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ABSTRACT

Title: §-Extension of Starlike Functions with respect to Symmetric points Subordinated
with d-sine Function

This thesis aims to introduce and characterize novel subclasses of univalent functions within
the open unit disk. The utilization of g-calculus will be employed to establish the g-extension
of starlike and convex functions related to symmetric points. Additionally, we will investigate
notable properties, including bounds on the coefficients of analytic functions, the Zalcman
functional, and the Fekete—Szegd inequality. Furthermore, we will explore upper bounds on
Hankel Determinants for functions belonging to these newly defined classes. It will be shown
that newly obtained results are advanced as compare to the already derived results by numerous
researchers in the field of Geometric Function Theory. The special cases of newly derived results

will be presented in the form of corollaries.
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CHAPTER 1

INTRODUCTION

1.1 Historical background

In contemporary works on the history of mathematics, there is a prevalent theme of contrasting
the key pioneers of Geometric Function Theory, namely Cauchy, Riemann, and Weierstrass, see
[1]. Remmert’s perspective highlights that during the 19th century, these three mathematicians
played pivotal roles in shaping the modern theory of complex functions, specifically complex
analysis. What distinguishes their contributions are their unique approaches to elucidating
the concept of holomorphic functions, with each of them offering distinct perspectives and
methodologies in tackling this fundamental aspect of mathematical theory.

Remmert states that Cauchy’s function theory is based on his famous integral theorem
and the residue concept, which enable Cauchy to attend to holomorphic functions in terms of
integral representations. Departing from this perspective, Riemann’s geometric point of view
allowed him to work with holomorphic functions via mappings between domains in the complex
plane. Finally, Remmert reports that Weierstrass theory of complex functions is the theory of
holomorphic functions developed locally into convergent power series.

Cauchy the initial contributor among the trio of function theory pioneers mentioned earlier,
in complex theory at the age of twenty-five, presented over 200 subsequent papers in this domain,
for detail see [2]. He introduced the concept of the definite integral with complex limits and

established the Cauchy Integral Theorem. In this work, he explored the power series expansion of



an analytic function and introduced the Cauchy Integral Formulas. Starting from 1840, Cauchy
received support from fellow French mathematicians to lay the foundations of function theory.
Notably, Laurent in 1843, discovered the Laurent expansion of an analytic function near an
isolated singularity, see [3]. Liouville formulated various theorems related to elliptic functions,
and Puiseux studied in his significant paper on algebraic functions, investigated the behavior of
these functions around their branch points, for detail see [4]. The collective findings of these
mathematicians were systematically compiled for the first time by Briot and Bouquet in a series
of articles, for detail see [5, 6, 7].

Riemann, second prominent figure in the development of function theory, made significant
contributions during his time at Goéttingen a few decades later. In his well-known dissertation,
and his renowned articles on Abelian functions, for detail see [8]. Riemann, following Cauchy’s
lead from 1851 onward, based his definition of an analytic function on the Cauchy-Riemann
differential equations, expressed as f(x + iy) = u + iv. Riemann establishes that u and v are
potential functions and that a conformal mapping of the x, y-plane to the u,v-plane is effected
via the analytic function f. In his exploration, Riemann delved into determining the minimal
conditions necessary to define such a function. This investigation led him to formulate the
well-known Riemann Mapping Theorem, for detail see [9]. This theorem states that if U is a
non-empty simply connected open subset of the complex number plane C (excluding the entire
C itself), then there exists a bijective holomorphic mapping, with a holomorphic inverse, from U
onto the open unit disk. Key elements of Riemann’s approach include the Dirichlet Principle
and Riemann surfaces. When considering the mathematician who most profoundly influenced
Riemann in shaping his function theory, Gauss stands out. Gauss had already grasped essential
concepts of function theory, including complex integration, the Cauchy Integral Theorem, and
contributed significantly to the theory of conformal mapping.

Weierstrass, the third among the founders of function theory, laid the foundation for his
later function theory in three papers. In these works, crucial aspects of his later developments
are anticipated. Notably, Weierstrass presented a proof of the Laurent Theorem, preceding
Laurent’s discovery and independent of Cauchy. Other key contributions in these papers include
the formulation of the Cauchy Estimates, the introduction of the concept of uniform convergence,
the definition of analytic functions through power series, and the establishment of the principle
of analytic continuation. Various authors have delved into the origins of Weierstrassian function

theory, see [10].



Geometric Function Theory encompasses various classes and subclasses, with a crucial focus
on determining coefficient bounds. Within this framework, functions are categorized into different
subfamilies belonging to the normalized analytic functions of class .<7. A notable theorem in this
context is the Bieberbach theorem, originally formulated by the German mathematician Ludwig
Bieberbach in 1916. This theorem specifically for the class ., which consists of univalent
functions. He calculated the second coefficient ¢, of functions of class . , which is class
of univalent functions. This theorem is the source of Bieberbach’s conjecture, which led to
significant advancement in the field and was frequently pursued in attempts to prove.

The well-known coefficient conjecture for the function 7, of functions of class .#, stated as,
if T € . the coefficients of function 7 satisfy this relation |&,,| < m for m € {2,3,4,...}. He
proved that |¢;| < 2 with equality if only if the function T was the Koebe function or a rotation
of it. The Bieberbach conjecture is straightforward to state, yet it has long been a challenge for
many mathematicians. Numerous people have attempted to solve it in vain but have developed
alternate strategies that are now widely utilized in the field.

Mathematicians have made numerous attempts to prove this hypothesis, but it has remained
a difficult problem to solve. In 1923, the mathematician Karl Loewner proved that |¢3]| < 3, see
[11]. This proof opened the door for others, to prove this result for the general case. More than
30 years passed, there were no progress, until in 1955, the Bieberbach conjecture was proved the
first time for m = 4, that is, |¢4| < 4, by Gangadharan et al. [12].

The general form of the Bieberbach conjecture was successfully proved in 1985 by mathe-
matician Louis de Branges, see [13]. He developed a prolonged, complex, but accurate proof
of this conjecture. At an international conference held at Purdue in March 1985, De Branges’
achievement was highlighted and a number of fresh research questions and directions were put
forth.

The Fekete—Szegd inequality, linked to the Bieberbach conjecture, it is primarily used in
complex analysis and concerns the coefficients of a polynomial with certain properties, discovered
by Fekete and Szeg6 in 1933, for detail see [14].

The Fekete-Szeg0 inequality has several important consequences and applications in complex
analysis. For example, it can be used to derive bounds on the coefficients of functions in certain
subclasses of analytic functions, such as the class of starlike or convex functions. It is worth
noting that the Fekete-Szegd inequality is sharp, meaning that there exist functions for which

the inequality becomes an equality. These functions are known as extremal functions and play a



significant role in understanding how analytic functions behave in the unit disk.

1.2 Preface

Aim of this thesis is to review and define some sub-classes of analytic function through
the application of the subordination concept. It is structured into five chapters, and a brief
introduction to each chapter is provided as follows:

In Chapter 2, a comprehensive literature review is presented, focusing on key concepts
within the classes of Geometric Function Theory. This exploration encompasses the class of
analytic functions, the class of Carathéodory functions, and the class of univalent functions,
along with the examination of relevant subclasses. These concepts are the foundation of this
thesis.

Chapter 3 primarily centers on essential elements of Geometric Function Theory, laying
a crucial foundation for the chapters that follow. It commences by exploring the notions of
analytic functions and normalized univalent functions within the open unit disk, followed by
the definition of several fundamental subclasses of univalent functions. The chapter concludes
with the presentation of preliminary lemmas, which will be applied in subsequent chapters. It is
noteworthy that this chapter does not introduce any novel findings; rather, it comprehensively
cites and acknowledges well-established concepts in the field.

Chapter 4 involves an examination of the category of starlike functions concerning symmetric
points and introduces the category of convex functions related to symmetric points. Additionally,
certain main results are investigated. It is crucial to emphasize that the review work is properly
cited.

Chapter 5 focuses on a specific subclass of univalent functions, namely, the category of
starlike functions with respect to symmetric points associated with the §-sine function. The
chapter also deduces established findings for functions within this class. Through corollaries, it
is demonstrated that the results newly derived align with those previously established by other
researchers.

Chapter 6 introduces two subclasses, namely §-starlike and §-convex with respect to sym-
metric points, associated with the trigonometric d-sine function. For these defined classes several

results are examined. Corollaries are presented to demonstrate the equivalence of the newly



obtained results with those previously established by other researchers.



CHAPTER 2

LITERATURE REVIEW

2.1 Overview

The geometric properties of analytic functions are the priority of "Geometric Function
Theory," a group of complex analysis. Cauchy, Riemann, and Weierstrass made significant
contributions to the foundation of contemporary function theory, see [1]. It was established in
the early 1900s and is currently one of the most active areas of research today. The Riemann
mapping theorem is a result that Bernhard Riemann presented in 1851, see [9]. The conclusion
of this result enables us to use open unit disk Q = {|Z| < 1;Z € C} as a domain rather than
a complex arbitrary domain.Being the cornerstone of the theory of geometric functions, this
theorem is significant.

Geometric Function Theory is categorized into various classes, further divided into subclasses
based on the characteristics of their image domains and other geometric properties. One of these
classes is represented by normalized analytic functions, symbolized as .o

Functions that are analytic in disk Q and normalized by these axioms 7(0) =0, 7/(0) =1,
are part of this classification. If 7 and & are in class .7 of functions, we say that, the function T
is said to be subordinated to function &, symbolically express as T < &, if 7(2) = &(w(Z2)) where
o(Z2) is analytic in the unit disk, satisfying these two conditions ®(0) = 0 with |@(Z)| < 1, for
more details see [15].

The functions that are univalent, normalized by these conditions 7(0) =0, 7'(0) = 1 and



analytic, in an open unit disk, contained in class . function. If & is univalent in open unit
disk, and 7 is analytic in open unit disk then we have the following equivalence relation of
function 7 and function &, 7 is subordinated to function &, expressed as, T < & <= 1(0) =£(0),
7(®) C &(). In 1907, Koebe conducted a study on univalent functions, specifically focusing
on the examination of univalent analytic functions within the disk w, see [16].

The major subdivision of family . function are S* (collection of Starlike functions), C
(collection of convex functions), K (collection of close-to-convex functions), C* (collection of
quasi-convex functions) for detail see [17]. This classification was started when the attempts to
prove the Bieberbach conjecture were made. In 1915, Alexander linked two classes S* Starlike
univalent functions and C convex univalent functions through a connection known as Alexander
relation, see [18], that can be stated, if T € .o7 then T € C <= 27’ € §*.

Ma and Minda [19] defined the class of starlike functions by using subordination, and studied

classes of starlike functions defined as,

A

St = {re%:i(g) < 8(2), 269}.

Moreover, the class of convex functions described as,

C:{re%:%<5(2), 269},

where 6(2) is

satisfy Schwaz function in disk Q.
Owa et al. [20] studied the sub-classes of analytic function, S*(d) class of starlike function

of order d, for 0 < ¢ < 1, defined as,

S*(d) = {’L‘E%:Re (i;g) > 4, 269},

C(a) class of convex function of order d, for 0 < d < 1, defined as,

C:{TE%:Re(M) > d, EEQ}.

T(2)

He found multiple sufficient conditions for the starlikeness and convexity of different analytic
functions. Several relations, hadamard products, coefficient estimates, distortion theorems,
and covering theorems were investigated by Liu et al. [21] for each of their defined classes.

In addition, some novel distortion theorems for the Srivastava-Saigo-Owa fractional integral



operator were discovered. Some of the results presented in this paper were generalised versions
of earlier authors’ findings.

Gangadharan et al. [22] investigated the radii of convexity and strong starlikeness for classes
of analytic functions that are analytic on the disk region Q. The radius of convexity of order
B of uniformly convex and starlikeness functions are computed, as well as the radii of strong
starlikeness of certain classes of analytic functions. Ali et al. [23] estimated the coefficients of a
normalized analytic functions which are analytic in disk €2, where inverse of the function also
exists.

The family of functions S} defined by Mendiratta ez al. [24], in 2014. The class of starlike
function which is subordinated to the exponential function that satisfies Schwarz function, given

as,

AllA
SZ:{TE%:ZT(AZ)
7(2)

Similarly, the class of convex function which is suordinated to the exponential function, that is

C, ,defined as,

< ¢, 269}.

C. = {T € —<2T:(§)>/ <é, ze Q}
7'(2)

Concerning univalent functions that are analytic within the disk €, various aspects such as

structural formulas, inclusion relations, coefficient estimates, growth and distortion results,

subordination theorems, and various radii constants have been explored. A more recent study

conducted in 2018 by Zhang et al. [25], investigated the upper bound for the Third Hankel

determinant within the aforementioned class.

The class of starlike functions related to symmetric points whose real portion is positive was
first described and investigated by Sakaguchi [26], which described here,

St = {reﬂ:l@(%) >0, 269},
7(2) —7(=2)
The category of convex functions and odd functions are included in the class of functions that
are univalent starlike related to symmetric points. It was further demonstrated that, like convex
functions, the nth coefficient of functions in this class is constrained by 1.

