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ABSTRACT  

Title: Analysis of Wall Properties and Slip Parameter on the Phan-Thien-Tanner (PTT) 

Fluid 

This thesis delves into a comprehensive exploration of the peristaltic movement of a non-

Newtonian Phan-Thien-Tanner (PTT) fluid within a symmetric flexible channel characterized 

by sinusoidal peristaltic waves. The study employs the long wavelength and low Reynolds 

number approximation, focusing on the flow within a wave frame of reference that travels at 

the velocity of the peristaltic waves. The investigation encompasses a detailed analysis of the 

influences of wall properties, porosity, and slip parameter on the behavior of the PTT fluid. 

The mathematical representation of the system relies on partial differential equations (PDEs), 

with subsequent utilization of similarity transformations to effectively reduce the number of 

dependent variables. The analytical solution is employed to resolve mathematical 

complexities and provide conclusive results for the problem. Through the presentation of 

graphs, the study meticulously examines the impact of various physical parameters on 

streamlines, pressure distribution, and velocity within the system. 
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CHAPTER 1  

INTRODUCTION  

1.1 Overview  

A state of matter known as fluid is distinguished by its capacity to flow and adapt to 

the shape of its surroundings. A fluid is any liquid, gas, or other substance that continuously 

deforms (flows) as a result of an external force or shear stress. They have zero shear modulus, 

or more simply put, they are substances that cannot withstand any applied shear force. Liquids 

like water, milk, juice, oil, blood etc. and gases like air, carbon dioxide, steam etc are included 

in fluids. Daily life examples of fluids are drinking a glass of water, boiling water, inhaling air 

etc. Newtonian fluids and Non-Newtonian fluids are the two main categories of fluids. Its 

properties are fluidity, viscosity, density, compressibility and pressure. Its applications 

include transportations, hydraulic systems, heating and cooling, manufacturing process, 

medical applications and environmental studies. 

 

1.1.1 Applications of Fluids 

 

i) Transportation: Different transportation systems depend heavily on fluids. Examples 

include gasoline or diesel fuels are used as energy sources for vehicles, air is used in 

pneumatic systems. 

ii) Hydraulic Systems: Hydraulic systems, which use the pressure that fluids exert to deliver 

power, frequently use fluids. It is found in machinery, such as cranes, hydraulic lifts and 

forklifts. 

iii) Cooling and Heating: In cooling devices like air conditioners and freezers, fluids like 

water or refrigerants are utilized to absorb heat from the environment. Similarly, fluids like oil 

or steam are used in heating systems to transfer heat energy. 
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iv) Manufacturing Processes: The use of fluids in manufacturing processes is widespread. 

For instance, in metalworking, coolants and lubricants are used to friction, dissipate heat and 

cutting of metals. 

v) Medical Applications: Medical applications require fluids to function. Patients are given 

intravenous fluids to stay hydrated. Understanding blood flow in the circulatory and 

respiratory systems requires knowledge of fluid dynamics. 

vi) Environmental Studies: Understanding weather patterns, ocean currents, and the flow of 

toxins in the environment all depend heavily on fluid dynamics. In order to model and 

anticipate the phenomenon, fluid simulations are utilized, which supports environmental 

research and conservation efforts. 

 

 

 

Figure 1.1 Behavior of the different types of Fluids. 

 

1.2 Newtonian and Non-Newtonian Fluids  

 

The two basic types of fluids are Newtonian fluids and Non-Newtonian fluids. 

 

I) Newtonian Fluids: The viscosity law of Newton is observed by Newtonian fluids, a 

particular category of fluid. This law indicates that the shear stress is directly related to the 

rate of shear strains or the velocity gradient between neighboring layers of a fluid. Newtonian 

fluids have a constant viscosity independent of the shear force that is being applied. For 
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examples, water, gasoline, milk, oil etc. Its properties are constant viscosity; shear tension and 

shear rate are linearly related, without regard to time and incompressible. 

The constitutive equation relating the shear stress (𝜏) to the velocity gradient (
𝑑𝑢

𝑑𝑦
) for 

Newtonian fluids is as follows: 

𝜏 = 𝜇 (
𝑑𝑢

𝑑𝑦
) ,       

where 𝜏 is the fluid layer under shear stress, 𝜇 is the fluid's dynamic viscosity and 
𝑑𝑢

𝑑𝑦
 is the 

velocity gradient in the direction perpendicular to the flow. 

 

1.2.1   Applications of Newtonian Fluids 

 

              Newtonian has the following applications: 

 

i) Water Distribution: Water's consistent viscosity makes it ideal for use in plumbing, water 

supply networks, and other purposes. 

ii) Oil and Gas Industry: In the oil and gas business, Newtonian fluids like crude oil and 

natural gas have consistent viscosity and flow characteristics and are used for processing and 

transportation. 

iii) Food and Beverage Industry: Milk, fruit juices, and syrups are examples of Newtonian 

fluids that are frequently employed in the food and beverage sector. 

 

II) Non-Newtonian Fluids: Fluids that do not follow Newton's viscosity law are referred 

to as "non-Newtonian fluids". The viscosity of non-Newtonian fluids can change with shear 

stress or strain rate. For examples, ketchup, toothpaste, cornstarch and water mixture, paint, 

honey, blood etc. Its properties include variable viscosity, connection between shear stress 

and shear rate that is nonlinear, time dependent behavior, compressibility and flow behavior 

classification. 

 

            Non-Newtonian fluids' constitutive equations are more intricate and link the shear 

stress (𝜏) to the velocity gradient (
𝑑𝑢

𝑑𝑦
). The constitutive formula is as follows: 

𝜏 = 𝐾 ( 
𝑑𝑢

𝑑𝑦
 )𝑛 ,                    
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where 𝜏 is the shear stress on the fluid layer, K is the consistency coefficient, 
𝑑𝑢

𝑑𝑦
 is the 

velocity gradient in the direction perpendicular to the flow and n is the flow behavior index. 

1.2.2  Applications of Non-Newtonian Fluids 

 

Applications for non-Newtonian include: 

 

i) Personal Care Product: Personal care items including toothpaste, shampoo, and lotions 

use non-Newtonian fluids. 

ii) Paints and Coatings: Paints, coatings, controlled application, and the avoidance of drips 

and sagging all involve non-Newtonian fluids. 

iii) Biomedical Engineering: Numerous biomedical applications, such as tissue engineering, 

blood flow, and drug delivery systems, are explored and make use of non-Newtonian fluids. 

iv) Geological and Environmental Studies: Non-Newtonian fluids, such as drilling muds. 

v) Polymer processing: In procedures like injection molding, extrusion, and 3D printing, 

many polymer solutions and melts display non-Newtonian behavior. 

 

1.3 Peristalsis Flow 

 

The movement of materials through tubular structures is known as peristalsis, which is 

the coordinated contraction and relaxation of muscles in a wave-like fashion. Circular and 

longitudinal muscles are sequentially contracted to produce a squeezing force that moves the 

fluid or substance ahead. Like the gastrointestinal system, the urinary system, and the blood 

arteries. Swallowing, digesting, urination, and blood circulation are examples from daily life. 
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            Figure 1.3 Behavior of the peristalsis. 

1.4 Slip Flow 

 

Slip flow is a type of fluid flow in which a thin layer of fluid close to a solid barrier 

moves relative to the boundary or slips in that direction. Slip happens when the fluid near the 

boundary has a velocity gradient, as opposed to the no-slip situation, when fluid molecules 

stick to the boundary and travel at the same speed as the boundary. Examples include gas floe 

in micro channels, thin liquid films and lubrications. Daily life examples include water flow 

on hydrophobic surfaces, slippery surfaces and air flow surfaces. 

 

 Based on how the fluid behaves close to the solid boundary, there are two basic forms 

of slip flow: velocity slip and temperature slip. Different facets of the relative motion between 

the fluid and the boundary are described by these many forms of slip flow. These are the 

several forms of slip flow: 

 

i) Velocity slip: It describes a scenario in which there is relative motion at the fluid-solid 

boundary, causing a gradient in velocity close to the border. In velocity slip, the fluid close to 

the solid surface moves more slowly than the barrier it does. It develops for a number of 

reasons, including the presence of a gas layer with low friction or molecular interactions 

between the fluid and solid surface. It is observed in gas flow at small length scales, such as in 

micro channels or at low pressures. 

ii) Temperature Slip: It also goes by the name "thermal slip," and it happens when the 

boundary between the fluid and the solid has a temperature gradient. In this instance, when 
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compared to the boundary temperature, the fluid near the solid surface is warmer. It develops 

as a result of things like gas molecules fitting onto a solid surface or energy transfer at the 

fluid-solid interface. It is observed in rarefied gas flows or at low temperatures. 

 

 Velocity slip, velocity gradient, reduced friction, slip layer thickness, and temperature 

slip are all characteristics of slip flow. These slip flow applications include microfluidics, gas 

sensing, drag reduction, and more. 

 

  The slip length, which represents the distinctive length scale of the slip effect, can be 

used to express the slip flow equation. The symbol for the slip length is '' λ ''. The slip flow 

equation can be found in: 

u = λ ∗
𝜕u

𝜕𝑛
 ,     

where u is the slip velocity at a point near the solid boundary, λ is the slip length and 
𝜕u

𝜕𝑛
 is the 

velocity gradient going in the solid surface's normal direction. 

 

1.5 Wall Properties 

 

Wall properties are the features and qualities of a surface or boundary that influence 

how fluids or other materials behave when they come into touch with it. These characteristics 

are significant in a variety of scientific, engineering, and real-world situations. Roughness, 

porosity, permeability, smoothness, thermal conductivity, reflectivity, etc. are a few examples. 

 

            The behavior of fluids or other materials in contact with walls is influenced by a 

variety of wall features. Here are the main types of wall properties: 

 

i) Roughness: It alludes to the texture or imperfections on a wall's surface. It alters the 

smooth flow patterns, encourages turbulence, and expands the surface area for contact, which 

all have an impact on fluid flow. Wall roughness is sometimes divided into two categories, 

microscopic roughness and macroscopic roughness, depending on the height and spacing of 

the surface flaws. 
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ii) Porosity: It alludes to the existence of voids or unfilled areas inside a wall's construction. 

It has an impact on a material's permeability and fluid flow.  For examples, influencing 

filtration, absorption, or diffusion process. 

iii) Smoothness: It alludes to a wall surface that is free of blemishes or roughness. It 

encourages laminar flow, lessens the effects of friction, etc.  

iv) Adhesion: It speaks to a wall surface's capacity to adhere or bond to other materials. It is 

influenced by the wall's material's chemical composition, degree of roughness, and surface 

energy. 

 

           Here are some often occurring characteristics linked to wall characteristics: impact on 

fluid flow, surface interactions, transport phenomena, surface energy, etc. Wall properties 

have numerous applications across various fields. The applications are structural support, 

thermal insulation, acoustic insulation, fire resistance etc. 

1.6     Phan-Thien-Tanner (PTT) Fluid 

 

         The Phan-Thien-Tanner (PTT) fluid rheological model is utilized to explain how 

viscoelastic fluids, which are non-Newtonian fluids, behave. It is frequently used to examine 

complicated fluids like suspensions and solutions of polymers.  For examples shear thinning 

or shear thickening and elastic effects. Daily life examples include polymer solutions, 

biopolymers, suspensions etc.  

 

To accurately represent the viscoelastic behavior of fluids, the PTT model combines 

viscous and elastic components. It's assumed that the fluid is made up of structures that 

resemble elastic dumbbells that communicate with one another and the surrounding fluid. 

 

            A set of equations that connect the PTT model is explained by the stress tensor (𝜎) 

and the rate of deformation tensor (D). The formula for the equation is: 

𝜎 = 𝜇 ∗ 𝐷 + 𝜆 ∗ (𝑡𝑟(𝐷)𝐼 − 𝐷) + 𝐺 ∗ 𝐻,     

                                         𝐷 =
1

2
∗ (𝑔𝑟𝑎𝑑(v) + 𝑔𝑟𝑎𝑑(v)𝑇 ,     

where 𝜇 is the dynamic viscosity, 𝜆 is the relaxation time, 𝑡𝑟(𝐷) is the trace of D, I is the 

identity tensor, G is the elastic modulus and H is the representing the orientation of the 

dumbbell-like structures, grad (v) is the tensor of velocity gradient and T is the transpose 

operation.  
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1.7   Porosity 

The percentage of empty or void spaces within a material is referred to as porosity, 

and is often expressed as a fraction or percentage. It is a ratio of a substance's total volume to 

the amount of open space or pores contained in that substance. It is a crucial factor that 

impacts the way that materials behave physically, mechanically, and when they are 

transported. Porous substances feature connected or isolated spaces that can contain liquids 

like air or water. Examples include sponges, soil, bread etc. Daily life examples include 

porous membranes, insulation materials, sponge and cleaning products etc. 

 

 Porosity can be divided into numerous categories according to its source, 

arrangement, and shape.  Porosity has a number of characteristics, including porosity fraction, 

void size and distribution, permeability, fluid retention and absorption, mechanical strength, 

and others. Due to its special characteristics, porosity has many uses in a variety of disciplines 

and businesses. These include filtration and separation, insulation, absorption and absorption, 

catalyst support, energy storage, and other frequent uses of porosity. 

 

1.8 Thesis Organization 

         The rest of thesis is organized in the following manner: 

Chapter 2 

                Chapter 2 presents the literature review. This chapter provides an insight of the 

research relevant to our proposed model. 

Chapter 3 

   Chapter 3 presents the fundamental concepts and basic laws. This chapter provides 

an insight to the principal definitions that have been utilized to persue this research work. 

Chapter 4 
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  Chapter 4 presents review work. We have reviewed the work done by Sirinivas [36] 

in detail. The mathematical results are achieved by solving the systems of PDEs and applying 

perturbation technique. The results are illustrated through graphs. 

Chapter 5 

   Chapter 5 presents the extension work. This chapter includes the extension of the 

work discussed in chapter 4. We have added porous medium and changed the fluid model. 

The mathematical results are achieved by applying similar techniques used in the review 

work. The results are illustrated through graphs. 

Chapter 6 

  Chapter 6 gives the summary of the extension work. This chapter sums up all the 

results obtained in chapter 5 and also comprises of the future recommendations. 
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CHAPTER 2  

LITERATURE REVIEW  

2.1 Overview of Related Literature 

 The synchronized muscle contraction and movement known as peristalsis relaxation 

that propels materials through the hollow organs of the body. For example, esophagus, 

stomach, small intestine, large intestine etc. Peristalsis flow is a mechanism in which 

biological or psychological fluid is driven axially along a tube or duct by sinusoidal waves. 

Peristalsis is a sequence of coordinated rhythmic contractions of smooth muscles that propel 

contents through a tube-like design. It is somewhat muscular action that happens often in the 

ureters, esophagus, and numerous other bodily organs. In the context of fluid flow, peristalsis 

refers to the movement of a fluid through a tube or channel as a result of the rhythmic 

contractions of the surrounding muscles.  

 

Mittra et al. [1] assumed that the muscle's driving force takes the form of a moderately 

amplitude sinusoidal wave applied to the channel's flexible walls. Formato et al. [2] 

determined that the best way to simulate peristaltic pump operating conditions additionally to 

developing a numerical model of the peristaltic pump under consideration would be to 

improve and optimize the peristaltic pump under consideration's operational features. Tripathi 

[3] investigated the outcome of the peristaltic flow model for a finite porous channel. The 

mathematical model from which a set of governing equations in one dimensionless space 

subject to suitable boundary conditions was generated. 

 

   Ansar et al. [4] studied an incompressible Williamson fluid is flowing peristaltically 

through a curved tube while being surrounded by a magnetic field. The issue is explained in 

terms of its frame of reference for waves. Mathematical model was developed by using 

induction, linear momentum, and continuity equations. Siddiqui et al. [5] explored the impact 

ALL MarginS=2.5 

cm for FOR ALL 

PAGES 
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of non- Newtonian material coefficients and inertial terms on fluid transport. Moreover, 

calculating the pressure rise per wavelength with respect to time and flow rate. 

 

            Tripathi et al. [6] discovered the analysis of viscoelastic fluid flow using the fractional 

Maxwell model. Takabatake et al. [7] elaborated the numerical results for pressure rise and 

the shearing stress while examining the impacts of the peristaltic wave's geometric shape on 

the flow field. With high Reynolds numbers, the reflux phenomena is found close to the 

center axis, whereas at low Reynolds numbers, it is found close to the wall. The distribution 

of Eulerian velocities determines how a fluid particle moves. Hayat et al. [8] explored the 

Hall Effect. For the free pumping of Hall parameter, analytical solutions have been derived 

using the regular perturbation method. As the Hall parameter is increased, the mean velocity 

decreased. 

