

A HYBRID DL-BASED FRAMEWORK TO

CLASSIFY MALWARE USING MEXICAN HAT

WAVELET FUNCTION

By

AFRASIAB YOUNIS

NATIONAL UNIVERSITY OF MODERN LANGUAGES

ISLAMABAD

JANUARY, 2024

A Hybrid Dl-Based Framework to Classify Malware Using

Mexican Hat Wavelet Function

By

Afrasiab Younis

BSCS, University of Engineering and Technology, Taxila, 2019

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

In Computer Science

To

FACULTY OF ENGINEERING & COMPUTER SCIENCE

NATIONAL UNIVERSITY OF MODERN LANGUAGES ISLAMABAD

© Afrasiab Younis, 2024

ii

THESIS AND DEFENSE APPROVAL FORM

The undersigned certify that they have read the following thesis, examined the defense,

are satisfied with overall exam performance, and recommend the thesis to the Faculty of

Engineering and Computer Sciences for acceptance.

Thesis Title: A Hybrid DL-Based Framework to Classify Malware using Mexican Hat

Wavelet Function.

Submitted By: Afrasiab Younis

Registration #: 58 MS/CS/S21

Master of Science in Computer Science

Degree Name in Full

Computer Science

Name of Discipline

Dr. Moeenuddin Tariq

Research Supervisor Signature of Research Supervisor

Mr. Farhad

Research Co-Supervisor Signature of Research Co-Supervisor

Dr. Sajjad Haider

Head of Department (CS) Signature of HoD (CS)

Dr, M. Noman Malik

Name of Dean (FE&CS) Signature of Dean (FE&CS)

 January 8th, 2024

iii

AUTHOR’S DECLARATION

I Afrasiab Younis

Son of Muhammad Aslam

Registration # MSCS-S21-118

Discipline Computer Science

Candidate of Master of Science in Computer Science (MSCS) at the National University of

Modern Languages do hereby declare that the thesis A Hybrid DL-Based Framework to Classify

Malware using Mexican Hat Wavelet Function submitted by me in partial fulfillment of MSCS

degree, is my original work, and has not been submitted or published earlier. I also solemnly declare

that it shall not, in future, be submitted by me for obtaining any other degree from this or any other

university or institution. I also understand that if evidence of plagiarism is found in my

thesis/dissertation at any stage, even after the award of a degree, the work may be cancelled and

the degree revoked.

 Signature of Candidate

 Afrasiab Younis

 Name of Candidate

 January 8th,2024
 Date

iv

ABSTRACT

Title: A Hybrid DL-Based Framework to Classify Malware using Mexican Hat Wavelet

Function.

Detecting and categorizing malware represents a substantial and demanding undertaking within the

realm of information security and various other computer-related domains. Millions of malicious

files are detected annually. The high volume is largely due to malware authors using mutations to

evade detection, Malware variants are constantly evolving through the use of advanced obfuscation

and packing methods, making detection and classification increasingly difficult. In order to

efficiently examine and categorize a substantial volume of files, it becomes imperative to group

them and ascertain their behavioral characteristics to classify them effectively. In recent, most

malware classification techniques have been based on machine learning or deep learning models.

These models work with the train and test. The models are trained with the features, for instance,

opcode sequence, API calls, signature, etc. Recently, many deep learning techniques have been

proposed for Alex Net Network, Resnet-50 Network, and Hybrid (AlexNet-Resnet-50). These

models work well in terms of accuracy, Sensitivity, and so forth. However, these models are

complex in nature and need high computational power. In order to adequately confront the

difficulty presented by emerging malware variations, it becomes essential to employ alternative

approaches, as conventional artificial intelligence and machine learning algorithms are no longer

capable of identifying all intricate and constantly changing variants. A promising solution is deep

learning, which differs from traditional machine learning. This study proposes a Mexican hat

wavelet function that classifies malware variants through a hybrid deep learning model in this

approach, malware samples undergo conversion into grayscale images before being fed into the

DL system. Following the image acquisition section, the proposed method employs the convolution

layers of the hybrid architecture to extract high-level malware features from the malware images

with cloud-based architecture to decrease the computational intricacy, and neural network

complexity to achieve higher accuracy. Upon subjecting the proposed method to testing using the

MALIMG dataset, an accuracy of 99% was achieved. Similarly, when applied to the MALEVIS

dataset, an accuracy of 97.12% was attained, outperforming the majority of machine learning-based

methods employed for malware detection.

v

TABLE OF CONTENTS

CHAPTER TITLE

 PAGE

 AUTHOR’S DECLARATION iii

 ABSTRACT iv

 TABLE OF CONTENTS v

 LIST OF TABLES ix

 LIST OF FIGURES x

 LIST OF ABBREVIATIONS xii

 LIST OF SYMBOLS xiii

 ACKNOWLEDGEMENT xiv

 DEDICATION xv

1 INTRODUCTION 1

 1.1 Overview 1

 1.2 Types of Malware 2

 1.2.1 Virus 2

 1.2.2 Worm 3

 1.2.3 Spyware 5

 1.2.4 Torjan 7

 1.2.5 Ransomware 9

 1.3 Malware Analysis 11

 1.3.1 Static Analysis 12

 1.3.2 Dynamic Analysis 13

 1.4 Malware Analysis Using Deep Learning Techniques 14

 1.5 Malware Feature Extraction Techniques 15

vi

1.5.1 N-Gram Technique, M-Bag Technique and

K-Tuple Technique

 17

 1.5.2 Graph-Based Techniques 17

 1.5.3 Vision-Based Techniques 18

 1.6 Malware Visualization 18

 1.7 Problem Statement 19

 1.8 Reserch Motivation 19

 1.9 Research Questions 20

 1.10 Research Objective 20

 1.11 Thesis Organization 20

2 LITERATURE REVIEW 22

 2.1 Approaches for Detecting and Classifying Malware 22

 2.1.1 Approach for Malware Detection and

Classification Based on Signatures

 22

 2.1.2 Approach to Detecting and Classifying

Malware on Behavior-Based

 25

 2.1.3 Approach to Malware Detection and

Classification Based on Heuristics

 29

 2.1.4 Approach to Malware Detection and

Classification Based on Model Checking

 33

 2.2 Approach to Malware Detection and Classification

Utilizing Deep Learning

 36

 2.2.1 Convolutional Neural Networks 40

 2.2.2 Non-Linearity (ReLU) 43

 2.2.3 Pooling Layer 46

 2.2.4 Fully connected layer 49

 2.2.5 SoftMax Function 52

 2.3 Performance Metrics 54

 2.3.1 Accuracy 54

 2.3.2 Sensitivity (True Positive Rate or Recall) 55

vii

 2.3.3 Specificity (True Negative Rate) 56

 2.3.4 F-score (F1-Score) 57

 2.4 Conclusion 58

3 METHODOLOGY 60

 3.1 Visualizing malware as images 60

 3.2 Proposed Framework 62

 3.3 Data Sets 64

 3.3.1 MALIMG Dataset 64

 3.3.2 MALEVIS Dataset 66

4 IMPLEMENTATION AND EVALUATIONS 68

 4.1 Overview 68

 4.1.1 TensorFlow 69

 4.1.2 Keras 71

 4.1.3 NumPy 72

 4.1.4 Seaborn 74

 4.1.5 Scikit-learn 76

 4.1.6 Matplotlib.pyplot 78

 4.1.7 Google Collaboratory 79

 4.1.8 Our Proposed Model 81

 4.2 Accuracy 83

 4.2.1 MALIMG Dataset 85

 4.2.2 MALEVIS Dataset 87

 4.3 Confusion Matrix 89

 4.3.1 MALIMG Dataset 90

 4.3.2 MALEVIS Dataset 92

 4.4 Model Complexity 94

 4.5 Model Performance Metrics 95

viii

 4.5.1 Model Performance Metrics for MALIMG

Dataset

 98

 4.5.2 Model Performance Metrics for MALEVIS

Dataset

 98

 4.6 Model Performance Metrics over Epochs 99

 4.6.1 Model Performance Metrics over Epochs for

MALIMG Dataset

 103

 4.6.2 Model Performance Metrics over Epochs for

MALEVIS Dataset

 103

 4.7 Results for MALIMG Dataset 104

 4.7.1 AlexNet Model 104

 4.7.2 ResNet-50 Model 106

 4.7.3 Paper Proposed Model 107

 4.7.4 Our Proposed Model 108

 4.8 Results for MALEVIS Dataset 111

 4.7.1 AlexNet Model 111

 4.7.2 ResNet-50 Model 113

 4.7.3 Paper Proposed Model 114

 4.7.4 Our Proposed Model 116

5 CONCLUSION AND FUTURE WORK 118

 5.1 Conclusion 118

 5.2 Future Work 118

REFERENCES 120

ix

LIST OF TABLES

TABLE NO.

