

EFFICIENT CONTENT DEFINED CHUNKING

FOR DATA DEDUPLICATION IN IOT ASSISTED

CLOUD COMPUTING

By

ABDUL BASIT ASIF

NATIONAL UNIVERSITY OF MODERN LANGUAGES

ISLAMABAD

June, 2024

 Efficient Content Defined Chunking For Data Deduplication In

Iot Assisted Cloud Computing

By

ABDUL BASIT ASIF

BSCS, National University Of Modern Languages , Islamabad, 2017

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

In Computer Science

To

FACULTY OF ENGINEERING & COMPUTING

NATIONAL UNIVERSITY OF MODERN LANGUAGES ISLAMABAD

© Abdul Basit Asif, 2024

ii

THESIS AND DEFENSE APPROVAL FORM

The undersigned certify that they have read the following thesis, examined the defence,

are satisfied with overall exam performance, and recommend the thesis to the Faculty of

Engineering and Computer Sciences for acceptance.

Thesis Title: Efficient Content Defined Chunking for Data De-duplication in IoT assisted

Cloud Computing

Submitted By: Abdul Basit Asif Registration #: 53 MS/CS/S21

Master of Science in Computer Science (MSCS)

 Degree Name in Full

Computer Science

Name of Discipline

Dr. Ata Ullah

Research Supervisor Signature of Research Supervisor

Research Co-Supervisor Signature of Research Co-Supervisor

Dr. Sajjad Haider

Head of Department (CS)

 Signature of HoD (CS)

Dr, M. Noman Malik

Name of Dean (FEC)

 Signature of Dean (FEC)

June 5th, 2024

iii

AUTHOR’S DECLARATION

I Abdul Basit Asif

Son of Asif Mehmood

Registration # 53 MS/CS/S21

Discipline Computer Science

Candidate of Master of Science in Computer Science (MSCS) at the National University of

Modern Languages do hereby declare that the thesis Efficient Content Defined Chunking for

Data De-duplication in IoT assisted Cloud Computing submitted by me in partial fulfilment

of MSCS degree, is my original work, and has not been submitted or published earlier. I also

solemnly declare that it shall not, in future, be submitted by me for obtaining any other degree

from this or any other university or institution. I also understand that if evidence of plagiarism

is found in my thesis/dissertation at any stage, even after the award of a degree, the work may

be cancelled and the degree revoked.

Signature of Candidate

 Abdul Basit Asif

 Name of Candidate

 June 5th, 2024

 Date

iv

ABSTRACT

Title: Efficient Content-Defined Chunking for Data De-duplication in IoT-assisted Cloud

Computing

Consistently, a large number of data is being created because of the utilization of rising

innovations including SaaS products and IoT, etc. The produced data has a lot of redundant

items. It is challenging to store and deal with duplicate data. Data De-duplication is a solution

to resolve this problem. It is referred to as a method in which only one copy of data is stored on

the server to avoid storing excessive copies of data. It’s a highly effective approach used to

reduce data storage costs as well as make it easier to manage those data. To overcome this issue,

one of the approaches called the block-level approach mainly involves the process of chunking,

hashing, and indexing those hashes. A chunk of data called a block is converted to a fingerprint

and saved in a lookup table. The concerning issue is that as the number of blocks increases, the

size of the lookup table also grows which results in additional cost in terms of searching and

memory occupation. This work will focus on evaluating an appropriate amount of chunks or

blocks to create a balance between redundant data on storage devices and the size of the lookup

table. The data used for this purpose belongs to the healthcare sector. The patient’s body is

connected to various sensors that take readings from the body and transmit them to the fog

server. The fog server will further transfer this data to the cloud server. Before transmitting data

to the fog server, duplicated data readings are sent in the form of Boolean digit ‘1’ while critical

data is sent in its original form to overcome duplication issues. An MQTT-based pub-sub

architecture is used to transmit healthcare IoT data in JSON format every second via an MQTT

broker to connected receivers. The experimental results indicate that the proposed HDDS

scheme outperforms its counterparts.

v

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 THESIS AND DEFENSE APPROVAL FORM ii

 AUTHOR’S DECLARATION iii

 ABSTRACT iv

 TABLE OF CONTENTS v

 LIST OF TABLES ix

 LIST OF FIGURES x

 LIST OF ABBREVIATIONS xi

 ACKNOWLEDGMENT xii

 DEDICATION xiii

1 INTRODUCTION 1

 1.1 Overview

1

 1.2 Data De-duplication 1

 1.3 Motivation 2

 1.3.1 Architecture of Data De-duplication 2

 1.3.2 Advantages of Data De-duplication 5

 1.3.3 Constraint in Data De-duplication 8

 1.4 Cloud Computing Architecture 10

 1.4.1 Front end Side 10

 1.4.2 Back-end Side 11

 1.4.3 Infrastructure 11

 1.5 Problem background 11

 1.5.1 Negative Impact of Problem 12

 1.6 Problem Statement 13

vi

 1.7 Research Questions 13

 1.8 Aim of Research 13

 1.9 Research Objectives 14

 1.10 Scope of Research 14

 1.11 Thesis organization 14

2 LITERATURE REVIEW 15

 2.1 Overview 15

 2.2 Data De-duplication 15

 2.2.1 Techniques of Data De-duplication 16

 2.3 Cloud Computing 16

 2.4 Deployment Models 18

 2.5 Internet of Things 19

 2.6 IoT assisted Cloud Computing 20

 2.7 Data De-duplication in IoT assisted Cloud Computing 21

 2.8 Existing Studies in Data de-duplication in IoT assisted

Cloud Computing

22

 2.8.1 File Level Data De-duplication 23

 2.8.2 Block-Level Data De-duplication 29

 2.9 Comparison of Data de-duplication in IoT assisted Cloud

Computing-based strategies

31

 2.10 Research Gap 37

 2.11 Summary 38

3 METHODOLOGY 39

 3.1 Overview 39

 3.2 Operational Framework 39

 3.3 Research Design and Development 41

 3.4 Detailed Study of Literature 43

 3.4.1 Problem Identification 43

 3.4.2 Evaluation Metrics 43

vii

 3.4.3 Experimental Dataset and Selection of Simulation

Tool

44

 3.5 Summary 44

4 HEALTHCARE DATA DEDUPLICATION SCHEME 45

 4.1 Overview 45

 4.2 Healthcare Data De-duplication Scheme (HDDS) 45

 4.3 System Model 48

 4.4 Flow Chart of HDDS 50

 4.5 Algorithm for Healthcare Data De-duplication Scheme 51

 4.6 Algorithm for Removing Duplicate Data 52

 4.7 Summary 52

5 RESULT AND ANALYSIS 54

 5.1 Overview 54

 5.2 Simulation tools and Environment 54

 5.3 Compressed Patients Data File Size 58

 5.4 Average Execution Time 59

 5.5 Size of Data after Post Execution 60

 5.6 Patient Data with Minor Duplicates 61

 5.7 Patient Data with Major Duplicates 62

 5.8 Execution Time for Processing Patients with Minor

Duplicates

63

 5.9 Execution Time for Processing Patients with Major

Duplicates

63

 5.10 Cumulative Execution Time for Processing Number of

Blocks

64

 5.11 Execution Time for Processing of Blocks per Minute 65

 5.12 Discussion 66

 5.13 Summary 67

6 CONCLUSION AND FUTURE WORK 68

 6.1 Overview 68

viii

 6.2 Summary of Research Work 68

 6.3 Future Work 69

 GLOSSARY 70

REFERENCES 73

ix

LIST OF TABLES

TABLE NO.

TITLE PAGE

2.1 Summary of Deduplication-based Strategies 31

5.1 Simulation Parameters 56

x

LIST OF FIGURES

FIGURE

NO.

TITLE PAGE

1.1 Duplicated vs De-duplicated Data 2

1.2 Replication Factor 3

1.3 On-Premises Data De-duplication 6

1.4 Cloud Computing Architecture 10

2.1 Data De-duplication 15

2.2 IoT Cloud or Cloud of Things 21

3.1 Working Framework of the Research 40

3.2 Research design and development Plan for HDDS 42

4.1 Working Flow of Proposed Scheme 47

4.2 System Model 49

4.3 Flowchart of HDDS 50

4.4 Algorithm for Aggregating Vital Data 51

4.5 Algorithm for Removing Duplicate Data 52

5.1 Compressed patients data file size 58

5.2 Average Execution Time 59

5.3 Size of Data after Post Execution 60

5.4 Patient Data with Minor Duplicates 61

5.5 Patient Data with Major Duplicates 62

5.6 Execution Time for Processing Patients with Minor Duplicates 63

5.7 Execution Time for Processing Patients with Major Duplicates 64

5.8 Cumulative Execution Time for Processing Number of Blocks 65

5.9 Execution Time for Processing of Blocks per Minute 66

xi

LIST OF ABBREVIATIONS

IoT - Internet of Things

CDC - Content-Defined Chunking

RF - Replication Factor

IaaS - Infrastructure as a Service

PaaS - Platform as a Service

FaaS - Function as a Service

SaaS - Software as a Service

VMs - Virtual Machines

PFP - Per-File Parity

DER - Data Elimination Ratio

JC - Jump-Based Chunking

RAM - Rapid Asymmetric Maximum

HDDS - Healthcare Data De-duplication Scheme

EFDS - Efficient File-Level De-Duplication Scheme

PEP - Per-File Parity

MLW - Message Locked Encryption

BP - Blood Pressure

ECG - Electrocardiogram

SHA - Secure Hash Algorithm

MD - Message Digest

CSP - Cloud Service Provider

EHR - Electronic Health Record

MLE - Multi-Level Encryption

HDS - Healthcare Data Repository

ECP - Elliptic-Curve Cryptography

xii

ACKNOWLEDGMENT

First of all, I wish to express my gratitude and deep appreciation to Almighty Allah,

who made this study possible and successful. This study would not be accomplished unless the

honest espousal that was extended from several sources for which I would like to express my

sincere thankfulness and gratitude. Yet, there were significant contributors for my attained

success, and I cannot forget their input, especially my research supervisor, Associate Prof. Dr.

Ata Ullah who did not leave any stone unturned to guide me during my research journey.

I shall also acknowledge the extended assistance from the administrations of

Department of Computer Science who supported me all through my research experience and

simplified the challenges I faced. For all whom I could not mention I thank all for their

significant contribution.

xiii

DEDICATION

I would like to dedicate this thesis to my beloved family and teachers. They have been a

source of encouragement and inspiration to me throughout my life and actively supported me

in my determination to find and realize my potential, and to make this effort possible.

CHAPTER 1

INTRODUCTION

1.1 Overview

In this chapter, firstly the concept of data duplication and de-duplication is explained.

Afterwards, the motivation behind this research is explained. Subsequently, the architecture and

applications of data duplication are explained. After this, issues during the de-duplication

process are discussed. Then, the background and main problem are explained. Furthermore, the

research questions and objectives are stated. At the end, the thesis organization is stated.

1.2 Data De-duplication

The amount of digital data has increased immensely during the past few years.

According to the statistics generated, the amount of data produced globally was 64.2 zettabytes

in 2020 [1], and over the next 5 years, it is expected to reach more than 180 zettabytes. The

actual data produced in 2020 was significantly higher than originally expected. On account of

the Pandemic condition, more people worked and learned from home which as a result produced

dramatically higher data volumes on the servers. Hence, how to oversee capacity cost-actually

has become perhaps the most difficult and significant undertaking in this big data era.

De-duplication is an ideal method to oversee data duplication. It packs the information

by removing copy duplicates of data. De-duplication decreases the extra room up to 90 to 95

percent [2] data transfer capacity rate and provides better storage management [3]. The

procedure of de-duplication is tracking down various duplicates of similar data, keeping only

one, and eliminating other copy duplicates [4] as shown in Figure 1.1.

2

Figure 1.1: Duplicated and De-duplicated Data

1.3 Motivation

As a result of exponential data growth produced every year, a need to optimize data

storage management techniques along with less de-duplication overhead has become the most

prominent issue of the modern era. Getting along with technologies like the Internet of things

(IoT) and SAAS products, it has become a challenge for cloud service providers to maintain,

secure, and provide retrieval of data with less cost and transfer delays. Hence, in this work, the

aim is to identify and optimize the Content Defined Chunking (CDC) approach to achieve

variable-sized chunking with better DER to assist cloud service providers with better data

management and to help out researchers and data scientists in their future work.

1.3.1 Architecture of Data De-duplication

Data de-duplication strategies are carried out based on the kind of data. The normally

utilized data types are text, image, video, etc. Every data type has an individual and unique

3

storage format and elements. The de-duplication procedure utilizes an alternate procedure for

each kind of data to identify and dispense with copy duplicates [5]. Identifying and contrasting

the data is troublesome assuming that the data is in various forms. Bit-level portrayal is utilized

to play out the de-duplication interaction [6].

The Replication Factor (RF) is the base number of duplicates of similar data [7]. The

Cloud storage system keeps a replication factor for all data. On the off chance that any data is

more prominent than the replication factor, the de-duplication procedures and algorithms take

out that data to decrease the capacity necessity, cost, and data transfer rate. An RF of one means

there is only one copy of a row in a cluster, and there is no way to recover the data if the node

is compromised or goes down. RF=2 means that there are two copies of a row in a cluster. An

RF of at least three is used in most systems. However, most cloud systems do not support the

complete removal of redundancy to have a backup or availability. Figure 1 shows that a client

sends a request for a write operation to node A. As we have a Replication Factor (RF) of 3. It

is replicated to the maximum of 3 of the nodes. However, node A is acting as a coordinator

node, not a replicator node as shown in Figure 1.2.

 Figure 1.2: Replication Factor

4

Client-side and server-side de-duplication are the two approaches that can be used to

remove duplicate data on storage devices. Server-side data de-duplication is a two-venture

process in which copy information is recognized and afterwards, extra room is recovered to

eliminate the copy information. Client-side information de-duplication stores the information

straightforwardly in a de-duplicated format [8]. De-duplication can be implemented at the File

level and Block level. The file level mainly focuses on the storage of a single copy of the file

on the storage. As compared to Block level, generally, the four major steps involved in most

block-level data de-duplication approaches are chunking, fingerprinting, indexing of

fingerprints, and storage management [9].

1.3.1.1 Chunking:

Data de-duplication through chunking involves dividing the data into fixed-size or

variable-size chunks, and identical chunks are stored only once, reducing redundancy [9].

1.3.1.2 Fingerprinting:

Fingerprinting generates unique identifiers (hashes or fingerprints) for data chunks,

enabling quick comparison and identification of duplicate content without storing the actual

data [9].

1.3.1.3 Indexing of Fingerprints and Storage Management:

Indexing involves maintaining a database of fingerprints and their corresponding

locations in the storage. Efficient storage management relies on referencing this index to

identify and eliminate duplicate chunks, optimizing storage space [9].

Most of the current de-duplication strategies are still lacking productivity in view

because of the bad marks of data comparing, hashing, and matching algorithms as well as

security vulnerability issues.

