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                                        ABSTRACT  

 

 

The aim of this work is to analyze two unsteady motions of incompressible non-Newtonian 

fluids through a plate channel. Exactly, we examine exact analytical expressions for unsteady, 

laminar flows of an incompressible Burgers fluid.  The porous effects are taken into 

consideration. Also, we use the assumption that pressure is constant and there is no body force 

along the direction of the flow. The fluid motion is generated by one of the plates which is 

either moving in its plane or oscillates in its own plane, and the obtained solutions satisfy all 

imposed initial and boundary conditions. The exact analytical solutions for dimensionless 

velocity and associated shear stress are acquired by means of the Finite Fourier Sine 

Transform (FFST). The starting solutions corresponding to the oscillatory motion of the 

boundary are presented as a sum of permanent (steady-state) and transient components. These 

solutions can be useful for those who want to eliminate the transients from their experiments. 

For a check of the obtained results, their steady-state components are presented in different 

forms whose equivalence is graphically illustrated. Analytical solutions for incompressible 

Oldoryd-B, Maxwell and Newtonian fluids performing the same motions are recovered as 

limiting cases of the presented results. To shed light on some relevant physical aspects of the 

obtained results, the influence of the material parameters of the fluid motion as well as 

comparison amongst various models are underlined by graphical illustrations. It is found that 

the Burgers fluids flow slower as compared to Newtonian fluids. The required time to reach 

the steady-state is also presented. It is found that the presence of porous medium delays the 

appearance of the steady-state. It has been observed that the velocity is an increasing function 

of Burgers fluid parameter and by increasing time the magnitude of velocity is larger for both 

cases. Moreover, the amplitude of oscillations is larger for the velocity profile without porous 

medium, but we have seen the opposite effect for the steady state shear stress, for different 

values of Burgers parameter.     
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CHAPTER 1  

INTRODUCTION  

1.1 Burgers Fluid 

Fluid is a term, in physics which gas, liquid, or other material that flows through external 

forces or under an applied shear stress basically, these are materials that cannot sustain the 

impact of any shear force since they have zero shear modulus. There are two types of fluid 

known as Newtonian and non-Newtonian fluids. The fluid that obeys the Newton's viscosity 

law, or stress on fluid layers is directly proportional to the share strain rate is known as 

Newtonian fluid. However, fluids categorized as non-Newtonian fluids are those whose value 

of viscosity (μ) varies. Liquid crystals, paints, foams, lubricants, and biological fluids are a 

few examples for such types of fluid. Non-Newtonian fluids, like creep, shear 

thinning/thickening, yield stress, and relaxation time, show prominent existence from ordinary 

behavior of fluid. Further, non-Newtonian fluids are divided into rate type fluids which have 

elastic and memory effects. Here, "memory" refers to the way in which the shear stress is 

influenced by the relative deformation gradients. These models are employed to explain the 

behavior of fluids with minimal memory, like diluted polymeric solutions. The ideal model 

for describing the behavior of various geological materials is the rate-type fluid model, which 

Burgers developed to explain fluid behavior by Burgers et al.  [1]. The Burgers model is the 

one that is most often used to explain how asphalt and asphalt mixtures respond by Lee et al. 

[2]. It is also frequently used to compute the earth mantle's temporary creep property; 

particularly the post-glacial uplift by Peltier et al. [3]. The study examined viscoelastic fluid 

behavior during accelerated flows using the fractional Burgers model. Both Newtonian and 

non-Newtonian fluids contributions are revealed by exact solutions, which can be expressed 
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using generalized Mittag-Leffler functions and applied to the range of fluid models. These 

discoveries provide useful applications for comprehending the dynamics of viscoelastic fluids 

under acceleration by Khan et al. [4]. The investigation uses fractional calculus and 

magnetohydrodynamics to examine incompressible Burgers fluid flows in a rotating frame 

inside porous media. Three examples examine how wall slip affects velocity evolution in 

various scenarios, offering information that is pertinent to MHD spinning energy producers 

that use rheological working fluids in real-world settings by Mqbool et al. [5]. 

 

 

1.2 Porous Medium 

 

Porous media, like sponges, encourage the simple flow of materials from the soil into 

engineered structures. Proficiency in capillary action, permeation, and porosity is necessary 

for fluid dynamics studies, in environmental science and geology. In order to investigate 

relationships and apply discoveries in filtration systems, oil reservoir management, and flow 

of ground water, researchers employ mathematical models. Understanding fluid dynamics is 

crucial for many real-world applications, which requires an understanding of porous media. 

The later investigations in Nanofluid flow based on water in a porous medium contains 

particles of copper oxide across a wavy surface. Utilizing the Dupuit–Forchheimer model, 

showed that while nanoparticle concentration improves convection heat transfer, interactions 

with the porous structure led to a reduction in transfer of heat. The relationship between 

nanofluids, porous media, and the kinetics of heat transmission are disclosed by Hassan et al. 

[6]. The magnetohydrodynamics free convective rotating flow over an inclined, accelerated 

plate in a porous medium is examined in this study along with the effects of ion slip and Hall. 

The non-dimensional parameter effects using the Laplace transform, which is important for 

comprehending drag on heated and incline surfaces in seepage flows by Krishna et al. [7]. 

The pressure-driven flow of a water-alumina oxide nanofluid in a wavy path with porous 

media, taking radioactive electro-magnetohydrodynamics and entropy generation into 

account. The heat transfer, electromagnetic fields, and fluid flow interact in this channel 

configuration. Using the conformable derivative, the conformable Swartzendruber models for 
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non-Darcian flow through porous materials. These models showed good agreement when 

validated with data on water flow in compacted soils, and sensitivity analyses showed how 

parameters affect the behavior of the models by Yang et al.  [10]. 

 

 

 

1.3 Unsteady Motion 
 

A flow is considered non-uniform if its velocity does not always remain constant. In other 

words, a flow that is unsteady is one wherein the overall volume of liquid flowing varies with 

time. Temporary unsteady flow might eventually become zero flow or steady flow. In fluid 

dynamics, unstable motions introduce dynamic unpredictability that includes changes such as 

turbulence, periodic oscillations, and transient phenomena. These changes are important for 

applications in vehicle design, aerodynamics, and biological fluid dynamics. Using modified 

Bessel equations and Laplace transformation, the study investigates the shear stress and 

velocity field of a fractional Burgers fluid that oscillates within a circular cylinder. The 

influence of parameters is examined through numerical simulations, and the agreement 

between numerical and exact solutions is checked through graphical and numerical 

comparisons of the results by Raza et al. [11]. Using integral transformations and Bessel 

equations, Burgers fluid with fractional derivatives in a rotating annulus. Comparisons with 

Tzou's algorithm is used to validate the findings, which show the impact of different 

parameters on fluid flow patterns by Javaid et al. [12]. With applications to various fluid 

models and calculation of the amount of time required to grasp steady-state, the first steady-

state exact expressions for time-dependent shear stresses producing isothermal permanent 

motion of Burgers fluids which is incompressible across infinite flat plate by Fetecau et al. 

[13]. Using the fractional Burgers model, the non-Newtonian MHD fluids flow (like asphalt) 

in porous media while taking the environment into account and examining the impact of 

several factors on temperature, velocity, and concentration distributions by Jiang et al. [14]. In 

convective unsteady Maxwell fluid flow around a stretchable cylinder with Lorentz force. It 
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finds that buoyancy, convective heat energy, and relaxation time affect fluid motion, and that 

relaxation phenomena affects thermal and solute energy transport by Wang et al. [15]. 

 

 

1.4 Integral Transform 

 

 

A mathematical integral transform is a kind of map that uses integration to transfer a function 

across different function spaces, potentially making it easier to characterize and manipulate 

some of the original function's properties as like the initial function space. The transformed 

function is normally redirected using the inverse transform to the original function space. 

Finite Fourier transform is one of the integral transforms, which is useful in fluid dynamics. 

The Integral transforms to analyze flow characteristics and parameter influences to study the 

unsteady motion of second-grade fluid in an oscillating duct caused by rectified sine pulses by 

Zheng et al. [16]. The analytical expressions for the steady-state motions of incompressible 

generalized Burgers fluids with magnetic and porous effects, demonstrating the presence of 

these effects and the delayed attainment of steady state as well as increased flow resistance by 

Fetecau et al. [17]. Using the derivative of Caputo-Fabrizio fractional and integral transforms 

to obtain exact solutions, the joint effects of a magnetic field and heat transfer on magneto 

hydrodynamic two-phase dusty Casson fluid flow between parallel plates, revealing realistic 

aspects in comparison to the classical model by Ali et al.  [18]. Using Cattaneo–Christov 

diffusion theory, the Buongiorno phenomenon, similarity transformations, and finite element 

analysis, the study creates a model for bio-convection and microorganism movement in a 

magnetized generalized Burgers nano liquid. The model reveals relationships between 

temperature, thermal Biot number, and fluid parameters with implications for nanoparticle 

concentration dispersion by Shahzad et al. [19]. 
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1.5 Exact Solution 

In fluid dynamics, exact solutions are exact mathematical solutions that satisfy governing 

equations exactly and provide accurate descriptions of fluid behavior. They are frequently 

used to validate numerical methods and comprehend basic phenomena. The nonlinear Burgers 

equation with flexible coefficients (BEVC) using -expansion and Jacobian elliptic functions, 

discovering new exact solutions with various dynamics, differing from previous studies by  Qi 

et al.  [23]. The solutions which is steady-state for Burgers fluids incompressible on a flat 

plate in a porous material with isothermal MHD movements, validating results and showing 

earlier attainment of steady state when a porous substance or magnetic field is present by 

Fetecau et al.  [31]. In study of Burgers fluids transient electro-osmotic flow in a small tube 

and offers analytical and numerical insights to help solve complex problems involving 

transient electro-osmotic small tubes and understand its behavior in situations like blood 

clotting by Raza et al.  [22]. The non-linear partial differential equations over extended period 

of time by approximating analytical solutions for Burgers equations using the multistage 

Homotopy asymptotic method. Numerical comparisons validate this methods superiority over 

the variational iteration method by Wang et al.  [21].  

 

1.6 Constantly Accelerated Flow 

 

The fluid's acceleration is constant, which means that the change in velocity per unit of time is 

constant. Equations in mathematics that come from the concepts of fluid dynamics can be 

used to explain this phenomenon. For example, equations like Bernoulli's equation or the 

continuity equation can be used to evaluate the behavior of a fluid in one-dimensional steady 

flow with constant acceleration. These formulas describe the variations in fluid velocity, 

pressure, and density along the flow path. It is like realize how air accelerates in a wind tunnel 

or how a stream of water accelerates as it flows down a hill. Constant accelerated flow 

principles are fundamental to numerous scientific and engineering applications, ranging from 

pipeline design to the explanation of fluid behavior in various systems. Investigated 

accelerated flows in viscoelastic fluids using fractional Burgers' model, obtaining exact 
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solutions through transforms and revealing Newtonian and non-Newtonian contributions with 

broader applications to various fluid models by Khan et al. [4]. 

 

 

1.7 Oscillating Flow 

 

In fluid dynamics, the term "oscillating flow" describes the recurring motion or variation of 

fluid particles in a system. When the fluid's velocity, pressure, and other flow characteristics 

change over time, it exhibits an ongoing and predictable pattern. Oscillatory pipe flow is a 

typical instance of oscillating flow when a fluid oscillates back and forth within a pipe or 

channel. External forces or mechanical vibrations applied to the fluid system frequently cause 

this kind of flow. Mathematical models and equations that consider the oscillation's 

frequency, amplitude, and phase can be used to explain the behavior of oscillating flow. The 

fluid particles in this instance are forming a dynamic and cyclic flow pattern by moving to the 

beat of oscillations. Scientists and engineers can better predict and regulate the behavior of 

fluids in systems that experience periodic disruptions by studying oscillating flow. For 

extracting experiment transients, established analytical formulations for steady-state 

components in oscillatory fluid motions via a rectangular channel with constant dimensionless 

shear stresses in power-law viscous fluids by Fetecau et al. [66]. 

 

1.8 Contributions to the Thesis 

 

The review study in this thesis by Fetecau et al. [74] is described then the work is extended by 

considering the Burgers fluid flow with prescribed initial and boundary conditions when a 

porous material is present. Exact analytical solutions are obtained for two cases, namely, 

accelerating, and oscillating flow, by using integral transform. The graphical behaviors of 

different pertinent parameters are obtained by Mathematica and MATLAB software. 
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1.9 Thesis Organization 

The contents of the thesis are briefly summarized in the information below:  

Chapter 1 presents an introduction to the thesis and gives an overview of the main concepts 

and research. 

Chapter 2 covers the existing literature and provides the earlier research conducted by 

scientists using fundamental concepts.  

Chapter 3 gives some basic definitions and dimensionless parameters that are applied in the 

research to obtain exact the flow problem's results.  

Chapter 4 provides an extensive description of the mathematical analysis of Maxwell fluid 

flow induced by an oscillating or continuously accelerating wall through a porous plate 

channel. To determine the exact solution to the governing flow problem, the finite Fourier 

sine transform technique is applied. 

Chapter 5 expands the review work by considering the impact of Burgers fluid flowing along 

the direction of flow when a porous material is present between two infinite horizontal plates 

which are parallel in the case of isothermal flow. To convert the modeled PDE into ODE, 

finite FFST is employed. Exact analytical solutions are obtained for accelerated and 

oscillating motion of the boundary. The behavior of different parameters is discussed through 

graphs. 

Chapter 6 gives final views on the whole investigation work and suggests possible 

implications for this research in the future.  

The Bibliography is a list of the references that this thesis consulted. 



 

 

CHAPTER 2  

LITERATURE REVIEW  

2.1 Overview  

The rate types are those fluids that believe the elastic and memory effects among them. Rate 

type models are employed to explain the behavior of fluids with minimal memory, like diluted 

polymeric solutions. Here, "memory" refers to the way in which the shear stress is influenced 

by the relative deformation gradient's past. The ideal model for describing the behavior of 

various geological materials is the rate-type fluid model, which Burgers developed to explain 

fluid behavior by Burgers et al. [1]. The Burgers model is the one that is most often used to 

explain how asphalt and asphalt mixtures respond by Lee et al.  [2]. It is also frequently used 

to compute the earth mantle's temporary creep property, particularly the post-glacial uplift by 

Peltier et al. [3].  

 

The study examines viscoelastic fluid behavior during accelerated flows using the fractional 

Burgers' model. Both Newtonian and non-Newtonian contributions are revealed by exact 

solutions, which can be expressed using generalized Mittag-Leffler functions and applied to a 

range of fluid models. These discoveries provided useful applications for comprehending the 

dynamics of viscoelastic fluids under acceleration by Khan et al. [4]. The investigation was 

made fractional calculus and magnetohydrodynamics to examine incompressible Burgers' 

fluid flows in a rotating frame inside porous media. Three examples examined how wall slip 

affects velocity evolution in various scenarios, offering information that is pertinent to MHD 

spinning energy producers that use rheological working fluids in real-world by Maqbool et al. 

[5]. The later investigated water-based nanofluid movement in a porous medium across a 

wavy surface with copper oxide particles. Utilizing the Dupuit–Forchheimer model, it showed 

that while nanoparticle concentration improves convection heat transfer, interactions with the 

porous structure cause the transmission of heat to decrease. This reveals the nuanced 



 

 

relationship between nanofluids, porous media, and the dynamics of heat transfer by Hassan 

et al. [6]. 

 

The magnetohydrodynamics free convective rotating flow over an inclined, accelerated plate 

is investigated in a porous media in this research along with the effects of Hall and ion slip. It 

investigated non-dimensional parameter effects using the Laplace transform, which are 

important for comprehending drag on heated and incline surfaces in seepage flows by Krishna 

et al. [7]. This research examined the pressure-driven flow of a water-alumina oxide nanofluid 

in a wavy channel with porous media, taking radiative electro-magnetohydrodynamics and 

entropy generation into account. The goal of the research is to better understand how heat 

transfer, electromagnetic fields, and fluid flow interact in this channel configuration. Its 

research enhanced our comprehension of these phenomena in real-world contexts by Ellahi et 

al. [8]. 

 

 Using the time-fractional Caputo-Fabrizio derivatives, the research examined incompressible 

viscous fluid flow while considering the motion of a plane wall in a porous medium under a 

magnetic field. Laplace and Fourier transforms are used to obtain solutions to the fractional 

differential equation, which showed the sum of the transient and steady components for 

sinusoidal oscillations of the plane wall. The research enhances our knowledge of fractional 

derivative fluid dynamics in intricate situations involving porous media and magnetic fields 

by Haq et al. [9]. Using the conformable derivative, the study showed conformable 

Swartzendruber models for non-Darcian flow in porous media. The models showed good 

agreement when validated with data on water flow in compacted soils, and sensitivity 

analyses show how parameters affect the behavior of the models by Yang et al. [10]. Using 

modified Bessel equations and Laplace transformation, the study investigated the shear stress 

and the velocity field of a fractional Burgers fluid oscillating in a circular cylinder. The 

influence of parameters is examined through numerical simulations, and the agreement 

between numerical and exact solutions is checked through graphical and numerical 

comparisons of the results by Raza at al. [11].  

 

Using integral transformations and Bessel equations, the study examined a Burgers fluid with 

fractional derivatives in a rotating annulus. Comparisons with Tzou's algorithm is used to 

validate the findings, which show the impact of different parameters on fluid flow patterns by 

Javaid et al. [12]. With applications to various fluid models and the amount of time to attain 



 

 

stable condition estimation, the study presented for time-dependent shear stresses the first 

exact steady-state solutions producing isothermal permanent movements of incompressible 

Burgers fluids across an infinite flat plate by Fetecau et al. [13]. Using the fractional Burgers 

model, the research investigated the MHD non-Newtonian fluids flow (like asphalt) in porous 

media while taking the environment into account and examining the impact of several factors 

on temperature, velocity, and concentration distributions by Jiang et al. [14].  

 

The flow of mixed convective unsteady Maxwell fluid flow around a stretchable cylinder with 

Lorentz force was examined that buoyancy, convective heat energy, and relaxation time affect 

fluid motion, and that relaxation phenomena affects thermal and solutal energy transport by 

Wang et al. [15]. The study of Fourier sine and Laplace transforms to analyze flow 

characteristics and parameter influences to investigate the second-grade fluid’s unsteady 

motion in an oscillating duct caused by rectified sine pulses by Zheng et al. [16]. The research 

examined precise analytical solutions for the steady-state incompressible motions of 

generalized Burgers fluids with porous and magnetic effects, demonstrating the presence of 

these effects and the delayed attainment of steady state as well as increased flow resistance by 

Fetecau et al. [17].  

 

Using the Caputo-Fabrizio fractional derivative and transforms to obtain exact solutions, the 

research investigated heat transfer's combined effects and a magnetic field on 

magnetohydrodynamics two-phase dusty Casson fluid flow between parallel plates, revealing 

realistic aspects in comparison to the classical model by Ali et al. [18]. Using Cattaneo–

Christov diffusion theory, the Buongiorno phenomenon, similarity transformations, and finite 

element analysis, the study investigated a model for bio-convection and microorganism 

movement in a magnetized generalized Burgers nano liquid. The model revealed relationships 

between temperature, thermal Biot number, and fluid parameters with implications for 

nanoparticle concentration dispersion by Shahzad et al.  [19].  

 

The study inspected Burgers' steady-state solutions for incompressible fluids moving in an 

isothermal MHD manner in a porous material on a flat plate, verifying results and showing 

earlier attainment of steady state when a magnetic field is present or porous medium by 

Fetecau et al. [20]. Moreover, the non-linear partial differential equations over extended 

periods of time by approximating analytical solutions for Burgers equations using the 

multistage Homotopy asymptotic method. Numerical comparisons validate this method's 



 

 

superiority over the variational iteration method compute by Wang et al. [21]. The research 

explores Burgers fluids transient electro-osmotic flow in a small tube and offers analytical and 

numerical solution to solve complex problems involving transient electro-osmotic small tubes 

and understand its behavior in situations like blood clotting by Raza et al. [22].  

 

The (BEVC) using expansion and Jacobian elliptic functions, discovering new exact solutions 

with various dynamics, differing from previous studies performed by Qi et al. [23]. By 

transforming the PDE into an ODE and contrasting the outcomes with alternative solution 

techniques, the Power Index Method is used to present new, exact solutions for Burger's 

equation in this research by Amad et al. [24]. The KdV–Burgers equation and Lie group 

analysis are used in this article to derive new and more general exact solutions, including 

arbitrary functions and constants, for the investigation of ion acoustic waves in a plasma. 

Their physical implications are discussed, and numerical simulations are included by Tanwar 

et al. [25].  