TITLE PAGE

2.1 Conclusive literature review. 58

4.1 Accuracy of MALIMG and MALEVIS datasets. 84

4.2 Conclusive outcomes of MALIMG dataset 110

4.3 Conclusive outcomes of MALEVIS dataset 117

x

LIST OF FIGURES

FIGURE NO. TITLE PAGE

1.1 The process of analyzing, detecting, and categorizing

malware.

 14

2.1 CO with Karnal 3 and Stride 2. 41

2.2 Pooling types. 47

3.1 Binary codes to grayscale images. 60

3.2 MALEVIS grayscale images. 61

3.3 Proposed methodology for malware classification. 62

3.4 Flowchart of DL architecture for malware classification. 63

3.5 Names and percentage distribution of the MALIMG dataset. 65

3.6 Import the MALIMG dataset in Web IDE. 66

3.7 Names and percentage distribution of the MALEVIS

dataset.

 67

3.8 Import the MALEVIS dataset in Web IDE. 67

4.1 Number of layers trainable weights and biases (params)

utilized for MALIMG dataset.

 82

4.2 Number of layers trainable weights and biases (params)

utilized for MALEVIS dataset.

 83

4.3 Accuracy for MALIMG Dataset. 84

4.4 Accuracy for MalVis Dataset. 84

4.5 Graphs depicting the growth of Training accuracy (in red)

and Validation accuracy (in blue) as the number of epochs

increases on the MALIMG dataset.

 86

4.6 Graphs depicting the growth of Training accuracy (in red)

and Validation accuracy (in blue) as the number of epochs

increases on the MALEVIS Dataset.

 89

4.7 Confusion Matrix on MALIMG dataset 91

4.8 Confusion Matrix on MALEVIS dataset. 93

xi

4.9 Model Performance Metrics for MALIMG dataset. 98

4.10 Model Performance Metrics for MALEVIS dataset. 98

4.11 Model Performance Metrics over Epochs for MALIMG

dataset.

 103

4.12 Model Performance Metrics over Epochs for MALEVIS

dataset.

 103

xii

LIST OF ABBREVIATIONS

API - Application Programming Interface

APT - Advanced Persistent Threats

BOFM - Behavior Oriented Feature Model

CNN - Convolutional Neural Network

CTPL - Computation Tree Predicate Logic

DL - Deep learning

FP - Frequent Pattern growth algorithm

Malware - Malicious software

MtNet - A Multi-Task Neural Network

MALIMG - Malicious Image

MALEVIS - Malware Evaluation with Vision

NLP - Natural language processing

RGB - Red, Green and Blue

ReLU - Rectified Linear Unit.

SCBM - Semantic-Centric Behavioral Model

SVM - Support Vector Machine

VGG-16 - Visual Geometry Group 16

2D - Two-Dimensional

xiii

LIST OF SYMBOLS

Σ - Sigmoid

σ - Activation function

^ - Logical conjunction

xiv

ACKNOWLEDGMENT

The authors would like to express their deep gratitude to all those who have contributed to

this research. We would like to acknowledge the support and guidance provided by our supervisor

Assistant Professor Dr Moeen Din Tariq and Co supervisor Sir Farhad, who has been a constant

source of inspiration throughout the research process.

 Finally, we would like to extend our sincere thanks to our families and friends, who

provided us with unwavering support and encouragement. Their love and understanding have been

a constant source of motivation during the journey of this research. Our heartfelt thanks go to our

colleagues, for their invaluable contributions to the project and for creating a supportive research

environment.

 This research would not have been possible without the support and contributions of all

those acknowledged here. We are deeply grateful for their help and generosity

xv

DEDICATION

To my parents, who have always believed in me and encouraged me to follow my dreams.

Your love and support have been my foundation, and I am forever grateful. To my advisor, who

guided me with wisdom and patience throughout this journey. Your expertise and dedication to

your students are an inspiration to me.

CHAPTER 1

INTRODUCTION

1.1 Overview

Information technology encompasses advanced rapidly and the growth of network

technology has made our daily routines more comfortable. However, it also raises various security

risks despite its exceptional services. Malware, an abbreviation for malicious software,

encompasses any software intentionally crafted with the purpose of causing harm or disruption to

computer systems. It encompasses a wide range of harmful software, this encompasses viruses,

worms, trojans, ransomware, spyware, and other types of malicious software. Malware can be

employed to illicitly acquire sensitive information, hold computer systems or data hostage,

compromise the security of computer systems, and cause other types of harm. [1]–[3]. Malware

has posed a threat to individuals and businesses since its emergence in the early 1970s. Since that

time, the world has witnessed the release of hundreds of thousands of unique malware variants, all

with the objective of causing as much disruption and harm as possible. There is no denying that

the overall count of malware incidents has experienced a significant increase over time. The

occurrence of malware attacks has been on the rise, with 69,277,289 unique malicious objects

detected by antivirus company Kaspersky Lab in 2016 [47] and 670 million malware samples found

by McAfee Labs in 2017 [48]. Additionally, Malwarebytes reported the detection of over 50

million cyber threats in both 2018 and 2019 [49,50]. As reported in the 2020 Trend Micro

Cybersecurity Report, there were 119,000 cyberattacks occurring every minute [51]. Due to the

wide variety of malware and the increasing frequency of these attacks, researchers have put forth

various approaches to categorize malware.

2

1.2 Types of Malware

Malware Types: Here's a rundown of some of the most popular malware types and

classifications.

1.2.1 Virus

A computer virus is a form of malicious software that reproduces itself by contaminating

other computer programs and files. A computer virus can cause harm to the infected computer by

altering or destroying data, stealing sensitive information, or using the infected computer to spread

the virus to other computers. Some viruses are designed to cause damage to the computer system,

while others are designed to steal personal information or launch attacks on other systems.

Computer viruses can be spread through email attachments, downloads, or infected websites.

Key characteristics of computer viruses include:

i. Self-Replication: A computer virus has the ability to make copies of itself and attach those

copies to other files or programs. This allows it to spread to other computers or files when

infected files are shared or transferred.

ii. Malicious Intent: Computer viruses are typically created with malicious intent. They can

cause various types of harm, including data loss, system crashes, unauthorized access, and

theft of sensitive information.

iii. Concealment: Viruses often attempt to hide their presence to avoid detection by security

software or users. They may employ techniques to evade antivirus scans and security

measures.

3

iv. Trigger Conditions: Many viruses are designed to execute specific actions based on certain

trigger conditions. For example, a virus might be programmed to activate on a certain date,

when a specific file is opened, or when certain user actions are performed.

v. Spread Mechanisms: Computer viruses have the capacity to propagate through diverse

avenues, including infected email attachments, files downloaded from the internet,

compromised software, shared documents, and removable storage devices.

vi. Variants and Mutations: Like biological viruses, computer viruses can evolve and have

different variants. New variants may have different behaviors or characteristics, making

them harder to detect and combat.

vii. Payload: Viruses often carry a payload, which is the harmful action they perform once

activated. The payload can vary, encompassing actions such as file deletion, unauthorized

data retrieval, or the initiation of distributed denial-of-service (DDoS) attacks.

viii.Prevention and Protection: To safeguard against computer viruses, individuals can employ

antivirus software, maintain current operating systems and software, exercise caution when

downloading files or clicking on links, and adopt safe online practices.

1.2.2 Worm

A computer worm is a form of malicious software that autonomously propagates from one

computer to another, frequently via a network, without necessitating any user intervention. Unlike

viruses, which attach themselves to existing files, worms are standalone software that replicates

and propagates on their own. They can cause harm to infected computers by consuming network

bandwidth, slowing down or crashing the system, and sometimes opening security holes that can

be exploited by other malicious software. Some computer worms are designed to steal sensitive

4

information or use infected computers to launch attacks on other systems. Key characteristics of

computer worms include:

i. Self-Propagation: Worms are capable of spreading themselves across networks and systems

without requiring user intervention. They can do this by exploiting vulnerabilities in

software or by using various communication methods.

ii. Autonomous Replication: Once a computer is infected with a worm, the worm can

independently search for other vulnerable computers and attempt to infect them. This

autonomous behavior can lead to rapid and widespread infections.

iii. Network Exploitation: Worms frequently take advantage of weaknesses in network

services, operating systems, or software to illicitly gain entry to computers. These

vulnerabilities serve as entry points for them to install themselves on the target systems.

iv. Payload: Worms might contain a harmful payload, which could encompass activities like

file deletion, unauthorized data theft, establishment of remote access backdoors, or the

initiation of distributed denial-of-service (DDoS) attacks.

v. Resource Consumption: Due to their self-replicating nature, worms can consume

significant network and system resources as they spread. This can lead to degraded

performance and network congestion.

vi. Email and Social Engineering: Some worms spread through email attachments, social

media links, or instant messaging platforms. They may deceive users into opening infected

files by disguising themselves as legitimate messages or files.

vii. Vulnerability Exploitation: Worms often target known vulnerabilities in software and

systems. Patches and updates that address these vulnerabilities are crucial for preventing

worm infections.