 

  Hayat et al. [9] discussed the effects of the effects of Soret, Joule heating, and heat 

generation on the peristaltic activity of pseudoplastic fluid with Hall current applied in a 

slanted channel. In this study hall parameter m and the fluid parameter ξ both exhibit 

increasing behavior for a velocity field. Rising Reynolds number values (Re), rise the 

temperature range. The bolus size increases for 𝐸1 and 𝐸2, while it decreases for 𝐸3. Rashid et 

al. [10] investigated the impact of peristaltic flow generated by magnetic field for Williamson 

fluids in the curved channel. In this research it has been found that as k grows in the pumping 

zone, pressure rise ∆𝑝 rises as well, whereas pressure rise ∆𝑝 decreases for increases in k in 

the copumping region. Williamson fluid experiences a greater pressure rise than viscous fluid. 

In the inner and outer halves of a channel, the velocity profile declines with increasing k 

values. The velocity profile increases as 𝑊𝑒  increases in the inner half of a channel while 

decreasing in the outer half. Javed and Naz [11] studied the peripheral flow of a realistic fluid 

in an asymmetric channel affected by elastic walls explorations are investigated in the current 

investigation. In this the a, h, T, and 𝜆1 variations on 𝐷1 are polar opposites of the 𝜆2 

variation. The flow reversal occurs close to the boundaries. In comparison to that close to the 

bottom wall, the flow reversal is substantially greater. When 𝜆1 = 𝜆2 = 0, the results for a 

viscous fluid can be determined.  

 

Abd elmaboud et al. [12] under the long wavelength assumption, examined at the non-

Newtonian pair stress fluid flowing peristaltically in a rotating frame of reference. In this 
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research under the influence of T and 𝛾, the pressure gradient, 
𝑑𝑝

𝑑𝑥
, has a periodic character.  

Contrary to T, which has a minor impact on it, the pair stress parameter greatly influences 
𝑑𝑝

𝑑𝑥
, 

leading it to decline. Up until a certain point in the peristaltic pumping zone, the pressure rise, 

∆𝑝, in the retrograde pumping diminishes. At that point, the pumping rate increases by raising 

T and 𝛾 in the peristaltic and co-pumping regions. Free pumping depends on large values of T 

and 𝛾  on, where the pressure does not increase against the peristaltic wave's direction and so 

helps the flow. Noreen et al. [13] looked at the peristaltic pump-induced Carreau fluid flow in 

an inclined, asymmetric conduit. In this concern about the Weissenberg number 𝑊𝑒 are used 

to obtaining expressions of interest in their approximative form, such as the temperature 

distribution, pressure gradient, pressure rise, and velocity profile. It has been found that with 

rising magnetic field 𝛽 inclination and Weissenberg number 𝑊𝑒, the pumping rate falls. The 

axial velocity's magnitude is greater in an asymmetrically inclined conduit. In comparison to 

Carreau fluids, viscous fluid has a higher axial velocity.  

 

          Imran et al. [14] examined non-Newtonian fluid flowing with peristaltic motion due to 

an uneven vertical tube using nanoparticle analysis. While in this the behavior for the 

thermopherses parameters 𝑁𝑡 is the contrary, the pressure rise reduces as the value of 

increases 𝛼. As the values of the thermophoresis parameter 𝑁𝑡 increase, the velocity and 

temperature profiles decrease. While increasing values of the thermophoresis parameter 𝑁𝑡  

raise the concentrated nanoparticle field, which lowers for larger values of the Brownian 

motion parameter 𝑁𝑏. When the velocity field, Brownian motion parameter 𝑁𝑏, and 

thermophoresis parameter 𝑁𝑡 are all raised the thermophoresis parameter 𝑁𝑡 is increased, it 

decreases. The pressure gradient increases as increases 𝜑. When we increase the parameter 𝛼, 

the frictional forces rise, but for 𝑁𝑡, the impact is the opposite. Noreen et al. [15] performed a 

research on EOF powered by peristaltic pumping through wavy microchannels has proven 

possible. On the temperature, pressure gradient, shear stress, Nusselt number, velocity, and 

material parameters A and B have opposing effects. Expanding Eyring parameter, 

electroosmotic parameter, and averaged temporal flow rate cause axial velocity to increase in 

the core region of a wavy microchannel. For the pressure gradient, Helmholtz-Smoluchowski 

velocity, and Eyring fluid parameter is greater, while it decreases for the electroosmotic 

parameter and the average time flow rate. Nusselt number rises with increasing viscous 

heating (Brinkman number). Shear stress, electroosmotic parameter, and Helmholtz-

Smoluchowski velocity are all closely correlated. Ramesh et al. [16] studied the dusty Jeffrey 
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fluid model's electro-osmotic flow influenced by the magnetic and electric fields in an 

asymmetric microchannel. Electro-osmotic and Helmholtz-Smoluchowski parameters both 

significantly hinder the flow. Although the flow is opposed by the zeta potential, slip 

conditions boost fluid velocity throughout the entire domain. The Helmholtz-Smoluchowski 

parameter and the electro-osmotic parameter have a tendency to minimize the wall shear 

stress. On a pressure gradient profile, Helmholtz-Smoluchowski and electro-osmotic 

parameters behave in opposite ways. The pressure gradient is increased in both the fluid phase 

and the particle phase by strong slip effects and the fluid parameter, respectively. 

 

Slip flow is a type of fluid flow that occurs near a solid surface, where the fluid 

particles close to the surface experience a different velocity than those in the bulk of the fluid. 

This phenomenon arises due to the interaction of the surface and fluid, which can cause the 

fluid particles near the surface to slow down. Slip flow is often observed in microscale or 

nanoscale systems, where the fluid-solid interface becomes significant. 

 

  Farooq et al. [17] analyzed the slip effects at velocity, temperature, and 

concentration. The magnetic parameter drops as the velocity slip parameter slows centre 

velocity while the Hall parameter enhances the velocity and temperature. Temperature 

became increasingly affected by the thermal slip parameter. Non-Newtonian materials have 

the highest temperature, while Newtonian materials have the lowest. Concentration decreased 

as the concentration slip parameter enhanced. Shehzad et al. [18] examined how the magnetic 

field affects, which was considered variable, along with the slip parameter on the peristaltic 

movement of fluid in a curved conduit according to Carreau-Yasuda. In their study, Ali et 

al. [19] investigated a theoretical model that investigated the effects of various variables on 

peristaltic motion in a curved passage, including fluid rheology, the magnetic field, amplitude 

ratio, and wall slip. They discovered that when the applied magnetic field was strong enough, 

the velocity of the fluid in the curved channel adopted a boundary layer characteristic. By the 

increase in the slip parameter, an increase in velocity at both channel walls was observed. 

Farooq et al. [20] discussed the flow behavior within the channel created by the rapid 

sinusoidal wave propagation. They concluded that the axial velocity was enhanced because of 

hybrid nanoparticle insertion into base material also, hybrid nanoparticles upsurged the 

temperature of the fluid. 
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  Hayat et al. [21] Jeffrey nanofluid's peristaltic flow in a conduit with wall 

characteristics was investigated. They also examined the results of combined convection and 

ion slip. In this research they observed enhancement in the velocity and decline in the 

temperature by the expansion of the ion slip and Hall parameters. Imran et al. [22] 

investigated the peristaltic mechanism for the Rabinowitsch nanofluid model in an 

asymmetric channel to see effects of basic density, Brownian parameter, thermophoresis 

parameter, and thermal Grashof number. In the study, bvp4c solver is used by Wahid et al. 

[23] to numerically investigate the heat-generating slip flow of a hybrid nanofluid over a 

permeable exponentially extending or contracting sheet. They discover that with an 

appropriate amount of suction, dual solutions are possible in the diminishing surface region, 

but only the first solution is stable. In the shrinking surface region, the local Nusselt number 

rises while the skin friction coefficient decreases as the velocity slip parameter is increased.  

In another study, Elmaboudy et al. [24] investigated the vertical passageway in which Carreau 

fluid flows peristaltically. They used the long wavelength approximation to reduce the 

governing equations to a set of nonlinear PDEs and obtain solutions for the temperature and 

velocity fields using the homotopy analysis method (HAM). 

 

Akram et al. [25] studied a particle fluid suspension model in a non-uniform 

rectangular duct with slip borders, to examine the impact of lateral walls on peristaltic 

transport is investigated. While in this in the regions of peristaltic pumping (∆𝑝 > 0; 𝑄 > 0)  

and retrograde pumping (∆𝑝 > 0; 𝑄 < 0) the pumping rate increases with an increase in M; 

however, the behavior is precisely the contrary in the copumping (∆𝑝 < 0; 𝑄 > 0)zone. In the 

peristaltic pumping (∆𝑝 > 0; 𝑄 > 0)and retrograde pumping (∆𝑝 > 0; 𝑄 < 0)areas, the 

pressure rise decreases while remaining constant in the copumping zone (∆𝑝 < 0; 𝑄 > 0). 

The pressure rise decreases as K rises throughout the board, while the pressure rises as 

increases in 𝜙 to climb. Rani et al. [26] examined a MHD elastico-viscous fluid's peristalsis 

under slip conditions. The present research is predicated on the notion that peristaltic waves 

have lengthy wavelengths compared to channel width. Due to the symmetry of the flow, the 

highest flow occurs at the centre line of the parabolic axial velocity profile. All other 

parameters have the opposite effects on the central line and the walls, with the exception of 

the amplitude ratio parameter 𝜀. Hayat et al. [27] looked at how thermal radiation and Joule 

heating affect the fourth-grade nanoliquid's MHD peristaltic motion. In this velocity increases 

when and 𝛽1 and Γ decreases when M is higher. 𝑁𝑏 and 𝑁𝑡 have comparable qualitative 

effects on temperature. The effects of 𝛽2  and 𝛽3 on temperature and concentration are very 
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different. Temperature and concentration increase with an increase in 𝐸1 and 𝐸2, but decline 

with an increase in 𝐸3. 

 

          Tanveer and Malik [28] investigated the flow of nanofluid in this case is examined in a 

curved channel with periodic wave transport in light of physiological and industrial 

peristalsis. The problem has been studied and examined for MHD Ree-Eyring fluid in terms 

of the effects of thermophoresis, Brownian diffusion, wall compliance, and slip 

circumstances. There is a drop in temperature and velocity for this Ree-Eyring fluid 

characteristic. Slip causes a decrease in the mass transfer of nanoparticles while increasing the 

nanofluid's speed and temperature. The viscosity parameter has an opposite effect on velocity 

and temperature. The curvature parameter exhibits similar behavior with respect to velocity 

and temperature, but has the opposite effect on mass transfer. Eldesoky et al. [29] studied the 

peristaltic motion of the fluid through the tube in it also examines fluid flow behavior while 

examining the effectiveness of various flow and wall features when heat transfer is present. In 

this that show the compressibility factor, which decreases 𝑥 as Q increases, has a substantial 

effect on the net flux. Additionally, slip condition appears to have an impact on the maximum 

net flux is observed at 𝐾𝑛 = 0.15 (totally slip flow), and it grows as the slip factor, 𝐾𝑛 

increases the net flow rate. Wall characteristics, which have a big impact on flow rate 

behavior, are the important parameter. For example, however, increasing wall stiffness K and 

wall tension T increases net flux, whilst increasing wall damping factor D decreases net flux 

(resisting flow), creating the impression of backflow with T effect being more obvious than K 

effect profiles. 𝑃𝑟, 𝑅𝑒, and 𝛼 are being increased, which is expanding the temperature 

distribution. 

 

           Das et al. [30] in an endoscope explored the peristaltic wave motion of electromagnetic 

nano-blood pumping in the presence of Hall and ion slip currents. The effects of the heat 

source, the convective boundary condition, and the wall features are all included. The 

governing equations are made simpler by the long wavelength and low Reynolds number 

assumptions even if the effects of the Hall and ion slip parameters are in conflict, the blood 

velocity in axial direction is reduced close to the endoscope wall as a result of an increase in 

Hartmann number. The hybrid 𝐴𝑔𝐴𝑙2𝑂3/blood have the highest axial velocity value, while 

𝐴𝑔-blood has the lowest value. When the clot height, Hall and ion slip parameters, and other 

factors are increased, the tension on the wall is lowered. However, the opposite behavior is 

seen as the volumetric concentration of hybrid nanofluid particles rises. Hall and ion slip 



17 

 

 

 

currents do not considerably alter the streamlines. Rafiq et al. [31] investigated the peristaltic 

motion of a viscous nanofluid during conduit with a compliant wall under strong magnetic 

field conditions that result in Hall and ion-slip phenomena. Temperature (𝜃) and velocity (u) 

show a reduction for improving Hartman number M. When compared to Hartman number M, 

reverse behavior for velocity is observed with rising Hall and ion-slip parameters (𝛽𝑒 and 𝛽𝑖). 

Temperatures are increased via stronger thermophoresis and Brownian motion parameters 

(𝑁𝑏)  and (𝑁𝑡). On the concentration profile are diametrically opposed. Streamlines behave 

differently for 𝛽𝑒 and 𝛽𝑖. Riaz et al. [32] examined  second-order slip at the channel walls in a 

curved channel for low Reynolds number and long wavelength peristaltic nanofluid flow. 

Pressure rise profile with 𝛽1 increases in half of the domain and lowers in the other half, while 

Da and 𝛽2 exhibit the opposite behavior. The concentration of nanoparticles rises with 𝑁𝑏 

while falling with 𝛾1and 𝑁𝑡. The temperature profile 𝜃 rises with and falls with but increases 

with 𝛽1 and 𝛾.Although it can be shown that the velocity u increases with the parameters 𝛽1 

and Gr, the parameters 𝛽2, Da, and Gr exhibit the opposite behavior. The readings for slip 

parameters 𝛽1 and 𝛽2 are completely different.  

  

            Vaidya et al. [33] investigated the peristaltic flow of Jeffrey nanofluid when subjected 

to various slip effects. In this research, the velocity and thermal slip parameters improve the 

velocity profiles, whereas the concentration slip parameter exhibits the opposite behavior. 

Temperature and velocity both have a decreasing effect on the magnetic parameter. The 

profiles of velocity and concentration demonstrate the Grashof number's decreasing behavior. 

Vaidya et al. [34] investigated are the various impacts of heat conductivity and viscosity on 

the peristaltic motion of the Jeffrey liquid. In a non-uniform tube, by virtue of the effects of 

slip and wall characteristics, the properties of heat/mass transit are examined. The velocity 

profile in the                                                                                                                                                                                                                                                                                                                                                                                                                                            

non-uniform tube increases as a result of the elastic factors 𝐸1 and 𝐸2 providing fewer barriers 

to fluid motion. Variable thermal conduction and viscosity improve the temperature 

distribution. When the Schmidt number is bigger, the fluid particles with low density 

accelerate and acquire higher molecular vibrations, which lower the liquid concentration. 

 

          Wall properties in fluid mechanics refer to the characteristics of a solid surface that is in 

contact with a fluid flow. These characteristics are crucial in influencing how the fluid 

behaves close to the wall, as well as the overall flow behavior. There are several different wall 
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properties that are important to consider in fluid mechanics, including: roughness, thermal 

properties, chemical properties, geometric properties. Understanding the properties of walls is 

important for a variety of applications in fluid mechanics, including in the design of engines, 

pipes, and heat exchangers. Engineers and researchers must carefully consider the various 

wall properties in order to optimize the performance of these systems. 

 

            The channel wall characteristics on nanofluid peristaltic transport are investigated by 

Mustafa et al. [35]. Srinivas et al. [36] presented their research in how wall characteristics 

affect the peristaltic flow of MHD fluid. Slip effects were also considered in this study. Abd 

Elnaby et al. [37] inspected the mean velocity at the channel's boundaries. Hayat et al. [38] 

studied third-grade fluid flows peristaltically in a curved arrangement to transfer heat and 

mass. Under small Deborah number approximations, a perturbation solution was calculated. It 

was concluded that additionally, fluid reaches its maximum speed at the centre of the curved 

channel, when compared to a curved channel, the straight path has a larger heat transfer 

coefficient. Hayat and Hina [39] discussed the wall properties’ impact on the Maxwell fluid. 

 

          Kothandapani et al. [40] examined MHD peristaltic flow with the lubrication approach 

on the impact of wall characteristics and heat transfer. Radhakrishnamacharya et al. [41] 

clarified the movement of a sticky incompressible Newtonian fluid in a 2D regular channel 

with wall impacts, the interaction of peristalsis with heat transfer has been examined. Velocity, 

warmth and heat transmission solutions have been found in their perturbation forms. Hina et 

al. [42] investigated pseudoplastic fluid's heat and mass analysis. The perturbation method 

was used to study the stream function, temperature, and analytical concentration expressions. 