 

Through theoretical and numerical analyses, the accuracy and stability of the upwind, Lax–

Friedrichs, and Lax–Wendroff schemes in solving the inviscid Burgers equation were 

examind by  Koroch et al. [26].  The study examined the (1 + 1)-dimension Lie symmetry 

analysis and the modified Kudryashov method applied to the Boussinesq–Burgers system to 

extract different wave solutions for describing shallow water waves with physical 

interpretations by Kumar et al. [27]. With consideration for shear stress along the boundary, 

the study offers precise analytical solutions for the magnetohydrodynamic incompressible 

motions over an infinite plate of generalized Burgers fluids. Numerical and graphical analyses 

are used to verify the findings by Fetecau et al.  [28]. Burgers equation is used to investigate 

longitudinal dispersion in porous media; new integral transform and Homotopy perturbation 

technique are used for analytical solutions. The longitudinal dispersion phenomenon shows 

that concentration drops with distance at fixed times and somewhat rises with time inspected 

by Kunjan Shah et al. [29]. The extended generalized–expansion method uncovers new exact 

solutions for the modified Korteweg–de Vries and Burgers equations, providing insights into 

diverse applications and dynamic behaviors by Mohanty et al. [30]. By modifying Darcy's 

rule, the research investigates the unsteady MHD rotational flow of a generalized Burgers' 

fluid pass through moving plate through a porous media. The fluid decelerates as the porosity 

parameter (K) grows, and Hartmann number (M) according to the results. In contrast, a large 

Hall parameter (m) modifies the velocity profile by increasing the imaginary component and 



 

 

decreasing the real part by Khan et al. [31]. Computational fluid dynamics (CFD) for 

aeronautical design could be revolutionized by quantum computing, which overcomes the 

limitations of classical computing and demonstrates efficiency and accuracy in simulations, 

especially for the complex Burgers equation by Oz et al. [32]. To provide unconditional 

convergence and stability in a semi-discrete scheme, this study presented the two-dimensional 

Burgers-type equation numerically a localized mesh less collocation method. This is followed 

by a spatial approximation using a local radial basis function partition of unity (LRBF-PU) by 

Li et al. [33]. 

 

 Adem et al. [34] examined a coupled Burgers system in fluid mechanics that is extended (2 + 

1)-dimensional. It finds new exact solutions using the Kurdyshov and Lie symmetry 

techniques, which have wide-ranging applications in science. Biesek et al. [35] studied the 

Burgers equation effectively using Physics-Informed Neural Networks (PINNs) with implicit 

Euler transfer learning, showing accuracy with lower computational costs thanks to smaller 

neural network architecture. A general semi-analytical solution for the non-integrable damped 

KdV-Burgers-Kuramoto equation is achieved, providing insight into the propagation of non-

stationary dissipative waves in a variety of natural phenomena by Aljahdaly et al.  [36].  

 

FRDTM is utilized to investigate The Burger-Fisher equation with time fractional 

modifications. Its validity and accuracy are established by means of a comparison with exact 

solutions for varying fractional order values by Tamboli et al. [37]. Complex singularities are 

found developing the shape of an eye around the origin in the temporal domain of the in 

viscid Burgers equation, indicating their relevance well in advance of the pre shock time; 

singularity theory and an asymptotic analysis are used to address the observed tyger 

phenomenon, and two strategies are proposed to mitigate its effects: iterative UV and tyger 

purging completion by Rampf et al. [38]. 

  

Using various fractional derivatives and an implicit upwind scheme, Doley et al. [39] 

investigated the time-fractional Burgers equation numerically. It compared with exact 

solutions and other fractional models and validates against stability and convergence.  With 

consideration for magnetohydrodynamics and radiation the Caputo-Fabrizio fractional 

derivative to analyze the heat transformation in second-grade unsteady incompressible fluid. 

Accurate analytical solutions were obtained, and the effects of different physical parameters 

are explored through graphical illustrations investigated by Sehra et al. [40].  



 

 

 

The nonlinear forced Zakharov-Kuznetsov equation is derived in the paper using perturbation 

expansion and multiple scales methods. Multiple kink solutions are then obtained using a 

variety of mathematical techniques, and their features—such as interaction behavior and 

external source influence—were examined by Yin et al. [41]. In the context of the 1D viscous 

Burgers' equation, the study suggested a Neural Network-based method to accelerate high 

order discontinuous Galerkin methods. By applying corrective forcing terms to low order 

solutions, the method achieves high accuracy with reduced computational costs. Error bounds 

are analyzed for various scenarios, meshes, polynomial orders, and viscosity values by de 

Lara. et al.  [42].  

 

Using the -expansion method, the study investigated the stochastic fractional-space Burgers' 

equation (SFSBs'E) with noise with multiplicative properties. It has provided analytical 

solutions and, through graphical representations, sheds light on the influence of stochastic 

terms on solution stability by Al-Askar et al. [43]. Explicit finite difference method (EFDM) 

and physics-informed neural networks (PINN) are used to solve the Burgers equation; the 

results are compared with analytical solutions. Both approaches demonstrate good agreement, 

but EFDM aligns more closely with analytical solutions, suggested that it is a competitive 

method for simulating nonlinear phenomena in a variety of fields, including gas dynamics, 

flood waves, chromatography, and traffic flow. According to the research, these methods were 

useful for creating numerical models of various nonlinear partial differential equations by 

Savović et al. [44].  

 

Different unidirectional kink and peakon-like solutions are found when analytical solutions 

for the Time Fractional Generalized Burgers–Fisher Equation (CTFGB-FE) are investigated 

using the Exponential Function and Exponential Rational Function methods. Visual 

representations shed light on how these solutions behave by Ramya et al. [45]. The study 

analyzed the analysis is to combine Newtonian and non-Newtonian forms to find analytical 

solutions for magnetohydrodynamics (MHD) of a generalized Burger's fluid in a porous 

media. The paper offers compact series solutions for the velocity field and shear stress using 

integral transforms and uses graphical examples to analyze the effects of permeability, 

magnetism, and rheological factors inspected by Alotaibi et al. [46] and Abro et al.  [47].  

 



 

 

Using the generalized-improved and generalized approaches, exact solutions for the Schamel 

Burgers equation that produce shock-type waves are obtained, examined using Mathematica-

12, and visually displayed by Mohanty et al. [48]. Due to numerous applications in science 

and engineering, there have been numerous studies on the flow of viscous fluids among 

parallel plates investigated. Exact results for these motions are having in book by Schlichting 

et al. [49] and Wang et al.  [50, 51]. Exciting solutions for Couette flow which is unsteady, 

the unsteady generalized flow which is Couette and the unsteady flow of Poiseuille of the 

viscous, incompressible fluids (a Poiseuille flow layered on the simple Couette flow) has also 

been established by Erdogan  et al. [52].  

 

Still, for the velocity field the initial exact solutions that corresponds to the non-Newtonian 

incompressible fluids' motions, or second-grade fluids, lies between two parallel plates appear 

by Rajagopal et al,  [53] and Siddiqui et al. [54], when a plate moves or oscillates inside its 

plane. Wang et al. [55] and Sun et al. [56] has established systematic formulations for the two 

oscillatory motions of incompressible Maxwell fluids' steady-state solutions via a tube has a 

right triangular cross section that is rectangular/ isosceles Wenchang et al. [57], and Qi et al. 

[58] has made numerous modifications of earlier Maxwell fluid fractional solutions. 

 

The study focuses on how velocity in the MHD flow of a Burgers' fluid through a porous 

material in a circular channel is affected by the time-dependent pressure gradient. Bessel and 

modified Bessel functions are used to construct analytical solutions, and the research 

examines the impacts of various factors using visual aids and discussions of specific instances 

by Safdar et al. [59]. However, research on these flows through porous surfaces is crucial in a 

variety of fields, including technology and the natural sciences. Al-Hadhrami et al. [60], has 

presented a numerous investigation of viscous fluid flow via plate channels of porous 

medium, although flow in steady convection between parallel surfaces that are inclined has 

been examined by Cimpean et al. [61].  

 

The effects of porous on some incompressible viscous fluids' unstable simple Couette flow 

have been estimated by Kesavaiah et al. [62]. A numerical representation has been made of 

the impact of imperfections at the border on non-isothermal flow of fluid in a narrow media-

filled channel by Maruši´c-Paloka et al. [63]. In a recent study, Ehlers et al. [64] proved that, 

although all situations in their field can be solved using the expanded equations, the classical 

equations were only valid under specific limits, even though the classical equations are 



 

 

essential for motions across porous media. Fetecau et al. [65] has published on an extensive 

investigation of the unstable Viscose fluids move hydromagnetically via a porous medium 

between endless plates which is horizontal parallel. Further exact solutions have been found 

for the identical fluids' oscillatory movements among two infinite plates that are parallel to 

each other by Fetecau et al. [66] and Danish et al. [67] as limited examples of certain 

outcomes for fluids whose viscosity is depending on pressure. This study investigated 

unstable movements of incompressible UCM fluids across a plate channel, including porous 

effects. Shear stress and dimensionless velocity fields have analytical solutions established, 

and they are compared to incompressible Newtonian fluids. The findings demonstrate that a 

permeable media's presence postpones the achievement of steady-state and that flow of 

Maxwell fluids more slowly by Fetecau et al. [74]. 

.
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CHAPTER 3 

Fundamental and Basic Definitions  

3.1    Fluid  

A substance is referred to as fluid if it can flow and take on the shape of its container. It is 

described as a condition of matter that is different from gases and solids. Liquids like water, 

milk, or oil as well as gases like air or helium, can be considered fluids. One of the special 

qualities of fluids is their hydrostatic pressure, which is the capacity to apply pressure 

uniformly in all directions. Additionally, they display viscosity, or flow resistance. There are 

nineteen distinct fluids with varying viscosities; some are more "thick" or high viscosity, 

while others are more "thin" or low viscosity. Fluids react and interact with forces as they 

pass through objects or pipelines, for example, according to fluid dynamics. This area of 

research includes the conservation of mass, energy, and momentum, Bernoulli's, and 

turbulence principle. Fluids are used in many aspects of daily life and many different 

businesses, such as engineering, transportation, weather forecasting, and medical. Besides 

numerous other processes, they are essential to blood circulation, hydraulic systems, cooling 

systems, and weather patterns. Liquids are a common type of fluid that lacks an ongoing 

shape but has a certain volume. They flow smoothly and are nearly incompressible, taking the 

shape of the container. Examples are oil, liquids, and blood. Another kind of fluid that 

has both a defined shape and volume is a gas. They may expand to fill their vessel and are 

incredibly compressible. Examples of gases are air, carbon dioxide, and helium. Interesting 

behaviors of fluids include viscosity, surface tension, and fluid flow. These characteristics are 

essential in many fields of research and engineering, such as materials science, 

thermodynamics, and fluid dynamics science [49]. 
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3.2   Fluid statics  

 

 

The well-known area of fluid mechanics that deals with fluids that are not moving but is 

instead at rest. Another name for it is pressures and hydrostatics while stationary. The 

hydrostatic equation, which connects a fluid's pressure at a given depth to its weight above 

that depth, is another crucial idea in fluid statics. The formula, which derives from the mass 

conservation law, can be used to determine the pressure in a fluid at any depth. There are 

numerous real-world uses for fluid statics, including the design of water tanks, dams, and 

other structures that store or move fluids. In the medical field, it is also employed for tasks 

like blood pressure monitoring and IV fluid infusion rate monitoring [49]. 

3.3   Fluid kinematics 

 

 

A vital area of fluid mechanics, which examines fluid motion unaffected by external factors. 

Its focus is on characterizing and evaluating fluid flow properties like acceleration, 

deformation, and velocity. The motion of a fluid particle is one of the main ideas in fluid 

kinematics. A tiny amount of fluid that flows with the fluid flow is called a fluid particle. 

Understanding the features of the fluid flow such as its acceleration and velocity, can be 

obtained by monitoring the motion of the fluid's constituent particles. The description of fluid 

flow geometry, such as the size and form of fluid elements as they pass through a flow field, 

is also related to fluid kinematics. This is crucial for examining the actions of fluids in many 

applications, including hydraulic system design and ocean current research [49]. 

 

 

3.4   Fluid dynamics  

 

 

The study of fluids in motion or at rest is known as fluid dynamics. This important area of 

study has applications in many different industries, including for example, mechanical, 

chemical, environmental, and aeronautical engineering, meteorology, and geophysics. The 
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aim of the goal of fluid dynamics research is to clarify the characteristics of fluids, including 

their pressure, viscosity, and density, as well as how they respond to external forces like 

gravity or fluid flow. Important ideas related to fluid dynamics include the Reynolds number, 

turbulence, boundary layers, and the Navier-Stokes equations. Fluid dynamics is used in 

everything from spacecraft and airplane design to weather patterns and ocean current 

research. The movement of water and blood through the human body via channels and pipes, 

and the movement of fluids in turbines and engines are a few typical instances of fluid 

dynamics at action [49]. 

 

 

3.5 Types of Flow 

 

 

3.5.1   Steady Flow  

 

When the fluid characteristics in the system are constant across time at any given place, it is 

referred to as steady flow. In other words, the flow parameters, such as velocity, pressure, and 

temperature, remain constant at a particular location over time. Imagine a river with a 

constant, unchanging flow rate. If you pick a specific point in the river and observe the water 

properties over time, you'll find that they don't vary. 

 

3.5.2 Unsteady Flow  

 

Unsteady flow, on the other hand, is when the fluid properties at a given point change with 

time. The flow parameters are not constant, and there are variations over time. Picture a 

sudden surge of water in a river, causing the velocity and pressure at a particular spot to 

change rapidly. This dynamic behavior characterizes unsteady flow. 
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3.5.3      Laminar flow  

 

 

The term "laminar flow" describes the orderly, smooth travel of fluid molecules that follow 

parallel, straight streamlines. It is sometimes referred to as streamline or viscous flow and is 

usually seen in thin pipelines with minor fluid velocity and high viscosity. Laminar flow 

comes with various forms, such as pulsatile, unidirectional, and oscillatory flow. Some 

instances of this kind of flow include the flow of blood through capillaries, the flow of oil via 

thin tubes, and the upward, straight-line passage of smoke from a stick. But as the smoke 

reaches a particular altitude and starts to deviate from its intended course, it turns into a 

turbulent flow. 

 

 

3.5.4 Turbulent Flow 

 

 

The irregular movement of the fluid particles in this kind of flow leads to the production of 

waves, which significantly waste energy. Large-diameter pipes with high fluid velocities of 

thirty are usually the sites of this type of flow, which is characterized by continuously shifting 

fluid speeds and directions. Turbulent flow analysis is frequently done using fluid dynamics 

(FD) analysis. CFD, or FD, is a subfield of fluid dynamics that addresses problems involving 

turbulent fluid flows using numerical analysis and algorithms. The non-dimensional Reynolds 

number is used to identify the kind of flow in pipes. 

 

 

3.5.5   Incompressible Flow 

 

 

The density of the fluid remains constant regardless of changes in pressure for incompressible 

flow. This means that the volume of the fluid elements doesn't change significantly, even 

when subjected to variations in pressure or temperature. Liquids like water are often 

considered incompressible under normal conditions. In scenarios where the flow speeds are 

relatively low, and the pressure changes are not extreme, the density remains nearly constant, 

simplifying the fluid dynamics equations. 
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3.5.6   Compressible Flow 

 

 

The density of the fluid can change in response to variations in pressure and temperature for 

compressible flow. This usually occurs at high speeds or in situations where there are 

significant changes in pressure. As an example, when an aircraft moves at high speeds, the air 

around it experiences changes in pressure and temperature, leading to variations in density. 

Compressibility effects become important in such scenarios. Compressible flow is crucial in 

aerodynamics, supersonic and hypersonic flows, and other applications where the speed and 

pressure changes are significant. 

 

 

3.5.7 Transient Flow 

 

 

Transient flow in fluid dynamics refers to fluid motion where the properties like velocity and 

pressure vary with time at a specific location within a system. Unlike steady flow, which 

implies constancy, transient flow captures the dynamic changes occurring, such as during 

start-ups or abrupt alterations in system conditions. Picture turning on a tap—initially, the 

water flow isn't immediately constant, but undergoes adjustments until it stabilizes. 

Understanding transient flow is pivotal in engineering for predicting fluid behavior during 

dynamic events and ensuring system stability under changing conditions. 

 

 

3.6    Stress 

 

 

The pressure or internal forces that are applied within an object or material are referred to as 

stress in relation to mechanics and physics. It measures the body's resistance to deformation or 

shape change. Both internal forces within the material itself and external forces applied to an 

object can generate stress. Usually, stress is expressed in terms of its direction and amplitude. 

The orientation of the internal forces within the material is indicated by the direction of stress. 

Stress can take many different forms, such as shear, compressive, and tensile stress. In 
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disciplines like engineering, materials science, and structural analysis, stress is an important 

idea. The concept of stress management in materials and structures is essential to the design 

of dependable and safe systems. Stress in mathematics is shown by 

 

                                   𝜎 =  
𝐹𝑜𝑟𝑐𝑒(𝐹) 

Area(A) 
 ,                                                                       (3.1) 

 

where A, σ, and F are the area of the force application, stress applied and force applied, 

respectively. The stress units in SI units are N/𝑚2 [49]. 

3.6.1 Tangential and Normal Stress 

Tangential stress is the force that is parallel to or operating along a surface. The best 

illustration of tangential stress is shear stress operating on the fluid. When a force acts 

perpendicular (or "normal") to the surface of an object is known as normal stresses [72]. 

                 

                                        

Figure 3.1: Normal and shear stresses 
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3.6.2     Strain 

 

Measured as the proportion of the body's deformation to its original size, strain represents the 

amount that a force applied causes a body to deform in that direction. 

 

 

                                 𝑆𝑡rain (𝜖) =  
Change in length(δl) 

Original length(L)
 ,                                               (3.2) 

 

where 𝜖, 𝐿 and 𝛿𝑙 is the strain produced on by the applied tension, the material's  original 

length, and its length change, respectively [49]. 

 

 

3.7   Viscosity 

 

  

A fluid's (gas or liquid) resistance to shape change or the relative movement of neighboring 

parts is known as viscosity. There are two ways to relate viscosity follows: 

 

 

3.7.1    Dynamic viscosity   

 

 

When an external force is applied the fluid's resistance to flow is known as its dynamic 

viscosity.  

 

                                         𝜇 = 
shear stress 

velocity gradient
 .                                                           (3.3) 

 

The SI unit for dynamic viscosity is 𝑁𝑠/𝑚2 or can be stated as 𝑘𝑔/𝑚𝑠 [49]. 
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3.7.2     Kinematic viscosity  

 

 

Kinematic viscosity is defined as a liquid's absolute viscosity divided by its density at the 

same temperature, i.e., 

                                                           𝜈 = 
𝜇 

ρ
 .                                                                         (3.4)  

 

The unit of measurement for kinematic viscosity in SI is  𝑚2/𝑠 [49]. 

 

 

3.8  Types of Fluid 

 

 

3.8.1 Newtonian Fluid 

 

 

According to Newton's law of viscosity, shear stress, "is linearly proportional to the rate of 

angular deformation velocity gradient." Fluids that follow Newton's law of viscosity are 

referred to as Newtonian fluids. In mathematics, 

 

  

                                           𝜏 ∝
𝑑𝑢

𝑑𝑦
       or     𝜏 = 𝜇

𝑑𝑢

𝑑𝑦
 ,                                                          (3.5) 

 

where 𝜏 denote applied shear stress to a fluid element, 𝜇 is called absolute or dynamic 

viscosity known as proportionality constant. The motion of fluid is represented by Navier-

Stokes equations. For Newtonian fluids, the Cauchy stress tensor T meets the following 

relationship, 

 

                                                      𝑻 = −𝑝 𝑰 + 𝑨𝟏,                                                            (3.6) 

 

where, I is identity tensor,  𝑝 is hydrostatic pressure, 𝑨𝟏 is first Rivlin-Ericksen tensor and 𝜇 is 

fluid dynamic viscosity defined by 
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                                                           𝑨𝟏 = grad 𝑽 + (grad 𝑽)
⊺,                                              (3.7) 

 

where  ⊺ denotes the transpose and V is the velocity vector. 

 

 

3.8.2 Non-Newtonian Fluid 

 

 

Any fluid that defies Newton's law of viscosity is considered a non-Newtonian fluid. When 

the connection between the applied shear stress and the rate of shear strain is nonlinear, the 

fluid is referred to be non-Newtonian. Mathematically, 

 

                                      Shear Stress = 𝑘 (
𝑑𝑉

𝑑𝑦
)
𝑛

,         n≠ 1                                     (3.8) 

 

where k is the consistency index and n is the flow behavior index. 

  

3.8.2.1      Classification of non-Newtonian Fluids 

 

3.8.2.1.1      Time Independent  

 

A non-Newtonian time-independent fluid's viscosity depends on both temperature and shear 

rate. The following explanations of the flow behavior are based on how viscosity varies with 

shear rate: 

Shear thinning:  as shear rate increases, viscosity drops like paint, shampoo, slurries, fruit 

juice concentrates, ketchup etc. 

