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ABSTRACT 

Title:  Effects of Magnetic Field on Peristaltic Flow of Second Grade Dusty Fluid in an 

Inclined Asymmetric Channel. 

The primary goal of this thesis is to investigate the effects of magnetic field on the peristaltic 

flow of second-grade dusty fluid in an inclined asymmetric channel. The problem formulation 

has been developed for peristalsis of MHD second-grade dusty fluid. In addition the inclined 

asymmetric channels are taken. The modelled problem is solved by applying the perturbation 

technique. The stream functions are used to simplify the problem by reducing the number of 

depending variables. The graphs for fluid and solid particles velocity and pressure gradient are 

achieved using Mathematica software. 
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CHAPTER 1 

INTRODUCTION 

1.1     Fluid 

Material that constantly changes shape under applied shear stress is known as a fluid. 

Examples include water, blood, and honey. Two primary branches further classify fluids. One is 

Newtonian and the other is non-Newtonian based on the stress-strain connection. Such fluids that 

follow Newton's law of constant viscosity are known as Newtonian fluids. In contrast, fluids that 

are known as non-Newtonian are such fluids that do not follow Newton's law of constant viscosity. 

It is commonly recognized that for industrial, medicinal, and technical uses, non-Newtonian fluids 

are preferable to Newtonian fluids. Numerous consumer items include significant levels of glass 

or carbon fibers, paints, lubricants that have polymer additives, and biological fluids that are non-

Newtonian in origin. According to how they behave to applied shear stresses, non-Newtonian 

fluids may be classified into several groups. The viscosity may vary when force is applied to either 

more liquid or more solid in non-Newtonian fluids. A non-Newtonian fluid is, for instance, 

ketchup, which thins out when disturbed. A non-Newtonian fluid may possess just one or all of 

the given characteristics, such as creeping, shear thinning, shear thickening, etc. 

1.2     Slip Condition 

The basic premise of the slip boundary condition, also identified as the velocity-offset 

boundary condition where the velocity function is discontinuous, i.e., that there is comparative 

motion among the fluid and the boundary. Navier introduced the concept of a slip first. Effects of 

fluid slipping on the wall may be noticed in many different kinds of domains, including micro- 

and nanochannels. It is frequently employed when circumstances where a moving plate is sprayed 

using a very thin layer of oil. The thermal emission has a clear detrimental effect on weak radiation 
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strength under laminar flow configurations. At low shear rates, this condition will be sufficient 

(Navier slip). However, the slip condition of Navier declines as the slip length rapidly expands 

with the slide rate. Due to this, numerous situations (a non-Navier slip) also take into consideration 

the second-order slip boundary condition. The existence of slip has previously been documented 

and required for years in the industrial area since the Fluid Mechanics state of no-slip boundary is 

not always appropriate for multiple situations that involve complicated fluids. Complex fluids such 

as mixtures, suspensions, foam, and polymer solutions are examples that generally generate a wall 

slip with a boundary slip at the wall. For technical uses like cleaning prosthetic heart valves and 

interior cavities, this phenomenon is important. On the other hand, the original investigation into 

the boundary circumstances for linear slip was carried out by Navier and Maxwell. There are a 

variety of Newtonian and non-Newtonian fluids, with particulate fluids such as emulsions, 

suspensions, and polymer solutions, in which there may be a slip among the fluid and the boundary. 

As a result, slip flow problems are crucial on both the fixed and moving boundaries. As can be 

shown from a review of the literature, the presence of a slip boundary condition can have a 

considerable impact on velocity profiles. 

As far as we are aware, the study of the slip impact on the fluid flow has not received a 

great deal of interest. Many researchers did, however, address the importance of the slip condition 

for minimizing skin friction and provide a notion of what it entails. It has been determined that the 

slip condition considerably raises flow pressure when the typical size of the flow system is low. 

This has been done by examining the slip impact on various fluid flows. As a result of the ability, 

they have to minimize skin-friction drag, superhydrophobic surfaces have recently gained 

significant relevance and are the focus of extensive study. In stream-wise and span-wise paths, the 

slip-length values of the superhydrophobic surfaces change depending on the direction in which 

they travel. Also receiving significant consideration are the impacts on flows over various surfaces. 

1.3     Magnetic Field 

A magnetic field communicates the magnetic effect when moving electric charges, electric 

currents, and magnetic materials are present. A force upright to the magnetic field and its velocity 
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acts on a moving charge in the field known as magnetic. Furthermore, the magnetic field aligns 

with the positioning of the curled fingers. A vital area of the science of magneto is the use of the 

magnetic field in medicine. By revealing a person to a field known as magnetic, it is possible to 

enhance blood flow throughout their body as a prospective alternative to the previously available 

medicine with its negative side effects. Electrohydrodynamics (EHD), which discusses the effects 

of electric forces, and (MHD) magnetohydrodynamics which discusses collaboration between 

fields known as magnetic and fluid transmitters of electricity, are the two main categories into 

which the study of various magnetic fields and fluid interactions can be separated. Tariq et al. [1] 

studied the MHD supports to recognition of the movement of electrically conducting fluids. MHD 

has evolved in a broad field of engineering and physical research that includes anything from fluid 

metal movements in the metallurgic sector to astronomical solar and planetary flows. The effects 

of magnetic fields on liquid movement and heat transmission and their use in the health and 

business fields have not been the subject of scientific research that has been duplicated.  

1.4      Peristalsis 
 

           The term peristalsis comes from the Greek word peristalikos, which means clasping and 

compressing. In 1966, Peristalsis was initially described by Latham [2]. Shapiro et al. [3] 

conducted more research on this piece. The peristaltic flow of second-grade dusty fluid has 

attracted great interest and study. So, the attention of scientific and mathematical communities 

towards this is quite reasonable. Many numerical and analytical techniques were used for the study. 

It has been broadly studied in the papers and literature and it explains many complex and nonlinear 

wave phenomena. Therefore, it is now becoming more and more effective in the field of fluid 

mechanics. These flows also offer efficient methods for sanitary fluid transportation, and as a 

result, they are used in industrial peristaltic pumping and medical devices. For example, the 

printing industry uses mechanical roller pumps to move viscous fluids, and the nuclear industry 

uses peristaltic pumping to move toxic fluids. Many researchers have taken into account the 

theoretical and real-world aspects of peristaltic transportation since this process has become an 

important research subject. Polluted water contains dust granules, water purification plants purify 

such water to make it reusable. Peristaltic pumps are mounted in such plants and magnetic effect 
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may be utilized to make the sedimentation process more efficient. This study may contribute to 

such a situation. 

 

 

1.5     Non-Newtonian Fluid  

Such fluids are known as non-Newtonian fluids that do not act upon Newton’s law of 

viscosity. Second-grade fluid is a sub-class of non-Newtonian fluid. Following is the description 

of second-grade fluid. 

1.5.1  Second Grade Fluid 

Non-Newtonian fluids are a diverse family of fluids that relate the connection between 

shear rate and shear stress relative to non-linearity; hence, there is no one general governing model 

that encompasses all of the non-Newtonian fluid's traits and characteristics. In addition, to account 

for the additional non-linear factors, the mathematical theories and formulas become more 

complicated. Here the most recent researches on fluids that is non-Newtonian has been discussed. 

They are primarily divided into fluids of the integral, rate, and differentiation types. According to 

the fluid classifications above, the rate type of fluids falls into the second-grade fluid category and 

has memory-related impacts (the retarded phenomena) and elastic characteristics (the relaxing 

time).  Due to its numerous uses in science and technology, it is clear from the previous works that 

the dynamics of maximum movements for rate-type fluids/systems have received significant 

attention by using second-grade fluid. Compared to Newtonian fluid, which contains derivatives 

up to first order, second-grade fluid has a velocity field with up to second order derivatives in 

stress-strain tensor connection. Because of the specific explanation of the structure connection, 

second-grade fluid follows have distinctive features. 
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1.6     Dusty Fluid 

Fluid and tiny dust particles are combined to form a dusty fluid. A dispersion of solid 

elements in fluids (liquid or gas) fluxes causes the phenomena to occur presented by Wei et al. [4]. 

A couple of examples are the way dusty air moves in fluidization issues and the way little dust 

particles condense to make rainfall. Recent research has shown a particular interest in the flow 

patterns of dusty fluid models. Numerous kinds of mechanical applications use fluid flows and 

dust particles, including transportation activities, the making of cement and steel, flying ash from 

heating plants, and the cooling effects of air conditioners. There are several important applications 

for two-phase flows when solid elements are dispersed in a second-class fluid. In recent years, a 

number of studies examined the flow of fluid with suspended dust particles. Environmental 

deterioration, combustion, petroleum, polymer and geophysical processes, refrigeration, 

contaminated soil, air, and water, dust or fumes in the gas cooling system, cultivation, fossil oil 

purification, polymer technology, and tint systems are all instances where studies about the flow 

of dusty fluids are very useful. Dusty fluid flows are two phases since the fluid is mixed with the 

particles. The combination of airborne dust particles with water when it rains and the earth’s 

withdrawal of oil and gas is a great instance of fluids with dust. The phenomena of dust particles 

in fluids that are Newtonian and others which is non-Newtonian have been considered by many 

academics in recent years. The work is relevant in air pollution, automobile emissions of smoke 

and exhaust, industrial effluent emissions, air conditioner cooling effects, flying ash produced by 

thermal reactors, and raindrop formation, among others. Additionally, it aids in understanding 

lunar ash flow, which defines many characteristics of lunar soil. Numerous scholars used the dusty 

fluid model to study different flow configurations and boundary conditions while maintaining an 

interest in two-phase flows. 

