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ABSTRACT 

Title: A Hybrid DL-Based Framework to Classify Malware using Mexican Hat Wavelet 

Function. 

Detecting and categorizing malware represents a substantial and demanding undertaking within the 

realm of information security and various other computer-related domains. Millions of malicious 

files are detected annually. The high volume is largely due to malware authors using mutations to 

evade detection, Malware variants are constantly evolving through the use of advanced obfuscation 

and packing methods, making detection and classification increasingly difficult. In order to 

efficiently examine and categorize a substantial volume of files, it becomes imperative to group 

them and ascertain their behavioral characteristics to classify them effectively. In recent, most 

malware classification techniques have been based on machine learning or deep learning models. 

These models work with the train and test. The models are trained with the features, for instance, 

opcode sequence, API calls, signature, etc. Recently, many deep learning techniques have been 

proposed for Alex Net Network, Resnet-50 Network, and Hybrid (AlexNet-Resnet-50). These 

models work well in terms of accuracy, Sensitivity, and so forth. However, these models are 

complex in nature and need high computational power. In order to adequately confront the 

difficulty presented by emerging malware variations, it becomes essential to employ alternative 

approaches, as conventional artificial intelligence and machine learning algorithms are no longer 

capable of identifying all intricate and constantly changing variants. A promising solution is deep 

learning, which differs from traditional machine learning. This study proposes a Mexican hat 

wavelet function that classifies malware variants through a hybrid deep learning model in this 

approach, malware samples undergo conversion into grayscale images before being fed into the 

DL system. Following the image acquisition section, the proposed method employs the convolution 

layers of the hybrid architecture to extract high-level malware features from the malware images 

with cloud-based architecture to decrease the computational intricacy, and neural network 

complexity to achieve higher accuracy. Upon subjecting the proposed method to testing using the 

MALIMG dataset, an accuracy of 99% was achieved. Similarly, when applied to the MALEVIS 

dataset, an accuracy of 97.12% was attained, outperforming the majority of machine learning-based 

methods employed for malware detection. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1  Overview 

Information technology encompasses advanced rapidly and the growth of network 

technology has made our daily routines more comfortable. However, it also raises various security 

risks despite its exceptional services. Malware, an abbreviation for malicious software, 

encompasses any software intentionally crafted with the purpose of causing harm or disruption to 

computer systems. It encompasses a wide range of harmful software, this encompasses viruses, 

worms, trojans, ransomware, spyware, and other types of malicious software. Malware can be 

employed to illicitly acquire sensitive information, hold computer systems or data hostage, 

compromise the security of computer systems, and cause other types of harm. [1]–[3]. Malware 

has posed a threat to individuals and businesses since its emergence in the early 1970s. Since that 

time, the world has witnessed the release of hundreds of thousands of unique malware variants, all 

with the objective of causing as much disruption and harm as possible. There is no denying that 

the overall count of malware incidents has experienced a significant increase over time. The 

occurrence of malware attacks has been on the rise, with 69,277,289 unique malicious objects 

detected by antivirus company Kaspersky Lab in 2016 [47] and 670 million malware samples found 

by McAfee Labs in 2017 [48]. Additionally, Malwarebytes reported the detection of over 50 

million cyber threats in both 2018 and 2019 [49,50]. As reported in the 2020 Trend Micro 

Cybersecurity Report, there were 119,000 cyberattacks occurring every minute [51]. Due to the 

wide variety of malware and the increasing frequency of these attacks, researchers have put forth 

various approaches to categorize malware. 
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1.2  Types of Malware 

Malware Types: Here's a rundown of some of the most popular malware types and 

classifications.  

 

1.2.1 Virus 

 

A computer virus is a form of malicious software that reproduces itself by contaminating 

other computer programs and files. A computer virus can cause harm to the infected computer by 

altering or destroying data, stealing sensitive information, or using the infected computer to spread 

the virus to other computers. Some viruses are designed to cause damage to the computer system, 

while others are designed to steal personal information or launch attacks on other systems. 

Computer viruses can be spread through email attachments, downloads, or infected websites.  

 

Key characteristics of computer viruses include: 

 

i. Self-Replication: A computer virus has the ability to make copies of itself and attach those 

copies to other files or programs. This allows it to spread to other computers or files when 

infected files are shared or transferred. 

 

ii. Malicious Intent: Computer viruses are typically created with malicious intent. They can 

cause various types of harm, including data loss, system crashes, unauthorized access, and 

theft of sensitive information. 

 

iii. Concealment: Viruses often attempt to hide their presence to avoid detection by security 

software or users. They may employ techniques to evade antivirus scans and security 

measures. 
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iv. Trigger Conditions: Many viruses are designed to execute specific actions based on certain 

trigger conditions. For example, a virus might be programmed to activate on a certain date, 

when a specific file is opened, or when certain user actions are performed. 

 

v. Spread Mechanisms: Computer viruses have the capacity to propagate through diverse 

avenues, including infected email attachments, files downloaded from the internet, 

compromised software, shared documents, and removable storage devices. 

 

vi. Variants and Mutations: Like biological viruses, computer viruses can evolve and have 

different variants. New variants may have different behaviors or characteristics, making 

them harder to detect and combat. 

 

vii. Payload: Viruses often carry a payload, which is the harmful action they perform once 

activated. The payload can vary, encompassing actions such as file deletion, unauthorized 

data retrieval, or the initiation of distributed denial-of-service (DDoS) attacks. 

 

viii.Prevention and Protection: To safeguard against computer viruses, individuals can employ 

antivirus software, maintain current operating systems and software, exercise caution when 

downloading files or clicking on links, and adopt safe online practices. 

 

 

1.2.2 Worm 

 

A computer worm is a form of malicious software that autonomously propagates from one 

computer to another, frequently via a network, without necessitating any user intervention. Unlike 

viruses, which attach themselves to existing files, worms are standalone software that replicates 

and propagates on their own. They can cause harm to infected computers by consuming network 

bandwidth, slowing down or crashing the system, and sometimes opening security holes that can 

be exploited by other malicious software. Some computer worms are designed to steal sensitive 
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information or use infected computers to launch attacks on other systems. Key characteristics of 

computer worms include: 

 

i. Self-Propagation: Worms are capable of spreading themselves across networks and systems 

without requiring user intervention. They can do this by exploiting vulnerabilities in 

software or by using various communication methods. 

 

ii. Autonomous Replication: Once a computer is infected with a worm, the worm can 

independently search for other vulnerable computers and attempt to infect them. This 

autonomous behavior can lead to rapid and widespread infections. 

 

iii. Network Exploitation: Worms frequently take advantage of weaknesses in network 

services, operating systems, or software to illicitly gain entry to computers. These 

vulnerabilities serve as entry points for them to install themselves on the target systems. 

 

iv. Payload: Worms might contain a harmful payload, which could encompass activities like 

file deletion, unauthorized data theft, establishment of remote access backdoors, or the 

initiation of distributed denial-of-service (DDoS) attacks. 

 

v. Resource Consumption: Due to their self-replicating nature, worms can consume 

significant network and system resources as they spread. This can lead to degraded 

performance and network congestion. 

 

vi. Email and Social Engineering: Some worms spread through email attachments, social 

media links, or instant messaging platforms. They may deceive users into opening infected 

files by disguising themselves as legitimate messages or files. 

 

vii. Vulnerability Exploitation: Worms often target known vulnerabilities in software and 

systems. Patches and updates that address these vulnerabilities are crucial for preventing 

worm infections. 
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viii. Prevention and Mitigation: Protecting against worms involves maintaining up-to-date 

software and security patches, using firewalls and intrusion detection systems, 

implementing strong access controls, and using security software to detect and block 

malicious activity. 

 

Worms can cause significant disruptions to computer networks, leading to financial losses, data 

breaches, and operational downtime. Therefore, practicing good cybersecurity hygiene and staying 

informed about the latest threats and vulnerabilities are essential for preventing worm infections 

and minimizing their impact. 

 

 

1.2.3 Spyware 

 

Computer spyware is a form of malicious software crafted to clandestinely monitor and 

collect information from an infected computer, all without the user's awareness or consent. 

Spyware has the capability to trace a user's online activity, purloin personal data like login details 

and credit card numbers, exhibit unwanted advertisements, and decelerate the computer's 

performance. Some spyware can even control the infected computer and use it for malicious 

purposes such as sending spam or participating in a network of infected computers used to launch 

attacks on other systems (known as a "botnet"). 

 

Key characteristics of computer spyware include: 

 

i. Covert Installation: Spyware is often installed without the user's awareness or explicit 

consent. It may be bundled with seemingly legitimate software or hidden within downloads. 

 

ii. Information Collection: Spyware monitors a user's actions on their computer or device, 

such as websites visited, search queries, keystrokes, login credentials, and more. This 
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information is then transmitted to third parties for various purposes, including advertising, 

data profiling, and identity theft. 

 

iii. Data Transmission: The data collected by spyware is sent to remote servers controlled by 

the individuals or groups behind the malware. This data may be used for malicious purposes 

or sold to advertisers, marketers, or other parties. 

 

iv. Invasive Tracking: Spyware can track a user's online behavior in real-time, capturing 

personal and sensitive information as the user interacts with websites, applications, and 

online services. 

 

v. Browser Hijacking: Some spyware variants alter a user's browser settings, redirecting them 

to unwanted websites or injecting ads and pop-ups into web pages. 

 

vi. Slowdowns and System Issues: Spyware can consume system resources and slow down a 

computer's performance. It may also cause crashes and instability. 

 

vii. Personal Privacy Violation: Spyware constitutes a serious invasion of privacy, as it captures 

and transmits personal and confidential data without the user's consent. 

 

viii. Prevention and Removal: To prevent spyware infections, users should be cautious when 

downloading software, clicking on links, and opening attachments. Regularly updating 

software and using reputable antivirus and anti-spyware tools can help detect and remove 

spyware infections. 

 

ix. Legal and Ethical Concerns: Spyware is often distributed illegally, as it invades user privacy 

and violates computer usage policies. Legal action can be taken against those responsible 

for creating and distributing spyware. 
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It's important to note that some software applications, such as parental control software and 

employee monitoring tools used within legal boundaries, share similarities with spyware in terms 

of monitoring user activities. However, these tools are typically installed with proper consent and 

for legitimate purposes, unlike malicious spyware that operates stealthily and with malicious intent. 

 

 

1.2.4 Trojan 

 

A computer Trojan is a type of malicious software that disguises itself as a legitimate 

program and is often distributed through email attachments, downloads, or compromised websites. 

In contrast to viruses and worms, Trojans do not replicate automatically; instead, they rely on 

deceiving users into voluntarily downloading and installing them. Once installed, Trojans can carry 

out a wide range of harmful activities, including stealing personal information, downloading 

additional malware, or providing remote control to an attacker over the compromised computer. 

Trojans can also establish a concealed entry point within the affected system, enabling an attacker 

to bypass standard security measures and gain unauthorized access to sensitive data. Furthermore, 

Trojans can be used to create a botnet, which is a network of compromised computers that can be 

employed for large-scale malicious operations like distributed denial of service (DDoS) attacks. 

 

Key characteristics of Trojans include: 

 

i. Disguised Nature: Trojans often masquerade as legitimate files, software, or content to trick 

users into executing or opening them. They may appear as harmless attachments, games, 

utility programs, or software updates. 

 

ii. Unauthorized Actions: Once executed, a Trojan performs actions that the user did not intend 

or expect. These actions can include stealing sensitive information, creating backdoors for 

remote access, deleting files, spreading other malware, or conducting fraudulent activities. 
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iii. Remote Access: Trojans are crafted to grant unapproved remote access to the compromised 

system, enabling attackers to manipulate the infected computer, pilfer data, or initiate 

further attacks. 

 

iv. Payloads: Trojans can carry a variety of payloads, which are the harmful actions they 

perform once executed. The specific payload depends on the intentions of the malware 

creator. Common payloads include data theft, data manipulation, and unauthorized system 

changes. 

 

v. Social Engineering: Trojans often use social engineering techniques to manipulate users 

into executing them. This can include enticing subject lines in emails, fake download links, 

and deceptive advertising. 

 

vi. Distribution: Trojans are often distributed through methods like email attachments, 

malicious links, infected websites, pirated software, and compromised downloads. 

 

vii. Multiple Variants: Trojans come in various forms and serve different purposes, such as 

banking Trojans that target financial data, ransomware Trojans that encrypt files for 

ransom, and remote access Trojans (RATs) that provide unauthorized control over a system. 

 

viii. Prevention and Protection: Users can protect themselves from Trojans by being cautious 

when downloading files, clicking on links, and opening email attachments. Regularly 

updating software, using strong passwords, and employing security software can help detect 

and prevent Trojan infections. 

 

It's worth mentioning that the expression "Trojan horse" originates from Greek mythology, in 

which a wooden horse was employed to trick the city of Troy and gain entry to its fortifications. In 

the realm of computer security, a Trojan function in a similar manner by concealing its malicious 

purpose to infiltrate a computer system. 
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1.2.5 Ransomware 

 

Computer ransomware is a category of malicious software that encrypts the files belonging 

to its target and demands a ransom in return for the decryption key. The dissemination of 

ransomware attacks frequently occurs through email attachments, compromised websites, or 

malicious advertisements. After computer gets compromised, the ransomware typically exhibits an 

on-screen message providing directions for remitting the ransom. Ransomware can cause 

significant harm to infected users, as the encrypted files can be permanently lost if the victim does 

not pay the ransom or does not have a backup of the files. In some cases, ransomware can also 

spread to other computers on the same network, leading to a widespread infection. 

 

The Mexican Hat wavelet is a wavelet function that finds application in image processing 

and signal analysis. It is named after its shape, which resembles a Mexican sombrero. It is a type 

of second-generation wavelet and is used in various applications, including edge detection, noise 

reduction, and image compression. The Mexican Hat wavelet has good localization properties, 

meaning that it can accurately represent signals with sharp changes or edges. The Mexican hat 

wavelet is also known as the Ricker wavelet [55]. 

 

In deep learning, the Ricker wavelet is a commonly used wavelet function that can be used 

as a building block for constructing more complex wavelet functions. The Ricker wavelet is also 

known as the "Mexican hat wavelet" or the "Mexican hat function" due to its characteristic shape, 

which resembles a Mexican hat. This wavelet is used in various deep learning applications, 

including image processing, signal processing, and pattern recognition. The Ricker wavelet is 

particularly useful for detecting edges and detecting signals with specific frequencies in a signal or 

image. It can also be used as a feature extractor for deep neural networks, where the wavelet 

coefficients can be used as input to the network to improve its performance [55]. 
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Key characteristics of ransomware include: 

 

i. File Encryption: Ransomware employs robust encryption algorithms to encrypt the files of 

the victim, making the files unreadable and inaccessible without the decryption key. 

 

ii. Ransom Demand: After encrypting the victim's files, the attacker presents a ransom 

demand, usually in cryptocurrency, in exchange for providing the decryption key. The 

ransom note typically includes instructions on how to make the payment and obtain the 

decryption key. 

 

iii. Time Pressure: Ransomware attackers often impose a time limit on the ransom payment, 

threatening to permanently delete the decryption key if the ransom is not paid within the 

specified timeframe. 

 

iv. Wide Distribution: Ransomware can be distributed through various methods, including 

malicious email attachments, compromised websites, malicious links, and exploit kits. 

 

v. Variants and Families: There are different variants and families of ransomware, each with 

its own characteristics and methods. Some ransomware strains are more sophisticated than 

others. 

 

vi. Impact: Ransomware attacks can have severe consequences, leading to data loss, 

operational downtime, financial losses, reputational damage, and legal repercussions. 

 

vii. Publicized Cases: High-profile ransomware attacks have targeted individuals, businesses, 

hospitals, government agencies, and other institutions. Notable examples include the 

WannaCry and NotPetya attacks. 
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viii. Backup Importance: Regularly backing up important data is a key defense against 

ransomware. If an attack occurs, victims can restore their systems and data from a backup 

without paying the ransom. 

 

ix. Reporting and Law Enforcement: Victims are encouraged to report ransomware attacks to 

law enforcement agencies and cybersecurity organizations. Paying the ransom does not 

ensure that the attacker will furnish the decryption key, and it may also encourage further 

attacks. 

 

x. Prevention and Mitigation: Preventing ransomware involves maintaining up-to-date 

software, using strong and unique passwords, educating users about phishing and safe 

online practices, and using reputable antivirus and anti-malware solutions. 

 

 

1.3 Malware Analysis  

Malware analysis entails the procedure of scrutinizing malicious software (malware) to gain 

insights into its behavior and evaluate the consequences it has on a system. The objective of 

malware analysis is to uncover the fundamental code, functions, and techniques employed by the 

malware, and to ascertain its methods of infection and interaction with a system. This information 

can be used to develop countermeasures, such as patches, antivirus signatures, and intrusion 

detection rules, to protect against similar threats in the future. [6]. 

Malware analysis can be performed using various techniques, including static analysis, 

dynamic analysis, and reverse engineering. The process involves isolating the malware in a 

controlled environment, executing or disassembling it, and observing its behavior and interactions 

with the system. The outcomes of this analysis can be leveraged to establish a thorough 

comprehension of the malware, including its functionalities and the potential repercussions it may 

have on an organization [7]. 
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Various forms of malware analysis exist, with Static and dynamic analysis emerging as the 

primary methods employed in malware analysis to scrutinize malware behavior and gain insight 

into its operations. 

 

1.3.1 Static Analysis 

 

The process of inspecting the code and structure of malware without engaging its execution, 

usually by disassembling or decompiling the binary code. This approach provides insight into the 

malware's structure and functionality, such as the target system, data it steals or the actions it 

performs. [8]. 

 

Below are several prevalent methods employed in static malware analysis: 

 

i. File scanning and signature detection: This entails cross-referencing the malware code 

with a repository of recognized malware signatures in order to detect and categorize it [6]. 

 

ii. Disassembly and decompilation: This involves converting the binary code of the malware 

into a human-readable form, such as assembly code or a high-level programming 

language, for closer examination. [9]. 

 

iii. String and symbol analysis: This involve examining the strings and symbols in the 

malware code to understand its functionality and identify its behavior. [9]. 

 

iv. Code analysis: This involves examining the structure and functionality of the malware 

code to understand its behavior and identify any malicious code. [4]. 

 

v. Code emulation: This involves creating a virtual environment to simulate the malware's 

behavior without actually executing it on the system. [4]. 
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1.3.2 Dynamic Analysis 

 

The procedure of running malware within a controlled setting, For instance, in a virtual 

machine, to monitor its actions and interactions with the system. This approach provides real-time 

insight into the malware's actions and allows for the detection of malicious behavior that may not 

be visible in the code itself. 

Here are some common techniques used in dynamic malware analysis: 

 

i. Sandboxing: This involves executing the malware in a virtual environment, isolated from 

the host system, to observe its behavior. [9]. 

 

ii. Process monitoring: This involves monitoring the processes and system calls made by the 

malware during execution to understand its behavior and interactions with the system. [9]. 

 

iii. Network analysis: This involves monitoring the network traffic generated by the malware 

during execution to understand its behavior and potential impact on the network. [6]. 

 

iv. Memory analysis: This involves analyzing the memory of a system infected with malware 

to understand its behavior and identify malicious code in memory [6]. 

 

v. Behavioral analysis: This involves observing the behavior of the malware during 

execution to understand its behavior and interactions with the system [6]. 

 

Static analysis and dynamic analysis both serve crucial roles in the field of malware analysis 

and are frequently employed together to attain a thorough comprehension of the malware's actions 

and dormant impact. 
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1.4 Malware Analysis Using Deep Learning Techniques  

Deep learning is emerging as a promising approach to address the constraints of existing 

methods for detecting and classifying malware. Deep learning, which falls under the umbrella of 

artificial intelligence and relies on artificial neural networks, has found widespread application in 

diverse domains such as image processing, computer vision, facial emotion recognition, human 

action recognition, and natural language processing. Despite its achievements in these domains, its 

adoption in the realm of cybersecurity, especially for malware detection [2], has been somewhat 

limited thus far. Various deep learning architectures, including deep neural networks, deep belief 

networks, recurrent neural networks, and convolutional neural networks, are harnessed to enhance 

model performance. Deep learning provides numerous benefits compared to conventional 

approaches, including the automatic generation of high-level features, handling unstructured data, 

managing large datasets, dimensionality reduction, accommodating various learning paradigms, 

and enhancing accuracy while lowering costs [36]. 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 The process of analyzing, detecting, and categorizing malware. 
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1.5 Malware Feature Extraction Techniques 

Malware feature extraction involves the identification and extraction of pertinent 

characteristics or attributes from malware samples, which can then be employed for their 

classification and detection. The extracted features can be either structural (e.g., opcode sequences, 

file header information) or behavioral (e.g., network activities, system calls). The following are 

some of the common malware feature extraction techniques [2], [10], [15]: 

 

i. Opcode N-grams: It refers to a sequence of N instructions executed by the malware, where 

N can range from 1 to several hundred. These sequences are used as features to classify 

malware samples [2]. 

 

ii. File header information: File header information such as file type, entry point, and import 

table information can be used as features for malware classification. [10]. 

 

iii. System calls: System calls are low-level functions used by applications to interact with the 

operating system. Monitoring the system calls made by a program can provide valuable 

information about its behavior and can be used as feature for malware classification. [11]. 