Furthermore, Das and Singh [27] proposed a class of convex functions for symmetric points
and discovered that the m coefficient of these functions is constrained by 1/m for m > 2. The
Hankel Determinant of order three of Starlike function regard to the symmetric points is 5/2,
while the Hankel Determinant of order three of Convex function with respect to the symmetric

points is 19/135, according to Krishna et al. [28], who also demonstrated that these bounds



were not sharp. Kumar ez al. [29] improved the bounds of third Hankel Determinant by using
the concepts of subordination.

Motivated by their research objectives, Ganesh et al. [30], examined functions characterized
by both starlike and convex properties. This study specifically focused on functions associated
with symmetric points that are subordinated to exponential functions.

227'(2) < i 2
(2) —7(-2)
a category of starlike functions of symmetric points subordinated to exponential function.
Whereas, the class of convex functions of symmetric points subordinated to exponential function
is, ! I
212t (2 5 4
T < tea,

Also, the symmetric points connected to exponential functions’ starlike and convex functions

were studied for a possible upper bound on the third-order Hankel determinant. Third Hankel
determinant for the function S} is |.73(1)| < 0.618, and the third Hankel determinant for the
function C, is |#43(1)| < 0.0338.

Shi et al. [31] found the bounds of third-order Hankel determinant, for the certain categories
of starlike and convex univalent functions associated with exponential functions, in an open unit
disk. Recently, Joshi et al. [32] determined the third-order Hankel determinant for the starlike
functions associated with exponential function, in open unit disk. He obtained a new expression
for the fourth coefficient of Carathéodory functions then obtained the sharp bound for third-order
Hankel determinant.

In 2019, Cho et al. [33] introduced the class of starlike functions subordinated to particular

trigonometric function such as sine function, which is defined as,

sin = {TG 2:;(5) < (1+sin(2)), Ze Q}.

Similarly, the class of Convex functions subordinated to particular trigonometric function such
as sine function, which is defined as,
Csin = {r € w < (1+sin(2)), Ze Q}.
T(2)
Also, researchers looked into the geometric characteristics, starlikeness, and convexity coeffi-
cients of functions inside the specified Class. Also, other geometrically defined classes and the

Janowski starlike function class’ radius were determined.
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Kuroki et al. [34] derived new estimates for the coefficients of functions of the familiar
classes such as Starlike function of order o and convex function of order « in the disk Q. He
concluded that the coefficient estimates of defined functions in each of these defined classes
totally depend upon the second coefficient of these functions.

An essential tool for tackling complex and challenging information is quantum theory. It is
known as ordinary calculus without notion of limits. This mathematical area is very interesting.
Moreover, it is crucial to many areas of physics, including cosmic strings and black holes;
for more information, see [35]. The g-calculus and the h-calculus are the 2 different types of
quantum calculus. Here, h denotes Planck’s constant whereas q denotes quantum. The theory of
g-calculus and its applications in a variety of fields have attracted the curiosity of researchers.

Euler historically acquired the fundamental g-calculus formulae in the seventeenth century.
Jackson was one of the pioneering scientists to define the theories of g-derivative and g-integral
in 1909, for further information, see [36]. Basic classical calculus without the concept of limits
is really what g-calculus is, g-calculus is developing quickly due to the variety of applications it
has in mathematics, mechanics, and physics. Ernst [37] noted that physicists represent a majority
of g-calculus users. The exact solutions to several models were first presented in statistical
mechanics by Baxter [38]. Several g-heat and g-wave equations were resolved by Bettaibi and
Mezlini [39]. Other writers in the literature have also presented a number of interesting results in
this field of study, for more detail see [40, 41].

Many subclasses of the class of analytic functions are investigated and studied in great detail
with the help of the operator &,. Ismail et al. [42] transformed the set of starlike functions into a
g-analogue known as the set of g-starlike functions to carry out the early work of g-calculus in
the field of geometric function theory. In addition to exploring the well-known Fekete-Szegd
Inequality, he defined the family of g-starlike functions connected to a certain trigonometric
function, such as sine functions. Then, a number of previously established convolution findings
were used to demonstrate the required and sufficient requirements for the given class. Other
topics included the extreme point theorem, growth and distortion bounds, and starlikeness radii.

Ramachandran et al. [43] defined g-starlike and g-convex class which is defined as, a function

is said to be g-starlike with respect to symmetric points, S +(0) if,
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And a function is said to be g-convex with respect to symmetric points, C, s(¢) if,

29( 47(2))
Py(7(2) = ©(=2))

where 2 € Q and ¢(Z) is a Mobius function.

Different researchers made significant contributions in this direction by observing a number
of practical characteristics for a new classification of meromorphic multivalent starlike functions
described by a redefined g-linear differential operator, for detail see [44, 45]. Sufficiency
characteristics, distortion bounds, coefficient estimates, radius of starlikness, and radius of
convexity were among these features.

The Hankel determinant is the determinant of the corresponding Hankel matrix. Pommerenke

[46] defined the Hankel determinant for the class of univalent functions, for positive integers n,s

that defined below,
Cn é'/n—H 5n—0—2 .. é'/n—O—s— 1
Cnt1 Cny2 Cny3 o s
H;(n) =
5n+s71 é'Jn—ﬁ—s é1n+s+1 .. 5n+2s72

Babalola [47] was the first person who studied the upper bound of 7%5(1) for subclasses of

univalent functions, where
()= & & &

His work for the well-known classes of starlike and convex functions in the disk Q. Hankel
determinant of starlike function is |.773(1)| < 16, where as Hankel determinant of convex function
is |74 (1)] < 33.

The qth Hankel determinant has been explored by Noonan and Thomas [48]. Janteng et
al. [49] investigated the Hankel Determinant for the starlike and convex functions. Hankel
Determinant, |.743(2)| = |¢2¢4 — &3| for the starlike class is |¢2¢4 — 3| < 1 whereas for the convex
class is|¢p¢q — c“%| <l g» the obtained results were sharp.

Arif et al. [50] investigated the qth Hankel determinant for particular subclasses of analytic
functions, in his work he estimated the growth rate of the Hankel determinant of analytic

function. This determinant was studied by many authors, that is, Noor [51], Pommerenke
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[52] studied the Hankel determinant for univalent functions. In literature, many researchers
[53, 54, 55, 56, 57, 58] studied about Hankel determinant.

A widely acknowledged Fekete-Szegd inequlity is |¢3 — ¢3| = |#4(1)]. In general, this is
expressed as |¢3 — A&3| for some A , where A may be complex or real. Fekete-Szegd gave
complicated inequality, which holds for, 0 < A < 1. Fekete-Szego problem is all about to find
out the best possible constant A, so that the inequality is less or equal to A, for every analytic
function.

At the end of 1960’s, Lawrence Zalcman posed a conjecture that the coefficients of univalent

functions in unit disk satisfy the sharp inequality
& — G| < (n—1)%,

where this inequality becomes equality only for the Koebe function and its rotation. This
remarkable conjecture implies the Bieberbach conjecture, investigated by many mathematicians,
and still remains a very difficult open problem for all n > 3; it was proved only in certain special
cases. When n = 2, above inequality transformed into a known result, that is, the Fekete-Szeg6
Inequality |5% — &| < 1. Many researchers [59, 60, 61] studied Zalcman functional. For detailed

studies on Zalcman functionals, see the articles [62, 63, 64].
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CHAPTER 3

DEFINITIONS AND PRELIMINARY CONCEPTS

3.1 Overview

The purpose of this chapter is to discuss some important definitions and classical results that
will serve as a foundation for subsequent research. The Carathéodory functions and normalised
analytic univalent functions will be discussed in thoroughly. Certain special functions, well-
known linear operator, and preliminary lemmas will be considered. The most fascinating aspect

of complex function theory is probably how geometry and analysis connect with each other

Definition 3.1.1. [65] A function is holomorphic in domain contain in complex field, if it is
differentiable at each point of that domain. A complex valued function & (Z) is differentiable at

point 2 if it has derivative,

at 2, such function & is analytic at % if it is differentiable at every point in its neighborhood.

One of the wonders of complex analysis is that all orders of 7y must have derivatives, and

that & has Taylor series expression,
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3.2 Domain

In Geometric Function Theory, our focus is consistently directed towards a specific domain.
A domain is an open connected set. Geometrically, the open unit disk corresponds to a disk
centered at the origin with a radius of 1, excluding the boundary of the disk. In other words,
it includes all complex numbers inside the disk but does not include the points lying on the
circumference.

It is worth noting that the open unit disk is a fundamental concept in complex analysis
and is often used in various mathematical and analytical contexts, such as mapping functions,

conformal mappings, and complex integration.

Definition 3.2.1. [65, 66] An open unit disk in the complex plane, refers to a set of complex
numbers that lie within a specific region in the complex plane. It is defined as the set of all
complex numbers whose distance from the origin is less than 1. In mathematical notation, the

open unit disk is represented as,

Q={f <1;2€C).

Here, 2 represents a complex number, C denotes the set of complex numbers, and |Z| denotes
the modulus or absolute value of 2. The inequality || < 1 specifies that the distance between 2

and the origin is less than 1.

3.3 Analytic and Univalent functions

The fundamental principles of the theory of univalent functions lie in the interrelation between
geometric functions and analytic structures. In this context, we establish categories for both

Analytic and Univalent functions.

Definition 3.3.1. [67] An analytic function, also known as holomorphic function, is a complex-
valued function that is defined and differentiable at every point within a certain region of the
complex plane. More formally, a function & is said to be analytic in a region if it is differentiable

at every point within region.
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An important consequence is that an analytic function has a power series representation. This
means that within the region where the function is analytic, it can be expressed as an infinite sum

of powers of the variable Z,
E=2+ Z ans",
m=2
where the coefficients can be determined.

Definition 3.3.2. [68] A function is in class <7, the class of Normalized Analytic Function, if it

is analytic in open unit disk Q and normalized by these conditions & (0) = 0 with E'(0) = 1.

2>

E=2+) and", 2€Q.
m=2

Definition 3.3.3. [ /6] A univalent function, also known as a univalent mapping or one-to-one
analytic function, is a special type of analytic function that preserves injectivity. Specifically, a
function & defined on a region in the complex plane is said to be univalent if it maps different
complex numbers to different images, meaning that it has no two distinct inputs that are mapped

to the same output.

Let a domain in the complex plane, and let £ be an analytic function defined on defined
domain. The function & is said to be univalent in domain if, for any distinct complex numbers 2,
and 2, in domain, the condition & (2;) # £ (%) holds.

In other words, a univalent function is one that is injective or one-to-one within its domain.
It does not produce any overlaps or self-intersections when mapping points from its domain to
its range.

Univalent functions are of significant interest in complex analysis and geometric function
theory. They have important applications in various areas, such as conformal mapping, complex
dynamics, and the theory of Riemann surfaces. Univalent functions often exhibit desirable
geometric properties, and their study helps understand the intricate behavior of complex mappings

and transformations.

Definition 3.3.4. [16] A function is a member of the class ., which consists of Univalent
Functions, if it is both analytic and univalent within the open unit disk Q. The function must

satisfy the normalization conditions &(0) = 0 and &'(0) = 1.
An illustrative example of a function belonging to the class .7 is the Koebe Function.

E=:+ Y m" zeQ.

3
gl
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3.4 Carathéodory function

It was found that there exist other functions whose image domains are limited to the open
half plane when there are so many complex valued functions whose image domains cover the
complete complex plane. The Carathéodory function class, represented by &7, is comprised of

these types of functions.

Definition 3.4.1. [68] A function p € & is analytic in Q, expressed as
p&)=1+) ¢,
i=1
where Re[p(2)] > 0 and p(0) = 1.

Mobius function is the most prominent example of a function from this class, which is

M = (—1+ 2A>.
1-2

described as,

3.5 Certain sub-classes of univalent functions

The study of univalent functions is an ancient yet dynamically evolving domain. Numerous
notable advancements have occurred in the last decade to fifteen years. Various subclasses within
the category of univalent functions have been introduced, primarily guided by the geometric
properties of their image domains. Notably, the classes of Starlike and Convex functions have

been defined within this context.

Definition 3.5.1. [68, 67] A function known as a "starlike function" that projects the disk  onto
a domain D that, in relation to the origin, resembles a starlike domain given in Figure 3.1. S*
stands for the subclass of that encompasses all starlike functions. If Z = 0 and the linear segment
connecting 0 to any other point of the domain D lies wholly within the complex plane, then the

domain is starlike with respect to the origin. That is,
VZeD, A2eD

where, 0 < A < 1, if 2 € D, it is an essential requirement that all of points of domain be visible

from Z.
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Figure 3.1: Starlike domain

Definition 3.5.2. [68, 67] A convex function transfers the disk Q onto a domain D that is convex
relative to the origin given in Figure 3.2. C stands for the subclass of . that contains all convex
functions. If a line segment connecting any two points of a domain D in complex plane lies

wholly within that domain, the domain is said to be convex. That is,
[AZ1+(1—=21)%] €D,

where 21 and %5 both are in D with0 < A < 1.

Figure 3.2: Convex domain

There is a beautiful relation between starlike function and convex function, S* C C , that is,
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class of convex function is superset of class of starlike function.

Definition 3.5.3. [69] A function is considered to be starlike concerning symmetric points, Si (@)
if,
2¢7(2)
= <00,
(=2)

T(2) -

where Z € Q and ¢(Z) is a Mobius function.

