
 

EXPLOITING SEMANTIC KNOWLEDGE FOR 

IMAGE CAPTIONING USING DEEP LEARNING 

 

 

 

 

By  

Ali Raza 

 

 

 

 

 

 

 

NATIONAL UNIVERSITY OF MODERN LANGUAGES 

ISLAMABAD  

2024 

 



 

Exploiting Semantic Knowledge for Image Captioning Using Deep 

Learning  

 

By  

Ali Raza  

MSSE, National University of Modern Languages, Islamabad, 2024  

 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF  

THE REQUIREMENTS FOR THE DEGREE OF 

 

 

MASTER OF SCIENCE 

In Software Engineering 

 

To  

FACULTY OF ENGINEERING AND COMPUTING 

 

 

 

 

 

 

 

NATIONAL UNIVERSITY OF MODERN LANGUAGES ISLAMABAD 

 Ali Raza,2024 



 

 

THESIS AND DEFENSE APPROVAL FORM  

The undersigned certify that they have read the following thesis, examined the defense, 

are satisfied with overall exam performance, and recommend the thesis to the Faculty of 

Engineering and Computing for acceptance.  

 

Thesis Title: EXPLOITING SEMANTIC KNOWLEDGE FOR IMAGE CAPTIONING 

USING DEEP LEARNING 

Submitted by:   Ali Raza  Registration #: 48 MS/SE/F21 

 

Master of Science in Software Engineering   

Degree name in full 

 

  

Software Engineering 

Name of Discipline 

 

 
 

Dr. Jaweria Kanwal  

Name of Research Supervisor 

 

   

Signature of Supervisor 

Dr. Sumaira Nazir  

Name of HOD (SE) 

 

  

Signature of HOD (SE) 

 Dr. Noman Malik  

Name of Dean (FEC) 

 

  

Signature of Dean 

1st April, 2024 

Date 



II 

 

 

AUTHOR’S DECLARATION 

 

I Ali Raza 

Son of Akhtar Hussain 

Registration # 48 MS/SE/F21   

Discipline Software Engineering  

Candidate of Master of Science in Software Engineering (MSSE) at the National 

University of Modern Languages do hereby declare that the thesis Exploiting the 

Semantic Knowledge for Image Captioning Using Deep Learning submitted by me in 

partial fulfillment of MSSE degree is my original work, and has not been submitted or 

published earlier. I also solemnly declare that it shall not, in the future, be submitted by me 

for obtaining any other degree from this or any other university or institution. I also 

understand that if evidence of plagiarism is found in my thesis/dissertation at any stage, 

even after the award of a degree, the work may be canceled and the degree revoked. 

 

                                                                                                                                                 

Signature of Candidate 

 

 Ali Raza 

 Name of Candidate 

1st April, 2024 

Date  



III 

 

 

ACKNOWLEDGEMENT  

 

In the name of Allah, the Most Merciful and Generous. I want to thank Allah 

Almighty for showers of blessings to accomplish my thesis. I’d like to offer my sincere 

appreciation to everyone who has been a tower of strength for me throughout this time. 

Also, I would like to special thanks to the Department of Software Engineering in general 

and my research supervisor Prof. Dr. Jaweria Kanwal in particular, for their important 

constant supervision, encouragement, constructive recommendations, generous spending 

of time, and profound attention during the thesis. 

 

I shall also acknowledge the extended assistance from the administration of the 

Department of Software Engineering who supported me throughout my research 

experience and simplified the challenges I faced. For all whom I did not mention but I shall 

not neglect their significant contribution, thanks for everything.  



IV 

 

 

DEDICATION 

ALHAMDULILLAH… All gratitude be to Allah Almighty for molding me into the 

person I am today and allowing me to realize my ambition. I dedicate this thesis work to 

my supervisor, “Dr. Jaweria Kanwal” for guiding me and giving me her precious time 

whenever I needed it the most during my Research Study. Your encouragement, 

understanding, and sacrifices throughout my academic journey have shaped me into the 

researcher I am today. Thank you for always being there for me.  

To my dear parents Your unconditional love, support, and guidance have been the 

bedrock of my academic achievements. Through your sacrifices and endless 

encouragement, you have shown me what true dedication and hard work look like. I am 

forever grateful for the sacrifices you have made to provide me with an education, and for 

instilling in me a passion for learning. It is your unwavering commitment to excellence that 

has inspired me to strive for greatness in all that I do.  



V 

 

 

ABSTRACT 

The technique of generating textual explanations for images is commonly referred to as 

image captioning. It has attracted a lot of attention recently because it may be used in a 

variety of fields. There are some challenges in image captioning, one of them is the lack of 

incorporating semantic knowledge in generating image captions. Semantic knowledge can 

be helpful in object detection by exploiting relationships among objects and in language 

semantics. In this study, the issue of image captioning is investigated by combining two 

efficient models, the vision transformer (ViT) and the generative pre-trained transformer 2 

(GPT-2). The ViT uses self-attention techniques that are applied to image patches to capture 

visual elements and overall context from images. The GPT-2 model complements ViT with 

extraordinary language production abilities that enable it to produce content that is 

cohesive and related to the situation. An encoder-decoder-based deep learning model is 

proposed where the ViT performs the encoder function, extracting meaningful visual 

representations from images, while the GPT-2 model performs the decoder function, 

producing descriptive captions based on the retrieved visual features. This method makes 

it possible to seamlessly combine textual and visual information, producing captions that 

faithfully reflect the content of the input images. The potential of this combination is 

demonstrated through empirical analyses, highlighting the advantages of utilizing both 

language and visual components in the ‘image captioning’ process. My research 

strengthens multimodal AI systems by bridging the gap between visual and language 

comprehension. The experiments were performed on the MS COCO dataset and Flicker 

30k dataset. The model was validated using various evaluation metrics. Results show an 

improvement as Bleu-1, Bleu-2, Bleu-3, Bleu-4, Rogue, and Meteor by 10.58, 20.45, 21.07, 

34.19, 0.3, and 11.16 respectively. The other evaluation metrics like Meteor improved by 

11.16 and the Rogue metric improved by 0.3 on the MS COCO dataset. 
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CHAPTER 1 

 

 

1 INTRODUCTION 

 

 

 

The realms of computer vision and natural language processing are increasingly 

intrigued by the captivating and intricate task of generating automatic descriptions for 

images. Humans can identify the objects in an image and their spatial relationships only by 

looking at them. Humans then develop a natural language description of that image. 

Although it is simple for people, there are various phases when it comes to implementing 

it for machines. The deep learning techniques process for the generation of image 

descriptions is known as ‘Image Captioning’. 

The computer vision community is actively researching the problem of 

automatically creating image captions [1]. It combines two of the key fields of artificial 

intelligence: computer vision and natural language processing [2]. An image caption 

generation model must not only be able to identify the objects within a picture, but also be 

able to articulate their relationships in natural languages [3], [4]. The creation of image 

captions is a difficult undertaking since it requires figuring out the existence and 

relationships of various items as well as organizing human-like sentences to represent this 

information [5] 
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An image consists of a lot of information that can be perceived differently by 

various people from a different perspective [2], [4]. Image processing is crucial for content-

based image retrieval (CBIR), which has numerous applications in digital libraries, online 

searching, biomedical, business, the military, and education [4]. Social media sites like 

Facebook and Twitter have the use to create descriptions automatically from images. Image 

details created from social media sites can include the location (such as a beach or cafe), 

and what we are wearing. and most importantly, what we are doing? It is being widely used 

in many applications, including the text descriptions retrieved from image searches or 

image look-ups of the sentences provided [3], [6]. 

Generating descriptions for photographs through automated processes is known as 

image caption creation [7]. It entails comprehending the image's semantics, which calls for 

knowledge of the primary objects, their varied characteristics, attitudes, and interactions 

with the image. To provide appropriate captions, it must also deduce the underlying 

semantic meanings. Figure 1.1 displays several images accompanied by their respective 

captions. The captions “A couple of kids walking around with colorful umbrellas", “A 

green bird standing on peeled bananas in a background", and “A man in a soccer uniform 

playing soccer on a field" The provided captions correspond to the visuals presented in 

Figures 1.1(a), (b), and (c), respectively [8]. 

Generating descriptions for images holds significance for a variety of purposes. 

This technology, for instance, can be used to construct picture search engines, intelligent 

computer-human interactions, and automatic image captioning. Platforms like Facebook 

and Twitter may automatically produce descriptions based on a photograph, our location 

(such as a beach or cafe), what we are wearing, and what we are doing. Additionally, it can 

be applied to summarize events. Figure 1.2 provides some instances of how captioning has 

been used in various contexts, including (a) scene description for people who are blind, (b) 

interaction among humans and robots, and (c) text-based picture retrieval. 

Captioning for images is a crucial field of study. Both visual comprehension and a 

language description for that image are necessary for automatic caption generation. One of 

the major issues in computer vision is image understanding. Natural Language 

Understanding (NLU) includes language description [9]. An image encoder that extracts 
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features from an image and a language decoder that creates captions for that picture make 

up a standard ‘Image Captioning’ architecture [8]. 

 

Figure 1.1 Examples of appropriate Generated Caption 

1.1 Image understanding 

An image needs to be described properly to understand its meaning. It is difficult to 

automatically describe an image's content in natural language. It must accurately describe 

the object and their relationships to prevent incorrect information. Figure 1.1 describes the 

basic concept of image captioning. The description of the image should cover all the 

aspects of an image to prevent missing any important information [2]. There are various 

sources of images, including television, websites, social media sites, and news channels. It 

is very difficult to generate a caption automatically [10][11]. An image description should 

explain not just the elements of the image but also their relationships to one another, as 

well as their characteristics and the activities they are engaged in. For creating a description 

for an image, it is necessary to ensure the interconnection among the objects, actions, and 

things in an image.  

A human can understand images without any technical assistance because the human 

being has the cognitive abilities that help in paying attention to the image, perceiving the 

image according to the language, and recalling from his memory. After seeing an image, a 

human makes a perception about the image in his mind according to his previous 

knowledge and makes a thought about that image. However, the whole process is difficult 
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for the machine to understand the image. For this computer vision and natural language 

processing techniques are used. To understand these concepts, an example was followed 

that humans are waiting at the station for the train, but the train is not at the station. A 

human can understand by seeing the background location but the machine cannot detect 

the exact location without detectable aspects [2], [10].   

1.2 Natural Language Understanding 

As stated by the natural language understanding (NLU) perspective, text creation 

involves several steps. To begin, the elements of the input must be comprehended, often 

known as content selection, the material must be organized, which is referred to as text 

planning; and finally, must verbalized, which is referred to as surface realization. Surface 

realization encompasses lexicalization, which includes the selection of appropriate words, 

production of referential expressions utilizing correct pronouns, and subsequently, 

aggregation, a process that merges pertinent information [12]. To extract meaning, context, 

and intent from text or voice, a computer or AI system must first be able to read and 

interpret human language. This process is known as natural language comprehension. This 

is a crucial element of natural language processing (NLP), which enables computers to 

properly engage with and respond to human language. 

1.3 Human Cognition 

The mental processes and skills that allow people to learn, process, store, and apply 

knowledge are referred to as human cognition. It includes several cognitive functions, 

including perception, attention, memory, language, problem-solving, reasoning, and 

decision-making. Human cognition is impacted by variables like heredity, environment, 

and experience and involves intricate relationships between various cognitive processes. 

To better understand how people perceive, comprehend, and solve issues, cognitive 

psychology, and cognitive science investigate human cognition. The basic processes of 

human cognition are being studied by researchers using experimental approaches, brain 

imaging tools, and computational models [13] [14]. 
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Figure 1.2 Steps of the Human Cognition Process 

1.3.1 Steps of Human Cognition 

There are following steps included in the cognition process are given below: 

Attention: The ability to focus on a specific external stimulus is a cognitive function. The 

ability to concentrate on specific environmental information while disregarding other 

details is referred to as attention. As attention has limitations in both capacity and duration, 

it is essential to efficiently oversee the available attention resources to comprehend the 

surroundings effectively [13] [14]. 

Language: Comprehending and conveying concepts using spoken and written language 

are a pair of cognitive activities integral to linguistic growth and progression. This enables 

interaction with other people and is crucial for thought [13] [14]. 
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Learning: Cognitive functions involving the assimilation of novel information, its 

synthesis, and its amalgamation with pre-existing knowledge are imperative for the process 

of learning. Learning is an experience-based alteration of behavior that often lasts a long 

time. It involves acquiring fresh knowledge and developing novel skills. When 

contemplating the act of learning, it's often directed towards the structured schooling 

received by children and young adults. But learning happens continuously throughout life 

and is not only limited to the classroom [13] [14]. 

Memory: Memory, a fundamental cognitive process, facilitates the encoding, storage, and 

retrieval of information. This crucial function is integral to the learning process and 

empowers individuals to maintain knowledge about both the external environment and 

their personal histories. The capacity of human memory includes the capacity to store and 

retrieve data. Sometimes data is simply not stored in memory correctly and people 

misremember or forget things [13] [14]. 

Perception: The process of interpreting sensory data from the environment, such as visual, 

auditory, and tactile stimuli, to develop accurate representations of the outside world is 

referred to as perception. People use perception, a cognitive process, to gather information 

from their senses and use it to react to and engage with their environment. Our sensory 

perception of the world is referred to as perception. It is the process of becoming aware of 

things and connections through the use of our senses. A deeper understanding of our 

environment was gained through such experiences. Our capacity to perceive our 

surroundings is contingent upon the mental mechanisms that utilize to decipher data, such 

as utilizing memory to identify the visage of a friend or detecting the scent of a familiar 

perfume [13] [14]. 

Thought: Every cognitive process depends on thought. It enables people to make 

decisions, solve problems, and use higher-level reasoning. Humans evaluate, create ideas, 

generate ideas, and build concepts through mental processes known as thoughts. They are 

essential to human cognition because they allow people to properly analyze information, 

address issues, make decisions, and communicate [13] [14]. 
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1.4 Machine Cognition 

The ability of artificial intelligence systems to understand, observe, and reason about 

the world in a way that is similar to human cognition is referred to as machine cognition in 

deep learning. It entails creating algorithms and models that are capable of higher-level 

cognitive functions including perception, comprehension, reasoning, and decision-making 

in addition to more conventional pattern recognition and prediction tasks. This comprises 

activities like text summarization, question-answering, sentiment analysis, and semantic 

comprehension [15], [16]. By enabling machines to learn from massive volumes of data 

and automatically extract complicated characteristics and representations, deep learning 

plays a significant role in machine cognition. Multiple-layered deep neural networks may 

capture hierarchical and abstract representations, enabling machines to comprehend and 

interpret data in a more sophisticated way [17][18]. 

Machine Perception:   The ability of machines to collect data from a variety of sources, 

including detectors, cameras, microphones, and other data inputs, is referred to as 

perception. Like human senses gather sensory data, this stage enables machines to collect 

unprocessed data from the environment. The process of perception entails creating models 

that can recognize and interpret sensory input, incorporating areas such as speech 

recognition, natural language processing, and visual perception (object recognition, scene 

understanding), and other types of sensory data analysis [18]. 

Feature Extraction: Machines analyze the raw information and extract pertinent features 

or patterns. This process entails locating crucial components and traits that aid machines in 

better comprehending the data. Identifying visual features in images or linguistic features 

in natural language processing are two examples of feature extraction in different fields 

[18]. 

Learning and representation: Following the extraction of the features, machine learning 

algorithms are used. These algorithms learn from the data and build representations of it 

using the retrieved features. The computer may use supervised learning (with labeled data), 

unsupervised learning (without labels), or reinforcement learning, depending on the job, to 

enhance its comprehension of the data [18]. 
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Reasoning and inference: The process of reasoning entails applying the acquired 

representations to reach deductive and inductive conclusions. Logic, probabilistic thinking, 

and inductive or deductive reasoning techniques are frequently used in this procedure. 

Machines can examine data patterns and draw conclusions or predictions based on 

previously learned information [18]. 

Problem Solving and Decision Making: Machine cognition entails creating models that 

can decide wisely and take appropriate action based on the facts at hand. This encompasses 

activities like autonomous navigation, reinforcement learning, and decision-making in 

challenging contexts. The goal of machine cognition in deep learning is to close the 

cognitive gap between artificial intelligence systems and those possessed by humans. 

 Machines can perform decision-making and problem-solving activities using their 

acquired knowledge and reasoning skills. Based on the input and their internal 

comprehension, they may assess many options, balance benefits and drawbacks, and make 

the best decisions [18]. 

‘Image Captioning’ is the field of computer vision and NLP that are used for the 

generation of textual descriptions of an image. This technology is an important part of this 

era and is used in various industries and domains like social media, the medical field, 

especially for impaired people, advertising and publication of news, etc. As this technology 

is used in various industries and domains, there needs to be more accuracy in this area so 

that users can use this technology properly. Different researchers work in this domain but 

there is still a lack of accuracy and performance in this field. Reduction in the accuracy and 

performance is due to the lack of semantic knowledge means that the relationships among 

the objects within the image and categorization of the regions of the objects according to 

their relationships. 
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Figure 1.3 Image Captioning Applications 

According to the problem of this domain ‘Image Captioning’. An encoder-decoder 

framework was proposed based on the two-transformer model Vision Transformer and 

Generative Pre-trained Transformer 2. These two transformer models are combined into a 

ViT-GPT-2 encoder-decoder framework that mainly focuses on the semantic knowledge of 

the image to improve the accuracy and performance of the generated image caption. The 

patching procedure was changed from 16x16 pixels to 8x8 pixels because the number of 

patches increased and feature extraction and fetching semantic knowledge from each patch 

of the image from each patch of the image.  Semantic knowledge of the image and feature 

extraction improves and the accuracy and performance of the image caption also improves 

by this procedure of ViT-GPT-2 encoder-decoder framework 

1.5 Problem Statement 

Currently, there is a significant focus on the research of image captioning. There are 

many studies conducted on image captioning. Many researchers use various methods for 

image captioning but natural language descriptions that are generated are not accurate. The 

researcher did not achieve the level of accuracy in the caption generation  [19], [20]. The 
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lack of accuracy in the image caption is due to the lack of semantic knowledge of an image. 

