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ABSTRACT  

Title: Influence of Entropy Generation on Peristaltic Transport of Pseudoplastic Fluid in 

a Curved Configuration 

 

This thesis is primarily focused on examining the influence of magnetohydrodynamic 

(MHD) effects on the peristaltic motion of a pseudoplastic fluid within a curved channel, while 

also considering entropy generation. The formulated problem is addressed through the 

application of the perturbation technique. The incorporation of commonly accepted 

assumptions, such as low Reynold numbers and long wavelength, serves to streamline the 

complexity of the problem. Utilizing MATHEMATICA software, the study presents graphical 

representations of streamline patterns, velocity distribution, temperature profiles, and entropy 

variations to provide insights into the interplay of MHD effects within the pseudoplastic fluid 

under consideration. 
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CHAPTER 1  

INTRODUCTION  

1.1 Introduction   

2 The word "fluid" is used in physics and engineering to refer to a condition of matter that 

may flow and adapt to the geometry of its container. Fluids possess a quality termed fluidity 

that enables them to move and deform when subjected to external forces, in contrast to 

solids, which have a fixed shape and volume. This characteristic results from the absence 

of long-range ordering of the fluid's constituent particles or molecules. 

3 The word "fluid" refers to both gases and liquids. Water, oil, and mercury are examples of 

liquids that have a known volume and may flow freely. A substance that flows or constantly 

deforms under outer shear stress is referred to as a fluid in physics. Fluids are materials that 

cannot withstand any shear force because they have zero shear elasticity.  

4 The definition of the term "fluid" varies by scientific discipline, despite the fact that it 

typically encompasses both the liquid and gas phases. Also, different fields have different 

definitions of what it means to be solid, and some things can be both plasma and solid. 

Fluid, which is broader than the term "hydraulic oil," is a term used in hydraulics to 

describe liquids with particular properties. Many fields of science and technology, 

including the fields of physics, chemistry, mechanical engineering, building engineering, 

and aviation engineering, depend on hydraulics, or the study of flows. Designing effective 

systems and buildings, forecasting weather patterns, creating transportation systems, and 

examining fluid motion in biological systems all require an understanding of how fluids 

behave.  

5 The restoration forces of solids counteract shear, compressive, and tensile stresses. Ideal 

fluids, on the other hand, only react to ordinary pressures with restoring forces or tension: 

Compressive stress, which is high pressure, and tensile stress, which is lower pressure, may 
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both be applied to fluids. Tensile strengths exist for both solids and liquids and when they 

are surpassed, cavitation in liquids and irreparable deformation in solids occur.  

 

1.2       Non-Newtonian Fluid 

The straightforward correlation between shear stress and shear rate seen in Newtonian 

fluids is defined by non-Newtonian fluids. These fluids' viscosities can alter over time or in 

reaction to shear forces. They demonstrate a range of flow behaviors, including shear-thinning, 

where viscosity drops with a growing shear rate, shear-thickening, where viscosity rises with 

a growing shear rate, and more complex and time-dependent reactions. Non-Newtonian fluid 

viscosity is often governed by the shear rate or the duration of stress-induced shear deformation. 

Despite having shear-independent viscosities, certain non-Newtonian fluids exhibit non-

standard stress-difference trends or other non-Newtonian characteristics. Non-Newtonian fluids 

exhibit different connections between shear stress and shear rate than Newtonian fluids, which 

have a constant coefficient of viscosity. In certain cases, their viscosity can even vary with time. 

This dynamic behavior makes it impossible to establish a fixed viscosity coefficient. While 

viscosity is a common descriptor for shear behavior in fluid mechanics, it may not adequately 

capture the characteristics of non-Newtonian fluids. Using specialized equipment that link 

stress and strain rate tensors beneath various flow situations, such as oscillating shear or 

extensional circulation, may be taken into account to provide a more precise understanding. 

These features can be better understood using tensor-valued constitutive problems, which are 

often used in continuum mechanics studies. Non-Newtonian fluids can be categorized based on 

their flow behaviors: 

1. Shear-thinning (Pseudoplastic) Fluids: As the shear rate rises, these fluids lose some 

of their viscosity. Paints, ketchup, and shampoos are among examples.  

2. Shear-Thickening (Dilatant) Fluids: As the shear rate increases, these fluids become 

more viscous. This behavior may be seen in a few industrial mixes, including slurries 

and cornflour-water mixtures. 

3. Bingham Plastic Fluids: These fluids behave as solids until a specific shear stress, 

known as the yield stress, is exceeded. They demonstrate a linear connection between 
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shear stress and shear rate after reaching the yield stress. Examples include different 

drilling fluids and toothpaste. 

4. Viscoelastic Fluids: These fluids possess both viscosity and elasticity, capable of 

storing and releasing energy. Their elasticity and viscosity exhibit time-dependent 

changes. Gels, polymer solutions, and various biological fluids fall under this category. 

 

1.3 Pseudoplastic Fluid 

            A non-Newtonian fluid known as a pseudoplastic fluid changes in viscosity and 

fluidity as the shear rate rises. Pseudoplastic fluids have a characteristic known as shear-

thinning behavior, in contrast to Newtonian fluids, which retain a constant viscosity 

independent of shear rate. This specifies that the viscosity of the fluid lowers as it is subjected 

to increased shear rates or forces, facilitating easier flow.  

Mathematical models like the power-law model and the Ostwald-de Waele model are frequently 

used to describe the behavior of shear-thinning (pseudoplastic) fluids. These models establish 

a connection between shear stress and shear rate, where shear rate represents the rate of velocity 

change within the fluid, and shear stress quantifies the applied force. The expression of Power 

law model is  𝜏 = 𝐾 ×  𝛾𝑛, where γ is the shear rate, τ is the shear stress, K is the consistency 

index, and n is the flow behavior index. The degree of pseudo-plasticity is determined by the 

number of n, with values less than 1 indicating a pseudoplastic fluid.  

Pseudoplastic fluids are used in a variety of commercial and domestic settings. Ketchup, 

mayonnaise, and chocolate syrup are just a few examples of the numerous culinary ingredients 

that display pseudoplastic behavior. Ketchup flows smoothly when pressure is applied to a 

bottle of it because shear stress causes the viscosity to decrease. The fluid returns to its greater 

viscosity state after the pressure is released, preventing it from flowing too quickly. 

A fluid flow line or conduit with a curved or curved segment is referred to as a "curved channel." 

The channel is curved or bent rather than straight, and this can have an impact on the properties 

and behavior of fluid flow inside it. Rivers, pipes, ducts, and pipelines are examples of natural 

and artificial systems that contain curved channels. Centrifugal forces are introduced by a 
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channel's curvature, which affects the fluid passing through it. Changes in velocity, pressure, 

and flow patterns occur as a result of the fluid evacuating from the internal curve of the tunnel 

due to these centrifugal forces. On the outside curve of the channel, the fluid experiences higher 

speeds and lower pressures, whereas, on the inner curve, it experiences lower velocities and 

higher pressures. Numerous variables affect how fluid flow behaves in curved channels, 

including: 

1. Curvature: The radius of curvature of the curve has a significant impact on the flow's 

behavior. Stronger centrifugal forces, sharper bends, and smaller radius of curvature result in 

more significant flow disruptions and pressure changes. 

2. The amount of Reynolds number, which is the fluid's relation of inertial to viscous intensity, 

has an impact on the flow regime in the curved tunnel. At low Reynolds numbers, the flow is 

typically laminar, with uniform, well-organized fluid layers. At high Reynolds numbers, the 

fluid motion can become chaotic and irregular, causing the flow to become turbulent. 

3. Rate of flow: The behavior of the flow is influenced by the fluid's flow rate or volume 

as it moves through the curved channel. More significant flow disturbances, drops in pressure, 

and shifts in the distribution of velocity can occur at higher flow rates. 

4. Channel quality: The channel walls' roughness may have an impact on the flow 

characteristics. Rough surfaces or abnormalities in the flow might create extra frictional losses. 

The existence of a curved channel may have practical ramifications in a variety of situations. 

For instance:  

• Curved channel design is crucial in hydraulic engineering for maximizing flow dispersion, 

reducing erosion, and effective water transportation. 

• Curved channels in transport networks like roads and railroads can impact the flow of air or 

fluids around vehicles, impacting aerodynamic performance and stability. 

• Additional pressure drops, energy losses, and flow instabilities may be caused by the presence 

of curved portions in fluid transport tubes, which must be considered during system design. 
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1.4 MHD 

           MHD, or magnetohydrodynamics, is an interdisciplinary branch of physics that studies 

the conductivity of electrically conducting fluids such as plasmas, liquid metals, and some 

ionized gases. To comprehend the interplay between fluid motion and magnetic fields, it 

combines the principles of magnetism with fluid dynamics. 

In MHD, the fluid is viewed as a conducting medium that can be affected by magnetic fields, 

as well as the other way around. Key equations in MHD combine the Navier-Stokes equations, 

which control fluid flow, with Maxwell's equations, which describe electromagnetic fields. 

These equations explain how magnetic fields change over time as well as how fluid mass, 

momentum, and energy are conserved. Due to their complexity, computational simulations are 

frequently needed to analyze these equations. The simplest type of MHD, known as ideal MHD, 

operates under the presumption that the resistive term in Ohm's law is so tiny in relation to the 

other terms that it may be taken to equal zero. This happens at the limit of high magnetic 

Reynolds numbers, where magnetic induction triumphs over magnetic diffusion, at the velocity 

and length scales under concern. perfect processes—processes in perfect MHD that transform 

magnetic energy into kinetic energy—thus cannot produce heat or increase entropy. Ideal MHD 

is based on a fundamental concept known as the frozen-in-flux theorem. The bulk fluid and 

embedded magnetic field are said to be "tied" or "frozen" to one other since they are both 

confined to flow in tandem. As a result, two sites in the system will always lie on the same 

magnetic field line and move with the bulk fluid velocity, even if they are separated by fluid 

flows. The relationship between the liquid and attractive field stabilizes the location of the 

attractive field in the liquid; for example, if many attractive field lines are integrated together, 

they will stay that way as long as the liquid has negligible resistance. Due to the difficulties in 

reconnecting magnetic field lines, energy can be stored by shifting the fluid or the magnetic 

field's source. 

Many different fields use magnetohydrodynamics. It aids in the comprehension of events in 

astrophysics and space physics such as star formation, stellar winds, and the behavior of 

plasmas in space, such as solar flares and coronal mass ejections. Understanding and regulating 
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the behavior of plasma inside fusion reactors is crucial for fusion energy research in order to 

achieve sustained and controlled nuclear fusion processes. 

Since fluid is regarded as a medium that conducts energy in MHD, electromagnetism influences 

fluid dynamics may be taken into account. These outcomes result from the interplay of 

magnetism and fluid velocity. Key MHD features include: 

Electromagnetic Induction: When an electrically conducting fluid travels in a field of 

magnetic attraction, the magnetism causes electrical impulses to flow inside the fluid. The 

electromagnetic inductive law of Faraday describes this occurrence. In turn, the induced 

currents produce supplementary magnetic fields that have an impact on the movement of the 

fluid. The Lorentz force is created by the interplay of the magnetic field that exists and the 

electrical impulses that are produced in the fluid. The fluid is subject to this force, which 

changes how it moves. The flow of a liquid can be accelerated, decelerated, or changed due to 

the Lorentz power, which is parallel to both the flow rate of the liquid and the magnetic field 

that surrounds it.  

1.5 Entropy 

            Despite having its origins in thermodynamics, the concept of entropy has additional uses 

in information principles, statistics, and a variety of other fields. Entropy essentially describes 

how much random or uncertainty a system has. Entropy is a scientific concept and observable 

physical feature that is commonly related to a state of chaos, and unpredictability. Entropy is a 

phrase and a concept that is used throughout many academic fields, from classical 

thermodynamics, where it was originally understood, to the ideas of information theory and the 

microscopic descriptions of natural processes in statistical physics. Its effects are seen across a 

number of disciplines, including physics, chemistry, biology, cosmology, economics, 

sociology, meteorology, and information systems, particularly in the context of information 

sharing. William Rankine, a Scottish engineer and scientist, made a substantial contribution to 

our comprehension of thermodynamics and related ideas and introduced the terms 

"thermodynamic function" and "heat potential" in 1850 to describe this concept. Rudolf 
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Clausius, a pioneering German scientist in the field, defined thermodynamics in 1865 as the 

relationship between a small intensity of heat and the prevailing temperature. Initially known 

as "transformation-content" or "Verwandlungsinhalt" in German, Clausius later formulate the 

term "entropy" from the Greek word for change. He introduced the term "disgregation" in 1862 

to describe the microscopic composition and structure of matter. Entropy not only imposes 

constraints on the feasibility of processes but also respects the first law of thermodynamics, 

which is the conservation of energy. The second law of thermodynamics, built upon the concept 

of entropy, states that isolated systems left to evolve naturally cannot reduce their entropy over 

time, as they tend to approach a condition of thermodynamic stability where entropy is 

maximized. Entropy is a unit of measure for the disorder or randomness of energy in a system 

in thermodynamics. The second law of thermodynamics states that entropy tends to increase 

over time in an isolated system, which means that energy will ultimately disperse and become 

more equally distributed. This is frequently referred to as the "arrow of time" or the propensity 

of systems to shift from an orderly to a disorderly state. Entropy is a term used in information 

theory to describe how much information is there in a random variable or probability 

distribution. It symbolizes the typical level of surprise or uncertainty connected to an occurrence 

or series of events. Entropy is a measure of how uncertain or random something is.  

 

1.6             Thesis contribution 

                  In this thesis, an extensive study of previous research (S. Hina, 2016) is presented. 

The focus is on essential factors, namely heat and mass transfer characteristics of pseudoplastic 

fluids subjected to both magnetohydrodynamics (MHD) effects and entropy generation in a 

curved configuration. The approach involves transforming partial differential equations (PDEs) 

into ordinary differential equations (ODEs) through appropriate methods and employing a 

perturbation technique to derive solutions. The computational aspect of the study utilized 

Mathematica, and the obtained results will be visually presented through graphical 

representations. 
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1.7    Thesis organization 

This thesis is further divided into the following chapters, which are as follows: 

Chapter 2 contains a detailed and comprehensive review of the literature in accordance with 

recent published articles. 

Chapter 3 delves into the essential concepts, regulations, and key ideas crucial for 

comprehending the upcoming work. The final section of this chapter introduces the 

mathematical model and perturbation method. 

Chapter 4 offers an overview of existing work of (S Hina, 2015). The author has studied the 

pseudoplastic fluid model in a curved geometry with complaint walls. The lubrication approach 

has been utilized to study the problem. Perturbation technique has been employed to obtain the 

analytical solution of the problem. 

Chapter 5 In this chapter, the research extends the foundational work of S. Hina (2015) by 

incorporating the effects of magnetohydrodynamics (MHD) and analyzing the impact of 

entropy generation within a curved channel. 