Shear thickening: when the shear rate is raised, the viscosity rises like wet sand, 

concentrated starch suspensions. 
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3.8.2.1.2     Time Dependent  

Fluids whose behavior may change over time are known as time dependent non-Newtonian 

fluids. If the rate of shear strain remains at the same level, shear stress may vary., and vice 

versa. The fluid is referred to as thixotropic if when the fluid is sheared, the shear stress 

gradually decreases, and rheopectic if the opposite effect occurs. For example,  

Thixotropic: yoghurt, paint 

Rheopectic: gypsum paste 

 

                             

         Figure 3.2:    Paint                        Figure 3.3: Yoghurt 

 

 

                                                     Figure 3.4: Gypsum paste 

 

 

3.8.2.1.3       Viscoelastic Fluids 

 

 

A viscous and an elastic component interact to generate a type of non-Newtonian fluid known 

as viscoelastic fluid. Metals at very high temperatures, biopolymers, semi-crystalline 
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polymers, and amorphous polymers, and bitumen materials are a few instances of viscoelastic 

materials.   

                                                                     

 

                   Figure 3.5: Behavior of the different types of Fluids. 

  

3.9     Porous Medium 

 

A porous medium is a substance that consists of a solid matrix and numerous interconnected 

pores. The fluid can flow out of the material because the pores are filled with it. In a indeed 

porous medium, the pores are dispersed in a variety of shapes and sizes. The porosity of a 

medium identifies it as being porous like Sandstone, beach sand, wood, dry bread.  

 

                     

3.9.1     Porosity 

 

The proportion ratio the material's total area to the associated void area is known as the 

medium porosity. It is defined by  𝜑. As a result, the fraction that the substance. Porosity is 

described as the connected void to total volume ratio. and is called effective porosity if all 

pore space is not connected like Sponges, wood, rubber, and some rock. 
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                                            Figure 3.6: Sponges with pore space 

  

3.9.2      Permeability 

 

 

The capacity of a porous material to permit fluids to pass through it is known as its 

permeability like The permeability of a highly porous rock with disconnected pores is 

minimal or nonexistent. 

 

                               Figure 3.7: Shows permeability of rock  

 

3.9.3       Darcy’s Law 

 

The Darcy Law refers to the constitutive formula that provides an explanation of a fluid's flow 

in a porous medium. It serves as an example of how water, oil, and gas flow through 

petroleum reservoirs. The proportionality relationship between the flow rate q of a uniform 

medium and the pressure and water difference, i.e 

 

 

                                               𝑞 =  
𝐾

𝜇
 ∇𝑝,                                                                 (3.9) 
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where K is permeability, q denotes the instantaneous flow rate, ∇𝑝 is pressure drop and  𝜇  

dynamic viscosity of fluid. 

 

3.10      Continuity Equation 

 

 

A system's entry mass is equal to its exit mass plus its entry mass developing produced inside 

the system, according to the continuity equation, which is the law of conservation of mass. 

The expression for the equation of continuity is: 

 

                                                
𝜕𝜌

𝜕𝑡
+ 𝛁. (𝜌 𝑽) = 0.                                                   (3.10)               

 

Where 𝜌 the density of fluid and V is  the velocity. When a fluid is incompressible, its density 

(ρ) stays constant over its whole length, and the continuity equation becomes 

 

                                                            

                                                                 𝛁. 𝑽 =  0.                                                           (3.11)       

 

 

3.11     Momentum Equation 

 

 

The momentum equation, which derives from Newton's second Law of motion, relates the 

total force applied on a fluid element to its acceleration or momentum change rate. The 

equation of motion for an incompressible fluid is:  

 

  

                                             𝜌
𝑑𝑽

𝑑𝑡
= ∇. 𝑻 + 𝑹 ,                                                       (3.12)                                                                                                                                                       

 

 

where 𝑝 is pressure, 𝑻 is Cauchy stress tensor, 𝜌 is density, 𝑑/𝑑𝑡 the upper convective 

derivative and  𝑹  is Darcy resistance. 
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3.12     Reynolds Number 

 

The Reynolds number is defined as the ratio of dynamic forces to shearing forces, and it is a 

dimensionless number represented by Re. Mathematically, it is defined as,  

                                         

                 Re =  
intertial force

viscous force
,        or          Re =  

𝜌𝑽𝐿

𝜇
= 

𝑽𝐿

𝜈
  ,                                           (3.13)             

 

where density is denoted by 𝜌, velocity by 𝑽  , characteristic length by L, kinematic viscosity 

by 𝑣. and dynamic viscosity as 𝜇. While low Reynolds numbers suggest high viscous forces 

and laminar flow, significant Reynolds numbers also indicate turbulent flow where inertial 

forces predominate [49]. 

 

 

3.13 Integral Transform 

 

The Fourier integral formula was often used to develop the origin of an integral transform. 

Numerous issues in applied mathematics and engineering research have been solved using 

integral transforms. A unique mathematical procedure for a real or complex-valued function 

that creates a new function is called an integral transform. The main objective of the integral 

transform is to simplify a challenging mathematical issue so that it may be addressed quickly 

and readily without the need for laborious and time-consuming computations. Like this, 

integral transformations have been shown to be effective operational techniques for solving 

initial boundary value issues, initial value problems of integral, and linear differential 

equations. These issues typically come up while simulating fluid mechanics issues. The 

following standard definition provides an overview of the fundamental ideas and definition of 

integral transform [49]. 

 

3.13.1   Finite Fourier Sine Transform   

 

There is no dispute about the effectiveness of using the finite Fourier sine and inverse finite 

Fourier sine transforms to address linear initial value and boundary value issues resulting 

from fluid mechanics phenomena. For the following reasons, this transform is crucial to the 

general solution of integral and differential equations: 
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 The differential and integral equations are translated into simple algebraic equations, 

allowing us to investigate the modified function's solution.  

 Boundary value problem solutions are then inverted to return to the original variable 

format. 

 An attractive compact version of the solutions is produced by connecting the convolution 

theorem with the FFST. 

 

Consider a function 𝑢(𝑦, 𝑡) which is piecewise continuous and absolutely integrable over 

[0, 𝑑] the FFST and inverse FFST operators are defined below 

 

                                                𝑈𝐹𝑛(𝑡) =  ∫ u(y, t) Sin(𝜆𝑛𝑦) 𝑑𝑦,
𝑑

0
                                       (3.14)  

and 

                                              𝑢(𝑦, 𝑡) =  
2

𝐿
∑  𝑈𝐹𝑛(𝑡) 𝑆𝑖𝑛(𝜆𝑛𝑦) .
∞ 
𝑛=1         (3.15) 
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                                          CHAPTER 4  

Mathematical Analysis of Maxwell Fluid Flow through a Porous 

Plate Channel Induced by Constantly Accelerating or Oscillating 

Wall 

 

 

 4.1 Introduction 

 

 

In this chapter, an examination is carried out for laminar, unsteady, incompressible and one 

dimensional upper-covected Maxwell fluid that lies between two horizontal parallel plates along 

x-axis. The effects of porosity are taken into account. One of the plates is accelerating or 

oscillating in its own plane, producing the fluid motion, and the solutions satisfy all boundary and 

initial conditions. Unsteady motions through channel are analyzed in an analytical manner. The 

solutions obtained for sinusoidal motion are presented as the sum of transient and steady-state 

components. The exact analytical solution for the dimensionless velocity field and shear stress are 

obtained by means of FFST. The solutions of viscous fluid are obtained as limiting case. A 

discussion and graphical representation are provided for the impact of physical characteristics of 

fluid movement. 
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4.2   Mathematical Formulation 

 

Incompressible, unsteady, one dimensional, upper covected Maxwell fluid lies between two 

infinite horizontal parallel plates at a distance d apart is considered. Moreover, effects of porous 

medium are also taken into account. The flow is governed by profile of velocity and stress field 

of the form 

                                            

  𝑽 = (𝑢(𝑦, 𝑡), 0, 0)    and   𝑺 = 𝑺(𝑦, 𝑡),                                                          (4.1)  

  

and constitutive equations for the unsteady flow are given by: 

 

                                       𝛁. 𝐕 = 0,                                                                                            (4.2) 

and 

                                                                 

       𝜌
𝑑𝑽

𝑑𝑡
= ∇. 𝑻 + 𝑹,                                                                                 (4.3)  

                                                                                                                           

where the stress tensor for the Maxwell fluid is given below: 

 

                                         𝑻 =  −𝑝 𝑰 +  𝑺,                   and              𝑺 +  λ 
𝛿𝑺

𝛿𝑡
= µ 𝑨𝟏,                           (4.4) 

 

in which              

                                   
𝛿(.)

𝛿𝑡
= 

𝑑(.)

𝑑𝑡
− (grad 𝑽)(. ) − (. )(grad 𝑽)⊺,                                               (4.5) 

 

where 𝑽 is the velocity, 𝑨𝟏 is first Rivlin-Ericksen tensor, S is the extra-stress tensor, T is the 

Cauchy stress tensor, −p I is the constitutively uncertain portion of the stress imposed on by the 
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incompressibility constraint, 𝑳 is the velocity gradient, λ is the relaxation time, µ is the dynamic 

viscosity, 𝑑/𝑑𝑡 is the material time derivative, 𝛿/𝛿𝑡 is upper convective time derivative, ⊺ denotes 

the transpose and 𝑹 is the Darcy resistant. 

 

 Using Eq. (4.1), we have 

                                           𝐀𝟏 =

[
 
 
 0

𝜕𝑢

𝜕𝑦
0

𝜕𝑢

𝜕𝑦
0 0

0 0 0]
 
 
 

,                                                                                (4.6)        

          
 

             
 𝛿𝑺

𝛿𝑡
=

[
 
 
 
 
𝜕

𝜕𝑡
𝑆𝑥𝑥 − 2 𝑆𝑦𝑥

𝜕𝑢

𝜕𝑦

𝜕

𝜕𝑡
𝑆𝑥𝑦−𝑆𝑦𝑦

𝜕𝑢

𝜕𝑦

𝜕

𝜕𝑡
𝑆𝑥𝑧−𝑆𝑦𝑧

𝜕𝑢

𝜕𝑦

𝜕

𝜕𝑡
𝑆𝑦𝑥−𝑆𝑦𝑦

𝜕𝑢

𝜕𝑦

𝜕

𝜕𝑡
𝑆𝑦𝑦

𝜕

𝜕𝑡
𝑆𝑦𝑧

𝜕

𝜕𝑡
𝑆𝑧𝑥−𝑆𝑧𝑦

𝜕𝑢

𝜕𝑦

𝜕

𝜕𝑡
𝑆𝑧𝑦

𝜕

𝜕𝑡
𝑆𝑧𝑧 ]

 
 
 
 

.                                         (4.7) 

 

 
Substitution of Eqs. (4.6) and (4.7) into Eq. (4.4) 𝑏 one can write Eq. (4.4) 𝑏 in the component form as 
 

 

                                        𝑆𝑥𝑥 + 𝜆 (
𝜕𝑆𝑥𝑥

𝜕𝑡
− 2𝜆𝑆𝑦𝑥

𝜕𝑢

𝜕𝑦
) =  0,                                                      (4.8)     

                                         
 

                                            𝑆𝑥𝑦 + 𝜆 (
𝜕𝑆𝑥𝑦

𝜕𝑡
− 𝑆𝑦𝑦

𝜕𝑢

𝜕𝑦
) = 𝜇

𝜕𝑢

𝜕𝑦
,                                                  (4.9) 

 
 

                                                           𝑆𝑥𝑧 − 𝜆 (
𝜕𝑆𝑥𝑥

𝜕𝑡
− 𝑆𝑦𝑧

𝜕𝑢

𝜕𝑦
) = 0,                                                    (4.10) 

 
     

                                                𝑆𝑦𝑦 + 𝜆 (
𝜕𝑆𝑦𝑦

𝜕𝑡
) = 0,                                                    (4.11)     

                                                                                      
                                                                

                                                                           𝑆𝑦𝑧 + 𝜆 (
𝜕𝑆𝑦𝑧

𝜕𝑡
) = 0,                                                     (4.12)                  
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and                              

                                                 𝑆𝑧𝑧 + 𝜆 (
𝜕𝑆𝑧𝑧

𝜕𝑡
) = 0.                                                     (4.13) 

 
Having in mind the initial conditions of the form 
 

                                         𝑆(𝑦, 0) =
𝜕𝑆(𝑦,0)

𝜕𝑡
= 0,                                                         (4.14)       

 
Eqs. (4.10)-(4.13) becomes 

 

                                                                 𝑆𝑦𝑦 = 𝑆𝑦𝑧 = 𝑆𝑧𝑧 = 𝑆𝑥𝑧 = 0.                                                                       (4.15)                                                    

 

 

4.3   Statement of Problem 

 

At t = 0+, the lower plate start to move in its own plane with the velocity 𝐴𝑡 or to oscillate with 

the velocity 𝑈𝑠𝑖𝑛(𝜔𝑡). The fluid moves gradually due to the shear and the equation of continuity 

(4.2) is satisfied identically. Introducing the velocity field given by Eq. (4.1)a in the constitutive 

Eqs. (4.8) and (4.9) and since: 

 

               𝑽(𝑦, 0)  =  0, 𝑺(𝑦, 0)  =  0;  0 ≤  𝑦 ≤  𝑑,                                       (4.16)                                                                                      

 

therefore, we get the following equations 

                     (1 + 𝜆
𝜕 

𝜕𝑡
)  𝜏(𝑦, 𝑡)  =  µ

 𝜕𝑢(𝑦,𝑡)

𝜕𝑦
  ,                                                  (4.17)                                     

and                                

                   (1 + 𝜆
𝜕 

𝜕𝑡
)𝜎𝑥(𝑦, 𝑡)  =  2𝜆 𝜏(𝑦, 𝑡)

𝜕𝑢(𝑦,𝑡)

𝜕𝑦
,                                        (4.18)       

 

where 𝜏(𝑦, 𝑡) =  𝑆𝑥𝑦(𝑦, 𝑡) and 𝜎𝑥(𝑦, 𝑡)  =  𝑆𝑥𝑥(𝑦, 𝑡) are the non-trivial component of S. In flow 

direction, pressure gradient is absent, so the balance of linear momentum (4.3) reduces to 
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         𝜌 
𝜕𝑢(𝑦,𝑡) 

𝜕𝑡
 =  

𝜕𝜏(𝑦,𝑡) 

𝜕𝑦
 +  𝑅𝑥(𝑦, 𝑡);              0 <  𝑦 <  𝑑, 𝑡 >  0,                 (4.19) 

 

                            0 = −
 𝜕𝑝

𝜕𝑦
,                                                                 (4.19a) 

and 

                            0 = −
 𝜕𝑝

𝜕𝑧
,                                                                 (4.19b) 

 

where 𝑅𝑥(𝑦, 𝑡) is the Darcy resistance along 𝑥 −axis and 𝜌 is the fluid density for which such 

fluids have to satisfy the in relation [69]: 

 

                                (1 + 𝜆
𝜕 

𝜕𝑡
)𝑅𝑥(𝑦, 𝑡)   =  − 

µ𝜙  

𝑘
𝑢(𝑦, 𝑡),                                          (4.20) 

 

where, 𝑘 is the porosity parameter and 𝜙 is the permeability of the porous medium. Eqs. (4.19a) 

and (4.19b) shows that 𝜌 is not a function of 𝑦 and 𝑧. Eliminating 𝜏(𝑦, 𝑡) from Eqs. (4.17) and 

(4.19) and bearing in mind Eq. (4.20), the resultant equation takes the following form 

 

                                        (1 + 𝜆
𝜕 

𝜕𝑡
)
 𝜕𝑢(𝑦,𝑡) 

𝜕𝑡
=  𝜈 

𝜕2𝑢(𝑦,𝑡)

𝜕𝑦 2
 −  

𝜈𝜙  

𝑘
𝑢(𝑦, 𝑡),       0 <  𝑦 <  𝑑,    𝑡 >  0,                (4.21) 

 

where 𝜈 =  µ/𝜌 is the kinematic viscosity of the fluid. The appropriate initial and boundary 

conditions are defined below: 

                                                     

I.C                            𝑢(𝑦, 0) =  0,     
𝜕𝑢(𝑦,𝑡)

𝜕𝑡
|
𝑡=0

=  0;      0 ≤  𝑦 ≤  𝑑,                                  (4.22) 

and                                                      

B.C                      𝑢(0, 𝑡) =  𝐴𝑡, 𝑢(𝑑, 𝑡) =  0;      𝑡 >  0,                            (4.23)        
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for the motion generated by the bottom plate's steady acceleration, and:  

                                                    

B.C                          𝑢(0, 𝑡) =  𝑈 𝑠𝑖𝑛(𝜔𝑡),       𝑢(𝑑, 𝑡) =  0;  𝑡 >  0,                                         (4.24)           

 

where 𝐴 is the acceleration, U is the amplitude of the velocity, and 𝜔 the frequency of 

oscillations.  

 

4.4 Solution of the Problem 

 

4.4.1   Case I: Flow due to a constantly accelerating bottom plate 

 

Consider the following dimensionless parameters of the form: 

 

𝑦 ∗  =
𝑦

𝑑
,        𝑡∗ =

𝑡

√𝐴2 𝜈⁄
3

,        𝑢∗ =
𝑢

√𝐴𝑣
3  ,        τ∗  =  

𝜏

𝜌𝑑𝐴
,           𝜎 𝑥

∗ = 
𝜎𝑥

𝜌𝑑𝐴
.                   (4.25) 

 

Substituting Eq. (4.25) into Eqs. (4.21)–(4.23), the following dimensionless problem is obtained 

after removing the star notation 

  

            (1 +We
𝜕  

𝜕𝑡
 )
𝜕𝑢(𝑦,𝑡)

𝜕𝑡
 =  

1 

𝑅𝑒

𝜕 2𝑢(𝑦,𝑡)

𝜕𝑦 2
 −  𝐾𝑢(𝑦, 𝑡);   0 <  𝑦 <  1,   𝑡 >  0,            (4.26)         

                                               

                           𝑢(𝑦, 0)  =
 𝜕𝑢(𝑦,𝑡)     

𝜕𝑡
|
𝑡=0

 =  0, for   0 ≤  𝑦 ≤  1,                                          (4.27)                         

and                                        

                               𝑢(0, 𝑡) =  𝑡,   and   𝑢(1, 𝑡) =  0           if                  𝑡 >  0,                                 (4.28) 
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where the Reynold number (Re), the Weissenberg number (We), and the dimensionless porosity 

parameter (K) are defined below:  

 

                  𝑅𝑒 =  
𝜂𝑑

𝑣
 ,      𝑊𝑒 =  𝜆

𝜂

𝑑
 ,  and    𝐾 =

 𝜙𝜈 √ 𝜈 
3

𝑘 √𝐴2
3  ,                                         (4.29)                               

 

where 𝜂 =  𝑑 √𝐴2/𝑣
3

  is the characteristic velocity. Additionally, it is important to note that, in 

contrast to the Weissenberg number, whose values are sufficiently small the illustrations of Karra  

[68] and Housiadas [70] there is a notable range of fluctuation in the Reynolds number (Re) 

within the Weissenberg number range of 0.06 to 10 [71] (for internal flows, this range is as low 

as 2.000 in the laminar regime, as high as 4.000 in the transition phase, and as greater as 4.000 in 

the turbulent regime).   

 

Dimensionless forms of the Eqs. (4.17) and (4.18) are given below: 

                                                     

                                           (1 +𝑊𝑒 
𝜕  

𝜕𝑡
 )  𝜏(𝑦, 𝑡)  =  

1  

𝑅𝑒

𝜕𝑢(𝑦,𝑡) 

𝜕𝑦
 ,                            (4.30)           

and    

                                           (1 +𝑊𝑒
𝜕 

𝜕𝑡
)𝜎𝑥(𝑦, 𝑡)  =  2𝛽 𝜏(𝑦, 𝑡)

𝜕𝑢(𝑦,𝑡)

𝜕𝑦
,                             (4.31)                                 

 

 where 𝛽 =  𝜆 √𝐴𝜈
3

/𝑑. The corresponding initial conditions are:  

                                                       

                                        𝜏(𝑦, 0)  =  0;         0 ≤  𝑦 ≤  1,                                            (4.32) 

and                                                    

                                                            𝜎𝑥(𝑦, 0) =  0;       0 ≤  𝑦 ≤  1,                                           (4.33)     

Multiplying Eq. (4.26) by 𝑠𝑖𝑛(𝜆𝑛𝑦), and the result is integrated with respect to 𝑦 from zero to one 

keeping in mind the condition (4.28), it results that: 
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                               𝑅𝑒 (1 +𝑊𝑒
𝜕 

𝜕𝑡
)
𝑑𝑢𝐹𝑛(𝑡) 

𝑑𝑡
 + (𝜆𝑛

2  +  𝐾𝑅𝑒)𝑢𝐹𝑛(𝑡)  =  𝜆𝑛𝑡;  𝑡 >  0,            (4.34) 

 

with the initial conditions:  

                                        

                    𝑢𝐹𝑛(0) =  0,            
𝑑𝑢𝐹𝑛(𝑡) 

𝑑𝑡
|
𝑡=0

      =  0;         𝑛 1, 2, 3 ..                           (4.35)        

                            

where 𝑢𝐹𝑛(𝑡) is the finite Fourier sine transform of 𝑢(𝑦, 𝑡), and 𝜆𝑛 = 𝑛𝜋. The solution of Eq.  