Semantic knowledge needs to improve the relationship among the objects within the image 

and focus on the regions of the object and their relationship with each other  [19], [20]. 

1.6 Research Objectives 

The research objectives are given below: 

Obj1: To improve the performance of caption generation for an image through deep 

learning. 

Obj2: To exploit semantic knowledge for image captioning. 

1.7 Research Questions 

In order to fulfill these research aims; the following inquiries have been taken into 

account: 

RQ1: How can a deep learning model be proposed to generate a more accurate caption 

of an image? 

RQ2: How can the semantic knowledge of an image be exploited in the process of 

image captioning? 

1.8 Scope of Study 

Research on image captioning, which entails analyzing images and providing a 

verbal description for them, is a rising field. Understanding an image involves more than 

just identifying and locating items; it also entails knowing the sort of scene or environment, 

the placement of the objects, and how they relate to one another. Syntactic and semantic 

knowledge of the language is necessary for creating well-formed sentences. This is for the 

understanding of images for disabled persons who cannot feel or understand the scenes. 

This research helps blind persons. 
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1.9 Research Contribution 

The primary objective of this research is to generate an improved caption of an image 

to describe the accurate content of the image. The following are major contributions to 

achieving the research objectives and goals. 

Integrated Approach: A transformer-based new approach is introduced that uses two 

different transformer models such as Vision Transformer (ViT) and Generative Pre-trained 

2 (GPT-2), allowing for a combination of visual and textual information. 

State-of-the-art Findings: After thorough experimentation on benchmark datasets, 

including MS COCO and Flicker 30k. ViT-GPT-2 fusion consistently demonstrates 

superior performance when compared to current leading models. Enhancements are evident 

in quantitative measures like BLEU, METEOR, CIDER, and ROUGE scores, as well as in 

qualitative evaluations of the generated captions. The performance of this approach 

improves as can see from the results that come from the experiment. Qualitative and 

quantitative analysis of the results are given in Chapter 5. 

1.10 Summary 

In this chapter, a complete overview of ‘image captioning’ is discussed. The basic 

understanding of the image and natural language and the concepts of the cognitive 

process were also discussed, and their steps for humans as well as the machine to 

mimic the image understanding like a human being. In this chapter, the research 

problem was further discussed, including my research objectives and research 

question my proposed solution, and my contribution to the conduction of research in 

the domain of ‘Image Captioning’. 
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Chapter 2 

 

 

2 BACKGROUND 

 

 

2.1 Machine learning 

A field within the realm of artificial intelligence (AI) known as machine learning 

gives systems the ability to learn from concepts and information without having to be 

explicitly programmed. To anticipate the characteristics and trends present within data, 

enhancing future results and informed choices commences with initial observations, 

including firsthand experiences. Deep learning relies on a set of machine learning methods. 

that use many nonlinear transformations to represent high-level abstractions in the data 

[21]. 

 

Figure 2.1 Process Steps for Machine Learning 

Input
Feature 

Extraction
Classification Out Put
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2.2 Deep learning 

A popular and exciting area of machine learning is deep learning. Deep learning has 

gained popularity in the research of machine learning because of its accuracy, and 

performance The most efficient machine learning method in terms of performance, 

supervision, cost, and time is deep learning. Deep learning transcends being a constrained 

learning approach; instead, it encompasses various approaches and structures that prove 

valuable in addressing a diverse array of intricate problems. Operating in a highly intricate 

manner, this methodology acquires distinctive and discriminative features. The evolution 

of deep learning methodologies has been noteworthy, demonstrating impressive 

performance across a spectrum of applications enhanced by robust security protocols [21]. 

Leveraging the backpropagation technique, it stands out as the optimal choice for 

discerning complex architectures within high-dimensional data. Deep learning is widely 

used in business, science, and government because it has made great strides and performs 

admirably in a wide range of applications, this encompasses adaptive testing, classification 

of biological images, computer vision, detecting cancer, processing natural language, 

recognizing objects and faces, deciphering handwriting, identifying speech, analyzing the 

stock market, shaping smart cities, as well as various other applications [21]. 

 

Figure 2.2 Process Steps for Deep Learning 

2.3 Convocational Neural Network (CNN) 

Convolutional Neural Networks (CNNs) represent a category of neural networks that have 

demonstrated remarkable performance in tasks such as image recognition and 

categorization. Their exceptional accuracy in image classification establishes 

convolutional neural networks as the predominant approach in the field of computer vision.  

Input Feature Extraction + Classification Out Put
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Figure 2.3 Convolutional Neural Network (CNN) Model [22] 

Convolutional Neural Networks (ConvNets), leverage input images to integrate distinct 

features into the structure of the network. As a result, this leads to a decrease in the quantity 

of parameters and an improvement in the execution efficiency of the forward function 

implementation. ConvNets consist of neurons that possess biases and weights. These 

neurons receive inputs and perform a dot product computation. The structure of 

convolutional neural networks sets them apart from regular networks. In conventional 

neural networks, inputs traverse through multiple layers of concealed neurons. Each layer 

comprises a cluster of neurons, and these neurons within each layer establish complete 

connectivity with all neurons in the subsequent layer. Furthermore, the neurons in each 

layer function autonomously without interconnections. The ultimate layer, known as the 

output layer, signifies the network's predictions and maintains complete connectivity as 

well [22], [23]. 
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Figure 2.4 Convolution Neural Network and Simple Neural Network [23] 

In Figure 2.4, the illustration on the left displays a common three-layer neural network, 

while the depiction on the right showcases a Convolutional Neural Network (CNN) 

organizing its neurons using three dimensions: height, width, and depth [22].   

The convolution operation is a mathematical procedure carried out within a convolutional 

neural network. It encompasses a mathematical computation where two functions (referred 

to as 'a' and 'b') are combined to generate a third function. This operation is dependent 'a*b' 

and is computed by integrating the product of the two functions, where one of them is 

mirrored and shifted. 

(𝑎 ∗ 𝑏)(𝑡) = ∫ 𝑓
+∞

−∞
(𝜏)𝑏(𝑡 − 𝑥)𝑑𝜏                                               (2.1) 

The process of convolution encompasses three key components [22], [23]:  

• The initial image, which serves as the input to the operation.  

• A feature detector, often referred to as a "kernel" or "filter," designed to identify 

distinct features within the image. This is typically represented as a matrix with 

dimensions like 5x5 or 7x7.  

• The resulting feature map, also denoted as an activation map, illustrates the 

locations of particular features within the image. The term "feature map" is used 

due to its function in mapping out the positions of specific features within the 

image. 

Convolution Mathematics: The convolution's output, influenced by the input factor, is 

elucidated as stated in reference [52]. 
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Imagine that: 

Let's consider an image with an input size of N, denoting both its width and height as N, 

resulting in an N * N image size. If there is a filter of size F * F, a stride value of S, and 

zero padding of P, the resulting image size can be represented as O. 

𝑂 =
𝑁−𝐹+2𝑃

𝑆
+ 1     (2.2) 

CNN Model's Fundamental Component: The essential structure of a CNN consists of a 

series of layers, each utilizing a unique function to transform a set of activations into a 

different form. CNN designs are formulated through three primary categories of layers. 

2.3.1 Convolutional Layer 

An essential aspect of a Convolutional Neural Network (CNN) architecture is the 

convolutional layer. This element conducts convolutions on input images by employing a 

set of filters or kernels. These filters can detect specific characteristics in the image, like 

edges, textures, and patterns. Individually, each filter convolves with the input image, 

producing a feature map that indicates the existence of the particular attribute that the filter 

aims to identify. Aggregating the results of multiple filters produces a multi-channel feature 

map. Later on, these feature maps undergo one or more non-linear activation functions, 

such as ReLU, to add a degree of non-linearity to the model. The outcome is then directed 

to the next layer, which might consist of another convolutional layer or a pooling layer. 

This series of actions is repeated in an iterative manner until the ultimate output is attained. 
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Figure 2.5 Convolutional Operation of CNN [23] 

The characteristic enhances computational efficiency by reducing the overall parameter 

count and simplifying the computation process. 

The control of the output volume of the convolution layer is determined by three 

parameters as listed below: 

 Depth: In the initial layer of a CNN model, the dimensionality of the input volume 

signifies the number of color channels found in the input image. For a colored image, this 

dimensionality equals 3, corresponding to the red, green, and blue channels. In scenarios 

involving grayscale or black and white images, the dimensionality becomes 1. Meanwhile, 

the dimensionality of the resultant volume is established by the quantity of filters employed 

on the input image. 

 Stride: Stride is employed to traverse the width and height of the given image. The 

filters shift one pixel at a time when the stride is set to 1. Alternatively, with a stride of 2, 

the filters advance by 2 pixels for each movement 

 Zero Padding: Zero-padding involves adding zeros to the input image within the 

input layer. This approach helps control the dimensions of the input layer. Without 

implementing zero-padding, there is a risk of losing certain edge-related features [22], [23]. 
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2.3.2 Pooling Layer 

Pooling layers are employed to diminish the dimensions of feature maps by 

condensing the characteristics within a specific region. This action subsequently results in 

a reduction of the requisite learnable parameters. The pooling layer condenses the features 

detected within a segment of the feature map produced by a convolutional layer [23]. 

Pooling Function: Pooling is executed by employing diverse methods to decrease 

the input parameters. These techniques encompass computing the average, minimum, or 

maximum values solely within the sub-regions. 

Varieties of Pooling Methods: The following list enumerates various types of pooling 

functions. 

• Max Pooling: This procedure yields the maximum attainable value.  

• Average Pooling: It computes the average and furnishes the maximum value.  

• Weighted Average Pooling: By considering the pixel's proximity to the 

center, it calculates the weight of the surrounding area.  

• L2 Norm Pooling: The outcome is the square root of the region 

encompassing the neighborhood's rectangles. 

Most ConvNet designs incorporate Max Pooling as a technique to decrease computational 

expenses [23]. 

2.3.3 Fully Connected Layer 

Much like a neural network, each neuron within the fully connected layer establishes 

connections with every other neuron situated in the underlying layer. The determination of 

its activation involves matrix multiplication incorporating both weight and bias factors 

[23]. The final levels in the CNN architecture, these layers are in charge of making the final 

predictions. Each neuron in these fully connected neural networks is linked to every other 

neuron in the layer below it. A SoftMax layer receives the output of the final fully 

connected layer and uses it to classify data into many categories. Neurons within the fully 
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connected layer establish direct connections with neurons in the two contiguous layers, 

without forming links with any neurons within those particular layers. This arrangement 

bears similarity to the positioning of neurons in conventional models of Artificial Neural 

Networks (ANNs) [22], [23]. 

 

Figure 2.6 Fully Connected Layer of CNN [22] 

2.4 Activation Functions 

An Activation Function is responsible for determining the activation status of a 

neuron. This entails utilizing fundamental mathematical operations to assess the 

significance of the neuron's input to the network. Some of the activation functions that are 

commonly used are given below: 

2.4.1 ReLU (Rectified Linear Unit) 

The abbreviation for Rectified Linear Unit is ReLU. It adjusts the threshold of the input 

value to zero, yielding the input number for positive values and zero for negatives. Upon 

incorporation as an activation function, ReLU exhibited a speed increase of sixfold 
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compared to the function in the Alex Net architecture. The subsequent equation represents 

the ReLU formula [23]. 

𝑓(𝑥) =  𝑚𝑎𝑥(0, 𝑥) 

 

Figure 2.7 ReLU Function's Curve [23] 

The advantages of employing the Rectified Linear Unit (ReLU) function comprise the 

following:  

• Its efficient computation facilitates swift network convergence. 

• Despite its seemingly linear shape, it introduces non-linearity. 

• The feasibility of its incorporation into backpropagation stems from the presence 

of its derivative function. 

2.4.2 SoftMax 

A generalized version of the logistic function for multiple classes is known as the SoftMax 

activation function. This function takes an input vector and produces a probability 

distribution that encompasses all available classes. This becomes particularly valuable 

when dealing with multi-class classification challenges, where the objective is to categorize 

an input into one among numerous potential classes. In the context of neural networks with 

multiple layers intended for classification purposes, the SoftMax function is commonly 

employed in the output layer (described as Equation 2.3). By utilizing this function, the 

probabilities for each class are computed, and the sum of these probabilities across the 
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entire output layer totals 1. In essence, the SoftMax function aids in predicting the class to 

which the input most likely pertains, rather than making a discrete selection between 

classes [23]. 

𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑥) = 
𝑒𝑥𝑘

∑ 𝑒𝑥𝑖𝑚
𝑖=1

                                                   (2.3) 

This method is frequently employed as the last layer in an image classification 

convolutional neural network (CNN). The outcome of this ultimate layer represents a 

probability distribution across all categories, and the network's prediction is determined by 

selecting the class with the utmost probability [23]. 

A Convolutional Neural Network (CNN) is comprised of multiple stages of 

convolutional and pooling operations. These are succeeded by one or multiple fully 

connected layers, culminating in the inclusion of a SoftMax layer. The convolutional and 

pooling stages work harmoniously to extract distinctive attributes from the initial image, 

while the fully connected layers amalgamate these characteristics to construct a succinct 

yet meaningful depiction of the image. Ultimately, the SoftMax layer generates a 

distribution of probabilities across all categories, thereby facilitating predictions [22], [23]. 

2.4.3 Sigmoid 

Artificial neural networks, including convolutional neural networks, commonly 

employ the sigmoid activation function. This particular type of squashing function was 

utilized to transform input values into a range spanning from 0 to 1. This characteristic 

rendered it valuable in tasks involving binary outcomes, like categorizing input into one of 

two classes, or in probability modeling. 

S(A) = 
1

1+𝑒−𝑎                                                    (2.4) 

Here, x represents the input value provided to the activation function. The sigmoid function 

exhibits a gradual shift from 0 to 1, facilitating improved convergence of the neural 

network while it undergoes the training phase. 
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Figure 2.8 Sigmoid Function's Curve [23]. 

When employing a CNN for binary classification, it is common to employ the sigmoid 

function as the activation mechanism for the output layer [23]. 

2.5 Recurrent Neural Network (RNN) 

Recurrent Neural Networks (RNNs) represent a type of artificial neural network (ANN) 

wherein neurons are enabled to establish cyclic connections among themselves as well as 

with other neurons within the identical layer. The structure depicted in Figure 2.9 illustrates 

a fundamental RNN configuration. Distinct examples of RNN architectures encompass the 

Simple Recursive Networks (SRNs) and the Long Short-Term Memories (LSTMs). The 

utilization of cyclical connections proves advantageous in grasping the step-by-step 

anticipation of results. In this scenario, the present outcome hinges on not only the current 

input but also the preceding outcomes, alongside the current input. In contrast to 

conventional FNNs, RNNs exhibit greater effectiveness in encapsulating such Markov 

models with their enhanced elegance [24]. 
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Figure 2.9 An RNN exhibiting the distinctive cyclic interconnections [24] 

2.5.1 Simple Recurrent Network (SRN) 

An uncomplicated recurrent network featuring cyclical connections within its layers is 

referred to as a simple recurrent network (SRN). The diagrams presented in Figures 22a 

and 22b depict the structural makeup of an SRN. These visuals portray identical 

architectures, with the latter offering a deeper understanding of the functioning of an RNN. 

It does so by elucidating the processes taking place during each time step and illustrating 

how the former hidden layer's output influences both the current hidden output and the 

ongoing input. In contrast, the former diagram demonstrates the conventional 

representation, highlighting the recursive connection. Notably, the output from the previous 

time step exerts influence on the current output owing to its reliance on the former hidden 

state(s) [24], [25]. 
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Figure 2.10 Architecture of SRN [24] 

a) An SRN architecture with clearly named inputs, outputs, and weight factors. (b) 

Using an unrolled SRN, visualize the effect of earlier concealed states on current 

output. 

Forward Propagation in SRN: Let's consider an activation function denoted as 𝑓. In the 

context of a Sequential Recurrent Network (SRN), the variables 𝑥𝑡, ℎ𝑡, ℎ𝑡−1, and 𝑦𝑡 which 

represent the current input, current hidden state, previous hidden state, and current output 

value, respectively. The architecture consists of three weight matrices: 𝑊𝑥ℎ for input-to-

hidden, 𝑊ℎℎ for hidden-to-hidden, and 𝑊ℎ𝑦 for hidden-to-output transitions. Additionally, 

denote 𝑖𝑛𝑦0 and 𝑖𝑛ℎ0 as the input values to the activation functions in the output and hidden 

layers respectively. With these components established, the forward pass output in an SRN 

can be represented using the following sequence of equations [24]. 

𝑖𝑛ℎ0 = (𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1)                                            (2.5) 

ℎ𝑡 = 𝑓(𝑖𝑛ℎ0)                                                      (2.6) 

𝑖𝑛𝑦0 = 𝑊ℎ𝑦ℎ𝑡                                                     (2.7) 

𝑖𝑛𝑦0 = 𝑊ℎ𝑦ℎ𝑡                                                     (2.8) 

Assuming initiation at time step 't' and continuation until 't+3', the SRN demonstrates 

progression. It takes inputs 𝑥𝑡,𝑥𝑡+1, 𝑥𝑡+2,𝑥𝑡+3 and yields outputs 𝑦𝑡,𝑦𝑡+1, 𝑦𝑡+2,𝑦𝑡+3. 
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The process involves intermediary hidden node results h𝑡, h𝑡+1, h𝑡+2, h𝑡+3, depicted in Figure 

2.11. The computation of these values (from equations 2.9 to 2.17) leads to this illustration. 

During the first-time step, the previous hidden output is treated as having a value of zero. 

The same weights are utilized in all subsequent iterations. 

 

Figure 2.11 Illustration of Forward propagation [24] 

Backpropagation in SRN: Aside from following the instructions provided for 

backpropagation in Feedforward Neural Networks (FNNs) as detailed in section 3.2, the 

backpropagation procedure includes an extra time-related element. This is frequently 

denoted as backpropagation through time (BPTT). The underlying concept is that in 

contrast to a hidden node within an FNN, a hidden node within a Recurrent Neural Network 

(RNN) at any given time step bears direct responsibility for the incurred cost not only at 

that specific time step but also at the subsequent time step. Furthermore, it also indirectly 

contributes to any subsequent errors that arise [24]. Thus, drawing from the principles of 

BPTT and leveraging equations (2.9), (2.10), (2.11), and (2.12), The BPTT equations for 

the scenario depicted can be formulated in Figure 2.11. 