Definition 3.5.4. [69] A function is considered to be convex concerning symmetric points, Cs(9)

i,

2Dy
oy

(1(2) —7(=2))

where 2 € Q and ¢ (Z2) is a Mobius function.

3.6 Subordination

In geometric function theory, subordination refers to a concept used to study the behavior of
analytic functions. Lindelof was the first to present the theory of subordination in 1909. Later
developments were made by Littlewood and Rogosinski [15]. The subordination principle is

defined by using the Schwarz function.

Definition 3.6.1. [67] If & and ¢ are in class <7 of functions, we say that, the function & is said
to be subordinated to function ¢, symbolically written as & < ¢, if E(2) = ¢ (w(2)) where W (2) is

an analytic function in open unit disk, satisfying these two conditions y(0) = Owith |y ()| < 1.

3.7 Quantum Calculus

Quantum calculus was initially developed by the American mathematician Jackson in the

early 20th century. He was the first to define the derivative and integral operator’s q-analog.

Definition 3.7.1. [70] Quantum calculus, also known as g-calculus or Jackson’s g-calculus, is a
branch of mathematics that generalizes many concepts from classical calculus by introducing a

parameter q.
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The g-derivative operator, often denoted as ¥, is a fundamental concept in g-calculus, a

branch of mathematics that generalizes classical calculus by introducing a parameter q.
Definition 3.7.2. [70] For a differentiable function t(Z), q-derivative defined as,

247(2) = &) —tldz) 240 where0 < g < 1.

(1-q)2 ~

Its Maclaurins series is

[

Z47(2) = Z [”]qénzn_la
n=0

where

_n
lquq, neC

Yo oq", neN.

[n]q =

Definition 3.7.3. [70] Quantum calculus introduces q-series, which are power series involving
q-analogs of the usual calculus operations. These series are used in various areas, including

combinatorics (g-binomial theorem) and number theory (q-analog of the partition function).

Definition 3.7.4. [43] A function is described as q-starlike with respect to symmetric points,
Sq.s(0) 1,
2:9,7(2)
7(2) —7(=2)

where 2 € Q and ¢(2) is a Mobius function.

Definition 3.7.5. [43] A function is described as g-convex with respect to symmetric points,

Cq,s(¢) lf’

294(2%,47(2))
Py(1(2) = 1(=2))
where Z € Q and ¢ (Z) is a Mobius function.

< 9(2),

3.8 Fekete-Szego Inequality

The Fekete-Szeg6 inequality has several important consequences and applications in complex
analysis. For example, it can be used to derive bounds on the coefficients of functions in certain
subclasses of analytic functions, such as the class of starlike or convex functions.

It is worth noting that the Fekete-Szeg6 inequality is sharp, meaning that there exist functions
for which the inequality becomes an equality. These functions are known as extremal functions

and play a significant role in understanding the behavior of analytic functions in the unit disk.
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Definition 3.8.1. [71] The Fekete-Szegd inequality is a classical result in complex analysis that
provides an upper bound on the absolute value of the determinant of a specific class of analytic
functions. Specifically, it applies to functions that are defined in Q = {|2| < 1,2 € C} and are
normalized such that &(0) = 0 and &'(0) = 1. This inequality provides an upper bound on the

absolute value of &(2) in terms of the modulus |3|.

3.9 Hankel Determinant

Definition 3.9.1. The Hankel determinant is the determinant of the corresponding Hankel matrix.
Pommerenke [46] defined the Hankel determinant for the class of univalent functions, for positive

integers n,s that defined below,

Cs 5s+1 5s+2 5s+n—1
Es—i—l 5s+2 Es+3 Cvs—l-n
|7 (s)| =
5s+n—l 5s+n 5s+n+l é'Js—i-2n—2

3.10 Zalcman Functional

Definition 3.10.1. [72] The well-known Zalcman conjecture, which implies the Bieberbach
conjecture, states that the coefficients of univalent functions on the unit disk satisfy the inequality
foralln> 2,

& — G| < (n—1)%,

where the equality hold only for the Koebe function.
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3.11 Preliminary Lemmas

Here some lemmas, that will be necessary for driving our results in the subsequent chapters,

discussed.

Lemma 3.11.1. [73] Let p € & with p(0) = 1, and analytic in open unit disk then |p,| < 2 for

n e N.
Lemma 3.11.2. [74] If p € & with p(0) = 1, and analytic in open unit disk then
Py — Vp%] < 2max{1,|2v —1|}.
Lemma 3.11.3. [75] Suppose that p € &7 has the power series then
NP} — w1y +Aps| < 2[n| 42T —2n|+2[n — T+ Al.
Lemma 3.11.4. [73] Consider p € & then
pir;—wpip| <2,0<y<1.

Lemma 3.11.5. [76] If p € & then

(

—4k+2, k<0

P—Kkpi<K2, 0<k<l1

4k+2, k> 1.

Lemma 3.11.6. [77] Consider a,b,c and d satisfy the inequalities 0 <a <1, 0 <d < 1 and
8d(1—d)[(ab—2¢)?+ (a(d+a) —b)?] +a(1 —a)(b —2da)* < 4a%(1 —a)>d(1 —d).

Ifp e & then

3
cpt +dp3 +2ap p; — Ebp?pz —pg| <2.
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CHAPTER 4

CLASSES OF STARLIKE AND CONVEX FUNCTIONS WITH
RESPECT TO SYMMETRIC POINTS SUBORDINATED WITH
SINE FUNCTION

4.1 Introduction

This chapter aims to explore several foundational and classical results that serve as cor-
nerstones for subsequent research. The section begins by reviewing Starlike functions and
introducing a novel class termed Convex functions. These categories are established in con-
nection with symmetric points that are related to the sine function. Additionally, several key
findings, including the coefficient bounds, the well-known Fekete—Szegd inequality, Zalcman
functional and the Hankel Determinants will examined.

The category of Starlike functions associated with symmetric points related to the trigono-

metric sine function is introduced by Khan et al. [78], which is defined as,

Definition 4.1.1. A function & € < is in S} then

226'(2)
§()-&(=9)

< 1+sin(2),

forall Z € Q.

Now, the category of Convex functions associated with symmetric points related to the

trigonometric sine function, Cy, defined as.



Definition 4.1.2. A function & € o7, is in Cs then

2[28"(2))
(§(2)—6(=2))

- < 1+sin(2),

forall Z € Q.

4.2 Coefficient Inequalities

The following result is related to the class S;.

Theorem 4.2.1. If & (2) € S; then

A |,
|0 < -, 05| <

. L
60] < 5, [6s] < ;

57
Proof. By definition

22E'(2) R
EG)-E(-2) < 1+sin(2)

Since & € S, using subordination principle, we have

Let us define the function

M@—l+w(

2) s 22 53 4
=~ = 14+p1Z+p" +p3T +psl + ..,
—a(2) P12TP2 P3 P4
where p(Z) is analytic in Q with p(0) = 1. This implies that

p(@)—1
p()+1’

o(2) =
after simplification we get,

2 3
o(2) = (ﬂ)H (12 —lﬂ) 2+ (’3+&—p—‘p2) s

2 2 4 278 2
3pips pips Pl P3 Pa)
( 2 > 16 4+2 7+

As we know,

23

4.1)

4.2)

4.3)

4.4)
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So, we have

2 3
) . R B 5 A
sin(®@(2)) = (%) o (% _%) & (pf + —j;l —p—fz) 2+

5pip, pips P Py Pa\
PiP2 PPy PL_ Py DAy 45
( 6 2 3@ 4 2)f T @Y

Now, we get

226'(2)
§()—-&8(=9)

On substituting values in (4.1) we get,

=1+ (20)2+ (203)2% + (40 — 200 03)2° + (4b1s —263)3* + ..

1—}-(2(362)2—1—(2663)22—}—(4&4 2062063) —}—(4065—2053) +...=1+<%>2+<%—Z)22+

3 2
Py dP1 P2 3 5P1P2_P1P3_IA_IQ P4\ 04
(2+48 2 )Z+( 16 2 32 4+2)Z+“'

On comparing both sides of above equation, we obtain

N P1

200 = EX (4.6)
2
A P2 P
203 =—= —— 4.7
3 =5 T 4.7)
4200, = 3 01 PPz 4.8)
4 203 =5+ 9 7 .
o a2 SPIPy PPy PI Py D
4éis —205 =122 _A1ES P12 4 Be 4.
e T T T A 49)
Solving (4.6) for coefficient &, we get,
& = ’% (4.10)
On solving (4.7) we get 03,
P2 P%
oy =22 2L, 4.11
a3 =" —73 (4.11)
By solving (4.8) we determine Oy
P 5P P
40y — 2000 —=
4 203 =5 + = 43 >
46y = 20,6+ 3 +5p1 Pipy
2 48 27
this implies that,
3
3
ay =13 P12y (4.12)

8 96 32
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Now for &, solving (4.9),

5pip, Pz PY D3 s

4éts — 202 = e s
> 3 16 2 T3 4 2
R .2 . OpiP2  PiDP3 P‘f P% P4

465 =2 ST B

.30y P3PS ps
Qs = —1= =

—— == . 4.13
64 8 32 * 8 ( )
Next, to find out the absolute values of coefficients, (4.10) gives,
o = %,
using Lemma 3.11.1, we get
1
|| < =. (4.14)
2
From (4.11), we have
2
&3 = % - &7
applying Lemma 3.11.2, we get
o] pi
|Ga| < 2P2~ 5|
. 2
|6 < —max{1,0},
. 1
los| < 5. (4.15)
2
Solving (4.12), we get,
~ _P3 P1_ 3P
*T 8 96 32
An application of Lemma 3.11.3, we get
| < 1 +14+ 1
N=48"96 12 &
1
el < . (4.16)

Solving (4.13), we obtain

1651 < |1 Ploal + = p P+ 1 |
5 _64P1 P2 32P2 8174 P1P3|,

here we are using Lemma 3.11.1 and Lemma 3.11.4, then

m|<3+1+1—3
Sl=87"8 "4 4
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‘(XS‘ S Zv
which is required.

Now, the results for the class C; will investigated.

Theorem 4.2.2. If &(2) € C then

6ol < . los| < ¢, 0] < < J6s] < o
2 3 =76 '™ =20
Proof. By definition

2,\/,\/

0] sin(2)

(@) —s(=2))

Since & € Cy, using subordination principle, we have
2188"(9)]

(E@)—s(=2))

=1+sin(@(%)).

Let us define the function

1+@(2)
1-@(2)

p(2) =

—l+p12+p22 +p3z +p4z + ..

where p(2) is analytic in Q with p(0) = 1. This implies that

after simplification we get,

2 3
a()= (5 )2+ (% —%) 24 (%Jr%—p—lfz) P+

As we know that,

sin(@(2)) =o(2) — T 51 +...,
So, we have
. A P1 P2 P% A P3 51’? PiP2 \ 3
sin(o(2)) = (%) +(?—Z)z +(2+K_T)z+

Now, we get

285"(9)]'
(&) —c(=2))

= 144002+ 6032 + (1604 — 120003)2° + (2005 — 1863)5* +

26

4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)
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substituting values in (4.18), we obtain,
p pa pi
1+40p2+6032> + (160u — 120005)2° + (2005 — 1863)2 + .. = 1+ (%) 2+ (32 - Zl) 24

ps 51 _pipa\ s (SPiP2 Py PP Pa)
2 48 2 16 2 32 4 2

On comparing similar powers of Z we get,

460 =L, (4.24)
2
A P2 P
=—=_—-— 4.2
605 =22 -1, (4.25)
166 — 12850 = 22 4 2L _ P12 (4.26)
4 203 =51 g 7 .
5 o 5pipy pws PP P
2005 — 186 = 122 7153 712 M4 4.27
> 3716 > T3 42 “427)
On solving (4.24) to find &, we get
40p = %,
a =2 4.28)
8
Now, to find out &3, solving (4.25)
A P2 P
60 — 22 _F1
3 D) 4 )
2
A P2 P
== ——. 4.2
12 24 (4.29)
On solving (4.26) to get 04, we have
3
. s~ D3, 001 PiP2
160y — 12000 = == + =L 172
Oy 003 > + A3 7
3
" ~ ~ D3 Op] Dpip2
1 =12 =4+ — ——=,
60 0 03 + > + 43 )
By substituting values of &, and &3 from (4.28) and (4.29)
2 3
X Pi\ (P2 Pi\ , P3 P Pip2
16a:12<—> —= —— — 4 — ——=,
+ 8 (12 24)+2+48 2
this implies that
3
3
P U Vi Y ) (4.30)

T84 128 32
By solving (4.27) to obtain &s

52 4
v st

|
|
|
|
|

_|_
|



. 2 SPipy pips Pi P3P
2005 = 1867 + 2 2188 L B2 T4
: 36 T2 m 42
On substituting value of &3 from (4.29), we get

2\ 2 2 4 2
N Py P 5Spipy  PiP3  Pi Py P4
2065 =18 (P2 P  2PiPa PWPs_ Pi P2 P4
% (12 24) 6 T2 32 a2

After simplification we get,

G Pa_Pp3 3pipy P
ST 40 40 ' 320 160

Now,from (4.28) we have

we apply Lemma 3.11.1, we obtain

N P1’ pil _ 1
0| = 2| < B« =
il ‘8 - 8 — 4
R 1
On solving (4.29),
P2 Pt
12 24
An application of Lemma 3.11.2 leads us to
2 2
o= (P2 P L p1
%=1 5| " P2

N 2 1
66| < Zmax{1,0} = -,

From (4.30) we have

3
s _ P13pipy  P3
=381 128 T3
By applying Lemma 3.11.3,we get

3
A 3[7 p
|a | p] 1P2 3

1384 128 32

9

P 3

— _|_p_3 <2‘ 1 '4_2‘ 1 — 2 ’4_2 L_L_Fi‘—i
384 128 32|~ |384 128 384 384 128 32 16
6] < o

16

28

(4.31)

(4.32)

(4.33)

(4.34)
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On solving (4.31) for &5
Ge_Pa_PP3_ 30ipy P2
ST 40 40 320 160

By applying Lemma 3.11.1 and Lemma 3.11.4, we get

2 2 2 2
s _ |Pa_Pip3  3pipy Py | _ ] 3pipy P
as| = | =% — - < —|pa— o S %
1%51=120 "0 T 320 100| =30 P4 p1p3‘+‘ 320 160|’
o5l < | o1 Plps = o = o o =
3= g Pa T PP 30 PHHIP2I 601721 =50 T 20 T a0 T 20
3
05| < —. 4.35
|65 < o5 (4.35)
]
Hence, proof is completed.
4.3 Fekete-Szego Inequality
The following Fekete—Szegd Inequality related to the class S, starlike functions.
Theorem 4.3.1. If &(2) € S} then |03 — 03| < 1.
Proof. From (4.10) and (4.11) we obtain
2 2
o2 P2 _pi_pi) 1) 3
using Lemma 3.11.2, we have
1
o5 — 3] < £ (2)
thus,
N 1
|63 — 03] < ok
Hence, proof is completed. ]

Now, the result for the corresponding class Cs will determined.