1.7     Asymmetric Channel   

In recent years, the asymmetric channel has attracted the interest of several mathematical 

and mathematical and industrial investigations. This flow is well recognized to be very important 

in many industrial and biochemical processes. Numerous of its uses have been discovered through 
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contemporary investigations. The asymmetric channel is important in several studies that included 

second-grade fluid. Thus researchers are urged to conduct more research in the area of asymmetric 

channels. The peristaltic movement path on the substrate is selected to have varying hefts and 

phases in order to create path asymmetry. In an oscillating frame referencing that moves at the 

speed of the wave, the flow is examined. The majority of research efforts in the literature have 

been directed toward creating fluid rectifiers that increase rates of flow in a certain path because 

of resistance to flow depending on the position. The nozzle-diffuser and Tesla valves are two 

common asymmetric designs used by conventional fluidic rectifiers, and they can individually 

perform movement rectifying at high Reynolds numbers or by employing non-Newtonian fluids. 

The fluidic rectifier's main issue is that its efficiency valving is subpar, which causes flow drip. In 

recent years, certain synthetic fluidic devices have been proven by applying a material with a 

hardness, rigidity, or bending differential to a material to create a wettability slope. The effect of 

quantity, temperature, and generated field known as magnetic on the peristaltic movement of 

Prandtl nanofluid technology were all attempted to be jointly correlated in the present work. It was 

carried out in an asymmetrical channel. 

1.8     Thesis Contribution 

This dissertation comprises a detailed study on MHD peristaltic second-grade fluid along 

with slip conditions through an asymmetric channel. The methodology contains a continuity 

equation with stream functions and uses the perturbation technique to develop the solution. Graphs 

are obtained by using the Mathematica. 

1.9    Thesis Organization 

The leftover thesis is distributed into the following chapters: 

Chapter 2 covers the related literature work that has already been done by the researchers. 
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Chapter 3 deals with the basic concepts that are essential to understand the research work 

covered in this thesis. 

Chapter 4 represents the review of the work done by Khan et al. [37]. 

Chapter 5 presents the extension work presented in chapter 4. We have added MHD in 

this work. Also the channel is considered to be inclined.  

Chapter 6 is the conclusion of the research work presented in chapter 5 along with the 

future work. 

In the end, the references list comprises all the sources that have been utilized in the whole 

research work. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1     Overview of Related Literature 

Fluid mechanics has seen a rise in passion for the study of fluid flow under slip conditions. 

The existence of slip has previously been documented and crucial for years meanwhile the Fluid 

Mechanics assumption of a no-slip barrier is not at all times acceptable for different circumstances 

in complex fluids. Researchers have paid very close attention to slip conditions. Several 

investigations have focused on the fluid's slip effects at the boundary. Here is an overview of 

current studies carried out within this particular field. 

Jamalabadi et al. [5] propose the use of an entropy generation minimization approach for 

the best possible arrangement of magnetohydrodynamic convection flows that are mixed in a 

channel that is vertical with slip boundary conditions and radiation from heat effects. Singh et al. 

[6] investigated mass allocation in a two-dimensional (MHD) slip flow of an electrically leading, 

incompressible, viscid, and steady flow of alumina water nanofluid across a flat plate. An analysis 

has been done to explore the issue of the fully established flow of a fourth-grade non-Newtonian 

fluid within two motionless plates in the context of an outwardly supplied uniform vertical 

magnetic field, according to Moakher et al. [7] research. At the channel wall, slip conditions are 

considered. The study of a conducting fluid's dynamics while a magnetic field is present is known 

as magnetohydrodynamics (MHD). A significant role MHD plays in a variety of fields, including 

fluid engineering, astronomy, technology, and geophysics. For instance, the production of MHD 

influence, MHD pumps, utilization in the movement of liquid metals and amalgams, , petroleum 

sector, cardiology, and also implication in the flow of mercury amalgams. Due to its numerous 

applications in astrophysics, geophysics, and fluid engineering, the study of MHD rotational flow 

has drawn a lot of attention from researchers. This investigation focused on the fractional second-

grade fluid's peristaltic flow within a cylindrical tube. When heat transmission is present, the 

effects of the magnetic field are considered. Equations of motion, energy, and continuity form the 
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foundation of mathematical modeling. The limitations of low Reynolds number and long 

wavelength have been applied to this analysis. For the temperature field, pressure gradient, and 

velocity, closed-form solutions are found. The new properties of friction force and pressure rise 

were analyzed using numerical integration by Hameed et al. [8]. 

Thermal radiation, mixed convection, and magnetohydrodynamics (MHD) are studied and 

equations for temperature, mass, and momentum were developed at long wavelengths and low 

Reynolds numbers by Tanveer et al. [9]. The pair stress fluid peristaltic motion in a two-

dimensional inclined path was examined by Rathod et al. [10]. Numerous physical factors' impacts 

on speed, pressure gradient, and frictional force have been addressed and quantitatively calculated. 

Graphs are used to discuss how certain critical parameters affect the results.  Munawar et al. [11] 

studied the peristaltic motion of a fluid that's viscous with changing viscosity in a symmetric 

channel has been thoroughly thermodynamically analysed. In the existence of heat transfer and 

wall slide, the magnetic and slip effects of this channel were investigated by Sankad et al. [12]. A 

magnetic field that is external is meant to affect the system, and Joule heating is supposed to occur. 

The Debye-Hückel approximation has been used to compute the fluid's speed and temperature. 

Mallick et al. [13] taking into account low Reynolds numbers and long wavelength 

approximations. Effects of fluid pseudoelasticity and dilatancy on non-Newtonian fluid heat 

transfer and peristaltic flow in a non-uniform asymmetric channel has been examined by Tahir et 

al. [14]. The flow of silver-water nanofluid and silicon dioxide-water nanofluid via a porous media 

is compared using an inquiry that compares the combination of peristalsis and electroosmosis-

driven flow of each fluid.By a symmetric flow channel, the fluid is moved. The flow problems are 

mathematically defined under the impact of a convection. Crossing channel walls requires no-slip 

conditions by Akram et al. [15].When a hybrid nanofluid with single-walled and multi-walled 

carbon nanotubes is flowing peristaltically in a wavy rectangular duct, the eigenfunction expansion 

approach is used by Nadeem et al. [16].  

Numerical analyses for the peristaltic movement of dusty nanofluids in a curve channel are 

carried out by Rashied et al. [17]. The impact of homogeneous-heterogeneous responses on the 

MHD peristaltic wave of Ellis fluid in curved channels are examined in the current inquiry using 

a model, and the results are discussed graphically through the ND Solve Mathematics programme. 
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Javed et al. [18] in their research work used fundamental relations for the Ellis fluid framework in 

the formulation of the problem. Also, use the perturbation technique. It is investigated that 

peristaltic flow in the duodenum, the first segment of the small intestine, is modelled as a C-shaped 

tube. The sculpture was built on a benchtop using a silicone tube full with a glycerol-water solution 

and bent through a spinning roller. Using wave speeds of 13 mm/s and contraction amplitudes of 

34%, element image velocimetry was employed to image movement shapes for deformities 

simulating circumstances in the duodenum. Under the roller, fluid had reversed flow, travelling in 

the opposite direction of how peristaltic waves propagate, according to Palmada et al. [19]. The 

peristaltic process of Eyring Powell fluid through a non-uniform conduit has been studied. The 

study is done with wall qualities present and changing liquid properties influencing it, and the flow 

issue mathematically constructed by Gudekote et al. [20]. The mathematical simulation of the 

peristaltic movement for incompressible Sutter by fluid in the space among coaxial tubes, where 

the inner duct is stationary and the outer duct exhibits sinusoidal rhythmic oscillations along the 

channel walls, is provided in the paper by Ammar et al. [21]. 

Few related investigations were provided based on heat transfer, fractional fluid models, 

magnetized fluids, and a few other topics, even if the study on the second-grade model can still be 

pursued. Ramesh et al. [22] examined how heat transfer affects the peristaltic flow of a second-

grade incompressible magnetohydrodynamic fluid in vertical symmetric and asymmetric channels. 

Selecting distinct amplitudes and phases for the peristaltic waves on the walls results in channel 

asymmetry. They concluded that the flow while moving at the wave's velocity occurs in the wave 

frame of reference. Under the long wavelength assumption, perturbation solutions are found for 

the temperature, pressure gradient, and stream function. Numerical integration is used to discuss 

variations in pressure and frictional force. In addition, it discussed how different relevant 

parameters affect the flow. 

Tariq et al. [23] studied the effect of numerous peristaltic flow parameters for dusty fluid 

that is also second-grade, using a rounded design. To simulate independent mathematical equations 

for the dust particles and fluid, stream function conversions are utilized. Graphs are used to validate 

the analytical answers obtained through the application of the perturbation approach. 
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Numerous engineering applications include the use of two-phase particulate suspension 

flows that contain a continuous fluid phase and a discrete particle phase. Applications including 

gas masks, turbine blade erosion, dust collecting equipment, and aircraft icing all make use of 

these types of flow fields, which are of interest. MHD peristaltic transport of a dusty fluid in a 

uniform channel having elastic wall characteristics via a porous medium has been stuided. A 

system of differential equations that are partial controlling the movement of the fluid and solid 

elements are consumed to model this phenomenon by Parthasarathy et al. [24]. Using the 

perturbation technique, the system of Navier-Stokes equations is transformed into linear ones 

under the long wavelength assumptions and solved with suitable boundary conditions. Under 

various conditions, the effects of particle concentration and slip condition are examined on the 

suspended fluid's peristaltic flow down a channel. An external uniform magnetic field is provided 

crosswise to the walls of the channel, with the walls being assumed to be flexible. The pressure, 

streamlines, and velocity distributions for both fluid and dusty particles are obtained by Eldesoky 

et al. [25] through the solution of the equations of motion that is analytical, using the perturbation 

method. Under the long wavelength approximation, the impact of flexible wall elasticity on the 

peristaltic movement of a dusty fluid with mass and heat transfer in a horizontal channel during a 

chemical reaction has been studied by Muthura et al. [26]. Khan et al. [27] examined how mass 

transfer affects a dusty fluid's peristaltic flow in a curved configuration with elastic wall features. 