 

 Kayani et al. [43] using a novel method, studied the peristaltic flow of a non-

Newtonian nanofluid obeying the Carreau-Yasuda (CY) model through a single wall channel 

is calculated. A four parameter Carreau-Yasuda (CY) model, which defines the fluid's shear 

thinning/thickening feature, is used to construct momentum analysis. In this the perceived 

viscosity grows as the flow behavior index n rises, causing fluid to encounter more resistance. 

It turns out that axial velocity u, is a decreasing function of n. The axial velocity profile is 

similarly influenced by the parameter 𝛽. As parameter n (which is proportional to perceived 

viscosity) increases, the temperature in the channel decreases. When partial-slip situation is 

present, axial flow is accelerated. Naturally, the axially directed flow is more favorable due to 

flexibility of the wall and wall mass per area. The temperature profile is improved via 



19 

 

 

 

thermophoresis and Brownian diffusion, respectively. Wall elastic properties often boost the 

temperature and rate of heat transfer from the walls. There is a little area close to the upper 

wall that consistently 𝜙 turns negative. Bhatti et al. [44] studied the effects of heat transfer 

and Hall current on peristaltic "sinusoidal" motion of particle-fluid over a uniform channel 

have been investigated. For high Hartmann numbers, the fluid's velocity falls and the Hall 

effect produces the opposite behavior. The velocity proficiency is also improved by the larger 

particle volume fraction has an impact. Wall stiffness and the wall tension parameter enhance 

the velocity profile. Similar to how the temperature is prone to increasing when the Prandtl 

number is high. 

 

  Nisar et al. [45] investigated the MHD peristaltic flow of the Eyring-Powell 

nanofluid in a channel, we examine the effects of thermal radiation and Joule heating. By 

taking into account effects along a homogeneous channel of wall and convective qualities, 

heat and mass transport features are examined. In this velocity increases with bigger A and 𝜀 

decreases with increasing M.  Prandtl and Eckert numbers behave similarly to one another as 

the temperature changes. The temperature is raised for Nb and Nt. 𝐸3 behaves differently from 

𝐸1 and 𝐸2 in terms of concentration and temperature. Iftikhar et al. [46] looked at the impacts 

of thermal and velocity slip on a Cu water nanofluid in a non-uniform inclined tube. The 

velocity profile decreases as the nanoparticle volume fraction values rise. Near tube's end, 

viscous forces are more prevalent, which causes the velocity profile to fall; in contrast, 

buoyant forces are more prevalent in the middle of the tube, where velocity profile contributes 

to an increase. The flow encounters reduced resistance as a result of the wall's characteristics, 

and as a result, velocity rises with rising values for viscous damping force, rigidity, and 

stiffness parameters. Abbas et al. [47] analyzed the peristaltic transport of Casson fluid with 

mass and energy transfer under the effect of slip conditions. Additionally considered are the 

impacts of thermal radiation and wall features. For improved the parameter values 𝛾1, 𝑃𝑟, Du, 

and B, fluid temperature rises; however, the impact on the parameter R is the opposite. It 

grew, nonetheless, for the parameter R. Enlarged values of 𝜁 result in an increase in the 

velocity profile. When 𝐸1, 𝐸2, and 𝐸3 have larger values, the velocity rises. It declined, 

though, for the parameter R. 

 

            Eldesoky et al. [48] presented a study on the peristaltic blood flow that occurs within 

an individual's circulatory system. When blood flowed through a porous medium in a flexible 

tube while being subjected to an outside magnetic field, it was represented by Maxwell fluid. 
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In this the net flow rate is decreased as a result of the wall dampening. The net flux increases 

as the porosity parameter is raised. As a result of the declining flow rate profiles, the backflow 

is boosted by lengthening the relaxation period and introducing a slip condition. The wave 

number and the greatest flow-capable net flow rate, have a proportionate relationship. After 

that, the relationship changes to an inverse relationship, at which point the backward flow 

may start to occur. Vaidya et al. [49] explored how a Rabinowitsch liquid is transported 

peristaltically in an inclined channel while having a compliant wall and changeable liquid 

properties. As it expands, it becomes more accurate in its estimation of varying viscosity, 

angle of inclination, velocity, and temperature field of dilatant liquids decreases for liquids 

that are Newtonian and pseudoplastic. Variable viscosity enhances fluid's temperature and 

velocity. Compared to Newtonian and pseudoplastic fluids, the dilatant fluid has a poor 

estimation of temperature and velocity. Variable viscosity reduces the amount of pressure rise 

and frictional force for a liquid that is shear thinned. The influence of 𝐸1 and 𝐸2 enhances the 

velocity and temperature profiles for Newtonian and pseudoplastic liquids., whereas it lessens 

for 𝐸3, 𝐸4, and 𝐸5. 

 

 Khan and Tariq [50] examined how the features of the walls affected the peristaltic 

motion of the dusty Walter's B fluid. The wave length is supposed to be lengthy, and the 

outcomes are examined for various factors. As the viscoelastic parameter 𝜅 is raised for the 

solid particles, on the right side, the bolus' size increases. Both the confined bolus of liquid 

and solid particles expands as the wave number 𝛿 rises. The fluid and solid particle velocities 

increase as the values of various parameters rise the size of the bolus grows on the right-hand 

side. The flow rate of both liquid and solid particles increases as the values of 𝐸1, 𝐸2, and 

increase. The flow rate of dust particles is improved by rising 𝛿. Rafiq and Abbas [51] 

investigated the thermal radiation and viscous dissipation effect on the peristaltic transport of 

the Rabinowitsch fluid model via an inclined tube with a non-uniform slope. In each of the 

three scenarios 𝛼, the velocity increases when the deviations are increased. For all three 

examples, the temperature profile enlarges by increasing Br; however, for the parameter R, the 

behavior is the opposite. Higher values of 𝐸1 and 𝐸2 increased the number of streamlines in 

the shear thickening case due to the liquid circulation, but the trend for 𝐸3 was in the reverse 

direction. For higher deviations of 𝐸1, 𝐸2, and 𝐸3 for viscous liquid, the number of 

streamlines remains unchanged, but their size significantly increases. 
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 The model by Phan-Thien-Tanner (PTT) uses a mathematical model to explain how 

complex fluids, particularly polymer solutions and suspensions, behave. Long, flexible 

polymer chains suspended in a solvent are considered by this non-Newtonian fluid model. 

And assume that the fluid consists of a three-dimensional network of polymer chains, which 

interact with each other and with the solvent molecules. The PTT model has been used to 

study many phenomena, including shear thinning, viscoelasticity, and non-Newtonian flow. It 

has applications in polymer processing, biofluid dynamics, and chemical engineering. 

 

 Hayat et al. [52] demonstrated that the investigation of such flow scenarios is the 

primary goal of this investigation. For a Newtonian fluid, peristalsis must exert more force 

against greater pressure rise in the pumping zone than it does for linear PTT fluid. There is no 

distinction between linear PTT fluid and Newtonian fluid in the free pumping and co- 

pumping zone. In this the exponential PTT model's shear stress is larger than the linear PTT 

models. Akbar et al. [53] investigated the PTT nanofluid's peristaltic flow in a diverging tube. 

Temperature and concentration profile homotopy perturbation solutions were evaluated, 

while velocity profile exact solutions were computed. 

 

           The electro-osmotic peristaltic PTT flow is studied by Hussain et al. [54]. Using well-

known long wavelength and low Reynolds number approximations, the governing equations 

are streamlined. Butt et al. [55] examined how the dynamics of a PTT fluid model in a 

uniform horizontal cylinder are affected by heat transfer. Formulas generated for the fluid 

model consider the velocity, temperature, and pressure slope. It has been found that the 

velocity is linear to the mean flow rate and inversely to the Weissenberg number, reaching its 

highest value near the tube's center. Hayat et al. [56] examined the peristaltic action in the 

intestines, and small blood artery is made easier using PTT fluid.  

 

Sarkar et al. [57] investigated the pressure-driven electrohydrodynamic streaming 

potential including analytical and semi-analytical techniques for Phan-Thien-Tanner fluids in 

a microchannel. Using the full-scale solution to the Poisson-Boltzmann equation, we can 

create a closed-form numerical model for the dimensionless electrical potential distribution, 

velocity profile, and volumetric flow rates. In this case, by intensifying surface charge, the 

flow field is enlarged. Vajravelu et al. [58] examined the peristaltic movement of PTT fluid 

through a porous, elastic medium while describing the long wavelength and low Reynolds 

number assumptions. Ali et al. [59] discovered the long wavelength and low Reynolds 
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number assumptions for the peristaltic movement of PTT fluid in an elastic medium with 

porous material. The lubrication theory's postulates have led to a simplification of the basic 

equations that describe blood flow. Vaidya et al. [60] investigated how several significant 

constraints affect the velocity of the non-Newtonian MHD Phan-Thien-Tanner fluid, 

temperature, concentration, and phenomena of entrapment. This model can be used in a 

variety of clinical settings, including catheters, cancer therapy, drug delivery, etc. 

 

Prakash and Tripathi [61] studied the EDL phenomena, rheological effects, and 

magnetic field effects affect the peristaltic pumping of Phan-Thien-Tanner (PTT) fluids in an 

asymmetric microchannel. The solutions for the stream function, axial velocity, pressure 

gradient, and shear stress perturbation were discussed. The effects of the Helmholtz-

Smoluchowski velocity, Hartmann number, PTT fluid parameter, electroosmosis parameter, 

and rheological parameter have been highlighted. In this the Weissenberg number (𝑊𝑒), a 

rheological parameter, causes the axial pressure and velocity gradient to decrease over the 

whole asymmetric channel. The PTT fluid parameter (𝜀) has a significant impact on the 

gradient of pressure and axial velocity. The electroosmosis parameter (κ),  controls the EDL 

phenomenon, which modifies the peristaltic pumping and alters the axial velocity and 

pressure gradient.  While the bending stress increases with EDL thickness, it decreases with 

increased magnetic field effects.  

 

           Faraz et al. [62] looked for a travelling wave solution in order to study the 

magnetohydrodynamic (MHD) flow of the Phan-Thien Tanner fluid (PTT). Using well-

known methods such as He's semi-inverse approach and 𝐺′/𝐺-expension, a precise solution 

for the viscoelastic model has been shown. Instead of taking into account the wave 

transformation in this study, the system has been transformed into an ordinary differential 

equation by the introduction of dimensionless variables. In order to solve problems involving 

non-Newtonian fluids, it is discovered that the 𝐺′/𝐺-expension method and the He'semi 

inverse method are reliable approaches. Siddiqui et al. [63] investigated the PTT fluids' 

concentric n-layer flow through a cylindrical tube. Simulated and solved multiple layer steady 

flow of immiscible PTT fluids flowing concentrically through a conduit. Volume flow rates 

and velocity profiles have reported exact solutions. In this the conclusions are universal in that 

they can be utilized with the linear PTT model to derive identical quantities. Additionally, the 

results are not restricted to two fluid layers. Fluid velocity theories are significantly 
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influenced by non-Newtonian factors. When optimizing flow rates is needed with constrained 

pumping pressure gradients, flow rates have a wide range of industrial applications. 

 

          Porous refer to a material or surface that has small holes and spaces that allow liquids, 

gases, or particles to pass through it. The degree of porosity can vary depending on the size 

and arrangement of the pores and it can have significant effects on the material’s properties, 

such as its strength, durability, and ability to absorb or filter substances. 

 

          Ellahi et al. [64] investigated the peristaltically flowing Jeffrey fluid. The effects of 

slip, porosity, low Reynolds number, and long wavelength limitations were incorporated. 

With time, the strength of the pressure gradient gradually weakens in accordance with rising 

slip and porosity parameter values. The trend of the velocity profile for the porosity parameter 

and the slip parameter, however, is completely different; in each domain, the fluid's velocity 

decreases as the porosity parameter rises. It is crucial to remember that by setting the non-

Newtonian Jeffrey fluid parameter to zero, one can achieve the Newtonian fluid result. Vaidya 

et al. [65] examined the non-Newtonian fluid's magneto-hydrodynamic peristaltic flow in an 

asymmetric tapered channel with porous material. It is believed that the Jeffrey model, which 

has changing viscosity, can explain non-Newtonian behavior. In the zone of enhanced 

pumping, the magnetic parameter increases pressure while also reducing fluid velocity. For all 

the parameters examined, the increase in pressure and the behavior of imaginary forces. It is 

found that the axial fluid velocity in the centre of the channel is increasingly affected by 

greater values of variable viscosity. It is demonstrated that as the medium gets hotter and less 

porous, the fluid velocity increases. Lower velocity and higher temperature are caused by 

larger non-uniformity parameter values in the centre of the tapered channel. 

 

           Hasona et al. [66] examined the effect of temperature-dependent viscosity on Jeffrey 

nanofluid peristaltic flow in an asymmetric channel is investigated. The discussion of mixed 

convective peristaltic transport of incompressible Jeffrey nanofluid temperature-dependent 

viscosity parameters takes into account the effects of Joule heating and porous media effects. 

Pressure gradient decreases with an increase in 𝛽. Higher temperatures give molecules more 

energy, which leads to a decrease in the variable viscosity parameter and more easily flowing 

liquid. To obtain more realistic results, all nondimensional characteristics that depend on 

viscosity should be taken into account as variables when the viscosity is responsive to 

temperature variation. Vaidya et al. [67] studied the effect of varying thermal conductivity is 
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studied on the MHD peristaltic flow. The characteristics of heat and mass transmission are 

investigated through a uniform porous channel in relation to the effects of convective and wall 

properties. In this temperature and velocity profiles are decreased by the magnetic parameter. 

The wall tension and mass characterization parameter enhance the velocity and temperature 

distribution. The Biot number has a decreasing relationship with the temperature profile. As 

the temperature profile rises as the variable thermal conductivity value does. 

 

          Riaz et al. [68] studied how a nanofluid flows peristaltically through a porous conduit. 

Low Reynolds number and a long wavelength Simplified modelled equations are re-

approximated. The velocity field grows as 𝑁𝑡, Q, 𝐺𝑟, and k are increased. The temperature 

profile exhibits an increase with rising 𝑁𝑏 and  . Increases in 𝐺𝑟, 𝜙 and 𝑁𝑡 are associated 

with a rise in k and 𝜆1 and a decrease in the pressure gradient, respectively. At 𝑥 = 0.5, the 

flow encounters its greatest resistance; at 𝑥 < 0.2 and 𝑥 > 0.8, the pressure gradient is 

minimal. Noreen et al. [69] investigated the topic is heat effects in non-Darcy porous media 

electro-osmotic flow that are exacerbated by peristaltic pumping. For higher values of the 

Forchheimer and Darcy numbers, the axial velocity falls in the conduit's middle region while 

increasing near the conduit wall. The energy loss brought on by the presence of the Joule 

heating influence is particularly impacted by the heat transfer rate. Determining how well 

electro-osmosis and peristalsis are established in bio-micro-fluidics systems. 

 

            Manjunatha et al. [70] examined the effects of fluctuating heat conductivity and 

viscosity on peristaltic flow are investigated in this paper. A non-uniform porous channel is 

used to study the transmission of mass and heat. 𝛼1 and 𝐷𝑎 accelerate the fluid velocity close 

to the channel walls, where their effects on velocity are more pronounced. While higher 

values of the wall property parameters 𝐸3, 𝐸4, and 𝐸5 cause a decrease in velocity and 

temperature, the wall property parameters 𝐸1 and 𝐸2 are crucial in the development of the 

temperature and velocity profiles. When the prices of 𝛾, 𝛼1, 𝐵𝑟, and 𝜆1 increase, the 

temperature rises. Reduced temperature profiles are caused by the rising value of the Biot 

number. The concentration profiles behave in the opposite way from the temperature profiles. 

The concentration profiles decrease as a result of the Soret and Schmidt numbers. 
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CHAPTER 3 

FUNDAMENTAL CONCEPTS AND BASIC LAWS 

 

  

3.1 Definitions 

Fluid  

 

         The property of flowing and taking on the shape of its container distinguishes the state 

of substance known as fluid. Because their particles are loosely structured and have the 

potential to flow past one another, fluids can change their shape and volume in contrast to 

solids, which have a fixed shape and volume. Examples of fluids includes: water, oil, milk, 

gasoline, honey etc. Here are some common daily life examples of fluids: drinking water, 

showering, cooking, swimming, weather phenomena, blood circulation, flue etc.  

 

3.1.1     Types of Fluids 

 

                 Liquids, gases, Newtonian fluids, non-Newtonian fluids, rheopectic fluids, and 

thixotropic fluids are a few examples of typical fluid types. 