∂𝑐

∂ℎ𝑡+3
=

∂𝑐3

∂ℎ𝑡+3
= 𝑊ℎ𝑦 ⋅ 𝑑𝑓(𝑖𝑦3) ⋅

∂𝑐3

∂𝑦𝑡+3
                                      (2.9) 

∂𝑐2

∂ℎ𝑡+2
= 𝑊ℎ𝑦 ⋅ 𝑑𝑓(𝑖𝑛𝑦2) ⋅

∂𝑐2

∂𝑦𝑡+2
                                        (2.10) 



26 

 

 

∂𝑐1

∂ℎ𝑡+1
= 𝑊ℎ𝑦 ⋅ 𝑑𝑓(𝑖𝑛𝑦3) ⋅

∂𝑐3

∂𝑦𝑡+3
                                     (2.11) 

∂𝑐0

∂ℎ𝑡
= 𝑊ℎ𝑦 ⋅ 𝑑𝑓(𝑖𝑛𝑦3) ⋅

∂𝑐3

∂𝑦𝑡+3
                                        (2.12) 

∂𝑐

∂ℎ𝑡+2
=

∂𝑐2

∂ℎ𝑡+2
+

∂𝑐3

∂ℎ𝑡+2
=

∂𝑐2

∂ℎ𝑡+2
+ 𝑊ℎℎ ⋅ 𝑑𝑓(𝑖𝑛ℎ3) ⋅

∂𝑐

∂ℎ𝑡+3
                      (2.13) 

∂𝑐

∂ℎ𝑡+1
=

∂𝑐1

∂ℎ𝑡+1
+

∂𝑐2

∂ℎ𝑡+1
=

∂𝑐1

∂ℎ𝑡+1
+ 𝑊ℎℎ ⋅ 𝑑𝑓(𝑖𝑛ℎ2) ⋅

∂𝑐

∂ℎ𝑡+2
                       (2.14) 

∂𝑐

∂ℎ𝑡
=

∂𝑐0

∂ℎ𝑡
+

∂𝑐1

∂ℎ𝑡
=

∂𝑐2

∂ℎ𝑡
+ 𝑊ℎℎ ⋅ 𝑑𝑓(𝑖𝑛ℎ1) ⋅

∂𝑐

∂ℎ𝑡+1
                        (2.15) 

∂𝑐

∂𝑊ℎℎ
= ℎ𝑡 ⋅ 𝑑𝑓(𝑖𝑛ℎ1) ⋅ (

∂𝑐1

∂ℎ𝑡+1
+

∂𝑐2

∂ℎ𝑡+1
)                             (2.16) 

∂𝑐

∂𝑊𝑥ℎ
= 𝑥𝑡 ⋅ 𝑑𝑓(𝑖𝑛ℎ0) ⋅ (

∂𝑐0

∂ℎ𝑡+1
+

∂𝑐1

∂ℎ𝑡+1
)                             (2.17) 

The term 𝑑𝑓(𝑥) represents the differentiation of the activation function f, computed at the 

specific value of x. Additionally, c0, c1, c2, and c3 symbolize the expenses accrued during 

time intervals ranging from t to t+3 [24]. 

Vanishing and exploding gradients: The challenge of the vanishing gradient arises from 

how gradients are retrogressed over time within SRNs. This leads to swift multiplication 

of the derivative term, df, associated with the activation function as depicted in equations 

(2.13) through (2.14) being repeatedly substituted into (2.15). While the provided instance 

employs a time step of four to enhance understanding, it's important to note that the number 

of time steps in RNNs is commonly well beyond four. Unfortunately, in cases where the 

derivative of the activation function is less than one, the gradients diminish rapidly over 

time. On the contrary, when the derivative exceeds one, the gradients experience 

exponential growth. The probability of experiencing the challenge of vanishing gradients 

becomes more pronounced as time elapses. This implies that when a substantial temporal 

gap exists between the dependencies of the output and preceding inputs, the gradients will 

attenuate at an earlier stage. Consequently, the model faces difficulties in accurately 

capturing temporal dependencies. This underlying concern led to the development of 

RNNs, also known as Recurrent Neural Networks. Weight initialization is commonly 

carried out by setting weights to have an average of zero and a standard deviation of 0.001. 
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Moreover, as widely used activation functions like the logistic sigmoid and hyperbolic 

tangent typically yield derivatives that remain at or below one, the occurrence of excessive 

gradient growth is infrequent. Conversely, the primary obstacle revolves around the 

vanishing gradient phenomenon. This challenge is effectively addressed when employing 

activation functions such as ReLU and piecewise linear activations, given that their 

derivatives consistently hold values of either one or zero. This property effectively 

mitigates the vanishing gradient predicament. Hence, the utilization of these activation 

functions helps alleviate the problem. The challenge of vanishing gradients also emerges 

in deep FNNs, underscoring why CNNs exhibit improved performance with RELU 

activations. To address the potential occurrence of excessively large gradient values, 

practitioners commonly apply gradient clipping, which limits them from surpassing a 

specific threshold [24], [25]. 

Inability to capture long-term dependencies: SRNs suffer from an incapability to grasp 

extended connections between data points, attributed to challenges like the vanishing 

gradient issue detailed earlier. Additionally, the tendency for more recent input values to 

dominate and replace prior hidden states within the network contributes to a diminished 

influence of these preceding states on the overall learning process. This phenomenon is 

depicted in Figure 2.12. The outcomes of the video classifier prioritize the present input 

frame, as evidenced by its tendency to revise predictions when the current input frame 

significantly deviates from previous ones. Consequently, this leads to the neglect of the 

cumulative effects of prior output predictions [24]. 

LSTMs tackle this concern by integrating input gates that manage the impact of the 

previous hidden state and the current input state on the present hidden state. 

Correspondingly, output gates are utilized to govern the effect of the current cell state on 

the immediate output, as illustrated in Figure 2.13. The input gates, shown in the color blue, 

function to avoid the dominating influence of the current input, ensuring that the 

importance of prior hidden states is not excessively undermined. Simultaneously, the 

output gates, distinguished in red, regulate the influence of the cell state on the output by 

deferring predictions about the activity until the conclusion of video frames  [24], [26]. 
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Figure 2.12 Demonstration of the challenge in capturing extended dependencies through 

a video-input-based activity classifier employing an SRN approach [24]. 

 

Figure 2.13 Maintaining Extended Relationships through Input and Output Gates [24] 
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2.5.2 Long Short-Term Memory (LSTM) 

As a substitute for SRN, Long Short-Term Memories (LSTMs) often exhibit superior 

performance in capturing temporal dependencies due to their multiple gating mechanisms. 

LSTMs have exhibited their higher performance compared to RNNs in different tasks 

within the field of natural language processing. These tasks encompass handwriting 

recognition (Source: [20]), language translation (Source: [22]), as well as image and video 

annotation [24]. The conventional LSTM cell comprises three essential gates: the input 

gate, the forget gate, and the output gate. Both a standard RNN (SRN) cell and a simplified 

LSTM cell layout are illustrated in Figure 26. Instead of traditional neurons, an LSTM-

based architecture employs these LSTM cells to construct the hidden layers. The 

subsequent discussion will elaborate on the distinct functions fulfilled by the different gates 

within LSTM units [24]. 

 

Figure 2.14 Internal Architecture of LSTM [24] 



30 

 

 

By moderating the impact of the present input and the output from the previous time step 

on the current cell state, the input gate grants the LSTM the capability to uphold or 

overwrite the information from the prior hidden layer and the current input node. Even 

though LSTMs demonstrate proficiency in accommodating temporal dependencies across 

more than 1000-time steps, there are occasions when it becomes essential for the network 

to eliminate past input to avert the incorporation of undesirable dependencies during the 

learning process. The forget gate provides a method to diminish or conceivably completely 

disregard the influence that a former cell state exerted on the current cell state. The output 

gate manages the movement of output from the present cell state to the output of the current 

hidden state [24], [26]. 

Forward Propagation Problem: The updates for LSTM at every time step xt can be 

outlined as per references [26]. This is in the context of a sequential input series [x1, x2,... 

xt-1, xt,..., xT], wherein xt-1 and xt represent consecutive inputs in the system. 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖)                                     (2.18) 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓)                                   (2.19) 

𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜)                                    (2.20) 

𝑔𝑡 = 𝜙(𝑊𝑥𝑔𝑥𝑡 + 𝑊ℎ𝑔ℎ𝑡−1 + 𝑏𝑔)                                   (2.21) 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡                                       (2.22) 

ℎ𝑡 = 𝑜𝑡 ⊙ 𝜙(𝑐𝑡)                                                (2.23) 

In this particular context, gt serves as the input node or modulation gate responsible for 

modifying the input received by the LSTM cell. It mirrors the outcome of the input gate. 

The results of the forget gate and output gate are denoted as ft and ot, respectively. The 

memory cell, labeled as ct, emerges from a combination of the previous memory cell 

influenced by the forget gate and the input node managed by the input gate. Lastly, the 

current hidden state known as ht represents the activation of the current cell state, which is 

under regulation. Operating as controllers that govern the flow of signals, all gates utilize 

the sigmoid activation function to produce outputs like it, ft, ot, and so forth. The utilization 

of the tanh activation function is a widespread approach within Long Short-Term Memory 
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(LSTM) networks. Using backpropagation through time, the iterative adjustment of 

weights (W) and bias values (b) becomes achievable. An LSTM network has the potential 

to incorporate multiple LSTM layers, where each layer commonly consists of numerous 

cells (nodes), mirroring the concept of artificial neural networks (ANNs) with their 

numerous concealed layers, each comprising a multitude of hidden nodes [24], [26]. 

Avoiding the vanishing gradient problem: Sustaining a consistent error loop enables the 

mitigation of the vanishing gradient issue in Long Short-Term Memory networks (LSTMs) 

[5]. The gradient propagated backward at the previous time step, t-1, is ascertained using 

formulas (46), given the gradient backpropagated to the cell state at time t, denoted as ctt. 

∂𝑐𝑡−1

∂(𝑡−1)
= 𝑓(𝑡) ⊙

∂𝑐𝑡

∂𝑡
                                                       (2.24) 

 

Figure 2.15 Depiction showcasing the BPTT process applied to an LSTM cell [24]. 

The gradient continues to exist as the output of the forget gate remains close to 1. When 

the forget gate equals 0, any connection between previous time steps and the current ones 

disappears. This makes the vanishing gradient acceptable. For a comprehensive depiction 

of the computation, please consult Figure 2.11. 
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2.6 Attention 

In deep learning, the term "attention" refers to a method that enables models to 

concentrate on particular input data segments while processing information. It helps the 

model to choose focus on pertinent data by allowing it to assign various levels of priority 

to various input items. Different neural network topologies now include attention 

mechanisms as a critical component, which helps them perform better on tasks like 

machine translation, ‘Image Captioning’, question answering, and more. 

The attention mechanism computes attention weights or scores for each location or 

region using the feature map or feature vectors as input. Each region's value or relevance 

in the visual input is indicated by its score. In many neural network topologies, notably in 

the areas of natural language processing (NLP) and computer vision, attention mechanisms 

play a vital role. They enable models to concentrate on various input data elements with 

varied degrees of relevance. The fundamental concept behind attention is to give various 

weights to various input data components to represent their relative importance. In NLP, 

for instance, attention processes assist the model in determining which words in the source 

phrase to concentrate on while creating each word in the target sentence [27], [28]. 

Context Vector: A context vector that depicts the attended regions or features is 

created by computing a weighted sum of the feature vectors using the attention weights. A 

concentrated representation of the input image is given by the context vector. Different 

designs and techniques, such as soft attention or hard attention, can be used to implement 

visual attention. Soft attention employs continuous attention weights, which enables the 

model to pay attention to several regions at once. Hard attention, on the other hand, 

employs discrete attention, picking a specific area or patch at each stage. 

2.6.1 Visual Attention 

Visual attention is a strategy that deep learning models employ to analyze 

information while selectively focusing on particular areas of an input image. It enables the 

model to highlight important portions of the image while ignoring less important ones. In 
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tasks like image production, object detection, and image captioning, visual attention 

processes have been particularly effective. 

Visual attention, commonly referred to as spatial attention, describes a model's or 

system's capacity to focus only on particular areas or aspects of visual input. It draws 

inspiration from how people see images, where paying attention is key to focusing on 

important details in a scene. To enhance performance and interpretability, visual attention 

mechanisms have been effectively applied to a variety of computer vision applications, 

including picture categorization, object identification, and image captioning [29]. 

When generating judgments, neural networks can concentrate on particular areas of an 

input image thanks to a mechanism called visual attention that was inspired by human 

perception. To enhance their performance on tasks like ‘Image Captioning’, object 

identification, and image classification, numerous deep learning models, such as 

Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), have 

widely embraced this method [29], [30]: 

2.6.2 Semantic Attention 

Semantic attention, often referred to as content-based attention or soft attention, is a 

technique frequently employed in sequence-to-sequence models for things like text 

generation, image captioning, and machine translation. The model can concentrate on 

various input sequence segments while creating the output sequence thanks to this attention 

technique. It aids the model in evaluating the significance of various input sequence 

components for each stage of output creation [28]. When creating captions for images, a 

technique known as semantic attention focuses on the semantic significance of certain areas 

or items within the image. Semantic attention, in contrast to conventional attention 

processes, considers both the semantic meaning and relationships between things to create 

more accurate and contextually appropriate captions. To understand the semantic 

connections between objects and how they affect caption creation, semantic attention 

models are used. To direct the attention mechanism, they make use of additional semantic 

information such as verbal signals or labels for object categories [16], [31]. 
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2.7 Transformer 

In the article Attention Is All You Need, Transformers were presented [32]. It serves 

as the foundation for some popular versions like GPT-2 [33] and BERT [34]. Language 

translation models and question-and-answer-based models are two examples of 

transformer models' many applications. Transformers can be utilized for a variety of 

application cases because of their versatile architecture [35]. 

Figure 2.16 illustrates the structure of a Transformer model. The image showcases 

the Encoder stack with N identical layers on the left side and the Decoder stack with N 

identical layers on the right side. To gain a comprehensive understanding of the roles of 

each side of the transformer, it's essential to first familiarize ourselves with the objectives 

of the individual subtasks outlined within the tiers. 

2.7.1 Layers of Transformer 

Multi-head attention layer:  Take the phrase "The animal didn't want to cross the street 

because it was tired" as an example. Transformer employs an "Attention" mechanism to 

help a machine link "it" to the animal. A Transformer can focus on other aspects from input 

that are closely connected to the feature it is now focusing on thanks to attention, which 

establishes a relationship between the two. Using embedding methods, words in NLP must 

be converted into vectors. The vector for a sentence of length n would be n x d_model, 

where d_model is the feature encoding size. The initial stage of the encoder/decoder 

receives these vectors and applies a sequence of "Scaled-Dot Product Attention," also 

known as "Multi Head Attention," to them. 
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Figure 2.16 Transformer Architecture 

To summarize the function of attention, it can be said that one input information is 

allowed to be concentrated on by a transformer while assessing how other features are 

closely related to it. establishing a connection between them. Scaled-Dot Product Attention 

is implemented in the movie Transformers. 

To summarise the function of attention, It can be said that one input information is 

allowed to be concentrated on by a transformer while assessing how other features are 

closely related to it. establishing a connection between them. Transformers uses "Scaled-

Dot Product Attention" as its application of attention. Q, K, and V, or query, key, and value 

vectors, are built for each word in the sentence, which can be characterized as: 

• Q: The vector awaiting determination 

• K: The vector symbolizing the features 

• V: The vector representing the true input values 
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Figure 2.16 illustrates the realization of the 'Scaled-Dot Product Attention' mechanism. 

 

Figure 2.17 Scale Dot Product Attention 

According to the information presented in Figure 4.2, the process begins with the 

computation of the dot product between the Q and K vectors. Subsequently, this dot product 

is divided by the square root of 𝑑𝑘, which serves the purpose of addressing the issue of 

potential gradient explosion. The resulting step involves the application of a SoftMax 

function to the normalized dot product, thereby deriving the weights necessary for the 

scaling of V. The summarized expression for the Scaled-Dot Product Attention can be 

expressed using equation 2.25. 

Attention (𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉                                   (2.25) 

A Multi-Head Attention (MHA) layer comprises a set of 'h' Self-Attention heads, with each 

head independently computing the Scaled Dot Product Attention. The outcomes of these 

computations are then merged through concatenation, resulting in the Multi-Head 

Attention value. This procedure is illustrated in the diagram provided. 
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Figure 2.18 Multihead Attention can be described as a parallelized version of Scaled Dot 

Product Attention. 

Utilizing multiple attention heads enhances the effectiveness of the attention layer. This 

enables the model to concentrate on various positions, providing multiple sets of weight 

matrices for the Q, K, and V components. The attention computed at each step is sometimes 

referred to as 'z-score' or simply 'z.' In a scenario where, for instance, 8 attention heads are 

employed, the resulting values would be denoted as (z0, z1, z2, z3, z4, z5, z6, z7). 

However, these values cannot be directly fed into the subsequent layer of the 

encoder/decoder. A transformation is necessary, involving the concatenation of all 

outcomes, followed by multiplication with the additional weight matrix WO. It's worth 

noting that WO is a supplementary weight matrix that undergoes joint training with the 

model. 
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Figure 2.19 The procedure for acquiring the Z matrix, which then serves as the input for 

the subsequent Transformer stages. 

The mathematical definition of Multi Head Attention can be expressed as follows. 

 MultiHead (𝑄, 𝐾, 𝑉) =  Concat ( head 1,  head 2, … ,  head ℎ)𝑊𝑜              (2.26) 

 where head 𝑖 =  Attention (𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉)                      (2.27) 

Add and Norm Layer: The layer executes two activities, as its name suggests. The 'Add' 

portion of the process, which controls flow via residual connections, is the initial phase. 