 

iv. Network activities: Network activities such as IP addresses, port numbers, and protocol 

types can be used as features to classify malware samples [15]. 

 

v. API calls: API calls refer to the functions that applications use to interact with the operating 

system or other applications. Monitoring the API calls made by a program can provide 

valuable information about its behavior and can be used as feature for malware 

classification [10]. 
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vi. Entropy: Entropy is a measure of randomness in a sequence of data. In malware analysis, 

entropy can be used as a feature to classify malware samples based on the randomness of 

their code. [10]. 

 

vii. N-grams are sequences of n symbols in the binary code of a malware sample. By counting 

the frequency of these sequences, unique features of the malware can be identified. [11]. 

 

viii. M-bag is a technique that combines N-grams with bag-of-words models. In this technique, 

the malware binary is divided into overlapping windows, and the frequency of N-grams 

within each window is calculated. The generated feature vectors can subsequently be 

employed for the classification of malware [12]. 

 

ix. K-tuple is a technique that focuses on the relationships between different parts of the 

malware binary code. In this technique, the binary code is divided into k-tuple sequences, 

and the frequency of these sequences is calculated. This frequency information can then be 

used as a feature to differentiate malware from benign software [13]. 

 

These represent some of the prevalent techniques for extracting features from malware, 

widely employed in malware analysis. The choice of features and the process of extracting them 

can greatly influence the precision and effectiveness of both malware classification as well as 

detection. 

 

Malware feature extraction is the procedure of identifying and extracting pertinent data 

from a malware specimen, which can be utilized to distinguish it from legitimate software. N-gram 

technique, m-bag technique, and k-tuple technique are three common extracting relevant attributes 

techniques used in malware analysis. 
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1.5.1 N-Gram Technique, M-Bag Technique and K-Tuple Technique 

 

The n-gram feature extraction technique is a commonly employed method for detecting and 

classifying malware. It utilizes both static and dynamic analysis attributes to generate features, 

employing consecutive system calls according to a defined n value, as described in reference [12]. 

As an illustration, when considering the sequence of system calls in the sample program, if they 

follow the order, P = (6, 7, 8, 9, 10), the 2-gram and 4-gram would be {(6, 7), (7, 8), (8, 9), (9, 10)} 

and {(6, 7, 8, 9), (7, 8, 9, 10)} respectively [10]. The tuple and bag techniques bear resemblance to 

n-grams, but there's a distinction: in the tuple approach, 'n' can have any spacing, whereas in the 

bag method, the emphasis lies more on frequencies rather than the sequence, as noted in reference 

[11]. While n-gram proves to be efficient, its performance diminishes due to the swift expansion 

of feature numbers. Additionally, various modified n-gram models have been suggested in the 

literature to extract malware characteristics, resulting in fewer features compared to traditional n-

grams, as outlined in reference [13]. 

 

 

1.5.2 Graph-Based Techniques 

 

The graph-based feature extraction technique is another popular method used in malware 

analysis. In this technique, the behavior of a malware sample is represented as a graph structure 

where nodes represent system calls, API functions, or other relevant behavior, and edges represent 

the relationships between these nodes [15]. Each graph is treated as a feature vector and used in 

machine learning algorithms for classification and detection purposes. This approach offers a more 

extensive portrayal of a malware sample's behavior, aiding in the capture of intricate relationships 

among the nodes. Moreover, it reduces the dimensionality of the feature space compared to the n-

gram or bag of words approach. Moreover, graph-based representations exhibit resilience to minor 

code variations, rendering them well-suited for the detection of novel iterations of established 

malware [14]. 
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1.5.3 Vision-Based Techniques 

 

The vision-based method for extracting malware features entails the transformation of a 

malware sample into an image, followed by the utilization of computer vision algorithms to derive 

features from it. The malware binary is transformed into a grayscale image, with each bit being 

depicted as a pixel. The resulting image is then processed using computer vision techniques such 

as edge detection, thresholding, and feature extraction to generate features that represent the 

malware [16]. These characteristics can subsequently be applied to categorize the malware as either 

benign or malicious, and they can also serve to pinpoint resemblances and distinctions among 

various malware samples. This technique is particularly useful for detecting malware that is 

designed to evade detection by traditional signature-based methods. The visual representation of 

malware allows for the easy identification of patterns and features that can be used to distinguish 

between different malware families [17]. 

 

 

1.6 Malware Visualization 

Visualizing malware as an image entails converting the malware's binary code into an 

image format for analysis and visualization. In this procedure, each byte of the malware code is 

interpreted as a pixel within the image. The resulting array is organized in a two-dimensional 

arrangement and displayed as a grayscale image, where values range from 0 (representing black) 

to 255 (representing white), as described in reference [16].  

 

The key advantage of this visual approach lies in its ability to facilitate the differentiation 

of various segments within the binary code and offer a rapid means of detecting both similarities 

and distinctions among different malware specimens. Since malware creators often recycle 

portions of old code to produce new variants, reusing old malware can result in binaries that closely 

resemble each other. By representing malware as an image, it becomes feasible to identify even 
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minor alterations while preserving the overall structure of samples belonging to the same malware 

family, as highlighted in reference [39]. 

 

 

1.7 Problem Statement 

The spread of malware is a prevalent issue in computer networks and various applications. 

In recent times, classifying malware has become a challenging task, prompting researchers to 

propose numerous machines learning and deep learning techniques to address this problem. While 

deep learning techniques have shown encouraging results, they frequently involve intricate models. 

To tackle this challenge effectively, there is a growing need to develop models that strike a balance 

between high accuracy and low complexity. One potential solution lies in employing a cloud-based 

deep learning model with a reduced number of layers with the utilization of a Mexican hat-based 

activation function. In essence, the proposal suggests that by optimizing the deep learning model's 

architecture suggests that employing a cloud-based deep learning model with reduced layers and a 

specialized activation function like the Mexican hat approach can be an effective strategy to 

enhance accuracy in malware classification while simultaneously reducing computational demands 

and achieving cost-effectiveness. 

 

 

1.8 Research Motivation 

Machine learning methods are gaining popularity for classifying a wide range of malware 

types. However, a majority of the current machine learning techniques employed for malware 

classification rely on shallow learning algorithms, such as SVM. Recently, Convolutional Neural 

Networks (CNN), which are deep learning methods, have exhibited superior performance in 

contrast to conventional learning algorithms, particularly in tasks like image classification. 

Encouraged by this success, we introduce an innovative deep learning-based framework for 

malware classification. 
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1.9 Research Questions 

i. What are the various deep learning techniques and major challenges to classify the 

malware?  

 

ii. How to overcome the model complexity and enhance its efficiency? 

 

iii. What methods can be employed to assess and contrast the effectiveness of the suggested 

malware classification system across various malware datasets over a cloud-based 

collaborative integrated development environment? 

 

 

1.10 Research Objective 

i. To analyze the various state of art Deep learning models that reduce model complexity 

and improve model accuracy. 

 

ii. To develop a cloud-based deep learning model for malware classification that operates 

efficiently with limited cloud resources, exhibiting low model complexity and high 

accuracy. 

 

iii. To assess the model's performance across various available datasets. 

 

 

1.11 Thesis Organization 

Rest of the thesis is structured as below: 

Chapter 2 provides an extensive literature review that covers prior research papers. In the 

context of machine learning, the process of malware detection and classification entails using 

machine learning algorithms to identify and classify malicious software. 
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Chapter 3 provides us with the methodology, which encompasses a proposed framework 

for classifying malware, along with an in-depth exploration of the MALIMG and MALEVIS 

Datasets. 

Chapter 4 provides us with implementation and evaluation, which offers a comprehensive 

understanding of the libraries, environment, our proposed model, and the results obtained from 

both datasets, i.e. MALIMG and MALEVIS. Additionally, it presents the results of all four-

performance metrics. 

 

Chapter 5 provides the final insights encompassing the entire thesis. 

 

 

 

 



 

 

CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

2.1 Approaches for Detecting and Classifying Malware 

In the field of machine learning, malware detection and classification involve employing 

machine learning algorithms to recognize and categorize malicious software. These algorithms 

undergo training using extensive datasets comprising both malware samples and benign software 

to grasp their distinctive attributes. In the detection phase, these algorithms assess newly 

encountered software to ascertain its malignancy by comparing it to established malware samples. 

In the classification phase, the algorithms categorize the detected malware into different types, such 

as viruses, Trojans, worms, spyware, and adware, based on its features and behavior. In comparison 

to conventional signature-based techniques, machine learning algorithms can enhance both the 

precision and speed of detecting and categorizing malware. There are several different approaches 

to achieving effective malware detection and classification, each with its own advantages and 

limitations. Some of the common approaches include: 

 

 

2.1.1 Approach for Malware Detection and Classification Based on Signatures 

 

The method of malware detection and classification based on signatures entails recognizing 

malware by matching its distinct attributes, such as file signature or hash value, with a repository 

of established malware profiles. If a file is identified as having a signature matching that of known 

malware, the signature-based system will label the file as malicious. The database of known 
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malware is typically maintained by a security vendor and is updated regularly to keep up with the 

latest threats. Signature-based systems can detect known malware quickly and accurately, but they 

may not be able to detect new, unknown malware or malware that has been modified to evade 

detection. This occurs because the signature-based approach solely verifies precise matches with 

known malware and does not endeavor to assess the behavior or attributes of the malware in order 

to ascertain its malignancy. 

 

A signature comprises a distinct collection of bits that serves to identify the structure of a 

program. It finds widespread application in malware detection [6], [9], [18]. The procedure 

commences by recognizing static attributes from executable files, subsequently forming signatures 

from these attributes and archiving them in a database. When there's a need to scrutinize a 

suspicious file, its signature is extracted and matched against known signatures within the database. 

Based on this comparison, the file is labeled as either malicious or benign. Respectively this 

approach is commonly referred to as signature-based malware detection and proves swift and 

efficient in identifying established malware. Nevertheless, it falls short when it comes to detecting 

novel or zero-day malware, as noted by Scott [19]. Signature-based malware detection presents 

certain limitations, including its inability to spot new variations, scalability challenges, and reliance 

on human intervention. Griffin et al. [20] have put forth an automated signature extraction 

technique that employs library identification methods and diversity-based heuristics to minimize 

erroneous identifications. Tang et al. [21] have elucidated a simplified regular expression signature 

method that employs bioinformatics techniques for detecting polymorphic worms. Additionally, 

Liu and Sandhu [22] have proposed a fingerprint-based signature generation approach geared 

toward detecting hardware-based malware through the creation of cryptographic hash-based 

signatures. The fundamental characteristics of signature-based malware detection and 

classification include: 

 

i. Signature Creation: Cybersecurity experts analyze and reverse-engineer malware samples 

to identify distinct patterns or sequences of code that are characteristic of each malware 

variant. These patterns are known as signatures. 
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ii. Signature Database: A database containing signatures of known malware variants is 

maintained. A new file's signature is compared to the signatures in the database when it is 

scanned. 

iii. Matching Process: The procedure entails matching the scanned file's or code's digital 

signature to signatures stored in the database. If a match is discovered, the file is classified 

as malicious based on the known malware strain and is then removed. 

 

iv. Rapid Detection: Signature-based detection is fast and efficient for identifying malware that 

matches known signatures. It is particularly effective against well-established malware. 

 

v. Virus Definition Updates: To stay effective, signature-based antivirus solutions require 

regular updates to their signature databases. New malware variants are constantly emerging, 

requiring antivirus software to have the latest signatures to detect them. 

 

vi. Limitations: Signature-based detection has limitations. It is not effective against new or 

unknown malware that lacks a matching signature. Attackers can also use techniques like 

polymorphism (changing the code while preserving functionality) to evade signature-based 

detection. 

 

vii. False Positives and Negatives: There is a risk of false positives (legitimate files 

misidentified as malware) and false negatives (malware that does not match any known 

signature) in signature-based detection. 

 

viii. Known Malware: Signature-based detection is well-suited for identifying known malware 

that has been previously documented and analyzed. 

 

ix. Efficiency: Signature-based detection is computationally efficient and can quickly scan 

large numbers of files for known malware. 
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x. Complementary Approaches: To get over signature-based detection's drawbacks, many 

modern antivirus solutions use a combination of approaches, including behavior-based 

analysis and machine learning, to provide more comprehensive protection against a broader 

range of threats. 

 

While signature-based detection is a foundational method in malware detection and classification, 

it is most effective when used as part of a multi-layered security strategy that incorporates other 

approaches to handle new and evolving malware threats. 

 

 

2.1.2 Approach to Detecting and Classifying Malware on Behavior-Based  

 

The behavior-based method for malware detection and categorization leverages the actions 

of a program or system as a means to identify and classify malware. This strategy, often referred 

to as dynamic analysis, entails scrutinizing the program's behavior during its execution. Within this 

behavioral framework, the program operates within a controlled setting, such as a sandbox, where 

its actions are meticulously observed and assessed. By comparing the program's behavior to 

established patterns of malicious activity, it is possible to ascertain whether it exhibits malicious 

characteristics [2]. 

 

The primary benefit of the behavior-driven methodology lies in its ability to identify novel 

and unfamiliar malware since it does not depend on predetermined signatures or definitions. 

However, this approach can also be more time-consuming and resource-intensive compared to 

signature-based detection, as it requires the program to be executed. Additionally, behavior-based 

detection may not be able to detect malware that does not execute any malicious behavior during 

the analysis. Despite these limitations, the behavior-based malware analysis and classification 

approach is a critical component of modern malware detection and defense systems. 
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The behavior-based detection method entails the observation and scrutiny of a sample 

program's actions, and based on these observations, hence the program is categorized as either 

malicious or benign. This method has three components: collecting behaviors, developing 

characteristics, and using machine learning algorithms to determine if the program is harmful or 

safe [2]. 

 

The identification of behaviors entails the utilization of system calls, the application 

programming interface calls, and alterations in files, registries, and computer system network 

activity. Simply put, behaviors are analyzed by looking at the sequence or frequency of system 

calls and file-registry operations. Through the process of grouping these behaviors and constructing 

sequences, distinctive characteristics are identified. Despite changes in the program's source code, 

the program's behaviors will not change entirely. This allows for the detection of multiple variants 

of malicious software, as well as newly discovered malware. However, the primary drawback of 

behavior-based detection lies in the fact that malware might not manifest all its authentic behaviors 

when operating within secure environments like virtual machines and sandboxes. The graph model 

methodology for malware detection is described by Kolbitsch et al. in their work [23]. 

 

In a diagram, system calls are depicted as nodes, and transitions between them are denoted 

by edges. These connections in-between system calls are established by utilizing the output of one 

system call as the input for another. Resulting program diagram is subsequently compared to 

preexisting diagrams, and the examined sample is classified as either malware or benign based on 

this comparison. Any novel behaviors discovered during the analysis can also be incorporated into 

the diagram in a dynamic manner. 

 

Lanzi et al. [12] introduced a system-focused behavioral model that considers the variation 

in how malicious and benign software interact with system resources, such as the directories, the 

files, the registries, and so on. This discrepancy in interaction patterns was leveraged to construct 

behavior sequences derived from system calls, which were subsequently employed to classify 

software as either malicious or benign. The approach they proposed made use of the n-gram 

technique; however, it encountered difficulties in effectively distinguishing between malicious and 
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benign software due to the substantial number of behavior sequences generated using the n-gram 

technique. 

 

Chandramohan et al. [10] introduced the BOFM (Behavior Oriented Feature Model) as an 

approach aimed at reducing the abundance of properties required for malware detection. This 

method involves the conversion of interconnected system calls into meaningful behaviors, which 

serve as the basis for establishing properties. Redundant features are subsequently removed, and a 

feature vector is crafted using the retained properties. ML algorithms are then applied to execute 

the classification process. 

 

Singh et al. [24] developed a behavior-based method for detecting malware using multiple 

API system calls. This approach entails generating multiple API sequences through the utilization 

of depth-first search and n-grams, followed by the assessment of similarities between software 

using metrics like the Dice coefficient, the cosine coefficient, and the Tversky index. The resulting 

sequences are then classified using algorithms based on machine learning. 

 

Aslan et al. [25] In their work, Aslan and colleagues (Aslan et al., 2019) introduced a 

malware detection model known as SCBM (Semantic-Centric Behavioral Model), which is rooted 

in behavior analysis. This method extracts semantically correlated features from scrutinized 

program samples, considering both system paths and behaviors to discern malicious behavioral 

patterns from benign ones. Notably, this proposed model generates a reduced number of features 

when compared to traditional methods like n-grams. Testing results indicate its effectiveness in 

addressing both known and unknown malware, as demonstrated by performance metrics including 

detection rate, false positive rate, f-score, and accuracy. 

 

In reference to [26], a novel hybrid methodology is presented, which integrates dynamic 

analysis with 1. cyber threat intelligence, 2. machine learning, and 3. data forensics. This approach 

predicts IP reputation during the pre-acceptance phase by employing extensive data forensics 

techniques and distinguishes related zero-day attacks through behavioral analysis combined with a 

decision tree algorithm. The effectiveness of this approach is assessed using metrics such as f-
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measure, precision, and recall, and the findings demonstrate its performance to be on par with other 

prominent methods in the same domain. 

 

In [27], A novel approach for malware detection named APTMalInsight is introduced. This 

approach identifies and recognizes Advanced Persistent Threats (APTs) through the use of an 

information and ontology knowledge framework. The method determines feature vectors for APT 

malware and is capable of detecting and grouping them with a high degree of accuracy. 

 

Key components and characteristics of behavior-based malware detection and classification 

include: 

 

i. Dynamic Analysis: Behavior-based detection involves analyzing malware in a controlled 

environment, often referred to as a sandbox. In this environment, the malware is executed 

and its behavior is monitored, recorded, and analyzed in real-time. 

ii. Behavioral Patterns: Malware can exhibit various behaviors, such as making unauthorized 

changes to files, attempting to access sensitive data, communicating with command and 

control servers, or modifying system settings. By observing these behaviors, security 

analysts can identify malicious intent. 

 

iii. Anomaly Detection: Behavior-based approaches focus on identifying anomalies or 

deviations from normal behavior. Malware often behaves differently from legitimate 

software, making it possible to detect unusual actions that may indicate a threat. 

 

iv. Data Collection: During dynamic analysis, data is collected on the malware's actions, such 

as file system changes, network communication, memory usage, and system calls. This data 

is used to build a behavioral profile of the malware. 

 

v. Feature Extraction: Significant attributes or traits are derived from the gathered data. These 

characteristics may encompass patterns of network traffic, API calls, system resource 

usage, and interactions with files and processes. 
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vi. Machine Learning: The extracted features can be leveraged with machine learning 

techniques, such as clustering and classification algorithms, to develop models capable of 

distinguishing between benign and malicious behavior. 

 

vii. Classification: Malicious software can be categorized into various groups according to its 

behavior, including ransomware, spyware, trojans, and more. Behavior-based classification 

allows for more accurate identification of malware variants that may share similar traits. 

 

viii. Real-Time Detection: Behavior-based detection can provide real-time protection by 

analyzing and detecting malicious behavior as it occurs. This proactive approach is valuable 

for identifying previously unknown threats. 

 

ix. Evasion Techniques: Malware authors may use evasion techniques to avoid detection, such 

as delaying malicious actions or disguising their behavior. Behavior-based analysis is 

designed to detect these evasive tactics. 

 

x. Limitations: Behavior-based detection proves its efficacy when dealing with novel and 

zero-day malware, it may have limitations when malware exhibits stealthy or sophisticated 

behavior. Additionally, false positives can occur if legitimate software behaves in unusual 

ways. 

 

 

2.1.3 Approach to Malware Detection and Classification Based on Heuristics 

 

Heuristic-based malware detection is a technique for recognizing malware by employing a 

predefined set of rules or patterns derived from prior knowledge or experience. This method 

operates on the premise that malware frequently adheres to identifiable and predictable patterns or 

behaviors, which can be employed to categorize the program as either malicious or benign. 
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Heuristics serve as a means to identify malware without relying on specific signatures or detailed 

information about a particular threat. This approach is particularly valuable for identifying novel 

or unfamiliar malware and can serve as a valuable complement to other malware detection 

methods, including signature-based and behavior-based approaches. 

 

A heuristic-based malware detection and classification approach uses a combination of 

techniques and is driven by the experience. It relies on rules and machine learning methods to 

generate signatures using both string-based and behavior-related features, as explained in reference 

[28]. This method is widely employed for the identification of diverse malware types, including 

previously unencountered ones. The system is initially trained using specific features and 

subsequently employs test data to spot anomalies. While it exhibits a commendable success rate in 

identifying new malware, it is susceptible to a notable number of false positives and the false 

negatives, primarily attributable to optimization challenges. 

 

A malware detection system was proposed by Ye et al.[29] introduced a malware detection 

system designed with the goal of identifying polymorphic and emerging malware strains that often 

elude conventional antivirus software. This system conducted an analysis of program Application 

Programming Interface sequences and generated pertinent rules through the utilization of the FP-

growth algorithm. Subsequently, classification algorithms were employed to ascertain whether the 

program files were of a malicious or benign nature. The application of this system was primarily 

focused on Windows executable files. While the proposed approach demonstrated superior 

performance compared to certain antivirus scanners, it fell short of meeting the expectations for 

effectively detecting unknown malware. 

 

In their paper [30], Canali et al. and his team introduced a behavior-based signature 

technique in which meaningful behavior patterns were crafted from combinations of system calls. 