 

i) Newtonian Fluids: Newtonian fluids have a constant viscosity, which means that no matter 

how much shear stress is applied, their flow resistance remains constant. Water and most 

common liquids are examples of Newtonian fluids. 

ii) Non-Newtonian Fluids: Non-Newtonian fluids have varying viscosities based on the shear 

stress that is being applied. Their flow behavior can vary depending on the circumstances. 

Examples include ketchup, toothpaste, paint, and blood. 

a) Shear-thinning or Pseudoplastic Fluids: When these fluids are subjected to shear stress, 

their viscosity decreases. The more agitated you are, the easier they flow. Examples include 

certain food sauces and polymer solutions. 
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b) Shear-thickening or Dilatant Fluids: When these fluids are under shear stress, they 

become more viscous. Their viscosity increases with force or agitation. A common example is 

a mixture of cornstarch and water. 

c) Bingham Plastic Fluids: When a specific stress threshold is reached, Bingham plastic 

fluids start to act like solids. When this point is reached, they start to flow like a thick liquid. 

Examples include certain types of drilling fluids and toothpaste. 

iii) Rheopectic Fluids: When rheopectic fluids are continuously subjected to shear stress, 

they gradually grow more viscous. Over time, they show a rising resistance to flow. Some 

mixtures of clay and water exhibit rheopectic behavior. 

iv) Thixotropic Fluids: When continuously subjected to shear stress, thixotropic fluids 

gradually become less viscous. Over time, they show less flow resistance. Certain types of 

paints and gels demonstrate thixotropic behavior. 

v) Liquids: Fluids with a known volume but no set shape are considered to be liquids. They 

can flow and assume the form of the vessels they are in. Examples include water, oil, milk, 

and beverages. 

vi) Gases: Fluids known as gases lack a set shape or precise volume. They enlarge to take up 

the entire area that is available. Examples include air, oxygen, nitrogen, and carbon dioxide. 

 

3.1.2    Applications of Fluid  

 

               Due to their special qualities and ability to flow, fluids are used in a wide range of 

fields and industries. Here are some notable applications of fluids: 

 

i) Manufacturing and Industry: A lot of manufacturing processes require fluids. They are 

used in metalworking processes like drilling, milling, and machining as coolants, lubricants, 

and cutting fluids. Additionally, industrial fluids support hydraulic systems, numerous 

mechanical operations, and heat transfer. 

ii) HVAC and Refrigeration: Heating, ventilation, air conditioning (HVAC), and 

refrigeration systems use fluids like refrigerants. To transport heat and control temperatures in 

structures, residences, and commercial areas, these fluids go through phase shifts (from liquid 

to gas and vice versa). 

iii) Food and Beverage Industry: In the food and beverage sector, fluids are employed 

extensively. They act as preservatives, solvents, and additives. Examples include water, oils, 
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sauces, beverages, and liquid food processing operations like mixing, cooking, and 

fermentation. 

 

3.2   Hydrostatic Stress Condition 

 

          The term "hydrostatic stress condition" describes a fluid under conditions of uniform 

stress in all directions. In other words, the fluid's pressure is constant throughout. When a 

fluid is at rest and not being affected by shear forces, this situation occurs. Examples of 

hydrostatic stress conditions include: pressure in a fluid at rest, atmospheric pressure, 

hydraulic systems, and deep-sea hydrostatic pressure. The hydrostatic stress state, where 

pressure within a fluid is uniform in all directions, occurs frequently in everyday life. Here are 

some daily life examples: drinking from a straw, bathing or showering, water towers, diving, 

and watering plants with a hose. 

 

3.2.1   Types of Hydrostatic Stress Condition 

 

             A state of stress in a fluid when the stress is uniform in all directions is referred to as 

the hydrostatic stress condition. Although there aren't any particular "types" of hydrostatic 

stress conditions, understanding its various facets or components might be useful. Here are 

some concepts related to hydrostatic stress: hydrostatic pressure, pascal’s law, pressure 

gradient and buoyant force. 

 

3.2.2   Applications of Hydrostatic Stress condition 

 

             Its applications include: 

 

i) Engineering and Civil Construction: When designing and constructing structures that use 

fluid pressure, consideration of the hydrostatic stress state is essential. Examples include: 

dam, retaining walls, and underground structures. 

ii) Hydraulic Systems: In hydraulic systems, hydrostatic pressure is used to deliver force and 

power. Applications include: hydraulic machinery and hydraulic lifts. 

iii) Medical Applications: When administering intravenous fluids and measuring blood 

pressure, the hydrostatic stress state is crucial in medical settings.  
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iv) Hydrogeology and Geotechnical Engineering: In the domains of hydrogeology and 

geotechnical engineering, groundwater flow and slope stability, an understanding of the 

hydrostatic pressure of groundwater is essential. 

 

3.3   Fluid Mechanics  

 

         The area of physics and engineering known as fluid mechanics is concerned with the 

behavior, characteristics, and motion of fluids, including gases and liquids. It focuses on 

understanding how fluids react to different forces and how they flow under diverse 

circumstances. A framework for comprehending and analyzing fluid behavior, such as fluid 

motion, fluid forces, and the rules regulating fluid flow, is provided by fluid mechanics. Fluid 

mechanics encompasses several key areas: fluid statics, fluid dynamics, fluid kinematics, and 

fluid conservation laws. Here are some examples of how fluid mechanics i.e. blood flow in a 

human body etc. Here are some everyday examples where fluid mechanics is at work: faucet 

flow, traffic flow, drinking with a straw etc. 

 

3.3.1   Types of Fluid Mechanics 

     

              Fluid mechanics can be broadly categorized into two main branches:  

i) Fluid Statics: Fluids in equilibrium or at rest are the focus of fluid statics. It focuses on the 

investigation of the pressure distribution within a fluid at rest as well as the forces acting on 

fluids. Key concepts in fluid statics include pressure, buoyancy, hydrostatic equilibrium, and 

the determination of forces on submerged surfaces. 

ii) Fluid Dynamics: Fluids in motion are the focus of fluid dynamics. It entails the 

investigation of fluid forces and motion, including examination of fluid flow patterns, 

pressure distributions, velocity profiles, and the guiding principles of fluid motion. 

 

Fluid dynamics can be further divided into: 

 

a) Incompressible Flow: The term "incompressible flow" describes the movement of fluids 

that do not significantly alter their density. It is suitable to low-speed gas flows and liquids 

with constant density. Examples include water flow in pipes, flow around submerged objects, 

and flow in hydraulic systems. 

b) Compressible Flow: Fluids that undergo large pressure and temperature fluctuations, as 

well as changes in density are considered to be examples of compressible flow. It is relevant 
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in high-speed gas flows, such as supersonic and hypersonic flows. Examples include the flow 

around aircraft, rocket propulsion, and gas dynamics in turbo machinery. 

c) Viscous Flow: Fluids with internal friction and flow resistance are the subject of viscous 

flow. Viscosity's impacts on fluid behavior and flow characteristics are taken into account. 

Examples include the flow of liquids with high viscosity, lubrication systems, and the study of 

boundary layers in fluid flow. 

d) Turbulent Flow: Fluid flow that is chaotic and erratic is referred to as turbulent flow. It 

entails the investigation of intricate vortices, alterations, and energy loss inside the flow. 

Turbulent flow is encountered in many practical applications, such as air flow around 

vehicles, rivers, and atmospheric phenomena. 

e) Multiphase Flow: Multiphase flow, such as gas-liquid flow or solid-liquid flow, deals with 

the simultaneous flow of multiple phases. It entails researching how interactions between 

various phases affect how fluids behave. Examples include two-phase flow in pipelines, 

bubble columns, and sediment transport in rivers. 

 

3.3.2   Application of Fluid Mechanics  

 

             Numerous real-world applications of fluid mechanics exist in numerous disciplines. 

Here are some notable applications: civil engineering, environmental engineering, energy and 

power generation, HVAC system, weather prediction etc. 

 

i) Civil Engineering: Water supply and distribution, sewage, and drainage system design all 

make use of fluid mechanics. It helps in analyzing the flow of water in rivers and channels, 

designing dams and reservoirs, and studying flood control measures. 

ii) Energy and Power Generation: Power generation and energy production both depend on 

fluid dynamics. It is used in the design and analysis of turbines, pumps, and hydraulic 

systems. It also plays a role in understanding fluid flow in oil and gas pipelines, optimizing 

wind turbine efficiency, and studying tidal and wave energy conversion. 

iii) Weather Prediction: Numerical weather prediction models simulate air circulation, 

examine weather patterns, and forecast weather conditions using the principles of fluid 

mechanics. It helps in understanding atmospheric dynamics, analyzing air mass movements, 

and predicting weather phenomena. 
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3.4   Newtonian Fluids  

 

           Newton's law of viscosity is followed by Newtonian fluids, which have linear 

connections between shear stress and shear rate. This law states that the shear stress within a 

fluid is directly proportional to the rate of deformation or shearing of the fluid. In other words, 

regardless of the applied shear stress or shear rate, Newtonian fluids' viscosity is constant. 

Examples of Newtonian fluids include: water, air, oil, glycerin, motor oil, honey, ethanol, etc. 

Newtonian fluids are quite common in our daily lives. Here are some everyday examples of 

Newtonian fluids: water, milk, cooking oil, paint, shampoo, etc. 

 

3.4.1   Types of Newtonian Fluid 

 

             Based on their flow behavior and viscosity characteristics, Newtonian fluids can be 

divided into various categories. Here are some common types of Newtonian fluids: low-

viscosity Newtonian fluid, high-viscosity Newtonian fluid, Newtonian gases, pure liquids, 

simple solutions etc. 

 

Newton's law of viscosity, which states that the shear stress (𝜏) is inversely 

proportional to the shear rate (
𝑑𝑢

𝑑𝑦
) or velocity gradient, governs Newtonian fluids: 

𝜏 = 𝜇 ∗ (
𝑑𝑢

𝑑𝑦
),      

where 𝜏 represents the shear stress (force per unit area) acting on the fluid, 𝜇 is the dynamic 

viscosity, which is a constant for Newtonian fluids and (
𝑑𝑢

𝑑𝑦
) denotes the shear rate or velocity 

gradient (change in velocity with respect to distance or height). 

 

Regardless of the applied stress or shear rate, the dynamic viscosity remains constant 

and the relationship between shear stress and shear rate continues to be linear. 

 

 

3.4.2   Applications of Newtonian Fluid 

 

Newtonian fluids are used in a variety of real-world situations. Some notable 

applications include:  
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i) Paints and Coatings: The formulation of many paints and varnishes is based on Newtonian 

fluids. The consistent viscosity allows for precise application using brushes, rollers, or 

sprayers. A consistent and smooth finish is ensured by Newtonian behavior. 

ii) Printing Industry: Inks used in the printing sector are frequently Newtonian fluids. The 

steady viscosity makes it possible to transfer ink onto substrates with accuracy and 

consistency during printing procedures. 

iii) Biomedical Applications: Applications in biology and medicine use Newtonian fluids. 

They are employed in drug delivery systems, medical imaging contrast agents, and as blood 

plasma substitutes. For controlled and targeted administration, Newtonian fluids' predictable 

flow behavior is essential. 

iv) Environmental Engineering: Applications of environmental engineering use Newtonian 

fluids. They are used in wastewater treatment processes, sedimentation, and filtration systems.  

 

3.5   Non-Newtonian Fluids 

 

           A fluid type whose viscosity or flow behavior is not characterized by Newton's law of 

viscosity is known as a non-Newtonian fluid. Non-Newtonian fluids display varying viscosity 

or flow characteristics under various conditions, in contrast to Newtonian fluids, which have a 

constant viscosity independent of the applied shear stress or rate of deformation. 

 

Different viscosity behaviors, such as shear-thinning, shear-thickening, yield stress, or 

viscoelasticity, can be seen in non-Newtonian fluids. A non-Newtonian fluid's viscosity may 

alter with shear rate, shear stress, or time. 

 

There are numerous types of non-Newtonian fluids that display various viscosities and 

flow characteristics depending on the environment. Here are some common examples: 

ketchup, cornstarch, water mixture, shampoo, toothpaste, paint etc. Numerous parts of daily 

life involve non-Newtonian fluids. Here are some everyday examples of non-Newtonian 

fluids: shaving cream, body lotions and creams, hair gel, silly putty, slime etc. 
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3.5.1   Types of Non- Newtonian Fluids 

 

              There are several types of non-Newtonian fluids, each exhibiting distinct flow 

behaviors. Here are some common types: shear-thinning fluids, shear-thickening fluids, 

Bingham plastics, thixotropic fluids, rheopectic fluids, viscoelastic fluids etc. 

Non-Newtonian fluids feature more intricate correlations between shear stress and 

shear rate, and a variety of mathematical models can be used to analyze their flow behavior. 

Some common models include: 

 

3.6   Shear Stress 

 
        The force per unit area acting perpendicular to the plane of deformation in a material or 

fluid is measured as shear stress. It symbolizes a material's resistance to internal friction or 

shear deformation. Mathematically, shear stress τ is defined as the ratio of the applied force 

(F) to the area (A) over which the force is applied:  

𝜏 =
𝐹

𝐴
.              

 

         Here are some examples to illustrate shear stress: cutting with scissors, flow of fluids in 

pipes, deformation of solids etc. Here are some daily life examples that involve shear stress: 

walking or running, brushing hair, cutting or chopping food, mixing ingredients etc. 

 

3.6.1   Types of Shear Stress 

 

            Different kinds of shear stress can be recognized in the context of both fluid 

mechanics and solid mechanics. Here are some common types of shear stress: simple shear 

stress, shear stress in fluids, maximum shear stress and shear stress distribution. 

 

Shear stress is influenced by the fluid's viscosity and the rate of deformation.  The 

formula for shear stress in fluids is given by: 

𝜏 = 𝜇 ∗ (
𝑑𝑢

𝑑𝑦
),   
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where 𝜏 represents shear stress, 𝜇 is the dynamic viscosity of the fluid, and (
𝑑𝑢

𝑑𝑦
) is the 

velocity gradient or rate of deformation along the direction perpendicular to the flow (y-

direction).  

 

3.6.2   Applications of Shear Stress 

 

           Numerous uses of shear stress can be found in many different fields. Here are some 

common applications of shear stress: 

 

i) Material Testing: In order to ascertain the mechanical characteristics and behavior of 

materials, shear stress is frequently utilized in material testing. Shear stress is applied during 

testing procedures like shear tests, torsion tests, and rheological tests to gauge properties like 

shear strength, shear modulus, and viscosity.  

ii) Geological Processes: Numerous geological processes, including faulting, earthquakes, 

and tectonic plate movements, include shear stress. Seismic activity can come from the 

building and release of shear stress along fault lines, which can cause rock displacement and 

deformation. 

iii) Biomechanics and Human Movement: Shear stress is investigated in biomechanics in 

relation to human mobility and the mechanical forces that the body encounters. In disciplines 

like sports science and rehabilitation, it is critical to comprehend joint mechanics, muscle 

function, and injury prevention. 

 

3.7   Shear Strain rate 

Shear strain rate is a measurement of how quickly a substance or fluid deforms under 

shear. It calculates the rate of shape or deformation change over time.  

 

Shear strain rate (𝛾) is mathematically defined as the derivative of shear strain with 

respect to time (𝑡). 

γ̇ =
𝑑𝑟

𝑑𝑡
.     
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Here are some examples to help illustrate shear strain rate: fluid flow, metal cutting, 

polymer processing, earthquake etc. However, there are examples from daily life when shear 

strain rate indirectly contributes to or influences specific events. Pouring a viscous liquid, 

stirring a thick mixture, spreading a tooth paste, brushing teeth etc.  

 

3.7.1   Types of Shear Strain Rate:  

              Depending on the particular environment and the kind of deformation, it can change. 

Here are some common types of shear strain rate: constant shear strain rate, shear strain rate 

gradient, apparent shear strain rate, local shear strain rate etc. 

The shear strain rate can be determined using the following formula in the situation of 

simple shear deformation, when the material is deformed along a single plane: 

𝛾 =
𝑉

ℎ
, 

where 𝛾 is the shear strain rate, 𝑉 is the shear velocity and ℎ is the distance between parallel 

surfaces. 

 

3.7.2   Application of Shear Strain Rate 
 

 Shear strain rate is useful in many different sectors, especially those that focus on the 

flow and deformation of materials. Here are some applications of shear strain rate: 

 

i) Metal Forming: Shear strain rate impacts material flow and deformation in metal forming 

operations like rolling, forging, and extrusion. For the produced metal components to have the 

correct shape and qualities, it is crucial to comprehend and manage the shear strain rate. 

ii) Geotechnical Engineering: Geotechnical engineering, in particular the study of soil and 

rock mechanics, makes use of shear strain rate. It is useful for analyzing slope stability, 

subsurface excavations, and the stability and deformation of soil layers. The behavior of these 

materials under applied loads is influenced by the rate of shear strain, which can aid in 

predicting eventual failure or deformation. 

iii) Materials Testing: When evaluating materials to determine their mechanical 

characteristics and behavior, shear strain rate is a factor. Shear strength, yield stress, and 
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viscoelastic qualities can all be measured using testing techniques like shear tests, torsion 

tests, and rheological tests. 