'Norm', the next step, accomplishes layer normalization. Hence, the result of this layer will 

align with the subsequent equation. 

 Add \& Norm =  LayerNorm (𝑥 +  Sublayer (𝑥))                     (2.28) 

Here, x represents the input to any sublayer (either MHA or Feed Forward), and 

Sublayer(x) denotes the resultant output. 

Feed Forward Layer: Each layer has a fully connected point-wise feed-forward network. 

It uses ReLU activation to carry out two linear transformations. This layer determines the 

weights used during exercise. This particular stratum computes the weights in the course 

of training. It can be formally expressed in mathematical terms as stated below: 
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𝐹𝐹(𝑥) = ReLU (𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2                             (2.29) 

𝑅𝑒𝐿𝑈 (𝑥) = max(0, 𝑥)                                             (2.30) 

In this context, W1 and W2 represent matrices of network weights, while b1 and b2 indicate 

bias terms. 

2.7.2 Positional Encoding 

The embeddings' relative or absolute positions are introduced into the model by the 

Transformers using positional encoding. This preserves the parallel execution format of the 

token sequence. The sine and cosine representations of the position and training parameters 

are used to calculate the values for positional encoding. To construct position-aware 

embeddings, the positional encodings are combined with the language features. 

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = sin ( pos /10002𝑖/𝑑−model )                            (2.31) 

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = cos ( pos /10002𝑖/𝑑−model )                            (2.32) 

Here, 'i' represents the embedding's position, and 'd_model' indicates the 

embedding's dimension. 

2.7.3 Transformer Encoder-Decoder 

Encoder Transformer: The encoder is made up of N repetitions of the following layers: 

Multi-Head Attention, Add & Norm, Feed-Forward, and Final Add & Norm. Positional 

encoding is added to the input of the encoder layer, which is in the form of n x d_model, 

where n is the total number of characteristics and d_model is the size of the features' 

embedding. One layer of the encoder stack receives this input only. 
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Figure 2.20 Structure of the Encoder: The Encoder utilizes Self Attention where Q, K, 

and V are set to be the same. 

Decoder Transformer:  The transformer's decoder portion has N identical layers as well. 

The Decoder is made up of three sublayers: the ‘Mask Self Attention layer’, the ‘multi-

head attention’ between the "encoder output" and the output of the Masked Self Attention 

layer, and the ‘Feed Forward Layer’. An Add & Norm layer comes after each sublayer. 

Because it establishes a connection between encoder output and decoder input, the 
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intermediate MHA layer of the decoder is also known as the encoder-decoder attention 

layer. 

 

Figure 2.21 Internal Composition and Arrangement of the Decoder Stack. The Decoder 

comprises two distinct variants of Multihead Attention layers. 

The initial decoder layer employs Masked Self-attention, which restricts Self-Attention to 

focus solely on preceding positions. The input to the decoder is right-shifted and subjected 

to masking. This arrangement ensures that the word at the ith position can only attend to 

preceding words, up to position i. This masking strategy, facilitating parallel computations, 

safeguards against the decoder gaining advanced knowledge and engaging in premature 

optimization during training—a form of 'cheating'. The accompanying illustration depicts 

the application of masking, effectively concealing future embeddings from the Self-

Attention mechanism. To execute masked self-attention, a lookahead mask is introduced, 

taking the form of a lower triangular matrix. 
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Figure 2.22 Mask Self-Attention's Working 

The subsequent stratum constitutes a conventional Multi-Head Attention layer. 

Nonetheless, it employs the Encoder's output as the 'K' and 'V' matrices, while utilizing the 

output from the Masked Self Attention layer as matrix 'Q'. This results in the nomenclature 

'Encoder-Decoder MHA layer'. This stratum enables full interconnections between all 

decoder positions and input sequence positions. The ultimate tier within this arrangement 

is the Feed Forward network. 

2.7.4 Linear & SoftMax Layer 

Similar to previous seq2seq models, this layer is also. The output of the decoder is 

transmitted through a fully connected linear layer, which projects a size n x vocab_size 

output, where n is the expected sentence length and vocab size is the size of the language's 

vocabulary. The SoftMax layer is then applied to the resultant matrix, giving each word in 

the output sentence a probability distribution across the lexicon. 

2.8 Object Detection 

An essential objective within the field of computer vision is object detection, which 

revolves around the identification and spatial localization of items within an image that are 

of significance. Deep learning techniques have made great strides in the field of object 
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detection recently, enabling precise and effective recognition across a variety of item 

categories [36]. 

Commonly, one- or two-stage approaches are used by deep learning-based object 

detection algorithms: 

Two-stage object detection:  Two-stage detectors first provide several area proposals—

potential item bounding boxes—before classifying and improving them. The classification 

step assigns object labels and fine-tunes the bounding box coordinates, while the region 

proposal stage chooses a collection of possible regions based on object ness scores or other 

factors. Support vector machines (SVMs) are used for classification in R-CNN, which uses 

a CNN to extract area information. These efforts prepared the ground for further 

advancements like Fast R-CNN and Faster R-CNN [36]. 

One-stage object detection: Through the direct prediction of item bounding boxes and 

class probabilities, one-stage detectors carry out object detection in a single step. Compared 

to two-stage techniques, these detectors are often faster but may not be as accurate. To 

localize objects, they employ anchor boxes, predetermined bounding box forms at different 

scales, and aspect ratios. In the realm of single-stage object detectors, the lineage of models 

known as You Only Look Once (YOLO) stands out as a noteworthy architectural 

advancement. YOLO fashions. Due to its quickness and ease of use, this real-time detection 

method has grown in popularity [37]. 

2.9 Feature Extraction 

In deep learning, the process of obtaining useful representations or features from the 

initial raw input data is referred to as feature extraction. It entails taking informative visual 

information from pictures or video frames for use in computer vision processes including 

object identification, image classification, and image segmentation. Because of their ability 

to construct hierarchical and distinguishing representations, deep learning models, 

specifically convolutional neural networks (CNNs), have been widely employed for feature 

extraction. [38]. 

The process of feature extraction involves the subsequent actions: 
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Data Preprocessing: To ensure that raw input data is suitable for feature extraction, 

preprocessing is frequently necessary. Data cleansing, normalization, dimensionality 

reduction, or addressing missing values are some examples of the tasks that may be 

involved in this step. Preprocessing seeks to improve the data's quality and get rid of any 

noise or extraneous information that can make it difficult to extract features. 

Feature Selection: The process of feature selection entails selecting a subset of pertinent 

features from the original data. This process is essential because it lowers the data's 

dimensionality by removing duplicate or pointless information that could cause overfitting 

or increase computing complexity. The selection of features can be done using a variety of 

ways, including statistical methods, correlation analysis, or domain expertise. 

Feature Encoding: Following feature extraction, the features are frequently encoded into 

a suitable numerical format that machine learning algorithms can understand. To ensure 

interoperability with the selected learning method, this stage entails translating the features 

into a standardized representation, such as vectors or matrices. One-hot encoding, bag-of-

words representation, and vector embeddings are a few common encoding strategies. 

2.10 Vision Transformer (ViT) 

The Transformer paradigm [39], which was initially created for natural language 

processing, is now used for computer vision problems via the Vision Transformer (ViT) 

architecture. When it comes to image recognition tasks, ViT obtains cutting-edge 

performance and, in some cases, outperforms conventional convolutional neural networks 

(CNNs). 

2.10.1 Image Patching 

The input image is divided into fixed-size, non-overlapping patches as the first 

stage of ViT. The Transformer model's input is a vector representation that has each patch 

linearly embedded into it. These patches' sizes are hyperparameters that can be altered 
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according to the particulars of the task. A typical patch size, for instance, is 16x16 pixels 

or 8x8. 

2.10.2 Patch Embeddings 

Learnable positional embeddings are added to the patches that are linearly 

embedded. The model can comprehend the relative positions of various patches in the 

image thanks to these positional embeddings, which encode spatial information. The input 

information for the following Transformer encoder layers is created from a combination of 

patch embeddings and positional embeddings. 

 

Figure 2.23 Working Pattern of Vision Transformer 
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2.10.3 Positional Embeddings 

The learnable positional embeddings are added to the patch embeddings to 

incorporate spatial information and the relative placements of the patches. The model can 

comprehend the geometric relationships between patches thanks to these positional 

embeddings. Patch and positional embeddings are combined to create the input data for the 

Transformer encoder layers. 

2.10.4  Transformer Encode Layer 

Similar to what is done in jobs involving natural language processing, ViT makes use 

of a stack of Transformer encoder layers. A feed-forward neural network and a multi-head 

self-attention mechanism make up the two sub-layers of each encoder layer. 

• Multi-Head Self-Attention: This technique enables each patch in the image to pay 

attention to neighboring patches and record cross-patches interdependence. To 

enable the model to concentrate on pertinent patches while processing the data from 

each patch, it computes attention weights between all pairs of patches. 

• Feed-Forward Neural Network: The patch embeddings travel via a feed-forward 

neural network after the self-attention sub-layer, which performs non-linear 

modifications on the representation of each patch. 

• Layer Normalization and Residual Connections: Each sub-layer (self-attention and 

feed-forward) is followed by layer normalization and residual connections, much like 

the original Transformer architecture, to stabilize and assist the training process. 

• Classification Head: The classification head is the last layer in the ViT model, and 

it uses the output from the last Transformer encoder layer to convert it to the number 

of classes needed for the particular task. To obtain class probabilities, the 

classification head for image classification typically consists of a fully connected 

layer followed by a SoftMax activation function. 
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2.10.5 Pre-training of Vision Transformer 

ViT is trained using a self-supervised objective on a sizable dataset during the pre-

training phase. Given the context of the other patches in a picture, the model learns to 

anticipate corrupted or masked patches inside the image. ViT can learn visual 

representations that capture crucial elements in photos thanks to this technique. 

2.10.6 Fine- tunning of Vision Transformer 

ViT may be fine-tuned for a variety of downstream tasks, including segmentation, 

object detection, and image classification. The classification head is trained on a dataset 

specific to the task with labeled samples during fine-tuning, adapting the model's 

parameters to the intended job. 

2.11 Generative Pretrained Transformer -2 (GPT-2) 

Modern language model GPT-2 (Generative Pre-trained Transformer 2) [40] was 

created by OpenAI. It is a Transformer architecture version made specifically for jobs 

involving natural language processing. GPT-2 is a massive language model with 1.5 billion 

parameters that can produce text that is coherent and appropriate to the situation. 

2.11.1 The architecture of GPT-2 

• The Transformer design, which comprises a stack of encoder-decoder layers, is the 

foundation of GPT-2. 

• GPT-2 uses only the decoder portion of the transformer, in contrast to conventional 

sequence-to-sequence transformers. It is an autoregressive language model, which 

means that each token that is formed is dependent upon the prior tokens that were 

generated. 
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Figure 2.24 Working Pattern of Generative Pre-trained Transformer 

2.11.2 Transformer Architecture of GPT-2 

GPT-2 is built on the Transformer design, which was first presented in the paper 

"Attention Is All You Need." [28] It is a neural network architecture that significantly 

depends on mechanisms for maintaining self-attention to effectively handle data sequences. 

The Transformer's essential parts include the following: 

• Multi-Head Self-Attention: With the use of this attention mechanism, the model 

can process each location while concentrating on various portions of the input 

sequence. The importance of various tokens in the context of the entire sequence is 

captured by computing attention weights for each input token concerning all other 

tokens. 

• Feed-Forward Neural Networks: The model processes the attention outputs from 

the attention layers using feed-forward neural networks to build higher-level 

representations. 

• Layer Normalization and Residual Connections: Each sub-layer (attention and 

feed-forward) is followed by layer normalization and residual connections to aid 

training and handle the vanishing/exploding gradient problem. 
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2.11.3 GPT-2 Specifics 

GPT-2 lacks the encoder component found in devices like BERT because it is a 

decoder-only Transformer. It processes input sequences using a stack of Transformer 

decoder layers. A language modeling objective is used to pre-train the model on a huge 

corpus of text data in an unsupervised manner. Predicting the next word in a sentence based 

on the context of the previous words is a part of the pre-training process. The pre-training 

exercise aids the model's acquisition of contextual representations that capture linguistic 

patterns in both syntactic and semantic terms. 

2.11.4 Tokenization 

• The text is tokenized into smaller units, such as words or sub-words, before being 

fed into the model (using, for instance, byte-pair encoding). 

• The embedding layer is then used to transform each token into a fixed-size vector 

representation. 

2.11.5 Pre-training of GPT-2 

• Using an unsupervised learning strategy, the GPT-2 has been pre-trained on a 

sizable corpus of text data. 

• The model learns to anticipate the possibility of the following word in a sentence 

given the context of the preceding words during pre-training. 

• Given the previous context, the training objective is to increase the likelihood of 

the target term. The model gains knowledge of grammar, syntax, and semantics 

from the large amount of text material it encounters thanks to this process. 
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2.11.6 Fine-tuning of GPT-2 

Following pre-training, GPT-2 can be improved for a variety of downstream tasks. 

For fine-tuning, the model is trained on a smaller dataset relevant to the desired job, 

such as sentiment analysis, text production, or translation. GPT-2 can be adjusted 

to more accurately carry out particular tasks by making minor adjustments. 

2.11.7 Self-Attention Mechanism 

• At the core of the Transformer architecture lies the self-attention mechanism, which 

allows the model to evaluate the importance of different words in context with each 

other. 

• By establishing long-range dependencies and capturing global context, the model 

is better able to recognize the connections between the words in a phrase. 

2.11.8  Autoregressive Generation 

• The model generates new text one token at a time during inference or text creation, 

starting with a seed text (sometimes referred to as a prompt). 

• The model uses the feed-forward layers and self-attention mechanism of the 

decoder at each step to forecast the likelihood of the upcoming token on the 

information provided by the tokens generated earlier. 

• GPT-2 can generate text using a variety of sampling techniques, including 

temperature-based sampling, beam search, and greedy sampling. With greedy 

sampling, the token with the highest probability is selected at each step. With beam 

search, the top k likely sequences are tracked. 

• The diversity and coherence of the resulting text are impacted by different sampling 

procedures. 
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The key benefits of GPT-2 include its capacity for producing text that is coherent and 

contextually suitable, as well as its language comprehension abilities and adaptability to 

different NLP tasks via fine-tuning. 

2.11.9  Loss Function 

GPT-2, like many other autoregressive language models, uses the cross-entropy loss 

function during training. In the context of language modeling, the cross-entropy loss 

measures the dissimilarity between the model's predicted probability distribution over the 

vocabulary and the actual distribution of the next token in the sequence [27], [28]. 

Mathematically, given a sequence of input tokens 𝑥1, 𝑥2, … , 𝑥𝑛 and their 

corresponding target tokens 𝑦1, 𝑦2, … , 𝑦𝑛 and sample strategies where 𝑦𝑖 is the next token 

in the sequence after  𝑥𝑖 the cross-entropy loss 𝐿  is computed as: 

𝐿 = −
1

𝑛
∑𝑖=1

𝑛  log 𝑝(𝑦𝑖 ∣ 𝑥1, 𝑥2, … , 𝑥𝑖−1) 

Where  𝑝(𝑦𝑛|𝑥1, |𝑥2, … , 𝑥𝑖−1)  represents the probability assigned by the model to the 

target token 𝑦𝑖 given the proceeding input tokens  

𝑥1, 𝑥2, … , 𝑥𝑖−1. 

During training, the goal is to minimize this cross-entropy loss, which encourages the 

model to assign high probabilities to the correct tokens in the sequence and penalizes it for 

making incorrect predictions [27], [28]. 

2.12 Summary 

In this chapter, background about different concepts (terminologies and models) that were 

used in previous studies literature review like CNN, RNN, and transformer models like 

Vision Transformer and Generative Pre-trained Transformer 2 are discussed. Some 

terminologies like machine learning, deep learning, semantic attention, visual attention, 
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and feature extraction were also discussed. The reader who reads this document can 

understand these terminologies and models that are used in the research.  
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CHAPTER 3 

 

 

3 Literature Review 

 

3.1 Introduction 

In this section, the literature review concerning research in our specific field of image 

captioning was explored. A literature review is an examination and synthesis of previously 

published research and academic articles that are pertinent to a given topic. Examining a 

literature review's content, structure, and conclusions is part of the analysis process. This 

research literature review is about ‘Image Captioning’. The distinction between the 

information conveyed by images and words presents a semantic disparity, despite the 

abundant explicit and implicit visual semantic details often present within images. It is 

challenging to accurately express an image's visual information using only human 

language.  

In general, two paradigms may be used to classify existing systems for creating 

image captions: retrieval-based and generation-based. By collecting comparable photos 

from the training dataset per similarity metrics, retrieval-based image captioning 

techniques generate a caption for an input query image. The extracted feature vectors are 

compared one to another in a typical calculation. The best candidate image's caption is then 

applied to the input image [5]. 

Deep learning-based techniques can manage this challenging task, according to 

recent work on ‘Image Captioning’ [20], [30], [41]. The primary idea of these methods, 
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which are typically based on the encoder-decoder framework from machine translation 

[20], [42], [43], is to approach the task of creating image captions as translating an image 

into a text description. 

3.2 Deep Learning Techniques for Image Captioning 

A semantic depiction known as the scene graph, rooted in graphs, establishes a 

connection between photographs and their corresponding natural descriptions. They can't 

see the entire horizon at once because they are captioning. Instead, they move their focus 

from one place to another in a fluid, sequential manner. Typically, their attention is drawn 

to larger, more colorful objects first, then to smaller ones. Their strategy entails creating a 

scene-graph-oriented representation that mimics the human attention mechanism. The 

process of image captioning was divided into two independent stages known as idea 

cognition and sentence creation to include the scene graph as a middle step [6]. In their 

method, they build a set of semantic ideas and then introduce the CNN-RNN-SVM 

architecture to produce a sequence based on scene graphs. After that, this sequence is 

transformed into a bit vector and used as the RNN's next phase's input [6]. 