(4.34) with the initial conditions (4.35), is given by  

 

                   𝑢𝐹𝑛(𝑡) =  
(𝜇2+𝑅𝑒 r1𝑛)

(r2𝑛+r1𝑛)
  𝑒𝑟2𝑛𝑡  −  

(𝜇2+𝑅𝑒 r2𝑛)

(r2𝑛+r1𝑛)
 𝑒 𝑟1𝑛𝑡 + 

𝜆𝑛

µ𝑛
2  ( 𝑡 −

𝑅𝑒

 µ𝑛
2  ),                       (4.36) 

                                                                                                                                  

                               

where 𝑟1𝑛, 𝑟2𝑛  = [−1 ± √1 − 4𝑊𝑒µ𝑛2/𝑅𝑒] /(2𝑊𝑒) are the roots and  µ𝑛
2  =  𝜆𝑛

2  +  𝐾𝑅𝑒.  

 

By applying the inverse FFST to Eq. (4.36), the following velocity profile is obtained:  

 

        𝑢(𝑦, 𝑡) = ∑ {𝑡 −
𝑅𝑒

 µ𝑛
2 −

(µ𝑛
2  + 𝑅𝑒 𝑟1𝑛)𝑒 

𝑟2𝑛𝑡+(µ 𝑛
2  + 𝑅𝑒 𝑟2𝑛)𝑒

𝑟1𝑛𝑡 

(𝑟2𝑛 − 𝑟1𝑛)µ𝑛
4 }

       𝜆𝑛 sin(𝜆𝑛𝑦)

µ𝑛
2

∞
𝑛=1 ,       (4.37) 

                                                                     

or equivalently (see the Table IX entry three in [73]) 

 

             𝑢(𝑦, 𝑡)  =  (1 −  𝑦)𝑡 − 2𝑡𝐾𝑅𝑒 ∑
sin(𝜆𝑛𝑦)

𝜆𝑛µ𝑛
2

∞
𝑛 = 1  −2𝑅𝑒 ∑ {1∞

𝑛=1  

 

                              +
(µ𝑛
2   +  𝑅𝑒  𝑟1𝑛 ) 𝑒 

𝑟2𝑛𝑡 +  (  µ 𝑛
2  + 𝑅𝑒  𝑟2𝑛 ) 𝑒

𝑟1𝑛𝑡 

𝑅𝑒(𝑟2𝑛 – 𝑟1𝑛)
} 
𝜆𝑛  sin  (𝜆𝑛 𝑦)

µ𝑛
4 .                               (4.38) 

 



40 

 

 

 

Introducing 𝑢(𝑦, 𝑡) from Eq. (4.38) into Eq. (4.30) and integrating the result by keeping in mind 

the initial condition (4.32), it results that: 

                          𝜏(𝑦, 𝑡) =  −
𝑡

𝑅𝑒
+
𝑊𝑒

𝑅𝑒
[1 − exp (−

𝑡

𝑊𝑒
)] − 2K∑ {𝑡 − (𝑊𝑒 −

𝜆𝑛
2

𝐾µ𝑛
2)  

∞
  𝑛 = 1  

 

                              × (1 − exp (−
𝑡

𝑊𝑒
))}

cos(𝜆𝑛𝑦)

µ𝑛
2 −

2

𝑊𝑒
∑ {

(µ𝑛
2  + 𝑅𝑒𝑟1𝑛) 

(𝑊𝑒𝑟2𝑛+1)
𝑒 𝑟2𝑛𝑡 ∞

𝑛=1  

 

                             − 
(  µ 𝑛

2  + 𝑅𝑒  𝑟2𝑛)

(  𝑊𝑒  𝑟1𝑛 + 1 )
 𝑒𝑟1𝑛𝑡 }  

𝜆𝑛
2  cos   ( 𝜆𝑛 𝑦 )

( 𝑟2𝑛  − 𝑟1𝑛   ) µ𝑛
4 +

2

𝑅𝑒
 exp (− 

𝑡

𝑊𝑒 
 )           

       

                                         × ∑ {
(µ𝑛
2  + 𝑅𝑒𝑟1𝑛)(𝑊𝑒𝑟1𝑛+1)−(µ 𝑛

2  + 𝑅𝑒𝑟2𝑛)(𝑊𝑒𝑟2𝑛+1)

(𝑟2𝑛−𝑟1𝑛)(𝑊𝑒𝑟2𝑛+1) (𝑊𝑒𝑟1𝑛+1)
}
𝜆𝑛
2 cos(𝜆𝑛𝑦)

µ𝑛
4

∞
𝑛=1 .      (4.39)        

          

4.4.2 Special cases 

 

(i) Taking K →0, into Eq. (4.38) the solution in the absence of porous medium is 

obtained in the following form: 

 

𝑢(𝑦, 𝑡) =  (1 −  𝑦)𝑡 − 2𝑅𝑒 ∑ {1 + 
(𝜆𝑛
2  + 𝑅𝑒 𝑟3𝑛)𝑒 

𝑟4𝑛𝑡+(𝜆 𝑛
2  + 𝑅𝑒 𝑟4𝑛)𝑒

𝑟3𝑛𝑡 

(𝑟4𝑛 − 𝑟3𝑛)𝑅𝑒
}
sin(𝜆𝑛𝑦)

𝜆𝑛
3  

,∞
𝑛=1                                                                                                                                        

                                                                                                                                                                  (4.40) 

                where 𝑟3𝑛, 𝑟4𝑛  = [−1 ± √1 − 4𝑊𝑒𝜆𝑛
2/𝑅𝑒] /(2𝑊𝑒) are the roots of above equation. 

 

(ii) Making 𝑊𝑒 →  0 into Eqs. (4.38) and (4.39), we recover the similar solutions 

corresponding to incompressible Newtonian fluids performing the same motion. For 

instance, 

                     𝑢𝑁(𝑦, 𝑡) = (1 –  𝑦)𝑡 − 2𝑡𝐾𝑅𝑒 ∑
sin(𝜆𝑛𝑦)

𝜆𝑛µ𝑛
2

∞
𝑛=1  − 2𝑅𝑒 ∑ {

𝜆𝑛 sin(𝜆𝑛𝑦)

µ𝑛
2

[1 − exp (−
µ𝑛
2

𝑅𝑒
𝑡)]}∞

𝑛=1 .                    

(4.41)  
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     and 

  𝜏𝑁(𝑦, 𝑡) = −
𝑡

𝑅𝑒
− 2𝑡𝐾 ∑

cos(𝜆𝑛𝑦)

µ𝑛
2

∞
𝑛=1 − 2 ∑ {

cos(𝜆𝑛𝑦)

µ𝑛
4 }∞

𝑛=1 [1 − exp (
𝜇𝑛
2

𝑅𝑒
𝑡)].       (4.42)             

 

(iii) Moreover, the motion under study is irregular and will continue to be inconsistent. 

Therefore, long-time solutions can sufficiently explain the fluid motion at large values 

of time 𝑡 in the following expressions 

 

                uLt(y, t) = (1 − y)t − 2Re∑ (𝑡 𝐾 +
 𝜆𝑛
2

µ𝑛
2 )

sin(𝜆𝑛𝑦)

𝜆𝑛µ𝑛
2

∞
𝑛=1 ,                                  (4.43)        

and 

                          τLt(y, t) = −
(−𝑡+𝑊𝑒)

𝑅𝑒
− 2𝐾∑ (𝑡 −𝑊𝑒 +

 𝜆𝑛
2

µ𝑛
2 )

cos(𝜆𝑛𝑦)

µ𝑛
2

∞
𝑛=1 .                            (4.44)   

                              

4.4.3   Case II: Flow due to oscillatory motion of the bottom plate 

 

Consider the following non-dimensional variables of the form 

 

           𝑦∗  =
𝑦

𝑑
,          𝑡∗ =

𝑡𝑈

𝑑
,         𝑢∗ =

𝑢

𝑈
,       𝜏 ∗  =

𝜏

𝜌𝑈2 
,       𝜎𝑥

∗ =
𝜎𝑥

𝜌𝑈2 
,    𝜔∗  =  

𝜔𝑑

𝑈
,           (4.45)                                  

 

Introducing Eq. (4.45), into Eq. (4.21)-(4.22) and Eq. (4.24), we obtain the same Eq. (4.26) and 

(4.27), in which  

                                𝑅𝑒 =
𝑈𝑑

𝜈

 
,     𝑊𝑒 =

𝜆𝑈

𝑑
,      and    𝐾 =  

𝜈𝜑𝑑

𝑘𝑈

 
,                                    (4.46) 

 

whereas the Eq. (4.24) takes the following form 

 

                                                               𝑢(0, 𝑡)  =  𝑠𝑖𝑛(𝜔𝑡);   𝑡 >  0,                                   (4.47) 
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and 

                                                𝑢(1, 𝑡) =  0;       𝑡 >  0.                                              (4.48) 

  

Applying again the FFST to Eq. (4.26) and keep in mind the boundary conditions (4.47) 

and     (4.48), we obtain 

 

                    𝑅𝑒 𝑊𝑒
𝑑2𝑢𝐹𝑛(𝑡)

𝑑𝑡2
+ 𝑅𝑒 

𝑑𝑢𝐹𝑛(𝑡)

𝑑𝑡
+ 𝜇𝑛

2𝑢𝐹𝑛(𝑡) = 𝜆𝑛 sin(𝜔𝑡) ; 𝑡 > 0.                        (4.49)       

           

The solution of the Eq. (4.49) by using initial conditions (4.35) is given in the following 

equation  

 

        𝑢𝐹𝑛(𝑡) =  
𝑎𝑛 sin(𝜔𝑡)−𝜔𝑅𝑒 cos(𝜔𝑡)

𝑎𝑛
2+(𝜔𝑅𝑒)2

𝜆𝑛 +
(𝑎𝑛 + 𝑅𝑒 𝑟1𝑛)𝑒 

𝑟2𝑛𝑡−(𝑎𝑛 + 𝑅𝑒 𝑟2𝑛)𝑒
𝑟1𝑛𝑡 

(𝑟2𝑛 − 𝑟1𝑛)µ𝑛
4 𝜔𝜆𝑛 ,          (4.50) 

 

where 𝑎𝑛 = 𝜇𝑛
2 − 𝑅𝑒𝑊𝑒𝜔2. 

 

Now by applying the inverse FFST to Eq. (4.50), the result is that the dimensionless velocity 

field 𝑢𝑠(𝑦, 𝑡) can be written as                                                  

                                      𝑢𝑠(𝑦, 𝑡)  =  𝑢𝑠𝑝 (𝑦, 𝑡)  + 𝑢𝑠𝑡 (𝑦, 𝑡),                                    (4.51) 

where 

                    𝑢𝑠𝑝(𝑦, 𝑡) = 2∑ {
(𝑎𝑛 sin(𝜔𝑡)−𝜔 𝑅𝑒 cos(𝜔𝑡))

(𝑎𝑛
2+(𝜔 𝑅𝑒)2)

} 𝜆𝑛𝑆𝑖𝑛(𝜆𝑛𝑦),
∞
𝑛=1                        (4.52)                                                             

and 

             𝑢𝑠𝑡(𝑦, 𝑡) = 2𝜔∑ {
((𝑎𝑛 + 𝑅𝑒 𝑟1𝑛)𝑒 

𝑟2𝑛𝑡−(𝑎𝑛 + 𝑅𝑒 𝑟2𝑛)𝑒
𝑟1𝑛𝑡 )

(𝑟2𝑛 – 𝑟1𝑛)µ𝑛
4 } 𝜆𝑛𝑆𝑖𝑛(𝜆𝑛𝑦),

∞
𝑛=1           (4.53)
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in which 𝑢𝑠𝑝(𝑦, 𝑡) is the permanent and 𝑢𝑠𝑡(𝑦, 𝑡) is the transient solution.  

Moreover, Eq. (4.52) can also be written as  

 

       𝑢𝑠𝑝 (𝑦, 𝑡) = (1 − 𝑦) sin(𝜔𝑡) + 2𝑅𝑒∑ { ((𝑎𝑛(Weω
2 −  K) − Reω2∞

𝑛=1   

 

                                 × sin(𝜔𝑡) − 𝜔𝜆𝑛
2 cos(𝜔𝑡)) 𝑆𝑖𝑛(𝜆𝑛𝑦)  𝜆𝑛⁄ )/(𝑎𝑛

2 + (𝜔𝑅𝑒)2)}.             (4.54)               

                                                                                                                                                                                  

Generalized form of 𝑢𝑠𝑝 (𝑦, 𝑡) can be written as 

                     𝑢𝑠𝑝 (𝑦, 𝑡) = Im {
𝑠ℎ[(1−𝑦)√𝜓]

𝑠ℎ(√𝜓)
} ;   ψ = Re(K −We𝜔2 + iω),               (4.55) 

 

where "Im" stands for imaginary component. 

Also, the expression for shear stress 𝜏𝑠(𝑦, 𝑡) can be obtained in the following form 

 

                                  𝜏𝑠(𝑦, 𝑡) = 𝜏𝑠𝑝(𝑦, 𝑡) + 𝜏𝑠𝑡(𝑦, 𝑡),                                                     (4.56) 

where 

 

   𝜏𝑠𝑝(𝑦, 𝑡) =
(𝜔𝑊𝑒 𝑐𝑜𝑠(𝜔𝑡)−sin (𝜔𝑡))

[(𝜔𝑅𝑒)2+1]𝑅𝑒
+ 2∑ {

(𝑏𝑛−𝑊𝑒𝜔
2𝜆𝑛
2) sin(𝜔𝑡)−𝜔(𝑏𝑛𝑊𝑒+𝜆𝑛

2)cos (𝜔𝑡)

[𝑎𝑛
2+(𝜔𝑅𝑒)2][(𝜔𝑊𝑒)2+1]

} cos(𝜆𝑛𝑦),
∞
𝑛=1  

                                                                                                                                             (4.57)     

and 

 

𝜏𝑠𝑡(𝑦, 𝑡) =
2𝜔

𝑊𝑒
∑{

(𝑎𝑛  +  𝑅𝑒𝑟2𝑛)(𝑊𝑒𝑟2𝑛 + 1)𝑒 
𝑟1𝑛𝑡 − (𝑎𝑛 +  𝑅𝑒𝑟1𝑛)(𝑊𝑒𝑟1𝑛 + 1)𝑒 

𝑟2𝑛𝑡

(𝑊𝑒𝑟2𝑛 + 1)(𝑟2𝑛 – 𝑟1𝑛)(𝑊𝑒𝑟1𝑛 + 1)[𝑎𝑛
2 + (𝜔𝑅𝑒)2]

}

∞

𝑛=1

𝜆𝑛
2 cos(𝜆𝑛𝑦)  

 

                    −
2𝜔

𝑊𝑒
𝑒
(−

𝑡

𝑊𝑒
)
 ∑ {

 (𝑎𝑛  +  𝑅𝑒𝑟2𝑛)  (𝑊𝑒𝑟2𝑛 + 1)𝑒 
𝑟1𝑛𝑡 −  (𝑎𝑛 +  𝑅𝑒𝑟1𝑛)  (𝑊𝑒𝑟1𝑛 + 1)  𝑒 

𝑟2𝑛𝑡

(𝑊𝑒𝑟2𝑛 + 1)(𝑟2𝑛 – 𝑟1𝑛)(𝑊𝑒𝑟1𝑛 + 1)(𝑎𝑛
2 +   (𝜔𝑅𝑒)2)

}

∞

𝑛=1
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                 ×  𝜆𝑛
2 cos (𝜆𝑛 𝑦)− 𝑒

(− 
𝑡

𝑊𝑒
)
{

𝜔 𝑊𝑒

(𝜔 𝑊𝑒)2+1)𝑅𝑒
− 2𝜔∑

(𝜆𝑛
2+𝑊𝑒𝑏𝑛)

 ((𝜔 𝑊𝑒)2+1)[𝑎𝑛
2+(𝜔 𝑅𝑒)2]

 }∞
𝑛=1  cos( 𝜆𝑛𝑦),                        

(4.58) 

 

where 𝑏𝑛 = (µ𝑛
2   − 𝑅𝑒𝑊𝑒𝜔2 )(We𝜔2 − K) − Re 𝜔2. Taking y = 1 into Eqs. (4.57) and (4.58), for 

instance the associated dimensionless transient and steady-state shear stress 

 

                          𝜏𝑠𝑝(𝑦, 𝑡) = −
1

𝑅𝑒
𝐼𝑚 {

√𝜓

(1+𝑖𝜔𝑊𝑒)

𝑐ℎ[(1−𝑦)√𝜓

𝑠ℎ(√𝛾)
𝑒𝑖𝜔𝑡},                                  (4.59) 

 

can be easily obtained in the same way as for 𝑢𝑠𝑝(𝑦, 𝑡). 

 

4.4.4   Special Cases 

 

(i) In the absence of porous medium, Eqs. (4.54) and (4.53) take the simpler form as 
define below 

 

  𝑢𝑠𝑝(𝑦, 𝑡) = (1 − 𝑦) sin(𝜔𝑡) + 2𝑅𝑒𝜔∑ {
𝜔(𝑎𝑛We− Re ) sin(𝜔𝑡)−𝜔𝜆𝑛

2 cos(𝜔𝑡)

𝑎𝑛
2+(𝜔𝑅𝑒)2

}∞
𝑛=1

𝑆𝑖𝑛(𝜆𝑛𝑦)

𝜆𝑛
,     

   

                                                                                                                                                                    (4.60) 

              and                                                                                                   

                            𝑢𝑠𝑡(𝑦, 𝑡)= 2𝜔∑ {
(𝜇𝑛
2−𝑅𝑒𝑊𝑒𝜔2)+ 𝑅𝑒𝑟1𝑛)𝑒 

𝑟2𝑛𝑡−((𝜇𝑛
2−𝑅𝑒 𝑊𝑒 𝜔2) + 𝑅𝑒 𝑟2𝑛)𝑒

𝑟1𝑛 𝑡 

(𝑟2𝑛 − 𝑟1𝑛)[𝑎𝑛
2
+(𝜔𝑅𝑒)2]

}∞
𝑛=1 𝜆𝑛𝑆𝑖𝑛(𝜆𝑛𝑦),    

                                                                                                                                                                      (4.61) 

            Eq. (4.55) becomes identical to the solution obtained in ([75] Eq. (56)).          
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(ii) Taking 𝑊𝑒 → 0 into Eqs. (4.53), (4.54) and (4.57), (4.58) we get similar solution for 

Newtonian fluid in the following form. 