Theorem 4.3.2. If &(2) € C; then |03 — 03| < ¢.



Proof. From (4.28) and (4.29) we obtain

| P P 1
06—l ==~ T2 P
applying Lemma 3.11.5,we get
- < = (2) = -
=1 6’

consequently, we have

which is the required result.

4.4 Hankel Determinants

The following results are related to the class Sj.
Theorem 4.4.1. If &(2) € St then |00 — G| < 1.
Proof. From (4.10), (4.11) and (4.12), we obtain
n <12 _P_?) . (& e

4\ 4 8 8 32

using lemma 3.11.3 we get,

|03 — Gy | =

3
Pi _dpipy | P3| _
Ll i 0 U NS S N ) 27| = _ =
24 32+8_"+ 32 24
thus, we obtain
1

3
Py =
+96>‘

1,
16P1
P, 5
pP1  2PiP2
‘24 32
+ 1
47

|0p 03 — 0| < 7

This completes the proof.
Theorem 4.4.2. If&(2) € S¥ then |Gn0y — 63| < 1—6

Proof. From (4.10), (4.11) and (4.12), we obtain

3
o _|\p1(P3 3pip2  PY
oy — 03| = =4 — |-
10204 — 05 4(8 32+96>(
2 2
A P1P3 5P1P2 P>
00 — ==
020 — 03] = 128 16

P2
4

Sp‘f
384’

_Pi

_2)2

8

p3

8

Y

30
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128 3 32 16
After applying Lemma 3.11.1 and Lemma 3.11.2we get

5 2 2 2
|66y — 03| = ﬂ(ﬁz—&)+p—1p3—& '

40 4 4 11

28 3216 16
|(3£2(3£4—d2|<E
31 =16’

which is the required result. 0

G0y — 65 <

Theorem 4.4.3. If &(2) € S then |74(3)| < 3.

Proof. Hankel Determinant of order 3 defined as;
H5(1) = bi5(03 — 03 ) — Oy (Qg — B 03) + O3(Bp 0y — O13),
Taking modulus on both sides and applying triangular inequality, we have
|74(1)] < ||| — 03] + |0 |64 — G 63] + | 03| 02O — 053]

On substituting values from Theorem 4.2.1, Theorem 4.3.1, Theorem 4.4.1 and Theorem 4.4.2
1 /11 1/1 3/1 25
< (=)+(=)+2(2)==
|%(1)|_2(16)+4<4>+4(2) 32’

2
A1) < 3_2 ~0.78125.

hence, we get

This completes the proof. ]
Now, the following results belong to the convex class, Cs.
Theorem 4.4.4. If &(2) € C; then |00 — 0| < 1.

Proof. From (4.28), (4.29) and (4.30) we obtain,

&(&J’i) _ (i_3plpz+lﬁ)' _ ’i_ 13pip2  p3

00—l = 1 (17 2a) ~ (384 128 T32)| 7|28 38 32

Y

using Lemma 3.11.3 we get,

3
2 13p1pa 3 < 1 13 2 1 13 1 1
L W o o ST o ) PR i T, J P Ep ) [P
‘128 384 Jr32 - 128Jr 384 128+ 128 384+32 16’
therefore, we get
1
5 O — Ol <
|OC2(X3 064‘_—16
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Theorem 4.4.5. If &(2) € C; then |00 — 03| < 2.

Proof. From (4.28), (4.29) and (4.30), we obtain

2
PPl _3ppy b3\ _ (P2 Pt
8 \ 384 128 32 12 24

|6néy — 03| =

Y

. D P1P3 3717%192 P% 1317?
(05X 0/ 0/ — —
10200 — &3] = 256 9216 144 9216
37p? 13p1\  pips P
N AD 1 1 13 2
by — 05| = |—=—p,— — .
1020 — 05 9216( 2737 )T 256 144

After applying Lemma 3.11.1 and Lemma 3.11.2, we get

37 1 1 29

00— 5] < 155+ 36+ 63 ~ 354
|00y — 05| < 2
SR T
which is the required result. [

Theorem 4.4.6. If £(2) € C; then |73(1)] < 5273690-

Proof. Hankel Determinant of order 3 defined as;
H5(1) = a5 (05 — 63) — Gu(Gu — 0a03) + 3 (Gr 0y — 63),
Taking modulus on both sides and applying triangular inequality, we have
[ AA(1)] < [6s5][ 05 — 63| + | 0| 0w — 03] + 03] | 6 0 — &3]

On substituting values from Theorem 4.2.2, Theorem 4.3.2, Theorem 4.4.4 and Theorem 4.4.5 in

1/29 1 /1 3 /1) 239
A< g (384) 16 (E) T (8) ~ 5760

2
(1) < % ~ 0.04149.

This completes the proof. [

above inequality,
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4.5 Zalcman Functional

The following result is related to the starlike class.
Theorem 4.5.1. If &(2) € S then |63 — &s| < 1.

Proof. From (4.11) and (4.13), we have

2\ 2 32 2
|d2—&’: 12_& N p1p2_p1p3_&+p_4
37 4 8 64 8 328

on rearranging above equation we obtain

2~ Llpt 3p3 Tpip 1
]oc%—as\:§ §1+TZ—%+2 3 |PP3 P4
Using Lemma 3.11.6, we get
1 1
A2 A
02— 5| <-(2) =~
| 3 5| = 8( ) 47
1
|63 — 05| < 2 ~ (.25,

this completes the proof.

Now, the following result belongs to C; class.
Theorem 4.5.2. If &(2) € C, then |03 — O5| < 5.

Proof. From (4.29) and (4.31), we get

2\ 2 32 2
‘&2_&‘: P Pr\ lﬁ_l?ll%+ PPy Pa
378 12 24 40 40 ' 320 160

on rearranging above equation we obtain

)

1 5p4 19p2 47p2p 1

A2 A 1 2 12

ar — G| = — |21 _ 2( = |p _

’ 3 5’ 40’72 36 72 2 1P3 P4

Using Lemma 3.11.6, we get

1 1
82 el < — ) —
|(X3 5|—40( ) 207
1
07 — 05| < — =~ 0.05

which is the required result.
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4.6 Summary

In this chapter, the category of starlike functions related to symmetric points was studied,
that was defined by Khan et al. [78]. Additionally, a new category, namely the class of convex
functions related to symmetric points, was introduced. For both of these classes, various results
concerning coefficient bounds, the Fekete—Szegd inequality, the Zalcman functional, and Hankel

determinants were investigated.
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CHAPTER 5

CLASS OF STARLIKE FUNCTIONS WITH RESPECT TO
SYMMETRIC POINTS SUBORDINATED WITH g-SINE
FUNCTION

5.1 Introduction

This chapter introduces a new subclass of analytic functions, the class of starlike functions
related to symmetric points. This subclass is closely related to a g-series representation of
trigonometric sine functions. Throughout this chapter, a number of fundamental findings
such that coefficients inequalities, Fekete—Szeg6 Inequality, Zalcman functional and Hankel

Determinants will examined.

Definition 5.1.1. A function & € <7, is in S;(q) then

226'(2)
§(2)-8(=2)

< 1+sing(Z),

forall Z € Q.
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5.2 Coefficients Inequalities

Theorem 5.2.1. If §(2) € Si(q) then

6ol < 2, [6ul < 2
2 _27 3 _27
ol < 1 iy +Lla 2
=30 B8 Bl 32T Bl
PP PR B ) .
Mg 2B 8| Byl
Proof. By definition
228'(2)

<1+ Sinq (2)

§(2)-&(=2)

Since & € S, using subordination principle, we have

226'(2)

5B E(9) (0
Let us define the function
o 1+o¢ o X
P =155 _&_78 = 14 p 2+ +p38 +pat+ . (5.2)

where p(Z) is analytic in Q with p(0) = 1. This implies that

o p()—1
O3 =—rd 53
after simplification we get,
P Py P\ .. (Ps Pi Pip2)
“@=<Eﬁ+<3—z)z+(i+§—7r)”+

3pipy Pz P P3P\
PPy _P\P3_ PL_ P2 Pl 54
< 8 > 16 4t )it O

As we know that,

So, we get

2 3 3
. A pl) A P2 P12 P3 P11 PiP2 P 23
(@ g i AR N L
sing (@ (2)) ( Z+(2 4>Z +<2+8 5 8[3]!q>z+
2 4 2 1 3 2 3 4
(3P1P2 P\Ps Pi Py P4 ( P1P2 _ﬁ)>24+... (5.5)

8 2 _E_Z+7_[3]!q 8 16
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Now,

226'(2)
§()—-&8(=9)

On substituting values in (5.1) we get,

=1+ (200)24 (203)2% + (46 — 20003)2° + (465 —203)5* + ...

1+ (260)2+ (205) 27+ (404 — 200.03)2> + (405 — 207)

xS
_|_
I
_|_
/N

2
&>A P2 _Pi)p
5 z+<2 4)z+

ps P ppr P\ (3pip2 pws Pi o P3 s L (3ipr 301\l
278 2 83, § 16

On comparing both sides of above equation, we obtain

2&2:%, (5.6)
2
A P2 P
203 =122 21 .
o =22 L, (5.7)
3 3
N A Py, P1 PiP2 P
4éyy — 20003 =—"+— ——=— 5.8
4 203 =5+ > T EE (5.8)
o o0 3pipa pps PL ps o, ps 1 (3pipy 3pi
465 —205 =12 218 O A A (T2 TPl 5.9
TSy ) B\ 8 16)° (59)
On solving (5.6), we get
azz%. (5.10)
By solving (5.7), we get
2
A P2 P1
03 =———. 5.11
3= 73 (5.11)
From (5.8), we have
3 3
N A Py, P1 PiP2 P
46y — 20003 =—"+— ——"F= — ——
AR T R T T TRl
ps . P PP Py
40y = 2005+ =2 + L P12 L
4= Ll e 8[3]!5’
this implies that,
~ Py 3pip 1 1 3
P LI _ 5.12
S Y +(64 32[3]!6,)”1 (>.12)
Now solving (5.9), we get
4os—262— P2 _pwps PPy pa_ L (3pipa 3
3 8 2 16 4 2 3\ 8 16 )’
b — 2624 P2 _Pwps PL Py P L (3pipy 3py
3 8 216 4 2 B\ 8 16 )’
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we get,
2
A Py PPz P2 3 1 4 1 3 2
O =———"——-*% - — — - . 5.13
T8 8 32+(64[3]!q 128)p1+(16 32131, ) P2 (5.13)
Next, to find out the values of coefficients (5.10) gives,
0 = %,
Here by using Lemma 3.11.1, to find &,, we get
1
6] < 5. (5.14)
2
From (5.11), we have
. _ Py Pl
3T 478
To solve this equation for the coefficient &, we applying Lemma 3.11.2
~o_ 1 p
03] < 7P 31

(5.15)

Now, on solving (5.12), we get

s _DP3 3pip 1 1 3
oy =—— — —= -
‘TR TR +(64 32[3]!q)p1’

applying Lemma 3.11.3 in above equation, we get

R Y E RN PPN N I
64 3203 32 64 3203 P ’

0] <2

PN N LS VO T UL S
T30 Bl 8 Bl 32T Bl
this implies that

1 2 1 1o 2
| < = 1= | = |1 e |+ == [3— ——|. 5.16
7] L e A R LR P R R TP (5.16)

Next, solving (5.13) to find the value of &

2
A _Ps P1P3 P 3 1 4 1 3 5
O == -2 == _ L
T8 8 32+(64[3]!q 128)p1+(16 323]1, ) P1P2
3 n 1 1 3
64[3]1g 128 16 32034
here applying Lemma 3.11.1 and Lemma 3.11.4, this leads us to the required result
PP TS TR B P PR
=82 8 3]!4

\Pl’z\m’,

4
Ipy |+

. 1 L
ois| < g\m—plm! + 3—2!192\ +

2B . (5.17)
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If § — 17 in the above result, this leads us the already proved result for class S; by Khan et

al. [78], as shown in following corollary.