A combination of an image encoder and a language decoder constitutes this 

architectural configuration. This innovative design was first introduced by works [20], [44] 

in their work. They adeptly adapted the encoder-decoder architecture originally used for 

machine translation to align to generate image captions. This involved utilizing a CNN to 

serve as the dedicated image encoder. Further enhanced the decoding capabilities by 

replacing the standard RNN with the long short-term memory (LSTM) architecture, 

resulting in significant advancements in generating image captions. Since then, numerous 

researchers have built upon this framework, focusing on enhancing both components to 

improve image captioning  [20], [44]. 

This article's main contribution is an improved visual attention model. At first, they 

suggest computing the focus intensity coefficient of the attention mechanism using the 

model's context data at each timestep. They then utilize this coefficient to automatically 

alter the focus intensity to more precisely retrieve visual data. They also include topic terms 
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related to the image scene to describe the semantic information of the scene, which is then 

included in the language model. The attention mechanism is employed to identify the visual 

and semantic information about the scene that the model concentrates on at each timestep, 

combining it to produce captions that are more accurate and relevant to the scene. [20]. 

This article proposes a brand-new method for captioning images called Visual-

Semantic Double Attention (VSDA). A unique Semantic Attention (SEA) technique was 

employed to extract semantic features, and their approach comprises two primary 

components: initially, an adapted visual attention model is employed to capture image 

information from sub-regions. The specific significance of each attribute word is frequently 

ignored by traditional attribute-based models, which instead combine them into recurrent 

neural networks. As a result, there are too many unnecessary semantic traits present. 

Simply put, VSDA's fundamental power resides in its ability to make good use of semantic 

features while also minimizing the impact of unnecessary attribute words, hence improving 

the accuracy of semantic guidance[45]. 

This paper [46] examines the active learning technique used in image captioning 

and introduces a novel model called the Structural Semantic Adversarial Active Learning 

(SSAAL) model. SSAAL utilizes visual and textual data from both local and global 

viewpoints to identify the most informative samples The model comprises three 

components: a semantic constructor responsible for generating a structural representation 

of an image, an SC supervisor that oversees the representation using a multi-task learning 

approach, and a labeled / unlabelled state discriminator that utilizes adversarial learning to 

differentiate between samples with varying descriptions. 

In [47] their primary objective is to connect the realms of vision and language by 

enhancing image features with textual concepts. This approach establishes a strong 

foundation for describing images. They investigated the use of textual representations for 

image features to describe prominent regions within images at a textual level. Their method 

incorporates the Textual Distilling Module and Textual Association Module, which aim to 

harness vast and enhanced textual data to enhance the comprehension of images. Through 

extensive experiments conducted on the well-known Flickr30k and MSCOCO image 

captioning datasets, they successfully validated the efficacy of their approach. 
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In the publication [48], a novel image captioning approach is presented, referred to 

as the domain-specific image captioning generator. This innovative model employs a 

combination of visual and semantic attention mechanisms to craft descriptive captions for 

images. The paper refers to the output as the "general caption," which represents a caption 

generated for a given image. Moreover, the model can produce domain-specific captions 

by substituting specific terms within the general caption with domain-specific vocabulary, 

leveraging semantic ontology principles. The model's performance was assessed through 

comprehensive qualitative and quantitative experiments. Nevertheless, a limitation of their 

approach is identified in its inability to seamlessly integrate semantic ontology in an end-

to-end manner. 

In [49] They suggest an alternative to the current image-caption pair replacement 

approach, which suffers from the issue of inaccurate pseudo-labeling. The proposed 

solution is called the Image-Caption Pair Replacement Algorithm (I-CPRA) and consists 

of two sub-modules: the bounding box scaling algorithm and the two-stage semantic graph 

structure. More specifically, within the image replacement strategy, they aim to overcome 

the challenge of strict resolution and aspect ratio replacement requirements between novel 

objects and source objects. To tackle this, they introduced a bounding box scaling algorithm 

as part of our approach. The number of potential objects for the model's novel object 

replacement is expanded, increasing synthetic images. To tackle the issue of contextual 

logical errors caused by the direct replacement of descriptions, their solution involves a 

two-stage semantic graph structure. This structure aims to minimize phrase collocation 

errors within the context by relying on associations of co-occurring semantic adjacency. 

They presented a novel approach for generating image captions using an adversarial 

training technique. To enhance the precision of the captions, they incorporated a semantic 

filter module to extract valuable contextual information from semantic vectors. Their 

model utilizes a two-separated LSTM architecture to acquire both global and local image 

features along with semantic vectors. By employing adversarial training, the resulting 

captions seamlessly integrate precise details and are expressed smoothly and fluently. Their 

model aims to acquire meaningful semantic knowledge by considering the contextual 

information within image regions. This approach leads to enhanced fluency and accuracy 
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in the generated captions. In terms of fluency, they observed an average reduction of 14.1% 

in the PPL score compared to the baseline model Semantic Filter - Generative Adversarial 

Networks (SF-GAN) [50]. 

The objective of this study [51] is to present an innovative model that makes use of 

the Fully Convolutional Network – Long Short-Term Memory (FCN-LSTM) framework 

for generating a finely detailed attention map at the grid level. The new model guarantees 

that the main object solely influences the visual characteristics of each grid cell. Through 

the integration of labels specific to each grid (semantic segmentation), the visual features 

of diverse grid cells are interconnected. This strategy empowers the model to aptly capture 

wider contextual details from semantic labels, thus encompassing supplementary semantic 

context. As a result, this technique enhances the contextual information accessible to the 

language LSTM decoder, furnishing a more comprehensive comprehension of the input. 

By creating a mechanism of precise and contextually guided visual attention, a connection 

is established between relevant visual information and the corresponding semantic 

meanings in the text. Through three experiments that encompass qualitative and 

quantitative analyses, our model demonstrates the ability to produce high-quality captions. 

Specifically, it achieves remarkable levels of accuracy, comprehensiveness, and diversity. 

In the research conducted by the study [19], a new and innovative deep architecture 

named the attention-based Encoder-Decoder is presented. This architectural design makes 

effective use of convolutional features derived from a CNN model that underwent pre-

training on ImageNet. These features are combined with object features that were extracted 

from the pre-trained You Look Only Once (YOLO) v4 model, trained on MS COCO. 

Furthermore, the paper introduces a novel method of positional encoding referred to as the 

"importance factor," which is applied to object features. The performance of the proposed 

model was assessed using both the MS COCO and Flickr30k datasets and a comparative 

analysis was conducted against similar approaches. The incorporation of this original 

technique for feature extraction led to a notable increase of 15.04% in the CIDEr score.  

This publication [52] presents an innovative algorithm Attention Model - Fully 

Connected Network (ATT-FCN) that combines two methodologies using a semantic 

attention model. The algorithm adeptly concentrates on pertinent semantic concept 
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proposals, integrating them into the concealed states and yields recurrent neural networks. 

This merging of selection and integration creates an iterative loop linking the higher-level 

and lower-level computations. To gauge its effectiveness, they executed assessments on 

two extensively utilized benchmarks: Microsoft COCO and Flickr30K. The outcomes of 

our experiments consistently illustrate that our algorithm outperforms existing cutting-edge 

techniques across a range of evaluation criteria. 

The present study [3] introduces a clear-cut and easily comprehensible reasoning 

framework Visual Semantic Reasoning Network (VSRN) for generating visual 

representations that encompass significant objects and semantic concepts present within a 

scene. The strategy involves establishing associations among diverse regions of an image 

while employing Graph Convolutional Networks to generate characteristics that 

encompass semantic connections. Furthermore, the authors recommend the integration of 

gate and memory mechanisms to globally process semantic reasoning on these 

relationship-amplified characteristics. This facilitates the identification of distinguishing 

information and the gradual formation of a comprehensive scene representation. Through 

experimentation, the effectiveness of the approach is confirmed in achieving a fresh 

pinnacle of performance in image-text matching on the MS-COCO [28] and Flickr30K 

[40] datasets. The findings underscore its superiority over the current leading approach, 

displaying relative enhancements of 6.8% for image retrieval and 4.8% for caption retrieval 

on MS-COCO (utilizing the Recall@1 [3] benchmark on a 1K test grouping). Furthermore, 

on Flickr30K, the proposed model attains relative improvements of 12.6% for image 

retrieval and 5.8% for caption retrieval (Recall@1). 

In the work cited as [53], scene graph-base captions (SG2Caps) are presented as a 

framework that leverages only scene graph labels to achieve competitive performance in 

the task of image captioning. The central goal is to minimize the difference in meaning 

between two scene graphs: one obtained from the input image and another generated from 

the associated caption. This is executed by integrating information about the spatial 

positioning of objects and labels related to human interaction (HOI), leading to the creation 

of an additional HOI graph. SG2Caps surpasses existing models that rely solely on scene 

graphs for captioning, highlighting the potential of scene graphs as a promising strategy 
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for enhancing image captioning. This method directly uses scene graph labels, avoiding 

the computationally intensive graph convolutions on high-dimensional CNN features, 

resulting in a significant reduction of 49% in trainable parameters. 

This study [54] presents an innovative structure for generating image captions by 

integrating features with enriched semantics and introducing difficult counterexamples for 

improved performance. The method suggested in this research merges these components 

through a Semantic-Enhanced Module, which consists of a sub-network for matching 

images and text, along with a Feature Fusion layer. This combination produces 

semantically enriched features that are imbued with extensive semantic details. 

Additionally, the authors propose a valuable technique to enhance the distinctiveness of 

semantics by leveraging exceptionally challenging negative instances, thus enhancing the 

alignment between visual and linguistic data. 

This publication [2] presents a new approach for producing comprehensive 

descriptions of specific regions within images. The proposed model employs three deep 

neural networks: one for generating image regions using the Regions with convolutional 

neural network (R-CNN) technique, another for extracting features using Visual Geometry 

Group (VGG), and a third for generating descriptive sentences using RNN. The efficiency 

of the method is validated through experiments conducted on Flickr8K and MSCOCO 

datasets. The results demonstrate that region-based image descriptions adequately capture 

the essence of the entire image, often containing even more detailed information than the 

ground truth sentences. Additionally, the proposed region optimization method enables the 

selection of suitable regions for an image, achieving descriptive quality comparable to that 

of full image descriptions. Moreover, the full image description and region-based 

description can complement each other in conveying information. 

In [55] They tackled the issue of learning perception and language together to 

comprehend the item at a finer level. The use of object descriptions to create a complete 

knowledge of an object is the central concept of their methodology. They developed two 

new architectures based on this concept to address related issues such as object captioning 

and natural language-based object retrieval. While the objective of the object retrieval job 

is to locate an object given an input query, the objective of the object captioning task is to 
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simultaneously detect the object and create its related description. They show that hybrid 

end-to-end CNN-LSTM networks can be used to efficiently handle both issues. 

In the study by reference  [56], the authors explore the concurrent interdependence 

of high-level semantic concepts. They propose an innovative approach involving scene-

graph-based semantic representation for the task of 'Image Captioning'. This approach 

stands apart from the existing methodologies for generating captions for images. The image 

captioning process is deconstructed into two distinct phases: idea cognition and phrase 

generation. This division facilitates the incorporation of scene graphs as an intermediary 

stage. The researchers construct a vocabulary comprising semantic terms and advocate for 

a CNN-RNN-SVM framework to generate the sequence based on scene graphs. This 

sequential output is then transformed into a binary vector, which serves as input for a 

subsequent RNN phase. The effectiveness of their technique is assessed using the MS 

COCO dataset. 

In the research conducted by the authors [57], they introduced a language 

Convolutional Neural Network – Residual Holistic Neural Network (CNN-RHN) model 

designed specifically for image captioning and well-suited for applications in statistical 

language modeling. Their innovative language CNN incorporates all preceding words, 

enabling it to capture significant long-range relationships among historical words. This 

capability is particularly important for tasks such as 'Image Captioning', distinguishing it 

from earlier models that relied on a single previous input and hidden state to predict 

subsequent words. To evaluate the effectiveness of their approach, the researchers 

employed two datasets, namely Flickr30K and MS COCO. 

In this study [5], they suggest a complete deep-learning method for creating ‘Image 

Captions’. Through the use of a semantic attention model, they make use of picture feature 

information at a specific position every instant to describe the related caption. Through the 

evaluation of the likeness between sequences of image features and sequences of semantic 

words, they employed an end-to-end framework for integrating an autonomous recurrent 

structure as an attention module. Additionally, to enable cross-lingual image captioning, 

their model is built to transfer the knowledge representation obtained from the English 

portion into the Chinese portion. They use the most well-known benchmark datasets to 
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assess the proposed model. On the Flickr8k CN dataset, they show a 3.9% improvement 

over current state-of-the-art methods for cross-lingual image captioning using the CIDEr 

metric. The experimental findings show how well their attention Model works. 

In the article [58], the authors categorized the current algorithms into two broad 

groups: top-down and bottom-up approaches. The top-down approach involves directly 

utilizing the image's information (referred to as visual-level features) to generate a caption, 

while the latter creates a description using the words that were extracted from the image 

(known as a semantic-level attribute). To generate image captions, earlier techniques either 

relied on a one-stage decoder or only used a small portion of visual or semantic-level 

information. The problem was tackled, and a groundbreaking multi-stage architecture 

named Stacked visual-semantic (Stack-VS) was introduced. This architecture aimed to 

generate detailed 'Image Captions' with a focus on both visual and semantic aspects of input 

images. The approach combined top-down and bottom-up attention models. A novel stack 

decoder model was proposed, comprising a series of decoder cells. Each cell was equipped 

with two LSTM layers that collaboratively re-optimized attention weights. These weights 

were applied to both visual-level feature vectors and semantic-level attribute embeddings, 

facilitating the creation of intricate image captions. Extensive experiments conducted on 

the widely recognized MSCOCO dataset demonstrated notable enhancements across 

various evaluation metrics. In comparison to the leading state-of-the-art method, 

improvements of 0.372, 1.226, and 0.216 were achieved in BLEU-4, CIDEr, and SPICE 

scores, respectively. 

In this article [59], they suggest a brand-new Pseudo-3D Attention Transfer with a 

content-aware Strategy (P3DAT-CAS) for the job of captioning images. A pseudo-3D 

attention network incorporates more detailed information for caption creation and can fully 

utilize both 2D spatial attention maps and 1D semantic-channel attention features. To 

produce more elegant phrases, the transfer network is intended to keep attention to 

situations and provide a wider guide. By choosing captions that are most pertinent to the 

contents of the images, the content-aware technique can bridge the cross-modal gap 

between vision and language. The experimental results show that P3DAT-CAS beats 
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cutting-edge methods. their model outperforms all other models that make use of the cross-

entropy training approach in terms of performance. 

In this paper [60] the most advanced architectures for sequence modeling tasks like 

language interpretation and machine translation are transformer-based ones. However, the 

extent to which they may be applied in multi-modal scenarios like image captioning is still 

extensively unexplored. they introduce M2 - a Meshed Transformer with Memory for 

Image Captioning to close this discrepancy. The structure improves both the image 

encoding and language generation procedures. It integrates learned a priori knowledge to 

learn a multi-level representation of connections between image regions and uses mesh-

like connectivity at the decoding stage to exploit both low- and high-level features. Using 

an experimental approach, they examined that how the Meshed-memory transformer (M2 

Transformer) and several fully attentive models perform compared to recurrent models. 

Tested on the COCO dataset, their idea demonstrates strong performance in both single-

model and ensemble scenarios, specifically on the "Karpathy" test segment and the online 

evaluation platform. This achievement sets a fresh precedent in the field. They also assess 

its capability to describe items that were not part of the original training dataset. 

In ‘Image Captioning’ and visual question-answering (VQA), top-down visual 

techniques have been widely used to facilitate deeper image understanding through fine-

grained assessment and even several phases of reasoning. In this paper [61], they suggest 

a hybrid bottom-up and top-down attention mechanism, allowing for the calculation of 

attention at the level of objects and other salient picture regions. This is the rationale behind 

naturally considering attention. In their approach, the allocation of feature weightings is 

determined by the top-down mechanism, while the bottom-up process (utilizing Faster R-

CNN) proposes image regions, each associated with a linked feature vector. When applying 

our technique to 'Image Captioning,' exceptional results were attained, with scores of 117.9 

for CIDEr, 21.5 for SPICE, and 36.9 for BLEU-4 on the MSCOCO test server. This 

achievement establishes a novel state-of-the-art benchmark. Employing the same 

methodology to address the VQA problem led us to secure victory in the 2017 VQA 

Challenge, underscoring the wide-ranging effectiveness of this approach. 
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They suggest a unique scene-based factoring attention component for image 

captioning in this study [62]. Their model takes scene concepts into account, in contrast to 

earlier efforts that either focused on regional features attention or object-centered visual 

concepts attention. They are the first, as far as they are aware, to consider scene concepts 

in ‘Image Captioning’ as well as model relation among scene notions, object-centered 

visualizations, and caption creation. The LSTM hidden feature in this proposed scene-

based factored attention module directly incorporates scene notions in the form of a 

factored tensor. they determined the relative importance of regional features and object-

centered visual concepts depending on the concealed feature that is incorporated into the 

scene. The true strength of our suggested module is its capacity to pay attention to 

hierarchically visual data for improved captions. The effectiveness of the suggested 

approach has been validated by experiments using the MS COCO captioning datasets. 

In this study [63] A method for generating medical reports for retinal images is 

presented, utilizing expert-defined keywords and an innovative attention-based strategy. 

This method can predict technical keywords and combine them for advanced word 

sampling. Experimental results demonstrate that the proposed model produces more 

accurate and meaningful descriptions for retinal images, with a performance increase of 

approximately 74% in BLEU average, 63% in ROUGE, 87% in CIDEr, and 63% in 

METEOR compared to non-keyword attention-based baselines. Attention visualization 

reveals intriguing patterns of potential symptoms in specific image regions. To further 

enhance the explainability of ML-based models for retinal image captioning, suggesting 

an automatic metric for measuring explainability is a promising avenue for future research 

within our community. 

In this study [64], they introduce a straightforward yet powerful prompt-driven 

framework for generating image captions, a concept that has received limited attention in 

the captioning community. Through prompt engineering, our approach achieves the 

generation of captions exhibiting diverse styles. To delve deeper into the capabilities of 

prompt learning, they guide the network to autonomously discover appropriate prompt 

vectors within the continuous word embedding space. Their qualitative and quantitative 

experiments substantiate the efficacy of the proposed framework. They attain results on 
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two distinct image captioning benchmarks, namely the COCO Karpathy split and 

TextCaps, employing a consolidated model. 