5

1.3.2 Advantages of Data De-duplication

 Removal of redundancy of data is essential as it significantly reduces the cost of storage

space and reduces how much bandwidth is wasted on data transfer to/from data access and

storage locations. Therefore, it saves money. The application areas are referred to below:

i) Cloud-based storage providers

Cloud Storage providers like Amazon S3, Google Cloud Storage, Microsoft Azure,

Alibaba Cloud, and Bitcasa are some specialist organizations embracing data de-duplication

algorithms [10]. The aim is to assist in the improvement of such algorithms to achieve better

storage management and cost-effective services.

ii) On-premises storage

The goal is to provide solutions to organizations who instead of using cloud services

mostly rely on their on-premises storage mediums as shown in Figure 1.3. On the other hand,

the aim is to also assist organizations who believe in performing de-duplication on data before

storing it on the cloud to avoid bearing high costs in advance and storing it without duplicate

copies [11].

iii) Save Storage Space

The one of the advantage of data de-duplication is keeping storage space safe. By

finding and removing duplicate patterns of similar data, additional data files can be stored

in a similar storage place, overcoming the requisite for extra storage capacity [12].

6

Figure 1.3: On-Premises Data De-duplication

iv) Reduction in storage Cost

Low storage needs assistance in saving cost, and needs low budget for maintenance

purposes. As data remains high in volume it takes up a lot of space for storage. Besides this,

data remains consistent and can be easily retrieved [13].

7

v) Better Backup and Recovery

 In backup and data retrieval operations, it remains easy to process de-duplicated data as

compared to duplicated one. So when duplicated files are reduced, maintaining backup remains

easy and economical [14].

vi) Efficient use of Bandwidth

 In case, the data is transferred to the cloud, de-duplication reduces the data volume which

is required to be sent through the network. This results in decreased bandwidth utilization and

lower network-associated costs [14].

vii) Faster Data Transfer

 When identical files are removed, the process of transferring data becomes easier since

only a unique data packet is sent or stored. Small data packets take less time to back up and

enhance system performance [15].

viii) Increase Scalability

 With de-duplication, high data is handled in storage space effectively as it keeps data

growth efficiently without relative enhancement in hardware and operational costs [16].

ix) Lower Communication Cost

 When sensor devices in a system generate replicated data, before transmitting in its

original form, it is reduced which reduces communication cost and it makes de-duplication

highly effective in IoT based environment [17].

8

x) Data Transfer Rate

 De-duplication allows the transmission of data between various storage systems or

clouds because one copy of data needs to be sent. Unique data blocks need to be transferred. It

also assists in utilizing lower energy because fog servers transmit unique data to cloud

repositories [17].

1.3.3 Constraints in the Data De-duplication Process

 The data de-duplication process, while instrumental in reducing redundancy and

optimizing storage efficiency, is not without its challenges and constraints. As organizations

grapple with ever-expanding volumes of data, understanding and navigating the limitations of

de-duplication mechanisms becomes crucial. This paper delves into the intricacies of the

constraints inherent in the data de-duplication process, shedding light on factors that impact its

effectiveness. From issues related to scalability and processing overhead to considerations of

data security and the trade-offs between de-duplication techniques, a comprehensive

exploration of these constraints is paramount for devising robust data management strategies.

By identifying and addressing these challenges, organizations can enhance the efficacy of their

de-duplication efforts and optimize resource utilization in the face of burgeoning data volumes.

Data de-duplication has various advantages but some constraints still exist during this

mechanism which is addressed below:

i) Performance issue

De-duplication can lead to higher computational overhead, particularly in real-time

environments. The mechanism of checking data chunks to recognize repetitive data packets can

slow down data processing and recovery tasks [18].

9

ii) Processing Capacity

 The deduplication-based algorithms are exhaustive consume more resources, and need

substantial processing energy to check, compare, and perform duplication removal from the

dataset. So the need for powerful hardware cannot be ignored [19].

iii) Scalability issues

 As data size increases, the procedure of de-duplication becomes further challenging. The

Scalability issues exist and it needed to make use of some dispersed de-duplication clarifications

or some sort of dedicated storage systems [20].

iv) Maintenance of De-duplication Key

 Maintaining and managing keys for duplication-free data is vital for data access and

from a security perspective. So it needs to be checked from time to time for its efficient

management [21].

v) Files Fragmentation

 The de-duplication procedure classifies data into a small number of chunks or blocks,

which might increase the complexity of the data retrieval process, predominantly if any slice of

the data is missing or corrupted [22].

10

1.4) Cloud Computing Architecture

Cloud computing is an innovative technology framework that permits users to use

computing resources over the internet from anywhere [23]. The cloud computing architecture

comprises of following entities as shown in Figure 1.4.

1.4.1) Front end Side

The front end is also known as the client side end which usually interacts with users or

clients. The front end contains all applications that a user needs to access the cloud [14].

Figure 1.4: Cloud Computing Architecture

11

1.4.2) Back-end Side

 The back-end side is well known as the server side. This Component of architecture

can perform various functions including data storage retrieval, authentication, and verification

operations.

1.4.3) Infrastructure

 This component represents servers, storage devices, VMs, networks, and hardware

components that are essential for providing cloud services.

1.5 Problem background

A hash chunk (fingerprint) is essential for the hashing, lookup, and matching stages in

data de-duplication. The number of chunks in a de-duplication framework is typically very large

to keep a hash table-based index structure in memory. Hence, either the size of the index table

needs to be optimized or it needs to be stored on secondary storage, which affects the system

efficiency, as the load factor of a reliable hashing index table normally needs to be very less to

keep the lookup time limited. The problem arises when the chunk sizes go so large that they

continue to have redundant data. On the other hand, if too small chunks are produced which

eventually are converted to fingerprints (hashes) each chunk will have its hash value to be put

into the lookup table. A challenge to have an optimized size of chunks along with minimum

redundancy requires a spot on. The problem with smaller hashes is that they have a higher

probability of collision. In other words, as the hash size decreases, the likelihood of two

different pieces of data producing the same hash value increases. This can lead to data integrity

issues, where different pieces of information are mistakenly identified as identical due to their

hash collisions.

12

1.5.1 Negative Impact of the Problem

 The main issues highlighted throughout the research study are described below. The

problem arises can increase the load, have high storage cost, and lagged de-duplication process.

These issues have bad impact and decrease the efficiency of the implemented approach.

 i) High Storage Cost

 When identical data chunks takes place in the server resultantly redundant data stores

and take extra space. The numerous copies of the same data, each have its hash value, leads to

higher storage requirements. The higher computational load and resource consumption related

to byte pair comparison can also increase computational costs.

ii) Increased load

The process of using byte pair comparison in the whole byte stream proved to be

computationally exhaustive. This shows that the system needs to do extra operations to check

suitable cut points in the data. This mechanism has a higher computational load and overall

slows down the de-duplication procedure. It significantly affects the overall efficiency of the

system. The extra operations needed for byte pair comparison can lead to over-resource

consumption, comprising CPU and memory consumption. Resultantly it has higher resource

usage and could impact the system’s ability to tackle other tasks. The higher load produced by

byte pair comparability leads to a slower de-duplication process. In cases where data de-

duplication needs to be done fast, including in real-time or in resource-constrained

environments, a slower de-duplication mechanism causes significant drawbacks. The extra

operations needed for byte pair comparison can lead to over-resource consumption, comprising

CPU and memory consumption. Resultantly it has higher resource usage and could impact the

system’s ability to tackle other tasks [24].

13

v) Slow De-duplication Process

 The higher overhead produced by byte pair comparability leads to a slower de-duplication

process. In cases where data de-duplication needs to be done fast, a slower de-duplication

mechanism causes significant drawbacks [25].

1.6 Problem Statement

In terms of IoT Data scenario, the data collected through sensor nodes continuously send

large amount of data to the cloud server resulting in saving too much of redundant data. This

redundancy leads to significant waste of storage space and increase communication costs.

Existing approach [26] handles data redundancy using link list however the processing cost

increases as soon as the link list start to grow.

1.7 Research Questions

This study focuses on the following research questions.

RQ1. What is the effect of replacing values into bits using larger group of health care data

upon its size?

RQ2. How to reduce data transfer cost by creating data chunks of multiple nodes?

1.8 Aim of Research

Data de-duplication has been the most widely area to be worked on. Recently, due to an

enormous amount of data, the performance of the data de-duplication process has been affected.

14

This research aims to highlight and overcome memory consumption while maintaining

maximum throughput.

1.9 Research objectives

 The given below objectives are stated to design and develop the process of data de-

duplication.

 To minimize data size and data transfer cost.

 To manage and transfer data of multiple nodes collectively, in order to minimize time

consumption.

1.10 Scope of Research

The idea behind this is to consider the identification of cut points in data. Also

considering the size of the data stream that needs to be reduced while maintaining maximum

throughput. The duplication in data is reduced to optimize storage, reducing communication

cost and focusing on storing only crucial data of patients which subsequently improve

healthcare services.

1.11 Thesis organization

The remaining thesis is organized as follows: Chapter 2 outlines current techniques

based on Data De-duplication, their comparison, and major issues in this area. Chapter 3

illustrates the proposed techniques methodology. Chapter 4 illustrates details about the

proposed scheme along with an explanation, Chapter 5 is about results and discussion of the

proposed scheme, and in Chapter 6 conclusion and future work are added. In the end, references

are given.

CHAPTER 2

LITERATURE REVIEW

2.1 Overview

In this section, at the start, data duplication and de-duplication mechanism is described.

Then, the concepts of cloud computing and the Internet of Things are described. Furthermore,

existing literature on Data de-duplication in IoT-assisted Cloud Computing is discussed. A table

is also presented that provides a comparison between schemes to enhance understanding.

Finally, the whole chapter is summarized.

2.2 Data De-duplication

Data de-duplication is a technique used in data management and storage to eliminate

redundant copies of data. This process reduces the overall volume of data so that it can be stored

more efficiently, saving storage space and reducing costs. De-duplication works by scanning a

set of data and identifying duplicate chunks of data. After the duplicates are found, they are

removed, and a single copy is kept, often with a pointer to that data for any other instances

where that data is used [27].

The best way to manage data duplication is using de-duplication. By eliminating copies

of data, the de-duplicated information is stored [28]. De-duplication involves finding several

copies of the same data, maintaining only one, and getting rid of the others as shown in Figure

2.1. De-duplication improves storage management, reduces unnecessary space by 90 to 95

percent, and increases the data transfer capacity rate [29].

15

Figure 2.1: Data De-duplication

The exact mechanism for data de-duplication can vary. Some systems use file-level de-

duplication, which compares entire files and removes duplicates. Others use block-level de-

duplication, where files are broken down into blocks, and identical blocks are removed. Some

systems even use a sub-block level or byte-level de-duplication, breaking data into even smaller

pieces.

Data de-duplication is particularly useful in backup and archiving processes, where the

same files or blocks may be stored multiple times. By keeping only one instance of each file or

block, storage requirements can be greatly reduced. The data de-duplication requires processing

power to analyze data and identify duplicates, and it can be computationally intensive

depending on the amount and type of data. Therefore, the benefits in terms of storage space

must be balanced to overcome the computational overhead of the de-duplication process.

16

2.2.1 Techniques of Data De-duplication

One of the techniques includes Content-defined chunking (CDC) which is an algorithm

used for data de-duplication. The process divides data into chunks in a way that is dependent

on the data content itself, rather than on arbitrary, fixed-size blocks.

This method helps to ensure that changes to data do not significantly affect the division

of chunks. Consider, for instance, if small piece of data was added at the beginning of a large

file. If fixed-size block de-duplication were used, this would shift all the blocks, and all of the

subsequent blocks would be considered new, even though most of the data is identical. In

contrast, with content-defined chunking, the boundaries between chunks are determined by the

data itself, so a small change would only affect a few chunks near the change [30].

The chunks in CDC are usually determined by identifying 'breakpoints' in the data. A

common method involves applying a Rabin fingerprint (a type of rolling hash function) to a

sliding window of bytes and choosing breakpoints where the fingerprint meets certain criteria.

The advantage of this method is that it is fast and doesn't require knowledge of the data structure.

The result is a set of variable-length chunks that are well-suited to data de-duplication, since

small changes to the data will only change a few chunks, rather than the entire file or block of

data [31]. The CDC can be more efficient for de-duplication purposes, it can also be more

computationally intensive to determine the chunk boundaries, compared to fixed-size block de-

duplication

2.3 Cloud Computing

Cloud computing is the on-demand delivery of IT resources over the Internet. Instead

of buying, owning, and maintaining physical data center and servers, businesses can access

technology services, such as computing power, storage, and databases, from a cloud provider

[32]. There are several types of cloud computing which are described below.

17

2.3.1 Infrastructure as a Service (IaaS)

This is the most basic category of cloud computing services, which allows to rent IT

infrastructure servers, virtual machines (VMs), storage, networks, and operating systems from

a cloud provider on a pay-as-you-go basis [33].

2.3.2. Platform as a Service (PaaS)

Platform as a service refers to cloud computing services that supply an on-demand

environment for developing, testing, delivering, and managing software applications. PaaS is

designed to make it easier for developers to quickly create web or mobile apps, without

worrying about setting up or managing the underlying infrastructure of servers, storage,

network, and databases needed for development [34].

2.3.3. Software as a Service (SaaS)

In SaaS, the service provider delivers software and applications through the internet.

These are usually provided on a subscription basis and are centrally hosted. Examples include

email and collaboration software, customer relationship management (CRM) software, and

virtual meeting software [35].

2.3.4. Function as a Service (FaaS)

FaaS, or server-less computing, allows developers to execute portions of application

code (functions) in response to events. It's called server less as the business that owns the system

does not have to purchase, rent, or provision servers or virtual machines for the back-end code

to run on [36].

18

2.4. Deployment Models

 The deployment model refers to the potential ways that the services of Cloud computing

are executed and utilized. It also informs about the access level and management mechanism of

data. Based on its features and provided functionality, three different deployment models are

described below in detail.

2.4.1 Public Cloud

The public cloud deployment method is described as the services are owned and

operated by third-party cloud service providers. The third-party provides resources such as

computing resources and storing data online on a cloud repository. These services are shared

among different organizations and customers. This model is cost-efficient and economical.

However, this deployment model is not considered highly strong and may have some security

breaches. So intruders might get data after some malicious attacks [37].

2.4.2. Private Cloud

A private cloud refers to cloud computing resources used exclusively by a single

business or organization. A private cloud can be physically located at the company’s on-site

data center, or it can be hosted by a third-party service provider. It is considered highly secured

and data is maintained in it easily [38].

2.4.3 Hybrid Cloud

Hybrid clouds are a combination of public and private clouds, bound together by

technology that allows data and applications to be shared between them. By allowing data and

applications to move between private and public clouds, a hybrid cloud gives businesses greater

19

flexibility, and more deployment options, and helps optimize existing infrastructure, security,

and compliance [39].

Benefits of cloud computing include cost-efficiency (no need to invest heavily in

owning and maintaining servers), speed (most cloud computing services are provided self-

service and on-demand), scalability (services can be scaled up or down to fit needs),

productivity (removes the need for many IT management chores), performance (benefit from

massive economies of scale), and reliability (data can be mirrored at multiple redundant sites

on the cloud provider’s network) [40].