 

                  𝑢𝑁𝑠𝑝(𝑦, 𝑡) = (1 − 𝑦) sin(𝜔𝑡) − 2𝑅𝑒 ∑ {
(𝐾µ𝑛

2  + 𝑅𝑒𝜔2)sin (𝜔𝑡)+𝜔𝜆𝑛
2cos (𝜔𝑡)

(𝜆𝑛
2+𝐾𝑅𝑒)

2
+(𝜔𝑅𝑒)2

}
sin (𝜆𝑛𝑦)

𝜆𝑛,
,∞

𝑛=1        

                                                                                                                                                   (4.62)     

                                                                          

     𝑢𝑁𝑠𝑡(𝑦, 𝑡) = 2𝜔𝑅𝑒 ∑ {
𝜆𝑛 sin(𝜔𝑡)

(𝜆𝑛
2+𝐾𝑅𝑒)

2
+(𝜔𝑅𝑒)2

𝑒
[−(

𝜆𝑛
2

𝑅𝑒
+𝐾)𝑡]

}∞
𝑛=1 ,                                      (4.63) 

 

                   𝜏𝑁𝑠𝑝(𝑦, 𝑡) = −
𝑡

𝑅𝑒
sin(𝜔𝑡) − 2∑ {

(𝐾µ𝑛
2  + 𝑅𝑒𝜔2)sin (𝜔𝑡)+𝜔𝜆𝑛

2cos (𝜔𝑡)

            (𝜆𝑛
2+𝐾𝑅𝑒)

2
+(𝜔𝑅𝑒)2

} cos(𝜆𝑛𝑦) ,
∞
𝑛=1      

              (4.64)                                                           

and 

                  𝜏𝑁𝑠𝑡(𝑦, 𝑡) = 2𝜔∑ {
𝜆𝑛 cos(𝜔𝑡)

(𝜆𝑛
2+𝐾𝑅𝑒)

2
+(𝜔𝑅𝑒)2

𝑒
[−(

𝜆𝑛
2

𝑅𝑒
+𝐾)𝑡]

}∞
𝑛=1 .                                            (4.65) 

 

The expressions of 𝑢𝑁𝑠𝑝(𝑦, 𝑡) and 𝑢𝑁𝑠𝑡(𝑦, 𝑡) given by Eqs. (4.62) and (4.63) are identical for 

those of 𝑢𝑠𝑝(𝑦, 𝑡) and 𝑢𝑠𝑡(𝑦, 𝑡) from [66] of its Eqs. (41) and (42). 
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4.5   Results and Discussion 

 

 

In this chapter we give the solutions for constantly accelerating and oscillating flows of an 

incompressible Maxwell fluid in the presence of porous medium that lies between two parallel 

plates. Due to constant pressure, acceleration or plate oscillation causes the motion in the 

fluid. Integral transforms are used to provide the analytical solutions for the velocity field and 

the corresponding shear stress. The solutions obtained for sine oscillation of the boundary are 

presented as the sum of the steady-state and transient solutions, depending on the initial and 

boundary conditions. To bring light on certain physical aspects of the attained results, the 

graphical representation of velocity and associated shear stress fields only for the flow caused 

by a constantly accelerating and sine oscillation of the lower plate illustrate the impact of the 

material characteristics on the fluid motion. We discuss the problem of constantly accelerating 

and oscillating motion of the plate with porous medium. Furthermore, to see the effect of 

porosity, a comparison of the velocity and shear stress for the flow in the with and without 

porous medium is provided. In the limiting instance when 𝑊𝑒 → 0, the solutions for 

Newtonian fluid are recovered. The numerical results for the velocity profile are plotted in 

Figures 4.1-4.5. Also, graphical depiction for tangential stress is given in Figures 4.6 and 4.7. 

We discuss these results with respect to the variations of the Weissenberg number (𝑊𝑒), 

porosity parameter (𝐾), Reynolds number (𝑅𝑒), and different values of the time 𝑡.   

 

Figure 4.1 shows the influence of different values of Weissenberg number (𝑊𝑒) i.e 𝑊𝑒 =

 0.002, 1 and 6 for 𝑡 =  1 and 𝑡 =  2 on velocity profile obtained in Eq. (4.38) and (4.41), 

respectively. In both cases, velocity profile decreases from maximum values to zero values 

and clearly satisfy the boundary condition. Moreover, velocity is an increasing function of 

time, and it reduces for increasing values of the Weissenberg number (𝑊𝑒). Also, due to the 

physical expectation of  𝑊𝑒 i.e ratio between elastic and viscous forces, the viscous fluid 

flows faster in comparison with incompressible upper covected Maxwell fluids. Further, when 

Weissenberg number 𝑊𝑒 → 0, the convergence of velocity field 𝑢(𝑦, 𝑡) given by Eq. (4.38) 

to 𝑢𝑁(𝑦, 𝑡) given by Eq. (4.41) is also illustrated graphically.  

 

Figure 4.2 depicts the equivalence graphically for the time on different forms of steady-state 

component of the velocity 𝑢𝑠𝑝(𝑦, 𝑡) given by Eqs. (4.54) and (4.55) for  𝜔 = 𝜋 12⁄ , 𝐾 = 1 
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𝑅𝑒 = 100 and 𝑊𝑒 = 0.7, respectively.  Figures 4.3 and 4.4 represent the required time to 

reach the steady-state for oscillatory motion given by Eqs. (4.51) and (4.54) due to upper 

convective Maxwell (UCM) fluids caused by the sinusoidal boundary velocity for 𝐾 =

1, 𝑅𝑒 = 100, 𝜔 =  𝜋 12⁄  and 𝑊𝑒 =  0.7 or 1.5, respectively  𝜔 =  𝜋 12⁄ , 𝑊𝑒 =  0.7, 𝑅𝑒 =

 100 and 𝐾 = 1 or 2. At this stage, the fluid flows in accordance with permanent solutions 

and the figures of starting solution 𝑢𝑠(𝑦, 𝑡), exactly superimpose over those of its steady-state 

component 𝑢𝑠𝑝(𝑦, 𝑡). It can be observed that the time required to reach the steady-state flow 

of UCM fluids endures an increasing function with respect to 𝑊𝑒 while it decreases for rise in 

porosity parameter (𝐾). Thus, the steady-state is alternatively acquired for oscillating motions 

of viscous fluids in contrast to incompressible UCM fluid. Simultaneously, the steady-state 

takes larger to smallest in the presence of porous medium. 

 

Figure 4.5 presents the time variation of mid plane for the steady-state component of the 

velocity related to the sine oscillation of the boundary for 𝐾 = 0 and 0.8, and various values 

of 𝑊𝑒. It is found that the convergence to general solutions 𝑢𝑠𝑝(0.5, 𝑡) to the viscous fluid 

when 𝑊𝑒 =  0 and the oscillating aspects of the velocity are clearly depicted. The amplitude 

of oscillation increases with increase in 𝑊𝑒 and generally decreases as value of 𝐾 rises when 

𝜔 =  𝜋 6⁄ , and 𝑅𝑒 = 100. 

 

In Figures 4.6 and 4.7, the steady-state shear stress profile 𝜏𝑠𝑝(𝑦, 𝑡) are plotted for sine 

oscillation of the boundary. Figure 4.6 shows the influence two different values of time 𝑡 on 

shear stress given by Eqs. (4.58) and (4.59) for 𝜔 = 𝜋 6⁄ , 𝐾 = 1, 𝑅𝑒 = 100 and 𝑊𝑒 = 0.7. It 

can be seen that both solutions give the same behavior. Figure 4.7 describes the time variation 

of mid plane of the steady-state (permanent) component of shear stress related to sinusoidal 

motion of the boundary for 𝐾 = 0 and 0.8 and different values of 𝑊𝑒. It is clearly seen that 

the convergence to general solution 𝜏𝑠𝑝(0.5, 𝑡) to the incompressible Newtonian fluid 

corresponding to 𝑊𝑒 = 0 and the oscillatory aspects of the shear stress. Hence, amplitude of 

the shear stress 𝜏𝑠𝑝(𝑦, 𝑡) is rising regarding 𝑊𝑒 and decrease for increase in value of 𝐾. 
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 Figure 4.1: The velocity field profiles of 𝑢(𝑦, 𝑡) and   𝑢𝑁(𝑦, 𝑡), respectively.  



49 

 

 

 

 

 

 

 

   Figure 4.2: The steady-state component's profiles 𝑢𝑠𝑝(𝑦, 𝑡). 
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Figure 4.3: Required time to reach the steady-state velocity due to sine oscillation of the 

boundary.  
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 Figure 4.4: Required time to reach the steady-state velocity due to sine oscillation of the 

boundary. 
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     Figure 4.5: Time series of steady-state 𝑢𝑠𝑝(0.5, 𝑡) due to sine  oscillation of the boundary.   
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       Figure 4.6: The steady-state component's profiles 𝜏𝑠𝑝(𝑦, 𝑡)  of shear stress. 
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   Figure 4.7: Time series of steady-state  𝜏𝑠𝑝(0.5, 𝑡) due to sine oscillation of the boundary.   
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CHAPTER 5  

Mathematical Analysis of Burgers Fluid Flow Induced by an 

Unsteady Motion 

 

5.1    Introduction 

 In this chapter, an examination is carried out for laminar, unsteady, incompressible and one-

dimensional Burgers fluid that lies among two parallel, horizontal plates at a distance 𝒅 apart 

along 𝒙-axis. The medium is considered to be porous. One of the plates is accelerating or 

oscillating in its own plane, producing fluid motion, and the solutions satisfy all boundary and 

initial conditions. Unsteady motions through channel are analyzed in an analytical manner. The 

starting solutions for the oscillating motion can be seen as the sum of their steady-state and 

transient components.. The exact analytical solution for the dimensionless velocity and shear 

stress are obtained by means of FFST. Similar solutions for Oldoryd-B fluid, Maxwell fluid and 

Newtonian fluid are obtained as limiting case of presented results. The effects of pertinent 

parameters are discussed through graphical illustration to show interesting aspects of the 

solutions. 
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5.2 Geometry of the Problem                                            

 

 

 

                                             

                                    Figure 5.1: Geometry of the Problem 
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5.3   Mathematical Modeling 

 

Consider the flow of laminar, unsteady, incompressible Burgers fluid occupying the space above 

the  𝑥 − 𝑎𝑥𝑖𝑠, and bounded by two horizontal plates situated at 𝑦 =  0 and 𝑦 =  𝑑. Moreover, 

the effect of porous medium is also taken into account. The flow is governed by the following 

fundamental laws i.e. 

 Law of conservation of mass 

 

                                                                 div 𝑽 =  0.                                                     (5.1)  

 

 Law of conservation of momentum in the absence of body force 

  

                                                   𝜌
𝑑𝑽

𝑑𝑡
 = −grad p + div𝑺 + 𝑹,                                       (5.2) 

in which 

                                                    𝑹  = (𝑅𝑥, 𝑅𝑦, 𝑅𝑧),                                                       (5.3) 

 

where 𝜌 the density of the fluid, 𝑽 is the velocity field, 𝑝 is the pressure, 
𝑑

𝑑𝑡
= (

𝜕

𝜕𝑡
+ (𝑽.𝜵)) is the 

material time derivative, R   the Darcy resistance and 𝑺 is the extra stress tensor for Burgers fluid 

[36] denoted as 

                                                 𝑺 + λ1
𝛿𝑺

𝛿𝑡
+ 𝜆2  

𝛿2𝑺

𝛿𝑡2
= 𝜇𝑨𝟏 + 𝜇𝜆3

𝛿𝑨𝟏

𝛿𝑡
 ,                                       (5.4) 
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in which 𝜇 the dynamic viscosity, 𝑨𝟏  =  grad 𝑽 + (grad 𝑽) 𝑇 is the first Rivlin-Ericksen tensor, 

𝜆1 and 𝜆3 (< 𝜆1) are the relaxation time and retardation time, respectively, 𝜆2 the material 

parameter of non-Newtonian Burgers fluid, 𝑑/𝑑𝑡 is the substantial time derivative and 𝛿 𝛿𝑡⁄  is 

the upper convected time derivative and denoted by 

 

                                              
𝛿(.)

𝛿𝑡
=

𝑑(.)

𝑑𝑡
− (grad𝑽)(. ) − (. )(grad𝑽)⊺,                                    (5.5) 

 

where ⊺ represents the transpose. It is important to note that the following are included as special 

instances in the Burgers fluid model: 

 

 The Oldroyd-B model (when 𝜆2 =  0)  

 The Maxwell model (when 𝜆2 = 𝜆3  =  0)  

 The second-grade model (when 𝜆2 = 𝜆1  =  0;  𝜇𝜆3   =  𝛼1) 

 The Newtonian model (when 𝜆1 =  0; 𝜆2 =  0; 𝜆3 =  0). 

For 1-dimensional flow, we consider the velocity and corresponding stress fields of the form  

 

                             𝑽(𝑦, 𝑡)  =  (𝑢 (𝑦, 𝑡),0, 0)  and   𝑺 =  𝑺 (𝑦, 𝑡).                                           (5.6) 

 

The incompressibility constraint (5.1) is automatically satisfied for such flows. Now, in view of 

Eq. (5.6)𝑎 we have 
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                       𝑨 =

[
 
 
 0

𝜕𝑢

𝜕𝑦
0

𝜕𝑢

𝜕𝑦
0 0

0 0 0]
 
 
 

,
𝛿𝑨𝟏

𝛿𝑡
=

[
 
 
 
 −2 (

𝜕𝑢

𝜕𝑦
)
2 𝜕2𝑢

𝜕𝑦𝜕𝑡
0

𝜕2𝑢

𝜕𝑦𝜕𝑡
0 0

0 0 0]
 
 
 
 

,                                               (5.7) 

 

                    
𝛿𝑺

𝛿𝑡
=

[
 
 
 
 
𝜕

𝜕𝑡
𝑆𝑥𝑥 − 2𝑆𝑦𝑥

𝜕𝑢

𝜕𝑦

𝜕

𝜕𝑡
𝑆𝑥𝑦−𝑆𝑦𝑦

𝜕𝑢

𝜕𝑦

𝜕

𝜕𝑡
𝑆𝑥𝑧−𝑆𝑦𝑧

𝜕𝑢

𝜕𝑦

𝜕

𝜕𝑡
𝑆𝑦𝑥−𝑆𝑦𝑦

𝜕𝑢

𝜕𝑦

𝜕

𝜕𝑡
𝑦

𝜕

𝜕𝑡
𝑆𝑦𝑧

𝜕

𝜕𝑡
𝑆𝑧𝑥−𝑆𝑧𝑦

𝜕𝑢

𝜕𝑦

𝜕

𝜕𝑡
𝑆𝑧𝑦

𝜕

𝜕𝑡
𝑆𝑧𝑧 ]

 
 
 
 

,                                     (5.8) 

and 

 

          
𝛿2𝑺

𝛿𝑡2
 =  

[
 
 
 
 
 
𝜕2𝑆𝑦𝑥

𝜕𝑡2
− 2(

𝜕𝑆𝑦𝑥

𝜕𝑡

𝜕𝑢

𝜕𝑦
+ 𝑆𝑦𝑦 (

𝜕𝑢

𝜕𝑦
)
2

)
𝜕2𝑆𝑥𝑦

𝜕𝑡2
− 2

𝜕𝑆𝑦𝑦

𝜕𝑡

𝜕𝑢

𝜕𝑦
−𝑆𝑦𝑦

𝜕2𝑢

𝜕𝑦𝜕𝑡

𝜕2𝑆𝑥𝑧

𝜕𝑡2
− 2

𝜕𝑆𝑦𝑧

𝜕𝑡

𝜕𝑢

𝜕𝑦
−𝑆𝑦𝑧

𝜕2𝑢

𝜕𝑦𝜕𝑡

𝜕2𝑆𝑦𝑥

𝜕𝑡2
− 2

𝜕𝑆𝑦𝑦

𝜕𝑡

𝜕𝑢

𝜕𝑦
−𝑆𝑦𝑦

𝜕2𝑢

𝜕𝑦𝜕𝑡

𝜕2𝑆𝑦𝑦

𝜕𝑡2

𝜕2𝑆𝑦𝑧

𝜕𝑡2

𝜕2𝑆𝑧𝑥

𝜕𝑡2
− 2

𝜕𝑆𝑧𝑦

𝜕𝑡

𝜕𝑢

𝜕𝑦
−𝑆𝑧𝑦

𝜕2𝑢

𝜕𝑦𝜕𝑡

𝜕2𝑆𝑧𝑦

𝜕𝑡2

𝜕2𝑆𝑧𝑧

𝜕𝑡2 ]
 
 
 
 
 

.         (5.9)   

 

 

Substitution of Eqs. (5.7)-(5.9), into Eq. (5.4) gives the component form as follows 

 

    (1 + 𝜆1  
𝜕

𝜕𝑡
+ 𝜆2

𝜕2

𝜕𝑡2
) 𝑆𝑥𝑥 − 2𝜆1𝑆𝑦𝑥

𝜕𝑢

𝜕𝑦
− 2𝜆2 (

𝜕𝑆𝑦𝑥

𝜕𝑡

𝜕𝑢

𝜕𝑦
+ 𝑆𝑦𝑥

𝜕2𝑢

𝜕𝑦𝜕𝑡
) = −2𝜇𝜆3 (

𝜕𝑢

𝜕𝑦
)
2

,          (5.10)   

         

    (1 + 𝜆1  
𝜕

𝜕𝑡
+ 𝜆2

𝜕2

𝜕𝑡2
) 𝑆𝑥𝑦 − 𝜆1𝑆𝑦𝑦

𝜕𝑢

𝜕𝑦
− 𝜆2 (

𝜕𝑆𝑦𝑥

𝜕𝑡

𝜕𝑢

𝜕𝑦
+ 𝑆𝑦𝑦

𝜕2𝑢

𝜕𝑦𝜕𝑡
) = 𝜇 (1 + 𝜆3

𝜕

𝜕𝑡
)
𝜕𝑢

𝜕𝑦
,          (5.11)    

                                   

     (1 + 𝜆1  
𝜕

𝜕𝑡
+ 𝜆2

𝜕2

𝜕𝑡2
) 𝑆𝑥𝑧 − 𝜆1𝑆𝑦𝑧

𝜕𝑢

𝜕𝑦
− 𝜆2 (

𝜕𝑆𝑦𝑧

𝜕𝑡

𝜕𝑢

𝜕𝑦
+ 𝑆𝑦𝑧

𝜕2𝑢

𝜕𝑦𝜕𝑡
) = 0,                                  (5.12) 

  

                                                  (1 + 𝜆1  
𝜕

𝜕𝑡
+ 𝜆2

𝜕2

𝜕𝑡2
) 𝑆𝑦𝑦 = 0,                                                (5.13)               
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                                                   (1 + 𝜆1  
𝜕

𝜕𝑡
+ 𝜆2

𝜕2

𝜕𝑡2
) 𝑆𝑦𝑧 = 0,                                               (5.14)     

and 

                                                     (1 + 𝜆1
𝜕

𝜕𝑡
+ 𝜆2

𝜕2

𝜕𝑡2
) 𝑆𝑧𝑧 = 0.                                              (5.15) 

     

Having in mind the initial conditions of form 

 

                                                                  𝑺(𝑦, 0) =
𝜕𝑺(𝑦,0)

𝜕𝑡
= 0,                                             (5.16)  

Eqs. (5.12)-(5.15) becomes 

 

                                                              𝑆𝑦𝑦 = 𝑆𝑦𝑧 = 𝑆𝑧𝑧 = 𝑆𝑥𝑧 = 0.                                      (5.17) 

 

 

5.4              Statement of the Problem 

Let us consider an incompressible, laminar and unsteady Burgers fluid lies between two plates 

that are parallel to each other at a distance 𝑑 apart. Porous medium is taken into consideration. 

The flow is considered along 𝑥 −axis. Initially the plate is at rest. After some time 𝑡 > 0, we 

have considered two cases: (i)  constantly accelerating flow, and (ii) sine oscillation motion of the 

velocity. Moreover, the fluid above the plate is slowly displaced by shear. Introducing, the 

velocity field given by Eq. (5.6)𝑎 into Eq. (5.10) and (5.11) and since 𝑽(0, 𝑦) =

  0 and  𝑺(𝑦, 0)  =  0, 0 ≤ 𝑦 ≤ 𝑑, then 

       

                                  (1 + 𝜆1  
𝜕

𝜕𝑡
+ 𝜆2

𝜕2

𝜕𝑡2
) τ(y, t) = μ (1 + 𝜆3

𝜕

𝜕𝑡
)
𝜕𝑢

𝜕𝑦
,                                    (5.18)  

and 
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                     (1 + 𝜆1  
𝜕

𝜕𝑡
+ 𝜆2

𝜕2

𝜕𝑡2
) 𝜎𝑥 − 2𝜆1τ

𝜕𝑢

𝜕𝑦
− 2𝜆2 (

𝜕𝜏

𝜕𝑡

𝜕𝑢

𝜕𝑦
+ 𝜏

𝜕2𝑢

𝜕𝑦𝜕𝑡
) = −2𝜇𝜆3 (

𝜕𝑢

𝜕𝑦
)
2

,    (5.19) 

where 𝜏(𝑦, 𝑡) = 𝑆𝑥𝑦(𝑦, 𝑡) and  𝜎𝑥 = 𝑆𝑥𝑥 are the non-zero tangential stress. Linear momentum 

equilibrium (5.2), without body forces can be expressed in component form as 

 

                                                    𝜌
𝜕𝑢

𝜕𝑡
= −

𝜕𝑝

𝜕𝑥
 +  

𝜕𝜏(𝑦,𝑡)

𝜕𝑦
 + 𝑅𝑥,                                                (5.20) 

                                    

                                                   0 = −
𝜕𝑝

𝜕𝑦
 ,     (5.21) 

and  

                                                   0 = −
𝜕𝑝

𝜕𝑧
,                ⇒ 𝑝 ≠ 𝑝(𝑦, 𝑧) (5.22) 

where 𝑅𝑥(𝑦, 𝑡),  the Darcy resistance along 𝑥 − axis that satisfy the relation [20]: 

 

                              (1 + 𝜆1
𝜕

𝜕𝑡
+ 𝜆2

𝜕2

𝜕𝑡2
) 𝑅𝑥(𝑦, 𝑡) = −

𝜇𝜑

𝑘
(1 + 𝜆3

𝜕

𝜕𝑡
) 𝑢(𝑦, 𝑡),                        (5.23) 

 

Eliminating 𝜏(𝑦, 𝑡) among Eqs. (5.18) and (5.20) and using Eq. (5.23), to get the linear third 

order differential equation of Burgers fluid when constant pressure is applied in the flow 

direction, the problem is governed by 

 

 (1 + 𝜆1  
𝜕

𝜕𝑡
+ 𝜆2

𝜕2

𝜕𝑡2
)
𝜕𝑢(𝑦,𝑡)

𝜕𝑡
= ν (1 + 𝜆3

𝜕

𝜕𝑡
)
𝜕2𝑢

𝜕𝑦2
−
𝜈𝜑

𝑘
(1 + 𝜆3

𝜕

𝜕𝑡
) 𝑢(𝑦, 𝑡),    0 ≤ 𝑦 ≤ 𝑑,   𝑡 > 0,                                                                                                                                                            

 (5.24) 

in which 𝜈 =  µ/𝜌 is the kinematic viscosity. 