In this study [65], they explore the enhancement of visual-language alignment and 

linguistic coherence in a diffusion model designed for image captioning. To substantiate 

our assertion, they introduce a novel Semantic-Conditional Diffusion Networks (SCD-Net) 

semantic-conditional diffusion process that enriches the existing diffusion model with 

additional semantic priors. Additionally, they implement a guided self-critical sequence 

training strategy to stabilize and enhance the diffusion process. Their proposed approach is 

empirically demonstrated to outperform state-of-the-art non-autoregressive methods. 

Notably, their new diffusion model paradigm exhibits superior performance compared to a 

competitive autoregressive method with the same Transformer encoder-decoder structure. 

The findings underscore the promising potential of the diffusion model in the context of 

image captioning. 

3.3 Literature Review Results Analysis 

All researchers complied that a relevant problem in this research domain is the issue 

of accuracy and performance in the papers. The major gap found after the literature review 

is the lack of accuracy in the generated captions and the gap is due to the lack of semantic 

knowledge. All research tries to solve this mentioned problem by performing different 

experiments with different machine learning and deep learning techniques to improve the 

performance of the image caption.  After the experiment, all show the quantitative result of 

different evaluation metrics to evaluate the accuracy and performance of generated image 

caption. Table 3.1 shows all the research techniques and methods that are used for image 

captioning and the results of different evaluation metrics are also shown in Table 3.1. 
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Sr# Ref Year Author Model B1 B2 B3 B4 M C R S 

1 [63] 2023 Ting-

Wei Wu 

ML-based 

medical 

report 

generation 

system 

69.69  61.95  54.96 50.08 70.44 56.50 72.52 - 

2 [64] 2023 Ning 

Wang 

ConCap - - - 40.5 30.9 133.7 - 23.8 

3 [65] 2023 Jianjie 

Luo 

SCD-Net 80.2 64.9 50.1 38.1 29.0 126.2 58.5 - 

4 [49] 2022 Yang 

Yang 

I-CPRA - - - - 27.9 111.2 - 21.0 

5 [19] 2022 Muham

mad 

Abdelha

die 

Al‑Mall

a1 

YOLO 6.26 

% 

8.42 

% 

11.53 

% 

16.09 

% 

3.82 

% 

15.04 

% 

3.76 

% 

5.88 

% 

6 [20] 2021 HAIYA

NG WEI 

Visual 

Attention 

model 

80.5 65.7 51.0 38.9 28.3 126.7 58.8 21.7 

7 [50] 2021 Junlong 

Feng 

SF-GAN 27.9 14.7 8.3 4.8 11.2 42.2 26.2 15.0 

8 [53] 2021 Kien 

Nguyen 

SG2Caps 

– RL 

   33.0 26.2 112.3 55.3 19.4 

9 [46] 2020 Beichen 

Zhang 

SSAAL - - - 34.3 26.2 106.2 55.3 - 

Table 3.1 Analysis of Findings from the Literature Review 
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10 [47] 2020 Fenglin 

Liu 

Textual 

Distilling 

Module 

and 

Textual 

Associatio

n Module 

80.9 65.7 51.2 39.3 29.5 129.0 59.2 - 

11 [48] 2020 Seung-

Ho 

a domain-

specific 

image 

caption 

generator 

79.1 62.4 47.1 35.9 27.1 - - - 

12 [54] 2020 Wenjie 

Cai 

image 

captioning 

framewor

k 

80.8 64.3 49.6 37.5 28.2 126.0 58.2 21.8 

13 [5] 2020 Bin 

Wang 

end-to-end 

deep 

learning 

approach 

66.8 46.8 32.2 22.1 - 55.12 20.36 - 

14 [58] 2020 Ling 

Cheng 

Stack-VS 79.0 63.4 48.9 37.2 28.8 118.9 57.5 - 

15 [60] 2020 Cornia, 

Marcella 

M2 

Transform

er 

81.6 66.4 51.8 39.7 29.4 129.3 59.2 - 

16 [45] 2019 Chen He VSDA 75.3 59.1 45.1 34.4 26.5 53.2 55.2 - 
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17 [51] 2019 Zongjia

n Zhang 

(FCN)-

LSTM 

71.2 51.4 36.8 26.5 24.7 88.2 - - 

18 [3] 2019 Kunpen

g Li 

VSRN 71.3 

R@1 

90.6 

R@5 

96.0 

R@10 

- - - - - 

19 [55] 2019 Anh 

Nguyen 

hybrid 

end-to-end 

CNN-

LSTM 

networks 

69.6 57.0 46.9 40.0 34.2 163.2 68.5 - 

20 [59] 2019 Jie Wu P3DAT-

CAS 

75.3 59.0 45.0 34.1 27.0 109.1 55.4 - 

21 [62] 2019 Chen 

Shen 

scene-

based 

factored 

attention 

module 

80.3 64.6 60.1 38.1 28.5 126.8 58.2 22.0 

22 [6] 2018 Lizhao 

Gao 

Scene 

graph 

(CNN-

RNN-

SVM) 

framewor

k 

67.6 49.3 35.5 26.1 22.3 76 - - 

23 [61] 2018 Peter 

Anderso

n 

Up-down 80.2 64.1 49.1 36.9 27.6 117.9 57.1 21.5 

24 [57] 2017 Jiuxiang 

Gu 

CNN+RH

N 

72.3 55.3 41.3 30.6 25.2 98.9 - - 

25 [52] 2016 Quanzen

g You1 

ATT-FCN 70.9 53.7 40.2 30.4 24.3 - - - 
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26 [2] 2015 Xiaodan 

Zhang 

R-CNN, 

VGG and 

RNN     

64.00 44.57 24.87 12.54 - - - - 

3.4 Summary 

In this chapter, the literature review of this research domain ‘Image Captioning’ was 

discussed. In the literature review, the problem and gap in the research and different 

techniques and methods used to solve the problem of this research domain were discussed. 

The results of different authors that come after experimenting using different machine 

learning and deep learning techniques are also discussed. 
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Chapter 4 

 

 

4 Research Methodology and Proposed Framework 

 

 

The main objective of this chapter is to describe the research methods or procedures 

used in the conduction of this research. Image captioning is the main area of study in 

artificial intelligence. Although various studies on image captioning have been carried out 

in the past, it is still difficult to produce appropriate visual descriptions for an image. All 

the measures implemented that outlined in Figure 4.1 to improve the effectiveness of 

‘Image Captioning’. My proposed approach to conducting this research will also be 

discussed. The experiment stage of this research will also be discussed and how practical 

performed during this research and evaluation metrics to evaluate the results.  

4.1 Research Methodology for Image Captioning 

A methodology is referred to as a process or a set of rules or concepts. It might offer 

guidelines from which precise methods or procedures could be easily understood, used to 

solve problems within the domain, and changed to address issues within the domain's 

defined boundaries. The research problem was identified clearly in this research and after 

this proceeded this research to solve that research problem. 

there are following steps for the research completion all steps are discussed below: 
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Figure 4.1 Research Methodology for Image Captioning 

Literature Review: The research area/domain in which research conducted me, 'Image 

Captioning,' was selected first. This field is an important research area of computer vision 

and natural language processing. After selecting the research domain, multiple research 

papers were studied to find out the research gap and problem. All papers related to ‘Image 

Captioning’ in which research used different research techniques or methods to perform 

research in ‘Image Captioning’. 

 Problem Identification: In the second step, after studying the research papers. The lack 

of accuracy and performance in the 'Image Captioning' field was found to be a research 

gap. Accuracy is reduced due to the lack of semantic attention in the processing of images 

because of relationships or connections among the objects within the image. 

Experiment: In the next step, after problem identification, my research proceeds towards 

the experiment to conduct my research to solve the mentioned research problem. An 

encoder-decoder approach is proposed to fill the research gap, after performing the 
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experiment result is calculated and verified by using the evaluation metrics used for the 

evaluation of generated image captions. 

Results Analysis: In the last step, after completing the experiment both quantitative and 

qualitative results and analysis were performed. Compare all the results that come from the 

evaluation metrics with the results of the other research perform in the field of ‘Image 

Captioning’. Captions generated from my proposed approach compared with captions 

generated from the other research approaches. 

Base Paper: To compare my research work perform by H. Wei [19], [20] research article 

is followed as a base paper. They used a visual attention model for a generation of image 

captioning and focused on the semantics of the image while creating a caption for an image 

[19], [20]. They used the same evaluation metrics like BLEU-1, BLEU-2, BLEU-3, BLEU-

4, CIDEr, METEOR, and ROGUE-L, the results of their experiment are 80.5, 65.7, 51.0, 

38.9, 28.3, 126.7 and 58.9 respectively. Results compared with the results of base paper 

results. 

4.2 A Proposed Approach: ViT-GPT-2 

To overcome the gap of image caption found through the literature review. An 

encoder-decoder framework is proposed to solve the research gap. The major issue in the 

‘Image captioning’ is the accuracy in the generated image captions. Accuracy is low due to 

a lack of semantic knowledge in ‘Image Captioning’. This encoder-decoder framework 

mainly focuses on the semantic knowledge to improve the accuracy of ‘Image Captioning’. 

Semantic knowledge gained through the enhancement of the feature extraction. All the 

objects and the connections among the objects are extracted accurately. A transformer-

based technology was proposed to improve the accuracy of the image caption. The 

proposed approach is shown in Figure 4.2. 

Encoder: In the proposed transformer-based encoder-decoder approach the Vision 

transformer (ViT) works as an encoder. The detailed working of the Vision Transformer is 

discussed in Chapter 2 Section 2.10. The Vision Transformer (ViT) is a ground-breaking 

neural network design that extends the Transformer to the field of computer vision. The 
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Vision Transformer is used to extract features for the image, the image is divided into 

patches and each patch moves forward to the vision transformer for further processing. The 

number of patches increased by changing its pixel ratio from 16x16 to 8x8. For creating 

patches of an image an example is discussed below: 

Divide the image of 240 X 240 pixels to create the patches of 16 X 16 pixels and 8X 8 

pixels to find the number of patches given in equations 4.1 and 4.2 respectively. 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡𝑐ℎ𝑒𝑠 =  
𝑖𝑚𝑎𝑔𝑒 𝑤𝑖𝑑𝑡ℎ

𝑝𝑎𝑡𝑐ℎ 𝑤𝑖𝑑𝑡ℎ
 𝑋 

𝑖𝑚𝑎𝑔𝑒 ℎ𝑒𝑖𝑔ℎ𝑡

𝑝𝑎𝑡𝑐ℎ ℎ𝑒𝑖𝑔ℎ𝑡
                                                     (4.1) 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑡𝑐ℎ𝑒𝑠 𝑤𝑖𝑡ℎ 16 𝑋 16 =
240

16
 𝑋 

240

16
=  

57600

256
= 225                               (4.2) 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑡𝑐ℎ𝑒𝑠 𝑤𝑖𝑡ℎ 8 𝑋 8 =
240

8
 𝑋 

240

8
=  

57600

64
= 900                                   (4.3) 

As in this research major focuses on the exploitation of semantic knowledge, the number 

of patches increases so that feature extraction and semantic knowledge from each patch of 

the image. ViT conceptualizes images as sequences of patches, each of which goes through 

an embedding procedure to generate a token, rather than processing images pixel by pixel. 

By breaking down images into patches and converting them into embeddings, ViT 

effectively captures both local and global features. These embeddings encode spatial 

relationships and visual context, providing a comprehensive representation of the image. 

Leveraging self-attention mechanisms, ViT captures intricate dependencies between 

patches, enhancing its ability to discern important visual cues.  These tokenized patches 

are used as the input to the transformer encoder, which is enhanced with positional 

embeddings to preserve spatial information working of the Vision transformer as shown in 

Figure 4.2. 
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Figure 4.2ViT-GPT-2 Encoder-Decoder Framework 

Decoder: In the proposed transformer-based encoder-decoder approach the Generative Pre 

trained Transformer 2 (GPT-2) works as a decoder in this framework. The GPT-2 decoder 

role in image captioning occurs after an image encoder processes the visual content 

extracted from the ViT encoder. GPT-2 produces comprehensible and contextually 

pertinent subtitles that go along with the visual content by training the decoder on both 

visual and textual information. GPT-2 generates captions word by word based on its 

understanding of the previously generated text and the visual content of the image. By 

integrating visual and semantic attention mechanisms, GPT-2 focuses its attention on both 
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the evolving textual context and salient image features, ensuring that the generated words 

harmonize with the image's content and the evolving caption. The quality of the generated 

captions is improved by fine-tuning GPT-2 for image captioning, which improves its 

capacity to align and ground textual output to the visual elements. 

4.3 Experiment 

In this section, the complete process to experiment, as shown in Figure 4.3, will be 

discussed. First of all, take a dataset of images and preprocess that dataset, after 

preprocessing dataset data move forward towards encoder (ViT). Feature extracted using 

an encoder and its output as input in decoder (GPT-2). In the last step of this experiment, 

the captions generated are evaluated using evaluation metrics that are used for the image 

captions. After these results are compared with the results of other researchers who perform 

in the field of ‘Image Captioning’ 

 

Figure 4.3 Experimental Study for Image Caption 

4.3.1 Preparing the data 

Several datasets are used to test, train, and evaluate the ‘Image Captioning’ systems. 

The datasets differ from one another in a variety of areas, such as the number of images, 
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and the number of descriptions for each picture, and these captions are organized according 

to the images. There are three widely used datasets: Flickr8k [66], Flickr30k [67], and MS 

COCO Dataset [68]. 

To perform the complete experiment, first of all, A dataset with a large number of 

images and captions relevant to those images is selected by me. Each image has a one-to-

one mapping with the textual caption regarding those images. There are some dataset exits 

that match the criteria like MS COCO and any other data set that fulfill all the requirements 

of the dataset like a large number of images and captions that are related to that image. To 

perform this experiment, the MS COCO dataset was used for the image captioning process. 

A detailed description of the dataset used for the experiment is given below: 

COCO Dataset: The primary objective of the COCO Object Detection Task is to 

push the boundaries of object detection advancements. COCO presents two distinct tasks 

for object detection, with one utilizing bounding box outputs and the other involving object 

segmentation outputs, which is occasionally referred to as instance segmentation. It is 

possible to utilize the COCO train, validation, and test collections, encompassing over 

200,000 images across 80 distinct object categories. Each object instance is accompanied 

by a comprehensive segmentation mask. The training and validation sets include publicly 

available annotations, consisting of over 500,000 segmented object instances  [68]. 

Flicker30k Dataset: The Flickr30K Dataset, known as a resource for facilitating 

automated image description and enhancing language comprehension, is comprised of 

30,000 photographs sourced from Flickr, each accompanied by 158,000 human-generated 

captions [67]. Notably, this dataset does not come with predetermined partitions for 

training, testing, or validation purposes. Instead, researchers have the flexibility to 

customize their own sets for validation, testing, and training as needed. Furthermore, the 

dataset incorporates classifiers for identifying colors, detectors for recognizing common 

objects, and a preference for selecting larger objects within the images. 
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4.3.2 Pre-processing 

The combination of ViT and GPT-2 in an image captioning task involves two 

separate pre-processing pipelines: one for the image data preprocessed ViT and one for the 

text data preprocessed by GPT-2. 

Resizing: After gathering images in the form of a dataset need to fix the size of the 

image. In this research for ViT 240x240 pixels size images to ensure uniformity in the 

process. 

Patch Extraction: After resizing the image to a fixed ratio. Each image is 

converted into patches of 8x8 pixel from 240x240 pixel image and every patch is fixed 

ratio square and non-overlapping patch. Each separate patch is treated as a separate input 

in ViT. 

Tokenization: After gathering dataset images and their relevant image captions, all 

captions are tokenized into individual words or sub words, ViT-GPT-2 processes text into 

the tokenized form. 

Special Tokens: Add special tokens to tokenized captions such as the start of the 

sequence and end of the sequence that helps the model to understand the start and end of 

the caption. A padding token is also used to ensure the length of the caption. 

Noise Removal: Our dataset comprises two components: an image dataset and a 

set of captions corresponding to those images. Within the captions list, some entries are 

either missing or inconsistent. To mitigate this noise, a systematic process is employed to 

review each caption individually. Any irrelevant or empty captions identified during this 

review are subsequently removed from the list. 

4.3.3 Feature Extraction 

In image captioning tasks that involve a combination of ViT and GPT-2, the visual 

features are typically extracted by the ViT model, while GPT-2 is used for processing and 
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generating textual descriptions. The ViT model extracts features from the image, and these 

visual features are then combined with the textual features from GPT-2 for further 

processing. Features extracted by the vision transformer is equal to the number of patches 

given to the transformer [39] and all features uses as an input by the decoder GPT-2. 

 

ViT extracts all visual features and spatial information from each of the patches of 

the image. GPT-2 processes textual information such as image captions and captures 

semantic information from the image captions 

4.3.4 Encoder 

Image captioning is one of many computer vision tasks for which the Vision 

Transformer (ViT) works as an encoder. The ViT processes input images as an encoder and 

converts them into useful representations used by ViT as follows: 

Image Patching: The vision transformer takes the preprocessed image from the image 

dataset and divides the image into small patches according to their pixels, images divided 

into 8x8 pixel patches. All patches are non-overlapping patches and every patch is treated 

as a separate input image to the vision transformer. 

 

Figure 4.4 Presentation of image patching 

Patch Embedding: After making the patches of an image each patch is converted into 

embedding using the linear projection layer of the vision transformer. All of these patches 

have both semantic and visual information. To feed the patches into the ViT model, the 
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patches are reshaped into a linear format. By doing this, pixel data is transformed into a 

feature vector. 

Positional Encodings: After embedding the patches in the vision transformer positional 

encoding is added to the patch embeddings to find out the semantic and spatial information 

from the patch of the image. This process helps the model to understand the arrangements 

of the patches of an image. Trigonometric functions are frequently used to create positional 

encodings to capture positional connections. 

The initial representations for each patch are the patch embeddings. 