Chapter 6 contains the conclusion drawn in chapter 5. Future recommendation are also 

included for the future researches. 

In the end, the reference list comprises all the sources utilized in this research endeavor. 
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CHAPTER 2     

LITERATURE REVIEW 

Peristalsis, a fundamental physiological mechanism, employs rhythmic contractions and 

relaxations of smooth muscles to facilitate the movement of substances through organized 

structures within living organisms. Numerous biological activities, including the operation of 

the reproductive, urinary, and digestive systems, depend on it. On peristalsis, several 

researchers have researched and are continuing researching.  

Saleem et al. [1] supervised a detailed investigation into the numerical research of peristaltic 

circulation involving a non-Newtonian plasma inside an elongated conduit. Their investigation 

also looked into the subtleties of heat transport in this particular elliptical duct arrangement. 

They created mathematical equations to precisely reflect the system under study using the 

Casson fluid model. They also used the long wavelength approximation and the required 

transformations to turn the mathematical issue into a dimensionless form, allowing for easier 

analysis.  

Gudekote et al. [2]  looked into how to incorporate changeable liquid and wall properties into 

a Rabinowitsch fluid's peristaltic process. The study concentrated on a porous, two-

dimensional, irregular channel. Convective conditions were used to analyze the characteristics 

of heat transfer, while Consideration was given to the walls' slipping hazards while analyzing 

mass transfer. For this experiment, a mathematical model was created under the extended 

wavelength and small Reynolds number assumptions. The velocity, streamlines, and 

concentration problems all had exact solutions, while the temperature problem was solved using 

a perturbation technique.  

Hina et al. [3] investigation centered on the peristaltic circulation of an indestructible 

pseudoplastic substance and the properties of the channel barriers. With a focus on modeling 
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the relevant equations, the study employed lengthy wavelengths as well as small Reynolds 

number approaches. As a result, the stream function and the axial speed were found. The 

research looked closely at the many embedding parameter variations within the issue. The 

velocity curves' non-circular shape around the curved tunnel center line was interesting to 

remark.  

The sinusoidal circulation of Rabinowitsch solutions in an inclined pipe with a responsive 

barrier and customizable liquid characteristics was studied by Vaidya et al. [4]. In particular, 

the effect of a temperature-dependent heat exchange was considered as the liquid's viscosity 

varied over the channel's width. Expressions were produced for a variety of relevant variables, 

including velocity, friction on the skin coefficient, pressure increase, resistive force, streamline, 

temperature, and efficiency of heat exchange.  

In a study by Ali et al. [5], the behavior of fluid circulation within a curved tube was 

investigated, specifically considering a non-Newtonian sinusoidal flow pattern. They employed 

a constitutive relationship between pressure and shear velocity suitable for a third-grade fluid, 

which doesn't adhere to Newtonian behavior. The problem involved dealing with two partial 

nonlinear differential equations. These equations were combined into one second-order 

ordinary differential equation including a stream function when there was an association of an 

extended wavelength and a small Reynolds value. The resultant regressive ordinary differential 

equation was resolved using Mathematica's shooting technique to find the flow function.  

In another work, Rashid et al. [6] investigated the effects of a produced magnetic field on the 

peristaltic action of an inelastic Williamson fluid inside a curved conduit. The wave frame of 

referencing was used to develop the problem formulation. Using extremely tiny Reynolds 

numbers and large-wavelength estimates, the Homotopy Perturbation Methodology was used 

to describe the equation for continuity, induction calculation, and equation of motion. The 

magnetic force function, generated magnetic field, pressure slope and stream function, voltage 

density, and other terms have precise mathematical definitions. Graphical representations of the 

consequences of the embedded parts were used for discussion. Rashed et al. [7] performed 

numerical investigations of the peristaltic mobility of dusty nanofluids in a rounded conduit. 

For the microscopic liquids and sandy portions, two sets of equations based on partial 

differential equations were provided, and large wavelength and small Reynolds number 
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assumptions were taken into consideration. Using the appropriate grid adjustments, the physical 

domain was converted into a rectangular computing model.  

In order to organize the passage of an electrolytic solution, Noreen et al. [8] employed, fluids 

that disobey Newton’s law pseudoplastic fluid model as the solvent and concentrated on 

electroosmotic and peristaltic processes. The governing equations in two dimensions were used 

to study the electrohydrodynamics of the microcapillaries in the body of a person. Low 

Reynolds number estimations and Debye-Huckel linearization were applied to handle the 

growing nonlinear differential system. Statistical methods were used to describe the transport 

features of flow that are non-Newtonian in nature in rectangular small channels. In order to 

research heat and mass tranport studies. In the context of metachronal pulses and fluctuating 

liquid characteristics, In their article, Al-zubaidi et al. [9] investigated the movement of cilia in 

a horizontally inclined channel, considering different fluid types such as Newtonian, 

Pseudoplastic, and Dilatant materials. The study focused on peristalsis flow along ciliated walls, 

utilizing a non-Newtonian Rabinowitsch model. The analysis took into account the sliding of 

the canal's walls and convection at its edges. Salman et al. [10] delved into the impacts of 

magnetohydrodynamics and thermal radiation on peristalsis flow within a pseudoplastic fluid 

through an inclined and tapering asymmetric conduit with holes. The study also considered the 

presence of convective boundary conditions on the walls.  

In another study, Akhtar et al. [11] mathematically explored the effects of heat and mass 

exchange on peristaltic circulation within an elliptical conduit. To comprehend the partial 

differential equations that emerged in the non-dimensional way, a unique mathematical 

approach was employed. This method led to an accurate analytical result for the temperature, 

quantity, and velocities pattern. Electroosmosis in the peristalsis of a fluid that is not Newtonian 

in tiny channels was taken into account. There were three methods: magnetohydrodynamics 

(MHD), combined convection, and thermal radiation. For a third-grade fluid with an extended 

wavelength and a relatively small Reynolds number, Tanveer et al. [12] constructed 

momentum, weight, and temperature calculations. In order to demonstrate how a magnetic field 

affects the transmission of heat, Hasen et al. [13] studied the peristaltic circulation of a 

Rabinowitsch solution through a material containing holes inside the cilia canal.  
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Rasid et al. [14] examined the effects of an artificial magnetic field on the peristaltic movement 

of an inelastic Williamson liquid in a twisted conduit in a different investigation. The wave 

framing of reference was used to formulate the problem. Entropy creation has an effect on a 

system's efficiency since it decreases the system's output. Entropy creation had to be kept to a 

minimum for the system to work better. Entropy development usually occurs during irreversible 

processes but not during reversible ones. The rate of entropy generation was maximized using 

the second law of thermodynamics. The main objective of Chu et al. [15] was to lessen the 

entropy generated by an inclined tube filled with Rabinowitsch fluid. The gyrotactic motile 

bacteria in a pseudoplastic Williamson nanofluid that was moving over a stretched cylinder 

under the influence of an angled field that are magnetic were studied by Naz et al. [16].  

A new mathematical framework that analyses the motion of peristaltic fluid in an elliptic funnel 

with mass and warmth transfer was founded by Nadeem et al [17]. In a curved shape route, Ali 

et al. [18] looked into the way that transmission of heat influenced the action of the peristaltic 

of sticky fluid. The supposition of long wavelength and modest Reynolds number were 

employed to create theoretical models for heat and circulation transfer. When employing the 

Rabinowitsch plasma paradigm through a tunnel with an extended wavelength and small 

Reynolds number estimation, Singh et al. [19] were interested in the issue of transferring heat 

and peristaltic circulation of fluids that were non-newtonian.  

By taking into account both heat and mass transmission, Magesh et al. [20] goal was to present 

an updated viewpoint on the peristaltic course of a Johnson-Segalman fluid inside an 

asymmetric tunnel. To make the governing nonlinear equations easier to understand, they used 

the assumptions of a long wavelength and a moderate Reynolds number. The peristaltic 

behavior of a Rabinowitsch solution in a sloping porous channel was studied by Vadiya et al. 

[21], who took into consideration differences in the liquid characteristics and convective 

situations at the boundary surfaces.  

In a study by Rajashekhar et al. [22], the primary objective was to assess the impacts of 

changing viscosity and thermal conductivity on the peristaltic flow of a Casson fluid within an 

inclined porous tube that was subject to convective heating. It is considered that thermal 

conductivity is temperature dependent and that viscosity changes along the radial axis. Devaki 

et al. [23] evaluated the Non-Newtonian Casson liquid's peristaltic propagation of waves in an 
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uneven channel with wall characteristics and heat exchange, taking into consideration estimates 

with low Reynolds numbers and high wavelengths. Climate, stream operation, and velocity may 

all be calculated analytically using a variety of physical variables. In the research conducted by 

Sadaf et al. [24], the focus was on investigating the peristaltic flow of a Williamson nanofluid 

within an annular geometry, considering the influence of an externally applied magnetic field. 

To solve the particular problem at hand, the study employed an approximation of a lengthy 

wavelength and a relatively small Reynolds number. Abbasi et al. [25], on the other hand, 

delved into the impact of an induced magnetic field on the peristaltic flow of a Carreau-Yasuda 

fluid within a curved conduit. Also taken into account are hall phenomena.  

The thermal evaluation of the dual-stage peristaltic nanofluid movement in the dual-

dimensional wavy tube was carried out by Hatami et al. [26]. By using the sinusoidal operation, 

the top, and bottom channel barriers were seen as having a wavy form. A basic understanding 

of the impact of heat exchange on the flow parameter of a dual-grade dusty flow in an elastic 

tube with peristaltic circulation was provided by Hafez et al. [27]. The connected differential 

expression was used to simulate the motions of both dust fragments and streams. The primary 

goal of Saba et al. [28] was to simulate and investigate the effects of curvature-dependent duct 

boundaries on unidirectional sticky material movement via curved dimensions during 

peristalsis. This is the initial time that numerical modeling for such a flow arrangement has been 

given. For the mathematical modeling of the issue, assumptions from the lubrication theory are 

applied.  

Mallick et al. [29] examined the electro-kinetic peristaltic movement of an Eyring-Powell tiny 

fluid. It is believed that the flow occurs in an asymmetrical pattern, irregular microchannel. The 

system is intended to be subjected to Joule heating and to be affected by a magnetic field that 

is formed outside. Due to their extraordinary ability to transmit heat and prospective uses in 

engineering and the medical sciences, nanofluids have drawn more interest since Choi's seminal 

discovery. Since most fluids have non-Newtonian characteristics, Rafiq et al. [30] explored this.  

In a work by Naz et al. [31], a smooth cylinder was intentionally surrounded with Carreau 

nanofluid. Gyrotactic microorganisms floating in a medium and exposed to an angled magnetic 

field were present when this was being done. The authors used Von Neumann resemblance 

transformations to translate paired partial differential equations from their physical 
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representation into more complex coupled ordinary differential equations. Tanveer et al. [32] 

investigated heat exchange phenomena within a curved conduit characterized by regularly 

contracting and extending waves along its edges. This study focused on the peristaltic 

circulation of Carreau fluid. Examining the movement of a second-stage dusty fluid through an 

elastic tube with sinusoidal moving walls, Tariq and Khan [33] explored the characteristics of 

this system. By taking into account streamlined conversions, paired equations for the liquid and 

solid fragments have been modeled. The peristaltic circulation of Jeffery material down an 

irregular conduit with varying viscous and thermal efficiency is highlighted by Manjunatha et 

al. [34] as being affected by mass as well as heat transfer.  

Yasmeen et al. [35] addressed the sinusoidal Johnson-Segalman liquid flow in a symmetrically 

bent channel with convective circumstances and flexible walls. The channel barrier is thought 

to be compliant. They discussed the impact of mass and heat convection on boundary conditions 

and the channel's curvature. The constitutive equations for Johnson-Segalman fluid are modeled 

and investigated using the lubrication approach.  

Gnaneswara et al. [36] studied the influence of spinning and heat transfer on the 

magnetohydrodynamic (MHD) peristaltic motion of a Jeffrey liquid in an asymmetric tunnel 

featuring partial slip. In a two-dimensional tunnel, Javed et al. [37] explored the effects of heat 

transfer on the MHD sinusoidal movement of a contaminated fluid according to Saffman's 

model.  

Shukla et al. [38] conducted an analytical investigation on heat exchange during the peristaltic 

motion of a Newtonian fluid through an unevenly inclined tunnel, while considering the 

influence of inner boundary surface roughness. The study placed particular emphasis on 

analyzing the physical dynamics of various flow characteristics across different magnitudes of 

surface roughness parameters.  

Hayyat et al. [39] discussed the peristaltic flow of a Jeffrey fluid through a curved tube, 

considering convective conditions at the boundary walls for thermal transfer. The study took 

into account Joule heating and the effects of an applied magnetic field.  
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Bhatt et al. [40] tackled the issue of heat transfer in the peristaltic motion of a viscous 

incompressible fluid within a two-dimensional irregular channel with a porous boundary under 

conditions of long wavelengths and low Reynolds numbers. Eldabe et al. [41] assessed the 

influence of non-constant stiffness and magnetohydrodynamics on the sinusoidal motion of 

nanofluid through a porous medium. Considerations include thermal production, the reaction 

of chemicals, and ohmic absorption.  

Tahir et al. [42] investigate the impact of expanding and pseudoplastic characteristics of 

sinusoidal flow on tiny fluids. Thermal transfer analysis and this behavior are both looked at in 

an asymmetric, non-uniform tunnel. n this investigation, the Reiner-Philippoff (RPh) fluid 

theory is employed to describe the non-Newtonian behavior of the fluid. The Reiner-Philippoff 

fluid theory establishes a connection between stress and the rate of deformation. A clinical 

instance illustrating the impact of an endoscope on peristaltic flow pertains to the passage of 

stomach acid when an endoscope is introduced through the small intestine. This example 

underscores the significance of peristaltic flow in clinical diagnosis. Devakar et al. [43] have 

investigated the impact of magnetohydrodynamics (MHD) on the sinusoidal propulsion of non-

Newtonian fluid (considered as pair stress fluid) in a tube made up of an endoscope. Entropy 

generation is a crucial component of any heat transport advancement and lowers the system's 

immutability factor.  

Numerous traditional industrial areas requiring fluid flows and heat transfer have enormous 

applications for entropy generation evaluation. In order to evaluate the impact of entropy 

generation and velocity slip on MHD sinusoidal flow for an incompressible liquid in a diverging 

tube, Abbas et al. [44] adopted a lubrication approach. Multiple applications, including micro 

thermal exchanger systems, mechanical-electromechanical networks, cooling of electronic 

equipment, and micro air vehicles, can establish the heat flow in microchannels. Entropy 

generation minimization is a consideration in heat flow optimization for engineering purposes. 

The goal of this work is to use EGM to measure the heat exchange of a non-Newtonian 

magneto-Carreau liquid in a microchannel. In mathematical modeling, the Carreau fluid model 

is employed. Shehzad et al. [45] also looked into convective and Joule heating characteristics.  