5

viii. Prevention and Mitigation: Protecting against worms involves maintaining up-to-date

software and security patches, using firewalls and intrusion detection systems,

implementing strong access controls, and using security software to detect and block

malicious activity.

Worms can cause significant disruptions to computer networks, leading to financial losses, data

breaches, and operational downtime. Therefore, practicing good cybersecurity hygiene and staying

informed about the latest threats and vulnerabilities are essential for preventing worm infections

and minimizing their impact.

1.2.3 Spyware

Computer spyware is a form of malicious software crafted to clandestinely monitor and

collect information from an infected computer, all without the user's awareness or consent.

Spyware has the capability to trace a user's online activity, purloin personal data like login details

and credit card numbers, exhibit unwanted advertisements, and decelerate the computer's

performance. Some spyware can even control the infected computer and use it for malicious

purposes such as sending spam or participating in a network of infected computers used to launch

attacks on other systems (known as a "botnet").

Key characteristics of computer spyware include:

i. Covert Installation: Spyware is often installed without the user's awareness or explicit

consent. It may be bundled with seemingly legitimate software or hidden within downloads.

ii. Information Collection: Spyware monitors a user's actions on their computer or device,

such as websites visited, search queries, keystrokes, login credentials, and more. This

6

information is then transmitted to third parties for various purposes, including advertising,

data profiling, and identity theft.

iii. Data Transmission: The data collected by spyware is sent to remote servers controlled by

the individuals or groups behind the malware. This data may be used for malicious purposes

or sold to advertisers, marketers, or other parties.

iv. Invasive Tracking: Spyware can track a user's online behavior in real-time, capturing

personal and sensitive information as the user interacts with websites, applications, and

online services.

v. Browser Hijacking: Some spyware variants alter a user's browser settings, redirecting them

to unwanted websites or injecting ads and pop-ups into web pages.

vi. Slowdowns and System Issues: Spyware can consume system resources and slow down a

computer's performance. It may also cause crashes and instability.

vii. Personal Privacy Violation: Spyware constitutes a serious invasion of privacy, as it captures

and transmits personal and confidential data without the user's consent.

viii. Prevention and Removal: To prevent spyware infections, users should be cautious when

downloading software, clicking on links, and opening attachments. Regularly updating

software and using reputable antivirus and anti-spyware tools can help detect and remove

spyware infections.

ix. Legal and Ethical Concerns: Spyware is often distributed illegally, as it invades user privacy

and violates computer usage policies. Legal action can be taken against those responsible

for creating and distributing spyware.

7

It's important to note that some software applications, such as parental control software and

employee monitoring tools used within legal boundaries, share similarities with spyware in terms

of monitoring user activities. However, these tools are typically installed with proper consent and

for legitimate purposes, unlike malicious spyware that operates stealthily and with malicious intent.

1.2.4 Trojan

A computer Trojan is a type of malicious software that disguises itself as a legitimate

program and is often distributed through email attachments, downloads, or compromised websites.

In contrast to viruses and worms, Trojans do not replicate automatically; instead, they rely on

deceiving users into voluntarily downloading and installing them. Once installed, Trojans can carry

out a wide range of harmful activities, including stealing personal information, downloading

additional malware, or providing remote control to an attacker over the compromised computer.

Trojans can also establish a concealed entry point within the affected system, enabling an attacker

to bypass standard security measures and gain unauthorized access to sensitive data. Furthermore,

Trojans can be used to create a botnet, which is a network of compromised computers that can be

employed for large-scale malicious operations like distributed denial of service (DDoS) attacks.

Key characteristics of Trojans include:

i. Disguised Nature: Trojans often masquerade as legitimate files, software, or content to trick

users into executing or opening them. They may appear as harmless attachments, games,

utility programs, or software updates.

ii. Unauthorized Actions: Once executed, a Trojan performs actions that the user did not intend

or expect. These actions can include stealing sensitive information, creating backdoors for

remote access, deleting files, spreading other malware, or conducting fraudulent activities.

8

iii. Remote Access: Trojans are crafted to grant unapproved remote access to the compromised

system, enabling attackers to manipulate the infected computer, pilfer data, or initiate

further attacks.

iv. Payloads: Trojans can carry a variety of payloads, which are the harmful actions they

perform once executed. The specific payload depends on the intentions of the malware

creator. Common payloads include data theft, data manipulation, and unauthorized system

changes.

v. Social Engineering: Trojans often use social engineering techniques to manipulate users

into executing them. This can include enticing subject lines in emails, fake download links,

and deceptive advertising.

vi. Distribution: Trojans are often distributed through methods like email attachments,

malicious links, infected websites, pirated software, and compromised downloads.

vii. Multiple Variants: Trojans come in various forms and serve different purposes, such as

banking Trojans that target financial data, ransomware Trojans that encrypt files for

ransom, and remote access Trojans (RATs) that provide unauthorized control over a system.

viii. Prevention and Protection: Users can protect themselves from Trojans by being cautious

when downloading files, clicking on links, and opening email attachments. Regularly

updating software, using strong passwords, and employing security software can help detect

and prevent Trojan infections.

It's worth mentioning that the expression "Trojan horse" originates from Greek mythology, in

which a wooden horse was employed to trick the city of Troy and gain entry to its fortifications. In

the realm of computer security, a Trojan function in a similar manner by concealing its malicious

purpose to infiltrate a computer system.

9

1.2.5 Ransomware

Computer ransomware is a category of malicious software that encrypts the files belonging

to its target and demands a ransom in return for the decryption key. The dissemination of

ransomware attacks frequently occurs through email attachments, compromised websites, or

malicious advertisements. After computer gets compromised, the ransomware typically exhibits an

on-screen message providing directions for remitting the ransom. Ransomware can cause

significant harm to infected users, as the encrypted files can be permanently lost if the victim does

not pay the ransom or does not have a backup of the files. In some cases, ransomware can also

spread to other computers on the same network, leading to a widespread infection.

The Mexican Hat wavelet is a wavelet function that finds application in image processing

and signal analysis. It is named after its shape, which resembles a Mexican sombrero. It is a type

of second-generation wavelet and is used in various applications, including edge detection, noise

reduction, and image compression. The Mexican Hat wavelet has good localization properties,

meaning that it can accurately represent signals with sharp changes or edges. The Mexican hat

wavelet is also known as the Ricker wavelet [55].

In deep learning, the Ricker wavelet is a commonly used wavelet function that can be used

as a building block for constructing more complex wavelet functions. The Ricker wavelet is also

known as the "Mexican hat wavelet" or the "Mexican hat function" due to its characteristic shape,

which resembles a Mexican hat. This wavelet is used in various deep learning applications,

including image processing, signal processing, and pattern recognition. The Ricker wavelet is

particularly useful for detecting edges and detecting signals with specific frequencies in a signal or

image. It can also be used as a feature extractor for deep neural networks, where the wavelet

coefficients can be used as input to the network to improve its performance [55].

10

Key characteristics of ransomware include:

i. File Encryption: Ransomware employs robust encryption algorithms to encrypt the files of

the victim, making the files unreadable and inaccessible without the decryption key.

ii. Ransom Demand: After encrypting the victim's files, the attacker presents a ransom

demand, usually in cryptocurrency, in exchange for providing the decryption key. The

ransom note typically includes instructions on how to make the payment and obtain the

decryption key.

iii. Time Pressure: Ransomware attackers often impose a time limit on the ransom payment,

threatening to permanently delete the decryption key if the ransom is not paid within the

specified timeframe.

iv. Wide Distribution: Ransomware can be distributed through various methods, including

malicious email attachments, compromised websites, malicious links, and exploit kits.

v. Variants and Families: There are different variants and families of ransomware, each with

its own characteristics and methods. Some ransomware strains are more sophisticated than

others.

vi. Impact: Ransomware attacks can have severe consequences, leading to data loss,

operational downtime, financial losses, reputational damage, and legal repercussions.

vii. Publicized Cases: High-profile ransomware attacks have targeted individuals, businesses,

hospitals, government agencies, and other institutions. Notable examples include the

WannaCry and NotPetya attacks.

11

viii. Backup Importance: Regularly backing up important data is a key defense against

ransomware. If an attack occurs, victims can restore their systems and data from a backup

without paying the ransom.

ix. Reporting and Law Enforcement: Victims are encouraged to report ransomware attacks to

law enforcement agencies and cybersecurity organizations. Paying the ransom does not

ensure that the attacker will furnish the decryption key, and it may also encourage further

attacks.

x. Prevention and Mitigation: Preventing ransomware involves maintaining up-to-date

software, using strong and unique passwords, educating users about phishing and safe

online practices, and using reputable antivirus and anti-malware solutions.