2.5 Internet of Things

The Internet of Things (IoT) is a system of interrelated physical devices, vehicles,

buildings, and other items embedded with sensors, software, network connectivity, and

necessary electronics that enable these objects to collect, exchange, and act on data [41]. The

"things" in IoT often refer to devices that wouldn't ordinarily have internet connectivity

capability, thereby allowing them to generate and exchange data with a network or other

devices. These connected devices collect useful data with the help of various existing

technologies and then autonomously flow the data between other devices. Current market

examples include home automation also known as smart home devices such as the control and

automation of lighting, heating, ventilation, and air conditioning systems, and appliances such

as washers/dryers, robotic vacuums, air purifiers, ovens, or refrigerators/freezers that use Wi-

Fi for remote monitoring [42]. The internet of things is also a key component of home security

systems, wearable technology devices, connected cars, industrial applications, and more. It's

increasingly being used in environments like urban planning and management, healthcare, and

agriculture.

The concept of IoT promises to revolutionize our lives and the way we interact with our

environment by automating routine tasks, optimizing resource usage, and providing new

insights and services. However, it also presents challenges in terms of privacy, security,

interoperability, power efficiency, and data management [43].

20

2.6. IoT-assisted Cloud Computing

Internet of Things (IoT) assisted cloud computing refers to the integration of IoT devices

with cloud computing infrastructure. This convergence enables data from IoT devices to be

easily stored, processed, and accessed in the cloud, and it allows for powerful computation,

analytics, and machine learning tasks to be performed on this data. Here's a more detailed

explanation of each component [44].

2.6.1. Internet of Things (IoT)

This term refers to the network of physical objects ("things") that are embedded with

sensors, software, and other technologies to connect and exchange data with other devices and

systems over the internet. These devices can range from everyday household items like smart

fridges and thermostats to industrial IoT devices like sensors monitoring temperature, pressure,

or humidity in an industrial site [45].

2.6.2. Cloud Computing

 This is the delivery of different services through the Internet, including data storage, servers,

databases, networking, and software. Rather than keeping files on a proprietary hard drive or

local storage device, cloud-based storage makes it possible to save them to a remote database

[46]. When these two concepts are combined, it's often referred to as "IoT-assisted cloud

computing" or "Cloud-based IoT". In this model, data generated by IoT devices is transmitted

to the cloud, where it can be processed and analyzed. This allows for real-time processing and

analytics, which can lead to more effective decision-making [47]. For example, an IoT-assisted

cloud computing application could involve a network of sensors in a manufacturing plant that

sends data about machine operation to the cloud. Therefore, the data can be analyzed to predict

when a machine is likely to fail, allowing for proactive maintenance [48].

21

 The combination of IoT and cloud computing also allows for easier scalability, as new

IoT devices can be added to the network without needing significant upgrades to storage or

processing infrastructure since the cloud can easily scale to accommodate the extra data [49].

The IoT-Cloud or Cloud of Things is presented in Figure 2.2.

Figure 2.2: IoT Cloud or Cloud of Things

2.7 Data De-duplication in IoT-assisted Cloud Computing

 Data de-duplication is a process that eliminates redundant copies of data and reduces

storage overhead. In the context of IoT-assisted cloud computing, data de-duplication plays a

crucial role due to the enormous amount of data generated by IoT devices [50]. IoT devices,

such as sensors, smart appliances, wearables, etc., continuously generate data that gets sent to

the cloud for processing and storage. Given the sheer volume of IoT devices and the frequency

22

at which they generate data, there can often be a lot of redundancy. This redundancy could be

due to multiple devices recording similar information, or a single device recording the same

data point over time when no change has occurred [51]. Data de-duplication in this context

would involve analyzing the incoming data from these devices and removing any duplicates

before storing it in the cloud. This process can significantly reduce the amount of data that needs

to be stored, leading to cost savings in storage expenses, improved efficiency in data

transmission and processing, and quicker data retrieval times. It can also enhance the

performance of data analytics by reducing the volume of data that needs to be processed [52].

There are different methods of data de-duplication, such as file-level de-duplication

(where entire duplicate files are removed), block-level de-duplication (where duplicate blocks

of data within a file are removed), and byte-level de-duplication (where duplicate bytes of data

are removed). The choice of method can depend on various factors such as the nature of the

data, the specific requirements of the system, and the resources available [53]. However, data

de-duplication has many benefits, but it also has certain challenges and considerations, such as

ensuring data integrity, managing the de-duplication process efficiently, and maintaining the

security and privacy of the data [54].

2.8 Existing Studies in Data De-duplication in IoT-assisted Cloud

Computing

 In recent years, the proliferation of digital data has been immense. Global data

production surged to 64.2 zeta-bytes in 2020 and is forecasted to surpass 180 zeta-bytes in the

next half-decade. The COVID-19 pandemic, which spurred widespread remote work and

learning, greatly contributed to this data explosion, outpacing previous estimates. As a result,

effective management of storage costs has become a significant challenge in the era of big data

[55]. In response to this data boom, there's been a surge in the exploration of data de-duplication

frameworks. Given the vast data volumes, perfecting processes like chunking, fingerprint

generation, and fingerprint lookup has become critical. These steps often pose a bottleneck to

the adaptability and throughput of de-duplication frameworks. Previous research has provided

numerous insights and improvements into these processes [56].

23

Chunking is a particularly critical step that impacts the hash table size directly. Chunks

can be either fixed or variable in size. Research suggests that variable-sized chunks can uncover

more duplicates and address the boundary shift issue, thereby enhancing de-duplication

efficiency. However, data De-Duplication concerning Cloud of Things is still infancy. So, this

chapter specifically defines the existing literature relevant to data de-duplication in the context

of IoT-Cloud [57]. On the basis of data de-duplication, the de-duplication mechanism is

categorized into two levels: i) File Level Data De-duplication ii) Block Level Data De-

duplication

The author in [58] introduced a new parallel chunking method using the PCI algorithm.

This algorithm does not include hash functions but works well with hardware implementation.

The proposed system not only achieves high computational speed but great scalability as well.

2.8.1 File Level Data De-duplication

In this category, data de-duplication is performed at file level. A file is matched with

other files and identifies similar data between them. Then, redundant copies of data are deleted.

The schemes of this category are presented comprehensively as following.

 This paper [59] presents a new method for content-defined chunking (CDC) called Rapid

Asymmetric Maximum (RAM), designed to increase the efficiency of data de-duplication

systems. The proposed RAM algorithm eschews the use of hashes, which are often

computationally expensive and instead utilizes the byte values to determine the cut points of

chunks. The algorithm employs a fixed-size window and a variable-sized window to locate a

maximum-valued byte, which is then designated as the cut point.

 In SD-IoV, the sensor nodes continuously transmit redundant data to the cloud server

which increases duplication communication, and storage overhead. To overcome this issue, the

proposed scheme EFDS uses a hash table for the identification of similar data. The data files

are transmitted to the cloud through the SDN controller. The SDN controller converts files into

small blocks. For each sub-block, the Rabin fingerprint is calculated and checks a hash table

that already comprises the same fingerprint or not to determine identical data. If no fingerprint

24

exists, it shows that the data is not identical and is saved in the available index. In the second

case, the data file is included in the linked list created for duplicate blocks at the corresponding

index of the hash table. This index determines the fingerprint of duplicated data. The EFDS

ensures efficient resource utilization but the drawback of this is that the problem is that with

time when the number of duplicates increases, it also increases the size of the duplicate

reference list. ultimately time needed for maintaining a link list and lookup also increases [26].

This maximum-valued byte is included in the chunk and situated at the boundary of the

chunk. This unique configuration reduces the number of comparisons necessary, thus improving

computational efficiency while maintaining the desirable properties of CDC. When compared

with existing hash-based and hashes de-duplication systems, RAM demonstrates higher

throughput and saves more bytes per second, marking it as a promising method for improving

the efficiency of data de-duplication. This article proposes FastCDC, a new and efficient

approach to Content-Defined Chunking (CDC), aimed at improving performance in data de-

duplication systems. Traditional CDC methods tend to cause high CPU overhead as they

compute and judge rolling hashes of the data stream byte-byte. FastCDC addresses this

inefficiency through the combined application of five key techniques: gear-based fast rolling

hash, simplifying and enhancing Gear hash judgement, skipping sub-minimum chunk cut-

points, normalizing the chunk-size distribution within a specified region, and rolling two bytes

at a time to increase CDC speed. These techniques result in FastCDC being between 3 to 12

times faster than existing CDC methods while achieving a similar, if not higher, de-duplication

ratio as the classic Rabin-based CDC. Furthermore, when implemented in Destor, an open-

source de-duplication project, FastCDC increases the de-duplication throughput by 1.2 to 3

times compared to Destor based on state-of-the-art clunkers. Overall, the proposed FastCDC

method represents a significant advancement in the efficiency and speed of data de-duplication

systems [60].

To overcome storage cost by employing a data de-duplication mechanism in IoT-assisted

cloud and to increase security, Rasina et al. has presented a scheme that employs a Residue

Number System (RNS) for a key generation mechanism. The secret key is divided into reduced,

independent portions that can work simultaneously. It splits a secret key into smaller,

independent parts that can be processed concurrently, so it becomes difficult for adversaries to

detect the entire key. The produced keys use Elliptic Curve Cryptography for encryption and

decryption mechanism, an extremely effective public-key encryption mechanism that provides

25

high security with reduced keys, overall lowering computational overhead. For de-duplication,

the technique includes a de-duplication process by combining the idea of RNS with Cosine

based Similarity checking. This mechanism proficiently detects identical data, decreasing

storage space and improving resource utilization in the cloud. For data integrity, a hash key

verification mechanism is introduced. In case data is uploaded to the cloud, a hash value is

generated. While downloading, a hash is checked to authenticate data. If the hash remained the

same it depicts that no tamper attack is done on it. Upon downloading data from the cloud, the

hash value is checked to verify the data's integrity. If the hash values remain the same, the data

is considered authentic and has not been tampered [61].

In the same context of resolving duplication issues in a cloud environment while

maintaining security and data privacy. Darong et al. make use of convergent encryption that

assists in generating encrypted keys based on data. This technique helps in the detection of

identical data and reduces storage costs by eliminating it. This approach facilitates the

identification of duplicate data by utilizing a common label, which simplifies the detection

process and significantly reduces storage overhead. In essence, it ensures that redundant copies

of the same data are eliminated, optimizing storage resources in cloud environments. Besides

this, the bloom filter is used for verification of users trying to access data, and only authorized

can access it. The advantage of the scheme is that de-duplicated data is only presentable to legal

users. The limitation of the scheme is that while performing cryptographic operations, delays

can occur particularly when dealing with large volumes of data [62].

Ahmed Sardar M. Saeed et al. put forward a novel proposition aimed at enhancing certain

parameters in Content Defined Chunking (CDC). CDC is a method in which dynamic or

variable-sized segmentation is performed, pivoting on the internal characteristics of the data

content. Their innovation was directed towards elevating the Data Elimination Ratio (DER) in

de-duplication processes. In this method, chunk boundaries are discerned based on the

recurrence rate of each byte pair. This ensures that alterations in one chunk do not ripple out to

impact other chunks, confining the effect within the initial chunk. During the procedure of

determining byte pair frequency, an analysis is carried out at the character or byte level. Along

with this, the discussed research also provided a comparative analysis of their results with other

CDC-based algorithms, such as the BSW and TTTD algorithms, illustrating the effectiveness

of their approach. The impact of hash algorithms on storage size was assessed by calculating

the Hashing index table size, given by the formula: Number of Bytes per Fingerprint × Total

26

Number of Chunks after de-duplication. The limitation of this approach lies in the fixed

production of five hashes per chunk, which could be excessive for particularly small chunks,

potentially leading to inefficiencies [63].

Subsequently, Ahmed Sardar M. Saeed et al. proposed another solution aimed at

reducing the size of the index table. This time, rather than concentrating on chunking, they

introduced a mathematically bounded linear hash function to create hashes of chunks. The

proposed approach resulted in a significant improvement, accelerating hashing times by more

than double compared to MD5 and SHA-1, and reducing the hash table size by 50%. This

strategy employs a hierarchical hash-matching procedure. Each chunk generates five hash

values with fewer bits (i.e., 16 bits) compared to the larger SHA-1 (160 bits) and MD5 (128

bits). This involves a multilevel lookup process where an incoming chunk is first compared

based on size. If the chunks are of identical size, then the first hash is compared, followed by

the second, and so on. If all five hashes align, the match is considered successful, obviating the

need for byte-to-byte comparison [64].

This paper [65] introduces a novel jump-based chunking (JC) approach for data de-

duplication systems aimed at improving throughput and reducing CPU overhead. Traditional

content-defined chunking (CDC) methods, which calculate rolling hashes of the input data

stream byte, can be computationally expensive and significantly degrade system throughput.

The proposed JC approach challenges the necessity of this byte-by-byte calculation. The

innovative feature of JC is the introduction of a jump condition, which allows the sliding

window to skip over specific lengths of the input data stream if the rolling hashes satisfy this

condition. This paper also examines the impact of the cut condition and the jump condition on

chunk size. Theoretical studies and experimental results demonstrate that JC not only enhances

efficiency and reduces CPU overhead, but also maintains the high de-duplication ratio crucial

for effective data de-duplication. The results show JC improves throughput by approximately

two times on average compared with traditional CDC methods.

The paper presents SE-PoW, a novel system for data de-duplication in IoT networks.

This system enhances security through a dual-level Proof-of-Ownership algorithm and dual

encryption techniques. It improves system efficiency, reducing upload time overhead by up to

61.9% compared to existing methods [66].

27

The author in [67] introduces a new multi-user up-datable encryption scheme for secure

de-duplication that allows efficient user revocation. By allowing the data owner to update the

remote cipher-text with an update token, this method reduces communication and computation

costs, while maintaining high security and efficiency.

The researcher [68] discussed InDe, an in-line de-duplication system, which uses the F-

greedy and F-greedy+ rewrite algorithms to reduce data fragmentation and improve restore

speeds. For determining average rewriting data chunks, the Equation 2.1 is used. Nrw represents

previous the total number of data chunk in previous history of backup. By dynamically adjusting

the number of old container references, InDe improves restore speeds by 1.3x - 2.4x while

maintaining similar backup performance.

𝐻𝑟𝑤 =
𝑁𝑟𝑤

𝑡𝑜𝑡𝑎𝑙 𝑠𝑒𝑔𝑒𝑚𝑛𝑡𝑠
 (2.1)

The paper [69] introduces the Per-File Parity (PFP) scheme to improve the reliability of

deduplication-based storage systems by providing parity redundancy protection for each file.

PFP outperforms existing solutions in system reliability, with a minor 5.7% performance

degradation. The primary objective of their study was to devise methods for reducing the

number of hash chunks stored in memory, while also enhancing the efficiency of the hash table

lookup process. They also focused on accommodating variable-sized chunks, which can impact

the size of the hash table.

In [70], the proposed SDD-RT-BF scheme aims to provide data security and an effective

de-duplication mechanism in a distributed environment. The proposed scheme model comprises

three important phases including authorized de-duplication, ownership proof, and updating key.