Hafeze et al. [28] studied the peristaltic transport characteristics of a second-grade dusty fluid flow 

with heat transfer through a tube revisited.   

The use of asymmetric channels in technical occurrences at the level of manufacturing 

gives the study of these channels a large amount of significance. To forecast and comprehend the 

flow behaviour in asymmetric channels, numerical approaches like computational fluid dynamics 

are frequently used. In microfluidics, where small-scale devices exhibit intricate and irregular 

channel topologies, asymmetric channels are frequently seen. Under outlooks of long wavelengths 

and low Reynolds numbers, the topic of the peristaltic movement of fluid that is incompressible 

and non-Newtonian in a tapering channel that is asymmetric is discussed. By use of a transverse 

magnetic field, the fluid is thought to be fourth-order and conductor of electricity. The boundary 

walls that are non-uniform are subjected to peristaltic waves that have various amplitudes and 

phases, as done by Kothandapani et al. [29], in order to create the flow's tapering asymmetry. By 
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deciding to have a peristaltic wave train with varying amplitudes and phases on the thin walls, the 

tapering asymmetric channel was created. It has been used to combine a long wavelength and a 

low Reynolds number by Prakash et al. [30]. In order to better understand how heat radiation and 

entropy formation affect the peristaltic blood movement of such fluid that is magneto-micro polar 

in a tapering channel, Asha et al. [31] conducted research on the subject. 

Reddy et al. [32] examined the impacts of chemical changes and thermal radiation on the 

transmission of mass and heat of a peristaltic electro-osmotic flow of a pair stress fluid down in a 

channel that is inclined asymmetric. Abd-Alla et al. [33] investigated that how the Newtonian fluid 

model behaves when it flows peristaltically over an incline channel with asymmetrical flow. It has 

been mathematically analyzed how an inclined magnetic field interacts with the peristaltic flow of 

blood in an inclined asymmetric channel, as well as how heat and mass are transferred. In this 

investigation of the peristaltic movement of Prandtl nanofluids in a passage that is inclined 

asymmetric, Akram et al. [34] explains the impacts of the induced field that is magnetic, 

temperature, and concentration convection. The relationship between double-diffusivity 

convection and an induced magnetic field in Prandtl nanofluids is explained mathematically in 

great depth. The work by Abbasi et al. [35] describes the significance of peristaltic occurrences in 

biology and medical technology, which has recently attracted a lot of interest. The peristaltic 

structure of Ellis fluid in a passageway has been examined in the current work after a wave train 

of infinite size has propagated across it. Due to the asymmetric channel, the limited flow regime 

is presumptive. 
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CHAPTER 3 

BASIC DEFINITIONS 

3.1      Fluid Mechanics [36] 

 It deals with fluids, whether they are in flow or at rest and the impact the fluid has on the 

boundaries as a result. 

3.2      Fluid [36]    

             Any liquid, gas, or material, in general, that cannot bear a tangential or shearing force at 

rest and that continuously changes form in the presence of such a stress. Examples include water, 

air, honey, paint, etc. 

3.3     Types of Fluid 

The numerous types of fluid namely  

 Newtonian fluid, 

 Non-Newtonian fluid, 

 Incompressible fluid, 

 Compressible fluid, 

 Ideal fluid, 
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 Real fluid etc. 

3.3.1  Newtonian Fluid [36]        

Newtonian fluids are defined as those fluids that follow the Newton's law of constant 

viscosity. These fluids show zero shear rate and maintain a constant viscosity under shear stress. 

Water, air, alcohol and glycerol are familiar examples. 

3.3.2   Non-Newtonian Fluid  

Some fluids are referred to as non-Newtonian fluids because they do not adhere to the 

Newton's law of constant viscosity. Paint, food, and honey are a few examples.             

3.3.3   Ideal Fluid 

Fluid which exhibits zero viscosity is known as ideal fluid. There is no examples of ideal 

fluid in real life these only exist in theory.                                                        

3.3.4  Real Fluid  

Such fluid that has viscosity more than zero i.e. (μ > 0) is called real fluid. All fluids in 

daily life practice are real fluid. 
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3.3.5   Compressible Fluid 

A compressible fluid is one where the substantial density fluctuations that take place 

throughout its flow must be taken into account, as generally the case with vapours and gases. Its 

examples are air, oxygen and steam. 

3.3.6  Incompressible Fluid  

A fluid that does not vary in density or volume with pressure is said to be incompressible. 

Its common examples are water and oil. 

3.4     Newton’s Law of Constant Viscosity 

The viscous stresses are proportional to the coefficient of viscosity and element strain rates,    

τ  =   µ 
ⅆ𝑢

ⅆ𝑦
. 

3.5     Types of Flow  

Following are some types of flows  
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3.5.1  Steady and Unsteady Flow  

           When conditions (for example velocity, pressure, and cross-section) are different from one 

location to other but persist constant over time, the situation is called steady flow. If conditions in 

the fluid change over a period of time at any point in the flow, it is said to be unstable. 

3.5.2  Uniform and Non-Uniform Flow [36]    

A common instance of uniform flow is the steady flow along a long, straight conduit with 

a fixed diameter. A flow is known as to non-uniform if its features and properties fluctuate and 

vary at various points throughout the flow path. 

3.5.3  One, Two and Three-Dimensional Flow    

The number of spatial coordinates necessary to describe a flow is referred to as the term 

one, two, or three dimensional flow. Every physical flow seems to be three-dimensional in nature. 

However, these are challenging to compute and need as much oversimplification as you can. 

3.5.4  Rotational or Irrotational Fluid 

In contrast to irrotational flow, which includes fluid particles moving without rotating, 

rotational flow contains fluid particles moving in a swirling or circular fashion around a central 

axis. Due to the rotation, there are areas with varying levels of velocity, which results in complex 

and dynamic flow patterns. 
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3.5.5  Laminar or Turbulent Flow 

           Laminar flow, is a form of fluid movement that occurs when the fluid flows easily or 

through predictable paths, as opposed to flow that is turbulent, in where the fluid undergo 

irregularity in oscillations and mixing. 

3.5.6  Creeping Flow 

            Fluid flow with little inertia is referred to as creeping flow. The fluid is subjected to forces 

that are larger than inertia, including viscous and pressure forces. High-viscosity fluids often move 

in a creeping manner because they have trouble flowing. The settling of dust grains and the floating 

of microbes are two examples of extremely tiny things moving in a fluid that exhibit creeping flow. 

3.6     Viscosity [36]    

The inertia of a fluid to a variation in the form or motion of neighboring segments 

comparative to one another is identified as viscosity. Viscosity is an indication of flow resistance. 

3.7     Shear Thinning  

Fluids that become pseudo-plastic (shear-thinning) as shear rate is increased are those 

whose viscosity falls. Examples of shear-thinning materials include glue, shampoo, egg, and blood. 
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3.8     Shear Thickning  

           A fluid that exhibits an increase in viscosity with an increase in shear rate. A combination 

of corn flour and water is an instance of a dilatant fluid. 

3.9     Shear Stress 

It’s a force that tends to distort a material by causing it to slide along a plane or planes 

parallel to the applied stress. 

3.10   Shear Strain 

By dividing the measure of deformation the body experiences in the direction that of the 

applied force by the body's starting dimensions Shear force Strain is calculated. Forces parallel to 

and lying in planes or cross-sectional regions generate a shear strain. 

3.11   Density [36]    

A liquid's mass per unit volume is indicated by the Greek letter (lowercase rho). Gases 

have a significant degree of density variability, and it rises almost directly in direct proportion to 

pressure. Liquids have a relatively constant density. 

3.12   No Slip Condition [36]    

When flow is constrained by a solid surface, interactions between molecules cause the fluid 

that comes into contact with that surface to try to find momentum and energy equilibrium with it, 
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𝑉𝑓𝑙𝑢𝑖ⅆ=𝑉𝑤𝑎𝑙𝑙. 

3.13   MHD    

It examines how magnetic fields and fluid conductors of electricity interact. Plasma, liquid 

metals, salt water, and electrolytes are a few examples. 

3.14   Continuity Equation        

The rate at which mass leaves a structure equals the rate at which it enters a structure 

regardless of the time this process, based on the continuity equation for fluid dynamics equation. 

∂ρ

∂t
+ ∇. (ρ. V) = 0,  

where, 

t = time, ρ = density of the fluid and V = flow velocity vector field. 

 

3.15   Newton's Second Law of Motion   

Newton's second law, indicates that a body's temporal rate of change in momentum is 

proportionate to the total of the forces acting on it.  

Newton's second law can be written as: 
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F =
ⅆ(𝑚𝑣)

ⅆ𝑡
. 

3.16    Mass [36]    

As a way to gauge how much matter is there in a body, we might use the term mass. 

Kilogram (kg), which is represented by the m symbol, is the SI unit of mass. 

3.17   Body Force 

A force that acts over the volume of a body. Which consist of forces resulting from gravity, 

magnetic fields and electric fields. 

3.18   Surface Force 

            Surface forces, or the forces created when two bodies come into contact, act on surfaces 

and are responsible for the stress distributions that result from this interaction. Interior surfaces of 

materials are likewise subject to surface forces. 

3.19    Pressure [36]    

A distinct number known as the fluid pressure or p is equal to the normal stress on a plane 

via fluid element when it is at rest. 
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3.20   Dimension [36]       

The unit of measurement used to express a physical variable is called a dimension. A 

specific method of connecting an amount to the quantitative dimension is via using units. 