1.3 Malware Analysis

Malware analysis entails the procedure of scrutinizing malicious software (malware) to gain

insights into its behavior and evaluate the consequences it has on a system. The objective of

malware analysis is to uncover the fundamental code, functions, and techniques employed by the

malware, and to ascertain its methods of infection and interaction with a system. This information

can be used to develop countermeasures, such as patches, antivirus signatures, and intrusion

detection rules, to protect against similar threats in the future. [6].

Malware analysis can be performed using various techniques, including static analysis,

dynamic analysis, and reverse engineering. The process involves isolating the malware in a

controlled environment, executing or disassembling it, and observing its behavior and interactions

with the system. The outcomes of this analysis can be leveraged to establish a thorough

comprehension of the malware, including its functionalities and the potential repercussions it may

have on an organization [7].

12

Various forms of malware analysis exist, with Static and dynamic analysis emerging as the

primary methods employed in malware analysis to scrutinize malware behavior and gain insight

into its operations.

1.3.1 Static Analysis

The process of inspecting the code and structure of malware without engaging its execution,

usually by disassembling or decompiling the binary code. This approach provides insight into the

malware's structure and functionality, such as the target system, data it steals or the actions it

performs. [8].

Below are several prevalent methods employed in static malware analysis:

i. File scanning and signature detection: This entails cross-referencing the malware code

with a repository of recognized malware signatures in order to detect and categorize it [6].

ii. Disassembly and decompilation: This involves converting the binary code of the malware

into a human-readable form, such as assembly code or a high-level programming

language, for closer examination. [9].

iii. String and symbol analysis: This involve examining the strings and symbols in the

malware code to understand its functionality and identify its behavior. [9].

iv. Code analysis: This involves examining the structure and functionality of the malware

code to understand its behavior and identify any malicious code. [4].

v. Code emulation: This involves creating a virtual environment to simulate the malware's

behavior without actually executing it on the system. [4].

13

1.3.2 Dynamic Analysis

The procedure of running malware within a controlled setting, For instance, in a virtual

machine, to monitor its actions and interactions with the system. This approach provides real-time

insight into the malware's actions and allows for the detection of malicious behavior that may not

be visible in the code itself.

Here are some common techniques used in dynamic malware analysis:

i. Sandboxing: This involves executing the malware in a virtual environment, isolated from

the host system, to observe its behavior. [9].

ii. Process monitoring: This involves monitoring the processes and system calls made by the

malware during execution to understand its behavior and interactions with the system. [9].

iii. Network analysis: This involves monitoring the network traffic generated by the malware

during execution to understand its behavior and potential impact on the network. [6].

iv. Memory analysis: This involves analyzing the memory of a system infected with malware

to understand its behavior and identify malicious code in memory [6].

v. Behavioral analysis: This involves observing the behavior of the malware during

execution to understand its behavior and interactions with the system [6].

Static analysis and dynamic analysis both serve crucial roles in the field of malware analysis

and are frequently employed together to attain a thorough comprehension of the malware's actions

and dormant impact.

14

1.4 Malware Analysis Using Deep Learning Techniques

Deep learning is emerging as a promising approach to address the constraints of existing

methods for detecting and classifying malware. Deep learning, which falls under the umbrella of

artificial intelligence and relies on artificial neural networks, has found widespread application in

diverse domains such as image processing, computer vision, facial emotion recognition, human

action recognition, and natural language processing. Despite its achievements in these domains, its

adoption in the realm of cybersecurity, especially for malware detection [2], has been somewhat

limited thus far. Various deep learning architectures, including deep neural networks, deep belief

networks, recurrent neural networks, and convolutional neural networks, are harnessed to enhance

model performance. Deep learning provides numerous benefits compared to conventional

approaches, including the automatic generation of high-level features, handling unstructured data,

managing large datasets, dimensionality reduction, accommodating various learning paradigms,

and enhancing accuracy while lowering costs [36].

Figure 1.1 The process of analyzing, detecting, and categorizing malware.

15

1.5 Malware Feature Extraction Techniques

Malware feature extraction involves the identification and extraction of pertinent

characteristics or attributes from malware samples, which can then be employed for their

classification and detection. The extracted features can be either structural (e.g., opcode sequences,

file header information) or behavioral (e.g., network activities, system calls). The following are

some of the common malware feature extraction techniques [2], [10], [15]:

i. Opcode N-grams: It refers to a sequence of N instructions executed by the malware, where

N can range from 1 to several hundred. These sequences are used as features to classify

malware samples [2].

ii. File header information: File header information such as file type, entry point, and import

table information can be used as features for malware classification. [10].

iii. System calls: System calls are low-level functions used by applications to interact with the

operating system. Monitoring the system calls made by a program can provide valuable

information about its behavior and can be used as feature for malware classification. [11].

iv. Network activities: Network activities such as IP addresses, port numbers, and protocol

types can be used as features to classify malware samples [15].

v. API calls: API calls refer to the functions that applications use to interact with the operating

system or other applications. Monitoring the API calls made by a program can provide

valuable information about its behavior and can be used as feature for malware

classification [10].

16

vi. Entropy: Entropy is a measure of randomness in a sequence of data. In malware analysis,

entropy can be used as a feature to classify malware samples based on the randomness of

their code. [10].

vii. N-grams are sequences of n symbols in the binary code of a malware sample. By counting

the frequency of these sequences, unique features of the malware can be identified. [11].

viii. M-bag is a technique that combines N-grams with bag-of-words models. In this technique,

the malware binary is divided into overlapping windows, and the frequency of N-grams

within each window is calculated. The generated feature vectors can subsequently be

employed for the classification of malware [12].

ix. K-tuple is a technique that focuses on the relationships between different parts of the

malware binary code. In this technique, the binary code is divided into k-tuple sequences,

and the frequency of these sequences is calculated. This frequency information can then be

used as a feature to differentiate malware from benign software [13].

These represent some of the prevalent techniques for extracting features from malware,

widely employed in malware analysis. The choice of features and the process of extracting them

can greatly influence the precision and effectiveness of both malware classification as well as

detection.

Malware feature extraction is the procedure of identifying and extracting pertinent data

from a malware specimen, which can be utilized to distinguish it from legitimate software. N-gram

technique, m-bag technique, and k-tuple technique are three common extracting relevant attributes

techniques used in malware analysis.

17

1.5.1 N-Gram Technique, M-Bag Technique and K-Tuple Technique

The n-gram feature extraction technique is a commonly employed method for detecting and

classifying malware. It utilizes both static and dynamic analysis attributes to generate features,

employing consecutive system calls according to a defined n value, as described in reference [12].

As an illustration, when considering the sequence of system calls in the sample program, if they

follow the order, P = (6, 7, 8, 9, 10), the 2-gram and 4-gram would be {(6, 7), (7, 8), (8, 9), (9, 10)}

and {(6, 7, 8, 9), (7, 8, 9, 10)} respectively [10]. The tuple and bag techniques bear resemblance to

n-grams, but there's a distinction: in the tuple approach, 'n' can have any spacing, whereas in the

bag method, the emphasis lies more on frequencies rather than the sequence, as noted in reference

[11]. While n-gram proves to be efficient, its performance diminishes due to the swift expansion

of feature numbers. Additionally, various modified n-gram models have been suggested in the

literature to extract malware characteristics, resulting in fewer features compared to traditional n-

grams, as outlined in reference [13].

1.5.2 Graph-Based Techniques

The graph-based feature extraction technique is another popular method used in malware

analysis. In this technique, the behavior of a malware sample is represented as a graph structure

where nodes represent system calls, API functions, or other relevant behavior, and edges represent

the relationships between these nodes [15]. Each graph is treated as a feature vector and used in

machine learning algorithms for classification and detection purposes. This approach offers a more

extensive portrayal of a malware sample's behavior, aiding in the capture of intricate relationships

among the nodes. Moreover, it reduces the dimensionality of the feature space compared to the n-

gram or bag of words approach. Moreover, graph-based representations exhibit resilience to minor

code variations, rendering them well-suited for the detection of novel iterations of established

malware [14].

18

1.5.3 Vision-Based Techniques

The vision-based method for extracting malware features entails the transformation of a

malware sample into an image, followed by the utilization of computer vision algorithms to derive

features from it. The malware binary is transformed into a grayscale image, with each bit being

depicted as a pixel. The resulting image is then processed using computer vision techniques such

as edge detection, thresholding, and feature extraction to generate features that represent the

malware [16]. These characteristics can subsequently be applied to categorize the malware as either

benign or malicious, and they can also serve to pinpoint resemblances and distinctions among

various malware samples. This technique is particularly useful for detecting malware that is

designed to evade detection by traditional signature-based methods. The visual representation of

malware allows for the easy identification of patterns and features that can be used to distinguish

between different malware families [17].