When the developer of the file uploads the data file to CSP, a unique token is created for the

file which is used for verification purposes. The file is divided into smaller blocks and

encrypted by using a protection key and transmitting an authentication request to a Master

Controller (MC). MC, which manages a Radix Trie (RT), creates a role key and sends it to U1

for re-encryption of data. The second phase involves proof of ownership as it deals with the

security of data. A user provides its token and identifier to CSP, which confirms its validity. If

the user is legal, CSP picks block indexes and directs them to the user. The third and last is the

role key update that deals with the dynamic updating of user rights. The proposed scheme has

28

a lower computational time and higher de-duplication ratio.

The proposed scheme QuickCDC skip similar data packet that considerably increases

chunking speed. By checking and avoiding identified duplicate packets, QuickCDC eliminates

the time needed for exhaustive handling, making it for datasets with low duplication. It

integrates regulating mask bits dynamically to increase chunking precision and ratio of data de-

duplication. These mask bits assist in improving chunk borders that are correctly associated

with the data, avoiding issues that overcome de-duplication precision. By dynamically adjusting

mask bits, the error jumps are minimized. Error jumps refer to the incorrect chunking

boundaries of data packets. The advantage of the scheme is that the de-duplication mechanism

is fast and error jumps are low. The dynamic adjustment of mask bits requires extra memory

[71].

The scheme ensures data security in a distributed environment by using cryptographic

hashes and detecting duplicate data in the data stream. Convergent encryption (CE) is utilized

to detect identical data whenever data is uploaded. A tag T is produced based on data. Whenever

the same data is again observed in the data stream, the tag for that data will be the same showing

duplication. This duplicated data is not again transmitted to ensure a de-duplication. To

maintain privacy, CEK mechanism is introduced which ensures that only legal users can decrypt

and have access to the data. The encrypted key is updated so no intruder can access this data

[72].

The scheme is a three-tier data infrastructure to store de-duplicated data in a cloud

repository. The proposed technique uses four main entities which are KGC, CS, DO, and DU.

KGC provides key pairs to authenticated users for security purposes. Cloud server is responsible

for storage and retrieval of data. Data owners can upload data anytime and authorized users can

access it. The data stream is split into chunks by utilizing the cuckoo algorithm. When an owner

intends to store a data file, firstly it is checked for duplication in the server. For this purpose,

Merkle Hash tree is utilized in which hash values are computed for data blocks. if the same data

exists there, the system indicates it by placing a pointer, else it is saved in encrypted format.

The scheme considers dividing data chunks in an optimum as per the context of data [73].

To overcome data duplication in medical records at a large scale, this approach uses a

29

rewriting scheme based on similarity. When data is stored, the upcoming data is matched with

the previous one, and chunks that are different from the previously stored data are stored while

similar data chunks are removed. The fragments created during de-duplication are reduced. To

provide security from unauthorized access, blockchain technology is employed. The content of

the file is determined by using a combination of fingerprint and offset. These contents are stored

in the blockchain FISCO BCOS system. By storing data readings on the blockchain platform,

data integrity is assured. Any malicious or tampering attack is identified by auditing. To

increase the speed of the de-duplication mechanism, the concept of parallelization is introduced.

The concepts of multi-core and multi-processor are utilized to process data for de-duplication.

Overall, ESDedup has a better and faster mechanism for de-duplication but complexity

increases as the environment diversity increases and it is costly to deploy [74].

In the healthcare sector, to overcome duplicate ratios in stored data, Xiao et al. [75]

presented a scheme in which semantic awareness analysis is performed to eliminate

redundancy. The data features are analyzed and checked for similar data within the same file

contents and in different files. To find the similarity between two chunks, Equation 2.2 is used.

𝐻1(𝐶𝑖,
𝑘, 𝐶𝑗,

𝑞) = {
ℎ1𝐶𝑖

𝑘 ∩, 𝐶𝑗,
𝑞 > ℎ

1, 𝐶𝑖
𝑘 = 𝐶𝑗

𝑞
 (2.2)

𝐶𝑖
𝑘 Shows the first data chunk and 𝐶𝑖

𝑘 represents the second data chunk. 𝐶𝑖
𝑘 ∩, 𝐶𝑗,

𝑞

represents an intersection between two blocks for similar data content. The data having a high

volume of redundant data is compressed by using the LZ compression approach. For low-ratio

duplicate values, the Merkle tree mechanism is used. For security and maintaining patient data

privacy, an auditing framework is employed. The scheme has low storage costs but takes a long

time to process huge volumes of data.

2.8.2 Block-Level Data De-duplication

Block-level schemes use the mechanism to compare data within the blocks, sub-blocks,

30

and other stored blocks for the identification of duplicated values. This category is considered

more effective than file-level data duplication.

To overcome duplication, data is transmitted to the cloud repository. In this scheme,

data owners create and upload data to the cloud repository. The cloud service provider (CSP)

creates hash codes along with an index table by using a scalable index table technique. It lowers

false positive rates by recognizing identical data chunks. When data rises in volume, the index

table increases its size to handle more data, keeping a minimum false-positive ratio because of

its huge size. Furthermore, the TL-CH technique adopts a procedure of dividing the byte stream

to create exclusive signatures, reducing the time to match and overcoming data collision issues

commonly raised in traditional hash functions including MD5 and SHA-1. Additionally, to

enhance data security, an improved map chaotic data encryption algorithm is used for

encrypting healthcare data. This encryption mechanism comprises chaotic systems and dynamic

sequences to considerably enhance the key space and avoid adversary attacks [76].

In the technique HealthDep, de-duplication is assured and health records are securely

maintained. To optimize data management, the data is divided into two categories which are

sensitive medical data and less sensitive medical data. The highly sensitive data is encrypted by

employing conventional encryption methods. In the case of less sensitive health data, Multi-

Level Encryption is used. This data is then transmitted to the database for storage, where data

is verified and checked for duplicated instances. After detecting duplicating chunks, unique data

records are stored which reduces data volume and enhances storage efficiency. But to

implement this approach, extra resources are required which makes the technique costly to

deploy [77].

The scheme intends to maintain data integrity and privacy while overcoming the de-

duplication ratio in data. For de-duplication purposes, the client lightweight component C is

used which communicates with a cloud service provider and index service. Three cases are

considered in this scheme which includes popular, and unpopular data upload and popularity-

based transition. For all cases, data popularity is checked, and based on outcomes, action is

performed. For popular data blocks, associated IDs are stored in a hash table. From a security

perspective, data with low privacy is protected using CE encryption and for high privacy data,

SE is used. The scheme has achieved a high de-duplication ratio but if the entity like index

31

service (IS) is compromised, then user’s data can be damaged [78].

2.9 Comparison of Data de-duplication in IoT-assisted Cloud Computing-

based Strategies

In this section, the comparison of existing techniques is presented with their

contribution, advantages, and limitations. A summary of current research on data de-duplication

with file and block level de-duplication is presented in Table 2.1.

Table 2.1: Summary of Deduplication-based Strategies

Scheme Basic idea Mechanism Advantages Limitations

File Level Data De-duplication

RAM [59]

Uses Content-

Defined

Chunking

Technique

This paper

proposes a high-

throughput hash

less chunking

method called

Rapid Asymmetric

Maximum (RAM)

The proposed

algorithm has higher

throughput and bytes

saved per second

compared to other

chunking algorithms.

Although the

proposed

algorithm

shows

promising

results, it may

not perform

equally well on

all types of

datasets or

environments.

FastCDC

[60]

Use of five key

techniques,

namely, gear-

based fast rolling

hash, simplifying

and enhancing

the Gear hash

judgement,

skipping sub-

minimum chunk

cut-points,

normalizing the

chunk-size

distribution

This study

proposes, a Fast

and efficient

Content-Defined

Chunking

approach, for data

de-duplication-

based storage

systems.

FastCDC is 3-12X

faster than the state-

of-the-art CDC

approaches, while

achieving nearly the

same and even higher

de-duplication ratio

as the classic Rabin-

based CDC.

These results

may not

necessarily hold

in all settings.

32

Improvised-

ECC-IRNS

[61]

Improve Data

Storage In a

Cloud-Based IoT

Environment by

Resolving

Duplication.

The RNS method is

utilized for key

generation, cosine

method is used for

similarity in the

data.

Increases security,

overcome data

storage requirement,

and reduces data

duplication ratio.

The Cosine

mechanism for

checking

duplication is

not reliable in

case of a

complex

environment.

Bloom Filter

based de-

duplication

scheme [62]

Reduce identical

data while

maintaining

privacy.

To resolve identical

data, the Bloom

filter is used. By

employing a

cryptographic

signature and

validation

mechanism, access

to data is granted

only to legal users.

Fast data retrieval.

Provides higher

security to data.

Reduced storage

cost.

Not appropriate

to use in a

resource-

constrained

environment.

Complexity

increases as

data grows.

BFBC [63] Chunking based

on the frequency

of a pair of bytes

This research

presents a novel

bytes frequency-

based chunking

(BFBC) algorithm

that optimizes data

de-duplication

performance.

The proposed triple

hash function

algorithm is five

times faster than

SHA1 and MD5 and

achieves a better de-

duplication

elimination ratio

(DER) than other

CDC algorithms.

Comparison at

character level

has expensive

computation

cost.

Multi-Hash

Function

[55]

Multiple Hashes

of a single chunk

This study

introduces a novel

and effective

mathematical

bounded linear

hashing algorithm

specifically

designed for use in

data de-duplication

systems.

Our suggested

system reduces the

high latency imposed

by de-duplication

procedures, primarily

the hashing and

matching phases.

Due to the

enormous

number of

chunk hash

values, looking

up and

comparing hash

values takes

longer for large

datasets.

JC Scheme

[65]

Content Define

Chunking using

input data stream

byte by byte

This study

proposed a jump-

based chunking

(JC) approach.

.JC improves the

throughput by about

2× on average

compared with the

state-of-the-art CDC

approaches while

still guaranteeing a

high de-duplication

ratio

Complexity of

scheme makes

it difficult to

implement.

33

SE-PoW [66] Message-locked

encryption

(MLE) to encrypt

data.

The paper

introduces SE-

PoW, a novel

efficient, and

location-aware

hybrid encrypted

de-duplication

scheme with dual-

level security-

enhanced Proof-of-

Ownership (PoW)

in edge computing.

SE-PoW reduces up

to 61.9% upload time

overheads compared

with existing

methods, which

represents a

significant

performance

enhancement.

The proposed

system is

complexed in

terms of

implementation

Secure de-

duplication

with efficient

user

revocation in

cloud storage

[58]

A multi-user up-

datable

encryption

scheme.

The paper proposes

a multi-user

updatable

encryption scheme

that allows the data

owner to update the

remote cipher text

under a new group

key by sending an

update token to the

cloud.

Secure de-

duplication requires

the data owner to

download, decrypt,

re-encrypt, and

upload data to the

cloud when updating

data authority.

The proposed

scheme

significantly

reduces

communication

and

computation

costs as the data

owner only

needs to send a

token to the

cloud to update

the data

authority.

InDe [68]

A greedy

algorithm to

detect valid

container

utilization

The paper

contributes an

innovative system,

InDe, which

addresses data

fragmentation in in-

line de-duplication.

The proposed InDe

system improves the

restore speed by 1.3x

- 2.4x compared to

two state-of-the-art

algorithms (Capping

and SMR) while

maintaining similar

backup performance.

Complex in

terms of

implementing

the new

algorithms, F-

greedy and F-

greedy+.

PFP [69] A data de-

duplication

chunking

technique

The paper proposes

the Per-File Parity

(PFP) scheme, a

new approach to

improve the

reliability of

deduplication-

based storage

systems.

The Per-File Parity

scheme improves the

reliability of

deduplication-based

storage systems by

providing parity

redundancy

protection for all

files.

One limitation

could be the

average 5.7

percent

performance

degradation to

the

deduplication-

based storage

system.

34

EFDS [26]

By employing

hash table

approach,

duplicate data

generated by

sensors is

identified and

eliminated.

Rabin fingerprints

are calculated and a

hash table in

maintained. For

duplicate sub files,

linked list is used,

The de-duplicate

data is transmitted

to cloud repository.

Resource

consumption is low.

Efficient

identification and

handling of duplicate

data.

For large data

volume,

performance

starts

degrading.

SDD-RT-BF

[70]

Utilizing a

Secure

framework for

data de-

duplication in a

distributed

environment

For data integrity

and minimizing

duplication Bloom

filter, Radix Trie,

and cryptographic

strategies are

employed.

Overcome

duplication ratio.

Maintains data

integrity.

Complexity

increases for

large volumes

of data.

To maintain

Radix Trie,

additional

memory is

required.

QuickCDC

[71]

Dynamically

setting mask bits

to correct

identification of

chunk

boundaries.

Uses feature vector

and mask bits for

data chunking,

which results in

appropriate packet

size, identifies

similar data chunks

from the dataset,

and skips them

Higher chunking

speed.

Can accurately

identify and

overcome duplication

ratio.

 Resource

consumption is

high.

ESDedup

[74]

Block chain

based scheme to

provide security

to data and de-

duplication is

assured in

healthcare sector.

Checked data for

duplication by

matching

similarity.

Similarity based

rewriting algorithm

is utilized to

remove identical

chunks and store

only one copy.

Reduced data

redundancy and

storage overhead.

Ensures data security

and integrity.

Data reliability

is minimized.

SLRE [75] Ensures

duplication free

data healthcare

storage on cloud.

For duplicates

identification,

content defined

entropy and

similarity is

checked.

Effective resource

consumption.

Overcome storage

overhead.

Not appropriate

to use for fault

tolerant

systems.

35

Secure de-

duplication

key

management

mechanism

[72]

Ensures de-

duplicated data

and privacy is

assured by the

CEK mechanism

The data is

transmitted by

using tags based on

content, when the

same data is again

received it is

detected due to

again same tag, and

the duplicated copy

of data is not

transmitted.

De-duplication is

ensured by the use of

tags, Effectively

managing Proofs of

Ownership without

showing data to

users.

Management

and updating of

keys cause

performance

overhead.

Limited

scalability due

to its

complexity.

High network

traffic can lead

to latency.

SEEDDUP

[73]

Uses a

combination of

cryptographic

approaches to

save duplication-

free data in the

cloud.

Data is divided into

chunks. By

employing the

Merkle hash tree,

de-duplication is

ensured. Key centre

issues keys which

are upgraded from

time to time and

data is saved in the

cloud in encrypted

format.

Efficient resource

consumption.

Protects against

security attacks.

Higher

complexity.

Performance

slows down in

case of high

data volume.

Block Level Data De-duplication

A Design of

Parallel

Content-

Defined

Chunking

System

Using Non-

Hashing

Algorithms

on FPGA

Use of PCI

algorithm

This research

presents a novel

parallel chunking

method designed

specifically for

hardware

implementation,

filling a significant

gap in the current

understanding and

usage of content-

defined chunking

(CDC) algorithms.

The proposed design

achieves not only

high computational

speed but also great

scalability.

This research

primarily

focuses on the

application of

the PCI

algorithm.

Other non-

hashing

methods for the

CDC could

behave

differently

when

implemented

similarly.

TL-CH [76] Efficient storage

of duplication-

free data by using

encryption

methods to make

it secure.

Uses encryption

mechanism to

protect healthcare

data and scalable

data index table to

manage de-

duplicated data.

Ensures data

integrity of

healthcare data.