3.21    Reynolds Number [36]       

The relationship among the forces that are inertial and viscous is expressed through the 

Reynolds number. 

           Given by the ratio, 

Re =
inertial forces

viscous forces
. 

 

3.22    Streamline [36]    

A streamline is a line that it’s all point are perpendicular to the velocity vector at any given 

time. 

3.23    Stream Function [36]      

Stream functionality is possible to estimate the components of velocity by differentiation 

of the stream function with respect to the provided coordinates since the stream function is a three-

dimensional feature of the hydrodynamics of an inviscid liquid and a function of coordinates and 

time. 
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3.24   Perturbation         

Finding estimated analytical solutions for nonlinear problems is a common use of 

perturbation techniques. This method, however, is based on the presumption that a small parameter 

exists in the differential equation that governs the nonlinear physical phenomena as well as the 

approximations obtained by perturbation methods, and, in most instances, is only applicable for 

small values of the small parameter. 
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CHAPTER 4 

PERISTALTIC FLOW OF SECOND-GRADE DUSTY FLUID 

THROUGH A POROUS MEDIUM IN AN ASYMMETRIC 

CHANNEL 

4.1     Introduction 

The impact of a porous medium on a fluid that is second-grade and dusty along with a slip 

factor within an asymmetric passage has been investigated by Khan et al. [37]. Nonlinear coupled 

equations are used to illustrate the scenario mathematically. By using a standard perturbation 

procedure, the problem is analytically resolved. Graphs are also included of the pressure gradient 

and the stream functions together with solid and liquid particles. 

4.2     Mathematical Formulation  

Supposing the second-grade dusty fluid obeying peristaltic motion with magnetic field and 

slip condition through an asymmetric channel having breadth (𝑑1 + 𝑑2), waves that are peristaltic 

presumed to travel beside the walls of the passage. Equations that describe the channel walls are 

H1(𝑋, 𝑡) =  d1 + a1  sin [
2𝜋

 𝜆
(𝑋 − 𝑐𝑡)],                                                                                                (4.1)  

H2(𝑋, 𝑡) =  −d2 + a2  sin [
2𝜋

 𝜆
(𝑋 − 𝑐𝑡) + ∅ ] ,                                                                                   (4.2)  
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Figure 4.1: Geometry of the problem 

In the above equations 𝑎1 and 𝑎2 representing the amplitudes of the waves, 𝜆 stands for the 

wavelength, c is the speed of the wave propagation beside the walls of the passage, and ∅ is the 

phase angle. 

The defining equations for fluid flow are given by 

𝜕𝑈

𝜕𝑋
+

𝜕𝑉

𝜕𝑌
= 0,                                                                                                                                             (4.3) 

ρ (
𝜕𝑈

𝜕𝑡
+ 𝑈

𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑉

𝜕𝑌
) = −

∂P

∂X
+  

𝜕SXX

𝜕𝑋
+

𝜕SXY

𝜕𝑌
+ 𝑟�̃�(US − 𝑈) −

𝜇

𝑘1
(U),                                         (4.4)  

ρ (
∂V

∂t
+ U 

∂V

∂X
+ V

∂V

∂Y
) = −

∂P

∂Y
+  

∂SXY

∂X
 +

∂SYY

∂Y
 + r�̃�(VS − V),                                                         (4.5)  

𝜕𝑈𝑠

𝜕𝑋
 +

𝜕𝑉𝑠

𝜕𝑌
 = 0,                                                                                                                                        (4.6) 
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Us

∂Us

∂X
 + Vs

∂Us

∂Y
 =

r

m
(U − Us),                                                                                                          (4.7) 

Us

∂Vs

∂X
+ Vs

∂Vs

∂Y
=

r

m
(V − Vs).                                                                                                              (4.8) 

In the above equations, U and V are the velocities of fluid particles along the x-axis and y-

axis respectively. While 𝑈𝑠 and 𝑉𝑠 are the velocities of solid particles along the x-axis and y-axis 

respectively. In equations r is the resistance, m is the mass of the dust particles, 𝑘1 represents the 

permeability of the porous medium, and �̃� is the amount density of solid particles, which is taken 

as a constant. 

The connection between fixed and moving frames is given as follows: 

p (x) =  P (X, t), x =  X –  ct, v =  V, u =  U −  c, y =  Y, uS = US − c, vS = VS,                  (4.9)  

∂U

∂X
+

∂V

∂Y
= 0,                                                                                                                                             (4.10)  

ρ (u
∂u

∂x
+ v

∂v

∂y
) = −

∂p

∂x
+

∂Sxx

∂x
+

∂Sxy

∂y
+ r�̃�(us − u) −

µ

k1
 (u + c),                                       (4.11) 

 

ρ (u
∂v

∂x
+ v

∂v

∂y
) = −

∂p

∂y
+

∂Sxy

∂x
+

∂Syy

∂y
+ r�̃�(vs − v) −  

µ

k1
(v).                                                      (4.12)  

Similarly, 

∂us

∂x
+

∂vs

∂y
= 0,                                                                                                                                          (4.13)  

us
∂us

∂x
+ vs

∂us

∂y
=

r

m
(u − us),                                                                                                              (4.14)  

us

∂vs

∂x
+ vs

∂vs

∂y
=

r

m
(u − vs),                                                                                                           (4.15) 

where,  
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Sxx = 2µ
∂u

 ∂x
+ α1 [2 (u

∂2u

∂x2
+ v

∂2u

∂x ∂y
) + 4 (

∂u

 ∂x 
)

2

+ 2
∂u

 ∂x 

∂v

 ∂x 
+ 2 (

∂u

 ∂x 
)

2

] + α2 [4 (
∂u

 ∂x 
)

2

+

(
∂u

 ∂y
+

∂v

 ∂x 
)

2

],                                                                                                                                          (4.16)  

Sxy =  µ (
∂u

 ∂y
+

∂v

 ∂x 
) + α1 [u (

∂2u

∂x ∂y
) + v

∂2u

∂x2 + u 
∂2v

∂x2 − 2
∂v

 ∂x 

∂u

 ∂x 
+ 2

∂v

 ∂x 

∂v

 ∂x 
],                         (4.17)  

Syy =  2µ
∂v

∂y
+ α1 [2 (v

∂2v

∂y2 + u
∂2v

∂x ∂y
) + 4(

∂v

 ∂y 
)2 + 2

∂u

 ∂y 

∂v

 ∂x 
+ 2(

∂u

 ∂x 
)2] + α2 [4 (

∂u

 ∂y 
)

2

+ (
∂u

 ∂y
+

∂v

 ∂x 
)

2

].                                                                                                                                                       (4.18)  

Presenting the stream functions and dimensionless variables for dust and fluid particles as: 

u =
∂ψ

∂y
,  us =

∂φ

∂y
, v = −δ

∂ψ

∂x
,    vs = −δ

∂φ

∂x
, p∗ =

 pd1
2

μcλ
, x∗ =

x

λ
, y∗ =

y

d1
, ψ∗ =

ψ   

cd1
, φ∗ =

φ   

cd1
, α1

∗ =
cα1

μd1
, α2

∗ =
cα2

μd1
, s∗ =

sd1

μc
, a =

a1

d1
, b =

a2

d1
, d =

d2

d1
, Re =

ρcd2

μ
, δ =

d1

λ      
.                (4.19)  

The equations in dimensionless form are given as: 

Reδ [
∂2ψ

∂x ∂y

∂ψ

∂y
−

∂ψ

∂x

∂2ψ

∂y2
] = −

∂p

∂x
+ δ

∂Sxx

∂x
+

∂Sxy

∂y
+ A (

∂φ

∂y
−

∂ψ

∂y
) −

d1
2

k1
(

∂ψ

∂y
+ 1),                   (4.20)  

Re δ3 [
∂ψ

∂x

∂2ψ

∂x ∂y
−

∂ψ

∂y

∂2ψ

∂x2 ] = −
∂p

∂y
+ δ2 ∂Sxy

∂x
+ δ

∂Syy

∂y
+ δ2A (

∂ψ

∂x
−

∂φ

∂x
) +

δ2 d1
2

k1
(

∂ψ

∂x
).                                                                                                                                            (4.21)   

For solid particles 

∂2φ

∂y ∂x

∂φ

∂y
− δ

∂2φ

∂y2

∂φ

∂x
=

r

m
(

∂ψ

∂y
−

∂φ

∂y
),                                                                                                  (4.22)  

δ
∂2φ

∂x ∂y

∂φ

∂x
−

∂2φ

∂x2

∂φ

∂y
=

r

m
(

∂φ

∂x
−

∂ψ

∂x
).                                                                                                  (4.23)  

Compatibility equation for the fluid and solid particles are 
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Re [δ (
∂ψ

∂y

∂3ψ

∂x ∂y2 −
∂ψ

∂x

∂3ψ

∂y3 ) − δ3 (
∂ψ

∂x

∂3ψ

∂y ∂x2 −
∂ψ

∂y

∂3ψ

∂x3 ) ] = (
∂2

∂y2  − δ2 ∂2

∂x2) Sxy + δ
∂2

∂x ∂y
(Sxx −

Syy) + A(∇1
2φ − ∇1

2ψ) −
d1

2

k1
(∇1

2ψ ),                                                                                          (4.24)  