1.6 Malware Visualization

Visualizing malware as an image entails converting the malware's binary code into an

image format for analysis and visualization. In this procedure, each byte of the malware code is

interpreted as a pixel within the image. The resulting array is organized in a two-dimensional

arrangement and displayed as a grayscale image, where values range from 0 (representing black)

to 255 (representing white), as described in reference [16].

The key advantage of this visual approach lies in its ability to facilitate the differentiation

of various segments within the binary code and offer a rapid means of detecting both similarities

and distinctions among different malware specimens. Since malware creators often recycle

portions of old code to produce new variants, reusing old malware can result in binaries that closely

resemble each other. By representing malware as an image, it becomes feasible to identify even

19

minor alterations while preserving the overall structure of samples belonging to the same malware

family, as highlighted in reference [39].

1.7 Problem Statement

The spread of malware is a prevalent issue in computer networks and various applications.

In recent times, classifying malware has become a challenging task, prompting researchers to

propose numerous machines learning and deep learning techniques to address this problem. While

deep learning techniques have shown encouraging results, they frequently involve intricate models.

To tackle this challenge effectively, there is a growing need to develop models that strike a balance

between high accuracy and low complexity. One potential solution lies in employing a cloud-based

deep learning model with a reduced number of layers with the utilization of a Mexican hat-based

activation function. In essence, the proposal suggests that by optimizing the deep learning model's

architecture suggests that employing a cloud-based deep learning model with reduced layers and a

specialized activation function like the Mexican hat approach can be an effective strategy to

enhance accuracy in malware classification while simultaneously reducing computational demands

and achieving cost-effectiveness.

1.8 Research Motivation

Machine learning methods are gaining popularity for classifying a wide range of malware

types. However, a majority of the current machine learning techniques employed for malware

classification rely on shallow learning algorithms, such as SVM. Recently, Convolutional Neural

Networks (CNN), which are deep learning methods, have exhibited superior performance in

contrast to conventional learning algorithms, particularly in tasks like image classification.

Encouraged by this success, we introduce an innovative deep learning-based framework for

malware classification.

20

1.9 Research Questions

i. What are the various deep learning techniques and major challenges to classify the

malware?

ii. How to overcome the model complexity and enhance its efficiency?

iii. What methods can be employed to assess and contrast the effectiveness of the suggested

malware classification system across various malware datasets over a cloud-based

collaborative integrated development environment?

1.10 Research Objective

i. To analyze the various state of art Deep learning models that reduce model complexity

and improve model accuracy.

ii. To develop a cloud-based deep learning model for malware classification that operates

efficiently with limited cloud resources, exhibiting low model complexity and high

accuracy.

iii. To assess the model's performance across various available datasets.

1.11 Thesis Organization

Rest of the thesis is structured as below:

Chapter 2 provides an extensive literature review that covers prior research papers. In the

context of machine learning, the process of malware detection and classification entails using

machine learning algorithms to identify and classify malicious software.

21

Chapter 3 provides us with the methodology, which encompasses a proposed framework

for classifying malware, along with an in-depth exploration of the MALIMG and MALEVIS

Datasets.

Chapter 4 provides us with implementation and evaluation, which offers a comprehensive

understanding of the libraries, environment, our proposed model, and the results obtained from

both datasets, i.e. MALIMG and MALEVIS. Additionally, it presents the results of all four-

performance metrics.

Chapter 5 provides the final insights encompassing the entire thesis.

CHAPTER 2

LITERATURE REVIEW

2.1 Approaches for Detecting and Classifying Malware

In the field of machine learning, malware detection and classification involve employing

machine learning algorithms to recognize and categorize malicious software. These algorithms

undergo training using extensive datasets comprising both malware samples and benign software

to grasp their distinctive attributes. In the detection phase, these algorithms assess newly

encountered software to ascertain its malignancy by comparing it to established malware samples.

In the classification phase, the algorithms categorize the detected malware into different types, such

as viruses, Trojans, worms, spyware, and adware, based on its features and behavior. In comparison

to conventional signature-based techniques, machine learning algorithms can enhance both the

precision and speed of detecting and categorizing malware. There are several different approaches

to achieving effective malware detection and classification, each with its own advantages and

limitations. Some of the common approaches include:

2.1.1 Approach for Malware Detection and Classification Based on Signatures

The method of malware detection and classification based on signatures entails recognizing

malware by matching its distinct attributes, such as file signature or hash value, with a repository

of established malware profiles. If a file is identified as having a signature matching that of known

malware, the signature-based system will label the file as malicious. The database of known

23

malware is typically maintained by a security vendor and is updated regularly to keep up with the

latest threats. Signature-based systems can detect known malware quickly and accurately, but they

may not be able to detect new, unknown malware or malware that has been modified to evade

detection. This occurs because the signature-based approach solely verifies precise matches with

known malware and does not endeavor to assess the behavior or attributes of the malware in order

to ascertain its malignancy.

A signature comprises a distinct collection of bits that serves to identify the structure of a

program. It finds widespread application in malware detection [6], [9], [18]. The procedure

commences by recognizing static attributes from executable files, subsequently forming signatures

from these attributes and archiving them in a database. When there's a need to scrutinize a

suspicious file, its signature is extracted and matched against known signatures within the database.

Based on this comparison, the file is labeled as either malicious or benign. Respectively this

approach is commonly referred to as signature-based malware detection and proves swift and

efficient in identifying established malware. Nevertheless, it falls short when it comes to detecting

novel or zero-day malware, as noted by Scott [19]. Signature-based malware detection presents

certain limitations, including its inability to spot new variations, scalability challenges, and reliance

on human intervention. Griffin et al. [20] have put forth an automated signature extraction

technique that employs library identification methods and diversity-based heuristics to minimize

erroneous identifications. Tang et al. [21] have elucidated a simplified regular expression signature

method that employs bioinformatics techniques for detecting polymorphic worms. Additionally,

Liu and Sandhu [22] have proposed a fingerprint-based signature generation approach geared

toward detecting hardware-based malware through the creation of cryptographic hash-based

signatures. The fundamental characteristics of signature-based malware detection and

classification include:

i. Signature Creation: Cybersecurity experts analyze and reverse-engineer malware samples

to identify distinct patterns or sequences of code that are characteristic of each malware

variant. These patterns are known as signatures.

24

ii. Signature Database: A database containing signatures of known malware variants is

maintained. A new file's signature is compared to the signatures in the database when it is

scanned.

iii. Matching Process: The procedure entails matching the scanned file's or code's digital

signature to signatures stored in the database. If a match is discovered, the file is classified

as malicious based on the known malware strain and is then removed.

iv. Rapid Detection: Signature-based detection is fast and efficient for identifying malware that

matches known signatures. It is particularly effective against well-established malware.

v. Virus Definition Updates: To stay effective, signature-based antivirus solutions require

regular updates to their signature databases. New malware variants are constantly emerging,

requiring antivirus software to have the latest signatures to detect them.

vi. Limitations: Signature-based detection has limitations. It is not effective against new or

unknown malware that lacks a matching signature. Attackers can also use techniques like

polymorphism (changing the code while preserving functionality) to evade signature-based

detection.

vii. False Positives and Negatives: There is a risk of false positives (legitimate files

misidentified as malware) and false negatives (malware that does not match any known

signature) in signature-based detection.

viii. Known Malware: Signature-based detection is well-suited for identifying known malware

that has been previously documented and analyzed.

ix. Efficiency: Signature-based detection is computationally efficient and can quickly scan

large numbers of files for known malware.

25

x. Complementary Approaches: To get over signature-based detection's drawbacks, many

modern antivirus solutions use a combination of approaches, including behavior-based

analysis and machine learning, to provide more comprehensive protection against a broader

range of threats.

While signature-based detection is a foundational method in malware detection and classification,

it is most effective when used as part of a multi-layered security strategy that incorporates other

approaches to handle new and evolving malware threats.

2.1.2 Approach to Detecting and Classifying Malware on Behavior-Based

The behavior-based method for malware detection and categorization leverages the actions

of a program or system as a means to identify and classify malware. This strategy, often referred

to as dynamic analysis, entails scrutinizing the program's behavior during its execution. Within this

behavioral framework, the program operates within a controlled setting, such as a sandbox, where

its actions are meticulously observed and assessed. By comparing the program's behavior to

established patterns of malicious activity, it is possible to ascertain whether it exhibits malicious

characteristics [2].

The primary benefit of the behavior-driven methodology lies in its ability to identify novel

and unfamiliar malware since it does not depend on predetermined signatures or definitions.

However, this approach can also be more time-consuming and resource-intensive compared to

signature-based detection, as it requires the program to be executed. Additionally, behavior-based

detection may not be able to detect malware that does not execute any malicious behavior during

the analysis. Despite these limitations, the behavior-based malware analysis and classification

approach is a critical component of modern malware detection and defense systems.