These signatures were composed of elements that could encompass system calls, system calls along 

with their arguments, behaviors, or behavior groups with arguments. The authors organized these 

elements using n-gram, k-tuple, and m-bag models to formulate the signatures. They reported that 

their proposed approach efficiently identified malware. 
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Islam et al. devised a detection system that integrates elements from both static and dynamic 

analyses [31]. This system encompasses three distinct feature categories: 1. method lengths 

quantified in bytes, 2. printable string data, and 3. system calls along with their associated 

parameters. These features are amalgamated to create a feature vector, which is subsequently 

subjected to classification through machine learning algorithms. To address packed malware, a 

dynamic heuristic approach was introduced [32]. This technique initiates by computing the 

frequencies of API calls, identifying the API calls most strongly correlated with malware, and 

ultimately employing a Naive Bayes classifier and Levenshtein distance for the purposes of training 

and classification. The authors assert that their proposed method yields satisfactory outcomes 

across various variations of packed malware. 

 

Prominent attributes of heuristics-based malware detection and categorization encompass: 

 

i. Rule-Based Analysis: Heuristic techniques employ established rules or guidelines to detect 

potential malware, relying on known behaviors, characteristics, or patterns frequently 

linked to malicious software. 

 

ii. Pattern Recognition: Heuristic analysis focuses on recognizing patterns, behaviors, or 

characteristics that are typical of malware. These patterns might include unauthorized 

changes to system files, attempts to access sensitive data, or communication with external 

servers. 

 

iii. Behavioral Traits: Heuristic analysis can detect behaviors that deviate from normal or 

expected behavior. Malware often exhibits abnormal behavior, making it possible to 

identify actions that indicate a potential threat. 

 

iv. Zero-Day Detection: Heuristic analysis is effective for identifying zero-day attacks, which 

are attacks that target vulnerabilities that are not yet known or patched by security updates. 
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v. Unseen Variants: Heuristic methods can detect previously unseen malware variants that do 

not have well-defined signatures. This makes them valuable for detecting new and evolving 

threats. 

 

vi. Dynamic Analysis: Heuristic methodologies may incorporate dynamic analysis, where files 

are run within a controlled environment (sandbox) to observe their conduct. This can help 

to detect hidden or obfuscated malicious actions. 

 

vii. Overcoming Evasion Tactics: Attackers may use tactics to evade detection, such as 

delaying malicious actions or employing obfuscation techniques. Heuristic analysis can 

help detect these evasion techniques. 

 

viii. False Positives: Heuristic analysis can produce false positives (legitimate files flagged as 

malware) due to its reliance on predefined rules. Tuning the rules and algorithms can help 

reduce false positives. 

 

ix. Complementary Approach: Heuristic analysis complements other malware detection 

approaches, such as signature-based detection and behavior-based analysis, to provide 

comprehensive protection against a wide range of threats. 

 

x. Customization: Security solutions can be customized to apply specific heuristics based on 

the organization's needs and the types of threats they are most concerned about. 

 

Heuristic-based analysis plays a crucial role in modern cybersecurity strategies. It allows 

security tools to detect and respond to new and emerging threats that may not be covered by existing 

signature databases. Nonetheless, achieving an equilibrium between sensitivity and the false 

positives is crucial to ensure effective protection without unnecessary disruptions to legitimate user 

activities. 
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2.1.4 Approach to Malware Detection and Classification Based on Model 

Checking 

 

Model checking is a formal verification technique used to analyze the behavior of complex 

systems. It involves constructing a model of a system and verifying its properties against a set of 

predefined rules. This technique has been successfully applied in the field of software engineering 

for bug detection, however it can also find applications in the realm of malware detection and 

categorization. In this context, a system model is formulated., including the behavior of its software 

components and interactions with external entities. This model is then analyzed using a model 

checker, which searches for violations of predefined security rules. If any violations are found, it 

indicates the presence of malware in the system. Once the malware is detected, it can be further 

classified based on its behavior and properties. For example, it can be classified as a trojan, a worm, 

or a virus. This information can be used to identify the type of attack, the source of the malware, 

and the potential impact on the system [2]. 

 

One benefit of this method is its ability to offer a systematic and automated means of 

identifying and categorizing malware, mitigating the chances of encountering false positives and 

false negatives. Furthermore, it can be effectively employed for the detection of intricate and 

advanced malware that might pose challenges for conventional detection techniques. 

 

However, this approach requires a high level of expertise in model checking, as well as a 

well-defined set of security rules. It also requires a large amount of computational resources, as the 

model checker has to analyze the entire system and its interactions. In summary, the model 

checking-based approach for malware detection and classification holds potential as a solution for 

addressing the escalating issue of malware. However, its practicality and efficiency for real-world 

systems necessitate additional research and development efforts, as indicated in reference [2]. 

 

Holzer et al. [33] introduced a verification system designed for the identification of 

malicious software. This system employs CTPL (computation tree predicate logic) as the 
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specification language to define malicious behaviors and extracts a finite state model from 

disassembled executable files. The model controller subsequently assesses the specification, 

marking the sample as malicious if it is deemed correct, and as benign otherwise. This system 

exhibits the capability to identify malware within families that employ similar attack techniques, 

as well as novel malware variants displaying similar behaviors. The study concluded that the 

model-checking-based approach resulted in a more precise determination of malware's semantic 

attributes when compared to traditional detection methods, leading to a significant enhancement in 

the overall detection accuracy by as much as 70%. 

 

Kinder et al. introduced a forward-looking approach to malware detection, employing the 

model-checking method [34]. This method has the capability to identify diverse types of computer 

worms without necessitating frequent signature updates. Control flow charts are extracted from 

executable files and subjected to automatic validation using specifications defined in a novel 

language called CTPL. Experimental results indicate that this method achieved a low rate of false 

positives while effectively detecting various forms of worms. 

 

Critical features of malware detection and classification rooted in the model-checking 

approach encompass: 

 

i. Formal Verification: Model checking involves formal methods from computer science and 

mathematics to rigorously analyze software behavior. It can be applied to executable code 

or abstract models of the software's behavior. 

 

ii. Properties and Specifications: The model checking process involves defining properties or 

specifications that describe expected behaviors of legitimate software. These properties can 

include assertions about memory usage, data flow, system calls, and more. 

 

iii. Automated Analysis: Model checking is an automated process that systematically explores 

all possible execution paths and behaviors of a program. It checks whether the program 

violates specified properties or requirements. 
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iv. Behavioral Analysis: Model checking can identify potential malware by detecting 

deviations from expected behaviors. If the program's behavior diverges from the specified 

properties, it may be flagged as suspicious or potentially malicious. 

 

v. State Space Exploration: Model checking involves exploring the entire state space of a 

program to ensure that it adheres to the specified properties under all possible conditions. 

This exhaustive analysis can reveal hidden or subtle vulnerabilities and behaviors. 

 

vi. Zero-Day Detection: Model checking-based approaches are capable of detecting zero-day 

vulnerabilities and attacks by analyzing program behaviors based on formal properties. 

 

vii. Verification Logic: Formal verification techniques, such as temporal logic and automata 

theory, are used to specify the properties to be checked and to reason about the correctness 

of a program's behavior. 

 

viii. Resource Consumption: Model checking-based methodologies can additionally scrutinize 

resource utilization patterns, including memory usage and execution duration, in order to 

pinpoint programs displaying irregular or malicious conduct. 

 

ix. Challenges: Model checking can demand significant computational resources, particularly 

when applied to large and intricate software. Extending model checking to practical, real-

world software necessitates a thoughtful assessment of the analysis's extent and 

thoroughness. 

 

x. Complementary Approach: Model checking complements other malware detection 

techniques, such as heuristic analysis, behavior-based analysis, and machine learning, to 

provide comprehensive protection against a wide range of threats. 

 

Model checking-based malware detection is particularly suitable for critical systems, where 

correctness and safety are of utmost importance. It is well-suited for verifying the behavior of 
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software against formal specifications, enabling early detection of vulnerabilities and potential 

malware activities. However, its computational demands and complexity require careful 

consideration when applying it to practical applications. 

 

 

2.2 Approach to Malware Detection and Classification Utilizing Deep 

Learning 

n this strategy, deep learning algorithms, such as artificial neural networks, undergo training 

on an extensive dataset containing both malware and benign software. The aim is for these 

algorithms to learn the intrinsic patterns and distinguishing features that set them apart. 

Subsequently, the trained model can be employed to determine whether new, unobserved software 

should be categorized as malware or benign, contingent upon its resemblance to the acquired 

patterns. This method has exhibited promising outcomes, accurately identifying and classifying 

various forms of malware. 

 

The deep learning-based detection method performs well and reduces feature dimensions 

effectively, However, it remains susceptible to evasion attacks [2]. Extending the number of hidden 

layers is a time-consuming process and provides only marginal performance gains. As of now, the 

adoption of deep learning in malware detection and classification is not widespread, necessitating 

further research to thoroughly assess its capabilities. The literature documents instances of deep 

learning-based approaches in malware detection, which are summarized as follows. 

 

Saxe and Berlin [36] have put forward a concept for a malware detection system based on 

deep neural networks, which leverages two-dimensional software features. This system comprises 

three pivotal components: the extraction of four unique and complementary features from both 

malicious and non-malicious samples, the establishment of a deep neural network encompassing 1 

input layer, 2 hidden layers, and 1 output layer, and computation of neural network outputs utilizing 

the calibrator score. 



37 

 

 

 

 

Huang and Stokes [37] described the MaNet architecture, a multitasking approach to 

malware classification, it trains on both malicious and benign samples using data acquired from 

dynamic analysis. This architecture utilizes the ReLU activation function, resulting in a reduction 

of epochs and error rate. Despite being noted as outperforming a traditional neural network 

architecture, the addition of an extra hidden layer did not enhance performance and the model was 

not immune to evasion attacks. 

 

In a study by Ye et al. [38], a system was proposed to detect zero-day malware using 

heterogeneous deep learning. The system utilizes multi-layer constrained Boltzmann machines 

with associated memory and involves two phases: pre-training and fine-tuning. In the pre-training 

phase, features are acquired from both labeled and unlabeled files, enabling the identification of 

unique characteristics for each file. The fine-tuning phase employs supervised learning to 

differentiate between malware and benign files. The research demonstrated that this approach 

enhances performance when compared to conventional shallow learning methods. 

 

Roseline and her team introduced an intelligent, vision-based approach to malware 

detection and classification [4]. This method employs a layered ensemble structure reminiscent of 

deep learning. Program executables undergo a transformation into 2D images, and the resulting 

patterns are harnessed for categorizing various malware variants into their respective classes. This 

classification process utilizes a deep forest approach coupled with sliding window scanning and 

cascading layering influenced by Convolutional Neural Networks (CNNs). Notably, the authors 

contend that their method does not necessitate backpropagation or hyperparameter tuning, and it 

demonstrated successful outcomes in the detection and classification of malware variants on the 

MALIMG and MALEVIS datasets. 

 

In reference [5], a hybrid approach to malware classification is introduced, merging 

features derived from deep convolutional neural networks with fractal texture analysis based on 

segmentation. The authors of the paper employed pre-trained models like AlexNet and Inception-

v3 to capture features from malware images, subsequently partitioning them into 25 classes. These 

extracted features underwent classification through a support vector machine, decision tree, and k-
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nearest neighbor algorithms. The outcomes reported in the paper indicate a notably high accuracy 

rate on the MALIMG dataset. 

 

Essential attributes of malware detection and classification utilizing deep learning encompass: 

 

i. Neural Network Architectures: Deep learning models utilize intricate neural network 

structures, including Convolutional Neural Networks (CNNs) for image analysis and 

Recurrent Neural Networks (RNNs) for sequence data. Moreover, more sophisticated 

architectures such as Long Short-Term Memory networks (LSTMs) and transformer 

models can also find application 

 

ii. Feature Learning: Deep learning models acquire pertinent features and patterns directly 

from raw data, obviating the necessity for explicit feature engineering. This capability 

empowers the model to capture intricate relationships inherent in the data. 

 

iii. Training Data: Deep learning models necessitate substantial volumes of labeled training 

data to acquire the ability to differentiate between benign and malicious behaviors. These 

data include features extracted from malware samples and legitimate software. 

 

iv. Representation Learning: Deep learning models have the capacity to acquire hierarchical 

and abstract representations of data, empowering them to encompass nuanced and intricate 

attributes that could serve as indications of malware. 

 

v. Behavioral Analysis: Deep learning models can analyze the behavior of files, programs, 

and network traffic to identify patterns that match known malware behaviors or deviations 

from normal activities. 

 

vi. Image Analysis: Some deep learning models treat binary files as images and use techniques 

like CNNs to identify visual patterns within the file's binary representation. 
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vii. Sequence Analysis: For malware detection involving sequences of operations or system 

calls, RNNs and LSTMs can be employed to analyze the sequential behavior of programs. 

 

viii. Transfer Learning: Transfer learning entails the utilization of pre-trained deep learning 

models trained on extensive datasets and adapting them for the specific task of malware 

detection. This approach proves beneficial in mitigating challenges related to limited data 

availability. 

 

ix. Zero-Day Detection: Deep learning models can be effective at detecting new and unknown 

malware variants due to their ability to generalize from learned patterns. 

 

x. Scalability: Deep learning models can scale to handle large and diverse datasets, allowing 

for effective detection and classification across a wide range of malware types. 

 

xi. Challenges: Deep learning models may require significant computational resources for 

training and inference. Careful attention to hyperparameters, regularization, and data 

augmentation is essential. 

 

xii. Interpretability: Deep learning models can be challenging to interpret, making it important 

to develop methods to understand their decision-making processes and provide 

explanations for their predictions. 

 

The domain of malware detection and classification through deep learning is dynamically 

progressing, marked by continuous research and advancements directed at enhancing the precision, 

efficiency, and interpretability of deep learning models. It serves as a valuable complement to other 

malware detection methods, augmenting the overall efficacy of contemporary cybersecurity 

strategies. 
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2.2.1 Convolutional Neural Networks 

 

 Convolutional Neural Networks (abbreviated as ConvNets or CNNs) represent a category 

of deep, feed-forward artificial neural networks, predominantly employed in tasks such as image 

recognition, classification, and speech recognition. These networks encompass multiple layers of 

artificial neurons, including convolutional, pooling, and fully connected layers. Their inherent 

ability lies in learning hierarchical data representations by applying filters to raw input and 

gradually diminishing spatial dimensions. This architectural design empowers CNNs to 

autonomously and flexibly acquire spatial hierarchies of features from the input dataset, thereby 

reducing the necessity for manual feature extraction. 

 

Its design is tailored for processing data organized in a grid-like manner, as is the case with 

images. This network employs multiple filters on the input data to acquire hierarchical 

representations or features from the input. The filters undergo learning through a process known 

as convolution, in which the network applies a small matrix of weights to local sections of the input 

data, producing a new transformed representation. Subsequently, pooling layers are employed to 

down-sample the feature maps and diminish spatial dimensions. Finally, the feature maps are input 

into a fully connected layer to make predictions grounded in the learned features. The distinctive 

architecture of CNNs enables them to autonomously learn valuable features directly from the data, 

alleviating the requirement for manual feature engineering. As a result, they have become a favored 

choice for tasks in computer vision and Natural Language Processing (NLP). 

 

In a CNN, images are first converted into a matrix format, and the network uses these 

matrices to determine which image belongs to which label. During training, the network learns the 

effects of the differences between images on their corresponding labels. In the testing phase, it 

applies these learned relationships to predict the labels of new images. A CNN comprises three 

principal elements: 1. convolutional layer, 2. pooling layer, and 3. fully connected layer. The 

convolutional and pooling layers are in charge of the feature extraction procedure, whereas the 

fully connected layer is responsible for carrying out the classification task. 
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Here's a simple example to illustrate the convolution operation: 

 

Suppose you have a 5x5 input matrix (representing an image) and a 3x3 filter matrix, also 

called a kernel, shown below: 

 

 

Figure 2.1 CO with Karnal 3 and Stride 2. 

 

The convolution process entails moving the kernel across the input matrix, conducting 

element-wise multiplication for each overlapping region, and subsequently summing the outcomes. 

This process yields a fresh matrix, referred to as a feature map, with diminished dimensions. In the 

provided instance, the resultant feature map will have dimensions of 3x3, as depicted above. 

 

The mathematical formula for the convolution operation as follows in Equation 2.1. 

 

(f * g)(t) = \sum_{\tau = -\infty}^{\infty} f(\tau) g(t - \tau)                  (2.1) 

 

where f and g are the input and kernel matrices, respectively, and t is the index of the output matrix. 

 

Key characteristics of Convolutional Neural Networks include: 

 

i. Convolutional Layers: The core building blocks of CNNs are convolutional layers. These 

layers apply convolutional operations to input data using small filters (kernels) to extract 
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local features and patterns. Convolutions empower the network to grasp spatial hierarchies 

of characteristics, including edges, textures, and shapes. 

 

ii. Pooling Layers: Pooling layers decrease the spatial dimensions of the data while preserving 

crucial features. Widely employed pooling operations include max pooling and average 

pooling, which assist in reducing computational complexity and enhancing translation 

invariance. 

 

iii. Feature Hierarchies: CNNs are constructed with multiple layers arranged sequentially. The 

initial layers are adept at detecting low-level features such as edges and corners, whereas 

the deeper layers specialize in recognizing high-level features like object components and 

entire objects. 

 

iv. Learned Features: Unlike traditional image processing methods that use handcrafted 

features, CNNs automatically learn hierarchical features from data during training. This 

capability makes CNNs highly effective at tasks like object recognition. 

 

v. Weight sharing is a fundamental concept in CNNs, where weights are shared among distinct 

input regions. This practice minimizes the parameter count and facilitates the network in 

generalizing across various portions of the input. 

 

vi. Activation Functions: Activation functions, such as ReLU (Rectified Linear Unit), 

introduce non-linearity into the network, enabling it to learn complex relationships between 

features. 

 

vii. Fully Connected Layer: CNNs often end with fully connected layers that combine learned 

features to make final predictions. These layers can be used for tasks like classification or 

regression. 
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viii. Transfer Learning: By fine-tuning pre-trained CNNs on more limited datasets following 

training on extensive ones like ImageNet, we can employ transfer learning. This approach 

harnesses the previously acquired features and has the potential to enhance performance. 

 

ix. Data Augmentation: To enhance the diversity of training data and boost generalization, one 

can employ data augmentation methods such as image rotations, flips, and shifts. 

 

Convolutional Neural Networks (CNNs) have played a pivotal role in achieving cutting-

edge performance across various computer vision tasks. Their hierarchical structure and innate 

capability to autonomously learn pertinent features render them exceptionally well-suited for tasks 

involving pattern extraction from images or sequences. Although CNNs are frequently associated 

with image processing, analogous principles can be applied to other structured data types, such as 

speech and text. 

 

In summary, the convolution layer within a Convolutional Neural Network (CNN) applies 

filters to the input data, facilitating the acquisition of local features while reducing the input's 

dimensions and transforming it into a new, condensed representation. Subsequently, the resulting 

feature map serves as input for the subsequent layer within the CNN. The primary objective of the 

convolution operation in a CNN is to discern and extract high-level features, such as edges, from 

the input image. A CNN is not confined to just one convolutional layer, and typically, the initial 

convolutional layer is responsible for identifying low-level features like edges, colors, gradient 

orientations, and so forth. As more layers are added to the network, its architecture becomes 

increasingly proficient at recognizing higher-level features. 

 

 

2.2.2  Non-Linearity (ReLU) 

ReLU, which is short for Rectified Linear Unit, serves as a commonly employed activation 

function within deep learning networks, particularly finding widespread use in Convolutional 

Neural Networks (CNNs).  
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The ReLU function is represented mathematically as in Equation 2.2. 

 

   f(x) = max(0, x)          (2.2) 

Here, x represents the input to the activation function, and f(x) denotes the resulting output. 

When x is positive, the output equals x, while for negative x values, the output becomes 0. 

 

An illustration of how ReLU operates can be exemplified as follows: consider the input to 

the activation function as -2. When we apply the ReLU function to this input, the resulting output 

is 0, given that the input is negative. Conversely, if the input assumes a value of 5, the output 

corresponds to 5, owing to the input's positivity. This characteristic of ReLU enables neural 

networks to represent intricate associations between inputs and outputs, rendering it apt for 

addressing real-world challenges. Here’s another example to help understand the ReLU activation 

function. Suppose we have an input value x = -2. When we pass this input through the ReLU 

activation function, the output will be 0, because the ReLU function maps all negative values to 0, 

as illustrated in Equation 2.3. 

 

x = -2 

f(x) = max(0, x) = max(0, -2) = 0                                    (2.3) 

 

Now, let's consider another input value x = 5. When we pass this input through the ReLU 

activation function, the output will be 5, because the ReLU function maps all positive values to the 

same value as the input. As demonstrated in Equation 2.4. 

 

x = 5 

f(x) = max(0, x) = max(0, 5) = 5                                     (2.4) 

 

In this way, the ReLU activation function helps the network model complex relationships 

between inputs and outputs, making it suitable for solving real-world problems. 

 

Key characteristics of the ReLU activation function: 
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i. Non-Linearity: ReLU introduces non-linearity by applying a thresholding operation. This 

allows neural networks to capture complex relationships and patterns in data that linear 

transformations cannot model. 