δ (
∂φ

∂y

∂

 ∂x 
∇1

2φ −
∂φ

∂x

∂

 ∂y 
∇1

2φ) = R(∇1
2ψ − ∇1

2φ),                                                                    (4.25)  

where 

∇1
2= [

∂2

∂y2
+  δ2 (

∂2

∂x2
)] , A =

rNd1
2

μ
 and R =

rd1

cm
  are nondimensionlized parameters and k = 

d1
2

k1
  

is the permeability coefficient of the porous medium 

The walls equations in nondimensional form are: 

h1(x) = 1 + a sin(2πx),                                                                                                                      (4.26)  

h2(x) = −d − b sin(2πx + ∅),                                                                                                          (4.27)  

and the nondimensional boundary condition are: 

ψ =
F

2
,

𝜕𝜓

𝜕𝑦
+ βSxy = −1, φ =

N

2
 at y = h1(x),                                                                                 (4.28)  

ψ = −
F

2
,

𝜕𝜓

𝜕𝑦
− βSxy = −1, φ = −

N

2
 at y = h2(x).                                                                         (4.29)  

Q = F + 1 + d,                                                                                                                                        (4.30)  

where 

F = ∫
∂ψ

∂y
dy

h1(x)

h2(x)
.                                                                                                                                    (4.31)  

The time flow rate of the dust particles in dimensionaless form is 
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N = ∫
∂φ

∂y
dy

h1(x)

h2(x)
.                                                                                                                                    (4.32)  

The nondimensional time flow in the fixed frame as  

Qs = N + 1 + d.                                                                                                                                     (4.33) 

ΔP = ∫
∂p

∂x
dx

1

0

.                                                                                                                                        (4.34) 

4.3     Method of Solution 

            The perturbation method has been chosen to obtain the analytical solution of the modeled 

problem. 

ψ = ψ0 + δψ1 + O(δ2),                                                                                                                       (4.35)                

φ = φ0 + δφ1 + O(δ2),                                                                                                                       (4.36) 

F = F0 + δF1 + O(δ2),                                                                                                                          (4.37)                

N = N0 + δN1 + O(δ2),                                                                                                                        (4.38) 

p = p0 + δp1 + O(δ2).                                                                                                                         (4.39)                

4.3.1 Zeroth –Order System 

∂2S0xy

∂y2
+ A (

∂2φ0

∂y2
−

∂2ψ0

∂y2
) − k

∂2ψ0

∂y2
= 0,                                                                                     (4.40) 

R (
∂2ψ0

∂y2
−

∂2φ0

∂y2
) = 0,                                                                                                                         (4.41) 
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p0x =
∂S0xy

 ∂y 
+ A (

∂φ0

∂y
−

∂ψ0

∂y
) − k (

∂ψ0

∂y
+ 1) ,                                                                            (4.42) 

where, 

S0xy =
∂2ψ0

∂y2
, 

ψ0 =
F0

2  
, φ0 =

N0

2  
,
∂ψ0

 ∂y 
+ βS0xy = −1     𝑎𝑡 y = h1(𝑥),                                                              (4.43) 

 

ψ0 = −
F0

2  
, φ0 = −

N0

2  
,
∂ψ0

 ∂y 
− βS0xy = −1     𝑎𝑡 y = h2(𝑥).                                                     (4.44) 

4.3.2 First Order System 

𝑅𝑒 (
∂ψ0

 ∂y 

∂3ψ0

∂x ∂y2 −
∂ψ0

 ∂x 

∂3ψ0

∂y3 ) =
∂2

∂x ∂y
(S0xx − S0yy) +

∂2

∂y2 S1xy + 𝐴 (
∂2φ1

∂y2 −
∂2ψ1

∂y2 ) −

𝑘 (
∂2ψ1

∂y2 ),                                                                                                                                                  (4.45)  

𝑅 (
∂2ψ1

∂y2
−

∂2φ1

∂y2
) =

∂φ0

 ∂y 

∂3φ0

∂x ∂y2
−

∂φ0

 ∂x 

∂3φ0

∂y3
,                                                                              (4.46) 

p1x = Re (
∂ψ0

 ∂y 

∂2ψ0

∂x ∂y
−  

∂ψ0

 ∂x 

∂2ψ0

∂y2 ) −  
∂

 ∂y
(S1xy) + 𝐴 (

∂φ1

 ∂y 
−

∂ψ1

 ∂y 
) − 𝑘 

∂ψ1

 ∂y 
,                                (4.47)  

Where, 

S1xy =
∂2ψ1

∂y2
+ 𝛼1 (2

∂2ψ0

∂y ∂x

∂2ψ0

∂y2
+

∂ψ0

 ∂y 

∂3ψ0

∂x ∂y2
−

∂ψ0

 ∂x 

∂3ψ0

∂y3
). 

ψ1 =
𝐹1

2
, φ1 =

𝑁1

2
,

∂ψ1

 ∂y 
+ βS1xy = 0             𝑎𝑡 𝑦 = ℎ1(𝑥),                                                          (4.48)     
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ψ1 = −
𝐹1

2
,   φ1 = −

𝑁1

2
,

∂ψ1

 ∂y 
− βS1xy = 0           𝑎𝑡 𝑦 = ℎ2(𝑥).                                                   (4.49)     

To solve the above mentioned system of equations Mathematica software has been used. Also the 

graphs obtained by the same software. 

4.4       Results and Discussion 

The topic of pressure rise and the contour graphs relating to liquid and solid particles is 

covered in this section. The impacts of various factors on fluid particles are shown in Figures 4.2–

4.6. The effects of factors upon the dust particles embedded in the fluid are shown in Figures 4.7–

4.11. Graphical depictions of pressure change for particles of fluid are shown in Figures 4.12–

4.16. 

The expansion of the fluid particle bolus is demonstrated by Figure 4.2 when 𝛼1 values 

grow. We note that the bolus grows along with the values of δ, as Figure 4.3 illustrates. Although 

Figure 4.4(b) and 4.4(c) demonstrate that the bolus grows with an increase in slip parameter, Figure 

4.4(a) depicts the impact of no slip upon the fluid particles. Figure 4.5 illustrates how porosity 

works. See Figure 4.6(a) for an illustration of the minimal porosity quantity and the modest 

influence of porosity on the fluid profile. Expanding bolus is a result of higher porosity. A higher 

Reynolds number (Re) causes the fluid particle bolus to constrict, as seen in Figure 4.6As 

𝛼1increases, the bolus of the solid particles grows, as shown in Figure 4.7. As shown in Figure 4.8, 

the bolus extends by increasing δ for solid particles. The solid particles are shown to have no-

slip effects in Figure 4.9(a), but Figure 4.9(b) and 4.9(c) demonstrate how the bolus begins to 

expand when the slip parameter increases. Figure 4.10 offers an examination of the effects for the 

porosity factor on particles that are solid. We see a small impact of reduced porosity on the solid 

particle flow. Effects on the particles that are solid are shown to increase with porosity in Figure 

4.10(b) and 4.10(c). Re and bolus grow in tandem, as Figure 4.11 illustrates.   
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 Figure 4.12 shows the deviation of the pressure rise for various amounts of Reynolds number (Re). 

As Re increases, the pressure increases as well because a higher Reynolds number indicates that 

inertial forces become stronger and viscous forces become weaker, widening the retrograde region 

for fluid pumping. The impact of δ upon the rate of pressure rise is depicted in Figure 4.13. The 

pumping rate in the retrograde zone falls as δ grows, whereas in the areas with free pumping and 

co-pumping regions, the effect is the opposite. Figure 4.14 provides an analysis of the effects of 

slip factor 𝛽on the rise in pressure. As the slip coefficient increases, there is a modest increase in 

pressure rise because pumping the fluid requires more pressure. Pressure increases significantly in 

response to increases in the porosity parameter, k. When the k approaches 0, we can see in Figure 

4.15 that pressure has all but disappeared. The pressure rise increases noticeably as the porosity 

variables increases because it would take more pressure to pump the fluid through the porous 

passage. The impacts of 𝛼1 on the increase in pressure are graphically depicted in Figure 4.16. In 

the retrograde region (∆P > 0), we observe that the pumping rate increases with an increase in 𝛼1, 

whereas in the co-pumping area (∆P < 0), they decrease. 
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(a) 𝛼1= 0                                                                (b) 𝛼1= 4 

 

 

 

(c) 𝛼1=6 

 

Figure 4.2: Portrays the contour patterns for fluid particles for diverse values of 𝛼1.  
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(a) 𝛿 = 0                                                                  (b) 𝛿 = 0.4 

 

 

 

(c) 𝛿 = 0.6 

 

Figure 4.3: Portrays the contour patterns for fluid particles for diverse values of 𝛿.  
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(𝑎) 𝛽 = 0                                                        (b) 𝛽 = 0.2 

 

 

 

(c) 𝛽 = 0.3 

Figure 4.4: Portrays the contour patterns for fluid particles for diverse values of 𝛽. 
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 (a) k =  0.001                                                      (b) k =  0.2   

 

 

 

(c) k = 0.3 

Figure 4.5: Portrays the contour patterns for fluid particles for diverse values of k. 
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(a) Re = 0                                                        (b) Re = 0.5 

 

 

 

(c) Re = 1 

 

Figure 4.6: Portrays the contour patterns for fluid particles for diverse values of Reynolds 

number (Re). 
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           (𝑎) 𝛼1 = 0                                                                 (b)  𝛼1 = 1 

 

 

 

(c)  𝛼1 = 2 

Figure 4.7: Portrays the contour patterns for dust particles for diverse values of 𝛼1.  
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(a) 𝛿 = 0                                                             (b) 𝛿 = 0.02 

 

 

 

 

(c)  𝛿 = 0.03 

 

Figure 4.8: Portrays the contour patterns for dust particles for diverse values of 𝛿. 
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(𝑎) 𝛽 = 0                                            (b) 𝛽 = 0.2 

 

 

 

 

(c) 𝛽 = 0.3 

  

Figure 4.9: Portrays the contour patterns for dust particles for diverse values of 𝛽. 
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  (a) k = 0.001                                                         (b) k = 0.2 

 

 

 

 

(c)  k = 0.3 

 

Figure 4.10: Portrays the contour patterns for dust particles for diverse values of k. 
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(a) Re = 0                                                           (b) Re = 0.5 

 

 

 

(c) Re = 1 

 

Figure 4.11: Portrays the contour patterns for dust particles for diverse values of Reynolds 

number (Re). 
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Figure 4.12: Deviation of ∆𝑝(𝑃) with Q for diverse values of Re.  