Handle data

when index

table size rises,

it increases the

cost to maintain

it.

36

HealthDep

[77]

Manage data by

relying on a

smartphone and

using ARM Trust

zone for security

purposes of

devices.

Categorization of

healthcare data

based on data

readings severity,

checked for

duplication, and

encryption

mechanism is

employed to

encrypt data to

maintain data

privacy.

Storage- efficient

scheme.

Provides security to

healthcare data.

Integration of

the Healthcare

system and

HER is quite

complex.

The assumption

considered in

this approach

cannot be

useful in real-

time scenarios.

Perfectdedup

[78]

Ensures de-

duplication and

offer privacy to

data with low and

high privileged

data differently.

Employ Perfect

Hash Function for

identification of

popular data blocks

and comprises of

an Index Service

for secure

popularity

transitions. The

clients have

flexibility to adjust

dynamic threshold.

Reduced data

duplication.

Low chances of data

leakage.

Computation

overhead

increases as the

number of

user’s

increases.

The existing schemes are stated above along with the pros and cons. The scheme in [58]

does not make use of a hash key its primary focus remains on hardware configuration. In [59]

using variable and fixed windows is employed for determining cut points. FastCDC [60]

increases de-duplication accuracy and speeds up this process, in [61] involves using the

mechanism of RNS & ECP for encryption, the hash key is used for data integrity and to perform

verification while [62] scheme ensures security while resolving duplication issue, the

cryptographic procedure is used for this process which may result in potential delays. In [63],

to make the CDC better, the DER approach is used but fixed hashes result in low efficiency. To

reduce hash table size, the bounded linear hash function is employed [79]. It includes a jump

condition to avoid input data stream length while maintaining a rolling hash [65]. In [66] a dual

encryption mechanism is introduced for security enhancement for deduplication-based data. To

enhance de-duplicated data security, cipher text is upgraded with the help of a token [67]. To

overcome data fragmentation issues, F-greedy and F-greedy+ algorithms are employed [68]. In

[69], the author focuses on increasing the efficiency of the hash table lookup process. The false

positive rate is increased by dividing data and creating signatures for them [76]. In [70],

different roles are given to users, and tokens are generated for them so authorized users can get

37

access as per their requirements. The healthcare data is categorized into high-sensitive and

lower-sensitive data. Both categories are checked for similar data and dealt with by using

different encryption mechanisms [77]. QuickCDC focuses on skipping the same data and the

ratio of error jumps is reduced [71].

The scheme [62] shows higher efficiency in the de-duplication mechanism and reduces

storage cost, while [63] has a low hash lookup time and balanced table size but is inappropriate

to use for highly diverse data. In [66] [70] provides higher security to data to avoid any attack.

The communication overhead is quite low in [67]. The [69] has high performance and lower

performance degradation in highly diverse environments. The [70] requires more computational

time. The [77] has good performance but resource consumption is high and not suitable for a

resource-restricted environment. QuickCDC has a high de-duplication speed because setting

mask bit [71], [65] [71] has better throughput. Each scheme has its benefits and limitations. On

the whole, if scalability is the main concern in this case, [62] [79] [69] are better choices. If data

privacy is the main concern [66] [70] should be considered. The [68] [71] is more economical

and efficient resource consumption. The performance overhead is high in [64], while [65]

performs de-duplication with efficient resource utilization but it has high latency and is not

appropriate in case of high data volume. The cost of deployment is high but provides fast speed

in the duplication mechanism [66]. The data is provided with different levels of privacy based

on popularity but the computational overhead is high and if any entity becomes malicious, the

user data can be compromised [78].

2.10 Research Gaps

Data duplication in the healthcare sector can cause serious problems. The crucial data

can be overlooked or high energy consumption leads to early depletion of energy. To reduce

duplication while keeping efficiency high, there is a high need for of implementing an optimized

approach that ensures de-duplication. Instead of transmitting fixed data chunks, variable-sized

chunks should be used. The byte pair comparison causes high energy consumption and memory

overhead. The cut points in the data stream are required to be tackled intelligently. In case, data

cut points are not appropriately done then some of the information in a packet is missing, which

reduces the performance of a scheme. Besides this long hash table takes extra time for lookup

38

and degrades the performance of the scheme. Longer hash values can reduce the likelihood of

collisions and improve data integrity, they also come with drawbacks such as increased

computational overhead and storage requirements. Therefore, finding the optimal balance

between hash size and efficiency is crucial in designing robust and efficient systems. It is

recommended to address this issue by exploring methods to mitigate collision risks with smaller

hashes while also optimizing the performance of longer hashes for practical implementation.

These factors need to be handled smartly so that the duplication is managed in a better way

without taking a longer time to process data, lowers communication costs, and consumes little

energy.

2.11 Summary

In this chapter, a detailed review of existing literature is presented. The main terms used

throughout the thesis are explained well. The previous schemes are described in the context of

data duplication. Afterwards, the research gap is explained which exists in current techniques.

A table of comparison is shown with their basic idea, mechanism advantages, and drawbacks.

Afterwards, the whole chapter is concluded.

CHAPTER 3

METHODOLOGY

3.1 Overview

In this chapter, the detailed research methodology of the proposed solution is presented

which is employed throughout the research. The chapter comprises information about the

literature review study, problem identification, and evaluation metrics, along with dataset and

simulation tool to evaluate the proposed scheme. In the end, the entire chapter is concisely

concluded.

3.2 Operational Framework

In this era of advancing technology, the healthcare sector has also shifted to the online

paradigm for monitoring patients remotely and deciding on better treatment for them. For this

purpose, various sensors are attached to the bodies of patients to observe and evaluate patients'

health purpose. Typically, the data gathered by these sensors takes sixteen or thirty two bits. In

many cases, the obtained data lies within the usual range, and storing this data recurrently can

be ineffective and resource-intensive. For this purpose, the concept of data de-duplication is

employed in data storage and management to remove repetitive data copies. By eliminating

these redundancies, the total data quantity is diminished, leading to more efficient storage

utilization and cost reductions. The de-duplication procedure involves observing the data set to

check repeating data values. Once identified, these duplicated chunks of data are reduced in

size, sustaining just one instance, in the proposed scheme to reduce resource consumption and

increase efficiency. The study of data de-duplication in healthcare within the context of IoT-

assisted cloud computing is essential because of the above-mentioned issues. The Working

Framework of the Research is presented in Figure 3.1.

40

Figure 3.1: Working Framework of the Research

41

3.3 Research Design and Development

 To resolve the above-mentioned problem, the proposed solution passes through three

important levels which are elaborated here. The wearable devices are injected into the skin of

patients or attached to their bodies to obtain various required health-related readings. Our

primary objective is to manage data de-duplication, regardless of whether the devices are

wearable or non-wearable. However, using them has hazards, including tissue damage and

infection, so medical practitioners must exercise caution. This data is transmitted repetitively to

the fog server. Not all transmitted data is crucial, most of the time variation exists in a few

device values while other data remain in the normal form. So transmission of normal data again

and again causes redundancy and duplication. To resolve this issue, the proposed scheme

Healthcare Data De-duplication Scheme (HDDS) is introduced. In the current research, intra-

operative and preoperative information of patients are considered who are undergoing a surgical

process.

The use of invasive and non-invasive sensing devices to capture patients' vital signs for

the purpose of collecting healthcare data. Despite its intention to address data redundancy and

duplication, the Healthcare Data De-duplication Scheme (HDDS) still needs to get initial data

from these devices. These tools are necessary to immediately collect and record precise

physiological data from patients' bodies, which serves as the foundation for additional

processing and analysis. Sensing instruments are therefore still essential for efficient healthcare

monitoring during surgical procedures, even with HDDS optimization. The Research Design

and Development phase of the proposed scheme is shown in Figure 3.2.

In the first phase, the aggregated healthcare data sets from vital devices are loaded from

the corresponding dataset. This dataset is related to blood pressure, ECG, glucose level, White

blood cells, Haemoglobin, Platelet, and Hematocrit etc. These vital data vary from each other

as some have two parts, totalling producing 32-bit long data packets.

In the second phase, this data is sent to the fog server for storage and then checked for

usual and unusual health-related values. In the third phase, repeated data that is in the usual

range is replaced by a smaller chunk consisting of a single Boolean digit 1. Transmitting data

chunks of a single bit in this case, instead of the original full data packet, reduces the load on

42

the server and efficiently stores the data in a cloud repository while serious healthcare data is

sent in its original form to the cloud server. Moreover, this approach not only cuts down energy

consumption, communication costs, and storage space but also gives suitable and critical patient

reports to medical staff. That helps them in the identification of patients’ health situations more

effectively and follows more efficacious treatment options.

Figure 3.2: Research design and development Plan for HDDS

43

3.4 Detailed study of Literature

The up-to-date research papers on de-duplication within the context of IoT -assisted

cloud computing are considered. The paper’s title, abstracts, proposed solution, and conclusion

are thoroughly studied to build an idea of the relevant domain. Around 50 research papers are

studied and 23 papers are the supreme appropriate. Based on the conclusion drawn through

these papers, the research problem is formulated. These research papers are found based on

keywords and the most recent papers are also checked in the reference list of relevant research

papers. Subsequently, based on the literature review, the problem background is developed and

the main problem is identified. Afterwards, a table with having analysis of suitable schemes

comprised of the main research idea, procedure, advantages, and issues of these papers is

presented.

3.4.1 Problem identification

Based on the studied literature, the problem statement is formulated. The negative

impact of the problem includes high storage, higher energy consumption, and high

communication costs. These outcomes of the problem provide the basis to address this critical

issue and take efficient steps to mitigate it.

3.4.2 Evaluation Metrics

To check the proficiency of the proposed scheme, it is compared with the existing robust

schemes. The metrics are selected which are most crucial from a de-duplication perspective.

These parameters consist of Average Execution Time, Size of Data after Post Execution, and

compressed patient data file size. Through graphs, the performance of the proposed scheme is

shown along with other schemes.

44

3.4.3 Experimental Dataset and Selection of Simulation Tool

To evaluate the effectiveness of the proposed scheme, the simulation method is

employed. The Python programming language is utilized for simulation. The dataset used for

the research is available at https://physionet.org/content/vitaldb/1.0.0/. The vital signs data

consists of ECG, BP, body temperature oxygen saturation level, and many others. For each

patient, a 2000 dataset of each patient is maintained. It includes 12 waveform tracks, as well as

184 numeric data tracks, gathered using various anaesthesia instruments attached to the

patient’s body during the surgery mechanism. These vital signs data contains 1-second interval.

The present data is not pre-processed keeping in view the real-world scenario.

3.5 Summary

 In this section, a comprehensive pathway is elaborated that is followed in the research

work. From the operational framework to the simulation tool, every step is described in detail.

The evaluation metrics and characteristics of the dataset implemented are described thoroughly

to enhance understanding.

https://physionet.org/content/vitaldb/1.0.0/

CHAPTER 4

HEALTHCARE DATA DE-DUPLICATION SCHEME

4.1 Overview

In this chapter, the proposed scheme is described which is used to resolve the issue of

data duplication. Afterwards, the system model of the scheme with all relevant entities is

described. Then, an algorithm is stated as well and its steps are defined well to increase

readability. Finally, the whole chapter is concluded.

4.2 Healthcare Data De-duplication Scheme (HDDS)

 In this section, the proposed scheme Healthcare Data De-duplication Scheme (HDDS) is

described which aims to overcome the issue of data duplication. In the context of the healthcare

sector, the vital devices are attached to the body of patients to be monitored and treatment is

provided to them as per their health condition. In the current research dataset of patients are

used that are undergoing surgery. The intra-operative and preoperative clinical information is

gathered through vital devices. These attached devices vary in nature. Some sensor devices

generate data packets of 16 bits because they produce only a single portion of the data. Some

device such as BP tracking, sugar tracking, etc. produces data in 2 halves. Each one of them

occupies 16 bits so jointly it takes 32-bits. The attached vital devices continuously send body

readings to the fog server which sends it further.

Repeatedly transmitting these readings takes up high storage space and drains energy

quickly. Some data readings display instabilities among the patients, while other data values

remain constant. These data readings that continuously experience variation are termed

46

unusual data. To overcome above mentioned issues, the concept of content-defined chunking is

employed. The data readings are split based on actual data content. The variable-sized chunks

are created depending on the nature of the data. After that duplicated data chunks in the data

are checked. The content of each chunk is examined to determine duplicated values. For usual

duplicated data readings, instead of sending the whole data packet of all bits, transmit a smaller

chunk of Boolean digit 1, to indicate that the data reading remains within the normal range. So

transmitting a data chunk of 1 bit and then keeping meta-data about this duplicated content

reduces the load and saved into the cloud repository. On the other hand. it not only reduces data

file size, communication cost, and storage space also this relevant and vital information is useful

for medical staff to focus on serious data that assist them in diagnosis and taking better treatment

approaches as per the condition of the patients.

This approach of content-defined chunking and transmitting smaller Boolean digits to represent

duplicated data within normal ranges offers several advantages. Firstly, it significantly reduces

the storage space required, as only relevant and varying data is stored rather than repetitive

information. This optimization also translates into reduced communication costs, as smaller

chunks of data are transmitted, minimizing bandwidth usage.

Moreover, by focusing on unusual data readings and transmitting only the necessary

information, the energy consumption of devices is minimized, prolonging battery life and

reducing the need for frequent recharging or battery replacements.

Additionally, the use of metadata to keep track of duplicated content enables efficient retrieval

and analysis of data. Medical staff can quickly identify and prioritize unusual or significant data

readings, allowing them to focus their attention on patients who require immediate attention or

intervention. This targeted approach to data analysis can lead to more timely and accurate

diagnoses, as well as more tailored treatment approaches based on individual patient needs.

Overall, the implementation of content-defined chunking and selective transmission of data

chunks offers a practical and efficient solution to the challenges of storing, transmitting, and

analyzing medical data in a resource-constrained environment. It not only optimizes resource

usage but also enhances the effectiveness of healthcare delivery by providing medical staff with

47

timely and relevant information for decision-making and patient care. The working flow of the

proposed scheme is shown in Figure 4.1

Figure 4.1: Working Flow of Proposed Scheme

The conventional methods of de-duplication, such as byte pair comparison throughout

the byte stream introduce extra computations that the system needs to perform to identify cut

points in the data. These extra computations increase overhead, which is unwanted, particularly

in resource-restricted healthcare environments. The content-defined chunking approach used in

this scheme reduces the extra computation by focusing on the actual repetitive data values and

replacing them with Boolean 1 rather than checking it byte by byte. It not only lessens the

computational overhead but is also suitable for functioning within healthcare to ensure an

effective de-duplication mechanism.

48

4.3 System Model

The System model for the proposed scheme comprises vital devices, a Fog Server, a

Cloud server, and a cloud repository. The vital devices attached to the body of patients. This

data has identical readings related to patients’ health history. The purpose of these sensor

devices is to take data commonly from patients’ bodies and transfer it to the fog server. The fog

server in the system model is responsible for storing data of these vital devices and after

removing duplicates transmits it to the cloud server. For removing redundancy in this data,

Boolean digit 1 is used. This de-duplicated data is further stored in the cloud server. From the

cloud server, authorized persons such as doctors no nurses can access it. Along with it, this de-

duplicated medical history of patients is also stored in the cloud repository. In case data is

required later on, it can be retrieved from the cloud repository. The System model of the

proposed scheme is presented in Figure 4.2.