 

ii. Sparse Activation: ReLU activations are sparse, meaning that they can quickly "activate" 

(output a non-zero value) for positive inputs and "deactivate" (output zero) for negative 

inputs. This sparsity can improve the network's efficiency and training speed. 

 

iii. Vanishing Gradient: ReLU helps alleviate the vanishing gradient problem that can occur 

when using activation functions like sigmoid or tanh. In these functions, gradients can 

become very small for extreme input values, making learning difficult. ReLU gradients 

remain non-zero for positive inputs. 

 

iv. Common Usage: ReLU finds extensive application in numerous deep learning structures, 

encompassing Convolutional Neural Networks (CNNs) and feedforward neural networks. 

Its popularity can be attributed to its straightforwardness and efficacy. 

 

ReLU has some limitations that are as follow: 

 

i. Dying ReLU Problem: In the case of specific negative inputs, the gradient of ReLU 

becomes zero, essentially causing the neuron's learning to halt during backpropagation. 

This issue is commonly referred to as the "dying ReLU" problem and can impede or 

decelerate the learning procedure. 

 

ii. Leaky ReLU and Variants: To address the dying ReLU problem, variations of ReLU have 

been proposed, such as Leaky ReLU (allowing a small slope for negative inputs) and 

Parametric ReLU (making the slope trainable). 
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iii. Output Range: ReLU outputs only positive values or zeros, which can cause exploding 

activations when used in very deep networks. Techniques like batch normalization can help 

mitigate this issue. 

 

 

 

2.2.3  Pooling Layer 

 

 The pooling layer is an integral element within Convolutional Neural Networks (CNNs) 

and serves the purpose of downsizing the feature maps produced by the convolution layer. The 

primary objective of pooling is to decrease the spatial dimensions of the feature maps while 

preserving crucial information essential for classification. Additionally, pooling contributes to the 

reduction of the network's computational complexity and guards against overfitting by confining 

the number of parameters. 

 

In a Convolutional Neural Network (CNN), the pooling layer follows the convolutional 

layer and constitutes the second layer. Its principal objective is to diminish both the count of feature 

maps and the network's parameters through mathematical operations. In this specific instance, max-

pooling was employed. During max-pooling, each feature map retains solely the maximum value 

within a defined matrix size, leading to a reduced quantity of output neurons. Subsequently, the 

network advances to the fully connected layer. Another intermediate layer that may find application 

is the dropout layer, which is instrumental in mitigating overfitting and divergence within the 

network. 

 

The i-th layer of a Convolutional Neural Network (CNN) encompasses both the 

convolutional layer and the pooling layer, working in tandem. While the number of such layers can 

be expanded to capture intricate details within complex images, it necessitates greater 

computational resources. Following the conclusion of the feature extraction procedure, the 

resulting output is flattened and subsequently directed into a conventional neural network designed 
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for classification. This concluding step enables the model to comprehend the input image's features 

and formulate predictions based on these features. 

 

In CNNs, two prevalent pooling operations are frequently employed: max pooling and average 

pooling. 

 

i. Max Pooling: Max pooling is the prevalent form of pooling operation. In this technique, a 

pooling window, typically sized as 2x2 or 3x3, traverses the input data. Within each 

window, the maximum value is chosen and transmitted to the subsequent layer. Max 

pooling effectively captures the most salient feature in the window and reduces the 

dimensionality of the data. 

ii. Average Pooling: Average pooling bears similarities to max pooling, with the distinction 

being that it computes the average value within the pooling window instead of selecting the 

maximum. The utilization of average pooling serves to mitigate the likelihood of giving 

undue prominence to extreme values within the input data. 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Pooling types. 

 

There exist two primary types of pooling operations: max pooling and average pooling. In 

max pooling, the maximum value is chosen from a set of neighboring pixels within the feature 
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map, while average pooling computes the average value. Max pooling is more commonly 

employed due to its lower sensitivity to input noise and variations. 

 

Illustrating max pooling with an example, let's consider a 4x4 feature map produced by the 

convolution layer, as depicted earlier. Max pooling operates by partitioning the feature map into 

non-overlapping regions and selecting the maximum value from each region. For instance, when 

employing a 2x2 pooling window, the outcome of max pooling will yield a 2x2 feature map, as 

illustrated above. The mathematical formula for max pooling is given by Equation 2.5. 

 

     y_{i, j} = \max_{k=0}^{f_{h}-1} \max_{l=0}^{f_{w}-1} x_{s \cdot i + k, s \cdot j + l}  (2.5) 

 

In this context, x_{i, j} represents the value located at position (i, j) within the feature map, while 

f_{h} and f_{w} denote the height and width of the pooling window, respectively. Additionally, 

"s" represents the stride, which signifies the gap between the centers of consecutive pooling 

windows. Pooling layers offer several benefits in convolutional neural networks: 

 

i. Dimensionality Reduction: Pooling layers are instrumental in diminishing the spatial 

dimensions of the input data, thereby contributing to the reduction of computational 

demands and memory requisites in the subsequent layers. 

 

ii. Translation Invariance: Pooling captures the most important features in a local 

neighborhood, making the network less sensitive to small translations or shifts in the input 

data. 

 

iii. Feature Robustness: By retaining only the most salient features, pooling layers help the 

network focus on higher-level patterns and reduce the impact of noise and minor variations. 

 

iv. Regularization: Pooling operates as a form of regularization by mitigating overfitting, 

compelling the network to acquire more resilient and broadly applicable features. 
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In summary, the pooling layer diminishes the spatial dimensions of the feature maps 

generated by the convolutional layer, preserving solely the most crucial information for 

classification purposes. These compacted feature maps are subsequently employed as input for the 

ensuing layer within the CNN. 

 

 

2.2.4  Fully connected layer 

 

 The last layer in a Convolutional Neural Network (CNN), also referred to as the 

classification layer, assumes the role of making the ultimate prediction grounded in the acquired 

features from the preceding layers. Specifically, the fully connected layer accepts the flattened 

output derived from the pooling layer and subjects it to a set of weights and biases. The outcome 

from the fully connected layer then undergoes an activation function, such as SoftMax, to yield the 

ultimate prediction. This prediction manifests as class scores corresponding to each potential class. 

These scores facilitate the determination of the class label with the highest score, ultimately serving 

as the CNN's definitive prediction. 

 

The fully connected layer within a Convolutional Neural Network (CNN) accepts the 

flattened output from the preceding layer, typically stemming from a pooling layer. It subsequently 

applies a set of weights and biases to generate a collection of output activations. The mathematical 

expression for an individual activation within the fully connected layer can be formulated as 

indicated in Equation 2.6. 

 

a = σ(W * x + b)                                                  (2.6) 

 

x denotes the input activations originating from the preceding layer, typically in the form of a 

flattened vector. 

W stands for the weight matrix, serving as the intermediary that maps the input activations to the 

resultant output activations. 
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b symbolizes the bias vector, which is incorporated into the weighted input 

σ signifies the activation function employed upon the weighted input, encompassing options like 

the ReLU or SoftMax function. 

a represents the resulting activation yielded by the fully connected layer. 

 

Here's an example to help understand the fully connected layer, suppose we have an input 

activations vector x = [x1, x2, x3] and a weight matrix W = [[w1, w2, w3], [w4, w5, w6], [w7, w8, 

w9]]. The bias vector b = [b1, b2, b3]. 

 

To calculate the output activations of the fully connected layer, we first need to calculate 

the weighted input as in Equation 2.7. 

 

   z = W * x + b = [[w1, w2, w3], [w4, w5, w6], [w7, w8, w9]] * [x1, x2, x3] + [b1, b2, b3]   (2.7) 

 

Following that, we employ the activation function σ to the weighted input, yielding the 

output activations as in Equation 2.8. 

a = σ(z) = [σ(z1), σ(z2), σ(z3)]                                        (2.8) 

In this way, the fully connected layer uses the weights and biases to transform the input 

activations into a set of output activations that are then used for making predictions. 

 

Key characteristics of fully connected layers include: 

 

i. Neuron Connections: Each neuron within a fully connected layer establishes connections 

with every neuron in the preceding layer, and these connections possess associated weights. 

These weights undergo adaptation during the training phase, dictating the connection 

strengths among neurons. 

 

ii. Feature Combination: Fully connected layers amalgamate the features garnered from the 

preceding layers to formulate more advanced predictions or classifications. Each neuron 
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within the fully connected layer possesses the capacity to apprehend intricate relationships 

amid the input features. 

 

iii. Output Units: The quantity of neurons contained within the fully connected layer dictates 

the number of generated output units. In classification tasks, these output units frequently 

correspond to distinct classes, whereas in regression tasks, they represent continuous 

values. 

 

iv. Activation Function: Each neuron situated in the fully connected layer subjects the 

weighted summation of its inputs to an activation function. Commonly employed activation 

functions encompass ReLU, sigmoid, and tanh. The activation function introduces non-

linearity into the network, endowing it with the capability to grasp intricate patterns. 

 

v. Bias Term: Fully connected layers typically include a bias term for each neuron, which 

allows the network to learn offsets or shifts in the predictions. 

 

vi. Flattening: Within CNNs, fully connected layers are typically preceded by convolutional 

and pooling layers. To facilitate the connection between these layers, the output from the 

last pooling layer undergoes flattening, transforming it into a 1D vector prior to entering 

the fully connected layer. 

 

Fully connected layers assume the responsibility of delivering ultimate predictions or 

classifications based on the gleaned features. They excel at capturing intricate relationships among 

features, furnishing the network with the capacity to derive generalizations from the acquired 

patterns. The results generated by the fully connected layer find utility in tasks such as image 

classification, object recognition, sentiment analysis, and various others. Nevertheless, within deep 

neural networks, particularly those featuring a multitude of parameters, fully connected layers can 

potentially contribute to overfitting. Consequently, regularization techniques like dropout and L2 

regularization are frequently employed to mitigate overfitting and enhance generalization 

performance 
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2.2.5  SoftMax Function 

 

 The SoftMax function serves as a commonly employed activation function, particularly in 

the output layer of a neural network, specifically designed for multi-class classification challenges. 

When provided with a vector of real numbers as input, the SoftMax function yields a vector of 

probabilities, which collectively sum up to 1. Its primary function is to transform the network's 

output into a probability distribution spanning multiple classes, thereby signifying the likelihood 

of each class being the correct solution. The SoftMax function is defined as in Equation 2.9. 

 

S(y_i) = (e^(y_i)) / sum(e^(y_j)) for all j 

 

The SoftMax function serves as a commonly employed activation function, particularly in 

the output layer of a neural network, specifically designed for multi-class classification challenges. 

When provided with a vector of real numbers as input, the SoftMax function yields a vector of 

probabilities, which collectively sum up to 1. Its primary function is to transform the network's 

output into a probability distribution spanning multiple classes, thereby signifying the likelihood 

of each class being the correct solution. Here's a simple example to help understand the SoftMax 

function: 

Suppose you have a neural network that classifies images of MALIMG into three 

categories: Adialer.C, Agent.FYI, and C2LOP.P. The output layer of this network contains three 

neurons, one for each class. The output of the network for a given image might look like y = [2, 1, 

0]. These values represent the confidence of the network that the image belongs to each class. 

However, these values are not probabilities and may not sum to 1. The Softmax function can be 

used to convert these values into probabilities as in Equation 2.10. 

 

S(y_1) = e^(2) / (e^(2) + e^(1) + e^(0)) = 0.74 

S(y_2) = e^(1) / (e^(2) + e^(1) + e^(0)) = 0.24                          (2.10) 

S(y_3) = e^(0) / (e^(2) + e^(1) + e^(0)) = 0.02 
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Now, the sum of these values equals 1, effectively indicating a probability distribution 

across the classes. The highest value within this distribution, which is 0.74 in this instance, signifies 

the network's predicted class, identified as Adialer.C in this particular scenario. 

 

Prominent characteristics of the softmax function include: 

 

i. Probability Distribution: The softmax function transforms logits into a legitimate 

probability distribution encompassing multiple classes. Each value within the resulting 

vector denotes the likelihood of the input belonging to the corresponding class. 

 

ii. Normalization: This function normalizes the logits by exponentiating them and 

subsequently dividing the results by the sum of the exponentiated values. This 

normalization procedure ensures that the resultant output probabilities always sum up to 1. 

 

iii. Amplifying Differences: The softmax function amplifies the differences between logits. 

Logits with larger values will have larger exponentiated values, resulting in higher 

probabilities, while logits with smaller values will have lower probabilities. 

 

iv. Numerical Stability: The exponential function can lead to numerical instability when 

dealing with very large or very small values. Techniques like subtracting the maximum 

value from the logits before applying softmax (known as the log-sum-exp trick) help 

mitigate this issue. 

 

v. Multiclass Classification: The utilization of SoftMax in the output layer of a neural network 

is a common practice for tasks involving multi-class classification. Ordinarily, the class 

associated with the highest SoftMax probability is designated as the predicted class. 

 

The SoftMax function assumes a pivotal role in both the training and deployment of neural 

networks for classification purposes. Throughout the training process, it collaborates with a loss 

function, such as cross-entropy, to calculate the loss and facilitate the adjustment of the network's 
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weights via backpropagation. In the inference phase, the output produced by the SoftMax function 

furnishes the predicted class probabilities for the given input data. 

 

 

2.3  Performance Metrics 

We conducted Performance Metrics analysis using four criteria: 

  

i. Accuracy.  

ii. Sensitivity. 

iii. Specificity. 

iv. F-score. 

 

 

2.3.1 Accuracy 

 

Accuracy is a frequently employed metric for assessing the effectiveness of a classifier. In 

the context of Convolutional Neural Networks (CNNs), accuracy can be calculated as in Equation 

2.11. 

 

Accuracy = (TN + TP) / (TN + TP + FN + FP)                        (2.11) 

 

TN (True Negative) represents the count of instances correctly classified as negative. TP 

(True Positive) signifies the count of instances correctly classified as positive. FN (False Negative) 

represents the count of instances incorrectly classified as negative. FP (False Positive) represents 

the count of instances incorrectly classified as positive. 

 

As an illustration, let's consider a scenario in which a CNN is trained to categorize a set of 

malware images. Among 1000 images, the CNN accurately identifies 900 as malware (TP) and 
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100 as non-malware (TN). However, it also incorrectly classifies 50 images as not being malware 

(FN) and 50 images as being malware (FP). In this case, the accuracy of the CNN as in Equation 

2.12. 

 

Accuracy = (100 + 900) / (100 + 900 + 50 + 50) = 1000 / 1200 = 83.33%              (2.12) 

 

The accuracy metric provides a holistic view of the model's performance, but its 

comprehensiveness may vary in different scenarios. To assess the performance of a CNN more 

thoroughly, other metrics like precision, recall, F1-score, among others, can be employed. 

 

 

2.3.2 Sensitivity (True Positive Rate or Recall) 

 

Sensitivity, also referred to as True Positive Rate or Recall, stands as a critical performance 

metric in machine learning classification tasks. It gauges the model's proficiency in correctly 

identifying positive instances among all the actual positive instances present in the dataset. In 

essence, it assesses how well the model avoids false negatives. Mathematically, Sensitivity can be 

expressed as in Equation 2.13. 

 

Sensitivity = (True Positives) / (True Positives + False Negatives)                      (2.13) 

 

True Positives (TP) denote instances correctly classified as positive by the model, while 

False Negatives (FN) represent instances that are truly positive but are inaccurately categorized as 

negative by the model. 

 

Sensitivity is particularly important in situations where the consequences of missing 

positive instances are significant. For example, in medical diagnosis, a false negative might mean 

failing to identify a disease in a patient who actually has it, which could have serious consequences. 
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A heightened sensitivity signifies that the model excels at capturing positive instances and 

mitigating false negatives, while a diminished sensitivity implies that the model overlooks a 

substantial number of positive instances. 

 

 

2.3.3 Specificity (True Negative Rate) 

 

Specificity, alternatively termed the True Negative Rate, constitutes another pivotal 

performance metric within machine learning classification tasks. This metric assesses the model's 

capability to accurately recognize negative instances among all the genuine negative instances 

within the dataset. In essence, it evaluates how adeptly the model avoids false positives. 

Mathematically, Specificity can be expressed as in Equation 2.14. 

 

Specificity = (True Negatives) / (True Negatives + False Positives)              (2.14) 

 

True Negatives (TN) denote instances correctly classified as negative by the model, while 

False Positives (FP) represent instances that are genuinely negative but are erroneously categorized 

as positive by the model. 

 

Specificity is especially relevant in situations where correctly identifying negative instances 

is crucial. For example, in security systems, a false positive could lead to unnecessary alarms and 

disruptions. Elevated specificity signifies that the model excels at accurately identifying negative 

instances and mitigating false positives. Conversely, reduced specificity implies that the model is 

erroneously classifying a noteworthy number of negative instances as positive. 
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2.3.4 F-score (F1-Score) 

 

The F-score, particularly the F1-Score, serves as a singular metric that amalgamates both 

precision and recall (or sensitivity) to furnish a well-rounded evaluation of a model's performance 

in binary classification tasks. It proves especially valuable when faced with class imbalance or the 

necessity to account for both false positives and false negatives. 

 

The F1-Score represents the harmonic mean of precision and recall, as in Equation 2.15. 

 

F1-Score = 2 * (Precision * Recall) / (Precision + Recall)                   (2.15) 

 

Precision signifies the proportion of correct positive predictions relative to the total number 

of positive predictions generated by the model. It gauges the model's aptitude for avoiding false 

positives. Recall (Sensitivity) embodies the ratio of correct positive predictions to the complete 

count of actual positive instances within the dataset. It assesses the model's proficiency in averting 

false negatives. The F1-Score strikes an equilibrium between precision and recall. It considers both 

false positives and false negatives and proves particularly advantageous when seeking a 

compromise between these two forms of errors. A high F1-Score signals an effective equilibrium 

between precision and recall, while a lower F1-Score suggests an inequity between these two 

metrics. 
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2.4  Conclusion  

  The subsequent statements encapsulate the findings derived from the literature review. 

 

Table 2.1: Conclusive literature review. 

 

Serial Title Year Dataset Result Remark 

1 

Robust intelligent 

malware detection using 

deep learning. [57] 

2019 

MALIMG 96% 
Initial 

accuracy MALEVIS 86.29% 

2 

Convolutional neural 

networks for malware 

classification. [60] 

2016 

MALIMG 95.33% 
Improved 

accuracy MALEVIS 90.59% 

3 

How to make attention 

mechanisms more 

practical in malware 

classification. [62] 

2019 MALEVIS 91.31% 

Improved 

accuracy 

for 

MALEVIS. 

4 

Detection of malicious 

code variants based on 

deep learning. [59] 

2018 

MALIMG 94.5% 
Variation 

in accuracy MALEVIS 92.13% 

5 

Binary malware image 

classification using 

machine learning with 

local binary pattern. 

[58] 

2017 

MALIMG 93.72% 

Variation 

in accuracy MALEVIS 92.24% 

6 

Malware classification 

using image 

representation. [61] 

2019 

MALIMG 96.08% 
Variation 

in accuracy MALEVIS 93% 
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7 

A New Malware 

Classification 

Framework Based on 

Deep Learning 

Algorithms. [63] 

2021 

MALIMG 97.78% 

Most 

appropriate 
MALEVIS 96.6% 

 

This chapter introduced the concept of deep learning, along with the associated notions of 

neural networks and Convolutional Neural Networks (CNNs). Particular attention was devoted to 

the typical layers employed in CNN implementations. Finally, the chapter delved into the metrics 

employed for the assessment of CNN models.



 

 

CHAPTER 3 

 

 

 

METHODOLOGY 

 

 

3.1 Visualizing malware as images  

The process of converting malware code into images initiates by reading the binary file as 

an array of 8-bit unsigned integers. These binary values are subsequently transformed into decimal 

values, which are stored in a new decimal vector representing the malware sample. Finally, the 

resulting decimal vector undergoes reshaping into a 2D matrix, which is then visualized as a 

grayscale image. The dimensions of this 2D matrix, i.e., the spatial resolution of the image, are 

contingent on the size of the malware binary file. Additionally, this representation can detect zero-

padding, which is employed for block alignment and to reduce executable entropy [39]. 

 

 

 

 

 

 

Figure 3.1: Binary codes to grayscale images. 

 

Figure 3.1 illustrates the process of converting malware binary files into grayscale images. 

Initially, the binary file is read as a vector comprising 8-bit unsigned integers, and each element is 

converted into its decimal equivalent (e.g., [00000000] in binary corresponds to [0] in decimal, and 

[11111111] corresponds to [255]). These decimal values are then stored in a new vector 

representing the malware sample. Subsequently, this vector is reshaped into a 2D matrix, which is 
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visualized as a grayscale image. The dimensions of the 2D matrix, or image resolution, are 

primarily determined by the binary file's size, following the resolution approach used by Nataraj et 

al. [16]. It has been observed that malware variants within the same family often exhibit similar 

textures (appearances), as demonstrated in Figure 3.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. 

Figure 3.2: MALEVIS grayscale images. 

 

Visualizing malware as images can be especially useful for large datasets where manual 

analysis may not be feasible, and can also help in reducing the dimensionality of the data for easier 

analysis. Nevertheless, it's crucial to emphasize that this approach does not replace conventional 
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malware analysis methods. The accuracy of visual analysis should be considered in conjunction 

with other techniques to attain a comprehensive comprehension of malware and its behaviors. 