The suitable initial restrictions are defined below: 
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I.C                         𝑢(𝑦, 0)  =  0,      
𝜕𝑢(𝑦,𝑡)

𝜕𝑡
|
𝑡=0

 =  0,      
𝜕2𝑢(𝑦,𝑡)

𝜕𝑡2
|
𝑡=0

;     0 ≤  𝑦 ≤  𝑑,           (5.25) 

and the boundary conditions are defined for two cases: 

B.C                                        𝑢(0, 𝑡)  =  𝐴𝑡,   𝑢(𝑑, 𝑡)  =  0;  𝑡 >  0,                             (5.26) 

for the movement caused by the constantly accelerating bottom plate and 

B.C                                     𝑢(0, 𝑡)  =  𝑈 𝑠𝑖𝑛(𝜔𝑡),     𝑢(𝑑, 𝑡)  =  0;  𝑡 >  0,     (5.27) 

for the flow due to oscillation of the bottom plate, in which A is acceleration, 𝑈 is the amplitude 

of velocity and 𝜔 the frequency of oscillations. 

 

5.5   Solution of the Problem 

5.5.1. Case I:  Flow due to accelerating bottom plate 

 

Dimensionless variables are defined to create the proposed model non-dimensional:  

 

𝑦 ∗  =
𝑦

𝑑
,        𝑡∗ =

𝑡

√𝐴2 𝜈⁄
3 ,       𝑢∗ =

𝑢

√𝐴𝑣
3 ,        𝜏∗  =  

𝜏

𝜌𝑑𝐴
,         𝜎 𝑥

∗ = 
𝜎𝑥

𝜌𝑑𝐴
.  (5.28) 

 

Using the dimensionless quantities from Eq. (5.28) into Eqs. (5.24)–(5.26) and removing the star 

notation, the  non-dimensional initial and boundary value problem takes the following form 

 

(1 +𝑊𝑒 
𝜕  

𝜕𝑡
+ 𝜆2

∗  
𝜕2

𝜕𝑡2
)
𝜕𝑢(𝑦, 𝑡)

𝜕𝑡
 =  

1 

𝑅𝑒
(1 + 𝜆3

∗
𝜕 

𝜕𝑡
)
𝜕 2𝑢(𝑦, 𝑡)

𝜕𝑦 2
 −  𝐾 (1 + 𝜆3

∗
𝜕 

𝜕𝑡
) 𝑢(𝑦, 𝑡),  

                                                                                              0 <  𝑦 <  1, 𝑡 >  0,                  (5.29)                                               
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and the non-dimensional initial and boundary conditions are given below 

I.C             𝑢(𝑦, 0)  =
 𝜕𝑢(𝑦,𝑡)     

𝜕𝑡
|
𝑡=0

 =  0,    
𝜕2𝑢(𝑦,𝑡)

𝜕𝑡2
|
𝑡=0

=0,   for    0 ≤  𝑦 ≤  1;                   (5.30)  

and 

B.C                                     𝑢(0, 𝑡) =  𝑡,        𝑢(1, 𝑡) =  0,              for         𝑡 >  0.                   (5.31)                        

Here, in Eq. (5.29), 𝐾 is the porosity parameter, 𝑅𝑒  is the Reynolds number and 𝑊𝑒 is  the 

Weissenberg number  given below; 

 

    𝑅𝑒 =  
𝜂𝑑 

𝑣
 ,    𝑊𝑒 =  𝜆1

𝜂 

𝑑
 ,     𝐾 =

 𝜙𝜈 √ 𝜈 
3

𝑘 √𝐴2
3  ,          𝜆2

∗ =   𝜆2
𝑈2

𝑑2
 ,          𝜆3

∗ = 𝜆3
𝜂

𝑑
 ,                (5.32) 

 

where the characteristic velocity is given by  𝜂 =  𝑑 √𝐴2/𝑣
3

 is. Dimensionless forms of the Eq. 

(5.18) and (5.19) are given below 

                               (1 +𝑊𝑒 
𝜕  

𝜕𝑡
+ 𝜆2

∗ 𝜕2

𝜕𝑡2
 )  𝜏(𝑦, 𝑡)  =  

1  

𝑅𝑒
(1 + 𝜆3

∗ 𝜕 

𝜕𝑡
)
𝜕𝑢(𝑦,𝑡) 

𝜕𝑦
 ,                         (5.33)  

    and                                             

(1 +𝑊𝑒
𝜕 

𝜕𝑡
+ 𝜆2

∗ 𝜕2

𝜕𝑡2
) 𝜎𝑥(𝑦, 𝑡)  =  2𝛽 𝜏(𝑦, 𝑡)

𝜕𝑢(𝑦,𝑡)

𝜕𝑦
− 2𝜆2

∗ (
𝜕𝜏 

𝜕𝑡
 
𝜕𝑢

𝜕𝑦
+ 𝜏

 𝜕2𝑢

𝜕𝑦𝜕𝑡
) − 2µ𝜆3

∗
(
 𝜕𝑢

𝜕𝑦
)
2
,             (5.34) 

 

where the constant 𝛽 =  𝜆1 √𝐴𝜈
3

/𝑑. The initial conditions that correspond to this are:  
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                                𝜏(𝑦, 0) =  
𝜕𝜏(𝑦,𝑡) 

𝜕𝑡
|
𝑡 =0

= 0,     0 ≤  𝑦 ≤  1,                                                (5.35) 

and  

                                      𝜎𝑥(𝑦, 0) =     
𝜕𝜎𝑥(𝑦,𝑡) 

𝜕𝑡
|
𝑡 =0

= 0,          0 ≤  𝑦 ≤  1.                                    (5.36)  

 

Multiplying Eq. (5.29) by 𝑠𝑖𝑛(𝜆𝑛𝑦), where 𝜆𝑛  =  𝑛𝜋, integrating the result with respect to 𝑦 

between zero and one and having in mind the boundary restrictions (5.31), it follows that 

𝑅𝑒 𝜆2
∗
𝜕3𝑢𝐹𝑛(𝑡)

𝜕𝑡3
+ 𝑅𝑒 𝑊𝑒

𝜕2𝑢𝐹𝑛(𝑡)

𝜕𝑡2
+ (𝑅𝑒 + 𝜆3 

∗ 𝜇𝑛
2)
𝜕𝑢𝐹𝑛(𝑡)

𝜕𝑡
+ 𝜇𝑛

2  𝑢𝐹𝑛(𝑡) =  (1 + 𝜆3
∗  
𝜕 

𝜕𝑡
) 𝜆𝑛 𝑡; 

            𝑡 >  0,   (5.37)  

with the initial conditions:  

              𝑢𝐹𝑛(0) =     
𝑑𝑢𝐹𝑛(𝑡) 

𝑑𝑡
|
𝑡=0

     =  
𝜕2𝑢𝐹𝑛(𝑡)

𝜕𝑡2
|
𝑡=0

= 0 ;     𝑛 =  1, 2, 3 . ….,                         (5.38) 

where 𝑢𝐹𝑛(𝑡) is FFST of 𝑢(𝑦, 𝑡) . 

The solution of the Eq. (5.37) by using initial conditions (5.38), is given below:  

 

𝑢𝐹𝑛(𝑡) =
𝜆𝑛(μ𝑛

2(r3𝑛 + r1𝑛) + 𝑅𝑒 r1𝑛r3𝑛)

(r3𝑛 − r2𝑛)(r2𝑛 − r1𝑛)
 𝑒𝑟2𝑛𝑡 −

𝜆𝑛(μ𝑛
2(r3𝑛 + r2𝑛) + 𝑅𝑒 r2𝑛r3𝑛)

(r2𝑛 − r1𝑛)(r3𝑛 − r1𝑛)
 𝑒 𝑟1𝑛𝑡 

 

                        + 
𝜆𝑛(μ𝑛

2  (r2 𝑛  +r1 𝑛 ) + 𝑅𝑒  r2𝑛 r1𝑛)

( r3 𝑛−r2𝑛)(r3𝑛−r1𝑛)
𝑒  𝑟3 𝑛 𝑡 + 

𝜆𝑛

µ𝑛
2  ( 𝑡 − 

𝑅𝑒

 µ𝑛
2   ) ,                               (5.39)                                                           

    where 
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        r1𝑛 = −
𝑊𝑒

3𝜆2
∗ −

21 3⁄ ((−𝑅𝑒2𝑊𝑒2) 𝜆2
∗⁄ + 3𝑅𝑒(𝑅𝑒 + 𝜆3

∗μ𝑛
2))

3𝑅𝑒𝐴
+

𝐴

321 3⁄ 𝑅𝑒𝜆2
∗  ,                           (𝑎) 

       r2𝑛 = −
𝑊𝑒

3𝜆2
∗ +

(1 + 𝑖√3)((−𝑅𝑒2𝑊𝑒2) 𝜆2
∗⁄ + 3𝑅𝑒(𝑅𝑒 + 𝜆3

∗μ𝑛
2))

3 × 22 3⁄ 𝑅𝑒𝐴
−
(1 − 𝑖√3)𝐴

6 × 21 3⁄ 𝑅𝑒𝜆2
∗  ,           (𝑏) 

     𝑟3𝑛 = −
𝑊𝑒

3𝜆2
∗ +

(1 − 𝑖√3)((−𝑅𝑒2𝑊𝑒2) 𝜆2
∗⁄ + 3𝑅𝑒(𝑅𝑒 + 𝜆3

∗μ𝑛
2))

3 × 22 3⁄ 𝑅𝑒𝐴
−
(1 + 𝑖√3)𝐴

6 × 21 3⁄ 𝑅𝑒𝜆2
∗  ,           (𝑐) 

 

 

are roots of above Eq. (5.39), in which µ𝑛
2  = 𝜆 𝑛

2+ K Re and 

A =  −2Re3We3 + 9Re3We𝜆2
∗ − 27Re2𝜆2

∗2μ𝑛
2 + 9Re2We𝜆2

∗  𝜆3
∗μ𝑛

2  √(−2Re3We3 + 9Re3We𝜆2
∗

1
3

       
     

 

+√−27Re2𝜆2
∗2μ2 + 9ZRe2We𝜆2

∗𝜆3
∗μ𝑛2)2 + 4(−Re2We2 + 3Re𝜆2

∗(Re + 𝜆3
∗μ𝑛2))3

1
3⁄

.                (𝑑) 

 

By applying inverse FFST to Eq. (5.39), the following velocity profile is obtained: 

𝑢(𝑦, 𝑡) =  2∑{𝑡 − (𝑅𝑒  µ𝑛
2⁄ )

∞

𝑛=1

− [(μ𝑛
2(r3𝑛 + r1𝑛) + 𝑅𝑒 r1𝑛r3𝑛)(r3𝑛 − r1𝑛) 𝑒

𝑟2𝑛𝑡 ][(µ𝑛
2   (r3𝑛 − r2𝑛)  

 

× (r2𝑛 − r1𝑛)   (r3𝑛 − r1𝑛)] − [  ( µ𝑛
2   ( r3𝑛 + r2𝑛 ) +  𝑅𝑒 r2𝑛  r3𝑛)  (r3𝑛 − r2𝑛)  𝑒 

𝑟1𝑛𝑡 ] 
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× [µ𝑛
2(r3𝑛 − r2𝑛)(r2𝑛 − r1𝑛)( r3𝑛 − r1𝑛)] + [ ( µ𝑛

2  (r2𝑛 + r1𝑛) + 𝑅𝑒  r1𝑛 r2𝑛 ) ( r2𝑛 − r1𝑛)   

 

×   𝑒 𝑟3𝑛𝑡 )]𝜆𝑛 sin(𝜆𝑛 𝑦 )  µ𝑛
2⁄ }/ [µ𝑛

2(r3𝑛 − r2𝑛)(r2𝑛 − r1𝑛)(r3𝑛 − r1𝑛)], 

                     (5.40) 

or equivalently 

𝑢(𝑦, 𝑡) = (1 − y)t − 2  t K  Re∑
sin  (𝜆𝑛𝑦)

𝜆𝑛µ𝑛2

∞

𝑛=1

+ 2∑{1

∞

𝑛=1

 

 

             −
( µ𝑛

2(r3𝑛+r1𝑛)+𝑅𝑒 r1𝑛r3𝑛)(r3𝑛−r1𝑛)𝑒
𝑟2𝑛𝑡 

µ𝑛
2 (r3𝑛−r2𝑛)(r2𝑛−r1𝑛)(r3𝑛−r1𝑛)

+
−( µ𝑛

2  (r3𝑛+r2𝑛)+𝑅𝑒 r2𝑛r3𝑛)(r3𝑛−r2𝑛)𝑒 
𝑟1𝑛𝑡

µ𝑛
2    (r3𝑛−r2𝑛)(r2𝑛−r1𝑛)(r3𝑛−r1𝑛)

 

                

+
( µ𝑛

2(r2𝑛+r1𝑛)+𝑅𝑒 r1𝑛r2𝑛)(r2𝑛−r1𝑛)𝑒
𝑟3𝑛𝑡 

µ𝑛
2       (r3𝑛−r2𝑛)(r2𝑛−r1𝑛)(r3𝑛−r1𝑛)

}
𝜆𝑛sin(𝜆𝑛𝑦)

µ𝑛
2 .            (5.41) 

 

Introducing 𝑢(𝑦, 𝑡) from Eq. (5.41) into Eq. (5.33) and integrating the result by keeping in mind 

the initial condition Eq. (5.35), its result that: 

        𝜏(𝑦, 𝑡) = − 𝑡 𝑅𝑒⁄ + (𝑊𝑒 𝑅𝑒⁄ )[1 − exp(− 𝑡 (𝜆2
∗ +𝑊𝑒⁄ )] − 2𝐾∑{𝑡 − (𝑊𝑒 − (𝜆𝑛

2 𝐾 µ𝑛
2⁄ ))                                                                                                                                                        }

∞

𝑛=1

                 

                   ×  [1 − exp(− 𝑡 (𝜆2
∗ +𝑊𝑒⁄ )] cos  (𝜆𝑛𝑦) µ𝑛

2⁄ −  2 𝜆2
∗⁄   ∑   { [μ𝑛

2  (  r3𝑛 + r1𝑛)                                                 

∞  

𝑛=1

𝑒 𝑟2𝑛𝑡 −                                                                                                  

  +𝑅𝑒 r1𝑛 r3𝑛 (r3𝑛  −   r1𝑛  )𝑒
𝑟2𝑛𝑡 ] ( 𝑟2𝑛

2 𝜆2
∗ +𝑊𝑒 𝑟2𝑛 + 1) ⁄ + [(μ𝑛

2(r3𝑛 + r2𝑛)                                             −                                                                                                
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               +𝑅𝑒   r2𝑛r3𝑛)  (r3𝑛 − r2𝑛)𝑒
𝑟1𝑛𝑡 ]/ (  𝑟1𝑛

2 𝜆2
∗ +𝑊𝑒 𝑟1𝑛 + 1) − [µ𝑛

2(r2𝑛 + r1𝑛)           
 

        +𝑅𝑒 r1𝑛r2𝑛 (r2𝑛 − r1𝑛)𝑒
𝑟3𝑛𝑡]    /   (  𝑟3𝑛

2  𝜆2
∗ +𝑊𝑒 𝑟3𝑛 + 1)  𝜆𝑛

2   cos   (𝜆𝑛𝑦)}  
 

/[( r3𝑛 − r2𝑛) (  r2𝑛 − r1𝑛)( r3𝑛 − r1𝑛 ) µ𝑛
4] +  2 𝑅𝑒    ⁄ exp   (− 𝑡  (𝜆2

∗ +    𝑊𝑒⁄   ) 

+∑

{
 
 

 
 
(

[(µ𝑛
2(r3𝑛 + r1𝑛) + 𝑅𝑒 r1𝑛r3𝑛)(r3𝑛 − r1𝑛)(𝑟1𝑛

2  𝜆2
∗ +𝑊𝑒𝑟3𝑛 + 1)(𝑟1𝑛

2 𝜆2
∗ +𝑊𝑒𝑟1𝑛 + 1)]

−[(µ𝑛
2(r3𝑛 + r2𝑛) + 𝑅𝑒 r2𝑛r3𝑛)(r3𝑛 − r2𝑛)(𝑟2𝑛

2 𝜆2
∗ +𝑊𝑒𝑟3𝑛 + 1)(𝑟2𝑛

2 𝜆2
∗ +𝑊𝑒𝑟2𝑛 + 1)]

+[(µ𝑛
2(r2𝑛 + r1𝑛) + (𝑅𝑒 r1𝑛r2𝑛)(r2𝑛 − r1𝑛)(𝑟3𝑛

2 𝜆2
∗ +𝑊𝑒𝑟2𝑛 + 1)(𝑟3𝑛

2 𝜆2
∗ +𝑊𝑒𝑟3𝑛 + 1)]

)

/[(r3𝑛 − r2𝑛)(r2𝑛 − r1𝑛)(r3𝑛 − r1𝑛)(𝑟1𝑛
2 𝜆2

∗ +𝑊𝑒𝑟1𝑛 + 1)(𝑟2𝑛
2 𝜆2

∗ +𝑊𝑒𝑟2𝑛 + 1) 

∞

𝑛=1

        

              × (𝑟3𝑛
2 𝜆2

∗ +𝑊𝑒𝑟3𝑛 + 1)] 𝜆𝑛
2 cos(𝜆𝑛𝑦) µ𝑛

4⁄ }, 

                                                                                                      ( 5.42) 

 

5.5.2  Special cases 

 

(i) By taking 𝐾 → 0, above Eq. (5.41) becomes 

 

𝑢(𝑦, 𝑡) = (1 − y) t + 2 ∑ {1 −
(𝜆𝑛
2(r6𝑛 + r4𝑛) + 𝑅𝑒 r4𝑛r6𝑛)(r6𝑛 − r4𝑛)𝑒

𝑟5𝑛𝑡 

𝜆𝑛2(r6𝑛 − r5𝑛)  (r5𝑛 − r4𝑛)   (r6𝑛 − r4𝑛)

∞

𝑛=1

                +
−(𝜆𝑛

2  (r6𝑛 + r5𝑛)   + 𝑅𝑒   r5𝑛  r6𝑛)  (r6𝑛  − r5𝑛)   𝑒 
𝑟4𝑛𝑡

𝜆𝑛    2 (r6𝑛 − r5𝑛)  (r5𝑛 − r4𝑛)   (r6𝑛 − r4𝑛)
                 

                    +
(𝜆𝑛
2(r5𝑛 + r4𝑛) + 𝑅𝑒 r4𝑛r5𝑛)(𝑟5𝑛 − r4𝑛  )  𝑒

𝑟6𝑛𝑡 

𝜆𝑛2(r6𝑛 − r5𝑛)  (r5𝑛 − r4𝑛)   (r6𝑛 − r4𝑛)
}
𝜆𝑛sin(𝜆𝑛

2𝑦)

𝜆𝑛2
,           

 

                   (5.43) 

 

where 𝑟4𝑛,  𝑟5𝑛𝑎𝑛𝑑  𝑟6𝑛  are the roots of above equation and defined below 
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          r4𝑛 = −
𝑊𝑒

3𝜆2
∗ −

21 3⁄ ((−𝑅𝑒2𝑊𝑒2) 𝜆2
∗⁄ + 3𝑅𝑒(𝑅𝑒 + 𝜆3

∗λ𝑛
2))

3𝑅𝑒𝐴
+ 

𝐴

321 3⁄ 𝑅𝑒𝜆2
∗  ,                        (𝑒) 

           r5𝑛 = −
𝑊𝑒

3𝜆2
∗ +

(1 + 𝑖√3)((−𝑅𝑒2𝑊𝑒2) 𝜆2
∗⁄ + 3𝑅𝑒(𝑅𝑒 + 𝜆3

∗λ𝑛
2))

3 × 22 3⁄ 𝑅𝑒𝐴
−

(1 − 𝑖√3)𝐴

6 × 21 3⁄ 𝑅𝑒𝜆2
∗  ,        (𝑓) 

          r6𝑛 = −
𝑊

3𝜆2
∗ +

(1 − 𝑖√3)((−𝑅𝑒2𝑊𝑒2) 𝜆2
∗⁄ + 3𝑅𝑒(𝑅𝑒 + 𝜆3

∗λ𝑛
2))