Rooman et al. [46] conducted a study on entropy generation within an upright Riga system, 

focusing on a reactive Williamson small fluid flow. The formulated model's thermal equation 
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incorporates considerations for various factors including magnetohydrodynamics (MHD), 

thermophoresis, nonlinear heat radiation effects, and variations in heat conductivity.  

The formation of entropy, the associated with the field that is magnetic, and the combined 

convection fixed point circulation of a pseudoplastic nanoscale liquid across an elastic medium 

were all examined by Hou et al. [47]. Williamson fluid in the curved tunnel have been 

investigated by Rashid et al. [48]. The problem is built using a wave mode of reference. Under 

the influence of mass and thermal transfer, the flow theory for two inseparable and 

incompressible Rabinowitsch plasma with various viscosities was examined by Hasen et al. 

[49]. Sinusoidal has been utilized to build and analyze the pertinent flux motion responsible for 

the fluid's circulation, and the lubrication technique expression for thermal and mass transfer. 

The temperature description, the concentration description, the streamline, the velocity 

description for the inner and outer layers, and the analytical equations for the interface geometry 

are all obtained.   

Hasona et al. [50] investigated the impact of temperature-dependent thermal transmission and 

thermal energy on the peristaltic movement of pseudoplastic microscale fluids within an 

inclined, asymmetric, and irregular tunnel. This study focused on the three primary modes of 

heat emission and transfer, namely radiation, conduction, and convection. Consideration is 

given to the sloped magnetic field. Electrical conductivity behaves in the same way as thermal 

conductivity under the Wiedemann-Franz equation in metals, and electrons that are freely 

animated likewise transmit heat energy.  

Abd-Alla [51] aimed to investigate whether small gold fragments exhibit free-floating behavior 

under the assumptions of a large wavelength and a small Reynolds number. The study examined 

the interplay of thermal and mass transfer, buoyancy effects, thermophoresis, and Brownian 

motion within a micropolar microfluid flowing through a porous medium in an asymmetric 

tunnel, all under the influence of a regular magnetic field.  

In a tapered and asymmetric tunnel, Hayat et al. [52] studied the impact of the Soret and Dufour 

effects on the sinusoidal flow of a magnetohydrodynamic pseudoplastic microfluid. The 

investigation also incorporated considerations for thermophoresis, Brownian motion, and first-

order chemical reactions.  
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El-Dabe et al. [53] delved into the peristaltic motion of a steady non-Newtonian microfluid with 

heat transfer through a non-uniform inclined channel. This scenario involved flow through a 

non-Darcy permeable medium following a power-law behavior. The study also accounted for 

effects such as thermal radiation, heat generation, Ohmic dispersion, and the presence of a 

constant external magnetic field. Tiny fluid peristalsis is important for industrial machinery, 

cancer therapy, and ulcer therapy.  

Hayat et al. [54] used combined convection and Hall voltage to replicate the MHD sinusoidal 

transport of Sutterby tiny fluid. For flexible tunnel walls, partial slide and convective 

circumstances are induced. By taking into account the effects of Joule heating, thermal ray 

sticky dissipation, and activation energy, energy, and concentration expression were modeled.  

Entropy creation and thermo-hydraulic efficiency of a curly channel with three curvature 

profiles are simulated numerically. For walls with wavy surfaces, sinusoidal, trapezoidal, and 

triangular forms are regarded as curvature profiles. On entropy formation and the thermo-

hydraulic efficiency of a curved channel, the effects of various profiles and Reynolds numbers 

were addressed by Akbarzadeh et al. [55].  

Khan et al. [56] looked that how entropy is generated in the reactive dissipative circulation of 

Carreau-Yasuda plasma over an extensible surface using flow parameters such as the Brinkman 

quantity magnetic variable, diffusion variable, Weissenberg quantity, and the comparison of 

temperature and concentration variable. The Carreau-Yasuda plasma total entropy formulation 

was obtained using the 2nd law of thermodynamics. Slide flow in electrical conduction was 

given into consideration. In the formulation of the energy equation, factors such as Joule 

heating, heat absorption, and dispersion are also incorporated.  

Iqbal et al. [57] investigated the influence of entropy generation in the context of the 

magnetohydrodynamic (MHD) sinusoidal motion of temperature-dependent thermal 

conduction within a Carreau-Yasuda microfluid. The study showcased the thermophysical 

attributes of Graphene Nano powder and Ethylene Glycol within a non-Newtonian framework. 

Using lubrication estimation, the expected flow state is modeled while taking into account 

sticky decadence, heat origination, Joule heating, thermophoresis impact, Brownian circulation, 

and slip circumstance.  
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Hayat et al. [58] focused on the sinusoidal transference of a Sutterby plasma with thermal 

conduction that are dependent on temperature in curvy shapes. A skewed magnetic field is taken 

into account. Sticky dependence, non-linear thermal rays, variable heat conductivity, Joule 

heating, and thermal sink effects are included in the modeling of energy expression. A technique 

for a formulation that considers lubrication has been used. Entropy discusses irregularities in 

the heat transport process. The effect of combined convection, Hall electric current, and 

magnetic field on Powell-Eyring tiny fluid peristaltic circulation in the symmetric tunnel was 

highlighted by Ahmed et al. [59].  

The effects of heat radiation, ohmic heating, and sticky dependence are all included in the 

energy expression.  To investigate the properties of mini fluids, Brownian movement, and 

thermophoresis are taken into account. On the boundary barriers, circumstances for velocity 

slip, heat leap, and zero mass flow are taken into account. A curved structure is used to mimic 

the peristaltic movement of a Sisko substance with varying properties of heat conductivity and 

viscosity. Both are regarded as temperature- and space-dependent. Under the assumptions of a 

small wavelength and high Reynolds numbers, the conservation equations for mass, 

momentum, and temperature are initially formulated and subsequently simplified. In their 

investigation of heat exchange anomalies, Bibi et al. [60] also incorporated considerations for 

entropy. The study focuses on the influence of the Hall voltage on the mixed convective 

sinusoidal flow of a nano liquid within a compliant boundary channel. The porous space is filled 

by a Brownian movement and thermophoresis composed of nano liquid. Impacts of partial 

slippage and convective circumstances were examined by Alsaedi et al. [61] simultaneously.  

The fluid flow produced by the sinusoidal pumping mechanism has many different uses. Javid 

et al. [62] combined the traditional peristaltic flow issue with the intricate curly curved tunnel 

under magnetic influences as a result of this fact. The first model for the flow issue makes use 

of the curvilinear coordinate scheme. In order to convert the issue from the static frame to the 

dynamic frame, Galilean transformations were employed. Since the complex phase in a narrow-

gapped tunnel causes creeping flow, we may use a small Reynolds number and the lubrication 

estimation.  

Tariq et al. [63] examined the impact of various peristaltic factors on the flow of second-grade 

dusty fluid via a curved design. Modeling the distinct set of solutions for the liquid and dust 
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fragments using stream parameter conversions. The peristaltic circulation of tiny fluids in a 

vertical uneven channel is investigated by Ellahi et al. [64] through analysis. A novel model is 

suggested for the nanoscale concentration, whereas the mathematical approach under 

consideration uses continuity and momentum calculations. We concentrate primarily on Ag- 

and Cu-water tiny liquids. Together with the porous nature of the medium, the impacts of 

entropy production are also taken into consideration. An important outcome of considering a 

thermal conductivity theory concerning Brownian motion in nanofluids is the dependence of 

particle size, volumetric proportion, and temperature response on the theory itself. The primary 

aim of Saba et al. [65] was to evaluate the impact of the curved geometry of channel edges on 

the magnetohydrodynamic (MHD) peristaltic flow of a viscous fluid, with specific implications 

for heat transfer. The results of the investigation are provided by considering the impact of 

Joule, Hall currents, and sticky dissipations. In addition, the temperature and no-slip momentum 

are considered. The implications of longer wavelength and lower magnetic Reynolds count 

schemes are applied to the computational framework. The problem is transformed from an 

experimental frame to a wave context via the Galilean conversion. Every heat transport process 

must include the production of entropy. It helps to reduce the irreversibility rate of a system. 

Entropy generation through analysis is essential in many conventional industrial fields where 

heat transport and fluid fluxes are involved. The current study's main objective is to analyze 

how entropy is produced when nanofluid is circulated through an unequal channel using the 

peristaltic process. The governing equations took into consideration the effects of 

thermophoresis, hybrid convection, and Brownian motion. Akbar et al. [66] also brought up the 

viscosity's sensitivity to temperature. Analyzing nanofluids is done using the Buongiorno 

model. The mathematical modelling includes an extended wavelength estimate.                          
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CHAPTER 3 

BASIC DEFINITIONS AND FORMULAS 

This chapter contain basic definitions taken from book “FLUID MECHANICS” by Frank M. 

white [67]. 

3.1 Newton’s law of Viscosity  

A fundamental idea in fluid dynamics, Newton's law of viscosity, or Newtonian viscosity, 

describes the connection between a fluid's shear stress and shear rate. The shear stress (τ) that 

a fluid experience is directly commensurate to the fluid's velocity gradient 
𝒅𝒖

𝒅𝒚
 ,where denotes 

the shear stress and 
𝒅𝒖

𝒅𝒚
 denotes the velocity slope perpendicular to the administration of flow. It 

has the following mathematical expression: 

𝜏 =
𝑑𝑢

𝑑𝑦
. 

The fluid's dynamic viscosity in this equation stands for the fluid's internal resistance to 

shearing. It gauges the fluid's thickness or flow resistance. The fluid is more resistant to shear 

deformation the higher the dynamic viscosity. The speed at which adjacent fluid layers slide 

past one another is represented by the shear rate 
𝒅𝒖

𝒅𝒚
 . It is the velocity gradient that is parallel to 

the flow direction. Fluids that display a direct connection between shear rate and shear stress 

are cited as fluids that are Newtonian and are subject to Newton's law of viscosity. Regardless 

of the shear rate or applied shear stress, the dynamic viscosity in Newtonian fluids is constant. 

Newton's law of viscosity can be used to analyze and forecast the flow behavior of these fluids 

since shear stress and shear rate have a linear relationship. For Newtonian materials, which are 

liquid with a linear connection between the stress generated by shear and the velocity shift, 
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Newton's equation of stickiness is valid. In other words, irrespective of the rate at which shear 

occurs or the applied shear stress, Newtonian substances have a viscosity that remains stable. 

Water, air, and the majority of the gaseous and liquid substances that are encountered in daily 

life are typical examples of fluids that are Newtonian. It's significant to remember that not all 

materials adhere to Newton's viscosity principle. The viscous behavior of fluids that aren't 

Newtonian, including some kinds of pastes and polymers, is more complicated.  

Numerous applications in science and engineering depend on Newton's principle of viscosity. 

It aids in the design of types of machinery like pumps and other components and compressors 

as well as the knowledge of fluid flow behavior in pipes, routes, and other structures. The 

creation of more intricate rheological models that represent fluids that are not Newtonian, which 

displays various viscosity characteristics under various shear situations, is also supported by 

this research. 

3.2 Time-Independent Fluid 

A time-independent fluid, commonly referred to as a steady-state fluid, is a fluid flow in which 

the fluid's characteristics and behavior do not alter over time. In other words, there are no 

temporal fluctuations in the fluid flow, which is constant. Any point in a fluid with temporal 

independence will always have the same velocity, pressure, and other attributes. This indicates 

that the characteristics of the fluid flow remain constant as it passes through a system or a 

region. The steady flow of water through a conduit with a fixed diameter and length is a typical 

example of a time-independent fluid flow. The fluid will maintain a steady flow profile with 

the same velocity and pressure at any given location along the pipe if the flow rate stays constant 

and there are no external impacts, such as changes in pressure or temperature. Equations that 

control the behavior of the fluid, like the continuity equation can be used to describe this steady 

state. The velocity, strain, density, and various other parameters of the medium at any given 

instant in time are stable in a time-independent movement of the fluid. This consistency holds 

true for both these attributes' magnitude and direction. The properties of the fluid flow remain 

unchanged as it passes through an object or area. Let's look at an illustration of stable-state water 

movement via a pipe to more fully comprehend time-independent hydraulic fluxes. At any 

given location along the pipe, fluid parameters like pressure and speed will also remain fixed if 

the flow rate stays constant. Consider a situation where water is continuously flowing through 
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a horizontal pipe at a constant flow rate and constant pressure gradient. The fluid's behavior 

continues to be time-independent in the absence of changes to variables like the pipe's diameter, 

the viscosity of the fluid, or the pressure levels. Low Reynolds numbers, a measure of the 

proportion of viscous forces to inertial forces in the fluid, are a distinctive feature of this type 

of flow. As a result, a steady and uniform laminar flow pattern develops. It's crucial to 

understand that, even though this hypothetical situation is an idealized one, real-world 

circumstances can cause time-independent behavior to diverge. It is implied by this steady-state 

condition that the flow parameters do not alter over time. Stable-state equations are frequently 

used in mathematics to explain time-independent movements of fluids. The continuity 

computation, which connects fluid velocity with the cross-sectional dimension, is constant for 

fluids with no compression. Another essential equation for describing steady-state fluid flows 

is the Bernoulli calculation, which links the fluid's flow rate, pressure, and inclination.  Many 

engineering and scientific endeavors take advantage of the time-independent movement of 

fluids premise. It makes computations and analysis simpler, enabling engineers to create less 

complicated systems and materials. It also helps in forecasting how fluids would behave under 

steady-state circumstances. 

 

3.2.1      Types of Time-Independent Fluid 

 

               Time-independent fluid comprises two types: 

i.           Steady-state Flow 

Steady-state flow refers to the behavior of a fluid in which its characteristics are constant at any 

given moment. This implies that characteristics such as velocity, pressure, and other 

characteristics are constant throughout the fluid. Usually, stable systems with predictable flow 

rates and circumstances exhibit this type of flow. As long as these circumstances are not 

changed, for instance, water flowing through a conduit under constant pressure as well as flow 

rate exhibits steady-state flow. 

ii.         Laminar Flow 

Laminar flow is a particular kind of steady-state flow that features orderly and uniform fluid 

particle motion. These particles move in parallel layers, or "laminae," with little mixing between 

neighboring levels in the flow of laminar particles. Low Reynolds numbers, which represent a 



24 

 

 

 

fluid's ability to balance inertial and viscous forces, are indicative of this behavior because it 

happens at comparatively low velocities. 