 

 

3.2 Proposed Framework 

The presented model presents an efficient structure for classifying malware by employing 

a hybrid deep neural network architecture. This framework comprises four main stages, as 

illustrated in Figure 1: data collection, the design of the neural network architecture, training, and 

evaluation. Moreover, Figure 2's system flowchart offers a more detailed breakdown of each of 

these stages. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Proposed methodology for malware classification.                                                 

                                                                                                                                                          

In Figure 3.4, the pre-training section showcases networks that have already undergone training 
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and are currently being utilized as feature extractors. On the other hand, in the training section, the 

first three layers represent fully connected layers employed for the learning process. Lastly, the 

final layer signifies a SoftMax classifier, responsible for the classification process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Flowchart of DL architecture for malware classification. 

 

To commence, malware data is collected from various sources, including MALIMG 

[16] and MALEVIS [41]. Detailed explanations of these malware classification datasets will be 
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provided in a subsequent section. Following data collection, the proposed deep neural network 

architecture is constructed. 

At this stage, two pre-processing steps are carried out. Initially, an appropriate deep 

learning (DL) architecture is selected for performing malware classification tasks. This decision is 

based on preliminary experiments that have demonstrated the potential advantages of a hybrid 

module [42] in enhancing overall accuracy. Subsequently, transfer learning is explored to address 

specific challenges encountered during the classification process, such as time constraints and the 

large dataset size. In the context of transfer learning, the feature extraction step is initiated using 

pre-trained networks. Finally, a general classifier, such as a support vector machine or SoftMax, is 

employed for the classification task. This approach has been tailored to the proposed architecture 

as an effective means of overcoming the aforementioned challenges. 

 

 

3.3  Data Sets 

A dataset refers to a well-organized compilation of data utilized for the training, validation, 

or testing of machine learning models. Typically, datasets comprise a collection of instances or 

observations, wherein each instance encompasses several features or attributes. Additionally, these 

instances often include a target or label that the model endeavors to predict or classify. In our 

analysis, we employ the following two datasets: 

i. MAILMG Dataset. 

ii. MALEVIS Dataset. 

 

 

3.3.1 MALIMG dataset 

 

"MALIMG" is probably a shorthand for the "Malicious Image" dataset, which serves as a 

dataset for assessing the efficacy of image-based malware detection models. The MALIMG dataset 

encompasses a variety of malicious and benign image files, including icons and executables, 
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frequently encountered within Windows operating systems. The objective is to train machine 

learning models capable of effectively discerning benign from malicious images by considering 

their visual characteristics and additional attributes [52], [53]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Names and percentage distribution of the MALIMG dataset. 

 

 

The MALIMG datasets serve as a means to assess the resilience and adaptability of various 

machine learning models, including deep learning models, when it comes to detecting malware in 

image formats. These datasets establish a standard for appraising the performance of diverse 

algorithms, aiding researchers in pinpointing areas for enhancing malware detection [16]. 

 

The MALIMG dataset encompasses a total of 9,339 malware samples, divided into 25 

distinct classes, each represented as grayscale images. These samples are distributed among 

different malware families or classes, each with varying quantities of samples. In experimental 

setups, 90% of the malware samples within each family are randomly selected for training 
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purposes, while the remaining 10% are reserved for testing. This results in a training set comprising 

8,394 samples and a testing set containing 945 samples [54]. 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Import the MALIMG dataset in Web IDE. 

 

3.3.2 MALEVIS Dataset 

 

The proposed method's performance evaluation was conducted using the MALEVIS 

(Malware Evaluation with Vision) dataset. This dataset comprises 14,226 RGB byte images 

categorized into 26 classes, encompassing 25 distinct malware categories and 1 benign software 

class. The dataset was partitioned into 9,100 samples for training and 5,126 samples for testing, 

with an even distribution of 350 images per class [44]. The malware classes included in the dataset 

encompass Adposhel, Agent-fyi, Allaple.A, Amonetize, Androm, AutoRun-PU, BrowseFox, 

Dinwod! rfn, Elex, Expiro-H, Fasong, HackKMS.A, Hlux!IK, Injector, InstallCore.C, MultiPlug, 

Neorekla-mi, Neshta, Regrun.A, Sality, Snarasite.D!tr, Stantinko, VBA/Hilium.A, VBKrypt, and 

Vilsel [45]. 
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Figure 3.7: Names and percentage distribution of the MALEVIS dataset. 

 

 

To assess the performance of the proposed method, a dataset of byte images was generated, 

consisting of 26 distinct classes, comprising 25 malware categories and one legitimate class. The 

dataset creation process involved extracting binary images from malware files obtained from 

Comodo Inc. These binary images were then converted into 3-channel RGB format using the 

bin2png script developed by Sultanik. Subsequently, the vertically elongated images were resized 

to two different square resolutions: 224x224 pixels and 300x300 pixels [44]. 

 

 

 

 

 

 

 

 

 

Figure 3.8: Import the MALEVIS dataset in Web IDE. 



 

 

CHAPTER 4 

 

 

IMPLEMENTATION AND EVALUATIONS 

 

 

4.1 Overview 

This section offers a detailed overview of the implementation, experimental accuracy, and 

assessment of the proposed deep neural network model. In our implementation, we opted to utilize 

the Google Colab notebooks platform, which provides substantial virtual RAM, storage capacity, 

and GPU acceleration. The experience of working with Google Colab notebooks closely resembles 

that of working with the popular Kaggle Notebooks platform. 

 

We decided to use the TensorFlow and Keras API for our implementation due to its ease of 

use and availability of extensive documentation and support from Google. Keras is an open-source 

neural network library that serves as an interface for TensorFlow, which is a free and open-source 

machine learning library primarily designed for deep neural network training and inference. 

 

The process started by uploading the MALIMG and MALEVIS dataset zip files to Google 

Drive. This allowed us to access the data from the zipfiles in the notebook. Next, the Keras 

preprocessing library was used to extract the images and labels automatically. The datasets were 

divided into training and testing sets using the scikit-learn package. The training set was employed 

to train the neural network, adjusting its weights and biases. On the other hand, the testing set was 

utilized to assess the CNN's accuracy. Following the training and testing phases, accuracy and 

confusion matrices were visualized using Python's Matplotlib and Seaborn packages. The initial 

learning rate was set at 0.001, with a reduction by a factor of 10 after every 20 epochs. Weight 

decay and momentum were configured to 0.0005 and 0.9, respectively. The parameters within the 
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M-CNN network were initialized using the VGG-16 [56] weights. Random shuffling of the training 

data was performed in each epoch. Model evaluation was based on accuracy, representing the 

proportion of correctly labeled malware samples in the test data. 

 

 

4.1.1 TensorFlow  

 

TensorFlow is a robust open-source software library tailored for large-scale numerical 

computations, particularly in the realm of machine learning. In the context of malware data 

analysis, TensorFlow serves as a valuable tool for constructing machine learning models capable 

of analyzing malware samples and discerning between malicious and non-malicious files. This is 

accomplished by developing deep neural networks, which undergo training on a dataset comprising 

both malware and non-malware samples. TensorFlow provides a flexible platform for training, 

validating, and deploying these models, allowing researchers and practitioners to perform 

sophisticated malware analysis and classification. 

 

Key features of TensorFlow include: 

 

i. Graph Computation: TensorFlow employs a dataflow graph as a means to depict 

mathematical computations. This approach empowers users to delineate intricate 

computational processes and models using a symbolic representation that operates at a 

higher level. 

 

ii. Automatic Differentiation: TensorFlow includes an automatic differentiation feature, which 

is crucial for training neural networks using gradient descent optimization algorithms. 

 

iii. Flexible Architecture: It supports both CPUs and GPUs for efficient numerical 

computations, which are crucial for training large neural networks. 
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iv. Abstraction Levels: TensorFlow offers different levels of abstraction, from high-level APIs 

like Keras (a neural network API) to lower-level APIs that allow users to have more control 

over model design. 

 

v. Wide Range of Libraries: TensorFlow provides various libraries and tools for building 

different types of machine learning models, including image and text analysis, 

reinforcement learning, and more. 

 

vi. Model Deployment: TensorFlow models can be deployed on various platforms, including 

cloud services, mobile devices, browsers, and embedded systems. 

 

vii. Community and Ecosystem: TensorFlow boasts a thriving and engaged community actively 

involved in its advancement. This vibrant community provides an abundance of resources, 

tutorials, and pre-trained models, simplifying the initiation of diverse machine-learning 

endeavors. 

 

viii. TensorBoard: TensorFlow includes a visualization tool called TensorBoard that helps users 

visualize and monitor training progress, model architectures, and other relevant 

information. 

 

ix. Support for Various Neural Network Architectures: TensorFlow supports building various 

neural network architectures, from simple feedforward networks to more complex 

convolutional networks, recurrent networks, and more. 

 

TensorFlow has made substantial contributions to the progression of machine learning and deep 

learning, enhancing accessibility and efficiency for researchers, developers, and data scientists in 

the creation and deployment of advanced machine learning models. 
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4.1.2 Keras 

 

Keras is an open-source high-level software library that offers a Python interface for 

artificial neural networks. Its purpose is to streamline the construction and training of deep learning 

models by supplying a user-friendly and high-level API. Keras serves as a user-friendly interface 

for the underlying TensorFlow library, delivering a more intuitive and accessible means for users 

to create, train, and assess neural networks. Some notable characteristics of Keras encompass: 

 

i. User-Friendly API: Keras offers a straightforward and comprehensible interface for 

creating and training neural networks. It enables users to specify models with just a few 

lines of code, ensuring accessibility for individuals ranging from newcomers to seasoned 

experts in deep learning. 

 

ii. Modularity: Keras emphasizes modularity, allowing users to build complex neural network 

architectures by combining pre-defined building blocks called "layers." These layers can 

be stacked and interconnected to create different architectures. 

 

iii. Flexibility: While Keras provides high-level abstractions, it also offers a degree of 

flexibility that enables users to customize their models by specifying layer configurations, 

activation functions, optimization algorithms, loss functions, and more. 

 

iv. Support for Various Backends: Initially, Keras supported multiple deep learning libraries 

as backends, including TensorFlow, Theano, and Microsoft Cognitive Toolkit (CNTK). 

However, starting with TensorFlow 2.0, Keras is tightly integrated with TensorFlow, 

making TensorFlow the default backend. 

 

v. Multi-Layer Perceptrons (MLPs) and More: Keras offers extensive support for various 

neural network architectures, encompassing straightforward feedforward networks (multi-
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layer perceptrons), convolutional neural networks (CNNs), recurrent neural networks 

(RNNs), and amalgamations of these architectural styles. 

 

vi. Model Visualization: Keras includes tools like TensorBoard integration that help users 

visualize their model architectures, training progress, and other metrics. 

 

vii. Transfer Learning and Pre-Trained Models: Keras simplifies the process of transfer 

learning by providing access to pre-trained models through its applications module. This 

capability is especially valuable for harnessing models that have been trained on expansive 

datasets to address particular tasks. 

 

viii. Community and Resources: Keras has a strong community of users and contributors, which 

has led to a wealth of tutorials, guides, and resources available for both beginners and 

experienced users. 

 

To sum it up, Keras offers an accessible and flexible means of developing, training, and 

deploying deep learning models. Its emphasis on ease and modularity has made it a favored option 

among researchers, developers, and data scientists, enabling them to explore neural networks 

without delving into intricate low-level intricacies. 

 

 

4.1.3 NumPy 

 

NumPy, an abbreviation for Numerical Python, stands as a foundational library within the 

Python programming language, and it enjoys extensive application in machine learning and 

scientific computing. Its core functionality revolves around enabling the manipulation of large, 

multi-dimensional arrays and matrices, bolstered by an array of high-level mathematical operations 

tailored for efficient use with these arrays. NumPy serves as a pivotal cornerstone for numerous 

machine learning libraries and frameworks. 
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Here are some key aspects of NumPy in machine learning: 

i. Multi-Dimensional Arrays: NumPy introduces the numpy.ndarray data type, which allows 

you to create arrays of various dimensions (e.g., 1D, 2D, 3D) to store and manipulate data 

efficiently. These arrays possess homogeneity, indicating that all their elements share the 

same data type. 

 

ii. Efficient Element-Wise Operations: NumPy offers an extensive collection of mathematical 

and logical functions that can be applied to arrays in an element-wise manner. This makes 

it easy to perform operations like addition, subtraction, multiplication, and more on entire 

arrays at once, which is crucial for machine learning computations. 

 

iii. Broadcasting: NumPy incorporates broadcasting, enabling operations on arrays with 

different shapes and sizes without requiring explicit looping, thus enhancing code 

simplicity and performance. 

 

iv. Integration with Machine Learning Libraries: Many machine learning libraries and 

frameworks, including TensorFlow and PyTorch, are built on top of NumPy or have 

NumPy-like interfaces. This makes it easy to seamlessly integrate NumPy arrays into 

machine learning workflows. 

 

v. Random Number Generation: NumPy provides a random number generation module 

(numpy.random) that is commonly used for tasks like data augmentation, initialization of 

model parameters, and generating random samples for statistical experiments. 

 

vi. Linear Algebra Operations: NumPy encompasses an extensive array of linear algebra 

functions, including matrix multiplication, eigenvalue decomposition, and singular value 

decomposition, which are crucial components of numerous machine learning algorithms, 

particularly those rooted in linear algebra. 
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vii. Data Manipulation and Preprocessing: NumPy is instrumental in data preprocessing tasks, 

such as scaling, normalization, and reshaping of data, which are often required before 

feeding data into machine learning models. 

 

viii. Performance Optimization: NumPy is implemented in C and Fortran, which makes it highly 

optimized for numerical computations. This results in efficient code execution, a crucial 

factor in machine learning applications, especially for large datasets and complex models. 

 

In conclusion, NumPy stands as a foundational library in machine learning, offering 

indispensable tools for the efficient handling of numerical data. Its versatile array of operations and 

mathematical functions are essential for tasks such as data manipulation, model training, and 

evaluation within the realm of machine learning. 

 

 

4.1.4 Seaborn 

 

Seaborn, a Python data visualization library frequently employed in machine learning and 

data analysis, serves as an invaluable tool. Built upon Matplotlib, another widely-used data 

visualization library, Seaborn offers a more user-friendly interface for crafting informative and 

visually appealing statistical graphics. Its utility shines when expeditiously exploring data, 

visualizing variable relationships, and generating informative presentations and reports within the 

context of machine learning. 

 

Seaborn boasts the following key attributes and applications in the realm of machine learning: 

 

i. Statistical Visualization: Seaborn excels at creating statistical visualizations that help you 

understand the distribution of data, identify patterns, and visualize relationships between 

variables. It supplies functions for producing a diverse range of plots, encompassing 

histograms, scatter plots, bar plots, box plots, violin plots, and may more. 
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ii. Integration with Pandas: Seamlessly integrating with Pandas DataFrames, Seaborn 

simplifies the task of working with and visualizing data stored in Pandas data structures. 

 

iii. Automatic Estimation and Aggregation: Seaborn often automatically computes and 

visualizes summary statistics (e.g., means, medians, confidence intervals) within plots, 

simplifying the process of exploring and understanding data. 

 

iv. Color Palettes: Seaborn offers a variety of aesthetically pleasing color palettes, making it 

easy to create visually appealing visualizations. These palettes are particularly useful when 

distinguishing between categories or groups of data. 

 

v. Facet Grids: Seaborn provides tools for creating facet grids, which allow you to create 

multiple plots or facets, each showing a subset of your data based on specific variables. 

This is useful for visualizing relationships within different subsets of your dataset. 

 

vi. Regression Analysis: Seaborn includes functions for visualizing and exploring linear and 

non-linear relationships between variables, making it handy for regression analysis in 

machine learning. 

 

vii. Categorical Data Visualization: Seaborn specializes in visualizing categorical data. It offers 

functions for creating count plots, bar plots, and categorical scatter plots that are useful for 

exploring relationships in categorical data. 

 

viii. Time Series Visualization: Seaborn supports time series data visualization, making it useful 

for analyzing and plotting time-based datasets in machine learning tasks. 

 

ix. Customization: While Seaborn offers sensible defaults for numerous plot styles, it also 

affords extensive customization options for plots, encompassing colors, styles, labels, and 

beyond. 
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In summary, Seaborn serves as a valuable asset within the machine learning workflow. It 

streamlines the process of visualizing and comprehending data, a pivotal step in data preprocessing, 

feature engineering, and model evaluation. It helps data scientists and machine learning 

practitioners create informative and visually appealing visualizations quickly and effectively. 

 

 

4.1.5 Scikit-learn 

 

Scikit-learn, commonly denoted as "sklearn," stands as a well-liked open-source machine 

learning library tailored for the Python programming language. Renowned for its versatility, it 

ranks among the most extensively employed libraries for an array of machine learning endeavors. 

Its applications span classification, regression, clustering, dimensionality reduction, model 

selection, and data preprocessing. This robust library is constructed atop other Python libraries like 

NumPy, SciPy, and matplotlib, furnishing a uniform and approachable API for seamless interaction 

with a multitude of machine learning algorithms. 

 

Here are some key aspects of scikit-learn: 

 

i. Scikit-learn encompasses an extensive repertoire of machine learning algorithms, 

encompassing both supervised and unsupervised learning paradigms. Among the array of 

algorithms at its disposal are Supervised learning algorithms, which comprise Support 

Vector Machines, Decision Trees, Random Forests, k-Nearest Neighbors, Linear and 

Logistic Regression, and more. In the realm of Unsupervised learning, Scikit-learn boasts 

algorithms such as Clustering (including K-Means and Hierarchical clustering) and 

Dimensionality Reduction (featuring PCA and t-SNE), along with Gaussian Mixture 

Models, and various others. 
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ii. Data Preprocessing: Scikit-learn provides a suite of data preprocessing tools, encompassing 

functions for tasks like scaling, normalization, imputation of missing values, feature 

selection, and feature extraction. 

 

iii. Model Evaluation: The library supplies functions for assessing machine learning models 

through metrics such as accuracy, precision, recall, F1-score, ROC AUC, and others. It also 

supports techniques like cross-validation to ensure robust model assessment. 

 

iv. Hyperparameter Tuning: Scikit-learn includes tools for hyperparameter tuning through 

methods like grid search and randomized search, making it easier to find the best 

hyperparameters for your models. 

 

v. Pipeline: Scikit-learn allows you to build data processing and modeling pipelines, ensuring 

that data preprocessing and model training are handled in a structured and reproducible 

manner. 

 

vi. Feature Engineering: The library offers various feature engineering techniques, such as 

one-hot encoding, label encoding, and text vectorization, to prepare data for machine 

learning models. 

 

vii. Seamless Integration with Other Libraries: Scikit-learn smoothly integrates with other well-

known Python libraries like NumPy, Pandas, and Matplotlib, facilitating a seamless 

workflow for data manipulation and visualization. 

 

viii. Ease of Use: Scikit-learn is renowned for its straightforward and uniform API, ensuring 

accessibility for both novice and seasoned machine learning professionals. 

 

ix. User Community and Documentation: Scikit-learn boasts a sizable and engaged user 

community, complemented by comprehensive documentation, tutorials, and practical 

examples to assist users in initiating their journey and grasping the library's potential. 
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Overall, scikit-learn is a versatile and essential tool in the machine learning ecosystem. It simplifies 

the implementation of various machine learning algorithms and provides a standardized interface 

for building, evaluating, and deploying machine learning models. Whether you are a novice or an 

expert in machine learning, scikit-learn is a valuable resource for your data science and machine 

learning projects. 

 

 

4.1.6 Matplotlib.pyplot 

 

Matplotlib.pyplot is a Python library that facilitates the generation of static, animated, and 

interactive visual representations across a diverse array of formats, including line plots, bar charts, 

scatter plots, histograms, and numerous others. It is part of the larger Matplotlib library, which is 

a comprehensive data visualization library for Python. pyplot is a subpackage within Matplotlib 

that provides a simple and convenient interface for creating and customizing plots. 

 

Here are the key components and features of matplotlib.pyplot: 

 

i. Plotting Functions: Pyplot offers an assortment of plotting functions that streamline the 

process of generating a wide array of plots, all achievable with just a few lines of code. For 

example, you can create line plots using plt.plot(), scatter plots with plt.scatter(), bar charts 

with plt.bar(), and histograms with plt.hist(). 

 

ii. Customization: You can customize every aspect of your plots, including titles, labels, axis 

limits, colors, markers, line styles, and more. Pyplot offers a range of functions, such as 

plt.title(), plt.xlabel(), plt.ylabel(), plt.legend(), plt.grid(), and more, to incorporate labels 

and annotations into your plots. 
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iii. Subplots: Using the plt.subplots() function, you can arrange multiple plots within the same 

figure, organizing them in a grid-like manner. This is useful for comparing different aspects 

of your data in a single figure. 

 

iv. Save and Export: Matplotlib offers the flexibility to save your plots in multiple file formats, 

such as PNG, PDF, SVG, and others, using the plt.savefig() function. 

 

v. Interactive Features: While pyplot is primarily used for static plots, you can combine it with 

other libraries like Jupyter Notebook and interactive widgets to create interactive 

visualizations for exploring data. 

 

vi. Integration with NumPy: Matplotlib smoothly integrates with NumPy arrays, simplifying 

the process of plotting data stored within NumPy arrays. 