3 × 22 3⁄ 𝑅𝑒𝐴
−

(1 + 𝑖√3)𝐴

6 × 21 3⁄ 𝑅𝑒𝜆2
∗  ,         (𝑔) 

in which 

A =  −2Re3We3 + 9Re3We𝜆2
∗ − 27Re2𝜆2

∗2λ𝑛
2 + 9Re2We𝜆2

∗  𝜆3
∗λ𝑛
2  √(−2Re3We3 + 9Re3We𝜆2

∗
1
3

                                                                                                                     

         +√−27Re2𝜆2
∗2λ𝑛2 + 9ZRe2We𝜆2

∗𝜆3
∗λ𝑛2)2 + 4(−Re2We2 + 3Re𝜆2

∗(Re + 𝜆3
∗λ𝑛2))3

1
3⁄

,                (ℎ)                                                                                                                      

 

 

(ii) Taking 𝜆2
∗ → 0 in Eqs. (5.41), We obtain similar solutions that relate to 

incompressible Oldroyd-B fluid executing same motions as 

                      𝑢𝑂𝐵(𝑦, 𝑡)  =  (1 −  𝑦)𝑡 − 2𝑡𝐾𝑅𝑒 ∑
sin(𝜆𝑛𝑦)

𝜆𝑛µ𝑛
2

∞
𝑛=1  −2𝑅𝑒∑ {1 +∞

𝑛=1  

 

            
(µ𝑛
2   +  𝑅𝑒  𝑟7𝑛 ) 𝑒 

𝑟8𝑛𝑡 +  (  µ 𝑛
2  + 𝑅𝑒  𝑟8𝑛 ) 𝑒

𝑟7𝑛𝑡 

𝑅𝑒(𝑟8𝑛 – 𝑟7𝑛)
} 
𝜆𝑛  sin  (𝜆𝑛 𝑦)

µ𝑛
4 , (5.44) 

 

where   𝑟7𝑛, 𝑟8𝑛 =  [−1 −  𝜇𝑛
2𝜆3

∗ 𝑅𝑒⁄ + √−4𝑊𝑒 𝜇𝑛2 + (1 + 𝜇2𝜆3
∗ 𝑅𝑒⁄ )2] (2We)⁄ . 
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(iii) Taking 𝜆2
∗ → 0  and 𝜆3 → 0 in Equations (5.41), we obtain similar solutions that relate 

to incompressible Maxwell fluid executing identical motions 

                        𝑢𝑀(𝑦, 𝑡)  =  (1 −  𝑦)𝑡 − 2𝑡𝐾𝑅𝑒 ∑
sin(𝜆𝑛𝑦)

𝜆𝑛µ𝑛
2

∞
𝑛=0  −2𝑅𝑒∑ {1 +∞

𝑛=1  

            
(µ𝑛
2   +  𝑅𝑒  𝑟9𝑛 ) 𝑒 

𝑟10𝑛𝑡 +  (  µ 𝑛
2  + 𝑅𝑒  𝑟10𝑛 ) 𝑒

𝑟9𝑛𝑡 

𝑅𝑒(𝑟10𝑛 – 𝑟9𝑛)
} 
𝜆𝑛  sin  (𝜆𝑛 𝑦)

µ𝑛
4 ,       (5.45) 

Where 𝑟9𝑛, 𝑟10𝑛  = [−1 ± √1 − 4𝑊𝑒µ𝑛
2 𝑅𝑒⁄ ] /(2𝑊𝑒).                        

(iv) Taking 𝑊𝑒 → 0, 𝜆2 → 0  and 𝜆3 → 0 in Eq. (5.41), we obtain similar solutions that 

relate to incompressible Newtonian fluids executing identical motions ([17], Eq. (29) ) 

i.e;   

     𝑢𝑁(𝑦, 𝑡) =  (1 −  𝑦)𝑡 − 2𝑡𝐾𝑅𝑒 ∑
sin(𝜆𝑛𝑦)

𝜆𝑛µ𝑛
2

∞
𝑛 = 1  − 2𝑅𝑒 ∑

𝜆𝑛 sin(𝜆𝑛𝑦)

µ𝑛
2 [1 − exp (−

µ𝑛
2

𝑅𝑒
𝑡)]∞

𝑛=1 ,   

(5.46) 

(v) By taking 𝑊𝑒 → 0 , 𝜆2
∗ → 0and 𝜆3

∗ → 0 into Eq. (5.42), the similar solution for 

Newtonian fluid is retrieved for the tangential stress in the following form: 

            𝜏𝑁(𝑦, 𝑡) = −
𝑡

𝑅𝑒
− 2𝑡𝐾 ∑

cos(𝜆𝑛𝑦)

µ𝑛
2

∞
𝑛=0 − 2 ∑

cos(𝜆𝑛𝑦)

µ𝑛
4

∞
𝑛 = 0 [1 − exp (−

µ𝑛
2

𝑅𝑒
𝑡)].               

(5.47) 

 Moreover, the long-time solutions adequately represent the fluid motion at large values of time t: 

 

                uLt(y, t) = (1 − y)t − 2Re∑ (𝑡 𝐾 +
 𝜆𝑛
2

µ𝑛
2 )

sin(𝜆𝑛𝑦)

𝜆𝑛µ𝑛
2

∞
𝑛 = 1 ,                               (5.47a)        

And 
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                          τLt(y, t) = −
(−𝑡+𝑊𝑒)

𝑅𝑒
− 2𝐾∑ (𝑡 −𝑊𝑒 +

 𝜆𝑛
2

µ𝑛
2 )

cos(𝜆𝑛𝑦)

µ𝑛
2

∞
𝑛 =1 .                          (5.47b)     

 

 

5.5.3 Case II: Flow due to oscillatory motion of the bottom plate: 

Let us consider following non-dimensional variables: 

           𝑦 ∗  =
𝑦

𝑑
,        𝑡∗ =

𝑡 𝑈

𝑑
,        𝑢 ∗ =

𝑢

𝑈
,         𝜏 ∗  =

𝜏

𝜌 𝑈2 
,          𝜎𝑥

∗ =
𝜎𝑥

𝜌 𝑈2 
,        𝜔∗  =  

𝜔 𝑑

𝑈
.     (5.48) 

Introducing Eq. (5.48), into Eqs. (5.24)-(5.25) and (5.27), the dimensionless problem obtained 

same as Eq. (5.29) and (5.30) after removing the star notation in which: 

 

            𝑅𝑒 =  
𝜂𝑑 

𝑣
 ,    𝑊𝑒 =  𝜆1

𝜂 

𝑑
 ,     𝐾 =

 𝜙𝜈 √ 𝜈 
3

𝑘 √𝐴2
3  ,          𝜆2

∗ =   𝜆2
𝑈2

𝑑2
 ,         𝜆3

∗ = 𝜆3
𝜂

𝑑
 ,        (5.49) 

 

While the boundary restrictions are given below 

                                                𝑢(0, 𝑡)  =  𝑠𝑖𝑛(𝜔𝑡);   𝑡 >  0,                                   (5.50) 

and 

                                              𝑢(1, 𝑡)  =  0;    𝑡 >  0.                                                 (5.51) 

 

Again, apply FFST to Eq. (5.29) and bear in mind the restrictions (5.50) and (5.51), we 

obtain: 
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𝑅𝑒𝜆2
∗
𝜕3𝑢𝐹𝑛(𝑡)

𝜕𝑡3
+ 𝑅𝑒𝑊𝑒

𝜕2𝑢𝐹𝑛(𝑡)

𝜕𝑡2
+ (𝑅𝑒 + 𝜆3

∗𝜇𝑛
2)
𝜕𝑢𝐹𝑛(𝑡)

𝜕𝑡
+ 𝜇𝑛

2𝑢𝐹𝑛(𝑡) 

 

                                            = 𝜆𝑛 sin(𝜔𝑡) +  𝜆𝑛𝜆3
∗𝜔 cos (𝜔𝑡);  𝑡 >  0.                                    (5.52)  

The solution of the Eq. (5.52) using the initial conditions (5.38) is given in following form:  

  

   𝑢𝐹𝑛(t) = [𝜂1 cos(ωt) + 𝜂2 sin(ωt)]𝜆𝑛+ [𝜂2    (𝑟3𝑛     
2 −   𝑟2𝑛

2 )𝜔 − 𝜂1(𝑟3𝑛𝑟2𝑛 − 𝜔
2)  

      +𝑒𝑟1𝑛𝑡] − [𝜂2(𝑟1𝑛
2 −𝑟3𝑛

2 )𝜔 + 𝜂1(𝑟3𝑛𝑟1𝑛 − 𝜔
2)   𝑒𝑟2𝑛𝑡] + [𝜂2(𝑟2𝑛

2 −𝑟1𝑛
2 )𝜔 

                                   −𝜂1(𝑟1𝑛𝑟2𝑛 − 𝜔
2)   𝑒𝑟1𝑛𝑡]/[   (𝑟3𝑛 − 𝑟2𝑛 )  (𝑟2𝑛 − 𝑟1𝑛)  (𝑟3𝑛 − 𝑟1𝑛)  ]𝜆𝑛,  

           (5.53) 

 

where   𝜂1 = (𝑑𝑛 + 𝜔𝜆3
∗𝑎𝑛) (𝑑𝑛

2 + 𝑎𝑛
2)⁄ ,              𝜂2 = (𝑎𝑛 − 𝜔𝜆3

∗𝑑𝑛) (𝑑𝑛
2 + 𝑎𝑛

2)⁄     

 

 𝑑𝑛 = 𝜔3𝑅𝑒𝜆2
∗ − 𝜔(𝑅𝑒 + 𝜆3

∗𝜇𝑛
2),     and             𝑎𝑛 = 𝜇𝑛

2 −𝑊𝑒𝑅𝑒𝜔2                        (5.54) 

 

Now by applying the inverse FFST to Eq. (5.53), the result is that the dimensionless velocity field 

𝑢𝑠(𝑦, 𝑡) can written as 

                                           𝑢𝑠(𝑦, 𝑡)  =  𝑢𝑠𝑝(𝑦, 𝑡)  + 𝑢𝑠𝑡(𝑦, 𝑡),                   (5.55) 

in which 

                    𝑢𝑠𝑝(𝑦, 𝑡) = 2∑ (𝜂1 cos(ωt) + 𝜂2 sin(ωt))
∞
𝑛=1 𝜆𝑛sin (𝜆𝑛𝑦),                               (5.56)   

and                             

𝑢𝑠𝑡(𝑦, 𝑡) = 2∑{[𝜂2(𝑟3𝑛 + 𝑟2𝑛)𝜔 − 𝜂1(𝑟3𝑛𝑟2𝑛 − 𝜔
2)𝑒𝑟1𝑛𝑡](𝑟3𝑛 − 𝑟2𝑛) − [𝜂2(𝑟1𝑛 + 𝑟3𝑛)𝜔

∞

𝑛=1
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                      +𝜂1(𝑟3𝑛𝑟1𝑛 − 𝜔
2)𝑒𝑟2𝑛𝑡](𝑟3𝑛 − 𝑟1𝑛) + [𝜂2(𝑟2𝑛 + 𝑟1𝑛)𝜔 − 𝜂1(𝑟1𝑛𝑟2𝑛 − 𝜔

2)𝑒𝑟1𝑛𝑡]
     

          

 

                                                                                               
         × (𝑟2𝑛 − 𝑟1𝑛)/ [(𝑟3𝑛 − 𝑟2𝑛)(𝑟2𝑛 − 𝑟1𝑛)(𝑟3𝑛 − 𝑟1𝑛)] } 𝜆𝑛 sin(𝜆𝑛𝑦),                    (5.57) 

here 𝑢𝑠𝑝(𝑦, 𝑡) is the permanent and 𝑢𝑠𝑡(𝑦, 𝑡) is the transient solution. 

Moreover, Eq. (5.56)  can also be written as 

𝑢𝑠𝑝(𝑦, 𝑡) = (1 − y) sin(ωt) + 2∑{(𝜂2(Re(Weω
2 − K) − a𝑛) sin(ωt)

∞

𝑛=1

 

                                      +  𝜂1  cos( ω  t)  )  λ𝑛
2)} sin(𝜆𝑛𝑦).                                                     (5.58) 

 

Generalized form of 𝑢𝑠𝑝(𝑦, 𝑡) can be written as: 

𝑢𝑠𝑝 (𝑦, 𝑡) = −Im{
1

(1 + iω𝜆3
∗)δ

𝑒−𝛿𝑦+𝑖𝜔𝑡} ;  δ = √
(−𝜆2

∗𝜔2 − iωWe)iω + K(1 + iω)

(1 + iω𝜆3
∗)

 , 

                                                                                                                                                 (5.59) 

 

where “Im” denotes the imaginary component. 

Also, the expression for shear stress 𝜏𝑠(𝑦, 𝑡) can be written in the following form 

                                                          𝜏𝑠(𝑦, 𝑡) = 𝜏𝑠𝑝(𝑦, 𝑡) + 𝜏𝑠𝑡(𝑦, 𝑡),                                     (5.60) 

 where                        
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𝜏𝑠𝑝(𝑦, 𝑡) = [(1/  [(1 − 𝜔2𝜆2
∗)2 − (𝜔 𝑊𝑒)2  ])(2(1 − 𝜔2𝜆2

∗)2)/ 𝑅𝑒)∑ [𝜆𝑛
3∞

𝑛=1  𝜂2𝑐𝑜𝑠( 𝜆𝑛𝑦)

                 +(𝑊𝑒𝜔/𝑅𝑒) − 2𝑊𝑒𝜔𝜆𝑛 ∑ 𝜂1𝑅𝑒(𝑊𝑒𝜔
2 − 𝐾) − 𝑎𝑛)cos (𝜆𝑛𝑦)] 

∞
𝑛=1 cos [𝜔 𝑡]

      +[(  2/𝑅𝑒 𝑊𝑒𝜔)∑ 𝜆𝑛
3∞

𝑛=1 𝜂2cos (𝜆𝑛𝑦) − ( 1 − 𝜔
2𝜆2
∗)[ 1/  [(1 − 𝜔2𝜆2

∗)2

−(𝜔 𝑊𝑒)2]  ) (2 (1 − 𝜔2   𝜆2
∗)2)/ 𝑅𝑒)∑   [𝜆𝑛

3  ∞
𝑛=1  𝜂2𝑐𝑜𝑠( 𝜆𝑛𝑦)

               +(𝑊𝑒𝜔/𝑅𝑒) − 2𝑊𝑒𝜔𝜆𝑛 ∑ 𝜂1𝑅𝑒(𝑊𝑒𝜔
2 − 𝐾) − 𝑎𝑛)cos (𝜆𝑛𝑦)] 

∞
𝑛=1 s 𝑖𝑛[𝜔𝑡] ,

     

                                                                      (5.61) 

and 

𝜏𝑠𝑡(𝑦, 𝑡) =
2

𝑅𝑒
∑{

(1 + 𝜆3
∗𝑟1𝑛)[𝜂2(𝑟3𝑛 + 𝑟2𝑛)𝜔 − 𝜂1(𝑟3𝑛𝑟2𝑛 − 𝜔

2)𝑒𝑟1𝑛𝑡]

(𝑟3𝑛  −  𝑟1𝑛)(𝑟2𝑛  −  𝑟1𝑛)(𝑟1𝑛
2 +𝑊𝑒𝑟1𝑛 + 1)

∞

𝑛=1

 −   (1 + 𝜆3
∗𝑟2𝑛 )

 [  𝜂2(𝑟1𝑛 + 𝑟3𝑛)𝜔 + 𝜂1(𝑟3𝑛   𝑟1𝑛 − 𝜔
2)  𝑒𝑟2𝑛𝑡]

(𝑟3𝑛  −  𝑟2𝑛)(𝑟2𝑛  −  𝑟1𝑛)(𝑟2𝑛
2 +𝑊𝑒𝑟2𝑛 + 1)

   +(1 + 𝜆3
∗𝑟3𝑛 )

[𝜂2(𝑟2𝑛 + 𝑟1𝑛)     𝜔 − 𝜂1  (𝑟1𝑛𝑟2𝑛 − 𝜔
2)   𝑒𝑟3𝑛𝑡]

(𝑟3𝑛  −  𝑟2𝑛   )(𝑟3𝑛  −  𝑟1𝑛)(𝑟3𝑛
2 +𝑊𝑒 𝑟3𝑛 + 1)

 }

 

× 𝜆𝑛
2 cos   (𝜆𝑛𝑦)−

2

𝑅𝑒    
Exp [−

   𝑊𝑒

𝜆2
∗ 𝑡]

                   

   ×∑{(1 + 𝜆3
∗𝑟1𝑛)

[𝜂2(𝑟3𝑛 + 𝑟2𝑛)   𝜔 − 𝜂1(𝑟3𝑛𝑟2𝑛 −𝜔
2)𝑒𝑟1𝑛𝑡]

(𝑟3𝑛  −  𝑟1𝑛)(𝑟2𝑛  −  𝑟1𝑛)(𝑟1𝑛
2 +𝑊𝑒𝑟1𝑛 + 1)

∞

𝑛=1              

−(1 + 𝜆3
∗𝑟2𝑛 )

[   𝜂2(𝑟1𝑛 + 𝑟3𝑛)𝜔+ 𝜂1(𝑟3𝑛𝑟1𝑛 −𝜔
2 )   𝑒𝑟2𝑛𝑡]

(𝑟3𝑛  −  𝑟2𝑛)(𝑟2𝑛  −  𝑟1𝑛)(𝑟2𝑛
2 +𝑊𝑒𝑟2𝑛 + 1)            

         +(1 + 𝜆3
∗𝑟3𝑛 )    

[𝜂2(𝑟2𝑛 + 𝑟1𝑛)𝜔− 𝜂1(𝑟1𝑛𝑟2𝑛 −𝜔
2)𝑒𝑟3𝑛𝑡]

(𝑟3𝑛  − 𝑟2𝑛)(𝑟3𝑛  −  𝑟1𝑛)(𝑟3𝑛
2 +𝑊𝑒𝑟3𝑛 + 1)

}      

 

       × 𝜆𝑛
2 cos(𝜆𝑛𝑦)− Exp [−

𝑊𝑒

𝜆2
∗ 𝑡] {

𝜔 𝑊𝑒−𝜔2𝜆2
∗ + 1 

((𝜔 𝑊𝑒)2 − (𝜔2𝜆2
∗ + 1 )

2
)𝑅𝑒  

} 

 

     −2∑
𝜆𝑛
2 + (𝜔2𝜆2

∗ + 1 )𝑏𝑛

[𝑑𝑛
2 + 𝑎𝑛

2] ((𝜔 𝑊𝑒)2 − (𝜔2𝜆2
∗ + 1 )

2
)

∞

𝑛=1

,

 

                                               (5.62)       
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where  𝑏𝑛 = (µ𝑛
2   − 𝑅𝑒𝑊𝑒𝜔2 )(We𝜔2 − K) − Re𝜔2. 

 

Generalized form of 𝜏𝑠𝑝(𝑦, 𝑡) can be written as. 

 

                 𝜏𝑠(𝑦, 𝑡) = Im {
1

(1−𝜆2
∗𝜔2−iωWe)

𝑒−𝛿 𝑦+𝑖𝜔𝑡} ;  δ = √
(−𝜆2

∗𝜔2−iωWe)iω+K(1+iω)

(1+iω𝜆3
∗ )

 ,      (5.63) 

                               

is readily obtained in the same manner as for 𝑢𝑠𝑝(𝑦, 𝑡). 