 

 

Figure 4.13: Deviation of ∆𝑝(𝑃) with Q for diverse values of  𝛿. 
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Figure 4.14: Deviation of ∆𝑝(𝑃) with Q for diverse values of 𝛽. 

 

 

 

Figure 4.15: Deviation of ∆𝑝(𝑃) with Q for diverse values of k. 
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Figure 4.16: Deviation of ∆𝑝(𝑃) with Q for diverse values of 𝛼1. 
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CHAPTER 5 

EFFECTS OF MAGNETIC FIELD ON PERISTALTIC FLOW OF 

SECOND-GRADE DUSTY FLUID IN AN INCLINDED 

ASYMMETRIC CHANNEL 

5.1     Introduction 

This chapter deals with the peristaltic flow of second-grade dusty fluid with the effects of 

magnetic field flowing past and slip condition by an inclined asymmetric passage. Equations are 

solved for both fluid particles and solid particles separately. The solution of the system of 

equations is found by using DSolver in Mathematica. 

5.2     Mathematical Formulation 

            Supposing the second-grade dusty fluid following peristaltic motion with magnetic field 

and slip condition in an inclined asymmetric channel having width(𝑑1 + 𝑑2), waves that are 

peristaltic presumed to travel beside the walls of the passage with speed c. The asymmetric passage 

is considered to be inclined, making the angle 𝛾 with the x-axis. Equations that describe the 

channel walls are 

H1(𝑋, 𝑡) =  d1 + a1 cos [
2𝜋

 𝜆
(𝑋 − 𝑐𝑡)],                                                                                          (5.1)  

H2(𝑋, 𝑡) =  −d2 + a2  cos [
2𝜋

 𝜆
(𝑋 − 𝑐𝑡) + ∅].                                                                             (5.2)  
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Figure 5.1: Geometry of the problem 

The ruling equations designed for fluid flow are given by: 

∂Û

∂X̂
+

∂V̂

∂Ŷ
= 0,                                                                                                                                         (5.3)  

ρ ( 
∂Û

∂t̂
+ Û 

∂Û

∂X̂
+ V̂

∂V̂

∂Ŷ
 ) = −

∂P̂

∂X̂
+

∂ŜX̂X̂

∂X̂
+

∂ŜX̂Ŷ

∂Ŷ
+ KL(ÛS − Û) + ρg sin γ − σB0

2Û,            (5.4)  

ρ ( 
∂V̂

∂t̂
+ Û 

∂V̂

∂X̂
+ V̂

∂V̂

∂Ŷ
 ) = −

∂P̂

∂Ŷ
+

∂�̂��̂��̂�

∂X̂
+

∂�̂��̂��̂�

∂X̂
+ KL(V̂S − V̂) + ρg cos γ.                              (5.5)  

 For solid particles, the governing equation is 

∂ÛS

∂X̂
+

∂V̂S

∂Ŷ
= 0,                                                                                                                                      (5.6)    
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∂ÛS

∂t̂
+ ÛS

∂ÛS

∂X̂
+ V̂S

∂ÛS

∂Ŷ
= KL(Û − ÛS)                                                                                             (5.7)   

∂V̂S

∂t̂
+ ÛS

∂V̂S

∂X̂
+ V̂S

∂V̂S

∂Ŷ
= KL(V̂ − V̂S)                                                                                             (5.8)  

In the above equations, U and V are the velocities of fluid particles along the x-axis and y-axis 

respectively. While 𝑈𝑠 and 𝑉𝑠 are the velocities of solid particles with the x-axis and y-axis 

correspondingly. L is the resistance, K is the amount density of solid particles, which is taken 

as a constant. 

The association between moving and fixed structures is given below and presenting the 

stream functions and nondimensional variables for fluid and dust particles 

p (x̂) =  P (X̂, t̂), v̂ =  V̂, û =  Û −  c, ûs = ÛS − c, ŷ =  Ŷ, v̂S = V̂S, x̂ = X̂  –  ct̂                (5.9)  

u =
∂ψ

∂y
,  us =

∂φ

∂y
, v = −δ

∂ψ

∂x
,    vs = −δ

∂φ

∂x
, p∗ =

 pd1
2

μcλ
, x∗ =

x

λ
, y∗ =

y

d1
, ψ∗ =

ψ   

cd1
, φ∗ =

φ   

cd1
,  

   α1
∗ =

cα1

μd1
, α2

∗ =
cα2

μd1
, s∗ =

sd1

μc
, a =

a1

d1
, b =

a2

d1
, d =

d2

d1
, M2 =

𝜎𝐵0
2𝑑1

μ
, Re =

ρcd2

μ
,                

δ =
d1

λ      
, Fr =

𝑐2

𝑔ⅆ1
.                                                                                                                                (5.10)   

Equations (5.4), (5.5)  are transformed into the following equations: 

Reδ [
∂2ψ

∂x ∂y
 
∂ψ

∂y
−  

∂ψ

∂x

∂2ψ

∂y2 ] = −
∂P

∂x
+ δ 

∂SXX

 ∂X
+

∂SXY

 ∂Y
+ A (

∂φ

 ∂y
 −

∂ψ

 ∂y
) +

Re

Fr
sin γ −  

      M2 (
∂ψ

 ∂y
+ 1),                                                                                                                                    (5.11)  

Reδ3 [
∂2ψ

∂x2  
∂ψ

 ∂y
−

∂ψ

 ∂x

∂2ψ

∂x ∂y
] = −

∂P

∂y
+ δ2 ∂SXY

 ∂X
+ δ 

∂SYY

 ∂Y
+ A (

∂ψ

 ∂x
−

∂φ

 ∂x
) −

Re

Fr
cos 𝛾 ,                  (5.12)  

 Equations (5.7), (5.8) are transformed into the following equations: 

∂2φ

∂y ∂x

∂φ

 ∂y
− δ

∂2φ

∂y2

∂φ

 ∂x
= B (

∂ψ 

 ∂y  
 −  

∂φ

 ∂y
),                                                                                              (5.13)  
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  −
∂2φ

∂x2

∂φ

 ∂y
+ δ 

∂φ

 ∂x

∂2φ

∂x ∂y
= B (

∂φ

 ∂y
−

∂ψ

 ∂x 
).                                                                                          (5.14)  

Compatibility equation for the fluid and dust particles are 

δRe [
∂ψ

 ∂y 

∂

 ∂x 
(∇1

2ψ) −
∂ψ

 ∂x 

∂

 ∂y 
(∇1

2ψ)] = (
∂2

∂y2 − δ2 ∂2

∂x2) ) Sxy + δ (
∂2

∂x ∂y
 {Sxx − Syy}) −

 M2 ∂2ψ

∂y2 + A[[∇1
2φ − ∇1

2ψ].                                                                                                            (5.15)  

 

δ (
∂φ

∂y

∂

 ∂x 
∇1

2φ −
∂φ

∂x

∂

 ∂y 
∇1

2φ) = B(∇1
2ψ − ∇1

2φ),                                                                 (4.16)  

Where 

∇1
2= [

∂2

∂y2 +  δ2 (
∂2

∂x2)] , A =
rKd1

2

μ
and B =

𝐿ⅆ1

𝑐𝑚
 are nondimensionlized parameters  

The dimensionless form of walls are: 

h1(x) = 1 + a cos(2πx),                                                                                                                  (5.17)  

h2(x) = −d − b cos(2πx + ∅),                                                                                                      (5.18)  

and the dimensionless boundary condition are 

ψ =
F

2
,

∂ψ

∂y
+ βSxy = −1, φ =

N

2
,               at y = h1(x),                                                          (5.19)  

ψ = −
F

2
,

∂ψ

∂y
− βSxy = −1, φ = −

N

2
 ,      at y = h2(x).                                                         (5.20)       

By using the same approximation and assumptions as discussed in chapter 4.                             
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5.3    Method of Solution 

          The perturbation method has been implemented to get the analytical solution of the modeled 

problem. 