 

3.8   Viscosity  

          A fundamental characteristic of fluids called viscosity describes how they resist flowing 

or deforming when shear stress is applied.  It measures the internal friction inside the fluid 

and establishes how easily a fluid may flow. The resistance to flow of a fluid increases with 

increasing viscosity. 

 

Examples of viscosity include: honey, water, motor oil, paint etc. Here are a few 

examples from everyday life to help you understand the notion of viscosity: pouring syrup, 

spreading jam, painting with different types of paints, toothpaste squeezing, shampoo hairing 

etc. 

 

3.8.1   Types of Viscosity 

  Viscosity can be classified into different types based on its behavior and 

characteristics. Here are some common types of viscosity: dynamic or absolute viscosity, 

kinematic viscosity, and apparent viscosity, shear-thinning and shear thickening viscosity etc. 

 

3.8.2   Application of Viscosity 

 As a fundamental characteristic of fluids, viscosity has many practical uses in a 

variety of industries. Here are some common applications of viscosity: 

 

i) Petroleum and Petrochemical Industry: The oil and gas sector depends on viscosity. It 

aids in defining and categorizing various varieties of crude oil and petroleum products. 

Viscosity is critical for designing pipelines, optimizing fuel combustion, and formulating 

lubricants. 

ii) Pharmaceutical and Cosmetics: When it comes to the creation and formulation of 

medications and cosmetics, viscosity is crucial. Topical creams, ointments, lotions, and gels 
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experience changes in consistency, spreadability, and stability as a result. Viscosity 

measurements aid in ensuring the performance and quality of a product. 

iii) Material Testing: Viscosity measurements are used in material testing to evaluate a 

substance's mechanical characteristics, such as how concrete, asphalt, and polymers flow. 

Testing for viscosity is a useful tool for describing how materials behave under various 

loading scenarios. 

 

3.9   Compressible Fluid 

          Compressible fluids are those that can be compressed and whose density can be 

changed by changes in pressure. Compressible fluids, as opposed to incompressible fluids like 

liquids, can contract or expand in response to outside forces. Key characteristics of 

compressible fluids include: change in volume, variation in density, speed of sound and gas 

behavior. Examples include gas dynamics, gas compressor, turbojet engines, air, helium and 

nitrogen. Air inside a balloon. Here are a few examples: air, aerosol cans, bicycle and tyres, 

HVAC systems etc.  

 

3.9.1   Application of Compressible Fluid 

 

  Because of their special characteristics, compressible fluids are used in many 

different industries. Here are some notable applications of compressible fluids: 

 

i) Aerospace Engineering: The study of compressible fluid dynamics is essential to 

aerospace engineering. Applications include: jet engines and supersonic. 

ii) Energy Conversion and Power Generation: Systems for energy conversion and power 

generation use compressible fluids. Examples include: gas turbines and steam power plants. 

iii) HVAC and Refrigeration Systems: Heating, ventilation, and air conditioning (HVAC) 

and refrigeration systems require compressible fluids, usually refrigerants. Applications 

include: air conditioning and refrigeration. 

iv) Gas Pipelines and Storage: Pipelines and storage facilities are used to transport and store 

compressible fluids, such as natural gas.  Applications include: natural gas transmission and 

gas storage. 
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3.10   Incompressible Fluid 

Incompressible fluids are those that cannot be compressed and maintain a constant 

density regardless of pressure changes. In other words, regardless of the pressure that is 

applied to it, an incompressible fluid maintains a fixed volume. Key characteristics of 

incompressible fluids include: constant volume, low compressibility, constant density and 

high bulk modulus. Examples of commonly encountered incompressible fluids include: water, 

oil and liquid metals. Here are some examples of incompressible fluids and their everyday 

applications: water, hydraulic systems, cooking and food preparation and blood and 

circulatory system. 

 

3.10.1   Applications of Incompressible Fluid  

   Due to their special characteristics, incompressible fluids have a wide range of uses 

in many different industries. Here are some notable applications of incompressible fluids: 

 

i) Hydraulic Systems: In hydraulic systems, incompressible fluids typically hydraulic oil is 

extensively employed for power transmission and control. Applications include: heavy 

machinery, automotive industry and aircraft. 

ii) Plumbing and Pipelines: Water and other incompressible fluids are frequently employed 

in plumbing and pipeline systems for a variety of applications. Applications include: domestic 

plumbing, municipal water supply and irrigation systems. 

iii) Cooling and Heat Transfer: In applications involving cooling and heat transfer, 

incompressible fluids are essential. Examples include: HVAC systems, heat exchangers and 

radiators. 

iv) Marine and Naval Applications: Systems for maritime and naval propulsion, control, 

and safety use incompressible fluids. Applications include: ship propulsion, steering systems 

and ballast system. 
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3.11   Linear Momentum 

A fundamental idea in physics that describes how an item moves is called linear 

momentum, which is frequently just referred to as momentum. It is described as the result of 

the mass and the velocity of an object. 

 

 Mathematically, linear momentum (𝑝) is given by: 

𝑝 = 𝑚 ∗ 𝑣,   

where p is the linear momentum, m is the mass of the object and v is the velocity of the 

object. 

 

Here are a few examples to illustrate the concept of linear momentum: a moving car, a 

baseball pitch, a person running and a moving train. Certainly! Here are some daily life 

examples of linear momentum: throwing a ball, riding a bicycle, swinging a hammer, jumping 

off a diving board etc. 

 

3.11.1   Applications of Liner Momentum 

  Numerous applications of linear momentum can be found in many different fields. 

Here are some notable examples: 

 

i) Transportation and Vehicles: Designing effective transportation systems requires an 

understanding of the linear momentum of moving objects. It aids in calculating the necessary 

power, force, and stopping distance for vehicles. Additionally, momentum is necessary for 

spaceship propulsion, in which the momentum created by gas expulsion drives the spacecraft 

forward. 

ii) Sports and Athletics: A lot of sports rely on linear momentum's basic concepts. For 

example, in athletics, events like the javelin throw, shot put, and long jump involve 

maximizing linear momentum to achieve greater distances or heights. In sports like football, 

basketball, and hockey, momentum plays a key role in collisions, tackles, and the transfer of 

energy during player interactions. 



39 

 

 

 

iii) Robotics and Automation: Robots and automated systems are designed with linear 

momentum in mind. To ensure precise motions and interactions with objects, the momentum 

of robotic arms and manipulators must be carefully regulated. 

 

3.12   Continuity Equation 

The conservation of mass is connected to the flow of a fluid or the movement of a 

substance via the continuity equation, which is a fundamental tenet of physics. It states that, 

provided there are no sources or sinks of mass inside the system, the mass of a fluid moving 

through a certain region per unit time remains constant. The concept of mass conservation as 

it moves through a defined area is expressed by the equation.  

 

Mathematically, the continuity equation is expressed as: 

𝜌
𝑑𝑽⃑⃑ 

𝑑𝑡
  =  𝛻⃑  . 𝑺 +   𝜌𝑓  ,     

where ρ
𝑑𝑽⃑⃑ 

𝐝𝐭
 is convective part, 𝜵⃑⃑  . S is inertial force/surface force, ρ𝒇⃑  is body force, 

𝒅

𝒅𝒕
 is 

material time derivative, ρ is density of the fluid, S is tensor (Cauchy stress tensor), 𝒇⃑  is body 

force, 𝑽⃑⃑  is velocity. 

 

The continuity equation can be used in a variety of circumstances involving the flow 

of fluids or the movement of substances and is related to the concept of mass conservation. 

Here are some examples, including everyday scenarios, where the continuity equation is 

applicable: fluid flow in a pipe, blood circulation, traffic flow, gas flow in a duct and river 

flow. 

 

3.12.1   Applications of Continuity Equation 

  Numerous applications of the continuity equation can be found in numerous fields. 

Here are some notable examples: 

 

i) Conservation Laws: One of the fundamental parts of physics' conservation rules is the 

continuity equation. It is essential to the conservation of energy (in thermodynamics) as well 
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as the conservation of charge (in electromagnetic), in addition to the conservation of mass. 

These conservation principles can be utilized to analyze and comprehend the behavior of 

systems and quantities in many physical processes by applying the continuity equation. 

ii) Acoustics: The continuity equation in acoustics is used to examine how sound waves go 

across various mediums. It helps in comprehending the conservation of acoustic energy and 

how sound behaves in a variety of settings, including rooms, auditoriums, and outdoor areas. 

iii) Heat and Mass Transfer: The study of mass and heat transmission is another field in 

which the continuity equation is useful. It is used to examine how energy and matter flow and 

is conserved in systems that involve conduction, convection, and diffusion. Understanding the 

transmission of mass or heat in materials and systems including fluid-solid interactions, 

diffusion processes, and heat exchangers is made easier with the help of the continuity 

equation. 

 

3.13   Amplitude 

In physics, amplitude describes the largest deviation a wave makes from its 

equilibrium position. It stands for the wave's power or intensity. The amplitude is calculated 

from the equilibrium position to the wave's crest or trough, depending on which point is 

higher on the wave. Here are some examples of amplitude in different contexts: sound waves, 

light waves, water waves etc. 

 

3.14   Wavelength 

In physics, a wavelength is the separation between two successive wave points that are 

in phase or at the same place in their oscillation cycle. Depending on the wave's size, it is 

often represented by the symbol λ (lambda) and is measured in units like metres (m), 

centimetres (cm), or nanometers (nm). Here are some examples of wavelength in different 

contexts: radio waves, seismic waves, light waves etc. 
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3.15   Density 

A substance's density is determined by how much mass it has in relation to its volume. 

It is determined by dividing the mass of an object or substance by its volume, and is 

frequently symbolized by the symbol 𝜌 (rho). 

 

Mathematically, density can be expressed as: 

Density (ρ) = Mass (m) / Volume (V) 

𝜌 =
𝑚

𝑉
. 

 

Here are some examples of density in different contexts: solids, liquids, gases, 

engineering and constructions, earth sciences etc. 

 

3.16   Pressure 

The force applied to a surface per unit area is referred to as pressure. It measures how 

much force is applied over a specific area and is expressed in quantities like Pascal's, pounds 

per square inch, and atmospheres. Here are some examples of pressure in different contexts: 

fluids, atmospheric pressure, hydraulic system, blood pressure etc. 

 

3.17   Cauchy Stress tensor 

In continuum mechanics, the distribution of forces inside a deformable material is 

described by a mathematical notion called the Cauchy stress tensor. It gives details about the 

forces acting on tiny planes within a material and describes the internal stresses at each place 

in the substance. 

 

A second-order tensor, the Cauchy stress tensor is represented by the symbol. It links 

the stress vector to an incredibly small surface component. A 3x3 matrix can be used to 

describe the Cauchy stress tensor in three-dimensional Cartesian coordinates: 

𝜎 = [𝜎𝑥𝑥, 𝜎𝑥𝑦, 𝜎𝑥𝑧][𝜎𝑦𝑥, 𝜎𝑦𝑦, 𝜎𝑦𝑧][𝜎𝑧𝑥, 𝜎𝑧𝑦, 𝜎𝑧𝑧]. 
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The individual components (𝜎𝑖𝑗) of the Cauchy stress tensor represent the stress components 

acting on planes with normal vectors in the x, y, and z directions. 

Here are a few examples to illustrate the concept of the Cauchy stress tensor: tensile 

stress, shear stress, hydraulic pressure etc. 

 

3.18   Permeability 

The ability of a material or substance to permit the flow or passage of another 

substance is referred to as permeability. It gauges how easily gases or liquids can pass through 

a substance. 

 

Depending on the type of material and the makeup of the substances present, 

permeability can vary greatly. Here are a few examples to illustrate permeability: permeability 

in soil, permeability in membranes, permeability in rocks etc. 

 

3.19   Weissenberg number 

A dimensionless metric called the Weissenberg number 𝑊𝑒 is employed in the study 

of rheology to measure how important elastic effects are in comparison to viscous effects in a 

viscoelastic fluid or material.  

 

The typical deformation time scale multiplied by the shear rate yields the Weissenberg 

number. Mathematically, it can be expressed as: 

𝑊𝑒 = 𝜆γ̇, 

where 𝑊𝑒 is the Weissenberg number, λ is the characteristic relaxation time of the material, 

and γ̇ is the shear rate.  

 

The dominant viscous or elastic behavior in a viscoelastic material is indicated by the 

Weissenberg number. A high Weissenberg number implies that the material has a strong 

elastic response because elastic effects are more important than viscous effects. A low 
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Weissenberg number, on the other hand, denotes a material that exhibits negligible elastic 

response and acts more like a viscous fluid. 

 

Here are a couple of examples to illustrate the application of the Weissenberg number: 

polymer processing and biological fluids.  
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CHAPTER 4  

THE INFLUENCE OF SLIP CONDITIONS, WALL 

PROPERTIES AND HEAT TRANSFER ON MHD 

PERISTALTIC TRANSPORT 

 

 

 

4.1 Introduction  

A uniform porous channel with elastic wall features has been used to study the effects 

of heat transfer and wall slip conditions on the peristaltic flow of MHD non-Newtonian fluid. 

Momentum and energy equations have been solved analytically. The graphs for the velocity, 

temperature distribution, coefficient of heat transfer, and streamlines have been studied. The 

analysis's findings for temperature, velocity, steam function, and heat transfer coefficient have 

been quantitatively assessed and briefly described. The result demonstrates that as the 

Knudsen number increases, more trapped bolus emerges. 

 

4.2 Mathematical Formulation 

Consider the movement of a non-Newtonian viscous fluid in a uniformly sized, two-

dimensional conduit. The walls of the channel are treated as a stretched membrane and 

presumed to be flexible. Travelling sinusoidal waves with moderate amplitude are then forced 

on this membrane. 

 

The channel wall's geometry is provided by  

                y =  η(x, t) = d(x)  +  a sin 
2𝜋

𝜆
 (x −  ct),                                                      (4.1)        

where  
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                                d(x)  =  d + 𝑚′x, 𝑚′ ≪  1.                                                                            (4.2)     

                                                                                                     

For the current issue, the governing equations for the motion are 

                                               
𝜕𝑢

𝜕𝑥
  +   

𝜕𝑣

𝜕𝑦
  =   0,                                                                                    (4.3)                                                                                                            

𝜌 [ 
𝜕𝑢

𝜕𝑡
  +  u 

𝜕𝑢

𝜕𝑥
  +  v 

𝜕𝑢

𝜕𝑦
 ]  =  − 

𝜕𝑝

𝜕𝑥
  +  𝜇 [ 

𝜕2𝑢

𝜕𝑥2   +   
𝜕2𝑢

𝜕𝑦2 ] − σ𝐵𝑜
2u − 

𝜇

𝑘
 u,            (4.4)       

                     𝜌 [ 
𝜕𝑣

𝜕𝑡
  +  u 

𝜕𝑣

𝜕𝑥
  +  v 

𝜕𝑣

𝜕𝑦
 ]   =  − 

𝜕𝑝

𝜕𝑦
  +  𝜇 [ 

𝜕2𝑣

𝜕𝑥2
  +  

𝜕2𝑣

𝜕𝑦2
 ]  −  

𝜇

𝑘
 v,                        (4.5)                                                                                                                                    

       𝜁 [ 
𝜕𝑇

𝜕𝑡
  +  u

𝜕𝑇

𝜕𝑥
  +  v 

𝜕𝑇

𝜕𝑦
  ]  =  

𝜅

𝜌
[ 

𝜕2𝑇

𝜕𝑥2   +   
𝜕2𝑇

𝜕𝑦2 ] +   𝑣 [2 [( 
𝜕𝑢

𝜕𝑥
)
2

+ ( 
𝜕𝑣

𝜕𝑦
)
2

 ]  +

                        ( 
𝜕𝑢

𝜕𝑦
  +   

𝜕𝑣

𝜕𝑥
 )

2

],                                                                                                            (4.6) 

where u, v are the components of velocity along x- and y-directions respectively, 𝜌 is the 

density, 𝜇 is the coefficient of viscosity of the fluid, p is the pressure, d is the mean half width 

of the channel, a is the amplitude, 𝜆 is the wavelength, c is the phase speed of the wave, 𝑚′ is 

the dimensional non-uniformity of the channel and k is the thermal conductivity of the fluid. 