 

5.5.4 Special cases 

 

(i) Similarly, without porous medium Eqs. (5.58) and (5.57) take the simpler form as 

define below 

𝑢𝑠𝑝(𝑦, 𝑡) = (1 − y) sin(ωt) + 2∑{(𝜂2(Re(Weω
2 ) −  a𝑛) sin(ωt)

∞

𝑛=1

 

                                                +  𝜂1  cos( ω  t)  )  λ𝑛
2)} 

sin(𝜆𝑛𝑦)

𝜆𝑛
,                                                     (5.64)                          

and  

𝑢𝑠𝑡(𝑦, 𝑡) = 2∑ {(𝜆𝑛
2 −𝑊𝑒𝑅𝑒𝜔2) − 𝜔𝜆3

∗𝑑𝑛) (𝑑𝑛
2 + (𝜆𝑛

2 −𝑊𝑒𝑅𝑒𝜔2)2⁄∞
𝑛=1 [(𝑟6𝑛 + 𝑟5𝑛)𝜔(𝑟6𝑛 − 𝑟5𝑛)

                    −(𝑟4𝑛 + 𝑟6𝑛)𝜔(𝑟6𝑛 − 𝑟4𝑛) + (𝑟5𝑛 +   𝑟4𝑛)𝜔(𝑟5𝑛 − 𝑟4𝑛)] − (𝑑𝑛 + 𝜔𝜆3
∗(𝜆𝑛

2 −𝑊𝑒𝑅𝑒𝜔2)

       

         /(𝑑𝑛
2 + (𝜆𝑛

2 −𝑊𝑒𝑅𝑒𝜔2)2)[(𝑟3𝑛𝑟2𝑛 − 𝜔
2)𝑒𝑟4𝑛𝑡  (𝑟6𝑛 −     𝑟5𝑛) + (𝑟6𝑛𝑟4𝑛 − 𝜔

2)𝑒𝑟5𝑛𝑡

            × (𝑟6𝑛 −  𝑟4𝑛) − (𝑟4𝑛𝑟5𝑛 − 𝜔
2)𝑒𝑟6𝑛𝑡(𝑟5𝑛 − 𝑟4𝑛)]/[(𝑟6𝑛 − 𝑟5𝑛)(𝑟5𝑛 − 𝑟4𝑛)(𝑟6𝑛 − 𝑟4𝑛)]}

         × 𝜆𝑛 sin(𝜆𝑛𝑦),                                                                                                                               

       (5.65) 
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where 𝑟4𝑛,  𝑟5𝑛𝑎𝑛𝑑  𝑟6𝑛  are the roots defined below 

          r4𝑛 = −
𝑊𝑒

3𝜆2
∗ −

21 3⁄ ((−𝑅𝑒2𝑊𝑒2) 𝜆2
∗⁄ + 3𝑅𝑒(𝑅𝑒 + 𝜆3

∗λ𝑛
2))

3𝑅𝑒𝐴
+ 

𝐴

321 3⁄ 𝑅𝑒𝜆2
∗  ,                        (𝑒) 

           r5𝑛 = −
𝑊𝑒

3𝜆2
∗ +

(1 + 𝑖√3)((−𝑅𝑒2𝑊𝑒2) 𝜆2
∗⁄ + 3𝑅𝑒(𝑅𝑒 + 𝜆3

∗λ𝑛
2))

3 × 22 3⁄ 𝑅𝑒𝐴
−

(1 − 𝑖√3)𝐴

6 × 21 3⁄ 𝑅𝑒𝜆2
∗  ,        (𝑓) 

          r6𝑛 = −
𝑊

3𝜆2
∗ +

(1 − 𝑖√3)((−𝑅𝑒2𝑊𝑒2) 𝜆2
∗⁄ + 3𝑅𝑒(𝑅𝑒 + 𝜆3

∗λ𝑛
2))

3 × 22 3⁄ 𝑅𝑒𝐴
−

(1 + 𝑖√3)𝐴

6 × 21 3⁄ 𝑅𝑒𝜆2
∗  ,         (𝑔) 

 

in which 

A =  −2Re3We3 + 9Re3We𝜆2
∗ − 27Re2𝜆2

∗2λ𝑛
2 + 9Re2We𝜆2

∗  𝜆3
∗λ𝑛
2  √(−2Re3We3 + 9Re3We𝜆2

∗
1
3

                                                                                                                     

         +√−27Re2𝜆2
∗2λ𝑛2 + 9ZRe2We𝜆2

∗𝜆3
∗λ𝑛2)2 + 4(−Re2We2 + 3Re𝜆2

∗(Re + 𝜆3
∗λ𝑛2))3

1
3⁄

,                (ℎ)                                                                                                                      

 

 

(i) Taking    𝜆2
∗ → 0  in the Eqs. (5.56), (5.57), (5.61) and (5.62), we recover the similar 

solutions for Oldoryd-B fluid as follows 

                𝑢𝑂𝐵𝑠𝑝 (𝑦, 𝑡) =  
𝜆3 𝑎𝑛+(𝑅𝑒+𝜆3

∗  𝜇2)

𝑎𝑛
2+𝜔2(𝑅𝑒+𝜆3

∗  𝜇2)
2 (cos(𝜔 𝑡) +

𝜔(𝑅𝑒+𝜆3 𝜇
2)

𝑎𝑛
 sin (𝜔 𝑡)) .                  (5.66) 

(i) Taking 𝜆2
∗ → 0  and  𝜆3

∗ → 0 in the equalities (5.56) and (5.57) and (5.61) and (5.62), 

we recover the similar solutions for Maxwell fluid fluid in the following form 

             𝑢𝑀𝑠𝑝 (𝑦, 𝑡) = (1 − 𝑦) sin(𝜔𝑡) + 2𝑅𝑒∑ { (𝑎𝑛(Weω
2 −  K) − Reω2)∞

𝑛=1   

 

                                      × sin(𝜔𝑡)−𝜔𝜆𝑛
2 cos(𝜔𝑡)) 𝑆𝑖𝑛(𝜆𝑛𝑦)  𝜆𝑛⁄ }/(𝑎𝑛

2 + (𝜔𝑅𝑒)2),            (5.67) 
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              𝑢𝑀𝑠𝑡(𝑦, 𝑡) = 2𝜔∑ {
((𝑎𝑛 + 𝑅𝑒 𝑟11𝑛)𝑒 

𝑟12𝑛𝑡−(𝑎𝑛 + 𝑅𝑒 𝑟12𝑛)𝑒
𝑟11𝑛𝑡 )

(𝑟2𝑛 – 𝑟1𝑛)µ𝑛
4 } 𝜆𝑛𝑆𝑖𝑛(𝜆𝑛𝑦)

∞
𝑛=1 ,   (5.68) 

 

   𝜏𝑠𝑝(𝑦, 𝑡) =
(𝜔𝑊𝑒 𝑐𝑜𝑠(𝜔𝑡)−sin (𝜔𝑡))

[(𝜔𝑅𝑒)2+1]𝑅𝑒
+ 2∑ {

(𝑏𝑛−𝑊𝑒 𝜔
2𝜆𝑛
2) sin(𝜔𝑡)−𝜔(𝑏𝑛𝑊𝑒+𝜆𝑛

2)cos (𝜔𝑡)

[𝑎𝑛
2+(𝜔𝑅𝑒)2][(𝜔𝑊𝑒)2+1]

} cos(𝜆𝑛𝑦),
∞
𝑛=1  

                                                                                                                                                   (5.69)     

and 

  𝜏𝑠𝑡(𝑦, 𝑡)           =
2𝜔

𝑊𝑒
∑{

(𝑎𝑛  +  𝑅𝑒𝑟2𝑛)(𝑊𝑒𝑟12𝑛 + 1)𝑒 
𝑟11𝑛𝑡 − (𝑎𝑛 +  𝑅𝑒𝑟11𝑛)(𝑊𝑒𝑟11𝑛 + 1)𝑒 

𝑟12𝑛𝑡

(𝑊𝑒𝑟12𝑛 + 1)(𝑟12𝑛 – 𝑟1𝑛)(𝑊𝑒𝑟11𝑛 + 1)[𝑎𝑛
2 + (𝜔𝑅𝑒)2]

}

∞

𝑛=1

  𝜆𝑛
2 cos(𝜆𝑛𝑦) 

    

                            −
2𝜔

𝑊𝑒
𝑒
(−

𝑡

𝑊𝑒
)
 ∑  {

 (𝑎𝑛 + 𝑅𝑒𝑟12𝑛)  (𝑊𝑒𝑟12𝑛+1)𝑒 
𝑟11𝑛𝑡−  (𝑎𝑛+ 𝑅𝑒𝑟11𝑛)  (𝑊𝑒𝑟11𝑛+1)  𝑒 

𝑟12𝑛𝑡

(𝑊𝑒𝑟12𝑛+1)(𝑟12𝑛 – 𝑟11𝑛)(𝑊𝑒𝑟11𝑛+1)(𝑎𝑛
2+  (𝜔𝑅𝑒)2)

}∞
𝑛=1                        

 

                      ×  𝜆𝑛
2 cos (𝜆𝑛 𝑦)− 𝑒

(− 
𝑡

𝑊𝑒
)
{

𝜔 𝑊𝑒

(𝜔 𝑊𝑒)2+1)𝑅𝑒
− 2𝜔∑

(𝜆𝑛
2+𝑊𝑒 𝑏𝑛)

 ((𝜔 𝑊𝑒)2+1)[𝑎𝑛
2+(𝜔 𝑅𝑒)2]

∞
𝑛=1 } cos( 𝜆𝑛𝑦),                        

(5.70) 

   where 

 

   𝑟11𝑛,  𝑟12𝑛  = [−1 ± √1 − 4𝑊𝑒µ𝑛2 𝑅𝑒⁄ ] 2𝑊𝑒⁄ , and  𝑏𝑛=((µ𝑛
2  − 𝑅𝑒𝑊𝑒𝜔2 )(We𝜔2−K) − 

Re 𝜔2). 

(ii) Taking  𝜆2
∗ → 0, 𝜆3

∗ → 0 and We → 0 in the Eqs. (5.56), (5.57), (5.61) and (5.62), we 

recover the similar solutions for viscous fluid given below 

                𝑢𝑁𝑠𝑝(𝑦, 𝑡) = (1 − 𝑦)  sin(𝜔𝑡) −  2 𝑅𝑒 ∑ {
(𝐾µ𝑛

2  + 𝑅𝑒𝜔2)sin (𝜔𝑡)+𝜔𝜆𝑛
2 cos (𝜔𝑡)

(𝜆𝑛
2+𝐾𝑅𝑒)

2
+(𝜔𝑅𝑒)2

}∞
𝑛=1

sin (𝜆𝑛𝑦)

𝜆𝑛
,                             

 (5.71) 
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                𝑢𝑁𝑠𝑡(𝑦, 𝑡) = 2𝜔𝑅𝑒 ∑ {
𝜆𝑛 sin(𝜔𝑡)

(𝜆𝑛
2+𝐾𝑅𝑒)

2
+(𝜔𝑅𝑒)2

𝑒
[−(

𝜆𝑛
2

𝑅𝑒
+𝐾)𝑡]

}∞
𝑛=1 ,                                       (5.72)  

  

        𝜏𝑁𝑠𝑝(𝑦, 𝑡) = −
𝑡

𝑅𝑒
sin(𝜔𝑡) − 2∑ {

(𝐾µ𝑛
2  + 𝑅𝑒𝜔2) sin(𝜔𝑡)+𝜔𝜆𝑛

2 cos(𝜔𝑡)

(𝜆𝑛
2+𝐾𝑅𝑒)

2
+(𝜔𝑅𝑒)2

}∞
𝑛=1 cos(𝜆𝑛𝑦),            (5.73)     

and    

        𝜏𝑁𝑠𝑡(𝑦, 𝑡) = 2𝜔∑ {
𝜆𝑛 cos(𝜔𝑡)

(𝜆𝑛
2+𝐾𝑅𝑒)

2
+(𝜔𝑅𝑒)2

𝑒
[−(

𝜆𝑛
2

𝑅𝑒
+𝐾)𝑡]

}∞
𝑛=1 .                                                    (5.74) 
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5.6 Results and Discussions 

 

In this chapter, we present the solutions for laminar, unsteady, incompressible Burgers fluid 

with porous medium that lies between two horizontal parallel plates at a distance 𝑑 apart. We 

consider a constant pressure so that the motion in the fluid is produced due to either 

constantly accelerating bottom plate or sinusoidal oscillations of the same plate, respectively. 

Finite Fourier Sine Transform (FFST) is used to find the exact analytical solutions for the 

velocity profile and the corresponding tangential stress. Starting solutions are presented for 

the sine oscillation of the boundary, depending on the initial and boundary conditions as sum 

of permanent (steady-state) and transient solutions. To shed light upon certain physical 

aspects of the achieved outcomes through different parameters, the graphical illustration of 

velocity field and shear stress is made. Furthermore, in order to see the effect of porosity 

parameter, a comparison of velocity field and associated tangential stress for these flows with 

and without porous medium is given. The similar solutions when  𝜆3
∗ → 0, 𝜆3

∗ → 0 and 𝜆2
∗ →

0, and 𝜆3
∗ → 0, 𝜆2

∗ → 0 and 𝑊𝑒 → 0, corresponding to Oldoryd-B fluid, Maxwell fluid and 

Newtonian fluid, respectively are also discussed through graphs. The numerical results for the 

velocity field and corresponding shear stress are plotted in Figures 5.2-5.8 and Figure 5.9-

5.11, respectively. We investigate these findings regarding variation of various values of time 

and the physical parameters of the flow.  

 

Figures 5.2-5.4 show the velocity profiles in regard of constantly accelerating flows. Figures 

5.2 and 5.3 are plotted for different values of rheological parameter of Burgers fluid when 

𝜔 = 
𝜋

12
,  𝑅𝑒 =  100, 𝑊𝑒 = 0.7 and 𝜆3

∗ = 0.05 for two different values of time 𝑡, with and 

without porous medium. It can be seen that velocity is increasing function of Burgers 

parameter and amplitude of velocity is larger when time is increasing. Moreover, velocity 

profile approaches to zero more faster as compared to the case 𝐾 =  0 (without porous 

medium). Figure 5.4 gives a comparison between the profiles of Burgers fluid, Oldoryd_B 

fluid when 𝜆2
∗ → 0, Maxwell fluid when 𝜆2

∗ → 0 and 𝜆3
∗ → 0 and Newtonian fluid when 

𝑊𝑒 → 0, 𝜆2
∗ → 0 and 𝜆3

∗ → 0 with and without porous medium. Here, we have seen that the 

amplitude of Burgers velocity is smaller than the Newtonian velocity for both with and 

without porous medium. 
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Figure 5.5-5.8 display the steady-state velocity profiles for the sine oscillation of the bottom 

plate, with and without porous medium. In Figure 5.5 and 5.6 equivalence the effect of 

different forms of component of velocity 𝑢𝑠𝑝(𝑦, 𝑡) given by Eqs. (5.58) and (5.59) for two 

different times when 𝜔 = 5,𝐾 = 0.8 𝑎𝑛𝑑 0,𝑊𝑒 = 0.7, 𝜆2
∗ = 0.8 and  𝜆3

∗  = 0.6 is provided. 

The features of Burgers parameter 𝜆2
∗  can be observed via Figure 5.7 and 5.8. It can be seen 

that the amplitude of velocity is larger for the case of Newtonian fluid when compared with 

different values of Burgers parameter 𝜆2
∗ , when 𝜔 = 5,𝐾 = 0.8, 𝑅𝑒 = 100,𝑊𝑒 = 0.7, 𝜆3

∗ =

0.5,  for two different values of time. We can also see that  in connection with time, velocity 

increases. Figure 5.8 provides the time variations of the mid plane when 𝑦 = 0.5 for steady-

state velocity for 𝐾 = 0, and 𝐾 = 0.8 and four different values of Burgers’ parameter. 

Furthermore, the amplitude of oscillation is larger when there is no porous medium while 

compared with the case with porous medium effects when 𝐾 = 0.8. 

 

Figures 5.9 and 5.10 display the equivalence effect of two different form of shear stress given 

by Eqs. (5.62) and (5.63) with and without porous medium when 𝜔 = 5, 𝑅𝑒 = 100,𝑊𝑒 =

0.7, 𝜆3
∗ = 0.6, 𝜆2

∗ = 0.8 to check their correctness graphically.  Figure 5.11 shows the time 

variations of the mid plane when 𝑦 = 0.5 for steady-state shear stress with and without  

porous medium. It is clear that the oscillation's amplitude is decreasing by increasing Burgers 

parameter and also oscillations’ amplitude is smaller without porous medium effects. 

 

 

 

 



80 

 

 

 

 

   Figure 5.2: Velocity profiles 𝑢(𝑦, 𝑡) for various values of Burgers   parameter with  

porous effects.  
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Figure 5.3: Velocity profile  𝑢(𝑦, 𝑡) for various values of Burgers parameter without  

porous effects. 
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Figure 5.4:     A comparison of the profiles of velocity with or without porous effects,    

respectively. 
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 Figure 5.5: The steady-state component's profiles 𝑢𝑠𝑝(𝑦, 𝑡)    with porous effects. 
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 Figure 5.6:  The steady-state component's profiles 𝑢𝑠𝑝(𝑦, 𝑡) without                                                                                                                                                    

porous effect. 
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Figure 5.7:     The steady-state component's profiles  𝑢𝑠𝑝(𝑦, 𝑡)   and   𝑢𝑁𝑠𝑝(𝑦, 𝑡). 
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Figure 5.8:  Time series steady-state component without and with porous  effects. 
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 Figure 5.9: The steady-state component's profiles of shear stress 𝑢𝑠𝑝(𝑦, 𝑡) with  

   porous effects. 
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Figure 5.10: The steady-state component's profiles of shear stress 𝑢𝑠𝑝(𝑦, 𝑡)    

                    without a porous effect. 
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    Figure 5.11: Time variation of mid plane of steady-state component  

                                   𝜏𝑠𝑝(0.5, 𝑡) without and with porous effects.  
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CHAPTER 6  

CONCLUSION AND FUTURE WORK 

We present the main findings, when we have contributed, and ideas for future work based on 

this study. This thesis has focused to initiate exact analytical solutions for constantly 

accelerating flow of the bottom plate and sine oscillation of the same boundary of a non-

Newtonian fluid. The unsteady flows of an incompressible Maxwell (chapter four) and further 

work of chapter four is extended to Burgers fluid (chapter five) with porous medium effects 

were considered. The Burgers fluid model is a rate type fluid model which can predict the 

relaxation and retardation time phenomena. Moreover, the Burgers fluid model includes 

Oldoryd-B model, Maxwell model and Newtonian models, as special cases. As a result of 

these facts, the velocity profile's analytical expression and the associated shear stress for 

constantly accelerating or sine oscillation of the bottom plate have been determined by means 

of integral transform. The starting solutions for the oscillation of the boundary were written as 

sum of permanent and transient solutions and they depict the motion of non_Newtonian fluid 

for small and large times. Furthermore, these solutions are also important for those who want 

to eliminate the transient part from their solutions and find the approximate time after which 

the fluid is moving according to permanent behavior. The graphical results for velocity fluid 

and the corresponding shear stress in the presence as well as in the absence of porous medium 

and a comparison between various rate type model and Newtonian model were model for 

different pertinent parameters of the interesting aspects of the obtained results. This section 

provides a summary of the findings and recommendations from the study that were discussed 

in the preceding chapters. 

 

In chapter 4, we have displayed the analytical solutions for constantly accelerating or sine 

oscillation of the bottom plate of an incompressible UCM fluid. The Finite Fourier Sine 

Transformation (FFST) was used to tackle the second order governing equation to obtain the 

velocity for two different cases of the boundary. The solutions that are produced fulfil all of 
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the prescribed starting and boundary requirements. The solution for sine oscillation of the 

boundary was expressed as sum of steady-state (permanent) and transient solutions. The 

graphs have been made for both constantly accelerating and sine oscillation   of the boundary. 

It can be seen in both cases that velocity is an increasing function of Weissenberg number and 

amplitude of velocity is larger for increasing time. Moreover, the amplitude of oscillation is 

larger for steady-state velocity without porous medium but for steady-state shear stress, 

amplitude of velocity is larger when porous medium is present. 

 

Ultimately, we have examined in chapter 5, the constantly accelerating and sinusoidal 

oscillation flows of an incompressible, unsteady Burgers fluid with porous medium. 

Moreover, we have assumed that there is no body force and constant pressure is applied in the 

direction of flow. The solutions obtained for the sine oscillation of the boundary can be 

written as sum of steady-state (permanent) and transient solutions. FFST was used to find the 

exact analytical solutions. The graphical results were displayed to see the effects of various 

parameters of the flow due to either acceleration of the bottom plate or the sine oscillation of 

the same boundary. Furthermore, we have found the required times to reach the permanent or 

degradation of the temporary solutions using graphs. Here, we've observed that velocity is an 

increasing function of Burgers fluid parameter and by increasing time the magnitude of 

velocity is larger for both cases. Moreover, the amplitude of oscillations is larger for the 

velocity profile without porous medium, but we have seen the opposite effect for the steady-

state shear stress, for different values of Burgers parameter. 

 

In this thesis, we have displayed the significant solutions for constantly accelerating and 

sinusoidal oscillations of the boundary with technical relevance for some non-Newtonian 

fluid. Also, this work provides significant unsteadying of the transient behaviors of non-

Newtonian fluids. Finite Fourier Sine transform is valid to solve the linear partial differential 

equations having Dirichlet boundary conditions and bounded domain. Further directions and 

possible extensions of the current energy equation to observe impacts of temperature on the 

Burgers parameter. The exact analytical solutions were obtained here when there is no 

physical force. However, the velocity field's analytical solutions as well as the temperature 

profile for a Burger fluid can be found in the occurrence of permeable media and bodily 

forces. 
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We anticipate that the current work will be valuable in the analysis of more intricate issues 

and provide a foundation for several scientific and industrial uses. 
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