 

vii. Support for LaTeX: You can use LaTeX for rendering text and mathematical expressions 

in titles, labels, and annotations, which is particularly useful for creating scientific plots. 

 

 

4.1.7 Google Collaboratory 

 

Google Collaboratory, commonly referred to as Colab, is a freely accessible Jupyter 

Notebook environment provided by Google. It allows users to write and execute code, edit 

documents, and run interactive web applications. Colab provides a cloud-based platform with free 

access to GPUs and TPUs, making it an ideal environment for conducting large-scale data 

experiments and machine learning projects. Additionally, Colab notebooks can be stored and 

shared on Google Drive, allowing users to collaborate on projects in real-time and share accuracy 

with others. Google Colab provides access to a virtual machine with a GPU and a CPU. The amount 

of RAM, GPU, and CPU cores provided by Colab varies depending on the type of runtime being 

used. Currently, the standard runtime provided by Colab offers 12 GB of RAM, an V100 GPU. 
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The high-RAM runtime provides 25 GB of RAM while the A100 GPU. Key features of Google 

Colab include: 

 

i. Colab offers complimentary access to Graphics Processing Units (GPUs) and Tensor 

Processing Units (TPUs), both of which are hardware accelerators that greatly enhance the 

training speed of deep learning models.. 

 

ii. Colab operates entirely in the cloud, eliminating concerns about the capabilities of your 

local machine and allowing you to write and execute code on powerful remote servers. 

 

iii. Jupyter Notebook Integration: Colab uses the Jupyter Notebook interface, allowing you to 

write and run code in cells. This notebook-style interface makes it easy to write, execute, 

and visualize code step by step. 

 

iv. Colab comes equipped with popular libraries for data science and machine learning, 

including TensorFlow, PyTorch, pandas, NumPy, and others, already installed. This 

eliminates the need for setup and configuration, saving you time and effort. 

 

v. Easy Data Sharing: You can upload and store datasets directly in your Colab environment. 

Additionally, you can easily share your Colab notebooks with others for collaboration or 

educational purposes. 

 

vi. Google Drive Integration: Colab notebooks are saved in your Google Drive, making it easy 

to organize and access your work from various devices. 

 

vii. Code Snippets and Markdown: Colab supports Markdown cells, allowing you to document 

your code and experiments. You can also include images, hyperlinks, and formatted text to 

make your notebooks more informative. 

 

viii. Interactive Visualizations: You can create interactive plots and visualizations using 

libraries like Matplotlib and Seaborn. These visualizations help you better understand your 

data and experiment results. 

 

ix. Easy Setup and Environment Management: Since Colab is cloud-based, you don't need to 

worry about installing and managing libraries and dependencies. Everything is handled by 

Google's infrastructure. 
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x. Time-Limited Sessions: Colab sessions are time-limited, meaning that after a certain period 

of inactivity, your environment might be disconnected. However, you can always reconnect 

and continue your work. 

 

In summary, Google Colab is a powerful and user-friendly tool for writing, executing, and 

sharing Python code, especially for data science, machine learning, and research tasks. Its 

combination of cloud resources, pre-installed libraries, and collaboration features makes it an 

excellent choice for both beginners and experienced developers. 

 

 

4.1.8 Our Proposed Model 

 

We have reduced the complexity of our deep learning model by simplifying the architecture 

of our Convolutional Neural Network (CNN). Previously models consisted of many Convolution 

layers, Max-pooling layers, Dense layers, and SoftMax layers for classification. The previous 

architecture resulted in a high number of trainable weights and biases, this hinders the model's 

ability to effectively generalize to unfamiliar data. 

To reduce the complexity, we have made the following changes, Here's the breakdown of the 

layers. VGG16 base layers (pre-trained). These layers are not trainable, except for the last few. 

 

i. It consists a flatten layer. 

ii. A Dense layer containing 512 units and utilizing the 'relu' activation function. 

iii. Batch Normalization layer. 

iv. Dropout layer with dropout rate 0.5. 

v. A Dense layer consisting of 256 units and using the 'relu' activation. 

vi. A Dense layer comprising 128 units with the 'relu' activation. 

vii. The final Dense layer with 26 units in its output (assuming it's a classification task) and 

activation 'SoftMax'. 
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The cumulative count of layers in the model, encompassing both the foundational and 

additional layers, would be the sum of these layers. The count includes all types of layers (Conv2D, 

MaxPooling2D, Dense, etc.). The new architecture accuracy in a reduced number of trainable 

weights and biases, improving the generalization performance of the model. The following is a 

summary of the layers of the CNN when applied to the MALIMG dataset, along with the number 

of trainable weights and biases (params) in each layer: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Number of layers trainable weights and biases (params) utilized for 

MALIMG dataset. 

 

A breakdown of the CNN applied to the MALEVIS dataset is provided below, including 

the number of trainable weights and biases (params) in each layer: 
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Figure 4.2: Number of layers trainable weights and biases (params) utilized for MALEVIS 

dataset. 

With these changes, our model has a reduced complexity, making it easier to train and 

improving its generalization performance on new data. 

 

 

4.2 Accuracy 

The table reveals that the CNN achieves an average validation accuracy of 99% on the MALIMG 

dataset, while on the MALEVIS dataset, it achieves a validation accuracy of 97.12%. 
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Table 4.1: Accuracy of MALIMG and MALEVIS datasets. 

 

Dataset Accuracy 

MALIMG 99% 

MALEVIS 97.12% 

 

 

The following figures illustrate the evolution of accuracy for both the training and 

validation sets at each epoch in the most recent training run.. 

 

 

 

 

 

Figure 4.3: Accuracy for MALIMG Dataset. 

 

 

 

 

Figure 4.4: Accuracy for MalVis Dataset. 
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4.2.1 MALIMG Dataset 

 

Here's a breakdown of the code: 

 

i. Importing the Required Library: The code begins by importing the matplotlib.pyplot 

module as plt. This module is a part of the Matplotlib library, which is commonly used for 

creating visualizations in Python. 

 

ii. Extracting Training History: The variables acc, val_acc, loss, and val_loss are utilized to 

store the 1. training accuracy, 2. validation accuracy, 3. training loss, and 4. validation loss 

values, correspondingly. These values are likely obtained from the history object after 

training a machine learning model. The history object typically contains metrics recorded 

at each epoch during training. 

 

iii. Defining Epochs: The epochs variable is defined as a range representing the number of 

epochs. This will serve as the label for the x-axis of the plot.. 

 

iv. Plotting Training Accuracy and the Validation Accuracy: The code uses plt.plot() to create 

two lines on the same plot. One line represents the training accuracy (acc) and is displayed 

in red ('r'). The other line represents the validation accuracy (val_acc) and is displayed in 

blue ('b'). 

 

v. Setting Title and Legend: The title of the plot is set using plt.title(). In this instance, it is 

configured as "Training and validation accuracy." The plt.legend() function introduces a 

legend to the plot, facilitating the differentiation between the training and validation 

accuracy lines. The loc=0 argument specifies that the legend should be placed in the "best" 

location on the plot. 

 



86 

 

 

 

 

vi. Creating a New Figure: plt.figure() creates a new figure, which means that subsequent plots 

will be drawn on a new canvas. This is typically used when you want to create multiple 

separate plots in a single script or code block. 

vii. Displaying the Plot: Finally, plt.show() is used to display the plot on the screen. This 

command is essential for rendering the visualizations you've created using Matplotlib. 

 

In summary, this code generates a plot that shows the progression of training and validation 

accuracy over epochs. It aids in evaluating the performance of your model on both the training and 

validation datasets, and in identifying indications of either overfitting or generalization issues. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Graphs depicting the growth of Training accuracy (in red) and Validation accuracy 

(in blue) as the number of epochs increases on the MALIMG dataset. 
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4.2.2 MALEVIS Dataset 

 

The code snippet creates a depiction of a machine-learning model's training and validation 

accuracy over several epochs using the matplotlib library. Let's break down the code step by step: 

 

i. Importing the Required Library: The code starts by importing the matplotlib.pyplot module 

as plt. This module is used for creating various types of plots and visualizations in Python. 

 

ii. Extracting Training History Metrics: The variables acc, val_acc, loss, and val_loss is used 

to store specific metrics from the history1 object. Typically, metrics that were captured 

while a machine learning model was being trained can be found in the history1 object. 

Specifically: 

a. acc: Training accuracy values recorded over different epochs. 

b. val_acc: Validation accuracy values recorded over different epochs. 

c. loss: Training loss values recorded over different epochs. 

d. val_loss: Validation loss values recorded over different epochs. 

 

iii. Defining Epochs: The variable epochs is created as a range that spans the length of the acc 

list. This range is used to represent total number of epochs plotted on x-axis. 

 

iv. Plotting Training and Validation Accuracy: The code uses the plt.plot() function to create 

two lines on the same plot: 

a. The first line represents the training accuracy (acc) and is drawn in red ('r'). 

b. The second line represents the validation accuracy (val_acc) and is drawn in blue 

('b'). 

 

v. Setting Title and Legend: 

a. plt.title() sets the title of the plot to "Training and validation accuracy". 
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b. plt.legend(loc=0) adds a legend to plot, indicating that which line correlate to 

training accuracy and which communicate with the validation accuracy. The loc=0 

argument specifies that the legend should be placed in the "best" location on the 

plot. 

 

vi. Creating a New Figure: plt.figure() is used to create a new figure. This is useful if you want 

to create multiple separate plots in the same script or code block. 

 

vii. Displaying the Plot: Finally, plt.show() is called to display the plot on the screen. 

 

In summary, this code generates a line plot that visualizes, progression of training and 

validation accuracy across epochs. You may learn more about how effectively your model is 

learning from the training data and whether it is overfitting or generalizing to new data by 

comparing these two curves. The visualizations help you make informed decisions about model 

training and adjustments. 
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Figure 4.6: Graphs depicting the growth of Training accuracy (in red) and Validation accuracy 

(in blue) as the number of epochs increases on the MALEVIS dataset. 

 

 

4.3 Confusion Matrix 

A confusion matrix represents the predicted class i.e. Output Class considered as rows, and 

the true class i.e. Target Class considered as columns. The diagonal cells indicate correctly 

classified observations, while the off-diagonal cells indicate misclassifications. The final column 

on the graph exhibits the precision (positive predictive value) and false discovery rate, which 

represent the percentage of accurately and inaccurately classified instances for each predicted class, 

respectively. The lowermost row on the plot showcases the recall (true positive rate) and false 

negative rate, which represent the percentage of instances from each class that were correctly and 

erroneously classified, respectively. 
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4.3.1 MALIMG Dataset 

 

This code snippet evaluates the performance of a Convolutional Neural Network (CNN) 

machine learning model using a confusion matrix and visualization. Let's walk through the code: 

 

i. Importing Libraries: The code starts by importing essential libraries, including `numpy` as 

`np`, `pandas` as `pd`, `metrics` from `sklearn`, `seaborn` for visualization, and 

`matplotlib.pyplot` (as `plt`). 

 

ii. Predicting Class Probabilities: The Improved_CNN model's predict method is used to 

obtain class probabilities for each sample in the test set (X_test). These probabilities are 

stored in the y_pred_prob variable. 

 

iii. Predicted Class Labels: The argmax function from numpy is used on y_pred_prob along 

axis=1. This operation retrieves the index (class label) with the highest probability for each 

sample, resulting in the predicted class labels which are then stored in the y_pred array. 

 

iv. True Class Labels: Similarly, the true class labels are obtained by applying argmax to y_test 

(the ground truth labels). 

 

v. Calculating Confusion Matrix: To compute the confusion matrix, the `confusion_matrix` 

function from `sklearn.metrics` is utilized. This function calculates the confusion matrix 

based on the true class labels (`y_test2`) and the predicted class labels (`y_pred`). The 

resulting confusion matrix is saved in the `c_matrix` variable. 

 

vi. Defining a Confusion Matrix Visualization Function: A custom function called 

confusion_matrix is defined to create a heatmap visualization of the confusion matrix. This 

function takes the confusion matrix, class names, and optional parameters for figure size 

and font size. 
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vii. Creating the Heatmap: The confusion_matrix function is called to create a heatmap 

visualization of the confusion matrix. The class names are obtained from 

batches.class_indices.keys(), which likely corresponds to the class labels used in the 

dataset. The heatmap is customized with tick labels, axis labels, and font sizes. 

 

viii. Displaying the Heatmap: Finally, the heatmap visualization of the confusion matrix is 

displayed using plt.show(). 

 

In summary, this code calculates the confusion matrix for evaluating a machine learning 

model's performance, particularly for a multi-class classification problem. It then visualizes the 

confusion matrix using a heatmap, providing insights into the model's classification accuracy and 

potential misclassifications across different classes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Confusion Matrix on MALIMG dataset. 
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4.3.2 MALEVIS Dataset 

 

The piece of code assesses the performance of a machine learning model by computing a 

confusion matrix and subsequently presenting it using a heatmap. Let's break down the code step 

by step: 

 

i. Importing Libraries: The code commences by importing essential libraries, including 

`numpy` (as `np`), `pandas` (as `pd`), `metrics` from `sklearn` for evaluation, `seaborn` for 

visualization, and `matplotlib.pyplot` (as `plt`) for generating plots. 

 

ii. Predicting Class Probabilities: The Improved_CNN model is employed to predict class 

probabilities for each sample in the test set (X_test). The resulting probabilities are then 

saved in the y_pred_prob variable. 

iii. Predicted Class Labels: Predicted class labels are derived from y_pred_prob by applying 

the argmax function along axis=1. For each sample, this operation chooses the index (class 

label) with the highest predicted probability. The resulting predicted labels are then stored 

in the `y_pred` array. 

 

iv. True Class Labels: The true class labels are obtained by applying argmax to the ground 

truth labels y_test. The resulting true class labels are stored in the y_test2 array. 

 

v. Calculating Confusion Matrix: To compute the confusion matrix, the code employs the 

`confusion_matrix` function from `sklearn.metrics`. The confusion matrix is generated 

using the true class labels (`y_test2`) and predicted class labels (`y_pred`). The resulting 

confusion matrix is then stored in the variable `c_matrix`. 

 

vi. Defining a Confusion Matrix Visualization Function: A custom function called 

confusion_matrix is defined to create a heatmap visualization of the confusion matrix. This 
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function takes the confusion matrix, class names, and optional parameters for figure size 

and font size. 

 

vii. Creating the Heatmap: The confusion_matrix function is called to generate a heatmap 

visualization of the confusion matrix. The class names are likely obtained from 

batches.class_indices.keys(), which likely correspond to the class labels used in the dataset. 

The heatmap is customized with tick labels, axis labels, and font sizes. 

 

viii. Displaying the Heatmap: Finally, the heatmap visualization of the confusion matrix is 

displayed using plt.show(). 

 

In summary, to assess a machine learning model's performance, this code computes the 

confusion matrix and then presents it using a heatmap. By visualizing the confusion matrix, the 

model's accuracy and misclassifications across various classes can be comprehended, facilitating 

performance analysis and model enhancement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Confusion Matrix on MALEVIS dataset. 
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4.4 Model Complexity 

In deep learning, the complexity of a model is determined by the neural network's size and 

structure, which includes its number of layers, neurons, and parameters. A simple example of a 

model with low complexity could be a single-layer feedforward neural network with a few neurons 

and a limited number of parameters. On the other hand, a model with high complexity would be a 

deep convolutional neural network with an extensive number of layers, a large quantity of neurons, 

and numerous parameters. 

 

Finding the right balance between model complexity and generalization ability is a trade-

off in deep learning. For instance, a model that is highly complex with an abundance of layers and 

neurons may exhibit good performance on the training data. However, if the model is overly 

complex, it may overfit the training data and perform inadequately on new, unseen data. In such 

scenarios, a simpler model that is less prone to overfitting may perform better in practical 

applications. 

 

Therefore, it's crucial to find the right balance between model complexity and 

generalization ability. This often requires careful experimentation, such as using techniques like 

regularization, early stopping, and hyperparameter tuning, to avoid overfitting and select the best 

model for a given problem. Some common measures of model complexity in deep learning include 

[43]: 

 

i. To simplify the architecture of the model, it is recommended to decrease the number of 

dense layers, as having multiple dense layers can increase its complexity. 

 

ii. To simplify the model, the number of units in each dense layer should be reduced. Smaller 

layer sizes usually result in simpler models. 

 

iii. Reduce Regularization Strength: The L2 regularization strength is set to 0.01 for all dense 

layers. We reduce this value to a smaller value so to make the regularization effect milder. 
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iv. Reduce Dropout Rate: A dropout rate of 0.5 has been established, which means 50% of the 

connections are dropped during training. We reduce this rate to retain more connections 

during training. 

 

v. Simplify Batch Normalization: Batch normalization can be useful for training deep 

networks, but it can also add complexity. We consider using it only in a subset of layers or 

removing it altogether. 

 

vi. Model size: The size of a model can be quantified by various factors, including the number 

of layers, the number of neurons per layer, or the total number of operations needed to 

generate a prediction. 

 

vii. Training time: Training a complex model can take longer, as the model has more parameters 

to learn and may require more computation. 

 

viii. Prediction time: The prediction time for a model can also be influenced by its complexity, 

as more complex models may require more computation to make a prediction. 

 

The experiments were previously carried out on a Linux platform that utilized an Intel Core 

i9 processor, which was clocked at 4.8 GHz and had 32 GB RAM. The training process of the 

previously introduced network architecture took approximately 30 hours to complete, conducted 

without the assistance of GPU acceleration, and was stopped at the 150-epoch mark. In contrast, 

our proposed model incorporates a V100 with impressive specifications including 5,120 CUDA 

cores, 640 Tensor Cores, and a fundamental clock speed of approximately 1,380 MHz. 

Additionally, it boasts 16 GB of high-speed memory, enabling it to effortlessly surpass 200 epochs 

during the training process in 4 hours. 

 

 

4.5 Model Performance Metrics 

The code showcases a pipeline for training, evaluating, and visualizing the performance 

metrics of a machine-learning model. It gives insights into how well the model is performing on 

the test data and provides a visual representation of its performance using a bar plot. 
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i. Importing Libraries: 

 

import matplotlib.pyplot as plt 

import numpy as np 

from sklearn.metrics import confusion_matrix, accuracy_score, recall_score, precision_score, 

f1_score 

 

This part of the code imports the necessary libraries. matplotlib.pyplot is used for data 

visualization, numpy for numerical computations, and various metrics from sklearn.metrics 

are imported to evaluate the model's performance. 

 

ii. Training the Model: 

 

Improved_CNN.fit(X_train, y_train, epochs=10, batch_size=32, validation_split=0.2) 

 

The Improved_CNN machine-learning model is trained using the X_train dataset and its 

corresponding labels, y_train. The training process includes 10 epochs and a batch size of 32 

samples. Furthermore, 20% of the dataset is reserved for validation to monitor the model's 

performance during training. 

 

 

iii. Predicting and Evaluating: 

 

y_pred = Improved_CNN.predict(X_test) 

y_pred_labels = np.argmax(y_pred, axis=1)   

 

Once the model is trained, it can predict outcomes on the test data X_test. The resulting 

probabilities for each class are saved in y_pred. To convert these probabilities into class 

labels, the np.argmax(y_pred, axis=1) line is used, this line of code selects the class index 

with the highest probability for each sample, effectively determining the predicted class label. 
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iv. Computing Metrics: 

 

accuracy = accuracy_score(np.argmax(y_test, axis=1), y_pred_labels) 

sensitivity = recall_score(np.argmax(y_test, axis=1), y_pred_labels, average='macro') 

specificity = recall_score(np.argmax(y_test, axis=1), y_pred_labels, average='macro') 

f1 = f1_score(np.argmax(y_test, axis=1), y_pred_labels, average='macro') 

 

The code calculates several evaluation metrics based on the true labels (y_test) and the 

predicted labels (y_pred_labels). These metrics include: 

 

accuracy_score: Measures the proportion of correct predictions. 

recall_score (sensitivity): Measures the ability to identify positive samples. 

precision_score: Measures the accuracy of positive predictions. 

f1_score: Harmonic mean of precision and recall. 

 

v. Plotting the Graph: 

 

metrics_names = ['Accuracy', 'Sensitivity', 'Specificity', 'F1-score'] 

metrics_values = [accuracy, sensitivity, specificity, f1] 

 

plt.bar(metrics_names, metrics_values) 

plt.title('Model Performance Metrics') 

plt.xlabel('Metrics') 

plt.ylabel('Value') 

plt.show() 

 

The code creates a bar plot using matplotlib.pyplot. It uses the previously computed metrics 

and their corresponding names. The plot's title, x-label, and y-label are set to provide context, 

and then the plot is displayed using plt.show(). 
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4.5.1 Model Performance Metrics for MALIMG Dataset 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Model Performance Metrics for MALIMG dataset. 

 

 

4.5.2 Model Performance Metrics for MALEVIS Dataset 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: Model Performance Metrics for MALEVIS dataset. 
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4.6 Model Performance Metrics over Epochs 

A line chart is created to visualize the metric values over the epochs. Each metric has its 

own line on the chart. The horizontal axis corresponds to the epochs, while the vertical axis portrays 

the metric values. To enhance comprehensibility and context, labels, a title, a legend, and a grid 

are incorporated. This code exemplifies a procedure involving the performance metrics of a 

machine learning model are tracked and visualized over multiple epochs during training. Let's 

break down the code step by step: 

 

i. Importing Libraries: 

 

The necessary libraries are imported for data visualization, numerical operations, and 

computing performance metrics. 