26

The behavior-based detection method entails the observation and scrutiny of a sample

program's actions, and based on these observations, hence the program is categorized as either

malicious or benign. This method has three components: collecting behaviors, developing

characteristics, and using machine learning algorithms to determine if the program is harmful or

safe [2].

The identification of behaviors entails the utilization of system calls, the application

programming interface calls, and alterations in files, registries, and computer system network

activity. Simply put, behaviors are analyzed by looking at the sequence or frequency of system

calls and file-registry operations. Through the process of grouping these behaviors and constructing

sequences, distinctive characteristics are identified. Despite changes in the program's source code,

the program's behaviors will not change entirely. This allows for the detection of multiple variants

of malicious software, as well as newly discovered malware. However, the primary drawback of

behavior-based detection lies in the fact that malware might not manifest all its authentic behaviors

when operating within secure environments like virtual machines and sandboxes. The graph model

methodology for malware detection is described by Kolbitsch et al. in their work [23].

In a diagram, system calls are depicted as nodes, and transitions between them are denoted

by edges. These connections in-between system calls are established by utilizing the output of one

system call as the input for another. Resulting program diagram is subsequently compared to

preexisting diagrams, and the examined sample is classified as either malware or benign based on

this comparison. Any novel behaviors discovered during the analysis can also be incorporated into

the diagram in a dynamic manner.

Lanzi et al. [12] introduced a system-focused behavioral model that considers the variation

in how malicious and benign software interact with system resources, such as the directories, the

files, the registries, and so on. This discrepancy in interaction patterns was leveraged to construct

behavior sequences derived from system calls, which were subsequently employed to classify

software as either malicious or benign. The approach they proposed made use of the n-gram

technique; however, it encountered difficulties in effectively distinguishing between malicious and

27

benign software due to the substantial number of behavior sequences generated using the n-gram

technique.

Chandramohan et al. [10] introduced the BOFM (Behavior Oriented Feature Model) as an

approach aimed at reducing the abundance of properties required for malware detection. This

method involves the conversion of interconnected system calls into meaningful behaviors, which

serve as the basis for establishing properties. Redundant features are subsequently removed, and a

feature vector is crafted using the retained properties. ML algorithms are then applied to execute

the classification process.

Singh et al. [24] developed a behavior-based method for detecting malware using multiple

API system calls. This approach entails generating multiple API sequences through the utilization

of depth-first search and n-grams, followed by the assessment of similarities between software

using metrics like the Dice coefficient, the cosine coefficient, and the Tversky index. The resulting

sequences are then classified using algorithms based on machine learning.

Aslan et al. [25] In their work, Aslan and colleagues (Aslan et al., 2019) introduced a

malware detection model known as SCBM (Semantic-Centric Behavioral Model), which is rooted

in behavior analysis. This method extracts semantically correlated features from scrutinized

program samples, considering both system paths and behaviors to discern malicious behavioral

patterns from benign ones. Notably, this proposed model generates a reduced number of features

when compared to traditional methods like n-grams. Testing results indicate its effectiveness in

addressing both known and unknown malware, as demonstrated by performance metrics including

detection rate, false positive rate, f-score, and accuracy.

In reference to [26], a novel hybrid methodology is presented, which integrates dynamic

analysis with 1. cyber threat intelligence, 2. machine learning, and 3. data forensics. This approach

predicts IP reputation during the pre-acceptance phase by employing extensive data forensics

techniques and distinguishes related zero-day attacks through behavioral analysis combined with a

decision tree algorithm. The effectiveness of this approach is assessed using metrics such as f-

28

measure, precision, and recall, and the findings demonstrate its performance to be on par with other

prominent methods in the same domain.

In [27], A novel approach for malware detection named APTMalInsight is introduced. This

approach identifies and recognizes Advanced Persistent Threats (APTs) through the use of an

information and ontology knowledge framework. The method determines feature vectors for APT

malware and is capable of detecting and grouping them with a high degree of accuracy.

Key components and characteristics of behavior-based malware detection and classification

include:

i. Dynamic Analysis: Behavior-based detection involves analyzing malware in a controlled

environment, often referred to as a sandbox. In this environment, the malware is executed

and its behavior is monitored, recorded, and analyzed in real-time.

ii. Behavioral Patterns: Malware can exhibit various behaviors, such as making unauthorized

changes to files, attempting to access sensitive data, communicating with command and

control servers, or modifying system settings. By observing these behaviors, security

analysts can identify malicious intent.

iii. Anomaly Detection: Behavior-based approaches focus on identifying anomalies or

deviations from normal behavior. Malware often behaves differently from legitimate

software, making it possible to detect unusual actions that may indicate a threat.

iv. Data Collection: During dynamic analysis, data is collected on the malware's actions, such

as file system changes, network communication, memory usage, and system calls. This data

is used to build a behavioral profile of the malware.

v. Feature Extraction: Significant attributes or traits are derived from the gathered data. These

characteristics may encompass patterns of network traffic, API calls, system resource

usage, and interactions with files and processes.

29

vi. Machine Learning: The extracted features can be leveraged with machine learning

techniques, such as clustering and classification algorithms, to develop models capable of

distinguishing between benign and malicious behavior.

vii. Classification: Malicious software can be categorized into various groups according to its

behavior, including ransomware, spyware, trojans, and more. Behavior-based classification

allows for more accurate identification of malware variants that may share similar traits.

viii. Real-Time Detection: Behavior-based detection can provide real-time protection by

analyzing and detecting malicious behavior as it occurs. This proactive approach is valuable

for identifying previously unknown threats.

ix. Evasion Techniques: Malware authors may use evasion techniques to avoid detection, such

as delaying malicious actions or disguising their behavior. Behavior-based analysis is

designed to detect these evasive tactics.

x. Limitations: Behavior-based detection proves its efficacy when dealing with novel and

zero-day malware, it may have limitations when malware exhibits stealthy or sophisticated

behavior. Additionally, false positives can occur if legitimate software behaves in unusual

ways.

2.1.3 Approach to Malware Detection and Classification Based on Heuristics

Heuristic-based malware detection is a technique for recognizing malware by employing a

predefined set of rules or patterns derived from prior knowledge or experience. This method

operates on the premise that malware frequently adheres to identifiable and predictable patterns or

behaviors, which can be employed to categorize the program as either malicious or benign.

30

Heuristics serve as a means to identify malware without relying on specific signatures or detailed

information about a particular threat. This approach is particularly valuable for identifying novel

or unfamiliar malware and can serve as a valuable complement to other malware detection

methods, including signature-based and behavior-based approaches.

A heuristic-based malware detection and classification approach uses a combination of

techniques and is driven by the experience. It relies on rules and machine learning methods to

generate signatures using both string-based and behavior-related features, as explained in reference

[28]. This method is widely employed for the identification of diverse malware types, including

previously unencountered ones. The system is initially trained using specific features and

subsequently employs test data to spot anomalies. While it exhibits a commendable success rate in

identifying new malware, it is susceptible to a notable number of false positives and the false

negatives, primarily attributable to optimization challenges.

A malware detection system was proposed by Ye et al.[29] introduced a malware detection

system designed with the goal of identifying polymorphic and emerging malware strains that often

elude conventional antivirus software. This system conducted an analysis of program Application

Programming Interface sequences and generated pertinent rules through the utilization of the FP-

growth algorithm. Subsequently, classification algorithms were employed to ascertain whether the

program files were of a malicious or benign nature. The application of this system was primarily

focused on Windows executable files. While the proposed approach demonstrated superior

performance compared to certain antivirus scanners, it fell short of meeting the expectations for

effectively detecting unknown malware.

In their paper [30], Canali et al. and his team introduced a behavior-based signature

technique in which meaningful behavior patterns were crafted from combinations of system calls.

These signatures were composed of elements that could encompass system calls, system calls along

with their arguments, behaviors, or behavior groups with arguments. The authors organized these

elements using n-gram, k-tuple, and m-bag models to formulate the signatures. They reported that

their proposed approach efficiently identified malware.

31

Islam et al. devised a detection system that integrates elements from both static and dynamic

analyses [31]. This system encompasses three distinct feature categories: 1. method lengths

quantified in bytes, 2. printable string data, and 3. system calls along with their associated

parameters. These features are amalgamated to create a feature vector, which is subsequently

subjected to classification through machine learning algorithms. To address packed malware, a

dynamic heuristic approach was introduced [32]. This technique initiates by computing the

frequencies of API calls, identifying the API calls most strongly correlated with malware, and

ultimately employing a Naive Bayes classifier and Levenshtein distance for the purposes of training

and classification. The authors assert that their proposed method yields satisfactory outcomes

across various variations of packed malware.