 

Figure 4.5 Presentation of patch Embedding 

Transformer Encoder Layers: Each patch embedding serves as the input to the 

Transformer encoder layers (after positional encodings are added). These embeddings 

show the visual characteristics of the image at various spatial scales. 

A. Multi-Head Self Attention: After positional encoding both positional encodings 

and patch embeddings are input to various layers of self-attention. The model can 

recognize relationships between various patches as well as recognize their context 

within the full image by using self-attention. Based on the importance between 

positions, self-attention calculates weighted sums of values for each position in the 

input sequence. Each attention head gains the ability to concentrate on different 

components of the input sequence, enabling the model to recognize various kinds 

of relationships. 
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B. Feed-Forword Nural Network: The patch embeddings go through position-wise 

feed-forward neural networks after self-attention. Fully interconnected layers with 

activation capabilities (like ReLU) make up this network. By taking into account 

interactions between patches, these networks can learn more features and properties 

of the image through the image patches. 

C. Normalization and Residual Connections: After the self-attention and feed-

forward network operations for each point independently, layer normalization is 

used. The vanishing gradient issue is avoided by using residual connections to 

include the original input embeddings in the normalized outputs. 

CLS Token Representation: The whole semantic knowledge of the image is captured by 

the representation of the [CLS] token, which is frequently prepended to the input sequence. 

This representation serves as the decoder's input for the retrieved visual feature. 

The generation of a condensed portrayal capturing the entirety of the image's content is 

achieved by the ViT encoder after processing the patches and encoding spatial and 

contextual relationships. Then, a variety of tasks, including object detection, captioning, 

and classification, can be carried out using this representation. 

4.3.5 Decoder 

The image captioning process uses GPT-2 as the decoder to provide evocative 

captions based on the visual features that are extracted from the encoder vision transformer. 

GPT-2 works as a decoder as follows: 

Image Encoding: An image encoder (such as Vision Transformer) first processes the input 

image to create a fixed-size feature vector that reflects the visual content of the image. 

Caption Starts Token: The initial hidden state for the GPT-2 decoder is the [CLS] token 

representation from the ViT's output. This token gives the decoder a context in which to 

produce captions. 

Language Modelling: By predicting the following token in the sequence based on the 

previous ones, the GPT-2 decoder creates captions. The initial state of the decoder is 
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determined by the [CLS] token representation, and as decoding proceeds, the model pays 

attention to pertinent areas of the visual feature to produce contextually relevant text. 

Self-Attention and Feed Forward Layers: GPT-2 employs self-attention mechanisms at 

each stage of decoding to take into consideration the connections between the generated 

tokens and the visual feature representation. This aids the model in producing captions that 

are cohesive and meaningful in terms of semantics and the content of the image. These 

layers learn to produce content that is coherent and contextually appropriate by capturing 

the relationships between words in context. 

Text Generation: The GPT-2 decoder creates tokens one at a time, predicting the following 

tokens from the previous ones using its learned language model. Until an end-of-sequence 

token or a maximum sequence length is reached, this operation is repeated. 

The image captioning system makes use of both models' strengths by combining ViT as 

the encoder to extract visual information and GPT-2 as the decoder to produce text. GPT-2 

creates descriptive captions based on the visual elements that ViT extracts from the image. 

By using this strategy, the system provides comprehensive captions, pertinent to the 

context, and accurately reflects the content of the input image. 

4.4 Evaluations Metrics 

Within the realms of computer vision and natural language processing, generating 

descriptions for images, known as ‘Image Captioning’, poses a considerable challenge. 

Reliable measures that can gauge how closely generated captions match reference captions 

created by humans are needed to assess the quality of generated captions. Bleu, CIDEr, 

Rogue, and meteor are image captioning evaluation metrics that are often employed. 

These approaches compute the scores of the predictions using certain widely used 

metrics, including Precision, Recall, and F1 Score. The True Positive (TP), True Negative 

(TN), False Positive (FP), and False Negative (FN) metrics are used to assess performance. 

As indicated below, the TP, TN, FP, and FN values are discovered by creating a confusion 

matrix and comparing the actual and anticipated values. 
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The values for Precision, Recall, and F1 Scores using the TP, TN, FP, and FN data 

were determined. 

Precision: The percentage of successfully predicted positive values among all accurately 

predicted positive values. 

𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                             (4.4) 

Recall: Determines the proportion of correctly predicted positive values among all positive 

values. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                (4.5) 

F1-Score: Precision and Recall are weighted average. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛
                              (4.6) 

BLEU (Bilingual Evaluation Understudy): BLEU is a well-liked statistic for 

comparing automatically generated captions against reference captions. Between the 

created caption and the reference captions, it calculates the n-gram overlap. Better 

alignment between the prepared and source captions is indicated by higher BLEU ratings 

[69]. The effectiveness of the BLEU metric is influenced by two factors: the quantity of 

reference translations and the length of the text. N-grams are used in the calculation of the 

updated precision metric that [69] presented. The reason BLEU is well-known is that it was 

a pioneer in the field of automatic evaluation of machine-translated text and that its results 

have a good connection with human evaluations of quality [70], [71]. 

Let's look at an example to better understand how the BLEU 1-4 scores are 

determined. Following is the formula for calculating precision for n-gram. 

Precision n − gram =  
Number of correct predicted n−g𝑟𝑎𝑚

Number of total predicted n−grams
                    (4.7) 

The calculation of Geometric Average Precision Scores for individual n-grams 

involves utilizing the formula presented in equation 4.5. This computation follows the 

determination of Precision for the respective n-grams. Equation 4.6's Brevity penalty, when 
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added to the Geometric Average Precision as previously indicated, yields the BLEU-N 

score, which is shown in equation 4.7. 

𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑒𝑟𝑐𝑖𝑠𝑜𝑛 𝑆𝑐𝑜𝑟𝑒 (𝑁) = 𝑒𝑥𝑝(∑ 𝑊𝑛𝑙𝑜𝑔𝑝𝑛
𝑁
𝑁=1 ) = ∏ 𝑃𝑛

𝑤𝑛𝑁
𝑛=1  

(4.8) 

Brevity Penalty =  𝑓(𝑥) = {
1, 𝑖𝑓 𝑐 > 𝑟

𝑒(1−
𝑟

𝑐
), 𝑖𝑓 𝑐 ≤ 𝑟

                                (4.9) 

The variable 'r' represents the length of the reference sentence, while 'c' indicates the 

length of the predicted sentence. 

BLEU(N) = Brevity Penalty. Geometric Average Precision Score(N)          (4.10) 

METEOR (Metric for Evaluation of Translation with Explicit ORdering): 

METEOR stands as a distinct metric, evaluating the quality of produced captions by 

considering both phrase- and unigram-based similarity, along with a penalty component 

for variations in word order. It tries to reward accuracy and fluency in the captions that are 

created [72]. Referential texts and common word sections are contrasted. Additionally, 

sentence stems and word substitutes are taken into account while matching. METEOR can 

produce superior segment or sentence-level correlation. 

𝑀𝐸𝑇𝐸𝑂𝑅 𝑆𝐶𝑂𝑅𝐸 =  
10∗𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑅𝑒𝑐𝑎𝑙𝑙+9𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛
                                           (4.11) 

CIDEr (Consensus-based Image Description Evaluation): The CIDEr measure 

considers the agreement between the reference captions for an image. It takes into account 

both n-gram matches and the significance of those matches in the source captions. CIDEr 

assists in rewarding distinctive and varied captions that are both fluent and imaginative 

[73]. It is a machine-learning-based consensus metric for assessing picture descriptions.  

Frequently, existing datasets typically contain merely five captions for each image. 

Prior evaluation instruments can gauge agreement between machine-generated captions 

and human evaluations, but this is restricted by the small dataset size. Nevertheless, CIDEr 

utilizes the concept of term frequency-inverse document frequency to acquire human 

consensus, as explained in  [74]. 
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𝑔𝑘(𝑠𝑖𝑗) =
ℎ𝑘(𝑠𝑖𝑗)

∑𝜔𝑙∈Ω  ℎ𝑙(𝑠𝑖𝑗)
log (

|𝐼|

∑ 𝐼𝑝∈𝐼  min(1,∑ 𝑞  ℎ𝑘(𝑠𝑝𝑞))
)

                       (4.12) 

CIDEr𝑛(𝑐𝑖, 𝑆𝑖) =
1

𝑚
∑  

𝑗
 

𝒈𝒏(𝑐𝑖) ⋅ 𝒈𝒏(𝑠𝑖𝑗)

∥∥𝒈𝒏(𝑐𝑖)∥∥∥∥𝒈𝒏(𝑠𝑖𝑗)∥∥
                                (4.13) 

CIDEr (𝑐𝑖, 𝑆𝑖) = ∑𝑛=1
𝑁  𝑤𝑛CIDEr𝑛 (𝑐𝑖, 𝑆𝑖)                                  (4.14) 

SPICE (Semantic Propositional Image Caption Evaluation): A statistic called 

SPICE assesses how semantically comparable the created and reference captions are. 

Semantic parsing is used, and the effectiveness of the resulting captions is assessed using 

semantic statements [75]. It depends on a semantic model of graphs known as a scene graph 

[76], [77]. This graph may take image captions and extrapolate information about various 

items, properties, and their relationships. 

ROUGE (Recall-Oriented Understudy for Gisting Evaluation): ROUGE is a 

statistic that was initially created to assess text summarization. By taking into account the 

overlap between created and reference descriptions based on n-gram matching, it may also 

be modified to assess image captioning. ROUGE exists in several iterations, encompassing 

ROUGE-1, ROUGE-2, ROUGEW, and ROUGE-SU4. Specifically, ROUGE-1 and 

ROUGE-W are applicable when evaluating individual documents, whereas ROUGE-2 and 

ROUGE-SU4 exhibit effectiveness in the context of summarizations. Nevertheless, the 

evaluation of multi-document text summaries poses challenges for the ROUGE metric 

[78]. 

ROGUE − L F1 =  2 ∗  
𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+  𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛
                                      (4.15) 

4.5 Summary 

In this chapter research methodology about my research work was discussed and discuss 

my proposed work to solve the research problem and to achieve research objectives. The 

complete experimental setup of my proposed framework also discussed in this chapter. 
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CHAPTER 5 

 

 

5 RESULTS 

 

 

 

In this chapter, the result of this research that comes from the experiment was 

discussed. In the final step, the performance of my research approach with the other 

approaches that have already been used for the research in the same domain is also 

discussed. 

My research is conducted in the domain of ‘Image Captioning’. The major research 

gap is the lack of accuracy in the caption generated for an image. This lack of accuracy is 

due to the lack of semantic knowledge in the area of ‘Image Captioning’. To solve this 

mentioned problem, An experiment was performed using an encoder-decoder transformer-

based approach by using ViT and GPT-2. MS COCO and Flicker30k datasets were used to 

experiment. After experimenting, the results were evaluated on the specific evaluation 

metrics that are used for ‘Image Captioning’. 

5.1 Results of Image Captioning with ViT-GPT-2 

In this research, the major problem is the lack of accuracy in the generated captions 

and this lack of accuracy is due to the lack of semantic knowledge of an image. Our main 

focus is to improve the performance of the ‘Image Caption’ that is generated from the 
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different objects and features of an image and explore the semantic knowledge of the image 

and the relationships of the objects within the image.  

To achieve research objectives an encoder-decoder-based framework was proposed. 

In this framework, the vision transformer (ViT) is used as the encoder that extracts the 

features from the and sends output to GPT-2 used as the decoder that generates the captions 

for images in this research. Further in this section, the result of our work will be discussed 

and will be compared with the research work in this domain. 

5.1.1 Quantitative Analysis 

Table 5.1 shows the results that are generated from our model ViT-GPT-2. These 

results are compiled from the MS COCO Dataset. Similarly, Table 5.2 shows the results 

generated from our model ViT-GPT-2 on the flicker 30k dataset. 

Reliable measures that can gauge how closely generated captions match reference 

captions created by humans are needed to assess the quality of generated captions. Bleu-1 

(B1), Bleu-2 (B2), Bleu-3 (B3), Bleu-4 (B4), CIDEr C, Rogue, and Meteor M are image 

captioning evaluation metrics are often employed to evaluate the generated image captions. 

 

Table 5.1 Result of ViT-GPT-2 on MS COCO Dataset 

Model B1 B2 B3 B4 M C Rogue-L 

ViT-GPT-2 92.18 86.15 81.17 74.19 45.36 81.37 59.5 
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Figure 5.1 Graphical Representation of Results on MS COCO Dataset 

Qualitative Result Analysis on MS COCO Dataset: 

BLEU Scores: BLEU measures the overlap between the generated captions and 

reference captions in terms of n-grams such as bleu-1, bleu-2, bleu-3, and bleu-4. A higher 

bleu score indicates the similarity in the generated image caption with the reference 

caption. In this research, all of the bleu scores improved as compared to the other research. 

Results from the experiment show a performance improvement as Bleu-1, Bleu-2, Bleu-3, 

and Blue-4 at 92.18, 86.15, 81.17, and 74.19 respectively. 

METEOR: METEOR considers precision, recall, and alignment of n-grams, 

providing a more holistic view of performance. Meteor score shows the quality of the 

generated caption in the context of the image caption. In this research meteor score is 45.36, 

this score is improved from other research shows that the quality of the generated image 

caption improves.  

CIDEr: CIDEr emphasizes the importance of generating diverse and descriptive 

captions. Higher CIDEr scores indicate better performance in capturing the essence of the 

images. In this research, our research model gained a CIDEr score is 81.37. 

Evaluation Metrics 

A
ccu

racy
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ROUGE-L: ROUGE-L measures the overlap of Longest Common Subsequences 

(LCS) between generated and reference captions. A higher ROUGE-L score means better 

recall of important content in the captions. The score of ROUGE-L from this research is 

59.5 this also improves from the other research shows that all important information is 

extracted from the image using the ViT-GPT-2 framework. 

As  

Table 5.2 Result of ViT-GPT-2 on Flicker 30k Dataset 

Model B1 B2 B3 B4 M C Rogue-

L 

ViT-GPT-2 91.32 82.20 74.03 63.62 30.1 32.89 54.01 

 

 

 

Figure 5.2 Results Graphical Representation of Flicker 30k Dataset 

Qualitative Result Analysis on Flicker 30k Dataset: 

BLEU Scores: In this research, all of the BLEU score also improves with the 

flicker 30k dataset as compared to the other research. Results from the experiment show a 

Evaluation Metrics 

A
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performance improvement as Bleu-1, Bleu-2, Bleu-3, and Blue-4 at 91.32, 82.20, 74.03, 

and 63.62 respectively.  

METEOR: In this research meteor score on the Flicker 30k dataset is 30.1, this 

score is improved from other research shows that the linguistic quality of the generated 

image caption improves.  

CIDEr: Higher CIDEr scores indicate better performance in capturing the essence 

of the images. In this research, our research model gained a CIDEr score is 32.89 on the 

Flicker 30k dataset. 

ROUGE-L: The score of ROUGE-L from this research is 54.01 on the Flicker 30k 

dataset, this also improves from the other research shows that all important information 

extracted from the image using ViT-GPT-2 framework. 

5.1.2 Comparison Of Our Results With Other Models On MS COCO 

Dataset 

Table 5.3 shows the result of the experiment on the MS COCO dataset with the 

comparison of other models with our model that major focus on the semantic knowledge 

of the image during the generation of the image captioning. Different model works 

differently and different results are generated from the experiment. 

Table 5.3 Result Comparison with Other Models on MS COCO Dataset 

Model Name B1 B2 B3 B4 M C Rogue-

L 

ML-based 

medical 

report 

System [63] 

69.69  61.95  54.96 50.08 70.44 56.50 72.52 

ConCap [64] - - - 40.5 30.9 133.7 - 

SCD-NET 

[65] 

80.2 64.9 50.1 38.1 29.0 126.2 58.5 
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Visual 

Attention 

Model [20] 

80.5 65.7 51.0 38.9 28.3 126.7 58.8 

VSDA [45] 75.3 59.1 45.1 34.4 26.5 53.2 55.2 

SSAAL [46] - - - 34.3 26.2 106.2 55.3 

Textual 

Distilling 

Module and 

Textual 

Association 

Module [47] 

80.9 65.7 51.2 39.3 29.5 129.0 59.2 

a domain-

specific image 

caption 

generator 

[48] 

79.1 62.4 47.1 35.9 27.1 - - 

I-CPRA [49] - - - - 27.9 111.2 - 

SF-GANRF 

[50] 

27.9 14.7 8.3 4.8 11.2 42.2 26.2 

(FCN)-LSTM 

[51] 

71.2 51.4 36.8 26.5 24.7 88.2 - 

YOLO [19] 6.26 % 8.42 % 11.53 % 16.09 

% 

3.82 

% 

15.04 

% 

3.76 % 

ATT-FCN 

[52] 

70.9 53.7 40.2 30.4 24.3 - - 

VSRN [3] 76.2@R1 94.8R@5 98.2@R10 - - - - 

SG2Caps [53]    33.0 26.2 112.3 55.3 

image 

captioning 

80.8 64.3 49.6 37.5 28.2 126.0 58.2 
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framework 

[54] 

R-CNN, 

VGG and 

RNN    [2] 

64.00 44.57 24.87 12.54 - - - 

hybrid end-

to-end CNN-

LSTM 

networks [55] 

69.6 57.0 46.9 40.0 34.2 163.2 68.5 

Scene graph 

(CNN-RNN-

SVM) 

framework 

[6] 

67.6 49.3 35.5 26.1 22.3 76 - 

CNN+RHN 

[57] 

72.3 55.3 41.3 30.6 25.2 98.9 - 

end-to-end 

deep learning 

approach [5] 

66.8 46.8 32.2 22.1 - 55.12 20.36 

Stack-VS [58] 79.0 63.4 48.9 37.2 28.8 118.9 57.5 

P3DAT-CAS 

[59] 

75.3 59.0 45.0 34.1 27.0 109.1 55.4 

M2 

Transformer 

[60] 

81.6 66.4 51.8 39.7 29.4 129.3 59.2 

Up-down [61] 80.2 64.1 49.1 36.9 27.6 117.9 57.1 

Scene-based 

Factored 

Attention 

Module [62] 

80.3 64.6 60.1 38.1 28.5 126.8 58.2 
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ViT-GPT-2 

(Our) 

92.18 86.15 81.17 74.19 45.36 81.37 59.5 

 

The results are shown in Table 5.3 there is a clear difference between our model 

ViT-GPT-2 and other model's work on performance to perform image captioning tasks. 