 

The flexible wall's governing equation of motion can be written as follows: 

                                      (𝐿∗(η))  =  p − 𝑝𝑜 ,                                                                                  (4.7)       

where the motion of a stretched membrane with viscous damping forces is represented by the 

operator 𝐿∗, such that 

                               𝐿∗  =  − 𝜏 
𝜕2

𝜕𝑥2  +  𝑚1  
𝜕2

𝜕𝑡2  +  C 
𝜕

𝜕𝑡
 .                                                     (4.8)    

 

Using the x-momentum equation and the stress continuity at 𝑦 = ±𝜂, we obtain 

               
𝜕

𝜕𝑥
  𝐿∗(η)  =   

𝜕𝑝

𝜕𝑥
  

=  𝜇 [ 
𝜕2𝑢

𝜕𝑥2
  +   

𝜕2𝑢

𝜕𝑦2
 ] −  𝜌 [ 

𝜕𝑢

𝜕𝑡
  +  u 

 𝜕𝑢

𝜕𝑥
  +  v 

𝜕𝑢

𝜕𝑦
 ] − σ𝐵𝑜

2u − 
𝜇

𝑘
 u,             

                                                                                                                                                 (4.9)                                                             

         u =  ∓ h 
𝜕𝑢

𝜕𝑦
  at y =  ±η =  ± [d + 𝑚′x +  a sin 

2𝜋

𝜆
 (x −  ct)],                 (4.10)    

                              𝑇 = 𝑇𝑜 𝑜𝑛 𝑦 = −𝜂,           𝑇 = 𝑇1 𝑜𝑛 𝑦 = 𝜂,                                    (4.11)        

where 𝐿∗  =  − 𝜏 
𝜕2

𝜕𝑥2  +  𝑚1  
𝜕2

𝜕𝑡2  +  C 
𝜕

𝜕𝑡
 . Here 𝜏 is the elastic tension in the membrane, m is 

the mass per unit area; C is the coefficient of viscous damping forces, 𝑝𝑜 is the pressure on the 
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outside surface of the wall due to tension in the muscles and h is the dimensional slip 

parameter. We presummated 𝑝𝑜 = 0. 

 

Introducing ψ such that u =  
𝜕ψ

𝜕𝑦
  and v =  −  

𝜕ψ

𝜕𝑥
 and the subsequent non-dimensional 

amounts 

𝑥′  =   
𝑥

𝜆
 , 𝑦′   =   

𝑦

𝑑
 , ψ′  =   

ψ

𝑐𝑑
 , 𝑡′   =   

𝑐𝑡

𝜆
 , θ =

𝑇 − 𝑇𝑜

𝑇1 − 𝑇𝑜
, 𝜂′   =    

η 

𝑑
 ,

𝑝′   =   
𝑑2

𝑐𝜆𝜇
 p ,    k  =   

𝑘

𝑑2
 .                                                                            (4.12) 

After dropping primes, we ultimately obtain in equations (4.1) through (4.11), as:   

                  𝑅𝑒𝛿 [
𝜕ψ

𝜕𝑦
 
𝜕2ψ

𝜕𝑥𝜕𝑦
 − 

𝜕ψ

𝜕𝑥
 
𝜕2ψ

𝜕𝑦2
]

=  − 
𝜕𝑝

𝜕𝑥
 + 𝛿2  

𝜕3ψ

𝜕𝑥2𝜕𝑦
 +  

𝜕3ψ

𝜕𝑦3
 − 𝑀2  

𝜕ψ

𝜕𝑦
−

1

𝐾

𝜕ψ

𝜕𝑦
,                                (4.13) 

               𝑅𝑒𝛿3  [  
𝜕2ψ

𝜕𝑡𝜕𝑥
+ 

𝜕ψ

𝜕𝑦
 
𝜕2ψ

𝜕𝑥2
− 

𝜕ψ

𝜕𝑥
 
𝜕2ψ

𝜕𝑥𝜕𝑦
 ]

=  − 
𝜕𝑝

𝜕𝑦
 + 𝛿2  [𝛿2

𝜕3ψ

𝜕𝑥3
 +

𝜕3ψ

𝜕𝑥𝜕𝑦2
] −

𝛿2 

𝐾

𝜕ψ

𝜕𝑦
 ,                                           (4.14) 

                𝑅𝑒𝛿 [
𝜕𝜃

𝜕𝑡
+

𝜕ψ

𝜕𝑦
 
𝜕𝜃

𝜕𝑥
−

𝜕ψ

𝜕𝑥

𝜕𝜃

𝜕𝑦 
]  

=   
1

𝑃𝑟
(𝛿2

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
)𝜃

+ E [4 𝛿2 (
𝜕2ψ

𝜕𝑥𝜕𝑦
)

2

+ (
𝜕2ψ

𝜕𝑦2
− 𝛿2

𝜕2ψ

𝜕𝑥2
)

2

],                                                     (4.15) 

𝜕ψ

𝜕𝑦
 =  ∓𝛽 

𝜕2ψ

𝜕𝑦2
 at y =  ± η =  ± [1 +  mx + 𝜀 sin 2𝜋 (x –  t)],                           (4.16)  

       𝛿2 𝜕3ψ

𝜕𝑥2𝜕𝑦
+  

𝜕3ψ

𝜕𝑦3 − 𝑅𝑒𝛿 [ 
𝜕ψ

𝜕𝑦
 
𝜕2ψ

𝜕𝑥𝜕𝑦
 −  

𝜕ψ

𝜕𝑥
 
𝜕2ψ

𝜕𝑦2  ] −  𝑀2  
𝜕ψ

𝜕𝑦
−

1

𝐾

𝜕ψ

𝜕𝑦
= [𝐸1

𝜕3

𝜕𝑥3 + 𝐸2
𝜕3

𝜕𝑥𝜕𝑡2 +

   𝐸3
𝜕2

𝜕𝑥𝜕𝑡
] (𝜂),                                                                                                                                     (4.17) 

 

Additionally, it is believed that the streamline's zero value at the line 𝑦 = 0, i.e.       

                                                              𝛹(0) = 0,                                                                              (4.18) 

                                                      𝜃 = 0 on y = −η,                                                                                 

                                                       𝜃 = 1 on y = η,                                                                          (4.19) 
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where 𝜀 =
𝑎

𝑑
, 𝛿 =

𝑑

𝜆
 are geometric parameter, 𝑅𝑒 =

𝑐𝑑𝜌

𝜇
 is the Reynolds number, 𝐸1 = −

𝜏𝑑3

𝜆3𝜇𝑐
, 

𝐸2 =
𝑚1𝑐𝑑3

𝜆3𝜇
, 𝐸3 =

𝐶𝑑3

𝜆2𝜇
 are the non-dimensional elasticity parameters, m =  

𝜆𝑚′

𝑑
 is non-uniform 

parameter, and 𝛽 is the Knudsen number (Slip parameter). 

 

4.3 Exact Analytical Solution  

From equations (4.13) to (4.17), by applying the long wavelength approximation and 

disregarding the wave number and low Reynolds number, one may ascertain: 

                                      0 = − 
𝜕𝑝

𝜕𝑥
+  

𝜕3ψ

𝜕𝑦3
− 𝑀2  

𝜕ψ

𝜕𝑦
−

1

𝐾

𝜕ψ

𝜕𝑦
,                                                  (4.20) 

                                                                 0 = − 
𝜕𝑝

𝜕𝑦
 .                                                                         (4.21) 

                                                0 =  
1

𝑃𝑟

𝜕2θ

𝜕𝑦2
+   E (  

𝜕2ψ

𝜕𝑦2
 )2 .                                                          (4.22) 

When equation (4.20) is differentiated with respect to y, the compatibility equation appears as 

follows: 

                                                          
𝜕4ψ

𝜕𝑦4
− 𝑁2

𝜕2ψ

𝜕𝑦2
 = 0,                                                               (4.23) 

where                                                     

 𝑁 = √𝑀2 +
1

𝐾
  . 

Equation (4.17) results in: 

                                  
𝜕3ψ

𝜕𝑦3
− 𝑁2

𝜕ψ

𝜕𝑦
  = [𝐸1

𝜕3

𝜕𝑥3
+ 𝐸2

𝜕3

𝜕𝑥𝜕𝑡2
+ 𝐸3

𝜕2

𝜕𝑥𝜕𝑡
] (𝜂).                         (4.24) 

 

Equation (4.23) with boundary conditions (4.16), (4.18), and (4.24) has the following closed 

form solution: 

                    𝛹  =
8𝜀𝜋3[(𝐸1 + 𝐸2) cos 2𝜋(𝑥 − 𝑡) −

𝐸3

2𝜋
𝑠𝑖𝑛2𝜋(𝑥 − 𝑡)

𝑁2       
        

∗ [
𝑠𝑖𝑛ℎ𝑁𝑦

𝑁(𝑐𝑜𝑠ℎ𝑁𝜂 + NβsinhNη)
− 𝑦].                                                                   (4.25) 

If equation (4.25) is substituted for equation (4.22) and the temperature is subject to condition 

(4.19), then 
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             𝜃 =
1

8𝜂(𝑐𝑜𝑠ℎ𝑁𝜂 + NβsinhNη)2
      

∗ [ηBr𝐿333(2 𝑁
2𝑦2 − cosh2Ny) + 4(y + η)(𝑐𝑜𝑠ℎ𝑁𝜂 + NβsinhNη)2     

+ ηBr𝐿333[cosh2Nη − 2𝜂2𝑁2]],                                                                      (4.26) 

where  

                           𝐿333 =
8𝜀𝜋3 [

𝐸3

2𝜋
𝑠𝑖𝑛2𝜋(𝑥 − 𝑡) − (𝐸1 + 𝐸2)𝑐𝑜𝑠2𝜋(𝑥 − 𝑡)]

𝑁2
,                                     

where the Brinkman number is given as, 𝐵𝑟 = EPr. 

The coefficient of heat transmission at the wall is: 

                                                      𝑍 = 𝜂𝑥𝜃𝑦 .                                                                         (4.27)  

 

4.4 Methodology 

Using the mathematical software ‘’Mathematica’’ we have plotted the graphs to 

investigate the behavior of parameters on the velocity, temperature and streamline patterns of 

the fluid. Graphical demonstration of the parameters like the slip parameter (𝛽), non-uniform 

parameter (m), permeability parameter (K), and Hartmann number (M) in order to understand 

the behavior of the distributions of the axial velocity (u). 
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4.5 Results and Discussion 

                                                                            

        

             (𝒂) 𝜷 = 𝟎                                                                   (𝒃) 𝜷 = 𝟎. 𝟏 

          

 

     (𝒄) 𝜷 = 𝟎. 𝟐𝟓 

 

𝐅𝐢𝐠 𝟒. 𝟏 Streamlines for (𝑎) 𝛽 = 0, (𝑏)   𝛽 = 0.1, (𝑐)   𝛽 = 0.25 𝑤𝑖𝑡ℎ 𝐸1 = 0.6, 𝐸2 = 0.4, 𝐸3

= 0.1, 𝜀 = 0.2,𝑀 = 4,𝐾 = 0.05,𝑚 = 0.1, 𝑡 = 0.1. 
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                        (𝒂) 𝒎 = −𝟎. 𝟑𝟓                                                                                      (𝒃) 𝒎 = 𝟎 

 

 

     (𝒄) 𝒎 = 𝟎. 𝟑𝟓 

 

𝐅𝐢𝐠 𝟒. 𝟐 Streamlines for (𝑎) 𝑚 = −0.35, (𝑏) 𝑚 = 0, (𝑐) 𝑚 = 0.35 with 𝐸1 = 0.4, 𝐸2

= 0.1, 𝐸3 = 0.2, 𝜀 = 0.2,𝑀 = 4, 𝐾 = 0.1, 𝛽 = 0, 𝑡 = 0.1. 
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                   (𝒂) 𝑲 = 𝟎. 𝟎𝟓                                                       (𝒃) 𝑲 = 𝟎. 𝟐 

 

 

      (𝑐) 𝑲 → ∞ 

 

𝐅𝐢𝐠 𝟒. 𝟑 Streamlines for (𝑎) 𝐾 = 0.05, (𝑏) 𝐾 = 0.2, (𝑐) 𝐾 → ∞ with 𝐸1 = 1.2, 𝐸2 = 0.5, 𝐸3

= 0.1, 𝜀 = 0.15,𝑀 = 5,𝑚 = 0.2, 𝛽 = 0.1, 𝑡 = 0.1.   
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                     (𝒂) 𝑴 = 𝟎                                                             (𝒃) 𝑴 = 𝟐 

 

 

 

     (𝑐) 𝑴 = 𝟒 

 

𝐅𝐢𝐠 𝟒. 𝟒 Streamlines for (𝑎) 𝑀 = 0, (𝑏) 𝑀 = 2, (𝑐) 𝑀 = 4 𝑤𝑖𝑡ℎ 𝐸1 = 0.7, 𝐸2 = 0.7, 𝐸3

= 0.1, 𝜀 = 0.15, 𝐾 = 0.05,𝑚 = 0.25, 𝛽 = 0.05, 𝑡 = 0.1. 
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 𝐅𝐢𝐠 𝟒. 𝟓 Velocity distribution for (a)β = 0, (b)β = 0.1, (c)β = 0.2 with (𝑥 = 0.2, 𝑡 =

0.1), 𝐸1 = 1, 𝐸2 = 0.5, 𝐸3 = 0.5, 𝜀 = 0.1,𝑀 = 2,𝐾 = 1,𝑚 = 0.   

 

𝐅𝐢𝐠 𝟒. 𝟔 Velocity distribution for (a)m = −0.3, (b)m = 0, (c)m = 0.3 with (𝑥 = 0.2, 𝑡 =

0.1), 𝐸1 = 0.8, 𝐸2 = 0.5, 𝐸3 = 0.4, 𝜀 = 0.1, 𝐾 = 2,𝑀 = 3, 𝛽 = 0.2. 
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𝐅𝐢𝐠 𝟒. 𝟕 Velocity distribution for (a)K = 0.5, (b)K = 2, (c)K → ∞ with (𝑥 = 0.2, 𝑡 =

0.1), 𝐸1 = 0.5, 𝐸2 = 0.5, 𝐸3 = 0.1, 𝜀 = 0.2,𝑀 = 2,𝑚 = 0.1, 𝛽 = 0.3. 

 

𝐅𝐢𝐠 𝟒. 𝟖 Velocity distribution for (a)M = 2, (b)M = 3, (c)M = 4 with (𝑥 = 0.2, 𝑡 =

0.1), 𝐸1 = 2, 𝐸2 = 0.7, 𝐸3 = 0.1, 𝜀 = 0.15, 𝐾 = 2,𝑚 = 0.1, 𝛽 = 0.2. 
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𝐅𝐢𝐠 𝟒. 𝟗 Temperature distribution for (a)K = 0.4, (b)K = 2, (c)K → ∞ with (𝑥 = 0.2, 𝑡 =

0.1), 𝐸1 = 0.7, 𝐸2 = 0.5, 𝐸3 = 0.2, 𝐵𝑟 = 3, 𝜀 = 0.2,𝑀 = 3,𝐾 = 2,𝑚 = 0.1. 

 

𝐅𝐢𝐠 𝟒. 𝟏𝟎 Temperature distribution for (a)β = 0, (b)β = 0.1, (c)β = 0.2 with (𝑥 =

0.2, 𝑡 = 0.1), 𝐸1 = 1, 𝐸2 = 0.2, 𝐸3 = 0.1, 𝐵𝑟 = 4, 𝜀 = 0.15, 𝐾 = 0.2,𝑀 = 2, 𝛽 = 0.1. 
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𝐅𝐢𝐠 𝟒. 𝟏𝟏Temperature distribution for (a)m = −0.2, (b)m = 0, (c)m = 0.2 with (𝑥 =

0.2, 𝑡 = 0.1), 𝐸1 = 1.2, 𝐸2 = 0.5, 𝐸3 = 0.1, 𝐵𝑟 = 5, 𝜀 = 0.15,𝑀 = 4, 𝛽 = 0.1. 

