte pair comparison: Binary unit matching 

33. Break points: Discontinuity locations 

34. Cosine-based Similarity checking: Similarity measurement method 

35. Linear hash function: Straightforward hashing 

36. Cipher text: Encrypted data 

37. Radix Trie: Tree data structure 
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38. CEK mechanism: Cryptographic key management 
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