 

3.3 Time-dependent Fluid  

A fluid flow in which the fluid's characteristics and behavior change over time is 

referred to as a time-dependent fluid, also known as an unsteady or transient fluid. Contrary to 

a time-independent fluid, a time-dependent fluid's properties vary continually as it passes 

through a system or area. The velocity, pressure, and other variables at a particular place in the 

fluid flow change over time in a time-dependent fluid flow. This may happen as a result of a 

number of things, including modifications to the boundary conditions, fluid characteristics, 

external forces, or the introduction of disturbances into the system. Fluid flows that depend on 

time can behave in complex and dynamic ways. For instance, a fluid will begin to flow and 

accelerate when a rapid pressure differential is provided while it is originally at rest. The 

velocity, pressure distribution, and other characteristics of the fluid will alter over time until a 

new equilibrium or steady state is attained. knowledge of transitory processes, dynamical flows, 

and structures that adapt or change over time requires knowledge of time-varying liquids. varies 

in boundary conditions, outside influences, fluid characteristics, or beginning circumstances are 

just a few examples of the many variables that may affect how fluid behavior varies over time. 

The Navier-Stokes equation and other mathematical models of fluid behavior must be taken 

into account in their whole form, which includes time-varying terms when analyzing time-

varying fluids. These formulas offer an analytical framework to represent and examine the time-

dependent behavior while also describing the conservation of energy, motion, and mass in the 

liquid. A variety of phenomena, such as vortex loss, transmission of waves, instability, and 

temporal processes, can be seen in time-varying fluid flows. The rogue flow over an airfoil, the 

behavior of waves in the sea, the movement of a chaotic jet, or the filling and draining of a tank 

are illustrations of time-dependent fluid movements. Numerical techniques, such as computing 

fluid dynamics (CFD), are frequently used to study time-varying fluids. These techniques take 

into consideration the fluid's time-varying characteristics by discretizing the formulas that 

govern and solving them repeatedly at various time increments. CFD simulations may aid in 

the design and management of several engineering systems as well as offer in-depth insights 

into the motion of time-dependent fluids. It's essential to comprehend time-dependent materials 

in many real-world situations. For instance, in aerodynamics, research of unstable fluid 
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behavior is crucial for designing airplanes because it enables the investigation of how an aircraft 

interacts with the wind during maneuvers or roughness. The time-dependent movement of 

fluids is essential for understanding variations in the weather, ocean currents, and pollutant 

distribution in the field of environmental science. The movement of time-dependent liquids in 

manufacturing operations is crucial for maximizing the efficiency of thermal exchangers, 

ignition systems, and reactors for chemicals. The turbulent airflow around a moving vehicle 

serves as an example of a time-dependent fluid. The fluid's properties, including velocity, 

pressure, and density, change dynamically as the vehicle moves through the air in both the 

temporal and spatial dimensions. Fluid motion that is chaotic and unpredictable and is 

characterized by variations in these characteristics is referred to as turbulent flow. Imagine a 

car driving down a road at a high rate of speed. Due to the construction of the vehicle, its speed, 

and outside forces like wind gusts, the air surrounding the vehicle sees rapid fluctuations in 

both velocity and pressure. In this case, the motion and interactions of fluid particles adopt 

complex patterns, leading to unpredictable flow behavior. The constant changes in fluid 

properties caused by the movement of the vehicle give this turbulent flow its time-dependent 

characteristics. In comparison to the steady and smooth laminar flow, modelling and analysis 

of turbulent flow are much more complex.  

3.4 Law of conservation of Mass 

The rule of conservation of mass, which governs physics, stipulates that the overall mass of a 

closed system stays constant across time. It suggests that mass can only be rearranged or 

modified, not generated or destroyed. This rule states that the total mass of all the objects or 

substances involved at the start of any physical or chemical process will equal the total mass at 

the completion of the process. This idea applies to a broad variety of events, from 

straightforward mechanical interactions to intricate chemical processes. The concept of the 

conservation of energy is strongly related to the law of conservation of mass. Einstein's theory 

of relativity shows that mass and energy are connected, and that mass may be changed into 

energy and vice versa. The total mass energy in a closed system, however, does not change 

even when mass is transformed into energy. The law of conservation of mass presumes an 

isolated system with no mass interaction with the environment, which is a crucial point to 

remember. Since there are frequent interactions with the environment, achieving a totally 
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isolated system might be difficult in practice. The law of conservation of mass is still a crucial 

idea for comprehending and anticipating how matter will behave in a variety of physical 

processes. It is important to note that the idea of mass conservation has been broadened in 

contemporary physics to encompass the preservation of other physical properties, such as 

electric charge, momentum, and angular momentum. These rules, which are commonly referred 

to as conservation laws, are the cornerstone of several scientific fields and are essential to 

comprehending the basic laws of nature. General continuity equation: 

                                                           
𝜕𝜌

𝜕𝑡
+  𝛻 · (𝜌𝑣⃗)  =  0 

 

 

3.5 Law of Conservation Energy 

A fundamental idea in physics is the concept of conservation of energy, commonly 

referred to as the principle of energy conservation. It asserts that the total energy level in a 

system that is closed remains constant throughout time. Energy cannot be created or destroyed; 

it can only be transformed from one form to a different one or transported across systems.  

Scientists have contributed to the idea of energy conservation throughout history, but until the 

19th century that it became formalized and widely recognized. Hermann von Helmholtz, a 

German scientist who created the first law of thermodynamics, usually referred to as the law of 

energy conservation, was one of the principal developers of this idea. Energy is always 

preserved in all physical processes, according to the rule of conservation of energy. It includes 

a variety of energy types, such as nuclear, chemical, electromagnetic, thermal, mechanical, and 

thermal energy. Although these many types of energy can be transformed into one another, the 

overall amount of energy in a closed system never change proving that energy is conserved. 

This idea is valid for many physical processes, including heat transport, chemical reactions, 

nuclear reactions, and mechanical interactions. The overall energy of the system, for instance, 

remains constant in a swinging pendulum while potential energy is transformed into kinetic 

energy and vice versa (presuming no energy losses due to friction or other reasons). While the 

concept of conservation of energy is a key idea, it should be noted that this does not mean that 

energy is always fully used or transformed effectively. Real-world situations may involve 

energy losses as a result of friction, air resistance, or ineffective energy conversion techniques. 

However, the overall energy of an isolated system, when no additional or diminished external 
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energy is present, remains constant. A fundamental principle of physics, the rule of conservation 

of energy is essential to comprehending and forecasting the behavior of natural processes. It 

serves as the foundation for the creation of many scientific ideas and concepts, such as 

electromagnetism, quantum mechanics, and thermodynamics. 

General Energy equation: 

𝜌 𝑐𝑝 (
𝑑𝑇

𝑑𝑡̅
+ (𝑣⃗. ∇)𝑇) = 𝑘 𝛻2𝑇 + 𝑄 

 

 

3.6     Laws used in MHD       

               The science of magnetohydrodynamics (MHD) examines the behavior of liquids that 

are conducting electricity in the presence of magnetic fields. It mixes electromagnetic and fluid 

dynamics ideas to explain the trade between the fluid and the glamorous field.  MHD analyses 

and models these relationships using a number of laws and equations. The fundamental rules 

and equations then employed in MHD 

 

3.6.1    Conservation regulations 

                According to the theory of conservation of mass, the weight of a fluid in an enclosed 

structure stays constant. According to the continuity equation, the divergence of the mass flux 

density 𝑣 and the rate of change in mass density with respect to time t must both equal zero. 

                                                           
𝜕𝜌

𝜕𝑡
+  𝛻 · (𝜌𝑣⃗)  =  0 

The fluid's velocity is indicated here by the letter 𝑣⃗. 

 

3.6.2     Energy conservation  

               According to this principle, a fluid's overall energy is conserved. In MHD, it is typical 

to think of the total energy as the product of the kinetic energy and the internal energy (caused 

by temperature). The energy equation, which contains equations for heat conduction, work done 

by pressure, and energy dissipation owing to viscosity and resistance, explains the conservation 

of energy. 
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3.6.3    Maxwell Equation 

             The behavior of electromagnetic fields and their interactions with charged particles is 

described by Maxwell's equations. There are four Maxwell equations. 

1. Gauss law for electricity 

∇. 𝑬 =
𝜌

𝜖0
 

This law states that the electric flux through a closed surface is proportional to the charge 

enclosed within that surface. Here, 𝑬 is the electric field, 𝜌 is the charge density, and 𝜖0is the 

permittivity of free space. 

2. Gauss law for Magnetism 

∇. 𝑩 = 0 

This law indicates that there are no magnetic monopoles; the net magnetic flux through a closed 

surface is zero. In other words, magnetic field lines are always continuous loops, and 𝑩 is the 

magnetic field. 

3. Ampere law 

∇ × 𝑩 = 𝜇0𝑱 + 𝜇0𝜖0

𝜕𝑬

𝜕𝑡
 

This law shows that magnetic fields are generated by electric currents 𝑱  and by changing 

electric fields. Here, 𝜇0 is the permeability of free space. 

4. Faraday law 

∇ × 𝑬 = −
𝜕𝑩

𝜕𝑡
 

Faraday's Law states that a changing magnetic field over time creates an electric field. This is 

the principle behind electromagnetic induction, which is the working principle of many 

electrical generators and transformers. 

The Lorentz force law and a set of partial differential equations known as Maxwell's equations, 

sometimes known as Maxwell-Heaviside equations, serve as the conceptual pillars of traditional 

optical technology, electrical wiring, and electromagnetism. The equations provide a 

mathematical description for wiring, optical signals, and broadcast technologies such as power 

generation, motors powered by electricity, communication via wireless networks, optics, radar, 

etc. They explain how charges, currents, and changes in the fields produce electric and magnetic 

fields. James Clerk Maxwell, a mathematical expert, and physicist, presented a draught of the 

formulas in 1861 and 1862 that included the Lorentz force theory.  
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3.6.3    Gauss law for magnetism: 

The magnetic field produced by a band of current illustrates the principle of Gauss for magnetic 

forces, which asserts that magnetic field paths never start or end and instead cycle or carry on 

forever. According to Gauss's theory of magnetism, magnetic monopoles, which are analogous 

to electric charges, do not exist independently as north or south magnetic poles. Instead, a dipole 

is thought to be responsible for a material's magnetic field, and a closed surface has no effect 

on the magnetic field's net outflow. Magnetic dipoles can be represented as circles of current or 

as indestructible pairs with comparable and opposing "magnetic particles". The total magnetic 

flux over a Gaussian surface is approximately 0 since the field of magnets is a solenoidal vector 

source. 

 

3.6.4   Ohm's law 

Ohm's law connects the fluid's resistivity and the electric field's E and J current densities. The 

foundation for understanding and simulating the behavior of electrically conducting fluids in 

the presence of magnetic fields is laid forth by these rules and equations. Different MHD 

processes, including magnetic reconnection, magnetohydrodynamic waves, and plasma 

confinement, may be analyzed and understood by solving these equations with the proper 

boundary conditions. 

 

 3.7      Laws used in entropy 

 

In the study of thermodynamics, the entropy law is the name given to the second 

principle of thermodynamics. The second principle states that the entropy of an isolated system 

never decreases and always tends to increase with time or remain constant in reversible 

processes. 

Entropy measures the energy distribution and the variety of microscopic states that a 

system may take at a certain macroscopic state. The entropy of a highly organized and ordered 

system is low, while that of a chaotic and random system is large. 

There are two primary effects of the second law of thermodynamics: 
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Increase in Entropy: In an isolated system, the overall entropy has a propensity to rise 

with time. This indicates that energy tends to diffuse across natural processes, and systems end 

up being more disorganized or erratic. The "arrow of time" is a term used to describe this 

discovery, which relates to the idea of irreversibility in natural processes. 

 

Reversible processes, in which the system goes through changes that may be undone by 

extremely minute adjustments, are characterized by entropy conservation. Although idealized 

and seldom in reality, reversible processes provide a valuable framework for examining and 

comprehending thermodynamic phenomena. Probabilities and the number of potential 

microscopic states can be used to explain the growth in entropy. Entropy tends to rise as a 

system develops because it seeks to experiment with tiny configurations or arrangements. On 

the other hand, entropy increases in the environment are frequently the consequence of efforts 

to decrease or improve order, which involve energy and work. 

 

It is important to note that localized entropy drops are not prohibited by the second rule of 

thermodynamics. Entropy can momentarily decrease in a particular region, such as a living 

thing or a process that is affected by outside energy. But the overall entropy of the system and 

its surroundings either rises or stays the same. Beyond thermodynamics itself, the idea of 

entropy and the second rule of thermodynamics have significant ramifications. They offer a 

framework for comprehending the direction and behavior of natural processes, making them 

pertinent to disciplines like information theory, cosmology, and the study of complex systems. 

 

 

 

 

 

3.8      2nd Law of Thermodynamics 

 

A cornerstone of physics, the second rule of thermodynamics regulates the flow of heat 

and the effectiveness of energy conversion in thermodynamic processes. Although it may be 

expressed in a variety of ways, the Clausius formulation is one of the most popular: 
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It is impossible for a process to produce only the transfer of heat from a colder to a hotter body. 

By stating that heat naturally travels from a site of greater temperature to an area of lower 

temperature, this proposition emphasizes the irreversibility of some processes. The second law 

defines entropy as a metric for the disorder or unpredictable nature of a system. The second law 

of thermodynamics is related to a few essential ideas: 

 

Entropy is a measurement of a system's unpredictability or disorder and is represented 

by the letter S. The overall entropy in a closed system usually rises over time or stays constant 

in reversible processes. It signifies that systems have a propensity to develop toward a state of 

greater chaos or equilibrium. 

 

Entropy Change: According to the second rule of thermodynamics, an isolated system's 

entropy can never decrease, whereas it grows during an irreversible process. Entropy change 

(S) for a reversible process is determined by the equation 𝑆 =  
𝑄

𝑇
, where Q stands for heat 

transfer and T for absolute temperature. 

 

3.8          Lorentz Force 

 

When a charged particle travels through an electromagnetic field, the Lorentz force, also 

known as the electromagnetic force, emerges. Hendrik Lorentz, a Dutch scientist who made a 

substantial contribution to the development of electromagnetic theory, is honored by having his 

name given to this idea. The electric force and the magnetic force are two essential components 

of the Lorentz force. A charged particle is propelled in the direction of the field by the electric 

force, which develops as a result of the existence of an electric field. The force operates in the 

same direction if the particle's charge is in line with the field's polarity; otherwise, it acts in the 

opposite direction if the charge is in opposition to the field's polarity. On the other hand, when 

a moving charged particle enters a magnetic field, the magnetic force is activated. This force 

acts at a right angle to the magnetic field's direction and the speed of the particle. The Lorentz 

force is a fundamental concept in electromagnetism, embodying the complex interaction 

between electric and magnetic forces on charged particles in electromagnetic fields. 
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CHAPTER 4 

ON PERISTALTIC MOTION OF PSEUDOPLASTIC FLUID IN 

A CURVED CHANNEL WITH HEAT TRANSFER AND WALL 

PROPERTIES 

4.1 Introduction 

In this chapter, we have reviewed the paper of Hina et al. [68], “On peristaltic motion 

of pseudoplastic fluid in a curved channel with heat/mass transfer and wall properties”. In this 

article, they discussed the combined effects of wall characteristics and heat/mass exchange. By 

assuming that the peristaltic wave has a longer wavelength than the channel's mean half-width, 

the mathematical representation is made simpler. It is possible to construct series solutions for 

stream function, temperature, and species content. The profiles of the curvy duct are not 

symmetrical about the center line like they are in the scenario of a plane channel. The upper 

and lower parts of the curved channel's higher and lower portions of the stuck bolus are different 

sizes. Additionally, as the case of a plane channel is approached, the amount of circulations 

increases/decreases in the upper/lower portion of the channel. 