 

                                                                               

𝐅𝐢𝐠 𝟒. 𝟏𝟐 Temperature distribution for (a)M = 3, (b)M = 4, (c)M = 5 with (𝑥 = 0.2, 𝑡 =

0.1), 𝐸1 = 0.8, 𝐸2 = 0.6, 𝐸3 = 0.1, 𝐵𝑟 = 2, 𝜀 = 0.2, 𝐾 = 0.2,𝑚 = 0.2, 𝛽 = 0.2.  
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Streamlines 

            Figures are created to show streamlines nature for different values considered in this 

work. Trapping is a fascinating peristaltic transport event. Fig: 4.1 (a), (b), and (c) shows how 

the slip parameter affects the trapping. In fluid dynamics, the relative velocity between a fluid 

and a solid surface is represented by the slip parameter. It measures the degree of slippage or 

absence of slippage at the fluid-solid interface. We see that as the slip parameter is increased, 

more trapped bolus appears and streamlines close loops produce a cellular flow pattern in the 

channel. The ability of a material to permit the passage of fluids, such as liquids or gases, 

through it is measured by the permeability parameter. It measures how easily chemicals can 

flow across a membrane or porous material. Fig 4.2: (a), (b), and (c) depict the streamlines for 

uniform and non-uniform channels. The conclusion is that for convergent channels, the size of 

the trapped bolus is large on the left side of the channel, whereas for divergent channels, it 

behaves differently. Furthermore, for uniform channels, the size of the bolus is symmetric. 

Fig: 4.3 (a), (b), and (c) analyze how K affects trapping. It demonstrates that as K increases, 

more trapped bolus appears and the volume of the trapped bolus grows. In 

magnetohydrodynamics, the Hartmann number is a dimensionless quantity that expresses how 

important magnetic forces are in relation to viscous forces in a conducting fluid flow. The 

portions of Fig: 4.4 (a), (b), and (c) show how M affects trapping. We notice that as M 

increases, the bolus size decreases. 

 

Velocity distribution 

 

            Figs: 4.5 - 4.8 are created to show velocity profile of the fluid for different values 

considered in this work. In fluid dynamics or particle physics, the pattern or arrangement of 

fluid or particle velocities inside a certain location is referred to as the "velocity distribution." 

The velocity distribution increases as 𝛽 increases, as shown in Fig: 4.5. According to Fig: 4.6, 

a divergent channel's (𝑚 > 0)velocity is higher than a uniform channel's velocity (𝑚 = 0), 

whereas a convergent channel's velocity (𝑚 < 0) is lower. Fig: 4.7 shows the impact of K on 

the velocity distribution. It demonstrates that the axial velocity rises as K rises. Additionally, 

the permeability parameter makes the wall-based sliding slip stronger. The impact M has on 

the velocity field for constant values of the other parameters is shown in Fig: 4.8. It is evident 

that as M increases, velocity decreases. 
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Temperature distribution 

 Figures 4.9 – 4.12 are created to show temperature distribution of the fluid for 

different values considered in this work. Temperature variance describes how temperature 

varies from one place to another within a specified range or inside a particular area. Figures 

4.9 – 4.12 provides an illustration of the impact of heat transfer on the fluid flow. The 

temperature distribution is plotted in Fig: 4.9 to show how the permeability parameter affect 

it. Increasing the permeability parameter, can be seen to have an opposite effect on the 

temperature profile. The temperature variation (𝜃) for various values of 𝛽 is made visible in 

Fig: 4.10. The relative motion between a fluid and a solid surface is represented by the slip 

parameter in the context of fluid dynamics. It measures how much slide or no slip is there at 

the fluid-solid interface. The temperature profiles are seen to be almost parabolic, and as the 

slip parameter 𝛽 increases, the temperature field decreases. The impact of m on the 

temperature distribution is shown in Fig: 4.11. When compared to other straight and 

convergent channels, the temperature amplitude for divergent channels is larger, as can be 

seen. The temperature distribution is plotted in Fig: 4.12 to show how the Hartmann number 

M affect it. Increasing the Hartmann number, can be seen to have an opposite effect on the 

temperature profile. 
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CHAPTER 5  

ANALYSIS OF WALL PROPERTIES AND SLIP PARAMETER 

ON THE PHAN-THIEN-TANNER (PTT) FLUID 

 

 

5.1 Introduction  

 This chapter concerns the characteristics of Phan-Thien-Tanner (PTT) fluid with wall 

properties and slip parameter. Appropriate similarities transformations are used to reduce the 

number of dependent variables. Motivated by the review article [36], in the present work, 

analysis of wall properties and slip parameter on Phan-Thien-tanner (PTT) fluid is 

investigated. The governing equations of Phan-Thien-Tanner fluid model are solved by a 

perturbation technique. The results have been obtained using the perturbation approach. 

Diverse parameters impact have been depicted graphically and are analyzed in depth. 

 

5.2 Mathematical Formulation 

Consider the movement of non-Newtonian PTT fluid flowing past a symmetric 

channel. The walls of the channel are assumed to be stretchable and flexible and are induced 

with peristaltic waves creating sinusoidal mechanism. 

 

The geometry of the channel wall is given by   

                                      y =  η(x, t) = d +  a sin 
2𝜋

𝜆
 (x −  ct),                                                   (5.1)        

where d is the mean half width of the channel, a is the amplitude, 𝜆 is the wavelength, c is the 

phase speed of the wave.   

The PTT model's constitutive equations are 

                                              𝐓 =  − p𝐈 +  𝐒,                                                                        (5.2)                                                                                                                                       
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                                             f (𝑡𝑟(𝐬))𝐬 +  k𝒔𝛁  =  2𝜇𝐃,                                                     (5.3)                                                                                                                                

                                        𝑠∇  =  
𝑑𝑠

𝑑𝑡
 –  s . 𝐿∗  −  L . s,                                                              (5.4)                                                                                                                                

                                                   L =  gradV,                                                                          (5.5)                                                                                                                                                  

where p is the pressure, I is the identity tensor, V is the velocity, T is the Cauchy stress tensor, 

𝜇 is the dynamic viscosity, S is an extra-stress tensor, D is the deformation-rate tensor, k is the 

relaxation time, 𝑠∇ denotes Oldroyd’s upper-convected derivative, 
𝑑

𝑑𝑡
 the material time 

derivative, tr is the trace and asterisk(*) denotes the transpose. 

The linearized PTT model's function f, which satisfies  

                                     f (𝑡𝑟(𝐬))  =  1 + 
𝜀𝑘

𝜇
 𝑡𝑟(𝐬),                                                              (5.6)                                                                                                                                 

Note that when the extensional parameter 𝜀 is zero, the PTT model reduces to an upper 

convected Maxwell model (UCM).  

 

For the current issue, the equations governing the motion are 

                                                    
𝜕𝑢

𝜕𝑥
  +   

𝜕𝑣

𝜕𝑦
  =   0,                                                                 (5.7)                                                                                                            

                        𝜌 [ 
𝜕𝑢

𝜕𝑡
  +  u 

𝜕𝑢

𝜕𝑥
  +  v 

𝜕𝑢

𝜕𝑦
 ]  =  − 

𝜕𝑝

𝜕𝑥
  + 

𝜕

𝜕𝑥
𝑆𝑥𝑥 + 

𝜕

𝜕𝑦
𝑆𝑥𝑦 − 

𝜇

𝑘
 u,         (5.8)                                                                           

                       𝜌 [ 
𝜕𝑣

𝜕𝑡
  +  u 

𝜕𝑣

𝜕𝑥
  +  v 

𝜕𝑣

𝜕𝑦
 ]   =  − 

𝜕𝑝

𝜕𝑦
  + 

𝜕

𝜕𝑥
𝑆𝑥𝑦 + 

𝜕

𝜕𝑦
𝑆𝑦𝑦  −  

𝜇

𝑘
 v,         (5.9)                                                                                

where u, v are the components of velocity along x- and y-directions respectively, 𝜌 is the 

density, 𝜇 is the coefficient of viscosity of the fluid, p is the pressure, and k is the thermal 

conductivity of the fluid. 

The extra stress tensor components are given as: 

              f𝑆𝑥𝑥  + k [ u 
𝜕𝑆𝑥𝑥

𝜕𝑥
+ v 

𝜕𝑆𝑥𝑥

𝜕𝑦
 −  2 

𝜕𝑢

𝜕𝑥
 𝑆𝑥𝑥  −  2 

𝜕𝑢

𝜕𝑦
 𝑆𝑥𝑦] v  =   2𝜇 

𝜕𝑢

𝜕𝑥
 ,              (5.10) 

                    f𝑆𝑥𝑦  +  k [u 
𝜕𝑆𝑥𝑦

𝜕𝑥
 +  v 

𝜕𝑆𝑥𝑦

𝜕𝑦
 −  

𝜕𝑣

𝜕𝑥
 𝑆𝑥𝑥  −   

𝜕𝑣

𝜕𝑦
 𝑆𝑥𝑦  −  

𝜕𝑢

𝜕𝑥
 𝑆𝑥𝑦  − 

𝜕𝑢

𝜕𝑦
𝑆𝑦𝑦]  

=  𝜇( 
𝜕𝑢

𝜕𝑦
 + 

𝜕𝑣

𝜕𝑥
 ),                                                                                                   (5.11) 

                   f𝑆𝑦𝑦  +  k [u 
𝜕𝑆𝑦𝑦

𝜕𝑥
 +  v 

𝜕𝑆𝑦𝑦

𝜕𝑦
 −  2 

𝜕𝑣

𝜕𝑥
 𝑆𝑥𝑦  −  2 

𝜕𝑣

𝜕𝑦
 𝑆𝑦𝑦]  =  2𝜇 

𝜕𝑣

𝜕𝑦
 ,    (5.12)                                                               

                                              f = 1 + 
𝜀𝑘

𝜇
 (𝑆𝑥𝑥  +  𝑆𝑦𝑦).                                                    (5.13)      

Here we use equation from previous chapter i.e. equation (4.7 - 4.11). 
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Introducing ψ such that u =  
𝜕ψ

𝜕𝑦
  and v =  −  

𝜕ψ

𝜕𝑥
  and the non-dimensional quantities defined 

below: 

𝑥′ =  
𝑥

𝜆
 , 𝑦′  =   

𝑦

𝑑
 , ψ′  =   

ψ

𝑐𝑑
 , 𝑡′  =   

𝑐𝑡

𝜆
 , 𝜂′  =    

η 

𝑑
 , 𝑝′  =   

𝑑2

𝑐𝜆𝜇
 p ,

k  =   
𝑘

𝑑2
 , 𝑢′  =   

𝑢

𝑐
  , 𝑣′   =   

𝑣

𝛿𝑐
 , 𝛿  =   

𝑑

𝜆
 , 𝑅𝑒  =   

𝜌𝑐𝑑

𝜇
 ,

d  =   
𝑑2

𝑑1
 , 𝑎′   =   

𝑎

𝑑
 , 𝑏′   =   

𝑏

𝑑
 , 𝑆𝑖𝑗

′  =   
𝑆𝑖𝑗

𝜇𝑐
d , 𝑊𝑒 =   

𝑘𝑐

𝑑
 ,

𝜎  =   
𝑑

√𝑘𝑜

, and u =  
𝜕ψ

𝜕𝑦
 and v = −

𝜕ψ

𝜕𝑥
.                                                      (5.14) 

After eliminating primes, we ultimately obtain in equations: 

                         𝑅𝑒𝛿 [
𝜕ψ

𝜕𝑦
 
𝜕2ψ

𝜕𝑥𝜕𝑦
 −  

𝜕ψ

𝜕𝑥
 
𝜕2ψ

𝜕𝑦2
]  =  − 

𝜕𝑝

𝜕𝑥
 +  𝛿 

𝜕𝑆𝑥𝑥

𝜕𝑥
 +  

𝜕𝑆𝑥𝑦

𝜕𝑦
 −  𝜎2  

𝜕ψ

𝜕𝑦
 , (5.15)                                                                     

           𝑅𝑒𝛿3 [− 
𝜕ψ

𝜕𝑦
 
𝜕2ψ

𝜕𝑥2  + 
𝜕ψ

𝜕𝑥
 
𝜕2ψ

𝜕𝑦𝜕𝑥
]  =  − 

𝜕𝑝

𝜕𝑦
 +  𝛿2  

𝜕𝑆𝑥𝑦

𝜕𝑥
 +  𝛿

𝜕𝑆𝑦𝑦

𝜕𝑦
  + 𝜎2𝛿 

𝜕ψ

𝜕𝑥
 ,             (5.16) 

                
𝜕ψ

𝜕𝑦
  =  ∓𝛽 

𝜕2ψ

𝜕𝑦2  at y =  ± η =  ±d +  a sin 
2𝜋

𝜆
 (x −  ct),                      (5.17)  

  𝐸1
𝜕3

𝜕𝑥3 + 𝐸2
𝜕3

𝜕𝑥𝜕𝑡2 + 𝐸3
𝜕2

𝜕𝑥𝜕𝑡
= 𝛿 

𝜕

𝜕𝑥
 𝑆𝑥𝑥  +  

𝜕

𝜕𝑦
𝑆𝑥𝑦  − 

1

𝑘
 
𝜕ψ

𝜕𝑦
− 𝑅𝑒𝛿 [ 

𝜕ψ

𝜕𝑦
 
𝜕2ψ

𝜕𝑥𝜕𝑦
 −

                      
𝜕ψ

𝜕𝑥
 
𝜕2ψ

𝜕𝑦2  ] ,                                                                                                                      (5.18) 

where 𝜀 =
𝑎

𝑑
, 𝛿 =

𝑑

𝜆
 are geometric parameter, 𝑅𝑒 =

𝑐𝑑𝜌

𝜇
) is the Reynolds number,  𝐸1 =

−
𝜏𝑑3

𝜆3𝜇𝑐
, 𝐸2 =

𝑚1𝑐𝑑3

𝜆3𝜇
,  𝐸3 =

𝐶𝑑3

𝜆2𝜇
 are the non-dimensional elasticity parameters, and 𝛽 is the 

Knudsen number (Slip parameter). 

                                                                                                                                                                                                     

The fundamental equations were reduced by using the long wavelength approximations. 

                                                     
𝑑𝑝

𝑑𝑥
 =  

𝜕𝑆𝑥𝑦

𝜕𝑦
 −  𝜎2  

𝜕ψ

𝜕𝑦
,                                                     (5.19)                                                                                                                                     

 

                                                                   
𝜕𝑝

𝜕𝑦
= 0,                                                                               (5.20)                                                                                                                                                             

                                             f𝑆𝑥𝑥  =  2𝑊𝑒 
𝜕2ψ

𝜕𝑦2
 𝑆𝑥𝑦 ,                                                          (5.21)                                                                                                                             

                                                     f𝑆𝑦𝑦  =  0,                                                                         (5.22)                                                                                                                                                                     

                                    f𝑆𝑥𝑦  =  −𝑊𝑒 
𝜕2ψ

𝜕𝑦2  𝑆𝑦𝑦  +  
𝜕2ψ

𝜕𝑦2  .                                                                (5.23)                                                                                                                               

𝑆𝑦𝑦  =  0 is the result of equation (5.22) and equation (5.19) respectively. 
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                                            𝑆𝑥𝑦  =  y 
𝑑𝑝

𝑑𝑥
  +  𝜎2 ψ.                                                            (5.24)     

                                                                                                                                               

The use of (5.22) and (5.23) allows us to write 

                                               𝑆𝑥𝑥  =  2𝑊𝑒 𝑆𝑥𝑦
2 .                                                                (5.25)                                                                                                                               

Equations (5.13), (5.22) and (5.25) provide the following results: 

                                    
𝜕2ψ

𝜕𝑦2  =  𝑆𝑥𝑦  +  2𝜀𝑊𝑒2 𝑆𝑥𝑦
3.                                                         (5.26)   

                                                                                                                   

When we change (5.24) to (5.26) we obtain 

                           
𝜕2ψ

𝜕𝑦2
 =  y 

𝑑𝑝

𝑑𝑥
 +  𝜎2(ψ) +  2𝜀𝑊𝑒2 (y 

𝑑𝑝

𝑑𝑥
 +  𝜎2(ψ))

3

.                    (5.27)      

As for the boundary conditions, 

                                
𝜕ψ

𝜕𝑦
= ±𝛽 

𝜕2ψ

𝜕𝑦2 , 𝑎𝑡 𝑦 =  ±𝜂.                                                               (5.28)        

 

5.3 Perturbation Solution  

 Because of the non-linear nature of equation (5.27) and the impossibility of finding an 

exact solution, we use the perturbation approach to locate the answer. We expand the flow 

quantities in a power series of the tiny parameter 𝑊𝑒2as follows for the perturbation solution: 

                                             Ψ =  ψ𝑜  +  𝑊𝑒2ψ1  +  𝑂(𝑊𝑒4),                                          

                                        
𝑑𝑝

𝑑𝑥
 =  

𝑑𝑝𝑜

𝑑𝑥
 +   𝑊𝑒2 𝑑𝑝1

𝑑𝑥
 +  𝑂(𝑊𝑒4),                                       (5.29)                                         

                                                        𝑆𝑥𝑦 = 𝑆0𝑥𝑦
+ 𝑊𝑒2𝑆1𝑥𝑦

+ 𝑂(𝑊𝑒4).                                      (5.30)                                            

We get a system of equations of various orders by using the aforementioned formulas in 

equation (5.27). These systems of equations have been extracted by using DSolver command 

in Mathematica. Motivated by the article by Vaidya et al. adopted the techniques [60]. 