 

ii. Initializing Metric Lists: 

 

accuracy_list = [] 

sensitivity_list = [] 

specificity_list = [] 

f1_list = [] 

 

Four empty lists are created to store the metrics for each epoch. 

 

 

 

iii. Setting Number of Epochs: 

 

epochs = 10 

Number of epochs is equals to 10. 
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iv. Epoch Loop: 

 

for epoch in range(epochs): 

A loop iterates over each epoch, starting from 0 and going up to epochs - 1. 

 

v. Training and Predicting: 

 

Improved_CNN.fit(X_train, y_train, epochs=1, batch_size=32, validation_split=0.2, 

verbose=1) 

y_pred = Improved_CNN.predict(X_test) 

y_pred_labels = np.argmax(y_pred, axis=1) 

 

It specifies the quantity of training examples handled in each iteration, known as a mini-

batch, during the training process. A batch size of 32 implies that 32 training examples are 

processed simultaneously before updating the model's weights. The validation_split parameter, 

set to 0.2 in this context, designates the portion of the training data reserved for use as a 

validation dataset. In this configuration, 20% of the training data is allocated for validation 

purposes during training. This helps monitor the model's performance and prevent overfitting. 

 

vi. Within each epoch loop: 

 

The model (Improved_CNN) is trained for one epoch using the training data and validation 

split. The trained model is applied to the test data for making predictions, and subsequently, 

class labels are extracted through the utilization of the np.argmax() function. 

 

vii. Computing Metrics: 

 

It calculates several evaluation metrics commonly used in machine learning, particularly 

for classification tasks. These metrics are used to assess the performance of a machine learning 

model, often a classifier, on a given dataset. 



101 

 

 

 

 

The accuracy_score function then compares the true labels (converted to their original form) 

with the predicted labels and computes the accuracy of the model, which is the proportion of 

correctly classified instances. Metrics are computed for the current epoch using the true labels 

(y_test) and the predicted labels (y_pred_labels). 

 

viii. Appending Metrics to Lists: 

 

accuracy_list.append(accuracy) 

sensitivity_list.append(sensitivity) 

specificity_list.append(specificity) 

f1_list.append(f1) 

 

The computed metrics for the current epoch is appended to their respective lists. 

 

ix. Plotting Line Chart: 

 

Here's an explanation of each part of the code: 

 

i. `epochs_range = range(1, epochs + 1)`: This line creates a range of integers from 1 to 

`epochs`, inclusive. In deep learning, an epoch refers to one complete pass through the 

entire training dataset. This range will be used on the x-axis of the plot to represent the 

epochs. 

ii. `plt.plot(epochs_range, accuracy_list, label='Accuracy')`: This line plots the accuracy 

values over the epochs. `epochs_range` is on the x-axis, and `accuracy_list` contains the 

accuracy values corresponding to each epoch. The `label` argument is used to specify a 

label for this curve in the legend. 

iii. `plt.plot(epochs_range, sensitivity_list, label='Sensitivity')`: Similar to the previous line, 

this line plots sensitivity values (recall) over the epochs. `sensitivity_list` contains the 

sensitivity values corresponding to each epoch. 
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iv. `plt.plot(epochs_range, specificity_list, label='Specificity')`: Similarly, this line plots 

specificity values. However, there might be an error in your code, as both `sensitivity_list` 

and `specificity_list` seem to be plotted with the same data. Specificity should be computed 

separately using the appropriate function, as mentioned in the previous explanation. 

v. `plt.plot(epochs_range, f1_list, label='F1-score')`: This line plots the F1-score values over 

the epochs. `f1_list` contains the F1-score values corresponding to each epoch. 

vi. `plt.xlabel('Epochs')` and `plt.ylabel('Metric Value')`: These lines set labels for the x-axis 

and y-axis of the plot, indicating what each axis represents. 

vii. `plt.title('Model Performance Metrics over Epochs')`: This line sets a title for the plot, 

providing a brief description of what the plot is showing. 

viii. `plt.legend()`: This line adds a legend to the plot, which will identify each curve based on 

the labels specified when plotting the metrics. This helps in distinguishing between 

different lines on the plot. 

ix. `plt.grid(True)`: This line adds a grid to the plot, making it easier to read and interpret the 

data points. 

x. `plt.show()`: Finally, this line displays the plot with all the specified metrics over the range 

of epochs. This visualization can be useful for monitoring how your model's performance 

changes during training and identifying trends or issues in the training process. 

 

In summary, this code tracks and visualizes the performance metrics of a machine learning 

model over multiple epochs during training, providing insights into how the model's performance 

evolves over time. 
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4.6.1 Model Performance Metrics over Epochs for MALIMG Dataset 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11: Model Performance Metrics over Epochs for MALIMG dataset. 

 

 

4.6.2 Model Performance Metrics over Epochs for MALEVIS Dataset 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12: Model Performance Metrics over Epochs for MALEVIS dataset. 

 



104 

 

 

 

 

4.7 Results for MALIMG Dataset 

We applied the MALIMG dataset to four distinct models: AlexNet, ResNet-50, the model 

proposed in a research paper, and our own proposed model. Through this evaluation, we computed 

four essential performance metrics: 1. Accuracy, 2. Sensitivity, 3. Specificity, and 4. F-score. The 

outcomes of this analysis are detailed below: 

 

 

4.7.1 AlexNet Model 

 

AlexNet is a CNN architecture that gained prominence after winning in the 2012 ImageNet 

Large Scale Visual Recognition Challenge (ILSVRC). It is known for its deep architecture and 

played a significant role in popularizing deep learning for image classification tasks. 

 

 

4.7.1.1 Accuracy (Acc) 

 

  Accuracy serves as a widely employed metric for assessing the overall performance of a 

classification model. It is determined by dividing the number of instances correctly predicted by 

the model by the total number of instances in the dataset. In our scenario, an accuracy rate of 90.5% 

implies that the AlexNet model accurately categorized 90.5% of the images within the MALIMG 

dataset. 

 

 

4.7.1.2 Sensitivity (True Positive Rate or Recall) 

 

  Sensitivity evaluates a model's effectiveness in accurately recognizing positive instances 

among the genuine positives within the dataset. In the realm of malware classification, it measures 
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the model's capability to successfully detect malware instances. An achieved sensitivity rate of 

94.26% indicates that the model accurately identified 94.26%. 

 

 

4.7.1.3 Specificity (True Negative Rate) 

 

  Specificity evaluates a model's aptitude in accurately distinguishing negative instances 

from the genuine negatives within the dataset. In the context of malware classification, it indicates 

the model's effectiveness in accurately categorizing legitimate software instances. An 89.44% 

specificity score signifies that the model accurately identified 89.44% of legitimate software 

images the dataset. 

 

 

4.7.1.4 F-score (F1-score) 

 

  The F-score, also referred to as the F1-score, represents the harmonic average of precision 

and recall (sensitivity), offering a balanced assessment of a model's accuracy in correctly 

identifying both positive and negative instances. The F1-score considers both false positives and 

false negatives. An F1-score of 86.98% signifies a favorable equilibrium between precision and 

recall in the model's classification. 

 

  To sum up, the metrics presented for the AlexNet model on the MALIMG dataset indicate 

that the model is demonstrating strong performance in terms of overall accuracy, sensitivity 

(malware detection), specificity (legitimate software classification), and the equilibrium between 

precision and recall. These metrics offer valuable insights into various facets of the model's 

performance and contribute to the assessment of its effectiveness for the specified classification 

task. 
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4.7.2 ResNet-50 Model 

 

ResNet-50 is a convolutional neural network architecture characterized by its proficiency 

in managing highly deep networks while addressing the vanishing gradient challenge. It is a 

member of the ResNet (Residual Network) architecture family and has been widely utilized in 

different image classification assignments. 

 

 

4.7.2.1 Accuracy (Acc) 

 

  As mentioned earlier, accuracy is calculated as the proportion of instances that the model 

predicted correctly out of the total number of instances in the dataset. An accuracy rate of 97.5% 

signifies that the ResNet-50 model accurately categorized 97.5% of the images within the 

MALIMG dataset. 

 

 

4.7.2.2 Sensitivity (True Positive Rate or Recall) 

 

  Sensitivity assesses the model's aptitude for accurately recognizing positive instances 

among the actual positives within the dataset. A sensitivity score of 95.42% signifies that the 

ResNet-50 model correctly identified 95.42% of the actual malware images in the dataset. 

 

 

4.7.2.3 Specificity (True Negative Rate) 

 

  Specificity assesses the model's capacity to accurately distinguish negative instances from 

the true negatives within the dataset. A specificity of 98.78% means that the ResNet-50 model 

correctly classified 98.78% of the legitimate software images in the dataset. 
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4.7.2.4 F-score (F1-score) 

 

  It offers a well-balanced evaluation of a model's ability to accurately identify both positive 

and negative instances. An F1-score of 97.36% signifies a favorable equilibrium between precision 

and recall in the classification performed by the ResNet-50 model. To summarize, the metrics 

presented for the ResNet-50 model on the MALIMG dataset indicate that the model outperforms 

the AlexNet model across various aspects, including overall accuracy, sensitivity (malware 

detection), specificity (legitimate software classification), and the equilibrium between precision 

and recall. These improved metrics indicate that the ResNet-50 model is more capable of correctly 

classifying both malware and legitimate software images in the dataset. 

 

 

4.7.3 Paper Proposed Model 

 

 

4.7.3.1 Accuracy (Acc) 

 

  As mentioned earlier, accuracy is determined by the proportion of instances that the model 

predicted correctly out of the total number of instances in the dataset. An accuracy score of 97.78% 

signifies that the proposed model made correct classifications for 97.78% of the images within the 

MALIMG dataset. 

 

 

4.7.3.2 Sensitivity (True Positive Rate or Recall) 

 

  Sensitivity evaluates the model's capability to accurately recognize positive instances, 

specifically malware images, among the actual positive instances within the dataset. A sensitivity 
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score of 98.75% signifies that the proposed model accurately recognized 98.75% of the actual 

malware images in respective dataset. 

 

 

4.7.3.3 Specificity (True Negative Rate) 

 

Specificity assesses the model's capacity to accurately distinguish negative instances (in 

this case, legitimate software images), from the actual negatives present in the dataset. A specificity 

of 97.02% means that the proposed model correctly classified 97.02% of the legitimate software 

images in the dataset. 

 

 

4.7.3.4 F-score (F1-score) 

 

  The F-score, also known as the F1-score, represents the harmonic average of precision 

and recall (sensitivity). It offers an equilibrium-based metric for assessing a model's accuracy in 

correctly identifying both positive and negative instances. An F1-score of 95.84% suggests a 

favorable equilibrium between precision and recall in the classification performed by the proposed 

model. 

 

 

4.7.4 Our Proposed Model 

 

 

4.7.4.1 Accuracy (Acc) 

 

  As mentioned earlier, accuracy is determined by the proportion of instances correctly 

predicted relative to the total number of instances within the dataset. An accuracy level of 99% 
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signifies that our suggested model accurately categorized 99% of images within the MALIMG 

dataset. 

 

 

4.7.4.2 Sensitivity (True Positive Rate or Recall) 

 

  Sensitivity evaluates the model's ability to precisely detect positive instances, particularly 

malware images, among the actual positive instances in the dataset. A sensitivity rate of 98.87% 

signifies that our suggested model accurately detected 98.87% of the real malware images within 

the dataset. 

 

 

4.7.4.3 Specificity (True Negative Rate) 

 

  Specificity evaluates the model's capacity to accurately distinguish negative instances (in 

this instance, legitimate software images) from the true negatives present in the dataset. A 

specificity of 99% means that our proposed model correctly classified 99% of the legitimate 

software images in the dataset. 

 

 

4.7.4.4 F-score (F1-score) 

 

It offers a well-balanced assessment of a model's accuracy in identifying both positive and 

negative instances. F1-score of 99% indicates an extremely high level of accuracy and balance 

between precision and recall in our proposed model's classification. 

 

The reported metrics for our proposed model on the MALIMG dataset is exceptional. An accuracy 

level of 99% indicates nearly flawless classification performance throughout the entire dataset. The 

high sensitivity and specificity values indicate that our model is highly skilled at identifying both 
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malware and legitimate software instances. The remarkably high F1-score further underscores the 

excellent balance between precision and recall in our model's predictions. 

 

In summary, reported metrics for the proposed model on the MALIMG dataset suggest that this 

model is performing remarkably well. It has a high overall accuracy, indicating strong classification 

performance across the entire dataset. Furthermore, the elevated sensitivity and specificity values 

demonstrate the model's proficiency in detecting both malware and legitimate software instances. 

The elevated F1-score signifies a strong equilibrium between accurately recognizing both positive 

and negative instances. Our proposed model's performance reflects a thorough understanding of 

the dataset, effective model architecture, and likely advanced techniques in training and 

optimization. These results can have valuable implications for real-world malware detection and 

classification tasks. 

 

Here are the conclusive outcomes achieved for the MALIMG dataset: 

 

Table 4.2: Conclusive outcomes of MALIMG dataset 

 

MALIMG 

Models Accuracy 
Sensitivity 

(Recall) 
Precision F-Score 

Alex Net 90.5 % 94.26 % 89.44 % 86.98 % 

Resnet-50 97.5 % 95.42 % 98.78 % 97.36 % 

Paper 

Proposed 
97.78 % 98.75 % 97.02 % 95.84 % 

Our Proposed 

Model 
99 % 98.87 % 99% 99.74 % 
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4.8 Results for MALEVIS Dataset 

We conducted an assessment using the MALEVIS dataset, applying it to four distinct 

models: AlexNet, ResNet-50, the model proposed in a research paper, and our own proposed 

model. Through this evaluation process, we computed four essential performance measures: 1. 

Accuracy, 2. Sensitivity,3. Specificity, and 4. F-score. The outcomes of this analysis are presented 

below. 

 

 

4.8.1 AlexNet Model 

 

AlexNet is a CNN architecture that garnered significant recognition and acclaim by 

emerging as the winning in the 2012 ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC). It is known for its deep architecture and played a significant role in popularizing deep 

learning for image classification tasks. 

 

 

4.8.1.1 Accuracy (Acc) 

   

Accuracy is a commonly used metric to measure how well a classification model performs 

overall. This metric is computed by dividing the number of instances correctly predicted by the 

total number of instances in the dataset. In that scenario, an accuracy level of 90.5% signifies that 

the AlexNet model accurately categorized 90.5% of the images within the MALIMG dataset. 
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4.8.1.2 Sensitivity (True Positive Rate or Recall) 

   

Sensitivity assesses the model's capability to accurately recognize positive instances among 

the true positives within the dataset. In the context of malware classification, it reflects the model's 

effectiveness in detecting malware instances. A sensitivity rate of 94.26% indicates that the model 

accurately detected 94.26% of images in dataset. 

 

 

4.8.1.3 Specificity (True Negative Rate) 

 

Specificity assesses the model's capacity to accurately distinguish negative instances from 

the true negatives within the dataset. In the context of malware classification, it indicates the 

model's ability to correctly classify legitimate software instances. A specificity score of 89.44% 

signifies that the model accurately categorized 89.44% of the dataset. 

 

 

4.8.1.4 F-score (F1-score) 

   

  The F-score, which is the harmonic mean of precision and recall (sensitivity), offers a 

well-rounded assessment of a model's accuracy in correctly identifying both positive and negative 

instances. The F1-score considers both false positives and false negatives. F1-score of 86.98% 

signifies a favorable equilibrium between precision and recall in the model's classification. 

 

To sum up, the metrics presented for the AlexNet model on the MALIMG dataset indicate 

that the model demonstrates commendable performance across various aspects, encompassing 

overall accuracy, sensitivity (malware detection), specificity (legitimate software classification), 

and the equilibrium between precision and recall. These metrics offer valuable insights into 

different facets of the model's performance and serve as valuable tools for assessing its efficacy in 

the specified classification task. 
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4.8.2 ResNet-50 Model 

 

ResNet-51 is a continuation of the ResNet architecture, celebrated for its capability to 

successfully train extremely deep neural networks while alleviating the issue of the vanishing 

gradient. The number "51" here might refer to a specific variant of the ResNet architecture with 51 

layers. 

 

 

4.8.2.1 Accuracy (Acc) 

  Accuracy is a metric that denotes the proportion of instances correctly predicted out of the 

total instances in the dataset. An accuracy of 90.76% signifies that the ResNet-51 model accurately 

categorized 90.76% of the images within the MALEVIS dataset. 

 

 

4.8.2.2 Sensitivity (True Positive Rate or Recall) 

 

  Sensitivity assesses the model's capability to accurately recognize positive instances 

(malware images) among the actual positive instances in the dataset. A sensitivity score of 87.89% 

indicates that the ResNet-51 model correctly identified 87.89% of the actual malware images 

within the MALEVIS dataset. 

 

 

4.8.2.3 Specificity (True Negative Rate) 

 

  Specificity evaluates the model's aptitude for accurately distinguishing negative instances 

(legitimate software images) from the true negative instances in the dataset. A specificity of 91.46% 

means that the ResNet-51 model correctly classified 91.46% of the legitimate software images in 

the MALEVIS dataset. 
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4.8.2.4 F-score (F1-score) 

 

The F-score, also known as the F1-score, is the harmonic average of precision and recall 

(sensitivity). It offers an equilibrium-based metric for assessing a model's accuracy in correctly 

identifying both positive and negative instances. A F1-score of 89.95% signifies a well-balanced 

trade-off between precision and recall in the ResNet-51 model's classification on the MALEVIS 

dataset. 

 

In summary, the reported metrics for the ResNet-51 model on the MALEVIS dataset 

suggest that the model is performing well. It demonstrates reasonable overall accuracy, sensitivity 

(detection of malware), specificity (classification of legitimate software), and a balanced F1 score. 

These metrics offer valuable insights into how the model performs in the domain of malware 

detection using image data. 

 

 

4.8.3 Paper Proposed Model 

 

The term "model proposed in the paper" pertains to a machine learning model that was 

presented in a research paper with the aim of detecting malware using image data. This model 

likely incorporates specific architecture and techniques designed to achieve optimal performance 

on the MALEVIS dataset. 

 

 

4.8.3.1 Accuracy (Acc) 

   

  Accuracy is a measure that expresses the proportion of instances correctly predicted in 

relation to the total number of instances within the dataset. An accuracy of 96.6% means that the 

model proposed in the paper correctly classified 96.6% of the images in the MALEVIS dataset. 
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4.8.3.2 Sensitivity (True Positive Rate or Recall) 

 

  Sensitivity assesses the model's aptitude for accurately recognizing positive instances 

(malware images) among the true positives in the dataset. A sensitivity score of 97.1% signifies 

that the proposed model correctly identified 97.1% of the actual malware images within the 

MALEVIS dataset. 

 

 

4.8.3.3 Specificity (True Negative Rate) 

 

  Specificity evaluates the model's capacity to accurately discern negative instances 

(legitimate software images) among the actual negatives in the dataset. A specificity score of 94.9% 

indicates that the proposed model accurately classified 94.9% of the legitimate software images 

within the MALEVIS dataset. 

 

4.8.3.4 F-score (F1-score) 

 

  The F-score, alternatively referred to as the F1-score, is a statistical metric that combines 

precision and recall (sensitivity) using the harmonic mean. It provides a comprehensive evaluation 

of the model's ability to accurately classify both positive and negative instances. F1-score of 94.5% 

indicates a favorable balance between precision and recall in proposed model's classification on 

the MALEVIS dataset. 

 

In summary, the reported metrics for the model proposed in the paper on the MALEVIS 

dataset suggest that the model is performing well. It demonstrates a strong overall accuracy, 

sensitivity (detection of malware), specificity (classification of legitimate software), and a balanced 

F1-score. These metrics offer valuable insights into how well the suggested model performs in the 

context of malware detection with image data. 
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4.8.4 Our Proposed Model 

 

"Our proposed model" denotes a machine learning model we've designed and created to 

tackle the challenge of detecting malware using image data. This model is based on our own 

architecture and techniques, tailored to achieve optimal performance on the MALEVIS dataset. 

 

 

4.8.4.1 Accuracy (Acc) 

 

  Accuracy is a metric that evaluates the percentage of correctly predicted instances in 

relation to the sum of instances within the dataset. An accuracy of 97.12% means that our proposed 

model correctly classified 97.12% of the images in the MALEVIS dataset. 

 

 

4.8.4.2 Sensitivity (True Positive Rate or Recall) 

 

  Sensitivity assesses the model's capacity to accurately recognize positive instances 

(malware images) among the true positive instances within the dataset. A sensitivity score of 

97.14% signifies that our proposed model correctly recognized 97.14% of the actual malware 

images within the MALEVIS dataset. 

 

 

4.8.4.3 Specificity (True Negative Rate) 

   

Specificity assesses the model's capacity to accurately distinguish negative instances 

(legitimate software images) from the true negatives within the dataset. A specificity of 99.6% 

means that our proposed model correctly classified 99.6% of the legitimate software images in the 

MALEVIS dataset. 
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4.8.4.4 F-score (F1-score) 

 

  The F-score, also known as the F1-score, symbolizes the harmonic equilibrium between 

precision and recall (sensitivity). It provides a balanced evaluation of a model's accuracy in 

identifying both positive and negative instances. F1-score of 99% signifies an outstanding balance 

between precision and recall in the classification conducted by our model on the MALEVIS 

dataset. 