 

 

 

                                  Fig. 4.1:  The geometry of the channel. 
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4.2 Mathematical Formulation 

We take into account the peristaltic movement of a pseudoplastic liquid in a curved 

channel with a thickness of 𝑑̃1. The flow has a longitudinal direction of 𝑥̃ and a radial path of 

𝑟̃. 𝑢̃ and 𝑣̃, respectively, are the elements of velocity in the longitudinal and peripheral 

directions. The waves that are being propagated have a sinusoidal form, which may be described 

by equations 

                                 r̃  =  ±𝜂(𝑥̃, 𝑡̃) =  ± [𝑑̃1  +  ã sin 
2𝜋

𝜆
 (x̃ − t̃)] ,                                         (4.1)       

The governing equation are: 

𝜕𝑣̅

𝜕𝑟̃
+

𝑅̃

𝑟̃ +  𝑅̃
 
𝜕𝑢̃

𝜕𝑥̃
+

𝑣̃

𝑟̃ + 𝑅̃
= 0,                                                                                                          (4.2) 

𝜌 [
𝜕𝑢

𝜕𝑡̃
+ 𝑣̃

𝜕𝑢

𝜕𝑟̃
+

𝑅̃

𝑟̃+ 𝑅̃
 
𝜕𝑢

𝜕𝑥̃
+

𝑢𝑣̃

𝑟̃+𝑅̃
] =

1

(𝑟̃+𝑅̃)

𝜕

𝜕𝑟̃
{(𝑟̃ + 𝑅̃)

2
𝑆̃𝑟̃𝑥̃} +

𝑅̃

𝑟̃+ 𝑅̃
 
𝜕𝑆̃𝑥̃𝑥̃

𝜕𝑥̃
−

𝑅̃

𝑟̃+ 𝑅̃
 
𝜕𝑝̃

𝜕𝑥̃
 ,                  (4.3) 

𝜌 [
𝜕𝑣̃

𝜕𝑡̃
+ 𝑣̃

𝜕𝑣̃

𝜕𝑟̃
+

𝑅̃𝑢

𝑟̃+𝑅̃
 

𝜕𝑣̃

𝜕𝑥̃
−

𝑢²

𝑟̃+𝑅̃
] = −

𝜕𝑝̃

𝜕𝑟̃
+

1

(𝑟̃+𝑅̃)

𝜕

𝜕𝑟̃
{(𝑟̃ + 𝑅̃)𝑆̃𝑟̃𝑟̃} +

𝑅̃

𝑟̃+ 𝑅̃
 
𝜕𝑆̃𝑥̃𝑟̃

𝜕𝑥̃
−

𝑆̃𝑟̃𝑥̃

𝑟̃+𝑅̃
 ,               (4.4) 

𝜌𝑐𝑝 [
𝜕

𝜕𝑡̃
+ 𝑣̃

𝜕

𝜕𝑟̃
+

𝑅̃𝑢

𝑟̃+𝑅̃
 

𝜕

𝜕𝑥̃
] 𝑇̃ = 𝑘̃ [

𝜕²𝑇̃

𝜕𝑟̃²
+

1

𝑟̃+𝑅̃

𝜕

𝜕𝑟̃
+  

𝜕²

𝜕𝑥̃²
] + (𝑆̃𝑟̃𝑟̃ − 𝑆̃𝑥̃𝑥̃)

𝜕𝑣̃

𝜕𝑟̃
+ 𝑆̃𝑟̃𝑥̃ [

𝜕𝑢

𝜕𝑟̃
+

𝑅̃

𝑟̃+ 𝑅̃
 
𝜕𝑣̃

𝜕𝑥̃
−

𝑢

𝑟̃+𝑅̃
],                                                                                                                                                        (4.5)     

With the following constitutive relation for pseudoplastic fluid 

                                𝑺̃ + 𝜆̃1
𝐷𝑺̃

𝐷𝑡̃
+

1

2
(𝜆̃1 + 𝜇1)(𝑨̃1𝑺̃ + 𝑺̃𝑨̃1) = 𝜇𝑨̃1,             

                                          𝑨̃1 = 𝑔𝑟𝑎𝑑𝒗̃ + (𝑔𝑟𝑎𝑑𝒗̃)𝑇 ,  

                                  
𝐷𝑺̃

𝐷𝑡̃
=

𝑑𝑺̃

𝑑𝒕̃
− (𝑔𝑟𝑎𝑑𝒗̃)𝑺̃ + 𝑺̃(𝑔𝑟𝑎𝑑𝒗̃)𝑇 .  

Here 𝑨̃1 is a first rivlin Ericksen tensor,  
𝐷

𝐷𝑡̃
 represent total derivative with respect to time and 

𝑑

𝑑𝑡̃
 represent instantaneous derivative with respect to time. 

In the equations that are given below, several parameters are defined: 𝑝 signifies 

pressure, 𝜇 symbolizes dynamic viscosity, ρ denotes fluid density, 𝑅̃ represents the curvature 

parameter, σ stands for elastic tension, 𝜂̃ is the coefficient of viscous damping, 𝑇̃ signifies fluid 

temperature, 𝐷̃ stands for mass diffusivity coefficient, 𝐾̃𝑇̃ signifies thermal diffusion ratio, and 

𝑐𝑝 signifies the specific heat at constant volume. Additionally, 𝑇̃𝑚 refers to the mean flow 

temperature, 𝜇1 and 𝜆̃1 represent relaxation times for the pseudoplastic liquid, and 𝑆̃𝑟̃𝑥̃, 𝑆̃𝑟̃𝑟̃ and 

𝑆̃𝑥̃𝑥̃ pertain to components of the additional stress tensor 𝑆̃. 
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The components of the extra stress tensor are 

[𝑆̃𝑟̃𝑟̃ + 𝜆̃1 {(
𝜕

𝜕𝑡̃
+ 𝑣̃

𝜕

𝜕𝑟̃
+

𝑅̃𝑢

𝑟̃+𝑅̃
 

𝜕

𝜕𝑥̃
) 𝑆̃𝑟̃𝑟̃ − 2𝑆̃𝑟̃𝑟̃

𝜕𝑣̃

𝜕𝑥̃
−

2𝑅̃𝑢

𝑟̃+𝑅̃
 
𝜕𝑣̃

𝜕𝑥̃
 } +

1

2
(𝜆̃1 − 𝜇1) {4𝑆̃𝑟̃𝑟̃

𝜕𝑣̃

𝜕𝑟̃
+ 2𝑆̃𝑟̃𝑥̃(

𝜕𝑢

𝜕𝑟̃
−

𝑢

𝑟̃+𝑅̃
+

𝑅̃

𝑟̃+ 𝑅̃

𝜕𝑣̃

𝜕𝑥̃
)}] = 2𝜇

𝜕𝑣̃

𝜕𝑟̃
 ,                                                                                                                 (4.6)  

[𝑆̃𝑟̃𝑥̃ +
1

2
(𝜆̃1 − 𝜇1)(𝑆̃𝑟̃𝑟̃ + 𝑆̃𝑥̃𝑥̃) (

𝜕𝑢

𝜕𝑟̃
−

𝑢

𝑟̃+𝑅̃
 +

𝑅̃

𝑟̃+ 𝑅̃
  

𝜕𝑣̃

𝜕𝑥̃
) + 𝜆̃1 {(

𝜕

𝜕𝑡̃
+ 𝑣̃

𝜕

𝜕𝑟̃
+

𝑅̃𝑢

𝑟̃+𝑅̃
 

𝜕

𝜕𝑥̃
) 𝑆̃𝑟̃𝑥̃ −

𝑆̃𝑟̃𝑟̃ (
𝜕𝑢

𝜕𝑟̃
−

𝑢

𝑟̃+𝑅̃
) −

𝑅̃𝑆̃𝑥̃𝑥̃

𝑟̃+𝑅̃
 
𝜕𝑣̃

𝜕𝑥̃
}] = 𝜇 (

𝜕𝑢

𝜕𝑟̃
−

𝑢

𝑟̃+𝑅̃
+

𝑅̃

𝑟̃+ 𝑅̃
 
𝜕𝑣̃

𝜕𝑥̃
),                                                       (4.7)   

[𝑆̃𝑥̃𝑥̃ +
1

2
(𝜆̃1 − 𝜇1) {(2𝑆̃𝑟̃𝑥̃) (

𝜕𝑢

𝜕𝑟̃
−

𝑢

𝑟̃+𝑅̃
+

𝑅̃

𝑟̃+ 𝑅̃
 
𝜕𝑣̃

𝜕𝑥̃
) + 4𝑆̃𝑥̃𝑥̃ (

𝑣̃

𝑟̃+𝑅̃
+

𝑅̃

𝑟̃+ 𝑅̃
 
𝜕𝑢

𝜕𝑥̃
)} + 𝜆̃1 {(

𝜕

𝜕𝑡̃
+ 𝑣̃

𝜕

𝜕𝑟̃
+

𝑅̃𝑢

𝑟̃+𝑅̃
 

𝜕

𝜕𝑥̃
) 𝑆̃𝑥̃𝑥̃ − 2𝑆̃𝑟̃𝑥̃ (

𝜕𝑢

𝜕𝑟̃
−

𝑢

𝑟̃+𝑅̃
) − 2𝑆̃𝑥̃𝑥̃ (

𝑣̃

𝑟̃+𝑅̃
+

𝑅̃

𝑟̃+ 𝑅̃
 
𝜕𝑢

𝜕𝑥̃
)}] = 2𝜇 (

𝑣̃

𝑟̃+𝑅̃
+

𝑅̃

𝑟̃+ 𝑅̃
 
𝜕𝑢

𝜕𝑥̃
),            (4.8) 

The following boundary conditions are applied to the current problem: 

𝑢̃ = 0 ,      𝑇̃={
𝑇̃1

𝑇̃2

},             at  𝑟̃  =  ±𝜂̃,                                                                    (4.9)                  

𝑅̃ [−𝜏
𝜕ᵌ

𝜕𝑥̃ᵌ
+ 𝑚

𝜕ᵌ

𝜕𝑥̃𝜕𝑡̃2 +
𝜕²

𝜕𝑥̃𝜕𝑡̃
] 𝜂̃ =

1

𝑟̃+𝑅̃

𝜕

𝜕𝑟̃
{(𝑟̃ + 𝑅̃)²𝑆̃𝑟̃𝑥̃} +

𝜕𝑆̃𝑥̃𝑥̃

𝜕𝑥̃
− 𝜌(𝑟̃ + 𝑅̃) [

𝜕𝑢

𝜕𝑡̃
+ 𝑣̃

𝜕𝑢

𝜕𝑟̃
+

𝑅̃

𝑟̃+ 𝑅̃
 
𝜕𝑢

𝜕𝑥̃
+

𝑢𝑣̃

𝑟̃+𝑅̃
].                                                                                                                                   (4.10)  

 

The initial boundary condition enforces the no-slip requirement at the walls, with 𝑇̃0 

representing the temperature at the lower walls, and 𝑇̃1 denoting the temperature at the upper 

wall, respectively. 

To simplify the analysis, we introduce the following dimensionless variables [68]: 

𝑢∗ =
𝑢

𝑐̃
, 𝑣∗ =  

𝑣̃

𝑐̃
,    𝑥∗ =

𝑥̃

𝜆̃
,      𝑟∗ =

𝑟̃

𝑑̃1
,    𝑡∗ =

𝑐̃𝑡̃

𝜆̃
,      𝜂∗ =  

𝜂̃

𝑑̃1
      𝜃∗ =

𝑇̃−𝑇̃0

𝑇̃1−𝑇̃0
 , 

 𝑝∗ =
𝑑̃1

2 𝑝̃

𝑐̃𝜆̃𝜇̃
,        𝑆𝑖𝑗

∗ =
𝑑1𝑆̃𝑖̃𝑗̃

𝑐̃𝜇̃
,      𝜆1

∗ =
𝜆̃1𝑐̃

𝑑̃1
,     𝜇1

∗ =
𝜇̃1𝑐̃

𝑑̃1
        𝑘∗ =

𝑅̃

𝑑̃1
 . 