Corollary 5.2.1.1. If £(2) € S} then

1 1 1 3
| < =, |og| < =, |oul <=, |os] < =.

5.3 Fekete-Szego Inequality

Theorem 5.3.1. If &(2) € Si(q) then |6z — 63| < 3.
Proof. From (5.10) and (5.11), we obtain
2 2
by— ol = P2 PP b3
An application of Lemma 3.11.2 gives us
5 1
65— &3 < 4(2)
N 1
|63 — 05| < ok
This completes the proof. 0
5.4 Hankel Determinants
Theorem 5.4.1. If £(2) € Si(q) then
66 — 0| < — |3 2l e e tho 2
St 7 ) M YT BN LN TP IR T

Proof. From (5.10), (5.11) and (5.12), we have

pi(p2 PiY_(ps 3ppa (1 14
4\ 4 8 8 32 64 32[3]1; )"

|G 03 — Oy | =

Y

after simplification we get,

P
Pi— 3 Tl

N 3 1 Spip
|a2a3—oc4|:‘( ) i e

64  32[3]!;
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Here we applying Lemma 3.11.3, we get

AN S S 1. 2 [P IR N Y R Y (A
64  32[3]!5 32 8 64  32[3]!; 32 64  32[3]!5
i 3 1 5 1
64 32[3]!4 32 8|’
consequently, we have
Oty — ] < = 3= | 4L ] 2
PR = B 8 Bl 32 Bl

which is the required result. 0

Now, taking § — 1~ in this theorem, leads us to already derived result in [78], as given in

next corollary.
Corollary 5.4.1.1. If&(2) € Si then |00 — 0u| < 1.

Theorem 5.4.2. If §(2) € Si(q) then

11

O0HhOly — O .
|0 Oy 3|_16

Proof. From (5.10), (5.11) and (5.12), we obtain

2
ity — 62| = |2 py _3pwy (L1 ») - P2 Pt
S Y 64 32[3]14 ) 1! 4 8) |
2 2
N T LT N A i1 - B 1 4
10200 = 051 = |55 =76 T g (256+128[3]!q P
X 3 1 o | Ipillpsl | Ipal?
OhOy — O — + =
10204 3|_128 (10+5[3]!q)p1 T2 Tie

after applying Lemma 3.11.1 and Lemma 3.11.2 , we get
40 4 4 11

|66y — 05| < 1—28+3—2+—6— 16’
|Gty — 63| < 1
16
This completes the proof. 0

Now, considering ¢ — 1~ in this theorem, results leads us to the proved result, see [78].

Theorem 5.4.3. If £(2) € Si(q) then

17 1 3 1 6 1 2 ] 1 1 2
<t~ 1= |+ — |1 - T Rl L Tl BT Ei T
|75 )|_32+4’ 2[3)1s +16‘ B +[32‘ 3] +8‘ +[3]!q +32‘ 3]'4
1 2 +1 L B R
320 B4l 8| Bl 32T B3]k

|
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Proof. Hankel Determinant of order 3 defined as;
H4(1) = b5(05 — 03) — G (G — 6003) + 03 (0n0u — 63),
Taking modulus on both sides and applying triangular inequality, we have
|565(1)| < |s]|05 — 03] + || 6s — G2 63] + | 03| OO0 — 631

On substituting values of Theorem 5.2.1, Theorem 5.3.1, Theorem 5.4.1 and Theorem 5.4.2, we

get
1 /11 1 2 1 1 2
J5(1 | = — |l |+ |l+—=|+= 13—
0015 (1) * (5~ 5+ e 35 g
1 2 1 1 1 2
— |l == 1+ ——|+=3— 5~
50 gl 8 el |
1|3 1 3 1
| +8|—=— 16 —
+2[8+ 16 32[3]!q+ ‘64[3]!4 128”7
17 1 3 1 6 1 2 1 1 1 2
J4(1 l———— |+l -+ | =l -t |l + |+ =3 =
I | {3 (o R 1 e A K R o R |
1 | — 2 +1 n +1 3 2
32 [3]'q 8 [3]!4] 32 31411
which is the required result. 0

Now, taking ¢ — 17, we get the known result as shown below.

Corollary 5.4.3.1. Consider &(2) € S} then | 75(1)| < 3.
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5.5 Zalcman Functional

Theorem 5.5.1. If §(2) € Si(q) then

Proof. From (5.11) and (5.13), we have

2 6| = pn ) pa_pwy_pi (3 1N\ 4 (1 3 N5,
S AR 8 8 32 \eaply 128/ 16 32p3) )02

On solving this equation we obtain

1 3 3 ?)p2 3 1
A2 A 4 2 2
a2 —be<l=—1 =— pT+=2—(1— pipy +2| = —

Here applying Lemma 3.11.6, this leads us to the required result

|62 — 5| < ~ ~ 0.25.

I

Now, taking ¢ — 1, we get the known result as shown below.

Corollary 5.5.1.1. Consider &(2) € S} then |63 — 05| < 1.

5.6 Summary

In this chapter, a category of starlike functions related to symmetric points associated with
the d-sine function was defined. For this class few results coefficient bounds, Fekete—Szegd
inequality, Hankel determinants and Zalcman functional were investigated. Additionally, this
study introduces several corollaries that reveal a remarkable alignment with the results previously

investigated by Khan et al. [78] when the limit ¢ — 1~ applied.
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CHAPTER 6

d-EXTENSION OF STARLIKE AND CONVEX FUNCTIONS
WITH RESPECT TO SYMMETRIC POINTS SUBORDINATED
WITH §-SINE FUNCTION

6.1 Introduction

The purpose of this chapter is to define certain new classes of univalent functions. These
classes are g-extensions of starlike and convex functions related to the g-series of particular
trigonometric function that is sine function. Here §, € (0,1). This chapter includes some

important results.

The class of §-starlike functions with respect to symmetric points related to §-sine function

is defined as under.

Definition 6.1.1. A function & € <7, is in S¢(4 — sin) then

2274(5(2)

) s
HER R

forall Z € Q.

The class of §-convex functions with respect to symmetric points related to §-sine function is

defined as under.

Definition 6.1.2. A function & € o7, is in Cs(§ — sin) then

2%42%4(5(2))]

D s
TE@-g(-g) o
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forall Z € Q.

6.2 Coefficients Inequalities

The following result is related to the d-starlike class.

Theorem 6.2.1. If & € Si (G — sin) then

N 1 R 1
(0 - v 9 (0 v v 1)
10| (1+4do) 12| o(1+do)
| = 1 Hl 1 1 +‘ N 1 '+‘1 1 n 1 }
P Hd a3+ L4 4By, 44.(1+40) 2B3]%, | 14 4BLY, T (1 +d0)|]
1 2 3 1 1 3
05| = > = - 1—|—’3—V — — —|—’1—V — |+ |2 — + —IH
19 (1480 + 83 443) { do(1+do) 3], do(14d0) | |do(14d0)  [3],
Proof. By definition
2294(£(2)) .
=<1 —|—Sln’(2)
£(2)—&(-2) !
Since & € S¥(4 — sin), using subordination principle, we have
2294(£(2)) .
= 1+sing(@(2)). 6.1)
£(2)-&(-2) )
Let us define the function
R 1+@(Z . R . N
p(2) = —(ZA) = 1 +p 124+ p2 322 +patt+ (6.2)
1-@(2)
where p(Z) is analytic in Q with p(0) = 1. This implies that
o P(E)—1
o(Z) = , 6.3

after simplification we get,

2 3
a()= (5 )2+ (%—%) 24 (%4—%—1)—152)23

3pip, pips Pl P3 Pa)
PPy _PWP3_PL_ Py Pi)s (g4
+( 2 > 16 a4ttt (6.4)

As we know that,
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So, we have

2 3

pi 3
4 2 T8 T 2 _8[3]!%)Z+
vy _pws _PL_pa pa L (30ipa 3P\\a, s
8 2 16 4 2 [3] 8 16 T
Now, we get
E(2) =2+ 02+ 068 + uz + ..,
and,
a5 (8) =6 (802)
7 2)) = ——F77 s
q(é( )) (l—qo)z
after simplification we get,
229:(S (2 R Y N A Y\ a N . v \1a
£(2) q_(gg_);) = 1+ 01 +80)2+ 3o (1 +80)2° + [0 (1 + 8o + 5 +85) — G205(1+3,)]2°

On substituting values in (6.1), we get

14+ 00(1+8,)2+ 0a80(1 +80)2% + [0 (1 + 8o + 32+ 32) — Go03(14+§,)]2°+

2
[665E|(,(1 +E|0+E|3+Elg) - A325|0(1+E|0)]24+“' =1+ (&)2+ (}2 _&> 22"’_

2 2 4
Py PL Py P\, (3iP2 Py PL P Pa_
278 2 8By, 8 2 16 4 2

1 317%192 _ ﬁ 24+
[3]!60 8 16

On comparing both sides of above equation for similar powers of Z, we get following equations,

6.6
> (6.6)
N v P2 P%
O3do(1+d0) =5 =7, (6.7)
3 3
. A y p p
1+ 8+ ) — ot (14+8,) = 5+ = P2 = (6.8)
s,
e a2 w3y a2e (1w 3PiP2 pips P P3P 1 (3pipy 3pi
G1sfio (1 + 8o + 5 +85) — 0380(1 +,) = == == 2 =L =2+ 2 s e )
o
(6.9)
On solving (6.6), we get
N D1
2(1+do)

(6.10)
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On solving (6.7), we get
2
&3:%(’2—‘5). 6.11)

Now, solving (6.8), we have

3
Oy (148, +824+6) — 0p0a(1+§,) = = +- L - 22

On substituting values of &, and 03, we get

tolleta -3
2(1+d0) ] Ldo(1+d0) \ 2 4 2 8

v

(1 +EI()+EI(21+EI(3;) = (1+4,)

this implies that,

. 1 [(1 1 1 ) 3 (1 1 ) pﬂ
Oy = R S - o — 1P|z << |PiP2t7=|-
(144, + q% "‘qg) 8 8[3]!ﬁo 8do(1+do) 2 4d,(14d,) 2

Now, solving (6.9), we obtain

8§ 2 16 4 2 DBl

3y pips PPy ps 1 (317%192 319‘1‘)

3ipy Py Pl P3 . Ps

8 2 16 4 2
_ L (3pi, 31
B, \ 8 16 )

do(1+d,) \ 2 4 8 2 16
voe 1 (Wil
472 By, \ 8 16 )

o 1 [(3_ 1 _3)2_(1_ 1 )2
S G+ d+2+5) [ \8 45,(1+d,) 8B, /P2 \d ™ 1g,(1+4,) )12

1 1 3 4, P4 PiP3
S SN - Pa P31 (613
* (165[0(1 5 16 16[3]!5,0)1)1 Ty e
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Next, to find out the values of coefficients, (6.10) solving for &,

N D1
(0 —- T < -
2(1+4d,)

An application of Lemma 3.11.1 leads us to the result,

1
| < — (6.14)
0] (1+4d0)
From (6.11), we have
1 2
st (3
Go(1+d0) \ 2 4
Using Lemma 3.11.2, we obtain
) 1 i
G| < — 5|
2 1
0G| < ———max{1,0} = < —,
18] 2(1+4do) {105 o(1+d,)
ol < —. 6.15

Solving (6.12), we get

1

|0y| < —
(1480 +d2+43)

b

(1_ 1 )3_(1_ 1 ) P
8 803, 8d.(1+d) /' \27 4§,(1+4,) /""" 2

An application of Lemma 3.11.3 leads us to the result

R LR (ot WV BT
8 803, 8d.(1+d) /" \2 7 4,(1+4,) /"2 2| =8 83

11 1 ; (1 1 Pyl 11
‘(5_8[31!5.0_8a0<1+ao>>p1_(5_4ao<1+ao))”lm7'S‘ZWBM
1 1 1 1 1
43,(1+4,) +‘§+2[3—]!q0 +‘1_4[31!q0+4a0<1+a0> ’




48

thus, we have

1 1 1 1 1
oyl < _ ___|l-= - S U e
10 (1+qo+q%+q2>H4 40311, 4do(1+4do) ’2 2[3]1,
1 1 1
I +— ||, (6.16)
‘4 4[3]15, 4qo(1+qo)]

On solving (6.13), to find s

e — 1 {(3 1 3 ) ) (1 1 ) s
T a0+t +3) [ \8 48,(1+d,) 8B, /T2 \4 4g,(1+4,) )12
1 1 3 4 P4 PiP3

+(16E|0(1+E|0) 16+16[3]!q0)p1+2 2 |

applying modulus on both sides of above equation, we get

3 1 3
s | < - LS _

|5|‘qo(1+qo+q%+q3)H8 4d,(1+d,)  8[3]',
1 1

3 41
m_ﬁ+m‘ p1l +§Ip1p3—p4!].