 

5.3.1 System of Order 𝑾𝒆𝟎 

 

The zeroth-order problem's governing equations and boundary conditions are 

                                       

                                               
𝜕2

𝜕𝑦2
𝑆0𝑥𝑦

− 𝜎2 𝜕2𝛹0

𝜕𝑦2
= 0,                                                                     (5.31) 
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𝑑𝑝0

𝑑𝑥
=

1

𝑦

𝜕2ψ0

𝜕𝑦2
−

1

𝑦
𝜎2ψ0,                                                                    (5.32) 

with boundary conditions: 

                                              
𝜕ψ

𝜕𝑦
=  ±𝛽 

𝜕2ψ

𝜕𝑦2
 𝑎𝑡 𝑦 =  ±𝜂,                                                             (5.33) 

                         
𝜕𝑆0𝑥𝑦

𝜕𝑦
=

𝜕2ψ0

𝜕𝑦2
= (𝐸1

𝜕3

𝜕𝑥3
+ 𝐸2

𝜕3

𝜕𝑥𝜕𝑡2
+ 𝐸3

𝜕2

𝜕𝑥𝜕𝑡
) 𝜂, 𝑎𝑡 𝑦 =  ±𝜂.              (5.34) 

 

5.3.2 System of Order 𝑾𝒆𝟐 
 

         

The first-order problem's governing equations and boundary conditions are 

                                                 
𝜕2

𝜕𝑦2
𝑆1𝑥𝑦

− 𝜎2
𝜕2ψ1

𝜕𝑦2
= 0,                                                               (5.35) 

                                       
𝑑𝑝1

𝑑𝑥
=

1

𝑦

𝜕2ψ1

𝜕𝑦2
−

1

𝑦
𝜎2ψ1 −

1

𝑦
2𝜀 (𝑦

𝑑𝑝0

𝑑𝑥
+ 𝜎2ψ0)

3

,                         (5.36) 

with boundary conditions: 

                                             
𝜕ψ1

𝜕𝑦
=  ±𝛽 

𝜕2ψ1

𝜕𝑦2
, 𝑎𝑡 𝑦 =  ±𝜂,                                                         (5.37) 

                                     
𝜕

𝜕𝑦
𝑆1𝑥𝑦 = 0, 𝑎𝑡 𝑦 =  ±𝜂.                                                                    
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5.4 Results and Discussion 

              

                        (𝒂) 𝑬𝟏 = 𝟎. 𝟏                                                             (𝒃) 𝑬𝟏 = 𝟎. 𝟓     

 

 

 

     (𝒄) 𝑬𝟏 = 𝟏. 𝟐 

 

𝐅𝐢𝐠 𝟓. 𝟏 Streamlines for (𝑎)𝐸1 = 0.1, (𝑏)𝐸1 = 0.5, (𝑐)𝐸1 = 1.2 𝑤𝑖𝑡ℎ 𝐸3 = 0.1, 𝐸2

= 0.1,𝑊𝑒2 = 0.01, 𝜖 = 0.1, 𝛽 = 0.3; 𝜎 = 0.1, 𝑡 = 1. 
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                               (𝒂) 𝑬𝟐 = 𝟎. 𝟏                                                        (𝒃) 𝑬𝟐 = 𝟎. 𝟓 

 

 (𝒄) 𝑬𝟐 = 𝟎. 𝟗 

𝐅𝐢𝐠 𝟓. 𝟐 Streamlines for (𝑎)𝐸2 = 0.1, (𝑏)𝐸2 = 0.5, (𝑐)𝐸2 = 0.9 𝑤𝑖𝑡ℎ 𝐸1 = 0.2, 𝐸3

= 0.1,𝑊𝑒2 = 0.01, 𝜖 = 0.1, 𝛽 = 0.3; 𝜎 = 0.1, 𝑡 = 1. 
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                (𝒂)𝑬𝟑 = 𝟎. 𝟏                                                      (𝒃)𝑬𝟑 = 𝟎. 𝟓 

 

 

   (𝒄)𝑬𝟑 = 𝟎. 𝟖 

 

𝐅𝐢𝐠 𝟓. 𝟑 Streamlines for (𝑎)𝐸3 = 0.1, (𝑏)𝐸3 = 0.5, (𝑐)𝐸3 = 0.8 𝑤𝑖𝑡ℎ 𝐸1 = 0.1, 𝐸2

= 0.1,𝑊𝑒2 = 0.01, 𝜖 = 0.1, 𝛽 = 0.3; 𝜎 = 0.1, 𝑡 = 1. 
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                     (𝒂)𝑾𝒆𝟐 = 𝟎. 𝟎𝟎𝟏                                                       (𝒃)𝑾𝒆𝟐 = 𝟎. 𝟎𝟏 

 

 

     (𝒄)𝑾𝒆𝟐 = 𝟎. 𝟎𝟐 

 

𝐅𝐢𝐠 𝟓. 𝟒 Streamlines for (𝑎)𝑊𝑒2 = 0.001, (𝑏)𝑊𝑒2 = 0. 01, (𝑐)𝑊𝑒2 = 0.02 𝑤𝑖𝑡ℎ 𝐸3

= 0.15, 𝐸2 = 0.15, 𝐸1 = 0.15, 𝜖 = 0.1, 𝛽 = 0.3; 𝜎 = 0.1, 𝑡 = 1. 
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                             (𝒂)𝝈 = 𝟎. 𝟏                                                               (𝒃)𝝈 = 𝟏 

 

 

 

   (𝒄)𝝈 = 𝟐 

 

𝐅𝐢𝐠 𝟓. 𝟓 Streamlines for (𝑎)𝜎 = 0.1, (𝑏)𝜎 = 1, (𝑐)𝜎 = 2 𝑤𝑖𝑡ℎ 𝐸3 = 0.15, 𝐸2 = 0.15, 𝐸1

= 0.25, 𝜖 = 0.1, 𝛽 = 0.3;𝑊𝑒2 = 0.001, 𝑡 = 1. 
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                                 (𝒂)𝜷 = 𝟎                                                               (𝒃)𝜷 = 𝟎. 𝟏 

 

 

 

     (𝒄)𝜷 = 𝟎. 𝟐 

 

𝐅𝐢𝐠 𝟓. 𝟔 Streamlines for (𝑎)𝛽 = 0, (𝑏)𝛽 = 0.1, (𝑐)𝛽 = 0.2 𝑤𝑖𝑡ℎ 𝐸3 = 0.15, 𝐸2 = 0.15, 𝐸1

= 0.25, 𝜖 = 0.1, 𝜎 = 0.3;𝑊𝑒2 = 0.001, 𝑡 = 1. 
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𝐅𝐢𝐠 𝟓. 𝟕 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝜎 = 0.01, 𝜎 = 0.2, 𝜎 = 0.3 𝑤𝑖𝑡ℎ 𝐸3 = 0.15, 𝐸2 =

0.15, 𝐸1 = 0.25, 𝜖 = 0.1, 𝛽 = 0.1;𝑊𝑒2 = 0.001. 

 

 

𝐅𝐢𝐠 𝟓. 𝟖 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝛽 = 0, 𝛽 = 0.01, 𝛽 = 0.02 𝑤𝑖𝑡ℎ 𝐸3 = 0.15, 𝐸2 =

0.15, 𝐸1 = 0.25, 𝜖 = 0.1, 𝜎 = 0.1;𝑊𝑒2 = 0.01.          
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𝐅𝐢𝐠 𝟓. 𝟗 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑊𝑒2 = 0,𝑊𝑒2 = 0.001,𝑊𝑒2 = 0.002 𝑤𝑖𝑡ℎ 𝐸1

= 0.5, 𝐸2 = 0.5, 𝐸3 = 0.5, 𝛽 = 0.1, 𝜎 = 0.1, 𝜀 = 0.1. 

 

𝐅𝐢𝐠 𝟓. 𝟏𝟎 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝐸1 = 0.1, 0.2, 0.3, 𝐸2 = 0.1, 0.2, 0.3, 𝐸3 =

0.1, 0.2, 0.3 𝑤𝑖𝑡ℎ 𝛽 = 0.1, 𝜎 = 0.1,𝑊𝑒2 = 0.001, 𝜀 = 0.1. 
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𝐅𝐢𝐠 𝟓. 𝟏𝟏 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝜎 = 0.1, 𝜎 = 0.5, 𝜎 = 1 𝑤𝑖𝑡ℎ 𝐸1 = 0.2, 𝐸2 = 0.3, 𝐸3

= 0.2, 𝛽 = 0.1,𝑊𝑒2 = 0.001.  

 

 

𝐅𝐢𝐠 𝟓. 𝟏𝟐 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝛽 = 0, 𝛽 = 0.1, 𝛽 = 𝑜. 2 𝑤𝑖𝑡ℎ 𝐸1 = 0.2, 𝐸2 = 0.3, 𝐸3

= 0.2, 𝛽 = 0.1,𝑊𝑒2 = 0.001, 𝜎 = 0.1. 
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Streamlines 

 

            For each value taken into consideration in this study, figures illustrating the nature of 

the streamlines are generated. Fluid flow patterns can be seen visually with the help of 

streamlines, which are hypothetical lines that depict the instantaneous trajectories taken by 

fluid particles in a flowing fluid. One intriguing peristaltic transport event is trapping. When 

we raise 𝐸1 in Fig. 5.1 demonstrate that the bolus size is the same on the left and right sides 

and that the lines are producing and getting closer to one another on the left side.  The number 

of trapped boluses is the same on the left side of all three figures when we raise 𝐸2 in Fig. 5.2. 

However, their size expands on the right side. When we raise 𝐸3 in Fig. 5.3 demonstrate that 

the bolus's size is the same on the left side but is decreasing on the right; also, the first figure 

shows fewer lines formed, but the second and third figures show more lines produced 

gradually. When we raise Weissenberg number 𝑊𝑒2 the bolus in Fig 5.4 has the same size on 

the left and right sides, and the line created on the left side of the first image is gradually 

getting smaller. The right side is where the lines are starting to develop, and it is completely 

finished. When we raise porosity 𝜎 in Fig. 5.5 demonstrate that the bolus size is the same on 

the left and right sides, that the lines are gradually fading from both sides and that the bolus 

size is growing as a result of the line removal. When we raise 𝛽 in Fig. 5.6 demonstrate that 

the bolus size is the same on the left and right sides and that the lines are created slowly on 

each side. 

 

Velocity Profiles 

 

As σ increases, the velocity distribution decreases, as Fig. 5.7 illustrates. Fig. 5.8 

illustrates how the velocity distribution rises with an increase in β. In rheology, the elastic 

response and viscous reaction of a material under deformation are related by a dimensionless 

quantity called the Weissenberg number. The effect of 𝑊𝑒2 on the velocity distribution can 

be seen in Fig. 5.9. This illustrates that when 𝑊𝑒2 enhance, the axial velocity decreases. Wall 

characteristics in a fluid flow simulation, the parameters 𝐸1, 𝐸2, and 𝐸3 in computational fluid 

dynamics (CFD) are used to specify the parameters and properties of various surface types, 

such as wall roughness and temperature conditions. The effect that 𝐸1, 𝐸2, and 𝐸3 have on the 

velocity field at constant values of the other parameters is displayed in Fig. 5.10. It is clear 

that velocity rises with increase in 𝐸1, 𝐸2, and 𝐸3. 
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Pressure 

 

For each value taken into consideration in this study, figures illustrating the nature of 

the pressure are generated. The force that a material, like a gas or liquid, exerts on its 

surroundings per unit area is known as pressure, and it is commonly measured in pascals (Pa). 

The effects of constant porosity (σ) in the material on pressure rise are shown in Fig. 5.8 

section (a). This graphic allows for the identification of three separate regions. The peristaltic 

pumping region is defined as the area where 𝑄 > 0, ∆𝑃 > 0. To move the fluid forward in this 

area, peristalsis must struggle against the pressure rise. A free pumping zone is defined as the 

region where 𝑄 = 0, ∆𝑃 = 0. Free pumping flux is the value of Q that corresponds to ∆𝑃 = 0. 

The free pumping flux may only be attributed to peristaltic waves, as ∆𝑃 = 0. An enhanced 

pumping zone is the final area when 𝑄 > 0, ∆𝑃 < 0. Because of peristalsis, the pressure helps 

the flow in this area. It is observed that when the specified flow rate is constant, an increase in 

𝜎 increases the rise in pressure within the peristaltic pumping area. It is almost established 

that the free pumping flow is independent of σ. However, with a fixed value of mean flow rate 

Q, the help given by the pressure diminishes with rising σ in the augmented pumping zone. 

Fig. 5.8 section (b) shows how pressure rise is affected by the material constant slip parameter 

β. The results indicate that σ and β have comparable impacts on ∆P. This graphic allows for 

the identification of three separate regions. The peristaltic pumping region is defined as the 

area where 𝑄 > 0, ∆𝑃 > 0. To move the fluid forward in this area, peristalsis must struggle 

against the pressure rise. A free pumping zone is defined as the region where 𝑄 = 0, ∆𝑃 = 0. 

Free pumping flux is the value of Q that corresponds to ∆𝑃 = 0. The free pumping flux may 

only be attributed to peristaltic waves, as ∆𝑃 = 0. An enhanced pumping zone is the final area 

when 𝑄 > 0, ∆𝑃 < 0. Because of peristalsis, the pressure helps the flow in this area. It is 

observed that when the specified flow rate is constant, an increase in 𝛽 increases the rise in 

pressure within the peristaltic pumping area. In free pumping where pressure is constant. 

However, with a fixed value of mean flow rate Q, the help given by the pressure diminishes 

with rising β in the augmented pumping zone.  
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

6.1 Conclusion  

This thesis delves into a comprehensive exploration of the peristaltic movement of a 

non-Newtonian Phan-Thien-Tanner (PTT) fluid within a symmetric flexible channel 

characterized by sinusoidal peristaltic waves. Employing the long wavelength and low 

Reynolds number approximations, the flow is scrutinized within a wave frame of reference 

that travels at the velocity of the peristaltic waves. The mathematical representation of the 

system utilizes partial differential equations (PDEs) to model the equation systems. To 

thoroughly analyze the impact of various physical parameters on streamlines, pressure, and 

velocity, graphical representations are employed. 

 

The findings of the present study are succinctly encapsulated in the following overarching 

conclusion. 

              

            In the course of this investigation, it was observed that the size of the trapped bolus 

remains constant, while the spacing between lines diminishes with an increase in the value of 

wall characteristics 𝐸1. Conversely, the size of the trapped bolus expanded proportionally 

with rising values of wall characteristics 𝐸2. Additionally, the volume of the confined bolus 

exhibited a decrease as the wall characteristics 𝐸3 values increased. 

 The volume of the trapped bolus remains constant, and concurrently, the number of 

lines decreases with an increase in the Weissenberg number (We). Following a phase where 

the bolus size remains constant, its volume experiences an increase, accompanied by the 

thinning of the lines, as the porosity parameter (σ) increases. Furthermore, the trapped bolus 

volume maintains constancy, while the emergence of lines unfolds gradually with an increase 

in the slip parameter (β).  
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             Under the influence of porosity (σ), slip parameter (β), Weissenberg number (𝑊𝑒2), 

and wall characteristics (𝐸1, 𝐸2, and 𝐸3), the velocity profile (u) exhibits an upward trend in 

certain scenarios. An increase in porosity (σ) corresponds to a decrease in the velocity 

distribution. Both the slip parameter (β) and velocity (u) show growth with higher values. 

Simultaneously, the Weissenberg number (𝑊𝑒2) increases, leading to a decrease in velocity 

(u). Furthermore, the wall characteristics (𝐸1, 𝐸2, and 𝐸3) exhibit a parallel increase with the 

velocity (u) value. 

            When considering porosity and slip parameter, an increasing trend is observed in the 

pressure. Specifically, pressure rise with increasing porosity (σ) in the peristaltic zone, 

maintains a value of zero in the free pumping region, and experiences an increase with further 

increments in porosity (σ) in the enhanced pumping region. Similarly, pressure demonstrates 

an ascending pattern with increasing slip parameter (β) in the peristaltic zone, remains zero in 

the free pumping region, and diminished with higher values of slip parameter (β) in the 

enhanced pumping region. 

 

6.2 Future work  

The proposed model can be expanded by adding diverse parameters like magnetic 

field, chemical reactions and viscous dissipations. This model can also be studied by 

considering the fluid models like Williamson, Burger, Maxwell and Jeffery, under the same 

boundary conditions. We can also extend this proposed work by taking different geometries 

like wedge, inclined channel or cylinder etc. 
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