After using these dimension less variable and ignoring’ * ‘the system of equations from (4.3) 

to (4.10) becomes 

[
1

2
(𝜆1 − 𝜇1) {4𝑆𝑟𝑟

𝜕𝑣

𝜕𝑟
+ 2𝑆𝑟𝑥 (

𝜕𝑢

𝜕𝑟
−

𝑢

𝑟+𝑘
+

𝑘𝛿

𝑟+𝑘
 
𝜕𝑣

𝜕𝑥
)} + 𝑆𝑟𝑟 + 𝜆1 {(𝛿

𝜕

𝜕𝑡
+ 𝑣

𝜕

𝜕𝑟
+

𝑘𝛿𝑢

𝑟+𝑘
 

𝜕

𝜕𝑥
) 𝑆𝑟𝑟 −

−2𝑆𝑟𝑟
𝜕𝑣

𝜕𝑟
−

2𝑘𝛿𝑢

𝑟+𝑘
 
𝜕𝑣

𝜕𝑥
 }] = 2

𝜕𝑣

𝜕𝑟
 ,                                                                                                       (4.11)  

[𝜆1 {(𝛿
𝜕

𝜕𝑡
+  𝑣

𝜕

𝜕𝑟
 +  

𝑘𝛿𝑢

𝑟+𝑘
 

𝜕

𝜕𝑥
) 𝑆𝑟𝑥 − 𝑆𝑟𝑟 (

𝜕𝑢

𝜕𝑟
−

𝑢

𝑟+𝑘
) −

𝑘𝛿𝑆𝑥𝑥

𝑟+𝑘
 
𝜕𝑣

𝜕𝑥
} + 𝑆𝑟𝑥 +

1

2
(𝜆1 − 𝜇1)(𝑆𝑟𝑟 +

𝑆𝑥𝑥) (
𝜕𝑢

𝜕𝑟
−

𝑢

𝑟+𝑘
+

𝑘𝛿

𝑟+𝑘
 
𝜕𝑣

𝜕𝑥
)] = (

𝜕𝑢

𝜕𝑟
−

𝑢

𝑟+𝑘
+

𝑘𝛿

𝑟+𝑘
 

𝜕𝑣

𝜕𝑥
),                                                                  (4.12)       

 [𝜆1 {(𝛿
𝜕

𝜕𝑡
+  𝑣

𝜕

𝜕𝑟
+  

𝑘𝛿𝑢

𝑟+𝑘
 

𝜕

𝜕𝑥
) 𝑆𝑥𝑥 − 2𝑆𝑟𝑥 (

𝜕𝑢

𝜕𝑟
−

𝑢

𝑟+𝑘
) − 2𝑆𝑥𝑥 (

𝑣

𝑟+𝑘
+

𝑅

𝑟+𝑘
 
𝜕𝑢

𝜕𝑥
)} + 𝑆𝑥𝑥 +

1

2
(𝜆1 −

𝜇1) {(2𝑆𝑟𝑥) (
𝜕𝑢

𝜕𝑟
−

𝑢

𝑟+𝑘
+

𝑘𝛿

𝑟+𝑘
 

𝜕𝑣

𝜕𝑥
) + 4𝑆𝑥𝑥 (

𝑣

𝑟+𝑘
+

𝑢𝛿

𝑟+𝑘
 
𝜕𝑢

𝜕𝑥
)}] = 2 (

𝑣

𝑟+𝑘
+

𝑢𝛿

𝑟+𝑘
 
𝜕𝑢

𝜕𝑥
),             (4.13)  
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𝑅𝑒𝛿 [𝛿
𝜕𝑣

𝜕𝑡
+  𝑣

𝜕𝑣

𝜕𝑟
 +  

𝑘𝛿𝑢

𝑟+𝑘
 
𝜕𝑣

𝜕𝑥
−

𝑢2

𝑟+𝑘
] = 𝛿 [

1

𝑟+𝑘

𝜕

𝜕𝑟
{(𝑟 + 𝑘)𝑆𝑟𝑟} +

𝑘𝛿

𝑟+𝑘
 
𝜕𝑆𝑟𝑥

𝜕𝑥
−

𝑆𝑥𝑥

𝑟+𝑘
] −

𝜕𝑝

𝜕𝑟
,    (4.14)  

𝑅𝑒 [𝛿
𝜕𝑢

𝜕𝑡
+  𝑣

𝜕𝑢

𝜕𝑟
 +  

𝑘𝛿𝑢

𝑟+𝑘
 
𝜕𝑢

𝜕𝑥
+

𝑢𝑣

𝑟+𝑘
] =

𝑘𝛿

𝑟+𝑘
 
𝜕𝑆𝑥𝑥

𝜕𝑥
−

𝑘

𝑟+𝑘
 
𝜕𝑝

𝜕𝑥
+

1

(𝑟+𝑘)²

𝜕

𝜕𝑟
{(𝑟 + 𝑘)2𝑆𝑟𝑥},          (4.15)  

𝑅𝑒 [𝛿
𝜕

𝜕𝑡
+  𝑣

𝜕

𝜕𝑟
 +  

𝑘𝛿𝑢

𝑟+𝑘
 
𝜕𝑢

𝜕𝑥
] 𝜃 = 𝐸𝑐 [(𝑆𝑟𝑟 − 𝑆𝑥𝑥)

𝜕𝑣

𝜕𝑟
+ 𝑆𝑟𝑥 [

𝜕𝑢

𝜕𝑟
−

𝑢

𝑟+𝑘
+

𝑘𝛿

𝑟+𝑘
 
𝜕𝑣

𝜕𝑥
]] +

1

𝑃𝑟
[

𝜕²

𝜕𝑟²
+

1

𝑟+𝑘

𝜕

𝜕𝑟
+  𝛿²

𝜕²

𝜕𝑥²
] 𝜃 ,                                                                                                                           (4.16)  

With boundary conditions: 

𝑢 = 0, 𝜃 = {
1
0

} , 𝑎𝑡 𝑟 = ±𝜂 = ±(1 + 𝜖𝑠𝑖𝑛2𝜋(𝑥 − 𝑡)),                                                  (4.17) 

𝑘 [𝐸1
𝜕ᵌ

𝜕𝑥ᵌ
+ 𝐸2

𝜕ᵌ

𝜕𝑥𝜕𝑡2 + 𝐸3
𝜕²

𝜕𝑥𝜕𝑡
] 𝜂 = 𝛿

𝜕𝑆𝑥𝑥

𝜕𝑥
+

1

𝑟+𝑘

𝜕

𝜕𝑟
{(𝑟 + 𝑘)²𝑆𝑟𝑥} − 𝑅𝑒(𝑟 + 𝑘) [𝛿

𝜕𝑢

𝜕𝑡
+

 𝑣
𝜕𝑢

𝜕𝑟
 +  

𝑘𝛿𝑢

𝑟+𝑘
 
𝜕𝑢

𝜕𝑥
+

𝑢𝑣

𝑟+𝑘
].                                                                                                                   (4.18)  

Here, dimensionless parameter is 𝑘, Eckert number is equal to 𝐸𝑐 =
𝑐2

(𝑇1−𝑇0)𝐶𝑃
, amplitude ratio  

𝜖 =
𝑎

𝑑1
, Reynolds number 𝑅𝑒 =  

𝑑1𝑐

𝑣
, the Schmidt number is 𝑆𝑐 =  

𝜇

𝜌𝐷
, Wave number is 𝛿 =

𝑑1

𝜆
, 

Wall tension is equal to 𝐸1 =
−𝜏𝑑1

3

𝜆3𝜇
, wall damping parameter is equal to 𝐸3 =

𝑑1
3

𝜆2𝜇
,  mass 

characterizing parameter is 𝐸2 =
𝑚𝑐𝑑1

3

𝜆3𝜇
 and the brinkman number is equal to 𝐵𝑟 =  𝐸𝑐𝑃𝑟. 

Introducing stream function 𝜓(𝑥, 𝑦, 𝑡) one can express as 

𝑢 = −
𝜕𝜓

𝜕𝑟
,       𝑣 =

𝑘𝛿

𝑟 + 𝑘

𝜕𝜓

𝜕𝑥
. 

After applying long wavelength and low Reynolds number assumptions, we obtain the 

following equations. 

𝜕𝑝

𝜕𝑟
= 0,                                                                                                                                                 (4.19)  

−
𝑘

𝑟+𝑘
 
𝜕𝑝

𝜕𝑥
+

1

(𝑟+𝑘)2

𝜕

𝜕𝑟
{(𝑟 + 𝑘)2𝑆𝑟𝑥}    = 0,                                                                                   (4.20)  

[
𝜕²

𝜕𝑟²
+

1

𝑟+𝑘

𝜕

𝜕𝑟
] 𝜃 = −𝐵𝑟 [𝑆𝑟𝑥 (

𝜓𝑟

𝑟+𝑘
− 𝜓𝑟𝑟)],                                                                                 (4.21)  

𝜓𝑟 = 0 ,      𝜃 = {
1
0

},         at  𝑟 = ±𝜂 = ±(1 + 𝜖𝑠𝑖𝑛2𝜋(𝑥 − 𝑡)),                                     (4.22) 

𝑘 [𝐸1
𝜕ᵌ

𝜕𝑥ᵌ
+ 𝐸2

𝜕ᵌ

𝜕𝑥𝜕𝑡2
+ 𝐸3

𝜕²

𝜕𝑥𝜕𝑡
] 𝜂 =

1

𝑟+𝑘

𝜕

𝜕𝑟
{(𝑟 + 𝑘)²𝑆𝑟𝑥},  at 𝑟 = ±𝜂,                                   (4.23) 

with 

𝑆𝑟𝑟 +    (𝜆1 − 𝜇1)𝑆𝑟𝑥 (
𝜓𝑟

𝑟+𝑘
− 𝜓𝑟𝑟) = 0,                                                                                        (4.24)  

𝑆𝑟𝑥 +
1

2
(𝜆1 − 𝜇1)(𝑆𝑟𝑟 + 𝑆𝑥𝑥) (

𝜓𝑟

𝑟+𝑘
− 𝜓𝑟𝑟) − 𝜆1𝑆𝑟𝑟 (

𝜓𝑟

𝑟+𝑘
− 𝜓𝑟𝑟) = (

𝜓𝑟

𝑟+𝑘
−

𝜓𝑟𝑟),                                                                                                                                                    (4.25)  
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𝑆𝑥𝑥 + 2𝜆1𝑆𝑟𝑥 (
𝜓𝑟

𝑟+𝑘
− 𝜓𝑟𝑟) + (𝜆1 − 𝜇1)𝑆𝑟𝑥 (

𝜓𝑟

𝑟+𝑘
− 𝜓𝑟𝑟) = 0,                                                (4.26)  

Combining equations (4.19) - (4.20) and (4.24) - (4.26), we get 

𝜕

𝜕𝑟
[

1

𝑘(𝑟+𝑘)

𝜕

𝜕𝑟
{(𝑟 + 𝑘)2𝑆𝑟𝑥}] = 0,                                                                                                    (4.27)  

𝑆𝑟𝑥 = (
𝜓𝑟

𝑟+𝑘
− 𝜓𝑟𝑟) [1 − 𝜉 (

𝜓𝑟

𝑟+𝑘
− 𝜓𝑟𝑟) ²]

−1

,                                                                             (4.28)  

where 𝜉 = (𝜇1
2 − 𝜆1

2) is the pseudoplastic fluid parameter. 

 

4.3 Method of solution 

Using the small parameter ξ, we open the perturbation series provided below: 

𝜓 = 𝜓0 + 𝜉𝜓1 + ⋯                                                                                     (4.29) 

𝑆𝑟𝑥 = 𝑆0𝑟𝑥 + 𝜉𝑆1𝑟𝑥 + ⋯                                                                (4.30) 

𝜃 = 𝜃0 + 𝜉𝜃1 + ⋯                                                                           (4.31) 

 

4.3.1   Zero order system 

Putting above expression in equations (4.20)-(4.23), then comparing the coefficient of 𝜉0 , we 

get 

𝜕

𝜕𝑟

1

𝑘(𝑟+𝑘)

𝜕

𝜕𝑟
{(𝑟 + 𝑘)2𝑆0𝑟𝑥} = 0,                                                                                                     (4.32)  

[
𝜕²

𝜕𝑟²
+

1

𝑟+𝑘

𝜕

𝜕𝑟
] 𝜃0 = −𝐵𝑟 [𝑆0𝑟𝑥 (

𝜓0𝑟

𝑟+𝑘
− 𝜓0𝑟𝑟)],                                                                           (4.33)  

𝜓0𝑟 = 0 ,      𝜃0 = {
1
0

},         at  𝑟 = ±𝜂,                                                                                       (4.34) 

𝑘 [𝐸1
𝜕ᵌ

𝜕𝑥ᵌ
+ 𝐸2

𝜕ᵌ

𝜕𝑥𝜕𝑡2 + 𝐸3
𝜕²

𝜕𝑥𝜕𝑡
] 𝜂 =

1

𝑟+𝑘

𝜕

𝜕𝑟̃
{(𝑟 + 𝑘)²𝑆0𝑟𝑥},  at 𝑟 = ±𝜂,                                 (4.35)  

𝑆0𝑟𝑥 =
𝜓𝑟

𝑟+𝑘
− 𝜓𝑟𝑟 . 

The solution of the above-mentioned system is given as: 

𝜓0 = 𝐶̃1 + 𝐶̃2 𝑙𝑛(𝑟 + 𝑘) + 𝐶̃3 𝑙𝑛(𝑟 + 𝑘)² + 𝐶̃4(𝑟 + 𝑘) 𝑙𝑛(𝑟 + 𝑘)2,                                       (4.36) 

𝑢0 = −𝜓0𝑟 =  − 
𝐶2

𝑟+𝑘
− 2𝐶̃3(𝑟 + 𝑘) − 𝐶̃4(𝑟 + 𝑘){1 + 2 𝑙𝑛(𝑟 + 𝑘)} ,                                    (4.37) 

𝜃0 = 𝐴̃1 + 𝐴̃2 𝑙𝑛(𝑟 + 𝑘) + 4𝐵𝑟𝐶̃2𝐶̃4 𝑙𝑛(𝑟 + 𝑘)2 − 𝐵𝑟𝐶̃4
2(𝑟 + 𝑘)2 +

𝐶̃2
2

(𝑟+𝑘)2 ,                        (4.38) 

C̃1 = −C̃2𝑙𝑛k − C̃3𝑙𝑛k2 − C̃4𝑘2𝑙𝑛k , 
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C̃2 =
𝐶̃4

2kη
(−𝜂2 + 𝑘2)2𝑙𝑛 (

𝜂+𝑘

−𝜂+𝑘
) ,  

C̃3 = −
C̃4

4kη
(2kη + (𝜂 + 𝑘)2𝑙𝑛(𝜂 + 𝑘) − (−𝜂 + 𝑘)2𝑙𝑛(−𝜂 + 𝑘)) , 

𝐶̃4 = −2𝜖𝜋ᵌ𝑘 {
𝐸̃3

2𝜋
𝑠𝑖𝑛2𝜋(𝑥 − 𝑡) − (𝐸1 + 𝐸2)𝑐𝑜𝑠2𝜋(𝑥 − 𝑡)} , 

𝐿̃1 = 1 + 4𝐵𝑟 [
𝐶̃4

2(𝜂+𝑘)²

4
+

𝐶̃2
2

4(𝜂+𝑘)²
− 𝐶̃2𝐶̃4(ln (𝜂 + 𝑘))²] , 

𝐿̃2 = 4𝐵𝑟 [
𝐶̃4

2(−𝜂+𝑘)²

4
+

𝐶̃2
2

4(−𝜂+𝑘)²
− 𝐶̃2𝐶̃4(ln(−𝜂 + 𝑘))²] , 

Ã2 =
L1+𝐿2

ln(𝜂+𝑘)−ln(−𝜂+𝑘)
 . 

 

4.3.2   First order system 

The first order system is: 

𝜕

𝜕𝑟

1

𝑘(𝑟+𝑘)

𝜕

𝜕𝑟
{(𝑟 + 𝑘)2𝑆1𝑟𝑥} = 0,                                                                                                   (4.39)  

[
𝜕²

𝜕𝑟²
+

1

𝑟+𝑘

𝜕

𝜕𝑟
] 𝜃0 = −𝐵𝑟 [𝑆1𝑟𝑥 (

𝜓1𝑟

𝑟+𝑘
− 𝜓1𝑟𝑟) + 𝑆1𝑟𝑥 (

𝜓0𝑟

𝑟+𝑘
− 𝜓0𝑟𝑟)],                                  (4.40)  

𝜓1𝑟 = 0 ,      𝜃1 = {
1
0

},         at  𝑟 = ±𝜂,                                                                                    (4.41)  

1

(𝑟+𝑘)

𝜕

𝜕𝑟
{(𝑟 + 𝑘)2𝑆1𝑟𝑥} = 0,  at     𝑟 = ±𝜂,                                                                      (4.42)  

𝑆1𝑟𝑥 = 
𝜓1𝑟

𝑟+𝑘
− 𝜓1𝑟𝑟 − (

𝜓0𝑟

𝑟+𝑘
− 𝜓0𝑟𝑟)

3

. 