Prominent attributes of heuristics-based malware detection and categorization encompass:

i. Rule-Based Analysis: Heuristic techniques employ established rules or guidelines to detect

potential malware, relying on known behaviors, characteristics, or patterns frequently

linked to malicious software.

ii. Pattern Recognition: Heuristic analysis focuses on recognizing patterns, behaviors, or

characteristics that are typical of malware. These patterns might include unauthorized

changes to system files, attempts to access sensitive data, or communication with external

servers.

iii. Behavioral Traits: Heuristic analysis can detect behaviors that deviate from normal or

expected behavior. Malware often exhibits abnormal behavior, making it possible to

identify actions that indicate a potential threat.

iv. Zero-Day Detection: Heuristic analysis is effective for identifying zero-day attacks, which

are attacks that target vulnerabilities that are not yet known or patched by security updates.

32

v. Unseen Variants: Heuristic methods can detect previously unseen malware variants that do

not have well-defined signatures. This makes them valuable for detecting new and evolving

threats.

vi. Dynamic Analysis: Heuristic methodologies may incorporate dynamic analysis, where files

are run within a controlled environment (sandbox) to observe their conduct. This can help

to detect hidden or obfuscated malicious actions.

vii. Overcoming Evasion Tactics: Attackers may use tactics to evade detection, such as

delaying malicious actions or employing obfuscation techniques. Heuristic analysis can

help detect these evasion techniques.

viii. False Positives: Heuristic analysis can produce false positives (legitimate files flagged as

malware) due to its reliance on predefined rules. Tuning the rules and algorithms can help

reduce false positives.

ix. Complementary Approach: Heuristic analysis complements other malware detection

approaches, such as signature-based detection and behavior-based analysis, to provide

comprehensive protection against a wide range of threats.

x. Customization: Security solutions can be customized to apply specific heuristics based on

the organization's needs and the types of threats they are most concerned about.

Heuristic-based analysis plays a crucial role in modern cybersecurity strategies. It allows

security tools to detect and respond to new and emerging threats that may not be covered by existing

signature databases. Nonetheless, achieving an equilibrium between sensitivity and the false

positives is crucial to ensure effective protection without unnecessary disruptions to legitimate user

activities.

33

2.1.4 Approach to Malware Detection and Classification Based on Model

Checking

Model checking is a formal verification technique used to analyze the behavior of complex

systems. It involves constructing a model of a system and verifying its properties against a set of

predefined rules. This technique has been successfully applied in the field of software engineering

for bug detection, however it can also find applications in the realm of malware detection and

categorization. In this context, a system model is formulated., including the behavior of its software

components and interactions with external entities. This model is then analyzed using a model

checker, which searches for violations of predefined security rules. If any violations are found, it

indicates the presence of malware in the system. Once the malware is detected, it can be further

classified based on its behavior and properties. For example, it can be classified as a trojan, a worm,

or a virus. This information can be used to identify the type of attack, the source of the malware,

and the potential impact on the system [2].

One benefit of this method is its ability to offer a systematic and automated means of

identifying and categorizing malware, mitigating the chances of encountering false positives and

false negatives. Furthermore, it can be effectively employed for the detection of intricate and

advanced malware that might pose challenges for conventional detection techniques.

However, this approach requires a high level of expertise in model checking, as well as a

well-defined set of security rules. It also requires a large amount of computational resources, as the

model checker has to analyze the entire system and its interactions. In summary, the model

checking-based approach for malware detection and classification holds potential as a solution for

addressing the escalating issue of malware. However, its practicality and efficiency for real-world

systems necessitate additional research and development efforts, as indicated in reference [2].

Holzer et al. [33] introduced a verification system designed for the identification of

malicious software. This system employs CTPL (computation tree predicate logic) as the

34

specification language to define malicious behaviors and extracts a finite state model from

disassembled executable files. The model controller subsequently assesses the specification,

marking the sample as malicious if it is deemed correct, and as benign otherwise. This system

exhibits the capability to identify malware within families that employ similar attack techniques,

as well as novel malware variants displaying similar behaviors. The study concluded that the

model-checking-based approach resulted in a more precise determination of malware's semantic

attributes when compared to traditional detection methods, leading to a significant enhancement in

the overall detection accuracy by as much as 70%.

Kinder et al. introduced a forward-looking approach to malware detection, employing the

model-checking method [34]. This method has the capability to identify diverse types of computer

worms without necessitating frequent signature updates. Control flow charts are extracted from

executable files and subjected to automatic validation using specifications defined in a novel

language called CTPL. Experimental results indicate that this method achieved a low rate of false

positives while effectively detecting various forms of worms.

Critical features of malware detection and classification rooted in the model-checking

approach encompass:

i. Formal Verification: Model checking involves formal methods from computer science and

mathematics to rigorously analyze software behavior. It can be applied to executable code

or abstract models of the software's behavior.

ii. Properties and Specifications: The model checking process involves defining properties or

specifications that describe expected behaviors of legitimate software. These properties can

include assertions about memory usage, data flow, system calls, and more.

iii. Automated Analysis: Model checking is an automated process that systematically explores

all possible execution paths and behaviors of a program. It checks whether the program

violates specified properties or requirements.

35

iv. Behavioral Analysis: Model checking can identify potential malware by detecting

deviations from expected behaviors. If the program's behavior diverges from the specified

properties, it may be flagged as suspicious or potentially malicious.

v. State Space Exploration: Model checking involves exploring the entire state space of a

program to ensure that it adheres to the specified properties under all possible conditions.

This exhaustive analysis can reveal hidden or subtle vulnerabilities and behaviors.

vi. Zero-Day Detection: Model checking-based approaches are capable of detecting zero-day

vulnerabilities and attacks by analyzing program behaviors based on formal properties.

vii. Verification Logic: Formal verification techniques, such as temporal logic and automata

theory, are used to specify the properties to be checked and to reason about the correctness

of a program's behavior.

viii. Resource Consumption: Model checking-based methodologies can additionally scrutinize

resource utilization patterns, including memory usage and execution duration, in order to

pinpoint programs displaying irregular or malicious conduct.

ix. Challenges: Model checking can demand significant computational resources, particularly

when applied to large and intricate software. Extending model checking to practical, real-

world software necessitates a thoughtful assessment of the analysis's extent and

thoroughness.

x. Complementary Approach: Model checking complements other malware detection

techniques, such as heuristic analysis, behavior-based analysis, and machine learning, to

provide comprehensive protection against a wide range of threats.

Model checking-based malware detection is particularly suitable for critical systems, where

correctness and safety are of utmost importance. It is well-suited for verifying the behavior of

36

software against formal specifications, enabling early detection of vulnerabilities and potential

malware activities. However, its computational demands and complexity require careful

consideration when applying it to practical applications.

2.2 Approach to Malware Detection and Classification Utilizing Deep

Learning

n this strategy, deep learning algorithms, such as artificial neural networks, undergo training

on an extensive dataset containing both malware and benign software. The aim is for these

algorithms to learn the intrinsic patterns and distinguishing features that set them apart.

Subsequently, the trained model can be employed to determine whether new, unobserved software

should be categorized as malware or benign, contingent upon its resemblance to the acquired

patterns. This method has exhibited promising outcomes, accurately identifying and classifying

various forms of malware.

The deep learning-based detection method performs well and reduces feature dimensions

effectively, However, it remains susceptible to evasion attacks [2]. Extending the number of hidden

layers is a time-consuming process and provides only marginal performance gains. As of now, the

adoption of deep learning in malware detection and classification is not widespread, necessitating

further research to thoroughly assess its capabilities. The literature documents instances of deep

learning-based approaches in malware detection, which are summarized as follows.

Saxe and Berlin [36] have put forward a concept for a malware detection system based on

deep neural networks, which leverages two-dimensional software features. This system comprises

three pivotal components: the extraction of four unique and complementary features from both

malicious and non-malicious samples, the establishment of a deep neural network encompassing 1

input layer, 2 hidden layers, and 1 output layer, and computation of neural network outputs utilizing

the calibrator score.

37

Huang and Stokes [37] described the MaNet architecture, a multitasking approach to

malware classification, it trains on both malicious and benign samples using data acquired from

dynamic analysis. This architecture utilizes the ReLU activation function, resulting in a reduction

of epochs and error rate. Despite being noted as outperforming a traditional neural network

architecture, the addition of an extra hidden layer did not enhance performance and the model was

not immune to evasion attacks.

In a study by Ye et al. [38], a system was proposed to detect zero-day malware using

heterogeneous deep learning. The system utilizes multi-layer constrained Boltzmann machines

with associated memory and involves two phases: pre-training and fine-tuning. In the pre-training

phase, features are acquired from both labeled and unlabeled files, enabling the identification of

unique characteristics for each file. The fine-tuning phase employs supervised learning to

differentiate between malware and benign files. The research demonstrated that this approach

enhances performance when compared to conventional shallow learning methods.