P12 1P| + Pyl >+

'1 1
4 44o(1+4o)

Now, using Lemma 3.11.1 and Lemma 3.11.4, we get

; ! 2 2 3|, Bl +d0) — 1
05| < < v ~ - {—4—‘3—\, — — + = > +
0] Go(1+do+d2+4d3) [2 do(1+d,)  [3]'3, do(1+do)
o vzl
[3]'ﬁo E|0(1+E]0) ’
N 3 q0(1+q0)_1
05| < — [1+‘3—v — — + == 4 +
o(1+do+d3+43) do(1+do)  [3]', do(1+do
3 1
1-— — = - (6.17)
’ [3]‘% do(1 0)}
Hence, this completes the proof. [

If §, — 1~ in the above result, this leads us the already proved result for class S; by Khan et

al. [78], as shown in the following corollary.

Corollary 6.2.1.1. If £(2) € S¢ then

1 1 1 3
| < = losl < =, |oul < -, |as| < =.
|O¢z|_2, |O¢3|_2, |a4|_4, |065|_4

Now, the following result is related to the class of §-convex functions.
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Theorem 6.2.2. If & € Cs(G — sin) then

N 1 R 1
Oh| = = , o3| = = = 57,
2] (1+4d0)? 19| o (14 8o) (1 +do +d7)
|& |_ 1 { 1 1 1 n ‘ 1 n 1 ’+ ‘1 1 n 1
TR a2 (4 4B, 48.(1+d)| |2 203k 4 431, 4do(1+0,)
16| ! {1+‘3 ) +'1 !
50— % - < < < v v < Y v - -3
Go(1+do+d5463)(1+do 483+ §5 +d3) Go(1+4do) [3]!510 Go(1+

Proof. By definition
274[274(5(2))]
74(6(2) = §(=2))

Since & € C(d — sin), using subordination principle, we have

<1+ Sinfl (2)

294(224(8(2))] .
- — = 1 +sing (@ (2)). (6.18)
Z4(8(2) —&(-2)) |
Let us define the function
1+o(z
P(2)2+—(Z)=1+p12+p222+p323 +patt 4 (6.19)
1-@(2)
where p(Z) is analytic in Q with p(0) = 1. This implies that
o pE)—1
o3 = , 6.20

after simplification we get,
P P2 Pia, (P3., P PiP2\ s
o) = () e+ (TI)Z i (T@—T)Z

L (3 _pwps PL Py Pa
8 2 16 4 2

As we know that,

So, we have
P p» P \.o (ps . Pi pip2 P\
o (PYso (P2 P\ 2 (P2 Pi_ 2 PN,
sing (@(2)) ()z+(2 4>z+<2+8 : 8[3]!ﬁ0)z

(3P _pws _pi 3 pa 1 (30 301\ 4
8 2 16 42 Pl U8 16
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Now, the Analytic function defined as;
E(2) =2+ 0087+ 032 + 0us + ..,

and the g-derivative operator of an Analytic function is;

§(2) —8(802)

7i(E0) == g

after simplification we get,

294(274(5 (2))]

24(8(2) —&(=2))
5082 (1L 8NV (146 4 82123 A (e8] 8t 82 8V 8+ 82+ 83 5t —
0053 (14 00) (1480 +45)12° + [Gs8o (1 + o+, +,) (1 4 4o + 45 + 0, + )

6o (1+80) (1+ 8o +15)°12° + .

=1+ 00(1+d0)*2+05[do (1 +d0) (1 +do+2)]2% + [0 (1 + 0o+ 85 +82)*—

On substituting values in (6.18), we get

o
2 1 278 2 8p] !q)
(319%192 pws Pl opPs ps 1 <3p%pz 3p‘1‘>) Ay

+
p P, Pi ps Py pip pi
:1+<31>2+<—2——1)22+<—3+—1—¥— 1

bo(1+,)" =5, 6.21)

2

A v 9 v < p
asqa(1+qo)(1+qo+q§)=%—j, (6.22)

3
oc4(l+qo+qg+q2)2—a2a3(1+q0)2(1+q0+q§):%4—?—%—&; (6.23)

Gisiio (1 4o+ 8 +5) (14 8o+ 8 + 5+ 85) — 0380 (1 4 80) (1480 + 85)°
_3pipa ez PP P L (317%192_%)7 6.24)

8 2 _E_ZJF?_B]!;,O 8 16

By solving (6.21), we get

N P1
= ——""-——. 6.25
) 2045, (6.25)
By solving (6.22), we get
R 1 D2 P%)
Oz = - - — = _——. (6.26)
> (1 +80) (1 + 8+ 82) (2 4
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On solving (6.23), we have

3
u(l 480+ P+ 5% = Gl (1+8,) (1 +4,+ 50 + 242 2P P

By substituting values of &, and &3, we get

O (1+80+85+1,)7 = (148,)* (1 + 80 +45) {2( o )2 1 Llo(lJrqo)(l d5) <%_pz%)]

after simplification we get,

On solving (6.24), we obtain

e e e w23 Ay A% i e g« w2v2 3PPy P3P}
ocsqo(l+q(,+q3+q?,)(1+q(,+q(2,+q(3,+q§)— 3q0(1+q0)(1+q0+q%)2:%_%_%_

P} ps |1 <3P%pz_3ﬁ‘>

8 16

Py . ps 1 (31)%1)2_3&‘1‘)

On substituting value of 03, we get

1
Go(14do)(1+ 0 +42)
<p2 p%)]2+3p%pz pps Pl P ps 1 (3pipy 3pi

3]

Oso(1+do+82+0) (1+do+ 85 +82+d5) = do (1+ﬁo)<1+ao+ﬁ§>2[

8§ 2 16 4 2 P\ 8 16

after simplification, we have

X 1 3 1 3 )
0652v > - > - > > - - — —C - — P1P>—
qo(l+qo+q%+q2)(l+qo+q%+q3+q‘£)KS 440(14do) 8[3]!510) 12

1 1 2 1 1 3 P4 P1P3]
T [P e ey e e PS5 (6.28
(4 4d,(1 +qo))p2 (16%(1 +d,) 16 16[3]1%)”1 2 o | O

Next, to find out the values of coefficients, (6.25) gives,

& P1

2(14§,)2
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Using Lemma 3.11.1, we get
(6.29)

From (6.26), we have

0 = ! <12 _ P_%)
do(1+80)(1+d,+65) \ 2 4
An application of Lemma 3.11.2 leads us to the result

2

)

| < — _ —
| 3|—20(0(1+q0)(1+a|o+q(%)

2 1
< — - - ——max{1,0} = —,
= 2G0(1+ o) (1480 +62) 1.0} 2)

1| Go(14+d0)(1+do +d3

1

< ” v 57 6.30
q0(1+q0)(1+qo+qg) ( )

|| <

On solving (6.27), we get

X 1 1 1 1 ; (1 1 P3
Oy = < <3 | <3\2 r ] T o < Pi—\ 5 5y 77 -~ p1p2+_ )
(I+do+d5+d3)% L\8 8[3]ls, 8do(1+do) 2 44,(1+do) 2

1
(143, +d2+33)>

(1 ! 1 )3 (1 1 ) L P3
8 8[3]|E| 85‘0(14—5[0) P 2 4E|0<1+E|0) V4V %) B .

o

|0y| <

Here applying Lemma 3.11.3, we have

(b st 8l
8 8Py, Sd.(1+d0) /M1 \2 7 45,0144, )2 T 2| =78 T 8B, 8a.(1+4)

2‘1 1 2(1 1 1 )‘+
2 45'0(1 + E|0) 8 8[3]!ﬁ0 86[0(1 + qo)

|

1 1 1 3 (1 1 ) 1 1
- 2 - —\ 5= - += <5 - +
‘(8 8311, 8q0<1+q0>)p1 2 4q,(1+4,) )" T 2T 4T aBl,, 46 (+4)
1 1 +‘1_ 1 n 1
20 23], |4 4B, 4do(1+do)|
thus we get,
6| < {1_ - 1 +’1+ 1 ’+‘1_ 1 n 1
P g a)? U4 4B, 40(1+a0) | 127 20, | 14 4Bl 4d.(1+d,)

"o
(6.31)



53

By solving (6.28), we get

X 1 3 1 3 )
OC5 = - - = = = - = - — —C - — P1P>—
qo(1q0+q%+q2)(1+qo+q%+q2+q2‘)KS 440 (1 +d,) 8[3]!a0> 1
1 1 5 1 1 3 4, P4 P1P3]
T A T\l T TS |-
(4 4qo(1+qo)>p2 (16qo(1+qo) 16 16[3]!640)171 2 2

Taking modulus on both sides and applying triangular inequality, we get

) 1 3 1 3 )
Os| < < v ~ = - - - - - — — — — +
12| qo(l+qo+q%+q3)(1+qo+q%+q2+q3)H8 44,(1+3d,)  8[3]lg, i lp|
P S PN - THR I [P |
4 48,(1+d0) | 72" T |T68,(1+d,) 16 ' 16[3]1,, | P T2 P3R4l
Using Lemma 3.11.1 and Lemma 3.11.4, we get
|6ts| < ! {2+‘ 2 . +
S| < - _ |z —_ __
qo(l+q0+q¢27+q3)(1+qo+q%+qg+qg) 2 q0(1+qo) [3]!510
qo(l‘f‘cvlo)_l‘_’_’l_ o 1 :|
Ela(l'f’qO) [3]'ﬁ(; CV|0(1+E|0) ’
05| < ! {1—%‘3 . +
. R R — B
o(1+0o+d2+a3) (1 +d, +d2 +4d3 +d3) do(1+d0)  [3]',
ﬁo(1+5|o)—1' ’ 3 ]
< > + |1 - — = - (6.32)
Go(1+do) [3]'6,, Go(1+do)
This completes the proof. [

If 4, — 1~ in the above theorem, this leads us the already proved result for class Cs.

Corollary 6.2.2.1. If &(2) € C; then

1 1 1 3
| < —, |l < =, |du| < —, |og] < —.

6.3 Fekete—Szego Inequality

This inequality will examined for the class S} (4 — sin).

Theorem 6.3.1. [f &(2) € S: (4 — sin) then |05 — 65| < ﬁ
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Proof. From (6.10) and (6.11), we obtain
_ 1 (&_P_?) _ (P_1)2 -
EIO(]‘_{—EI()) 2 4 2<1+El()) 2q0(1+q())

1 p_(1+2qo)p_%
28,(1+8,) [2 \1+8, ) 2

Zl(lL"j;”—) <1 for 4, € (0,1). An application of Lemma 3.11.5 leads us to the result required result

03 — 63| =

Y

C(1428,\ Pl
D2 1+d, ) 2

0 — 63| =

Y

1

NP )

o3 — <o~ (2),

0= 2qo(1+qo)( )

This completes the proof. 0

Now, taking q, — 1, we get the known result as shown in the following corollary.

Corollary 6.3.1.1. IfE(2) € S then |6z — 03| <

=

Here, Fekete—Szeg6 Inequality will derived for Cs(§ — sin).

Theorem 6.3.2. If &(2) € Cs(§ — sin) then |6z — 65| < ﬁn(1+ao)(ll+ﬁo+ﬁ3)'

Proof. From (6.25) and (6.26), we have

|0 — 63| =

)

e (30 ]
Go(1+do)(1+do+02) \ 2 4 2(144,)?

1
A )
03 — 05| = — 7 - <
O = = S (T 8,)(1 48, + 30)
(1480)> 480 (1+§,442)
2(1+4,)3

b

» _pz((1+ao>3+ao<1+ﬁo+ﬁ%>>
2 2(1+§,)3

<1 for g, € (0,1). An application of Lemma 3.11.5 leads us to the result

|03 — 03] <

~ - —(2),
2qo(1+qo)(1+qo+q3)( )

1
|65 — 63| < REIETIY
qo(l‘f'qr))(l""qo"'q%)

Hence, this completes the proof. 0

If 4, — 1~ in the above theorem, result leads to the proved result for class Cy which is given

in next corollary.

Corollary 6.3.2.1. If £(£) € C then |0 — 62| <

A=



6.4 Hankel Determinants

These results will investigated for the class of g-starlike functions, S} (4 — sin).