Using the zero order system into first order system and then solving the resulting problem, one 

arrives at following results: 

𝜓1 = C̃11 + C̃12ln(𝑟 + 𝑘) + C̃13(𝑟 + 𝑘)2 + C̃14(𝑟 + 𝑘)2ln(𝑟 + 𝑘) −
3𝐶̃2

2C̃4

(𝑟+𝑘)2 +
𝐶̃2

3

3(𝑟+𝑘)4 , 

𝑢1 = −𝜓1′[𝑟] = −
C̃12

𝑟+𝑘
− 2C̃13(𝑟 + 𝑘) − C̃14(𝑟 + 𝑘)(1 + 2(𝑟 + 𝑘)) −

6𝐶̃2
2C̃4

(𝑟+𝑘)3 +
4𝐶̃2

3

3(𝑟+𝑘)5 , 

θ1 = Ã11 + Ã12𝑙𝑛(𝑟 + 𝑘) +
𝑖1(𝑟+𝑘)2

4
+

𝑖2(𝑙𝑛(𝑟+𝑘))2

2
+

𝑖3

4(𝑟+𝑘)2 +
𝑖4

16(𝑟+𝑘)4 +
𝑖5

36(𝑟+𝑘)6 , 

 

where, 

C̃11 = −C̃12𝑙𝑛(𝑘) − C̃13(𝑘)2 − C̃14(𝑘)2𝑙𝑛(𝑘) +
3C̃2

2
C̃4

(𝑘)2 −
C̃2

3

3(𝑘)4 , 

C̃12 =
−(𝑘2−𝜂2)

4𝑘𝜂
((−𝜂 + 𝑘)B̃1 − (𝜂 + 𝑘)B̃2) , 

C̃13 =
1

8𝑘𝜂
((𝜂 + 𝑘)B̃1 − (−𝜂 + 𝑘)B̃2), 
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C̃14 = −4𝐶̃4
3 , 

B̃1 = −C̃14(𝜂 + 𝑘)(1 + 2ln(𝜂 + 𝑘)) − 𝐶̃2
2 (

6C̃4

(𝜂+𝑘)3 −
4C̃2

3(𝜂+𝑘)5) , 

B̃2 = −C̃14(−𝜂 + 𝑘)(1 + 2ln(−𝜂 + 𝑘)) − 𝐶̃2
2 (

6C̃4

(−𝜂+𝑘)3 −
4C̃2

3(−𝜂+𝑘)5) , 

𝐴̃11 =
𝐿3𝑙𝑛(𝜂+𝑘)−𝐿4𝑙𝑛(𝜂+𝑘)

𝑙𝑛(𝜂+𝑘)−𝑙𝑛(𝜂+𝑘)
 , 

𝐴̃12 =
𝐿̃3−𝐿4

𝑙𝑛(𝜂+𝑘)−𝑙𝑛(𝜂+𝑘)
 , 

𝐿̃3 = − [
𝑖1(𝜂+𝑘)2

4
+

𝑖2(𝑙𝑛(𝜂+𝑘))2

2
+

𝑖3

4(𝜂+𝑘)2
+

𝑖4

16(𝜂+𝑘)4
+

𝑖5

36(𝜂+𝑘)6
] , 

𝐿̃4 = − [
𝑖1(−𝜂+𝑘)2

4
+

𝑖2(𝑙𝑛(−𝜂+𝑘))2

2
+

𝑖3

4(−𝜂+𝑘)2 +
𝑖4

16(−𝜂+𝑘)4 +
𝑖5

36(−𝜂+𝑘)6] , 

𝑖1 = −2𝐵𝑟𝐶̃4(4𝐶̃14 + 8𝐶̃4
3
) , 

𝑖2 = 2𝐵𝑟(4𝐶̃2𝐶̃14 + 4𝐶̃4𝐶̃12 + 32𝐶̃2𝐶̃4
3), 

𝑖3 = −8𝐵𝑟𝐶̃2𝐶̃12 , 

𝑖4 = −64𝐶̃4𝐶̃2
3, 

𝑖5 = 16𝐵𝑟𝐶̃2
4 . 

To see the impact of the parameters like 𝐸1,  𝐸2 𝑎𝑛𝑑 𝐸3, the curvature co-efficient ‘ k ‘ and the 

pseudoplastic parameter 𝜉 , the graphs for velocity, streamlines and temperature are plotted by 

using the MATHIMATICA software. 

 

4.4     Result and discussion 

 

This section contains the physical interpretation of the obtained results through Figs 4.2 

to 4.8 The values of 𝜉 , 𝐵𝑟 and 𝐸𝑖  characterise the strengths of shear-thinning, viscous 

dissipation and elasticity effects respectively. Understanding these parameters is crucial for 

interpreting the results. 𝜉 characterizes shear-thinning, where viscosity decreases with higher 

shear rates. A higher 𝜉 signifies a more pronounced shear-thinning effect, indicating that the 

material becomes less viscous and flows more readily as shear rates increase. This parameter 

indicates the material's sensitivity to shear rate changes, with a larger 𝜉 indicating a stronger 

response. 𝐵𝑟 relates to viscous dissipation, representing the energy loss due to internal friction 

or viscosity within the material. 𝐸𝑖 (𝑖 = 1,2,3) represents elasticity effects. A higher 𝐵𝑟 value 

signifies a heightened viscous dissipation effect within the system, indicating substantial energy 

dissipation due to viscosity. This leads to heating or a loss of mechanical energy during 

deformation. Elasticity in a material pertains to its ability to revert to its original shape after 
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deformation. A higher 𝐸𝑖 (𝑖 = 1,2,3) value indicates a more pronounced elasticity effect, 

signifying the material's strong tendency to regain its initial shape once the deforming force is 

removed. A larger 𝐸𝑖 (𝑖 = 1,2,3)value suggests a higher level of elasticity, allowing the 

material to store and release more energy during deformation. Larger 𝜉 values denote a more 

prominent shear-thinning effect, larger 𝐵𝑟 values indicate a stronger viscous dissipation effect, 

and larger 𝐸𝑖 (𝑖 = 1,2,3)values represent a more significant elasticity effect. Fig. 4.2 illustrates 

how the axial velocity deviates as the material fluid parameter 𝜉  varies. As 𝜉  increases, it 

signifies a rise in the shear-thickening effect or, in other words, an increase in fluid viscosity as 

the rate of deformation intensifies. This heightened viscosity opposes the flow, resulting in a 

reduction in velocity. This behavior is also observed in a planar channel. Unlike the curved 

channel, the axial velocity profiles in the planar channel display symmetry around the central 

line. Fig. 4.3 illustrates velocity profiles associated with varying elasticity parameters: 𝐸1, 𝐸2, 

and 𝐸3. It is observed that the axial velocity exhibits a positive correlation with 𝐸1. In terms of 

physics, an increase in 𝐸1 alleviates tension in the blood vessel walls, resulting in an 

acceleration of blood flow. Furthermore, the velocity escalates with an augmentation in the wall 

mass per unit area. For elevated values of 𝐸3, the walls of the channel (or blood vessels) 

experience heightened damping effects. Under such conditions, the arteries or blood vessels 

necessitate a more significant force to expand and accommodate the blood ejected from the 

heart. This subsequently leads to a reduction in the blood velocity inside the vessels. Fig. 4.4 

illustrates that as the Brinkman number (𝐵𝑟) is elevated, there is a corresponding increase in 

temperature (𝜃). This phenomenon can be attributed to the higher values of 𝐵𝑟 indicating more 

pronounced viscous dissipation, leading to increased heat generation from friction resulting 

from shear within the flow. As a consequence, the fluid temperature rises. The temperature 

profiles exhibit maxima in proximity to the upper wall of the curved channel. Fig. 4.5 clarifies 

how the curvature of the channel influences the distribution of temperature. It is observed that 

as the channel approaches a planar configuration, the temperature profiles symmetrically align 

around the central region.  

In Fig. 4.6, the impact of the fluid parameter 𝜉 on temperature distribution is observed. 

The analysis reveals that as the shear-thinning or shear-thickening effect intensifies, the 

temperature within the channel either rises or falls accordingly. Notably, the highest points in 

the temperature profiles are located in the vicinity of the upper wall, whether the channel is 

curved or planar. Additionally, it's worth mentioning that the temperature profiles lack 

symmetry around the central region, diverging from the symmetry observed in a planar channel. 
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Fig. 4.7 and Fig. 4.8 depict streamlines illustrating the influence of different parameters: 

curvature parameter k, fluid material parameter ξ, and elastic parameters 𝐸1, 𝐸2, and 𝐸3.  

In Fig. 4.7, it's evident that the size and quantity of trapped boluses increase as the curvature 

parameter k is raised, particularly in the upper half of the channel (𝑟 >  0). Conversely, in the 

lower half of the channel (𝑟 <  0), an increase in curvature parameter k results in a reduction 

in the size of the trapped boluses. However, for significantly large values of k, the size and 

circulation of the trapped boluses tend to be similar in both the upper and lower halves of the 

channel. Fig. 4.8 (a–c) demonstrate that the size of trapped boluses, in both the upper and lower 

halves of the channel, increases with an augmentation of the fluid parameter 𝜉 > 0. Conversely, 

an opposite trend is observed when 𝜉 < 0 is increased. 

 

 

 

 

 

           Fig 4.2:  Variation of 𝜉 on velocity of fluid 0, 0.03 and 0.06 
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            Fig 4.3: Variation of a complaint wall on a velocity of fluid. 

 

 

       Fig 4.4: Variation of 𝑩𝒓 at 0, 0.3 and 0.6 on temperature of the fluid. 
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       Fig 4.5: Variation of 𝒌 on a temperature of the fluid at 𝒌 = 𝟐, 𝟑 and 5. 

                                                        

 

                                                                   

    Fig 4.6: Variation of ξ at 0, 0.3 and 0.6 on a temperature of a fluid.                                                 
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                                                   (𝑎) 𝑘 =  2                                                          

       

(𝑏) 𝑘 = 3 

                               

                                                      (𝑐) 𝑘 → ∞ 

                                                            

      Fig 4.7:  Variation of k on 𝜓 at (a) k = 2 (b) k = 3 and (c) k → ∞ 
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                                                                (𝑎) 𝜉 = 0 

                                          

                                                      (𝑏) 𝜉 =  0.0025                                                                

    

        (𝑐) 𝜉 =  −0.0025 

Fig 4.8: Variation of ξ on 𝜓 at (a) 𝜉 =  0, (b) 𝜉 =  0.0025 and (c) 𝜉 =  −0.0025 
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CHAPTER 5 

INFLUENCE OF ENTROPY GENERATION ON PERISTALTIC 

TRANSPORT OF PSEUDOPLASTIC FLUID IN A CURVED 

CONFIGURATION 

 

 

5.1 Introduction 

In this chapter, we extended the work of Hina et al. [68] by investigating the entropy generation 

impact of peristaltic transport of pseudoplastic fluid in curved configuration along with MHD 

by assuming a long wavelength assumption. Also, we have applied perturbation techniques to 

solve PDE’s and series solutions for stream function were derived. We have evaluated the 

suggested model by using Mathematica. 

5.2 Mathematical formulation 

In our extension work we are taking a curved channel with a thickness of 𝑑̃1. The flow 

is characterized by a longitudinal axis denoted as x̃ and a radial path represented by r.̃ The 

components of velocity in the longitudinal and peripheral directions are denoted as ũ and ṽ, 

respectively. The waves that are being propagated have a sinusoidal form, which may be 

described by equations. 

𝜕𝑣̅

𝜕𝑟̃
+

𝑅̃

𝑟̃+𝑅̃
 
𝜕𝑢

𝜕𝑥̃
+

𝑣̃

𝑟̃+𝑅̃
= 0 ,                                                                                                        (5.1) 

 

𝜌 [
𝜕𝑢

𝜕𝑡̃
+ 𝑣̃

𝜕𝑢

𝜕𝑟̃
+

𝑅̃

𝑟̃+ 𝑅̃
 
𝜕𝑢

𝜕𝑥̃
+

𝑢𝑣̃

𝑟̃+𝑅̃
] =

1

(𝑟̃+𝑅̃)

𝜕

𝜕𝑟̃
{(𝑟̃ + 𝑅̃)

2
𝑆̃𝑟̃𝑥̃} +

𝑅̃

𝑟̃+ 𝑅̃
 
𝜕𝑆̃𝑥̃𝑥̃

𝜕𝑥̃
−

𝑅̃

𝑟̃+ 𝑅̃
 
𝜕𝑝̃

𝜕𝑥̃
 −

𝜎𝐵0
2𝑢

(𝑟̃+𝑅̃)2,   (5.2) 

  

𝜌 [
𝜕𝑣̃

𝜕𝑡̃
+ 𝑣̃

𝜕𝑣̃

𝜕𝑟̃
+

𝑅̃𝑢

𝑟̃+𝑅̃
 

𝜕𝑣̃

𝜕𝑥̃
−

𝑢²

𝑟̃+𝑅̃
] = −

𝜕𝑝̃

𝜕𝑟̃
+

1

(𝑟̃+𝑅̃)

𝜕

𝜕𝑟̃
{(𝑟̃ + 𝑅̃)𝑆̃𝑟̃𝑟̃} +

𝑅̃

𝑟̃+ 𝑅̃
 
𝜕𝑆̃𝑥̃𝑟̃

𝜕𝑥̃
−

𝑆̃𝑟̃𝑥̃

𝑟̃+𝑅̃
.              (5.3) 
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In this chapter we are using the same tensor are utilized as discussed in chapter 4 mentioned in 

equation (4.6) - (4.8).  

To simplify the analysis, we introduce the following dimensionless variables [68]: 

𝑢∗ =
𝑢

𝑐̃
, 𝑣∗ =  

𝑣̃

𝑐̃
,    𝑥∗ =

𝑥̃

𝜆̃
,      𝑟∗ =

𝑟̃

𝑑̃1
,    𝑡∗ =

𝑐̃𝑡̃

𝜆̃
,      𝜂∗ =  

𝜂̃

𝑑̃1
      𝜃∗ =

𝑇̃−𝑇̃0

𝑇̃1−𝑇̃0
 , 

 𝑝∗ =
𝑑̃1

2 𝑝̃

𝑐̃𝜆̃𝜇̃
,        𝑆𝑖𝑗

∗ =
𝑑1𝑆̃𝑖̃𝑗̃

𝑐̃𝜇̃
,      𝜆1

∗ =
𝜆̃1𝑐̃

𝑑̃1
,     𝜇1

∗ =
𝜇̃1𝑐̃

𝑑̃1
        𝑘∗ =

𝑅̃

𝑑̃1
 . 