ψ = ψ0 + δψ1 + O(δ2),                                                                                                                 (5.21)                

φ = φ0 + δφ1 + O(δ2),                                                                                                                 (5.22)  

F = F0 + δF1 + O(δ2),                                                                                                                   (5.23)                

N = N0 + δN1 + O(δ2),                                                                                                                 (5.24)  

p = p0 + δp1 + O(δ2).                                                                                                                   (5.25)  

 5.3.1  Zeroth –Order System 

∂2S0xy

∂y2
+ A (

∂2φ0

∂y2
−

∂2ψ0

∂y2
) − M2

∂2ψ0

∂y2
= 0,                                                                        (5.26) 

B (
∂2ψ0

∂y2
−

∂2φ0

∂y2
) = 0,                                                                                                                 (5.27) 

p0x =
∂S0xy

 ∂y 
+ A (

∂φ0

∂y
−

∂ψ0

∂y
) − M2

∂2ψ0

∂y2
+

Re

Fr
sin γ ,                                                       (5.28) 

with 

S0xy =
∂2ψ0

∂y2 ,        

ψ0 =
F0

2  
,  φ0 =

N0

2  
,

∂ψ0

 ∂y 
+ βS0xy = −1      at  y = h1(x),                                                          (5.29)  

 

ψ0 = −
F0

2  
,  φ0 = −

N0

2  
,

∂ψ0

 ∂y 
− βS0xy = −1     at  y = h2(x).                                                   (5.30)   
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5.3.2  First Order System 

Re (
∂ψ0

 ∂y 

∂3ψ0

∂y3
−

∂ψ0

 ∂y 

∂3ψ0

∂y3
) =

∂2

∂x ∂y
(S0xx − S0yy) +

∂2

∂y2
S1xy + A (

∂2φ1

∂y2
−

∂2ψ1

∂y2
) −

M2 (
∂2ψ1

∂y2 ),                                                                                                                                           (5.31)  

R (
∂2ψ1

∂y2 −
∂2φ1

∂y2 ) =
∂φ0

 ∂y 

∂3φ0

∂x ∂y2 −
∂φ0

 ∂x 

∂3φ0

∂y3 ,                                                                                      (5.32)  

p1x =
∂

 ∂x
(S0xy) +  

∂

 ∂y
(S1xy) + 𝐴 (

∂φ1

 ∂y 
−

∂ψ1

 ∂y 
) − 𝑀2 𝜕2𝜓1

𝜕𝑦2 − Re (
∂ψ0

 ∂y 

∂2ψ0

∂x ∂y
−

 
∂ψ0

 ∂x 

∂2ψ0

∂y2
),                                                                                                                                           (5.33)  

with 

  S0xx = −𝛼1 (
∂2ψ0

∂y2   )
2

,     

S0𝑦𝑦 = [2
∂2ψ0

∂y2 − α1
∗ (

∂2ψ0

∂y2   )
2

],  

S1xy =
∂2ψ1

∂y2 + α (2
∂2ψ0

∂y ∂x

∂2ψ0

∂y2 +
∂ψ0

 ∂y 

∂3φ0

∂x ∂y2 +
∂ψ0

 ∂x 

∂3ψ0

∂y3 ). 

ψ1 =
F1

2
, φ1 =

N1

2
,

∂ψ1

 ∂y 
+ βS1xy = 0             aty = h1(x),                                                         (5.34)  

ψ1 = −
F1

2
, φ1 = −

N1

2
,

∂ψ1

 ∂y 
− βS1xy = 0           aty = h2(x).                                                   (5.35)   

5.4      Results and Discussion 

 Effects of slip and magnetic field on peristaltic flow of second-grade dusty fluid has been 

considered here. The governing equations are reduced into non dimensional form then use 

compatibility transformation and solved by the regular perturbation method the computational 

results are demonstrated in graphical form. The graphs demonstrating numerous constraint for the 

fluid’s velocity profile and for pressure are deliberate in this unit. Figures 5.2 to 5.9 represent the 
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graphs of velocity profile of fluid and dust particles under the effects of several parameters. While 

figures 5.10 to 5.14 are the graphical representation of pressure with impacts of different 

parameters. 

The influence of magnetic field (M) on the velocity of fluid particles is captured in figure 5.2.As 

magnetic force is known as resistive force so it causes the reduction in the fluid movement. Hence 

it is found that by enhancing the values of M the velocity of fluids particles starts decreasing. Its 

observed that figure 5.3 illustrate the effects of the slip perimeter on the velocity of fluid particle. 

Fluid flow patterns are influenced by slip conditions that are imposed on a cavity's side wall. The 

quantity of slip at the boundary is measured by the velocity slip parameters. The distance between 

the surface where the velocity of fluid changes from the no-slip to the slip state is known as the 

slip length, and it is represented by this number. So by enhancing the values of 𝛽,velocity of fluid 

decreased. The number of repeating units of a propagating wave that is, the number of times a 

wave has the same phase per unit of space is known as the wavenumber, which is the spatial 

equivalent of frequency. From figure 5.4 it is seen that by increasing the wave number δ velocity 

of fluid particle declined. Increasing the second-grade parameter in fluids modeled by the second-

grade fluid models usually results in a decrease in velocity. This is because a fluid's resistance to 

deformation is implied by a greater second-grade value. This results in a decrease in velocity for 

whatever applied force since the fluid needs greater force for maintaining a given velocity. 

 The behavior of the velocity of fluid for various values of 𝛼1 is shown in figure 5.5 which displays 

that velocity of fluid decreases as 1increases while at some values velocity of fluid remains 

constant. It can be seen in figure 5.6 that magnetic field M effects the velocity of dust particles in 

a similar way as effects the velocity of fluid particles i.e. when M increases the velocity of dust 

particles decreases. It’s revealed in figure 5.7 that the velocity of solid particles has a slightly 

different behavior at the edges of the channel. By enhancing the values of 𝛽 firstly the velocity of 

the solid particle decreases but for some time it remains constant and then starts increasing. 

Furthermore, figure 5.8 demonstrates the totally different behavior of the velocity of dust particles. 

The velocity of dust particles increases with an increase in wave number δ which is a second-grade 

fluid parameter that also affects the solid’s particle velocity. Here a similar phenomenon is 

observed for the fluid particle velocity. In figure 5.9 velocity of the dust particles decreases due to 

a rise in the values of 𝛼1. 
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Pressure plays a key role in the flow of fluid. Many parameters affect the pressure. It is 

aimed to show the change in pressure due to the magnetic field in figure 5.10. As the magnetic 

field decreases the velocity which leads to leads to increase in pressure. So by exceeding the values 

of M at the start pressure increases but after some time pressure decreases. For the slip parameter 

pressure has the same behavior as on magnetic field. Both figures 5.10 and 5.11 show the same 

results. The effects of wavenumber δ on the pressure are plotted in figure 5.12 which indicates that 

by enhancing the values of δ then pressure decreases. In addition, figure 5.13 interprets the relation 

between the second-grade fluid parameter 𝛼1and the pressure. There is a slight change in pressure 

or can say that there is no change in pressure due to a change in 𝛼1  it almost remain same. It’s 

observed by the figure 5.14 that Reynolds number Re also affects the pressure. As Reynolds 

number is relationship among inertial forces and viscous forces therefore by increasing the values 

of Re pressure starts decreasing. Figure 5.15 exhibits the relationship between the pressure and the 

inclination of the channel it displays the declining pressure is because of the inclining in firstly 

pressure declined slowly but after sometime it declined fastly. 
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Figure 5.2: Velocity distribution of the fluid for diverse values of M. 

 

Figure 5.3: Velocity distribution of the fluid for diverse values of 𝛽  
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Figure 5.4: Velocity distribution of the fluid for diverse values of δ. 

 

 

 

Figure 5.5: Velocity distribution of the fluid for diverse values of  𝛼1. 
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Figure 5.6: Velocity distribution of the dust particles for diverse values of M. 

 

 

Figure 5.7: Velocity distribution of the dust particles for diverse values of 𝛽. 
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Figure 5.8: Velocity distribution of the dust particles for diverse values of δ  

 

 

 

Figure 5.9: Velocity distribution of the dust particles for diverse values of 𝛼1 . 
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Figure 5.10: Effects of M on pressure. 

 

 

 

Figure 5.11: Effects of 𝛽 on pressure. 
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Figure 5.12: Effects of 𝛿 on pressure. 

 

 

Figure 5.13: Effects of 𝛼1 on pressure. 
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Figure 5.14: Effects of Re on pressure. 

 

 

Figure 5.15: Effects of 𝛾 on pressure. 
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CHAPTER 6 

CONCLUSION 

            In this research investigation about the second-grade dusty fluid has been taken into 

account, while the effects of peristalsis, magnetic field and slip boundary conditions are also 

considered. The governing equations are reduced into non-dimensional form then a compatibility 

equation has been derived for both fluid and solid particles. Due to the non-linear nature of the 

equation, a regular perturbation technique was employed and the obtained results were 

demonstrated through graphs. 

6.1     Significant Results 

It's observed that the magnetic field (M) influenced the velocity of the fluid particles and 

solid particles as well. As force known as magnetic is also known as resistive force it causes the 

reduction among the fluid movement. Hence it is found that by enhancing the values of M the 

velocity of fluids and solid particles starts decreasing. Similarly, by enhancing the values of slip 

perimeter 𝛽 velocity of fluid and solid particles decreased. It is seen that by increasing the wave 

number δ velocity of fluid and solid particles declined. The behavior of the velocity of fluid for 

various values of 𝛼1 is also shown in graphs which display that the velocity of fluid decreases as 

𝛼1 increases while at some values velocity of fluid remains constant. 

The flow of fluid is significantly influenced by pressure. Numerous factors influence the 

pressure. Pressure rises when the initial values of M are exceeded, but eventually drops. Pressure 

behaves the same way in a magnetic field as it does for the slip parameter. The relationship between 

pressure and the second-grade fluid parameter α1. Because of a change in α1, the pressure changes 

very slightly, or rather, it practically stays the same. It’s observed by the graphs that Reynolds 

number Re also affects the pressure. As Reynolds number is the relationship among inertial forces 

and viscous forces therefore by increasing the values of Re pressure start decreasing. The 
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relationship between the pressure and the inclination of the channel displays that the declining 

pressure is because of the inclining in γ firstly pressure declined slowly but after some time it 

declined quickly. 

6.3     Future Work 

The given research work can be extended for the different fluid models in the future. This 

work can be extended for third-grade or fourth-grade dusty fluid. Other fluid models like the 

Williamson fluid model or Ellis fluid models can also be deliberated to investigate the impact of 

slip and field known as magnetic with dust particles suspended in them. 

Moreover, this work can be extended by adding more body forces to the model. The porous 

medium can be added to the suggested model or the impact of convective boundary conditions can 

also be investigated. Geometries like endoscopes, ducts and tubes can also be taken into account 

to expand the scope of investigation of dusty fluids. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



62 
 

 

REFERENCES 

 

[1] Tariq, H., Khan, A. A., & Zaman, A. (2019). Peristaltically wavy motion on dusty    

Walter’s B fluid with inclined magnetic field and heat transfer. Arabian Journal for 

Science and Engineering, 44, 7799-7808. 