49

Figure 4.2: System Model

50

4.4 Flowchart of HDDS

 The healthcare dataset of patients is loaded that are undergoing surgical procedures. After

loading the dataset, the vital sign values including Blood pressure, ECG, Sugar level, pulse

rate, and some other data files associated with vital signs are checked and stored in the fog

server. The normal range varies for each of the vital signs. So they are checked against

corresponding standard values. If they fall in the normal range then it is termed non-critical or

normal readings. The Flowchart of the proposed technique HDDS is shown in Figure 4.3.

Figure 4.3: Flowchart of HDDS

On the contrary, if these readings are greater or lower than the relevant standard level, they

are well-known as critical values. The critical values are transmitted in their full bits. If the

51

readings are non-critical, in this scenario, instead of sending data in its full form, it is replaced

with a small data chunk of Boolean digit 1. After removing redundancy from the healthcare

data it is stored further in a cloud server where medical staff can access it to suggest better

treatment and afterwards, it is saved in a cloud repository for future use.

4.5 Algorithm for Healthcare Data De-duplication Scheme (HDDS)

 For removing redundancy from healthcare data, an algorithm is presented. The thorough

detail of the algorithm is shown in Figure 4.4. Then, we provided an in-depth explanation to

improve understanding.

tn = track names, ct = concat string

1. Input: List of Vital data

2. Output: Concatenated string

3. vf1, vf2, vf3, vf4, vf5 vitals data

4. maxLen => pick the maximum data length

5. For v till maxLen

6. check if all vitals data contains index v

7. pick vitals data from each vf's

 End For

8. ignore nan values and pick column names of the values that

are not nan

9. get index i of column names from tn

10. ct = create concat string where i is index and value is

concatenated by semicolon. e.g i1;value,i2;value,i3;value

11. concat next vf's data to the ct

12. Transmit ct to client

Figure 4.4: Algorithm for Aggregating Vital Data

In 1-2 step, the input and output of the algorithm is stated. In step 3- vf1, vf2, vf3, vf4,

and vf5 represent vital data such as blood pressure, pulse rate, sugar level, oxygen saturation,

etc. level in the body. The maximum data length is determined for all the vital data sources and

For loop is run for all vital signs. It is checked that all sets of vitals data are comprised of data

at index v. It is done to ensure that data is available at the current iteration index in all vitals

data sets. Among the data points at index v in each set, ignore if it has "nan" values (which

signifies missing data). The columns' names of the values are obtained that are not ‘nan’. The

column names got in the prior step to their corresponding indices in the track names. Join the

data obtained from the next set of vitals data to the previous concatenated string. This step is

done in every loop iteration, adding data for the next index (v) in each iteration. After processing

52

the entire data for the current index v from all vitals data sets, transmit the concatenated string

further. “nan” values are basically empty columns in the dataset. So, we are ignoring those

values and not passing to the concentrated strings.

4.6 Algorithm for Removing Duplicate Data

After the data is transmitted to the fog server. It is checked for duplicated values. For

this purpose, an algorithm is presented in Figure 4.5 that depicts the functionality in detail.

1. Input: Duplicated data

2. Output: De-duplicated data

3. fetch ct from Mqtt

4. split column number and value

3. check threshold value according to column

5. if threshold satisfies then

5. replace value with bit 1

6. else

7. keep the same value

8. save data to cloud server /json/file/vitalfile without other

missing columns, to reduce the size of the data

Figure 4.5: Algorithm for Removing Duplicate Data

In steps 3-8, the stored concatenated data string is fetched from Mqtt. The column and

numbers are separated. These data values are checked against standard threshold values as per

the nature of the data. In case of redundant readings, transmit only Boolean digit 1 otherwise

the original data file is sent to the cloud server.

4.7 Summary

 This chapter aims to provide comprehensive information about the proposed scheme.

Initially, the complete explanation of the proposed scheme is elaborated there. Then, the system

model is presented with the functionality of all entities. Afterwards, a flowchart is illustrated

53

for the proposed scheme with an explanation. Then, algorithms for the proposed scheme are

added with a complete explanation of all steps.

CHAPTER 5

RESULT AND ANALYSIS

5.1 Overview

In this chapter, the proposed technique HDDS is compared with some existing robust

schemes. The results are formulated and analysis is performed by using the simulation method.

For evaluation, crucial metrics are considered from the data de-duplication perspective. Along

with it, information is given about the simulation environment and parameters that are

considered to obtain results.

5.2 Simulation Tools and Environment

An MQTT-based pub-sub architecture is used to simulate the transmission of healthcare

IoT data in JSON format at 1-second intervals by an MQTT broker, which is afterwards

broadcast to connected MQTT receivers.

The dataset includes intra-operative vital signs data and preoperative clinical

information of patients. This setup comprises five separate patient files, each signifies vital

health data for the patient in a hospital bed. These files are related to fog nodes as it is

responsible for collecting patient data and combining it into a single string for transmitting it to

the cloud. Relevant information to the vital data parameters, which can be considered as a

"helper" or meta-data file, is kept distinctly in a file named "track_names.csv”. This file

comprises details such as the device name, and description (i.e., the parameter being monitored,

such as heart rate or ECG lead wave). The unit of measurement and minimum and maximum

permissible ranges for each parameter are presented in the file. The fog node is responsible to

retrieve the information from the "track_names.csv" file to compile it into a string.

55

This string is separated by using various delimiters to differentiate between different

parameters and patient data. Subsequently, the compiled data is sent to the cloud. The delimiter

for index values is known as a semicolon, for example, "6;66.237030029296," where "6"

signifies the index number corresponding to a specific parameter (e.g., "ECG"), and

"66.237030029296" represents the parameter's value. The value delimiter is a comma that

separates various health parameters within the string. For example, "6;66.237030029296,7:120"

shows that "6" relates to ECG with a value, followed by "7" shows Blood Pressure with its

corresponding value. Patient data is differentiated by using a colon, representing the start of

data for the next patient.

On the aggregate node at the cloud end, received data is parsed and separated using the

delimiters. Additionally, a validation step is performed to ensure that the values fall within the

predefined minimum and maximum ranges for each vital parameter. If a value falls within this

range, it is replaced with "1" to indicate normal. Otherwise, the original value is retained and

stored in the cloud.

In the proposed scheme described, it seems that only the upper value for blood pressure

(BP) is stored. This could be due to a design decision or requirement specific to the application.

Storing only the upper value might be considered sufficient for monitoring purposes or for

certain analytical needs. Additionally, storing both upper and lower values might introduce

redundancy if they tend to change together within the normal range for a given patient.

However, if there's a need to store both upper and lower values of BP, the proposed

format can be adapted accordingly. One way to store both values within the existing format

could be by allocating additional index numbers for the lower and upper values separately. For

instance:

- Let's say we use index "7" for blood pressure.

- The original format might store the upper value like this: "7;120".

- To include the lower value, you could designate another index, for example, "8" for

the lower value.

56

- So, the lower value could be stored as "8;70", assuming the lower value of BP is 70.

- Thus, the entire string representing BP for a patient might look like: "7;120,8;70".

This way, both upper and lower values can be accommodated within the existing

scheme, maintaining clarity and consistency in data storage and retrieval.

The original data of patients is stored in Healthcare Data Repository (HDR). The results

of proposed scheme HDDS is compared with Efficient File-Level De-Duplication Scheme

(EFDS) [26] scheme. The Simulation parameters utilized to check the efficiency of the proposed

technique are presented in Table 5.1.

Table 5.1: Simulation parameters

Parameters Unit Reference Threshold

Values

Patients Number - 5

Simulation time sec 100

White Blood Cell Count x1000/mcL 4~10

Haemoglobin g/dl 13~17

Hematocrit % 39~52

Platelet count ×1000/mcL 130~400

Erythrocyte

Sedimentation Rate

mm/hr 0~9

Glucose mg/dl 70~110

Albumin g/dl 3.3~5.2

Total Bilirubin mg/dl 0.2~1.2

Creatinine clearance mL/min 75~125

Sodium mmol/L 135~145

Potassium mmol/L 3.5~5.5

ionized Calcium mmol/L 1.05~1.35

Chloride mmol/L 98~110

Ammonia mcg/dL 27.2~102

57

C-reactive protein mg/dL 0~0.5

Lactate mmol/L 0.5~2.2

Prothrombin time INR 0.8~1.2

Prothrombin time % 80~120

Prothrombin time sec 10.6~12.9

Activated partial

thromboplastin time

sec 26.7~36.6

Fibrinogen mg/dL 192~411

Arterial pressure wave mmHg 40-50

partial pressure of CO2 mmHg 35~48

Bicarbonate mmol/L 18~23.0

Diastolic arterial pressure mmHg 40-50

Systolic arterial pressure mmHg 40-50

Percutaneous oxygen

saturation

% 40-50

Heart rate /min 40-50

Respiratory rate (from

ventilator)

/min 40-50

Respiratory rate based on

capnography

/min 40-50

58

5.3 Compressed Patient Data File Size

The compressed size refers to the reduction in the size of the data file as compared to its

original size. For this purpose, the data of 5 patients are considered comprises of 2000 datasets

for each. Each dataset contains collected data from 70 to 75 attached vital devices. The

simulation results demonstrated as shown in Figure 5.1 that HDDS has a higher compressed

size as compared to the EFDS scheme. The EFDS scheme keeps a reference list of repeated

values in the coming data. This reference list keeps increasing significantly as more repetition

of data occurs, which eventually has a negative impact on the compression rate. The reason

behind better compression size in HDDS adopts a predefined set of reference values, known as

meta-data. This predefined reference list of reference values stays constant during the de-

duplication procedure, irrespective of the amount of duplicated data. Furthermore, HDDS also

uses a mechanism in which when data values lie within a stable range are transmitted in the

form of Boolean digit 1 instead of transmitting whole data. This technique additionally plays

its role in the proficient compression of data.

Figure 5.1: Compressed patients' data file size

59

The X-axis represents the number of patients and the Y-axis shows the size of the file

in Kilobytes (KBs). When the original size of the file is 1059 KBs, after employing EFDS the

size of the file is compressed to 920 whereas after using the HDDS strategy it is further reduced

to 235.

5.4 Average Execution Time

 During the initial phase, the performance of EFDS is much better. At the start of the de-

duplication process, EFDS is performing more proficiently in terms of execution time as

compared to HDDS. Duplication refers to the mechanism of removing normal repetitive data

values collected by vital devices. With time the de-duplication process remains for a longer

time and more identical data is discovered. To cope with this redundant data, both EFDS and

HDDS schemes keep reference lists. When more duplicate data is received, the EFDS scheme

needs more lookup and updates its reference. The continual updating of the reference list in

EFDS has a bad impact on execution time. As more duplications occur in healthcare data, the

time needed to EFDS for lookup and update the reference list surges fast. This increasing

reference list increases complexity and takes more time to update.

Figure 5.2: Average Execution Time

60

On the other hand, HDDS needs less execution time because it maintains a fixed,

constant reference list during the whole execution procedure. The size of the reference list in

HDDS remains consistent, irrespective of duplicated data that needs to be processed. Figure 5.2

illustrates the performance of both schemes when the number of vital devices surges up to 73,

the EFDS requires 0.05 seconds while HDDS needs 0.005 seconds.

5.5 Size of Data after Post Execution

 The healthcare data is frequently aggregated by 73 vital devices attached to the patients

after every second. There is a higher rate of duplicated data in it, which is not essential to

transmit again and again to the cloud by fog sever as it reduces energy consumption, increases

communication cost, and takes extra storage space. So the size of the data is reduced by

removing duplicated values so that the above-mentioned parameters can be controlled. The

basic motive behind de-duplication is to data size to optimize healthcare data transmission and

storage. In Figure 5.3, the original data is shown along with de-duplicated data presented by

using EFDS and HDDS schemes. The results showed that after the de-duplication mechanism,

the smaller data size is in HDDS as compared to EFDS.

Figure 5.3: Size of Data after Post Execution

61

After de-duplication, the size of the data is significantly smaller with HDDS compared

to EFDS. The original data gathered from the 73 devices after an interval of every 1 second,

needs 1364 bytes. Besides this after using the EFDS de-duplication mechanism the data size is

reduced to 907 bytes while in HDDS it is further reduced to 326 bytes. The proposed scheme

HDDS has a lower data size than EFDS which shows that ultimately HDDS has lower storage

cost and lower communication cost.

5.6 Patient Data with Minor Duplicates

 When the dataset is randomized it presents that most of the data readings are not the

same as it contains values with variation. There are a lower number of duplicate data values and

very few null or missing readings. The performance of both schemes is better because of the

low duplicate data ratio. When duplicated data is low in volume, EFDS reduces the duplication

reference list to grow and the time needed for lookup is also reduced. In HDDS, when minor

duplicated data appears in the dataset, it is converted into digit 1 and then transmitted further

which reduces data size for duplicated values. While out-of-range data is transmitted in its full

form. Figure 5.4 shows the performance of both HDDS and EFDS.

Figure 5.4: Patient Data with Minor Duplicates

62

 The x-axis shows the number of readings from the dataset and the y-axis represents file

size in KBs. When readings are 2000 in number the size of the file stored in the healthcare

repository is 1188, while the EFDS has maintained a size of 457 and HDDS maintained the

lowest size of 315.

5.7 Patient Data with Major Duplicates

 As in the previous performance metric, the case observed with data values having a lower

duplication ratio is observed. In this scenario, the dataset with major duplicates is considered.

When the duplication ratio is high, it shows that the data contains a higher ratio of similar data.

The EFDS has to maintain a huge list of references for duplicated records. When the identical

data starts rising, the performance of EFDS degrades. In the case of HDDS, instead of high

duplicated values, the size of the file remains lower because of better management of duplicated

data. The feature of data reduction for similar data by using the Boolean number system

increases the efficiency of the proposed scheme. The file sizes in both schemes are shown in

Figure 5.5. When readings in the dataset are 9000, the size of the stored file in the original form

in a healthcare data repository takes 4745 KBs, by employing the EFDS scheme it takes 1765

KBs, and the proposed scheme HDDS maintained the lowest size of 1021 KBs.

Figure 5.5: Patient Data with Major Duplicates

63

5.8 Execution Time for Processing Patients with Minor Duplicates

When minor duplicates exist in the healthcare dataset as shown in case 1, there is not

much processing needed, and handling a small number of duplicates is relatively easy and

efficient. When duplicates are high in number, handling them is resource-intensive, particularly

in EFDS. When duplicates are fewer, then the step of handling them is not exhaustive. So

execution time remains the same for both schemes in case of minor duplicates.

The performance of both schemes is illustrated in Figure 5.6. The x-axis shows data

readings from the dataset and the y-axis represents execution time. When data values are about

9000 in number, it takes 82 minutes for EFDS and 81 minutes for HDDS.

Figure 5.6: Execution Time for Processing Patients with Minor Duplicates

5.9 Execution Time for Processing Patients with Major Duplicates

 When high Duplicate values are present in data, maintaining them takes time. In the case

of EFDS while processing data, when duplicate values occur, these are added to the duplication

reference list. So, when duplication starts to increase, the reference list keeps getting longer as

64

it needs to store references of increasing duplicate values. While HDDS takes only 1 bit for

normal duplicate values. So transmitting Boolean digits needs a lower execution time.