After putting dimension less variable the equations (5.3) are same as equation (4.14) and 

equation (5.2) is mentioned in equation (5.4). 

 

𝑅𝑒 [𝛿
𝜕𝑢

𝜕𝑡
+  𝑣

𝜕𝑢

𝜕𝑟
 +  

𝑘𝛿𝑢

𝑟+𝑘
 
𝜕𝑢

𝜕𝑥
+

𝑢𝑣

𝑟+𝑘
] =

𝑘𝛿

𝑟+𝑘
 
𝜕𝑆𝑥𝑥

𝜕𝑥
−

𝑘

𝑟+𝑘
 
𝜕𝑝

𝜕𝑥
+

1

(𝑟+𝑘)²

𝜕

𝜕𝑟
{(𝑟 + 𝑘)2𝑆𝑟𝑥} −

𝑀2  
𝑢

(𝑟̃+𝑘̃)
2 ,                                                                                                                                              (5.4)       

The following boundary condition are applied to the current problem: 

𝜓 = −
𝐹

2
,   𝜓 = 1 , 𝜃 = 1  𝑎𝑡 𝑟 = 𝜂,                                                                                                 (5.5) 

𝜓 =
𝐹

2
,   𝜓 = 1, 𝜃 = 0  𝑎𝑡 𝑟 = −𝜂,                                                                                                  (5.6) 

Introducing stream function 𝜓(𝑥, 𝑦, 𝑡) one can express 

𝑢 = −
𝜕𝜓

𝜕𝑟
,       𝑣 =

𝑘𝛿

𝑟 + 𝑘

𝜕𝜓

𝜕𝑥
. 

After applying long wavelength and low Reynolds number assumptions equation (5.4) become 

𝜕

𝜕𝑟
[

1

𝑘(𝑟+𝑘)

𝜕

𝜕𝑟
{(𝑟 + 𝑘)2𝑆𝑟𝑥 + 𝑀2 𝜕𝜓

𝜕𝑟
}] = 0,                                                                                   (5.7)  

𝑆𝑟𝑥 = (−𝜓𝑟𝑟 +
𝜓𝑟

𝑟+𝑘
) [1 − 𝜉 (−𝜓𝑟𝑟 +

𝜓𝑟

𝑟+𝑘
) ²]

−1

,                                                                       (5.8)  

where 𝜉 = (𝜇1
2 − 𝜆1

2) is the pseudoplastic fluid parameter. 

𝐹 = ∫
𝜕𝜓

𝜕𝑟

𝜂

−𝜂
𝑑𝑟.                                                                                                                      (5.9) 

Using the small parameter ξ, we open the perturbation series defined as 

𝜓 = 𝜓0 + 𝜉𝜓1 + ⋯                                                                                    (5.10) 

𝑆𝑟𝑥 = 𝑆0𝑟𝑥 + 𝜉𝑆1𝑟𝑥 + ⋯                                                               (5.11) 

𝐹 = 𝐹0 + 𝜉𝐹1 + ⋯                                                                                                              (5.12) 

 

5.2.1:  Zero order solution 

Putting above expression in Equation (5.5), then comparing the coefficient of 𝜉0 , we get 
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𝜕

𝜕𝑟

1

𝑘(𝑟+𝑘)

𝜕

𝜕𝑟
{(𝑟 + 𝑘)2𝑆0𝑟𝑥 + 𝑀2 𝜕𝜓0

𝜕𝑟
} = 0,                                                                                  (5.13)  

𝑆0𝑟𝑥 =
𝜓0𝑟

𝑟+𝑘
−𝜓0𝑟𝑟 . 

The dimensionless boundary conditions are 

𝜓0 = −
𝐹0

2
,   𝜓0 = 1, 𝜃0 = 1, 𝑎𝑡 𝑟 = 𝜂,                                                                                       (5.14) 

𝜓0 =
𝐹0

2
,   𝜓0 = 1, 𝜃0 = 0  𝑎𝑡 𝑟 = −𝜂.                                                                                        (5.15) 

 

5.2.2:   First order system 

The first order system is given as: 

𝜕

𝜕𝑟

1

𝑘(𝑟+𝑘)

𝜕

𝜕𝑟
{(𝑟 + 𝑘)2𝑆1𝑟𝑥 + 𝑀2 𝜕𝜓1

𝜕𝑟
} = 0,                                                                                   (5.16)  

𝑆1𝑟𝑥 = 
𝜓1𝑟

𝑟+𝑘
− 𝜓1𝑟𝑟 − (

𝜓0𝑟

𝑟+𝑘
− 𝜓0𝑟𝑟) ᵌ, 

with boundary conditions: 

𝜓1 = −
𝐹1

2
,   𝜓1 = 0, 𝜃1 = 0  𝑎𝑡 𝑟 = 𝜂,                                                                                         (5.17) 

𝜓1 =
𝐹1

2
,   𝜓1 = 0, 𝜃1 = 0  𝑎𝑡 𝑟 = −𝜂.                                                                                         (5.18) 

 

5.3        Entropy analysis 

 Entropy production or the pseudoplastic fluid can be defined as: 

Entropy generation is: 

𝑆𝐺𝑒𝑛 =
𝑘̃

(𝑇̃𝑚̃)2 (∇𝑇̃)
2

+
1

𝑇̃𝑚̃
(𝑆̃. 𝐿̃) ,                        (5.19) 

𝑆𝐺𝑒𝑛 =
𝑘̃

(𝑇̃𝑚̃)2 (
𝜕𝑇̃

𝜕𝑟̃
+

𝑅̃

𝑟̃+𝑅̃

𝜕𝑇̃

𝜕𝑥̃
)

2

+
1

𝑇̃𝑚̃
𝑆𝑋𝑅 (

𝜕𝑢

𝜕𝑅̃
+

𝑅̃

𝑟̃+𝑅̃

𝜕𝑣̃

𝜕𝑋
−

𝑢

𝑟̃+𝑅̃
) +

𝑢2𝐵0
2𝜎̃

𝑇̃𝑚̃

𝑅̃

(𝑟̃+𝑅̃)2 ,               (5.20) 

In dimensionless form 

𝑁𝑠 =
𝑆𝐺𝑒𝑛

𝑆𝐺
= (

𝜕𝜃

𝜕𝑟
)

2

+
𝐵𝑟

⋀
𝑆𝑟𝑥 (

1

𝑟+𝑘

𝜕𝜓

𝜕𝑟
−

𝜕2𝜓

𝜕𝑟2
) + (

𝑘𝐵

𝐾+𝑟
)

2

(
𝜕𝜓

𝜕𝑟
)

2

 ,                                     (5.21) 

with 

𝑆𝐺 =
𝑘(𝑇1−𝑇0)

(𝑇𝑚)2𝑑2 ;    ⋀=
(𝑇1−𝑇0)

𝑇𝑚
. 
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5.4 Results and Discussion 

This segment provides an explanation of the results derived from Fig. 5.1 to 5.13. In this 

work magnetic fields were applied on a curved channel. The application of a magnetic field can 

exert forces on magnetic particles or ions in the fluid. This can influence the overall flow pattern 

within the curved channel. In the presence of a magnetic field, the Lorentz force may act on the 

conducting fluid, causing changes in velocity and pressure distribution. In a curved channel, 

peristaltic motion may be altered by the presence of a magnetic field. The magnetic forces may 

affect the propagation of peristaltic waves and the shape of the waves.  The combination of 

peristaltic motion and magnetic forces can lead to complex fluid dynamics. The magnetic field 

may induce secondary flows, influencing the velocity and pressure distribution in the curved 

channel. The curvature of the channel can also affect the magnetic field distribution and, in turn, 

the magnetic forces acting on the fluid. Fig. 5.1 (a, b, and c) shows that when we apply a 

magnetic field on a curved channel the number of streamlines increases in the lower wall of the 

channel and decreases in the upper wall of the channel by increasing the value of magnetic field 

because when the effect of magnetic field increase then the bolus start to expand in the upper 

portion of the channel and this expansion decreases the number of streamline similarly in lower 

portion bolus contract and this contraction increases the number of streamline. Fig. 5.2 (a, b, 

and c) shows the variation of pseudoplastic parameter ξ on streamlines in a curved channel.  An 

increasing value of ξ > 0 corresponds to an increase in the number of streamlines in the lower 

wall of the channel because the bolus starts to contract and decreases the number of streamlines 

in the upper wall of the channel by the expansion of the bolus. Fig. 5.3 (a, b, and c) shows the 

effect of curvature on streamlines. An increasing value of k > 0 corresponds to a decrease in 

the number of streamlines in the lower wall of the channel because the bolus starts to expand 

and an increase the number of streamlines in the upper wall of the channel by the contraction 

of the bolus. Fig. 5.4 shows the effect of the magnetic field on the velocity of a fluid in the 

curved channel. The primary effect of a magnetic field on a fluid is the generation of a Lorentz 

force. This force acts perpendicular to both the direction of the magnetic field  and the direction 

of the current or fluid velocity ( v ).  The Lorentz force acts as a constraint on fluid motion in 

the presence of a magnetic field, resulting in a drop in fluid velocity and an increase in flow 

resistance. The fluid velocity, fluid conductivity, and intensity of the magnetic field all affect 

how much magnetic braking occurs. As an increasing magnetic field intensity (B) is applied to 

a curved channel, fluid velocity decreases in the middle portion and increases in the higher and 
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lower areas. Fig 5.5 shows the effect of curvature on a velocity of a fluid. By increasing the 

value of curvature the velocity of a fluid decreases in lower portion and increases in upper 

portion of the channel. Fig 5.6 shows the effect of pseudoplastic parameter on a velocity of a 

fluid such that by increasing the value of pseudoplastic parameter velocity increase in upper 

portion and decreases in lower portion of the channel. Fig. 5.7 - 5.9 illustrates the impact of 

magnetic field strength ( M ), curvature ( 𝑘 ), and fluid parameter ( ξ ) on fluid temperature. In 

Fig. 5.7, fluid temperature decreases in the central region of the channel and remains constant 

in the upper and lower regions. Fig. 5.8 demonstrates that an increase in curvature leads to a 

temperature decrease in the lower part and an increase in the upper part of the channel. 

Fig. 5.9 shows that the temperature of a fluid increases by increases in Br number. Fig. 5.10 -

5.13 illustrates the impact of crucial parameters, namely M, ξ, Br, and k on the behavior of total 

entropy production ( S ). In Fig. 5.10 the influence of M on S is depicted, revealing an increase 

in entropy near the channel walls as M is heightened. The effect of Br on S is elucidated in Fig. 

5.11, where the Brinkmann number Brelates to viscous effects and is directly proportional to 

the square of velocity. An increase in the Br number shows that the entropy increases in the 

upper and lower portions of the channel. Fig. 5.12 demonstrates the effect of ξ on S, indicating 

a decay in entropy in the vicinity of channel walls. Fig. 5.13 shows that the entropy increases 

in upper and lower with increasing the effect of k. 
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                                                           (𝑎)𝑀 = 0.1 

                                 

                                                                       (𝑏)𝑀 = 5 

                      
(𝑐)𝑀 = 7 

Fig 5.1: Variation of M on velocity of a fluid at M = 0.1, 5 and 7. 
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                                                (𝑎)𝜉 = 0                                                        

                 
                                                  (𝑏)𝜉 = 0.02 

                 
(𝑐)𝜉 = 0.04 

Fig 5.2: Variation 𝜉 on velocity of a fluid at 0, 0.02 and 0.04. 
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                                                                 (𝑎)𝑘 = 3 

                            
                                             (𝑏)𝑘 = 8 

       

                        
(𝑐)𝑘 = 16 

Fig 5.3: Variation of k on velocity of a fluid at 3, 8, and 16. 
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    Fig 5.4: Variation of M on u at 𝑀 =  0.1, 3 and 5. 

                                                       

  

Fig 5.5: Variation of k on u at 𝑘 = 3, 5 and 7. 
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Fig 5.6: Variation of ξ on r at ξ = 0, 0.03, and 0.06.    

                                                    

                                                                                                                                                                

Fig 5.7: Variation of M on a temperature of a fluid at 𝑀 =  1.5, 2.5, and 3.5. 
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Fig 5.8: Variation of k on a temperature of a fluid at 𝑘 =  3, 5 and 7 

                                               

 

    

Fig 5.9: Variation of Br on a temperature of a fluid at 𝐵𝑟 =  1, 2 and 3 
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   Fig 5.10: Variation of Br on S at 𝐵𝑟 =  1, 2 and 3. 

                                                          

 

 

 Fig 5.11: Variation of M on S at 𝑀 =  1, 2 and 3. 
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Fig 5.12: Variation of ξ on S at 𝜉 =  0, 0.01 and 0.02 

                                                              

 

 

Fig 5.13: Variation of k on S at 𝑘 =  3, 5 and 7 
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                                     CHAPTER 6 

CONCLUSION AND FUTURE WORK     

6.1 Conclusion 

The research investigates the impact of MHD effects on the peristaltic motion of a pseudoplastic 

fluid within a curved channel, accounting for entropy generation. By using perturbation method, 

the study derives analytical expressions for the stream function. 

The following is a summary of the study's main findings: Asymmetry may be seen in the 

velocity profiles along the curved channel's line, which deviates from patterns seen in flat 

channels. Trapped boluses show increased size and circulation with increasing curvature 

parameter in the top portion of the channel, whereas the reverse tendency is observed in the 

bottom segment. This suggests that blood flow patterns in the top and lower portions of the 

artery are specifically influenced by the curvature parameter. Additionally, an increase in the 

curvature value results in a reduction in fluid velocity. in the upper portion and an increase in 

the lower portion. The introduction of magnetic effects follows a similar trend, where an 

increase in the magnetic field diminishes fluid velocity in the upper portion and enhances it in 

the lower portion. An elevation in M is shown to correspond with an increase in entropy along 

the channel walls, as seen by the link between variable 𝑀 and entropy S. The influence of 

variable Br on entropy is explained; viscous effects are correlated with the Brinkmann number 

Br, which is directly proportional to the square of velocity. An increase in the 𝐵𝑟 number 

indicates an increase in entropy in the channel's upper and lower portions. An entropy reduction 

near the channel walls is suggested by the influence of variable ξ on entropy. To sum up, higher 

M causes entropy to grow along the channel walls, higher Br numbers raise entropy in the upper 

and lower channel sections, and the variable causes entropy to decrease near channel walls. 
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6.2 Future work  

                 The complexity of the issue could be further explored by incorporating various fluid 

models, including Maxwell, Williamson, Burger, Jeffery, and tangent hyperbolic nanofluid. 

Additionally, factors such as nth order chemical reactions, activation energy, viscous 

dissipation, and the presence of solid particles can be taken into consideration for a 

comprehensive analysis. Further the effect of MHD will be applied on planner channel with 

inclined magnetic field. To address the aforementioned problem, alternative approaches may 

involve the exploration of diverse geometries such as wedges, cones, and cylinders. 
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