[2] Latham, T. W. (1966). Fluid motions in a peristaltic pump (Doctoral dissertation, Massachusetts 

Institute of Technology). 

[3] Shapiro, A. H., Jaffrin, M. Y., & Weinberg, S. L. (1969). Peristaltic pumping with long wavelengths 

at low Reynolds number. Journal of fluid mechanics, 37(4), 799-825. 

[4] Wei, Y., Rehman, S. U., Fatima, N., Ali, B., Ali, L., Chung, J. D., & Shah, N. A. (2022). 

Significance of dust particles, nanoparticles radius, coriolis and lorentz forces: The case 

of maxwell dusty fluid. Nanomaterials, 12(9), 1512. 

[5] Jamalabadi, M. Y. A., Park, J. H., & Lee, C. Y. (2015). Optimal design of 

magnetohydrodynamic mixed convection flow in a vertical channel with slip boundary 

conditions and thermal radiation effects by using an entropy generation minimization 

method. entropy, 17(2), 866. 

[6] Singh, P., & Kumar, M. (2015). Mass transfer in MHD flow of alumina water nanofluid 

over a flat plate under slip conditions. Alexandria Engineering Journal, 54(3), 383-387. 

[7] Moakher, P. G., Abbasi, M., & Khaki, M. (2015). New analytical solution of MHD fluid 

flow of fourth grade fluid through the channel with slip condition via collocation 

method. International Journal of Advances in Applied Mathematics and Mechanics, 2(3), 

87-94. 

[8] Hameed, M., Khan, A. A., Ellahi, R., & Raza, M. (2015). Study of magnetic and heat 

transfer on the peristaltic transport of a fractional second grade fluid in a vertical 

tube. Engineering Science and Technology, an International Journal, 18(3), 496-502. 

[9] Tanveer, A., Mahmood, S., Hayat, T., & Alsaedi, A. (2021). On electroosmosis in 

peristaltic activity of MHD non-Newtonian fluid. Alexandria Engineering Journal, 60(3), 

3369-3377. 



63 
 

 

[10] Rathod, V. P., & Sridhar, N. G. (2015). Peristaltic flow of a couple stress fluids in an 

inclined channel. Int. J. Allied Pract. Res. Rev, 2(7), 27-38. 

[11] Munawar, S., Saleem, N., & Aboura, K. (2016). Second law analysis in the peristaltic 

flow of variable viscosity fluid. International Journal of Exergy, 20(2), 170-185. 

[12] Sankad, G. C., & Nagathan, P. S. (2017). Influence of wall properties on the peristaltic 

flow of a Jeffrey fluid in a uniform porous channel under heat transfer. International 

Journal of Research in Industrial Engineering, 6(3), 246-261. 

[13] Mallick, B., & Misra, J. C. (2019). Peristaltic flow of Eyring-Powell nanofluid under the 

action of an electromagnetic field. Engineering Science and Technology, an International 

Journal, 22(1), 266-281. 

[14] Tahir, M., & Ahmad, A. (2020). Impact of pseudoplaticity and dilatancy of fluid on 

peristaltic flow and heat transfer: Reiner-Philippoff fluid model. Advances in Mechanical 

Engineering, 12(12), 1687814020981184. 

[15] Akram, J., Akbar, N. S., & Maraj, E. N. (2020). A comparative study on the role of 

nanoparticle dispersion in electroosmosis regulated peristaltic flow of water. Alexandria 

Engineering Journal, 59(2), 943-956. 

[16] Nadeem, S., Qadeer, S., Akhtar, S., El Shafey, A. M., & Issakhov, A. (2021). 

Eigenfunction expansion method for peristaltic flow of hybrid nanofluid flow having 

single-walled carbon nanotube and multi-walled carbon nanotube in a wavy rectangular 

duct. Science Progress, 104(4), 00368504211050292. 

[17] Rashed, Z. Z., & Ahmed, S. E. (2021). Peristaltic flow of dusty nanofluids in curved 

channels. Comput. Mater. Continua, 66(1), 1012-1026. 

[18] Javed, M., Qadeer, F., Imran, N., Kumam, P., & Sohail, M. (2022). Peristaltic mechanism 

of Ellis fluid in curved configuration with homogeneous and heterogeneous 

effects. Alexandria Engineering Journal, 61(12), 10677-10688. 

[19] Palmada, N., Cater, J. E., Cheng, L. K., & Suresh, V. (2022). Experimental and 

computational studies of peristaltic flow in a duodenal model. Fluids, 7(1), 40. 

[20] Gudekote, M., Choudhari, R., Sanil, P., Vaidya, H., Hadimani, B., Prasad, K. V., & Shetty, 

J. (2023). Impact of Variable Liquid Properties on Peristaltic Transport of Non-Newtonian 

Fluid Through a Complaint Non-Uniform Channel. Journal of Advanced Research in 

Fluid Mechanics and Thermal Sciences, 103(2), 20-39. 



64 
 

 

[21] Ammar, N., & Ali, H. A. (2023). Mathematical Modelling for Peristaltic Flow of Sutterby 

Fluid Through Tube under the Effect of Endoscope. Iraqi Journal of Science, 2368-2381. 

[22] Ramesh, K., & Devakar, M. (2015). The influence of heat transfer on peristaltic transport 

of MHD second grade fluid through porous medium in a vertical asymmetric 

channel. Journal of Applied Fluid Mechanics, 8(3), 351-365.  

[23] Tariq, H., Khan, A. A., & Shah, S. (2023). Study of peristaltic transport of a dusty second-

grade fluid in a curved configuration. Scientia Iranica. 

[24] Parthasarathy, S., Arunachalam, G., & Vidhya, M. (2015). Analysis on the effects of wall 

properties on MHD peristaltic flow of a dusty fluid through a porous 

medium. International Journal of pure and applied mathematics, 102(2), 247-263. 

[25]  Eldesoky, I. M., El-Askary, W. A., El-Refaey, A. M., & Ahmed, M. M. (2016, April). 

MHD Peristaltic Flow of Dusty Fluid through Flexible Channel under Slip Condition. 

In The International Conference on Mathematics and Engineering Physics (Vol. 8, No. 

International Conference on Mathematics and Engineering Physics (ICMEP-8), pp. 1-35). 

Military Technical College. 

[26] Muthuraj, R., Nirmala, K., & Srinivas, S. (2016). Influences of chemical reaction and wall 

properties on MHD peristaltic transport of a dusty fluid with heat and mass 

transfer. Alexandria Engineering Journal, 55(1), 597-611. 

[27] Khan, A. A. (2021). Peristaltic movement of a dusty fluid in a curved configuration with 

mass transfer. Punjab University Journal of Mathematics, 53(1). 

[28] Hafez, N. M., Alsemiry, R. D., Alharbi, S. A., & Abd-Alla, A. M. (2022). Peristaltic 

transport characteristics of a second-grade dusty fluid flown with heat transfer through a 

tube revisited. Scientific Reports, 12(1), 21605.   

[29] Kothandapani, M., Pushparaj, V., & Prakash, J. (2018). Effect of magnetic field on 

peristaltic flow of a fourth grade fluid in a tapered asymmetric channel. Journal of King 

Saud University-Engineering Sciences, 30(1), 86-95. 

[30] Prakash, J., Siva, E. P., Balaji, N., & Kothandapani, M. (2018, April). Effect of peristaltic 

flow of a third grade fluid in a tapered asymmetric channel. In Journal of Physics: 

Conference Series (Vol. 1000, No. 1, p. 012165). IOP Publishing. 



65 
 

 

[31] Asha, S. K., & Deepa, C. K. (2019). Entropy generation for peristaltic blood flow of a 

magneto-micropolar fluid with thermal radiation in a tapered asymmetric channel. Results 

in Engineering, 3, 100024. 

[32] Reddy, K. V., Reddy, M. G., & Makinde, O. D. (2021). Heat and mass transfer of a 

peristaltic electro-osmotic flow of a couple stress fluid through an inclined asymmetric 

channel with effects of thermal radiation and chemical reaction. Periodica Polytechnica 

Mechanical Engineering, 65(2), 151-162. 

[33] Abd-Alla, A. M., Abo-Dahab, S. M., Thabet, E. N., & Abdelhafez, M. A. (2022). Impact 

of inclined magnetic field on peristaltic flow of blood fluid in an inclined asymmetric 

channel in the presence of heat and mass transfer. Waves in Random and Complex Media, 

1-25. 

[34] Akram, S., Athar, M., Saeed, K., & Umair, M. Y. (2022). Nanomaterials effects on 

induced magnetic field and double-diffusivity convection on peristaltic transport of 

Prandtl nanofluids in inclined asymmetric channel. Nanomaterials and 

Nanotechnology, 12, 18479804211048630. 

[35] Abbasi, A., Khan, S. U., Farooq, W., Mughal, F. M., Khan, M. I., Prasannakumara, B. C., 

... & Galal, A. M. (2023). Peristaltic flow of chemically reactive Ellis fluid through an 

asymmetric channel: Heat and mass transfer analysis. Ain Shams Engineering 

Journal, 14(1), 101832. 

[36] White, F. M. (2008). Fluid mechanics. The McGraw Hill Companies,. 

[37] Khan, A. A., & Tariq, H. (2020). Peristaltic flow of second-grade dusty fluid through a 

porous medium in an asymmetric channel. Journal of Porous Media, 23(9). 

 

                                                                                                                                                                                                                                                                                                                                                                                                   

   

 

 