However, after focusing on the semantic attention and visual attention of the image overall 

performance of our model improves and the scores of the various evaluation metrics 

improve which are higher than the other models that are mentioned in the literature review. 

Bleu-1, Bleu-2, Bleu-3, and Blue-4 are improved by 10.58, 20.45, 21.07, and 34.19 

respectively. The other evaluation metrics like Meteor improve by 11.16 and the Rogue 

metric improves by 0.3. These results show that image captions generated by using the ViT-

GPT-2 encoder-decoder framework are more reliable. Image captions overlap with the 

reference captions showing the performance of the caption generation the linguistic quality 

of the caption improves and all-important features of the images are extracted to generate 

a more accurate image caption. A graphical comparison of the performance of ViT-GPT-2 

and another model on the MS COCO dataset is shown in Figure 5.3. 

 

 

Figure 5.3 Comparison with COCO Dataset 

Evaluation Metrics 

A
ccu

racy
 



92 

 

 

5.1.3 Comparison of Results with Base Paper on MS COCO Dataset 

Table 5.4 Result Comparison with Base Paper on MSCOCO Dataset 

Model Name B1 B2 B3 B4 M C Rogue-

L 

Visual 

Attention 

Model [20] 

80.5 65.7 51.0 38.9 28.3 126.7 58.8 

ViT-GPT-2 

(Our) 

92.18 86.15 81.17 74.19 45.36 81.37 59.5 

 

The results are shown in Table 5.4 there is a clear difference between our model ViT-GPT-

2 and base paper [20] on performance to perform image captioning tasks. Both models use 

same evaluation metrics like BLEU, METEOR, CIDEr and ROUGE. All of evaluation 

metrics improved except CIDEr graphical comparison is given in Figure 5.4. 

 

Figure 5.4 Comparison of Base Paper on COCO Dataset 
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5.1.4 Comparison of Our Results with Other Models Flicker 30k Dataset 

Table 5.4 presents the outcomes of our experiment conducted on the Flicker 30k 

dataset, showcasing a comparative analysis with other models. Our model places a 

significant emphasis on capturing the semantic knowledge of images during the image 

captioning process. It is noteworthy that distinct models exhibit varied behaviors, leading 

to diverse results in the conducted experiments. 

Table 5.5 Result Comparison with Other Models on Flicker 30k Dataset 

Model Name B1 B2 B3 B4 M C Rogue-L 

CNN-RNN-

SVM (Image + 

Scene graph) 

[6] 

67.2 49.2  35.5 26.1 22.3 76 - 

Visual 

Attention 

Model [20] 

76.3 58.9  44.5 33.6 23.7 75.3 52.5  

VSDA [45] 68.1 49.8  35.7 25.6  20.8 53.2 47.4  

Textual 

Distilling 

Module and 

Textual 

Association 

Module [47] 

71.8 - - 27.9 21.6 62.7 49.3 

SF-GANRF [50] 27.9 14.7 8.3 4.8 11.2 42.2 26.2 

YOLO [19] -0.25 % 0.45 % -0.86 % -1.63 

% 

3.82 % 12.63 

% 

3.76 % 

ATT-FCN [52] 64.7 46.0 32.4 23.0 18.9 - - 

VSRN [3] 71.3 

R@1 

90.6 

R@5 

96.0 

R@10 

- - - - 
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image 

captioning 

framework 

[54] 

73.1 55.1 40.1 29.0  22.0 66.8 50.1 

CNN+RHN 

[57] 

72.0 53.0 38.0 25.0 - - - 

P3DAT-CAS 

[59] 

70.3 52.2 37.8  27.1  21.1 58.3 48.4 

ViT-GPT-2 

(Our) 

91.32 82.20 74.03 63.62 30.1 32.89 54.01 

 

The results are shown in Table 5.4 these are the results calculated on the flicker 30k 

dataset and there is a clear difference between our model and other model's work 

performance in performing image captioning tasks. However, after focusing on the 

semantic attention and visual attention of the image overall performance of our model 

improves and the scores of the various evaluation metrics improve which are higher than 

the other models that are mentioned in the literature review. Bleu-1, Bleu-2, Bleu-3, and 

Blue-4 are improved by 15.02, 23.6, 29.53, and 30.02 respectively. The other evaluation 

metrics like Meteor improve by 6.4 and the Rogue metric improves by 1.51. A graphical 

comparison of the performance of ViT-GPT-2 and other models on the Flicker 30k dataset 

is shown in Figure 5.5. 
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Figure 5.5 Results comparisons on Flicker 30k Dataset 

5.1.5 Comparison of Results with Base Paper on Flicker 30k Dataset 

Table 5.6 Result Comparison with Base Paper on Flicker 30k Dataset 

Model Name B1 B2 B3 B4 M C Rogue-

L 

Visual 

Attention 

Model [20] 

76.3 58.9  44.5 33.6 23.7 75.3 52.5  

ViT-GPT-2 

(Our) 

91.32 82.20 74.03 63.62 30.1 32.89 54.01 

 

The results are shown in Table 5.6 there is a clear difference between our model ViT-GPT-

2 and base paper [20] on performance to perform image captioning tasks. Both models use 

same evaluation metrics like BLEU, METEOR, CIDEr and ROUGE. All of evaluation 

metrics improved except CIDEr graphical comparison is given in Figure 5.6. 
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Figure 5.6 Comparison of Base Paper on Flicker 30k Dataset 

5.1.6 Qualitative Analysis 

In this research, our main focus is on the improvement of performance of generating image 

caption. Lack of accuracy due to the lack of semantic knowledge while generating image 

captions. For the qualitative analysis of my research, images from the dataset were taken 

and captions by using our model and comparing these captions with the other model's 

generated captions with the grounded captions that are available in the dataset. All the 

images and captions and their comparison are given in Table 4.5. Our model ViT-GPT-2 

improves the performance of the image caption and focuses on the semantics of the image 

both ViT and GPT-2 focus on the semantics of the image as well as the semantics of the 

text in this procedure. Detailed examples of the ViT-GPT-2 and other model captions are 

discussed in Table 5.8 (a, b, c, and d). In generated captions following points are discussed 

below: 

• Captions generated through ViT-GPT-2 are focused on the linguistics of the 

sentences. 

• ViT-GPT-2 detects all the objects in the image and creates a more relevant caption 

to the image. 
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• ViT-GPT-2 detects all the objects in the image and detects the time frame of the 

scene in the images. 

• ViT-GPT-2 focuses on the scene understanding in the image and focuses on the 

position of objects while generating captions. 

Table 5.7 Captions comparison with other models on the MSCOCO dataset 

Image Our Model Caption Other Model Caption 

 

A bicycle parked in a 

grassy area next to a 

body of water 

 

 

A Bike parked next to a 

bridge over a body of 

water 

 

A man sitting on a 

couch with a cat on his 

lap with laptop 

A man sitting on a 

couch with a laptop 

computer 

 

a man riding a wave on 

top of a surfboard 

a man riding a wave on 

top of a surfboard 
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a row of blue and 

yellow umbrellas on 

the side of a building 

A group of color full 

umbrellas in front of 

building 

 

A man and a woman 

sitting on a sidewalk 

next to each other 

using mobile 

A couple of women 

sitting on a bench 

looking at their mobile 

phone  

 

a man and two women 

sitting at a table with 

wine glasses 

A group of people 

sitting at a table with 

wine glasses 

 

a dog sitting on a bed 

next to a pile of clothes 

a dog sitting on a bed 

next to a group of 

clothes 
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A city street with a 

traffic light and street 

signs 

A group of cars on a 

city street with traffic 

signal 

 

a man holding a frisbee 

in front of a building 

A man holding a 

yellow frisbee in front 

of building 

 

a woman standing in a 

living room holding a 

wii remote 

A women is playing a 

video game in living 

room 

 

a large clock tower 

towering over a city at 

night 

A view of city street 

with a clock tower 
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a woman sitting at a 

table with a lit candle 

A group of people 

sitting on table with 

cake 

 

a man holding a dog on 

top of a boat 

A man sitting on a boat 

with a dog 

 

a small dog sitting on 

top of a toilet seat 

A dog sitting on top of 

a toilet seat. 

 

a man riding a horse on 

top of a lush green 

hillside 

A man riding a horse 

down a hill. 

 

Qualitative analysis of image captions generated by ViT-GPT-2, compared with 

captions from other models, involves a examination of the linguistic quality, coherence, 
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relevance, and creativity of the generated text. ViT-GPT-2's unique combination of Vision 

Transformer (ViT) for image understanding and GPT-2 for text generation allows for a 

comprehensive analysis of both visual and textual elements. Qualitative analysis provides 

valuable insights into the model's proficiency in generating human-like and contextually 

relevant image descriptions, enabling researchers to assess the advancements and 

limitations of ViT-GPT-2 concerning other state-of-the-art captioning models. 

Table 5.8 shows that images and captions were generated by using the ViT-GPT-2 

model and the other image captioning model. Here A qualitative analysis is performed on 

the image captions generated by ViT-GPT-2 and the other model and show which image 

captioning model generates more accurate image captions and focuses on the semantics of 

the image white generating image captions. Table 5.8 a, b, c, and d shows the comparison 

of the image captions and their qualitative analysis below that table. 

Table 5.8 Sample Images for Image Caption 

Table 5.8 (a) 

Image ViT-GPT-2 Caption Other Model 

Caption 

 

A women is sitting at 

a table with lit candle 

A group of people 

sitting on table 

with cake 

 

Accurate Object Detection: Table 5.8 (a) shows the comparison of the image caption of 

ViT-GPT-2 and other model-generated captions. ViT-GPT-2 detects all the objects in the 
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image accurately like women, table and lit candle while other model did not detect objects 

accurately it detected cake instead of lit candle and detect group of people instead of 

women. Clarity in the object detection is due to the self-attention layer of transformer that 

focuses on the semantic of images. Caption generated by ViT-GPT-2 is more accurate as 

compare to the other model generated caption. 

Table 5.8 (b) 

Image ViT-GPT-2 Caption Other Model 

Caption 

 

A dog sitting on bed 

next to a pile of 

clothes 

A dog is sitting on 

a bed next to a 

group of clothes 

 

Improving Linguistic Quality: Table 5.8 (b) shows the comparison of the image caption 

of ViT-GPT-2 and other model generated captions. ViT-GPT-2 detected all the objects and 

predicted words for the caption more accurately linguistically while other models did not 

focus on the linguistics of the sentence like ViT-GPT-2 generated the word ‘pile of clothes’ 

and other model generated ‘group of clothes’. Caption generated by ViT-GPT-2 is accurate 

linguistically as compared to the other model generated caption because GPT-2 is trained 

on multiple books and many textual data therefore using GPT-2 linguistics of the captions 

improves. Improvement in the linguistic comes due to the self-attention layer of the GPT-

2 that focus on the semantic of text while generating caption for image. 
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Table 5.8 (c) 

Image ViT-GPT-2 Caption Other Model 

Caption 

 

A bicycle parked in a 

grassy area next to a 

body of water 

A bike parked next 

to bridge over a 

body of water. 

 

Object Detection With Object Position: Table 5.8 (c) shows the comparison of the image 

caption of ViT-GPT-2 and other model generated captions. ViT-GPT-2 detected all the 

objects and understood the scene in the image accurately while other model did not detect 

objects accurately and also did not describe the scene accurately. ViT-GPT-2 detects 

bicycle, grass, and water surfaces and generates a caption that show the relationship 

between these objects. Other model detected bike instead of bicycle and missed some 

object and did not relate these objects' positions while generating an image caption. Image 

caption generated by ViT-GPT-2 are accurate and focus on scene understanding and 

relationships between the objects. Accurate object detection with their positions in the due 

to the semantic of the image and text that focused by the both the transformer models ViT 

and GPT-2. 
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Table 5.8 (d) 

Image ViT-GPT-2 Caption Other Model 

Caption 

 

A large clock tower 

towering over a city at 

night 

A view of city street 

with a clock tower 

 

Object Detection with Time Frame and Properties: Table 5.8 (d) shows the comparison 

of the image caption of ViT-GPT-2 and other model generated captions. ViT-GPT-2 detects 

all the objects in the image detect the time frame of the scene that night time in the image 

and generate a caption sentence broadly like large tower and towering on the city. While 

other model did not detect the time frame and did not generate sentence broad. Caption 

generated by ViT-GPT-2 is more accurate as compare to the other model generated caption. 

5.2 Discussion 

All results are evaluated on the evaluation metrics that are used for the natural language 

processing such as BLEU, CIDEr, ROUGE and METEOR. BLEU scores measure the 

overlap of generated caption and reference caption and it indicates the similarity in the 

generated caption with reference caption. While METEOR metric evaluates the quality of 

the generated caption by focusing linguistic quality of the generated caption with the 

reference caption. It focusses not only exact words but it also focusses on the synonyms of 

the words. CIDEr considers the diversity and richness of vocabulary and concepts used in 
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the captions. ROUGE scores measure the longest overlap sentence of the generated caption 

and the reference caption. All metrics that are used for evaluations of the captions are 

improved except CIDEr. 

All the scores improved due to the capability of our model that focus on the semantics of 

the image and text as well by using the self-attention layer of the transformer. By focusing 

on the semantics of the image and text following factors improved in this research 

• Object Detection 

• Object Detection with their relationships and sequence  

• Object Detection with time frame and properties of objects e.g. day, night or long 

tower etc. 

• Linguistic quality like pile of clothes rather than group of clothes 

In image captioning, scenarios can arise where precision is high while recall is low. This 

imbalance typically occurs when machine-generated captions are exceptionally accurate 

but may miss describing some elements present in the image. For instance, consider an 

image showing a beach scene with various objects such as umbrellas, people, and waves. 

If a machine-generated caption accurately describes the people and umbrellas but omits 

mentioning the waves, precision remains high due to the correctness of the mentioned 

elements. However, since the caption fails to encompass all relevant details present in the 

image, recall suffers. In essence, high precision with low recall signifies that the generated 

captions are precise and accurate concerning the described elements but might not fully 

capture the entirety of the image's content. 

In image captioning, it's possible for BLEU to yield higher scores compared to METEOR 

due to differences in their calculation methods and focuses. BLEU primarily emphasizes 

n-gram overlap between machine-generated and reference captions, rewarding exact 

matches and penalizing deviations from reference captions. As a result, if a machine-

generated caption closely matches reference captions in terms of specific n-grams, BLEU 

tends to assign a high score. For example, if a reference caption states "a dog running in 

the park," and the machine-generated caption reads "a dog running in the park," BLEU 

would assign a high score due to the exact match. 
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On the other hand, METEOR considers additional factors such as synonymy, stemming, 

and word order in its evaluation, aiming to capture a broader range of linguistic phenomena 

beyond exact word matches. Therefore, METEOR might assign lower scores if the 

machine-generated caption diverges from reference captions in terms of word choice, word 

order, or the inclusion of synonyms and related words. For instance, if the reference caption 

mentions "a canine jogging in the park," and the machine-generated caption reads "a dog 

running in the park," METEOR may assign a lower score due to differences in word choice 

(i.e., "canine" vs. "dog"). 

5.3 Summary 

In this chapter, A complete quantitative and qualitative result analysis of the research was 

discussed. At the end of this chapter comparison of results with other researcher that work 

in the domain of ‘image captioning’. The captions generated by ViT-GPT-2 were compared 

with the captions generated by the other researchers using other models. 
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CHAPTER 6 

 

6 CONCLUSION AND FUTURE DIRECTIONS 

 

 

6.1 Conclusion 

In this study, the possibility for collaboration when the Vision Transformer (ViT) 

and Generative Pre-trained Transformer 2 (GPT-2) were used together to tackle the difficult 

task of ‘Image Captioning’. A novel framework developed by me that smoothly combines 

visual and textual information by utilizing ViT's capacity to extract fine-grained visual 

elements and GPT-2's expertise in language creation. Through empirical analyses, it 

demonstrates by me that how well this method works at producing cohesive, contextually 

appropriate captions that accurately represent the content of a variety of photos. 

My experiments showed that the ViT-GPT-2 combination takes advantage of both 

models to handle the challenges of image captioning. ViT accurately catches the subtleties 

of the visual content of images, while GPT-2 skillfully transforms these visual elements 

into concise descriptions. By merging vision and language models, this multimodal 

synergy advances the state of the art in image captioning. The results are encouraging. 

According to my research, the Vision Transformer successfully collects complex 

visual details at many scales, enabling it to comprehend both the local and global 

components of the images. For GPT-2 to be able to generate captions, this feature extraction 

technique is essential in giving pertinent visual context. In contrast, GPT-2 demonstrates 
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its skill at language generation by skillfully fusing logical and fluid textual descriptions 

with the visual indications offered by ViT. 

An experiment performed on the MS COCO dataset and results evaluated on the 

evaluation metrics like BLEU-1, BLEU-2, BLEU-3, BLEU-4, METEOR, CIDEr, and 

Rogue and results come 91.21, 86.15, 81.17, 74.19, 45.36,81.37 and 559.5 respectively. 

Improvements to Blue-1, Blue-2, Blue-3, and Blue-4 are 10.58, 20.45, 21.07, and 34.19, 

respectively. Other evaluation criteria such as Meteor and Rogue improve by 11.16 and 

0.3, respectively. 

6.2 Future Directions 

For the future directions in the domain of image captioning to enhance the 

performance of image captioning. Investigate methods to more efficiently combine the 

visual and textual embeddings, allowing the model to provide captions that better capture 

complex links between the visual and linguistic features. Increase the model's capacity to 

identify and characterize the finer points of an object, allowing for more detailed and 

specialized captions. The area of image captioning employing the ViT-GPT-2 architecture 

can advance by exploring these future paths to provide more precise, inventive, and 

contextually relevant captions that satisfy a variety of applications and user needs. 
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