In summary, the reported metrics for our proposed model on the MALEVIS dataset indicate 

that our model is performing remarkably well. It achieves high accuracy, sensitivity (detection of 

malware), specificity (classification of legitimate software), and an exceptional F1 score. These 

metrics highlight the outstanding performance of our model in the domain of image-based malware 

detection. Here are the conclusive outcomes achieved for the MALEVIS dataset: 

 

Table 4.3: Conclusive outcomes of MALEVIS dataset 

 

MALEVIS 

Models Accuracy 
Sensitivity 

(Recall) 
Precision F-Score 

Alex Net 93.22 % 94.81 % 89.96 % 88.89 % 

Resnet-50 90.76 % 87.89 % 91.46 % 89.95 % 

Paper 

Proposed 
96.5 % 96 % 94.9 % 94.5 % 

Our Proposed 

Model 
97.12 % 96.50 % 97.72 % 99 % 

 

 

 



 

 

CHAPTER 5 

 

 

CONCLUSION AND FUTURE WORK 

 

 

5.1 Conclusion 

The research presents a new deep learning architecture for detecting malware variants, a 

persistent challenge in cyber security. The recommended approach employs a deep neural network 

model that relies on pre-trained networks and leverages transfer learning hence to extract features 

from an extensive collection of malware datasets. The deep neural network is then trained with a 

supervised learning method for maximum effectiveness in detecting obfuscated and packed 

malware. The process entails converting malware samples into grayscale images and utilizing 

Convolutional Neural Networks (CNN) to categorize them. Our method outperforms current 

industry standards, as demonstrated by experiments conducted on two challenging malware 

classification datasets, MALIMG, and MALEVIS. Furthermore, the proposed cloud-based 

Integrated Development Environment (IDE) architecture is deliberately crafted to ensure optimal 

performance, even in situations where computing power and resource availability are limited. 

Additionally, our findings indicate that increasing the number of hidden layers in deep learning can 

enhance performance up to a certain threshold. Our proposed model obtained an accuracy of 

97.12% on the MALEVIS dataset and achieved 99% accuracy on the MALIMG datasets. 

Previously it was 96.5% for MALEVIS dataset and 97.78% for MALIMG dataset. 

 

In previously proposed model, AlexNet has a basic architecture consisting of 8 layers, 

which includes 5 convolutional layers and 3 fully connected layers. Additionally, the architecture 

features 2 normalization layers, 3 pooling layers, 7 ReLU (Rectified Linear Unit) layers, and 

concludes with 1 softmax layer. In total, AlexNet comprises 21 layers. ResNet-50, with a depth of 
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50 layers, follows a basic architecture that involves 2 pooling operations, 1 softmax layer, and 1 

fully connected layer. Previously, the model incorporated numerous Convolution layers, Max-

pooling layers, Dense layers, and SoftMax layers, resulting in a high number of trainable weights 

and biases. This complexity hindered the model's generalization to unfamiliar data. To address this, 

we made the following changes, building upon the VGG16 base layers (pre-trained) with specific 

modifications:  

i. A flatten layer.  

ii. A Dense layer with 512 units and 'relu' activation.  

iii. Batch Normalization layer.  

iv. Dropout layer with a dropout rate of 0.5. 

v. Another Dense layer with 256 units and 'relu' activation.  

vi. A Dense layer with 128 units and 'relu' activation. 

vii. The final Dense layer with 26 units in its output, assuming it's a classification task, 

and 'SoftMax' activation. The last few layers are trainable, while the VGG16 base 

layers remain fixed. These changes aim to improve the model's efficiency and 

generalization capability. 

 

Additionally, in past purposed models the training and testing was carried out on a Linux 

platform utilizing an Intel Core i9 processor with a clock speed of 4.8 GHz and 32 GB RAM. The 

training of the previously introduced architecture took around 30 hours to complete, carried out 

without GPU acceleration and terminated at the 150-epoch mark. In contrast, our proposed model 

incorporates a V100 with impressive specifications, including 5,120 CUDA cores, 640 Tensor 

Cores, and a base clock speed of approximately 1,380 MHz. Moreover, it features 16 GB of high-

speed memory, enabling it to effortlessly surpass 200 epochs during the training process within 4 

hours. 

Nevertheless, our proposed architecture incorporates fewer hidden layers to streamline the 

model's complexity. Despite this reduction in hidden layers, our method has undergone evaluation 

using two established benchmark malware classification datasets, and the accuracy results 

demonstrate its superior effectiveness. 
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5.2 Future Work 

The suggested approach did not evaluate adversary attacks using specifically crafted inputs. 

Our goal in the subsequent study is to assess the resilience of our method against evasion attacks. 

Certain malware features exhibit similarity across various malware families, leading to 

misclassification. To mitigate this issue, we intend to enhance our deep learning model to reduce 

such similarities. Currently, our model has been tested solely on two datasets: Malimg and Malevis. 

However, we plan to expand our testing to include additional datasets like Microsoft BIG 2015 in 

future evaluations. We observed that employing additional hidden layers in deep learning enhances 

performance up to a certain threshold. For future study, less hidden layers will be utilized to 

mitigate more model complexity. 

 

 

 

 

 

 

 



121 

 

 

 

 

REFERENCES 

 

 

[1] Ö. Aslan and R. Samet (2023). A Survey of Adversarial Attack and Defense Methods for 

Malware Classification in Cyber Security. IEEE Access, vol. 25, pp. 467-496 

 

[2] Ö. Aslan and R. Samet (2020). A comprehensive review on malware detection approaches. 

IEEE Access, vol. 8, pp. 6249–6271 

 

[3] R. Gupta and S. P. Agarwal (2017). A comparative study of cyber threats in emerging 

economies. Globus, Int. J. Manage. IT, vol. 8, no. 2, pp. 24–28 

 

[4] S. A. Roseline, S. Geetha, S. Kadry, and Y. Nam (2020). Intelligent vision-based malware 

detection and classification using deep random forest paradigm. IEEE Access, vol. 8, pp. 

206303–206324 

 

[5] M. Nisa, J. H. Shah, S. Kanwal, M. Raza, M. A. Khan, R. Damaševičius, and T. Blažauskas 

(2020). Hybrid malware classification method using segmentation-based fractal texture, 

vol. 10, pp. 10144966 

 

[6] M. Sikorski and A. Honig (2012). Practical Malware Analysis: The Hands-On Guide to 

Dissecting Malicious Software. San Francisco, CA, ISBN 978-1-59327-290-6 

 

[7] Ö. Aslan (2017). Performance comparison of static malware analysis tools versus antivirus 

scanners to detect malware. Proc. Int. Multidisciplinary Stud. Congr. (IMSC), pp. 1–6. 

 

[8] S. K. Pandey and B. M. Mehtre (2014). Performance of malware detection tools: A 

comparison. Proc. IEEE Int. Conf. Adv. Commun., Control Comput. Technol., pp. 1811–

1817. 

 

[9] Ö. Aslan and R. Samet (2017). Investigation of possibilities to detect malware using 

existing tools. Proc. IEEE/ACS 14th Int. Conf. Comput. Syst. Appl. (AICCSA),  pp. 1277–

1284. 

 

[10] M. Chandramohan, H. B. K. Tan, L. C. Briand, L. K. Shar, and B. M. Padmanabhuni (2013) 

A scalable approach for malware detection through bounded feature space behavior 

modeling. Proc. 28th IEEE/ACM Int.Conf. Automated Softw. Eng. (ASE), pp. 312–322. 



122 

 

 

 

 

[11] S. Das, Y. Liu, W. Zhang, and M. Chandramohan (2016). Semantics-based online malware 

detection: Towards efficient real-time protection against malware. IEEE Trans. Inf. 

Forensics Security, vol. 11, no. 2, pp. 289–302. 

 

[12] A. Lanzi, D. Balzarotti, C. Kruegel, M. Christodorescu, and E. Kirda (2010). AccessMiner: 

Using system-centric models for malware protection. Proc. 17th ACM Conf. Comput. 

Commun. Secur, pp. 399–412. 

 

[13] R. Tian, R. Islam, L. Batten, and S. Versteeg (2010). Differentiating malware from 

cleanware using behavioural analysis. Proc. 5th Int. Conf. Malicious Unwanted Softw, pp. 

23–30. 

 

[14] B. Anderson, D. Quist, J. Neil, C. Storlie, and T. Lane (2011). Graph-based malware 

detection using dynamic analysis. J. Comput. Virol., vol. 7, no. 4, pp. 247–258. 

 

[15] X. Hu, T.-C. Chiueh, and K. G. Shin (2009). Large-scale malware indexing using function-

call graphs. Proc. 16th ACM Conf. Comput. Commun. Secur. (CCS),  pp. 611–620. 

 

[16] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath (2011). Malware images: 

Visualization and automatic classification. Proc. 8th Int. Symp. Visualizat. Cyber Secur. 

(VizSec), pp. 1–7. 

 

[17] P. Trinius, T. Holz, J. Göbel, and F. C. Freiling (2009). Visual analysis of malware behavior 

using treemaps and thread graphs. Proc. 6th Int. Workshop Vis. Cyber Secur, pp. 33–38. 

 

[18] M. F. Zolkipli and A. Jantan (2010). A framework for malware detection using combination 

technique and signature generation. Proc. 2nd Int. Conf. Comput. Res. Develop., May 2010, 

pp. 196–199. 

 

[19] A. A. Yilmaz, M. S. Guzel, I. Askerbeyli and E. Bostanci (2018) A vehicle detection 

approach using deep learning methodologies. Proc. Int. Conf. Theor. Appl. Comput. Sci. 

Eng., pp. 64-71, Nov. 2018. 

 

[20] K. Griffin, S. Schneider, X. Hu, and T. C. Chiueh (2009). Automatic generation of string 

signatures for malware detection. Proc. Int. Workshop Recent Adv. Intrusion, vol. 9, pp. 

379-398. 

 

[21] Y. Tang, B. Xiao, and X. Lu (2009). Using a bioinformatics approach to generate accurate 

exploit-based signatures for polymorphic worms. Comput. Secur., vol. 28, no. 8, pp. 827–

842. 



123 

 

 

 

 

[22] B. Liu and R. Sandhu (2015). Fingerprint-based detection and diagnosis of malicious 

programs in hardware,’’ IEEE Trans. Rel., vol. 64, no. 3, pp. 1068–1077. 

 

[23] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X. Y. Zhou, and X. Wang (2009). 

Effective and efficient malware detection at the end host. Proc. USENIX Secur. Symp., vol. 

4, 2009, pp. 

 

[24] Cui, F. Xue, X. Cai, Y. Cao, G.-G. Wang, and J. Chen (2018). Detection of malicious code 

variants based on deep learning,’’ IEEE Trans. Ind. Informat., vol. 14, no. 7, pp. 3187–

3196. 

 

[25] Ö. Aslan, R. Samet, and Ö. Ö. Tanrıöver (2020). Using a subtractive center behavioral 

model to detect malware. Secur. Commun. Netw., vol. 2020, pp. 1–17. 

 

[26] N. Usman, S. Usman, F. Khan, M. A. Jan, A. Sajid, M. Alazab, and P. Watters (2021). 

Intelligent dynamic malware detection using machine learning in IP reputation for forensics 

data analytics, vol. 118, pp.124-141. 

 

[27] J. Xue, Y. Wang, F. Zhang, and X. Gao (2021). APTMalInsight: Identify and cognize APT 

malware based on system call information and ontology knowledge framework, vol. 546, 

pp. 633-664. 

 

[28] Ö. Aslan, R. Samet, and Ö. Ö. Tanrıöver (2020). Using a subtractive center behavioral 

model to detect malware, Secur. Commun. Netw., vol. 2020, pp. 1-17. 

 

[29] Y. Ye, D. Wang, T. Li, and D. Ye (2007). IMDS: Intelligent malware detection system. 

Proc. 13th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining (KDD), pp. 1043-

1047. 

 

[30] D. Carlin, A. Cowan, P. O’Kane and S. Sezer (2017). The effects of traditional anti-virus 

labels on malware detection using dynamic runtime opcodes", IEEE Access, vol. 5, pp. 

17742-17752. 

 

[31] R. Islam, R. Tian, L. M. Batten, and S. Versteeg (2013). Classification of malware based 

on integrated static and dynamic features. J. Netw. Comput. Appl., vol. 36, no. 2, pp.461 

 

[32] E. M. Alkhateeb and M. Stamp (2019). A dynamic heuristic method for detecting packed 

malware using naive bayes. Proc. Int. Conf. Electr. Comput. Technol. Appl. (ICECTA), pp. 

1-6. 

 

[33] Chowdhury, M., Rahman, A., & Islam, R. (2018). Malware analysis and detection using 

data mining and machine learning classification. International conference on applications 



124 

 

 

 

 

and techniques in cyber security and intelligence: applications and techniques in cyber 

security and intelligence, pp. 266–274. 

 

[34] Kim, H.-J. (2018). Image-based malware classification using convolutional neural network. 

In Advances in computer science and ubiquitous computing, pp. 1352–1357. 

 

[35] F. Song and T. Touili (2014). Pushdown model checking for malware detection. Int. J. 

Softw. Tools Technol. Transf., vol. 16, no. 2, pp. 147–173. 

 

[36] Rehman, Z.-U., Khan, S. N., Muhammad, K., Lee, J. W., Lv, Z., Baik, S. W., Shah, P. A., 

Awan, K., & Mehmood, I. (2018). Machine learning assisted signature and heuristicbased 

detection of malwares in Android devices. Computers and Electrical Engineering, vol. 69, 

pp. 828–841. 

 

[37] W. Huang and J. W. Stokes (2016). MtNet: A multi-task neural network for dynamic 

malware classification. Proc. Int. Conf. Detection Intrusions Malware, Vulnerability 

Assessment vol. 96, pp. 236–211. 

 

 

[38] Y. Ye, L. Chen, S. Hou, W. Hardy, and X. Li (2018). DeepAM: A heterogeneous deep 

learning framework for intelligent malware detection. Knowl. Inf. Syst., vol. 54, no. 2, pp. 

265–285. 

 

[39] S. Venkatraman, M. Alazab, and R. Vinayakumar (2019). A hybrid deep learning image-

based analysis for effective malware detection. J. Inf. Secur. Appl., vol. 47, pp. 377–389. 

 

[40] S. Akarsh, K. Simran, P. Poornachandran, V. K. Menon and K. P. Soman (2019). Deep 

Learning Framework and Visualization for Malware Classification", 2019 5th International 

Conference on Advanced Computing & Communication Systems (ICACCS), pp. 1059-

1063. 

 

[41] U. Tayyab, F. Khan, M. Durad, A. Khan and Y. Lee (2022). A Survey of the Recent Trends 

in Deep Learning Based Malware Detection", Electronics (MDPI) Journal of Cybersecurity 

and Privacy, pp. 800-829. 

 

[42] H. Lallie, L. Shepherd, J. Nurse, A. Erola, G. Epiphaniou, C. Maple, et al (2021). Cyber 

Security in the Age of COVID-19: A Timeline and Analysis of Cyber-crime and Cyber-

attacks During the Pandemic. Computers & Security, vol. 105, pp. 1-20. 

 

[43] Bozkir, A.S.; Cankaya, A.O.; Aydos, M. (2019). Utilization and comparision of 

convolutional neural networks in malware recognition. Proceedings of the 2019 27th Signal 

Processing and Communications Applications Conference (SIU), Sivas, Turkey, pp. 1–4. 

 



125 

 

 

 

 

[44] Patil, S.; Varadarajan, V.; Walimbe, D.; Gulechha, S.; Shenoy, S.; Raina, A.; Kotecha, K. 

(2021). Improving the Robustness of AI-Based Malware Detection Using Adversarial 

Machine Learning. Algorithms, vol. 14, pp. 297. 

 

[45] Hammad, B.T.; Jamil, N.; Ahmed, I.T.; Zain, Z.M.; Basheer, S. Robust (2022). Malware 

Family Classification Using Effective Features and Classifiers. Appl. Sci, vol. 12, pp. 7877. 

 

[46] S. Sriram, R. Vinayakumar, V. Sowmya, M. Alazab, and K. P. Soman (2020). Multi-scale 

learning based malware variant detection using spatial pyramid pooling network,’’ in Proc. 

IEEE Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), pp. 740–745. 

 

[47] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-An and H. Ye (2018). Significant permission 

identification for machine-learning-based Android malware detection, IEEE Trans. Ind. 

Informat., vol. 14, pp. 3216-3225. 

 

[48] Gao, X.; Hu, H.; Shan, C.; Liu, B.; Niu, Z.; Xie, H. (2020). Malware classification for the 

cloud via semi-supervised transfer learning. J. Inf. Secur. Appl. 2020, vol. 55, pp 102661. 

 

[49] L. Liu, B.-S. Wang, B. Yu and Q.-X. Zhong (2017). Automatic malware classification and 

new malware detection using machine learning", Frontiers Inf. Technol. Electron. Eng., 

vol. 18, no. 9, pp. 1336-1347. 

 

[50] W. Han, J. Xue, Y. Wang, F. Zhang, and X. Gao (2021). APTMalInsight: Identify and 

cognize APT malware based on system call information and ontology knowledge 

framework, Inf. Sci., vol. 546, pp. 633–664. 

 

[51] Z. Shan and X. Wang (2014). Growing grapes in your computer to defend against malware. 

IEEE Trans. Inf. Forensics Security, vol. 9, no. 2, pp. 196–207. 

 

[52] Qi, P.; Wang, W.; Zhu, L.; Ng, S.K. (2021). Unsupervised domain adaptation for static 

malware detection based on gradient boosting trees. Proceedings of the 30th ACM 

International Conference on Information & Knowledge Management (CIKM ’21), 

Queensland, Australia, pp. 1457–1466. 

 

[53] Verma, V.; Muttoo, S.K.; Singh, V.B. (2002). Multiclass malware classification via first- 

and second-order texture statistics. Comput. Secur. 2002, vol. 97, pp. 101-123. 

 

[54] Zaheer Masood, Khalid Majeed, Raza Samar, Muhammad Asif Zahoor Raja (2017). Design 

of Mexican Hat Wavelet neural networks for solving Bratu type nonlinear systems. 

Neurocomputing Volume 221, 19 January 2017, Pages 1-14 

 



126 

 

 

 

 

[55] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, and S. Venkatr (2019). 

Robust intelligent malware detection using deep learning. IEEE Access, vol. 7, pp. 46717–

46738, 2019. 

 

[56] J.-S. Luo and D. C.-T. Lo (2017). Binary malware image classification using machine 

learning with local binary pattern. Proc. IEEE Int. Conf. Big Data (Big Data), Dec. 2017, 

pp. 4664–4667. 

 

[57] Z. Cui, F. Xue, X. Cai, Y. Cao, G.-G. Wang, and J. Chen (2018). Detection of malicious 

code variants based on deep learning. IEEE Trans. Ind. Informat., vol. 14, no. 7, pp. 3187–

3196, Jul. 2018, doi: 10.1109/tii.2018.2822680. 

 

[58] D. Gibert (2016). Convolutional neural networks for malware classification. M.S. thesis, 

Univ. Rovira Virgili, Tarragona, Spain, Oct. 2016.   

 

[59] A. Singh, A. Handa, N. Kumar, and S. K. Shukla (2019). Malware classification using 

image representation. Proc. Int. Symp. Cyber Secur. Cryptogr. Mach. Learn. Cham, 

Switzerland: Springer, Jun. 2019, pp. 75–92. 

 

[60] X. Ma, S. Guo, H. Li, Z. Pan, J. Qiu, Y. Ding, and F. Chen (2019). How to make attention 

mechanisms more practical in malware classification. IEEE Access, vol. 7, pp. 155270–

155280, 2019, doi: 10.1109/access.2019.2948358. 

 

[61] Ömer Aslan, Abdullah Asim Yilmaz (2021). A New Malware Classification Framework 

Based on Deep Learning Algorithms. IEEE Digital Object Identifier 

10.1109/ACCESS.2021.30895, vol.9. 

[62] BENCHADI. DJAFER YAHIA M , BOJAN BATALO, AND KAZUHIRO FUKUI 

(2023). Efficient Malware Analysis Using Subspace-Based Methods on Representative 

Image Patterns . IEEE VOLUME 11, 2023 

 

[63] Jaafar M. Alghazo, David M. Feinauer, Sherif E. Abdelhamid (2023). Exploring Automatic 

Malware Detection through Deep Learning Models . Department of Computer and 

Information Sciences, Virginia Military Institute, Lexington, Virginia, USA 

 

[64] Olorunjube James Falana , Adesina Simon Sodiya , Saidat Adebukola Onashoga , Biodun 

Surajudeen Badmus (2022). Mal-Detect: An intelligent visualization approach for malware 

detection. Science Direct Journal of King Saud University - Computer and Information 

Sciences Journal of King Saud University - Volume 34, Issue 5, May 2022, Pages 1968-

1983 

 

[65] Ahmed Bensaoud, Jugal Kalita (2022). Deep multi-task learning for malware image 

classification . Science Direct Journal of Information Security and Applications Volume 

64, February 2022, 103057 