Theorem 6.4.1. If £(2) € Si(4 — sin) then

|00 — 0| <

2(14d, +d2+43)
1 1
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Proof. From (6.10), (6.11) and (6.12), we have

ol (359
2(1+80) | [B(1+8) \ 2~ 4 (1+ 8o+ 82 +)

((1 1 1 )3 (1 1 ) N
8 803y, Sd.(1+d.) /1 \2 7 ag,(1+4q,) )"

|60 — u) = ‘ {

by — g = Vplpzv i P?V B ] P?V i (1_ 1 ] 1 i
48,(1+0,)%  8do(14+d0)> (I1+do+a2+a3) \8 8[3]!y, 8do(1+do)
PiP2 (1_ 1 )_ &
(I+do+a2+d) \2  4do(1+d0)/) 2(1+d,+d2+4d3) [
|&25€3—&4|:P?<v lv + - lv — — - Vl - —
8do0(1+d0)%  8(1+d,+d2+d3) 8(1+d0+d5+d3)[3]%,

+
1
i P3

_|_
1 ) < 1 N 1 B
83,(1+ ) (1 +do+02+3) ) T2\ 48,1+ 8,2 " 2001+ 80+ B2+ 5)

4do(1+do)(1+8o+02+43) ) 2(14d,+ 2
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using Lemma 3.11.3, we get

1
3
_ -+ S S —
p1(8qo(1+qo)2 8(1+do+a2+d)) 8(1+d,+d3+d3)[3]',

1 1 1
_ _ |- _ -+ P ——
8qo(1+qo)(1+qo+q%+q3)) p1p2<4qo(1+qo)2 2(1+d,+a2+43)

1 D3
4qo(1+q0)(1+qo+q%+q3)> 2(148, +d2+43)

1 1 1 1

_ —+ S S - _ SR—
43,(1+8,)%  4(1+d0+32+0)) 4(1+3,+82+8)[3]1, 4do(1+d0)(1+8o+d2+33)

+‘ - - ! + ! +
4(1+q0+q%+qg) 4(1+q0+q%+qg)[3]'ﬁo 4q0(1+q0)2 4EIO(I+E]0)(1+CV]0+EI%+E|3)

Y

consequently, we get

1 1
00— 0yl < - - — 1+ +—|= - + ~ ——
Ot =l < o ey | T B AR R (R R R
1 1 +1‘ 1
(I+do+a2+a)B]s,  Go(1+d0)(1+do+d2+d3) | 4| (1+do+d2+43)
1 1 1

— — — 4 - _
(I+do+a23+6)[3], do(1+60)?

Which is the required result. [

Now, taking 4, — 1~ in the above theorem leads us to already derived result in [78], as given

in next corollary.
Corollary 6.4.1.1. If&(2) € St then |0p05 — 0u| < §.

Theorem 6.4.2. If & (2) € Si(4 — sin) then

1 1
_ SR _
(144o) {(1+qo+q%+q3) 2(1+4d,)

Proof. From (6.10), (6.11) and (6.12), we obtain

(_2_3q0)

|60y — 03| < _ _ Ao/
3 q%(1+q0)(1+q0+q¢%+qg)

+

|

ol (5 smm w7
2(1+80)) (I +dot+a2+a) L \8 8Bl  84,(1+d,) /"

2
1 1 p3” { 1 (Pz p%)}
AN A~ /4 .~ N\ +_ Y /1 .~ N A~ T T4

(2 4qo(1 ‘|‘qo)>p1p2 2 qo(l +q0) 2 4

e~ = ||
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1 1
4 —
p1<16(1+q Y1+ +2+83)  16(1+d,)(1+80+ a2 +d3)[3]'s,

G0y — 0| =

1 1
16510(14‘5{0) (1+qo+q +q0) 16513(1"'510)2)

1 1 1
2
PP < ~ ~ SIS < - = +
! 2<4(1+q0>(1+q0+q3+q3> 8do(1480)% (148, + 62 +43) 4q3(1+qo)2)
PiP3 . %
4(14+d,)(1+d,+d2+4d3)  4d2(1+4d,)?

A A A0 |P1||P3| |Pz|2 2
(X2a4—a S v |: v v v v v
| d (1+d,) [4(1+8,+82+d3) 4621 +do) al

p2(4(1+ﬁ0+a3+ﬁ3)

1 1 2< 1 1
8do(14d0)(1+do+d5+43) 463(1+60)) Pr\T6(1+ 8, +2+d)  16(1+8, + 82 +5) 3],
1 1 )}

16d,(1+d,)(1+do+d2+d3)  16d2(1+4d,)

After simplification, we have

1 1 1
p - - - N - - - - - JE— - v —
2<4(1+qo+q%+q3) 80o(1+d0)(14+do+d2+43) 461%(1+qo))
2( 1 B 1 B 1 _
PrT6(1 18, +2+8)  16(1+d0+a2+0)03]%,  1680(1+d0) (1 + 80+ 52+ 53)

do
1 B ( 2 — ) B
16&%(1+da)>‘_ p2<8q0(1+q0)( 144, + 82+ do))
pz(ﬁlg(l‘f'ﬁlo)m“ —5(14d,) — 3], — (1 +qo+a§+di)[3]!vo)’
: 1682(1 +d0) (1+do -+ 82 +83) 3], ’

1 1 1
2 —_— —
p1(16(1+d0+d%+ﬁ3) 16(14+ 80 +a2+3)[3]'s,  1680(1+d,)(1+ 8o +d2+d3)

I (—2-34,)
16q3(1+d0)>‘: <85|o(1+qo)(1 +do+ ﬁ%+ﬁ3))
(pz_p% <a5<1+aa>[31 —q0<1?q;> 3[;1;? ]—(1+ﬁo+d%+63)[3]!d0)) ]

_ ((85(1480) 3], — o (14+80) —[3]', —(1+d0+05+85) 3] !4, -
K= ( q 2(7273%)[3]‘% ) <1 for g, € (0,1). Using Lemma 3.11.5,

we have

1
p1(16<1+éo+ﬁ%+ﬁ3> 16(14+d,+d2+d3)[3]'s,  168,(1+do)(1+d,+ 42 +63)
(2),

:‘( (—2—34,) )
8aj5 (1 +do) (1 +do + 5 +43)
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Therefore, we get

|P1||P3| |l72|2

: e e S
(1+4do) {4(1+qo+q%+q3) 445(1+4o)

|Gty — 65| <

(_2_ 35(0)
443(1+ o) (1 +do + 63 +47)

|

2
|P1|

Here applying Lemma 3.11.1, we get

[ 4 L4 +4' (=2 —38,)
(14+80) [4(1+do+a2+63)  4a2(14+4d,)  |442(1+d,) (1 +d,+d2+43)
1 1

{ + + <_2_3E|0) }
(14+d0) (M +do+a2+06)  a2(1+do)  |G2(1+80)(1 + 8o+ 62 +43)

This completes the proof. 0

|0y — 03| <

|

|00y — 05| <

Now, considering 4, — 1~ in the above theorem, then result is same, see [78].
Corollary 6.4.2.1. If&(2) € S then |6o0u — 03] < 1.

Theorem 6.4.3. If & (2) € Si(4 — sin) then

1 (_2_35]0)

B1+80) | G201 +0) (1 + o+ 32+ 83) %
[ 1 (‘l_ 1 1 1+ (3], +‘l_ Lol )}
(I+do+a5+d3) \|4  4[3]lg, 4do(1+4d,) 23], 4 403, 4d.(144o)
1 1 1 1
H4E|o(l+ﬁa)2+4(1+ﬁo+fl%+ 3 A +d,+a2+8)B]Y, 41+ (148, +82+5)
1+ 3], 1 1 1
‘2(1+qo+q 5+d) ‘4(1 +do + 85+ El)_4E|0(1+E|0)2_4(1+E|0+E|%+Elg)[3]!ﬁo+
1

1
4o(14Go) (1 + o+ G2 +43)

1
Go(14d0)? {(1+ao+d%+d3)

| 75(1)] < +

i

Elo(l‘FElo) [3]!V

1
+

+ . S
} G2(1+Go) (1 + o+ G2 +43) .
: H
_ _ —1!.
q0(1+qo) [3]!5lo

1
1—< v
' Jo(1+4d,)

+

Proof. Hankel Determinant of order 3 defined as;
H5(1) = bis(0 — 0F) — 6y (0 — G 03) + O3 (O by — 63),
Taking modulus on both sides and applying triangular inequality, we have

| 5(1)| < |60 — 03| + |G| |0 — 0 05| + | 05| 020 — 053],

By substituting Theorem 6.2.1, Theorem 6.3.1, Theorem 6.4.1 and Theorem 6.4.2, we get
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1 ] (—2—38,) }
J5(1)] < < - l = . . . HLLE A +
A5 Go(1+80)2 [(M+do+82+63)  G2(1+d,)  [G2(1+do)(1+8o+d2+4d3)
[ 1 (‘1 1 1 ‘1+[3]!q0 ‘1 L 1 )}
(1+do+a2+ad3) \|4 4315, 4d.(1+4d,) 2[3]', 4 43,  4do(1+d,)

_|_

1 1 1 1
< 5 T < < <3 < < < - < < < <
H4qo(l+qo)2 4(1+q0+q%+q(3) 4(1+q0+q%+qg)[3]!ﬁo 4q0(1+q0)(1+q0+q%+q3)

1+ 3],
‘2(1 + o+ d2+d3)
1
4do(1+d0) (1 +80 +d3 +3d3)

N2
—
[O%)
—
<
)

1
} q%(1+q0)(1+qo+q%+q3){ Go(1+do
' 1
do(1+do)

i [31!5.0‘1”'

Which is the required result. 0

Now, taking d, — 17, result is known, as shown below.

Corollary 6.4.3.1. Consider &(2) € S; then | 5(1)| < 3.

Now, the following results will investigating for the class of -convex functions, Cs(§ — sin).

Theorem 6.4.4. If & (2) € Cs(4 — sin) then

|00 — 0| <

2(1+d,+ 32+ 3)?

Proof. From (6.25), (6.26) and (6.27), we obtain

wor-si-| il frastesew (- love?
2(14d0)%] Ldo(1+80)(1+do+435) \ 2 4 (1+do+d5+43)

((1_ 1 1 )3_(1_ 1 ) +p3>”
8 8By, 8d.(1+d.) /N \2 ag,(1+a,) ) 2T 2 ) ||

o
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using Lemma 3.11.3, we obtain

1 1
‘(8q0(1+qo)3(1+qo+q%) 8(1+do+a2+d3)> 8(1+d,+d3+43)%[3]%

o

1 ; ( 1 1
_ _ SR —( — _ SEE _
8%(1+qo)(1+qo+q%+q3)2>pl 4o(1+60)°(1+do+d2)  2(14+do+d2+43)?
1 ) N 3 - 1 ]
v v v v v pp v v v J— v v v
48,(1+8,) (1 + 8o +a2+83)2 )72 " 2(1+ 8, + 82 +83)2 | ~ 2(1 + 8, + 82 +43)2 3]s,
1 1

1

_ + o vvv
Go(1+d0)3(1+do+d2)  (1+8o+d2+d3)> (1480 +0d2+d3)%[3]',
1
+ - = = < — < v <
4’(1+qo+q%+q3>2 (1480 + 62 +3)%(3]!5

_|_

consequently, we get

|0p 03— O] <

21+ 8o + 5 +d3)2
1 1

(L +d0+d5+8)2B]%,  do(1+d0)(1+d0+85+63)>

1 1 1

(148 +83+8)2Bl%,  Go(1+80) (148 +2)

This completes the proof. U

On substituting g, — 1~ in this result, obtained result is same as for the class Cj, that shows

in following corollary.
Corollary 6.4.4.1. If & (2) € C; then |6p05 — 0u| < .

Theorem 6.4.5. If & (2) € Cs(4 — sin) then

|Gy — 65| <

1 P%(l+aa+d§)2+<1+ﬁo+d%+ﬁ2>2
(1+80)2 [ §2(1+8,+82)2(1+d,+32+3d3)>

25[%(1 ‘J"Elo)(l +E|0+Elg)2_5|o(1 +E|0+E|g)2_2(1 +E|o)(1 +EIO+EI%+E|2)2
A2(1+d0)(1+do+d2)2(1 4 §o + G2 4 §3)?

|

Proof. From (6.25), (6.26) and (6.27), we get

e O e
: 2(1+80)2) [(1+d,+a2+a3)2\\8 8[3]lg, 8do(l+do)/ "'

1 1 P3 1 Py Py ?
ool B 27 230 sl Il B < < N\ T 4
2 4d,(14d,) 2 Go(1+d0)(14do+d3) \ 2 4
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1 1

_ 1,4 _ _

P <16(1+a0)2<1+ﬁ0+ﬁ%+a2)2 16(1+8,)2(1 + 8, + B2+ 32)2 3]s,

1
2

v < < < 2 — T ~ < < —D1P 2 2 < < -
164, (1 +60)3 (14 do + 42+ 43)? 16q%(1+qo)2(1+qo+q%)2> 12(4(1+qa)2(1+qa+q%+q3)2
1 1 ) P1P3

+ v = v v —
4(14d,)%(1+do+ 82+ 43)2
2
%)
4G2(1+d,)%(1 +d,+42)?

{ \Pl | ’P3| |P2|2
T (14+4,)? [4(1+d,+a2+63)% 4421 +d,+2)2

|P1’2

1 1 1
p v - > — > - > - - J— S - PR
2(4(1+qo+q%+q3)2 88,(1+8o)(14+d,+ 32+ 33)? 4q%(1+qo+q3)2)
2( 1 B 1 B 1
Pr\T6(1+d, + 52+ 43)2 16(1+8,+82+3)2[3]%,  1680(1+d0)(1+d,+2+d3)2

|
16&%(1+do+ﬁ%)2) }
( : i)
p > > - JR— > > > > - J— > > - J—
2\A(1+do+82+83)2  8do(1+80)(1+d0+a2+83)2  42(1+§o +2)2
pz( 1 B 1 1 B
PN16(1+8,+82+83)2  16(1+d,+a2+3)2[3]1s,  1680(1 +d0) (1 +do + 42+ §3)?