 The execution time of both schemes is presented in Figure 5.7. When the data readings

are 6000 in number, the execution time for EFDS is 62 minutes and 54 for HDDS.

Figure 5.7: Execution Time for Processing Patients with Major Duplicates

5.10 Cumulative Execution Time for Processing Number of Blocks

For this metric, the performance of both schemes is noticed with time. The graph is

cumulative and showed progress collectively after sometime. At the start, EFDS maintained

robust performance as the duplicate reference list is blank at so there is no need to check for

duplicated values while processing. However, with time when more data is handled, the number

of similar data starts increasing. It causes to increase in the reference list. The list keeps growing

in size, as more data is processed. The EFDS needs to check duplicate values in the list with

65

each iteration. This gradually slower performance as the list increases and ultimately increases

execution time for EFDS.

On the other hand, HDDS demonstrated reliable performance over time, which shows

that rising duplicate data does not affect processing speed. The reason behind this is that

duplicated chunks are managed effectively. As compared to EFDS, which had to be looked up

in a large reference list. In Figure 5.8, it is shown clearly that HDDS maintained lower execution

time and even increased duplicate references.

Figure 5.8: Cumulative Execution Time for Processing No. of Blocks per Minute

5.11 Execution Time for Processing of Blocks per Minute

 In this graph, processing time of both graphs per minute is shown. Initially, the reference

list is empty thus there is nothing to check in the list, therefore EFDS processed data quickly,

resulting achieved better performance. When time passes more data is processed, more

duplication occurs, and ultimately reference list surges. EFDS needs to search within its large

reference list to process duplicate data. This exhaustive processing degrades EFDS

performance. While HDDS mechanism to handle duplicates is simple and easy. Due to it,

HDDS maintains relatively consistent performance. Figure 5.9 shows showing progress of both

schemes per minute. While EFDS performance has fluctuations while processing duplicate data.

66

In Figure 5.9, performances of both schemes are shown. In 4 minutes, the data size of 1800 is

processed in HDDS while EFDS has processed 1400 data readings in 4 minutes.

Figure 5.9 Execution Time for Processing No. of Blocks per Minute

5.12 Discussion

The proposed technique HDDS aims to resolve the issue of data duplication in the

context of the healthcare sector. To overcome this problem, data values are checked against

standard threshold values. If the values have no significant change then it is simply replaced by

a smaller chuck of Boolean digit 1, which untimely reduces data packet size and overall

increases the efficacy of the proposed scheme. To check its effectiveness, it is compared with

another deduplication-based scheme based on some vital evaluation parameters. The proposed

scheme maintains a consistent list of meta-data regardless of environment variation and

repetitive data. The proposed scheme considers healthcare sector data generated by

approximately 73 vital devices that transmit the data after a 1-second interval. This data is

effectively compressed and takes little time to transmit as compared to the existing scheme

EFDS. The EFDS scheme takes extra time to look at, updating the reference list every time

duplication occurs in healthcare data. The updating reference list takes extra time for

67

computation and increases the complexity. Besides this, as the number of vital devices increases

the effectiveness of EFDS starts falling due to intensive computation.

5.13 Summary

 The HDDS technique is introduced to resolve de-duplication issues without utilizing too

much time for Average Execution, reduce the size of data after Post Execution, and compress

patient data file size, cumulative execution time, and execution time per minute. The simulation

is performed in a Python environment to test the competency of the proposed scheme against

another de-duplication solution EFDS. The simulation results proved that HDDS outperformed

EFDS.

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Overview

This chapter aims to provide a summary of this research and future plans. The primary

focus of this work is to overcome duplication issues in data of the healthcare sector and

introduce a de-duplication mechanism so that crucial data is maintained well in the cloud

repository. To evaluate the efficiency of the proposed technique HDDS, a simulation method is

employed. For comparison with the base scheme, the most crucial parameters containing

Average Execution Time, Compression Rate, and Size of Data after Post Execution are

considered. By comparing the results of HDDS with earlier schemes, it is proved that HDDS

has performed well.

6.2 Summary of Research Work

The Internet of Things (IoT) technology has brought revolution in the context of

healthcare by collecting data from various wearable devices to a central database system.

Though it has various advantages it also raises some challenges that need to be resolved to get

full advantage from it. When vital devices take readings from a patient’s organs and send them

to a fog server, they contain data in different formats. Mostly, normal values are transmitted

over 1 second, which unnecessarily takes up storage space. To overcome this issue, the

proposed scheme Healthcare Data De-duplication Scheme (HDDS) is presented. The scheme

reduces data size by replacing repetitive normal data with digit 1 of the Boolean system. So for

such values, the idea of content-defined chunking is utilized. A small chunk of digit 1 is

transmitted and its meta-data is maintained for future use. For such values, those are fluctuating

69

and showing abnormal behavior are transmitted in their unique format. So finally the de-

duplicated data is stored in the cloud repository. It not only resolves the issue of duplication but

also reduces data size ultimately overcoming the issue of higher Execution Time, large size of

Data after Post Execution, and compressed patient data file size. Some limitations exist in this

thesis. The proposed scheme performs well for de-duplication but the security mechanism to

keep patients medical history as confidential is not considered in this research. The

communication cost after the de-duplication procedure is not extensively analyzed in this work.

The vital data of a few patients are considered in this study, increasing the number of patients

might raise new issues. Till now, no strategy has been considered to handle lost or missing data

values.

6.3 Future Work

In the future, the number of patients will be increased to check the performance of the

proposed scheme in a highly diverse environment. Some security mechanisms will be

introduced to protect patients’ medical history. Some more advanced evaluation parameters will

be used to check the effectiveness of the proposed scheme. Beyond this, the HDDS scheme is

compared with more deduplication-based techniques.

70

GLOSSARY

1. Internet of Things (IoT): Interconnected devices

2. Content-Defined Chunking: Dynamic data partitioning

3. Replication Factor: Redundancy level

4. Infrastructure as a Service (IaaS): Cloud computing foundation

5. Platform as a Service (PaaS): Cloud platform provision

6. Function as a Service (FaaS): Serverless computing

7. Software as a Service (SaaS): Cloud-based software

8. Virtual Machines: Software-based emulation

9. Per-File Parity: File-level redundancy

10. Data Elimination Ratio: Redundancy reduction efficiency

11. Jump-Based Chunking: Data partitioning method

12. Rapid Asymmetric Maximum: Encryption algorithm

13. Healthcare Data De-duplication Scheme: Medical data redundancy removal

14. Efficient File-Level De-Duplication Scheme: Optimal file redundancy elimination

15. Message Locked Encryption: Secure message encoding

16. Secure Hash Algorithm: Cryptographic hash function

17. Message Digest: Compact hash value

18. Cloud Service Provider: Cloud computing vendor

71

19. Electronic Health Record: Digital health information

20. Multi-Level Encryption: Layered data protection

21. Elliptic-Curve Cryptography: Cryptographic curve method

22. Replicator node: Copying server

23. Co-ordinator node: Central control point

24. Bandwidth: Data transfer capacity

25. Fog servers: Edge computing servers

26. Computational overhead: Processing resource burden

27. Hash chunk: Hashed data segment

28. Hash table: Data structure for hashing

29. Index structure: Organized data index

30. Load factor: System resource utilization

31. Cut points: Data segmentation points

32. Byte pair comparison: Binary unit matching

33. Break points: Discontinuity locations

34. Cosine-based Similarity checking: Similarity measurement method

35. Linear hash function: Straightforward hashing

36. Cipher text: Encrypted data

37. Radix Trie: Tree data structure

72

38. CEK mechanism: Cryptographic key management

REFERENCES

[1] M. Wada and N. Tanaka, “Big data: survey, technologies, opportunities, and challenges,”

Sci. world J., vol. 29, no. 8, p. 1497, 2016, doi: 10.1143/JJAP.29.L1497.

[2] R. Kaur, I. Chana, and J. Bhattacharya, “Data deduplication techniques for efficient cloud

storage management: a systematic review,” J. Supercomput., vol. 74, no. 5, pp. 2035–

2085, 2018, doi: 10.1007/s11227-017-2210-8.

[3] K. Vijayalakshmi and V. Jayalakshmi, “Analysis on data deduplication techniques of

storage of big data in cloud,” Proc. - 5th Int. Conf. Comput. Methodol. Commun. ICCMC

2021, Iccmc, pp. 976–983, 2021, doi: 10.1109/ICCMC51019.2021.9418445.

[4] J. Li, Z. Yang, Y. Ren, P. P. C. Lee, and X. Zhang, “Balancing storage efficiency and

data confidentiality with tunable encrypted deduplication,” Proc. 15th Eur. Conf.

Comput. Syst. EuroSys 2020, pp. 1–15, 2020, doi: 10.1145/3342195.3387531.

[5] D. P. Sinha, G. R, Thwel, T. T., Mohdiwale, S., Shrivastava, “Performance Analysis of

Secure Cloud Storage by Using Data De-Duplication,” Data Deduplication Approaches.

Acad. Press, vol. 13, pp. 1–15, 2021.

[6] S. S. Patra, S. Jena, J. R. Mohanty, and M. K. Gourisaria, “Concepts, strategies, and

challenges of data deduplication." Data Deduplication Approaches.,” Data

Deduplication Approaches Concepts, Strateg. Challenges, pp. 37–55, 2020, doi:

10.1016/B978-0-12-823395-5.00009-4.

[7] B. Alami Milani and N. Jafari Navimipour, “A comprehensive review of the data

replication techniques in the cloud environments: Major trends and future directions,” J.

Netw. Comput. Appl., vol. 64, pp. 229–238, 2016, doi: 10.1016/j.jnca.2016.02.005.

[8] K. M. Et. al., “Deduplication Supporting Strong Privacy Protection for Cloud Storage,”

Turkish J. Comput. Math. Educ., vol. 12, no. 2, pp. 2334–2340, 2021, doi:

10.17762/turcomat.v12i2.1981.

[9] A. Bhalerao and A. Pawar, “A survey: On data deduplication for efficiently utilizing

cloud storage for big data backups,” Proc. - Int. Conf. Trends Electron. Informatics, ICEI

2017, vol. 15, pp. 933–938, 2018, doi: 10.1109/ICOEI.2017.8300844.

74

[10] J. Cable, D. Gregory, L. Izhikevich, and Z. Durumeric, “Stratosphere: Finding vulnerable

cloud storage buckets,” ACM Int. Conf. Proceeding Ser., vol. 11, pp. 399–411, 2021, doi:

10.1145/3471621.3473500.

[11] A. Tahir et al., “A systematic review on cloud storage mechanisms concerning e-

healthcare systems,” Sensors (Switzerland), vol. 20, no. 18, pp. 1–32, 2020, doi:

10.3390/s20185392.

[12] N. M. Abdulkareem, S. R. M. Zeebaree, M. A. M. Sadeeq, D. M. Ahmed, A. S. Sami,

and R. R. Zebari, “IoT and Cloud Computing Issues, Challenges and Opportunities: A

Review,” Qubahan Acad. J., vol. 1, no. 2, pp. 1–7, 2021, doi: 10.48161/qaj.v1n2a36.

[13] T. Alam, “Cloud Computing and its role in the Information Technology,” IAIC Trans.

Sustain. Digit. Innov., vol. 1, no. 2, pp. 108–115, 2020, doi: 10.34306/itsdi.v1i2.103.

[14] W. Ahmad, A. Rasool, A. R. Javed, T. Baker, and Z. Jalil, “Cyber security in IoT-based

cloud computing: A comprehensive survey,” Electron., vol. 11, no. 1, pp. 1–34, 2022,

doi: 10.3390/electronics11010016.

[15] P. J. Sun, “Security and privacy protection in cloud computing: Discussions and

challenges,” J. Netw. Comput. Appl., vol. 160, p. 102642, 2020, doi:

10.1016/j.jnca.2020.102642.

[16] U. A. Butt et al., “A review of machine learning algorithms for cloud computing

security,” Electron., vol. 9, no. 9, pp. 1–25, 2020, doi: 10.3390/electronics9091379.

[17] M. O. Agbaje, O. B. Ohwo, T. G. Ayanwola, and O. Olufunmilola, “A Survey of Game-

Theoretic Approach for Resource Management in Cloud Computing,” J. Comput.

Networks Commun., vol. 11, no. 8, p. 13, 2022, doi: 10.1155/2022/9323818.

[18] J. Liu, H. Shen, H. S. Narman, W. Chung, and Z. Lin, “A Survey of Mobile

Crowdsensing Techniques,” ACM Trans. Cyber-Physical Syst., vol. 2, no. 3, 2018, doi:

10.1145/3185504.

[19] Q. Yang, R. Jin, and M. Zhao, “SmartDedup: Optimizing deduplication for resource-

constrained devices,” Proc. 2019 USENIX Annu. Tech. Conf. USENIX ATC 2019, vol.

11, no. 3, pp. 633–646, 2019.

[20] M. K. Abiodun, J. B. Awotunde, R. O. Ogundokun, E. A. Adeniyi, and M. O. Arowolo,

“Security and Information Assurance for IoT-Based Big Data,” Stud. Comput. Intell.,

75

vol. 972, pp. 189–211, 2021, doi: 10.1007/978-3-030-72236-4_8.

[21] P. Chemate, N. Karande, A. Patil, S. Patil, and P. V. Nale, “Ensuring Data Security in

Internet of Things Through Threshold Cryptography and Bloom Filters for Data De-

Duplication Purposes,” Int. Res. J. Mod. Eng. Technol. Sci., no. 06, pp. 161–168, 2023,

doi: 10.56726/irjmets41402.

[22] S. Li, T. Lan, B. Balasubramanian, H. W. Lee, M. R. Ra, and R. K. Panta, “Pushing

Collaborative Data Deduplication to the Network Edge: An Optimization Framework

and System Design,” IEEE Trans. Netw. Sci. Eng., vol. 9, no. 4, pp. 2110–2122, 2022,

doi: 10.1109/TNSE.2022.3155357.

[23] S. Mishra and S. Panda, “Cloud Computing: Applications, Challenges and Open Issues,”

vol. 9, no. 4, pp. 9–10, 2023.

[24] B. Alouffi, M. Hasnain, A. Alharbi, W. Alosaimi, H. Alyami, and M. Ayaz, “A

Systematic Literature Review on Cloud Computing Security: Threats and Mitigation

Strategies,” IEEE Access, vol. 9, pp. 57792–57807, 2021, doi:

10.1109/ACCESS.2021.3073203.

[25] H. Tabrizchi, “A survey on security challenges in cloud computing: issues, threats, and

solutions,” J. Supercomput., vol. 76, no. 12, pp. 9493–9532, 2020.

[26] G. Said et al., “Hash Table Assisted Efficient File Level De-Duplication Scheme in SD-

IoV Assisted Sensing Devices,” Intell. Autom. Soft Comput., vol. 0, no. 0, pp. 1–17, 2023,

doi: 10.32604/iasc.2023.036079.