8G2(1+do) (148, +d2)2(1+do +d3 +4d3)>
{pz_p%< i ﬁ%vl+ﬁ0)(vl+évo+ﬁ3)2[3] qo—qo(1+qo)(1+f|o+q0)v -
2[3]! (2qg(1+qo)(l+qo+q%) _q0(1+q0+q0) 2(1+q0)(1+q0+q%+q2)2)
+ o+ 82+ 83)% (3], + do(1+ 8o+ 82+ )2 3] 15,
+ﬁo+ﬁ%>2—ao(1+ao+ﬁo> (1+qo)(1+ﬁo+d%+ﬁs>2))”

<2a%(1+ﬁo)(1+qo+qo) —do(1+8,+§2)% - 2(1+ﬁo)(1+ﬁo+a§+ﬁ2>2)
(

(ﬁ3(1+ﬁo)(1+ﬁa+ﬁ5)2[3]!qo—ﬁ3(1+ﬁlo)(1+ﬁo+ﬁ3)2 (1+ )(1+ﬁo+5|5+5l3)2[3}!qo—ﬁo(1+ﬁo+ﬁ3+ﬁ3)2[3]!a,,) <
1 i

K= lo o Sl A TV S LP _ 1 Go o}
2[3]!4, (243 (1400) (14d0+83)> =G0 (140o-+d3)> —2(1+80) (14+0,+d5+d3)?)

—
-

for g, € (0,1). Using Lemma 3.11.5, we get

1
p = = = — = ~ = = = = = —
2<4(1+q0+q%+q2)2 8do(1+d,) (14 do+ 42+ d3)> 4q3<1+qo+q%)2>

1 1
1685 (1+80)(1+80+d5+d5) 1663(1+d0+ﬁ%)2>‘_
‘(2513(1+ﬁo)(1+ﬁo+ﬁ%)2—ﬁo(1+do+ﬁ§)2 2(1+ﬁo)<1+ao+d%+ﬁ2)2)‘@)
8335 (14 80) (1 + 8o +83)*(1 + 8o + 85+ 83)
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thus we get,

1 1 1
» B ] I L\
2<4(1+qo+q%+q3)2 8do(1+d,)(14do+ 42+ d3)? 4q%(1+qo+q%)2>
1 1
2 —_—
p1(16(1+€|o+d%+ﬁ3)2 16(1+ o + 42 +d3)%[3]15,

1 1
16d4,(14d0)(1+d,+d3+63)>  16§3(1 +do+ﬁ%)2) ’ a
‘ (251(2)(1 +E|o)(1 +E|0+E|g)2 _Cvlo(l +CV|0+E|%)2_2(1 +E|0)(1 +E|0+E|¢2)+qc3))2> ‘ )
45{%(1 +d0)(1 —1—E|0-|—E|(2))2(1 —l—E(,,—f—E[%—i—E[g)z

This implies that,

1 |: ‘p1Hp3| |pZ|2 +|p1|2
(14+d0)% [4(1+do+d3+03)%  4d3(1+do+d3)?

25[%(1 ‘J"Elo)(l +ﬁo+ﬁ§)2—ﬁo(1 +E|a‘|‘5|%)2_2(1 +E|0)(1 +El0+5|g‘|‘5|2)2
442(1+d0) (1 +do +d2)*(1 + o + 5+ 63)°

J

applying Lemma 3.11.1, we get

1 4 4
6oy — 63| < . [ — —
T (1480)2 41+ 8, +82+d3)2 T 482(1 + 8, +§2)2
282(1+8,) 1+ 8o +82)2 — Ao (1 + 80 +82)> —2(1 +d0) (1 + do + 42+ 33)°
442(14G0) (14 8o +2)%(1 4 §o + 42+ §3)?

|

4

after simplification we get the required result

PRI [ﬁ%(l+do+ﬁ%)2+(1+ﬁo+ﬁ§+ﬁ2)2

(1480)2 | §3(1+do+d2)2(1+d,+d2+d3)?
25[%(1 +El0)(1 +Cv|0+cvl%)2_qo(1 +E|0+E|3)2_2(1 +E|o)(1 +qo+q%+qg)2
2(1+do) (1480 +d2)2(1 + o+ d2+d3)?

|

This completes the proof. 0

If we take , — 1~ then result is same as proved result which is given below, for the class Cs.

Corollary 6.4.5.1. If&(2) € C, then |pbu — 03| < &
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Theorem 6.4.6. If £(2) € Cs(G — sin) then

1

J5(1)] < < . {1+
[#5(1) G2(14+do)(1+ 0o +82) (1 +do+ a2+ 63) (1 + 6o+ a2+ 63 +d2)

‘3_ 2 +q0(1+%) 1 ‘ 3 1 } { 1
E10(1 + EIO) [3] 'ﬁo EIO(l +E|0) [3]!510 Elo(l + EIO) (1 +E|o + d% + qg)z
Hl 1 'l 1 ‘1 1 1 H
T — | |5 +
4 434, 4do(1+d0)| |2 2[3]'%,| [4 43]%, 4[],
1 1 1 1
{ o Lt an | Tz 73 ey T g2 832
2(14do+d2 +43) B]'s, | 4|do(14d0)*(14+d0+63) (1 +d,+d5+4d3)
1 1 +1 1
41 (148, +82+3)2

1
+v0+a(%)+ao<1+ao>(1+ao+az+az>2
L4840 +85)* + (1 + 80 + 85+ ;)

(1480 +02)>(1+do +d2 +d3)2
1+qo+q0) — o (1480 +d3)* —2(1 + o) (1 + 80 + 45 + 45)*
qo(l+qo)(1‘|’CI0+E|%)2(1+E|0+EI%+E|3)2

Proof. Hankel Determinant of order 3 defined as;

|+
|

A1) = b5 (05 — 03) — Gu(bu — 0r03) + O3 (Br 0y — 03),
Taking modulus on both sides and applying triangular inequality, we have
|4(1)] < |G| — 03] + |0 |64 — G 63] + | 03| 020 — 0531,

using Theorem 6.2.2, Theorem 6.3.2, Theorem 6.4.4 and Theorem 6.4.5, we get

1
61| < -5 - [1+
A5 G2(14+d0)(1+ 8o +2) (1 + 8o+ 42+ G2) (1 + 8o+ 42+ 63 +d2)

2 3

Go(1+4d,) —1 3 1

1

‘ 3]'5,  Go(14do) ]+[(1+éo+d%+ﬁ3)2

1 1 1 1 1
+|E+m 4
1 1 1 1
R A (A R E T Ay
1 1 1 1
(1480 + 82 +83)2[3]t5,  do(1+80) (1 + o+ G2+ §3)2 +Z’<1+ao+az+a2>2

1 1 1

— — = _ e _ —
(1480 +a2+03)%3]', Go(1+d0)3(1+do+d3)  do(14d0)(1+do+d5+63)>

do(1+do)

]
H1_ 1 1
4d,(1+4,)

|+
|

1 [ﬁ%(l+éo+d%)2+(1+ﬁo+ﬁ3+d2)2
Go(1+80)3(1+d,+d2) | 421480 +62)%(1 480 + G2 +43)?
282(1 4 80) (14 §o +§2)% — do(1 + 80+ 32)% — 2(1 + 8,) (1 + 8, + 85+ 3)°

G2(1+ o) (1 + 0o +62)2(1 40 + 42+ d3)?
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]

If 4, — 1~ in the above result, this leads us to the proved result for class Cy that mentioned

in the following corollary.

Corollary 6.4.6.1. If & (2) € C, then | 75(1)| < &5

6.5 Zalcman Functional

The following result will examine for S} (4 — sin) class.

Theorem 6.5.1. If & (2) € Si(4 — sin) then

Proof. From (6.11) and (6.13), we have

3

| (-9 - e (G-anw-
Go(1+80) \ 2 4 Bo(1+80+85+3) \\8  44o(1+3d,) 8[3]

)l

1 1 5 1 1 3 4, Ps_ P1P3
o A~ 741~ N + f__—i_— +___
(4 4q0(1—|—clo)>p2 (16q0(1+q0) 16 16[3]!5(0)171 2 2
After simplification, we get
2 A 1 (148, +62+d) 1 1 3 >
b 4 4 0 0
0 — Os| = — - - - - > — = — t - — +
85— | 2q0(1+qo+q%+q3)pl( 860 (1+do)? 8do(1+d,) 8 8[3]',
2 M+8,+82+5) 1 1
253 o RV Pl
do(1+do) 2 24,(1+4do)
» ((I+d3,+32+8) 3 1 3 ) ()
020 - +2( 5 |pips—
h 2< 2C|0(1+C|0)2 4 24,(1+4d,) 4[3]!5[0 2 Pips—pa

Using Lemma 3.11.6, this leads us to the required result

Hence, proof is complete.
If g, — 1~ in the above theorem, this leads us to the proved result [78] for class Sj.
Corollary 6.5.1.1. If(2) € S} then |62 — b5| < 1.

Now, the following result will determine for Cs(§ — sin) class.

4,

) P%Pz—
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Theorem 6.5.2. If £(2) € C(G — sin) then

1
A2 A

— O35 .
< Go(1+do+d54d3) (1 +do 4835+ 65 +d3)

Proof. From (6.26) and (6.28), we have

After simplification, we get

1 p?((l+ﬁo+a?,+6|2)(1+E|o+a?,+d§+c“|ﬁ)
2ﬁo(1+ﬁo+ﬁ%+ﬁ3)(1+q(1+q%+qg+‘12‘) 85[0(1—1—5[(,)2(1-1—5[0—1—5]%)2
ot 13 )+pz<(1+ﬁo+ﬁ%+qo><l+q0+q0+qo+qo> 11 )_
8d,(1+do) 8 8[3]; 2 20, (1+ ) 2(1 + 8o + §2)? 2 28,(1+do)
2 (1+do+qo+qo>(1+qo+ﬁ§+ﬁ3+ﬁ2‘) 3 1 3) <1)

e p p-4 ~ v v +2 - - .
p1p2< 200(1+8,)2(1+d, + §2)? 4 28,(1+d,) 43, 2 P3P

|05 — 85| =

Using Lemma 3.11.6, this leads us to the required result

1

A2 A

oy — 05 < = v - — — = = —.
0 sl < TR R+ Gt R+ B+ )

This completes the proof. 0

If 4, — 1™ in the above result, this leads us to the proved result for class Cs that mentioned

in the following corollary.

Corollary 6.5.2.1. If&(2) € C; then |03 — 05| < 55

6.6 Summary

In this chapter two subclasses of univalent function, starlike and convex functions defined. For
the newly specified classes, Hankel Determinants, Zalcman functional, Fekete—Szegd inequality,
and coefficient estimates determined. This study also defines a few corollaries, which indicate that

when limit §, — 1~ is substituted, then the obtained results are same as proved by researchers.
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CHAPTER 7

CONCLUSION

This thesis primarily explores the initial coefficient bounds of functions that are analytic,
univalent, and normalized within the open unit disk. We began by explaining some fundamental
definitions and preliminary results derived from Geometric Function Theory. Our innovative
discoveries originate from these fundamental principles, and we also explored recent concepts
introduced in Quantum Calculus. Alongside a comprehensive investigation into the applications
of the g-derivative operator in Geometric Function Theory, we utilized q-Calculus to establish
several novel classes of analytic functions associated with symmetric points.

Our research concentrates on two fundamental categories of univalent functions: starlike
functions and convex functions related to symmetric points. We explored the extension of these
classes using g-calculus, building upon the prior work by Khan et al. [78] on the S§ class
of starlike functions associated with symmetric points and the C; class of convex functions
associated with symmetric points. We introduced the S} (q) class, signifying starlike functions
concerning symmetric points subordinate to the §-sine function-an expansion of the original
St class. We presented the §-extension of these classes by defining the S} (4 — sin) class for
g-starlike functions and the Cs(§ — sin) class for §-convex functions, both subordinate to the
d-sine function. These classes were introduced through the g-derivative operator, and we utilized
the subordination technique to investigate their properties.

We have explored various noteworthy properties of functions within our recently introduced
classes, including coefficient bounds, the Zalcman functional, and a well-known Fekete—Szeg6

inequality. Additionally, we have investigated Hankel determinants, both second and third orders,
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for functions belonging to our newly defined classes. It has been observed that these novel classes
represent a refinement compared to existing ones, and the results obtained signify advancements
over previously established theorems by numerous researchers in the field of Geometric Function
Theory. To validate our findings, we have confirmed them by taking the limit as § — 17, yielding
known results. We expect that this study will contribute significantly to the advancements in
Geometric Function Theory. It is pleased to mention that a part of this study has been presented

in National Conference on Engineering and Computing-2023.

7.1 Future work

This thesis focuses on two primary categories within univalent function theory: starlike
functions associated with symmetric points and convex functions associated with symmetric
points, subordinate to a specific trigonometric function, namely the sine function. These classes
can be advanced by using the concept of close-to-convexity and results can be determined for
the advanced class of §-quasi convex functions and relationship between these classes and the

classes presented in this thesis can be drawn analytically and geometrically.
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