[27] K. Pawar, V. Phatale, R. Kumari, A. Kanade, and S. Ujgare, “Data De-Duplication

Engine for Efficient Storage Management,” Int. Res. J. Eng. Technol., vol. 9, no. 6, pp.

702–709, 2022, [Online]. Available: www.irjet.net

[28] R. Movaliya and H. Shah, “A Survey of Secure Data Deduplication,” Int. J. Comput.

Appl., vol. 138, no. 11, pp. 6–8, 2022, doi: 10.5120/ijca2016908986.

[29] A. Shakarami, M. Ghobaei-Arani, A. Shahidinejad, M. Masdari, and H. Shakarami, Data

replication schemes in cloud computing: a survey, vol. 24, no. 3. Springer US, 2021. doi:

10.1007/s10586-021-03283-7.

[30] X. Zou, J. Yuan, P. Shilane, W. Xia, H. Zhang, and X. Wang, “From Hyper-dimensional

Structures to Linear Structures: Maintaining Deduplicated Data’s Locality,” ACM Trans.

76

Storage, vol. 18, no. 3, 2022, doi: 10.1145/3507921.

[31] A. M. and D. S. B., “Security Analysis and Preserving Block-Level Data DE-duplication

in Cloud Storage Services,” J. Trends Comput. Sci. Smart Technol., vol. 2, no. 2, pp.

120–126, 2020, doi: 10.36548/jtcsst.2020.2.006.

[32] F. A. Kraemer, A. E. Braten, N. Tamkittikhun, and D. Palma, “Fog Computing in

Healthcare-A Review and Discussion,” IEEE Access, vol. 5, pp. 9206–9222, 2017, doi:

10.1109/ACCESS.2017.2704100.

[33] J. Scheuner and P. Leitner, “Performance benchmarking of infrastructure-as-a-service

(IaaS) clouds with cloud workbench,” Proc. - 2019 IEEE 4th Int. Work. Found. Appl.

Self* Syst. FAS*W 2019, vol. 11, no. 7, pp. 257–258, 2019, doi: 10.1109/FAS-

W.2019.00070.

[34] Z. Li, “Using public and free platform-as-a-service (PaaS) based lightweight projects for

software architecture education,” Proc. - Int. Conf. Softw. Eng., pp. 1–11, 2020, doi:

10.1145/3377814.3381704.

[35] J. Logeshwaran, “The control and communication management for ultra dense cloud

system using fast Fourier algorithm,” Ictact J. Data Sci. Mach. Learn., vol. 3, no. 2, pp.

281–284, 2022.

[36] M. Shahrad, J. Balkind, and D. Wentzlaff, “Architectural implications of function-as-a-

service computing,” Proc. Annu. Int. Symp. Microarchitecture, MICRO, vol. 10, no. 7,

pp. 1063–1075, 2019, doi: 10.1145/3352460.3358296.

[37] G. Yugansh and G. Bhavana, “A Comprehensive Survey Of Infrastructure As A Service

By Top Public Cloud Vendors,” Int. J. Creat. Res. Thoughts - Ijcrt, vol. 10, no. 11, pp.

888–895, 2022, [Online]. Available: https://www.ijcrt.org/papers/IJCRT2211217.pdf

[38] R. Dhaya, R. Kanthavel, and K. Venusamy, “Dynamic secure and automated

infrastructure for private cloud data center,” Ann. Oper. Res., vol. 326, no. 1, p. 127,

2021, doi: 10.1007/s10479-021-04442-0.

[39] P. Trakadas et al., “Hybrid clouds for data-intensive, 5G-enabled IoT applications: An

overview, key issues and relevant architecture,” Sensors (Switzerland), vol. 19, no. 16,

2019, doi: 10.3390/s19163591.

[40] G. A., S. S., G. M., T. V., and J. P., “A detailed study of various challenges in cloud

77

computing,” IIOAB J., vol. 10, no. 2, pp. 18–26, 2019.

[41] Y. Perwej, K. Haq, F. Parwej, and M. M., “The Internet of Things (IoT) and its

Application Domains,” Int. J. Comput. Appl., vol. 182, no. 49, pp. 36–49, 2019, doi:

10.5120/ijca2019918763.

[42] M. Lombardi, F. Pascale, and D. Santaniello, “Internet of things: A general overview

between architectures, protocols and applications,” Inf., vol. 12, no. 2, pp. 1–21, 2021,

doi: 10.3390/info12020087.

[43] R. Asif and S. R. Hassan, “IoT Exploring the Confluence of IoT and Metaverse : Future

Opportunities and Challenges,” Sensors, vol. 4, no. 3, pp. 412–429, 2023.

[44] K. T. Kadhim, A. M. Alsahlany, S. M. Wadi, and H. T. Kadhum, “An Overview of

Patient’s Health Status Monitoring System Based on Internet of Things (IoT),” Wirel.

Pers. Commun., vol. 114, no. 3, pp. 2235–2262, 2020, doi: 10.1007/s11277-020-07474-

0.

[45] A. A. Pise et al., “Enabling Artificial Intelligence of Things (AIoT) Healthcare

Architectures and Listing Security Issues,” Comput. Intell. Neurosci., vol. 2022, pp. 1–

14, 2022, doi: 10.1155/2022/8421434.

[46] K. Nandhini and V. Vidhya, “An Alleviation of Cloud Congestion Analysis of Fluid

Retrial User on Matrix Analytic Method in IoT-based Application,” J. Niger. Soc. Phys.

Sci., vol. 5, p. 1148, 2023, doi: 10.46481/jnsps.2023.1148.

[47] C. Stergiou, K. E. Psannis, B. G. Kim, and B. Gupta, “Secure integration of IoT and

Cloud Computing,” Futur. Gener. Comput. Syst., vol. 78, pp. 964–975, 2018, doi:

10.1016/j.future.2016.11.031.

[48] S. Hamdan, M. Ayyash, and S. Almajali, “Edge-computing architectures for internet of

things applications: A survey,” Sensors (Switzerland), vol. 20, no. 22, pp. 1–52, 2020,

doi: 10.3390/s20226441.

[49] S. Mishra and A. K. Tyagi, “The Role of Machine Learning Techniques in Internet of

Things-Based Cloud Applications,” Internet of Things, no. 7, pp. 105–135, 2022, doi:

10.1007/978-3-030-87059-1_4.

[50] P. M. Kumar, G. Usha Devi, S. Basheer, and P. Parthasarathy, “A study on data de-

duplication schemes in cloud storage,” Int. J. Grid Util. Comput., vol. 11, no. 4, pp. 509–

78

516, 2020, doi: 10.1504/IJGUC.2020.108450.

[51] S. Ahmed, M. F. Hossain, M. S. Kaiser, M. B. T. Noor, M. Mahmud, and C. Chakraborty,

“Artificial Intelligence and Machine Learning for Ensuring Security in Smart Cities,”

Adv. Sci. Technol. Secur. Appl., pp. 23–47, 2021, doi: 10.1007/978-3-030-72139-8_2.

[52] J. Gnana Jeslin and P. Mohan Kumar, “Decentralized and Privacy Sensitive Data De‐

Duplication Framework for Convenient Big Data Management in Cloud Backup

Systems,” Symmetry (Basel)., vol. 14, no. 7, pp. 1–20, 2022, doi: 10.3390/sym14071392.

[53] N. A. Et al., “An Enhanced Approach to Improve the Security and Performance for

Deduplication,” Turkish J. Comput. Math. Educ., vol. 12, no. 6, pp. 2866–2882, 2021,

doi: 10.17762/turcomat.v12i6.5797.

[54] S. M. A. Mohamed and Y. Wang, “A survey on novel classification of deduplication

storage systems,” Distrib. Parallel Databases, vol. 39, no. 1, pp. 201–230, 2021, doi:

10.1007/s10619-020-07301-2.

[55] C. Prathima, N. B. Muppalaneni, and K. G. Kharade, “Deduplication of IoT Data in

Cloud Storage,” Mach. Learn. Internet Things Soc. Issues, vol. 9, pp. 147–157, 2022,

doi: 10.1007/978-981-16-5090-1_13.

[56] A. Nauman, Y. A. Qadri, M. Amjad, Y. Bin Zikria, M. K. Afzal, and S. W. Kim,

“Multimedia internet of things: A comprehensive survey,” IEEE Access, vol. 8, pp.

8202–8250, 2020, doi: 10.1109/ACCESS.2020.2964280.

[57] B. Bhushan, A. Kumar, A. K. Agarwal, A. Kumar, P. Bhattacharya, and A. Kumar,

“Towards a Secure and Sustainable Internet of Medical Things (IoMT): Requirements,

Design Challenges, Security Techniques, and Future Trends,” Sustain., vol. 15, no. 7,

2023, doi: 10.3390/su15076177.

[58] H. Vuong, H. Nguyen, and L. Tran, “A Design of Parallel Content-Defined Chunking

System Using Non-Hashing Algorithms on FPGA,” IEEE Access, vol. 10, no. June, pp.

82036–82048, 2022, doi: 10.1109/ACCESS.2022.3196775.

[59] R. N. S. Widodo, H. Lim, and M. Atiquzzaman, “A new content-defined chunking

algorithm for data deduplication in cloud storage,” Futur. Gener. Comput. Syst., vol. 71,

pp. 145–156, 2017, doi: 10.1016/j.future.2017.02.013.

[60] W. Xia et al., “The design of fast content-defined chunking for data deduplication based

79

storage systems,” IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 9, pp. 2017–2031,

2020, doi: 10.1109/TPDS.2020.2984632.

[61] R. B. B, S. Y. T, and M. U. S. A, “A Secured Cloud Storage Scheme Using ECC-IRNS

Based Deduplication Approach in IoT Networks,” J. Xidian Univ., vol. 17, no. 8, 2023,

doi: 10.37896/jxu17.8/044.

[62] B. Mi, Y. Li, H. Darong, T. Wei, and Q. Zou, “Secure data de-duplication based on

threshold blind signature and bloom filter in internet of things,” IEEE Access, vol. 8, pp.

167113–167122, 2020, doi: 10.1109/ACCESS.2020.3023750.

[63] M. A. S. M. Saeed and L. E. George, “Data Deduplication System Based on Content-

Defined Chunking Using Bytes Pair Frequency Occurrence,” symmetry-MDPI, vol. 12,

no. 10, pp. 1–20, 2020.

[64] A. Ahmed, S. Abdullah, M. Bukhsh, I. Ahmad, and Z. Mushtaq, “An Energy-Efficient

Data Aggregation Mechanism for IoT Secured by Blockchain,” IEEE Access, vol. 10,

pp. 11404–11419, 2022, doi: 10.1109/ACCESS.2022.3146295.

[65] X. Jin, H. Liu, C. Ye, X. Liao, H. Jin, and Y. Zhang, “Accelerating Content-Defined

Chunking for Data Deduplication Based on Speculative Jump,” IEEE Trans. Parallel

Distrib. Syst., vol. 34, no. 9, pp. 1–12, 2023, doi: 10.1109/tpds.2023.3290770.

[66] Y. Zhou, “An efficient encrypted deduplication scheme with security-enhanced proof of

ownership in edge computing,” BenchCouncil Trans. Benchmarks, Stand. Eval., vol. 2,

no. 2, p. 100062, 2022.

[67] Y. Wang, M. Miao, J. Wang, and X. Zhang, “Secure deduplication with efficient user

revocation in cloud storage,” Comput. Stand. Interfaces, vol. 78, p. 103523, 2021, doi:

10.1016/j.csi.2021.103523.

[68] L. Lin, Y. Deng, Y. Zhou, and Y. Zhu, “InDe: An Inline Data Deduplication Approach

via Adaptive Detection of Valid Container Utilization,” ACM Trans. Storage, vol. 19,

no. 1, 2023, doi: 10.1145/3568426.

[69] S. Wu et al., “Improving reliability of deduplication-based storage systems with per-file

parity,” Proc. IEEE Symp. Reliab. Distrib. Syst., vol. 2019-Octob, pp. 171–180, 2019,

doi: 10.1109/SRDS.2018.00028.

[70] S. E. Ebinazer, N. Savarimuthu, and S. Mary Saira Bhanu, “An efficient secure data

80

deduplication method using radix trie with bloom filter (SDD-RT-BF) in cloud

environment,” Peer-to-Peer Netw. Appl., vol. 14, no. 4, pp. 2443–2451, 2021, doi:

10.1007/s12083-020-00989-0.

[71] Z. Xu and W. Zhang, “QuickCDC: A Quick Content Defined Chunking Algorithm Based

on Jumping and Dynamically Adjusting Mask Bits,” 19th IEEE Int. Symp. Parallel

Distrib. Process. with Appl., pp. 288–299, 2021, doi: 10.1109/ISPA-BDCloud-

SocialCom-SustainCom52081.2021.00049.

[72] H. Kwon, C. Hahn, K. Kang, and J. Hur, “Secure deduplication with reliable and

revocable key management in fog computing,” Peer-to-Peer Netw. Appl., vol. 12, no. 4,

pp. 850–864, 2019, doi: 10.1007/s12083-018-0682-9.

[73] B. Rasina Begum and P. Chitra, “SEEDDUP: A Three-Tier SEcurE Data DedUPlication

Architecture-Based Storage and Retrieval for Cross-Domains Over Cloud,” IETE J. Res.,

vol. 69, no. 4, pp. 2224–2241, 2023, doi: 10.1080/03772063.2021.1886882.

[74] L. Xiao, B. Zou, C. Zhu, and F. Nie, “Reduced data : An efficient and secure

deduplication scheme based on data similarity and blockchain for cloud-assisted medical

storage systems,” J. Supercomput., vol. 79, no. 3, pp. 2932–2960, 2023, doi:

10.1007/s11227-022-04746-3.

[75] L. Xiao, B. Zou, and X. Kui, “A Secure Lossless Redundancy Elimination Scheme With

Semantic Awareness for Cloud-Assisted Health Systems,” IEEE Syst. J., vol. 17, no. 3,

pp. 4615–4626, 2023, doi: 10.1109/JSYST.2023.3253690.

[76] T. Benil and J. Jasper, “Blockchain based secure medical data outsourcing with data

deduplication in cloud environment,” Comput. Commun., vol. 209, no. 6, 2022, pp. 1–

13, 2023, doi: 10.1016/j.comcom.2023.06.013.

[77] Y. Zhang, C. Xu, H. Li, K. Yang, J. Zhou, and X. Lin, “HealthDep: An Efficient and

Secure Deduplication Scheme for Cloud-Assisted eHealth Systems,” IEEE Trans. Ind.

Informatics, vol. 14, no. 9, pp. 4101–4112, 2018, doi: 10.1109/TII.2018.2832251.

[78] P. Puzio, R. Molva, M. Önen, and S. Loureiro, “Perfectdedup: Secure data

deduplication,” Data Priv. Manag. Secur. Assur. 10th Int. Work. DPM 2015, 4th Int.

Work. QASA 2015, Vienna, Austria, vol. 9481, no. 644412, pp. 150–166, 2016, doi:

10.1007/978-3-319-29883-2_10.

81

[79] A. S. M. Saeed and L. E. George, “Fingerprint-based data deduplication using a

mathematical bounded linear hash function,” Symmetry (Basel)., vol. 13, no. 11, 2021,

doi: 10.3390/sym13111978.