Roseline and her team introduced an intelligent, vision-based approach to malware

detection and classification [4]. This method employs a layered ensemble structure reminiscent of

deep learning. Program executables undergo a transformation into 2D images, and the resulting

patterns are harnessed for categorizing various malware variants into their respective classes. This

classification process utilizes a deep forest approach coupled with sliding window scanning and

cascading layering influenced by Convolutional Neural Networks (CNNs). Notably, the authors

contend that their method does not necessitate backpropagation or hyperparameter tuning, and it

demonstrated successful outcomes in the detection and classification of malware variants on the

MALIMG and MALEVIS datasets.

In reference [5], a hybrid approach to malware classification is introduced, merging

features derived from deep convolutional neural networks with fractal texture analysis based on

segmentation. The authors of the paper employed pre-trained models like AlexNet and Inception-

v3 to capture features from malware images, subsequently partitioning them into 25 classes. These

extracted features underwent classification through a support vector machine, decision tree, and k-

38

nearest neighbor algorithms. The outcomes reported in the paper indicate a notably high accuracy

rate on the MALIMG dataset.

Essential attributes of malware detection and classification utilizing deep learning encompass:

i. Neural Network Architectures: Deep learning models utilize intricate neural network

structures, including Convolutional Neural Networks (CNNs) for image analysis and

Recurrent Neural Networks (RNNs) for sequence data. Moreover, more sophisticated

architectures such as Long Short-Term Memory networks (LSTMs) and transformer

models can also find application

ii. Feature Learning: Deep learning models acquire pertinent features and patterns directly

from raw data, obviating the necessity for explicit feature engineering. This capability

empowers the model to capture intricate relationships inherent in the data.

iii. Training Data: Deep learning models necessitate substantial volumes of labeled training

data to acquire the ability to differentiate between benign and malicious behaviors. These

data include features extracted from malware samples and legitimate software.

iv. Representation Learning: Deep learning models have the capacity to acquire hierarchical

and abstract representations of data, empowering them to encompass nuanced and intricate

attributes that could serve as indications of malware.

v. Behavioral Analysis: Deep learning models can analyze the behavior of files, programs,

and network traffic to identify patterns that match known malware behaviors or deviations

from normal activities.

vi. Image Analysis: Some deep learning models treat binary files as images and use techniques

like CNNs to identify visual patterns within the file's binary representation.

39

vii. Sequence Analysis: For malware detection involving sequences of operations or system

calls, RNNs and LSTMs can be employed to analyze the sequential behavior of programs.

viii. Transfer Learning: Transfer learning entails the utilization of pre-trained deep learning

models trained on extensive datasets and adapting them for the specific task of malware

detection. This approach proves beneficial in mitigating challenges related to limited data

availability.

ix. Zero-Day Detection: Deep learning models can be effective at detecting new and unknown

malware variants due to their ability to generalize from learned patterns.

x. Scalability: Deep learning models can scale to handle large and diverse datasets, allowing

for effective detection and classification across a wide range of malware types.

xi. Challenges: Deep learning models may require significant computational resources for

training and inference. Careful attention to hyperparameters, regularization, and data

augmentation is essential.

xii. Interpretability: Deep learning models can be challenging to interpret, making it important

to develop methods to understand their decision-making processes and provide

explanations for their predictions.

The domain of malware detection and classification through deep learning is dynamically

progressing, marked by continuous research and advancements directed at enhancing the precision,

efficiency, and interpretability of deep learning models. It serves as a valuable complement to other

malware detection methods, augmenting the overall efficacy of contemporary cybersecurity

strategies.

40

2.2.1 Convolutional Neural Networks

 Convolutional Neural Networks (abbreviated as ConvNets or CNNs) represent a category

of deep, feed-forward artificial neural networks, predominantly employed in tasks such as image

recognition, classification, and speech recognition. These networks encompass multiple layers of

artificial neurons, including convolutional, pooling, and fully connected layers. Their inherent

ability lies in learning hierarchical data representations by applying filters to raw input and

gradually diminishing spatial dimensions. This architectural design empowers CNNs to

autonomously and flexibly acquire spatial hierarchies of features from the input dataset, thereby

reducing the necessity for manual feature extraction.

Its design is tailored for processing data organized in a grid-like manner, as is the case with

images. This network employs multiple filters on the input data to acquire hierarchical

representations or features from the input. The filters undergo learning through a process known

as convolution, in which the network applies a small matrix of weights to local sections of the input

data, producing a new transformed representation. Subsequently, pooling layers are employed to

down-sample the feature maps and diminish spatial dimensions. Finally, the feature maps are input

into a fully connected layer to make predictions grounded in the learned features. The distinctive

architecture of CNNs enables them to autonomously learn valuable features directly from the data,

alleviating the requirement for manual feature engineering. As a result, they have become a favored

choice for tasks in computer vision and Natural Language Processing (NLP).

In a CNN, images are first converted into a matrix format, and the network uses these

matrices to determine which image belongs to which label. During training, the network learns the

effects of the differences between images on their corresponding labels. In the testing phase, it

applies these learned relationships to predict the labels of new images. A CNN comprises three

principal elements: 1. convolutional layer, 2. pooling layer, and 3. fully connected layer. The

convolutional and pooling layers are in charge of the feature extraction procedure, whereas the

fully connected layer is responsible for carrying out the classification task.

41

Here's a simple example to illustrate the convolution operation:

Suppose you have a 5x5 input matrix (representing an image) and a 3x3 filter matrix, also

called a kernel, shown below:

Figure 2.1 CO with Karnal 3 and Stride 2.

The convolution process entails moving the kernel across the input matrix, conducting

element-wise multiplication for each overlapping region, and subsequently summing the outcomes.

This process yields a fresh matrix, referred to as a feature map, with diminished dimensions. In the

provided instance, the resultant feature map will have dimensions of 3x3, as depicted above.

The mathematical formula for the convolution operation as follows in Equation 2.1.

(f * g)(t) = \sum_{\tau = -\infty}^{\infty} f(\tau) g(t - \tau) (2.1)

where f and g are the input and kernel matrices, respectively, and t is the index of the output matrix.

Key characteristics of Convolutional Neural Networks include:

i. Convolutional Layers: The core building blocks of CNNs are convolutional layers. These

layers apply convolutional operations to input data using small filters (kernels) to extract

42

local features and patterns. Convolutions empower the network to grasp spatial hierarchies

of characteristics, including edges, textures, and shapes.

ii. Pooling Layers: Pooling layers decrease the spatial dimensions of the data while preserving

crucial features. Widely employed pooling operations include max pooling and average

pooling, which assist in reducing computational complexity and enhancing translation

invariance.

iii. Feature Hierarchies: CNNs are constructed with multiple layers arranged sequentially. The

initial layers are adept at detecting low-level features such as edges and corners, whereas

the deeper layers specialize in recognizing high-level features like object components and

entire objects.

iv. Learned Features: Unlike traditional image processing methods that use handcrafted

features, CNNs automatically learn hierarchical features from data during training. This

capability makes CNNs highly effective at tasks like object recognition.

v. Weight sharing is a fundamental concept in CNNs, where weights are shared among distinct

input regions. This practice minimizes the parameter count and facilitates the network in

generalizing across various portions of the input.

vi. Activation Functions: Activation functions, such as ReLU (Rectified Linear Unit),

introduce non-linearity into the network, enabling it to learn complex relationships between

features.

vii. Fully Connected Layer: CNNs often end with fully connected layers that combine learned

features to make final predictions. These layers can be used for tasks like classification or

regression.

43

viii. Transfer Learning: By fine-tuning pre-trained CNNs on more limited datasets following

training on extensive ones like ImageNet, we can employ transfer learning. This approach

harnesses the previously acquired features and has the potential to enhance performance.

ix. Data Augmentation: To enhance the diversity of training data and boost generalization, one

can employ data augmentation methods such as image rotations, flips, and shifts.

Convolutional Neural Networks (CNNs) have played a pivotal role in achieving cutting-

edge performance across various computer vision tasks. Their hierarchical structure and innate

capability to autonomously learn pertinent features render them exceptionally well-suited for tasks

involving pattern extraction from images or sequences. Although CNNs are frequently associated

with image processing, analogous principles can be applied to other structured data types, such as

speech and text.

In summary, the convolution layer within a Convolutional Neural Network (CNN) applies

filters to the input data, facilitating the acquisition of local features while reducing the input's

dimensions and transforming it into a new, condensed representation. Subsequently, the resulting

feature map serves as input for the subsequent layer within the CNN. The primary objective of the

convolution operation in a CNN is to discern and extract high-level features, such as edges, from

the input image. A CNN is not confined to just one convolutional layer, and typically, the initial

convolutional layer is responsible for identifying low-level features like edges, colors, gradient

orientations, and so forth. As more layers are added to the network, its architecture becomes

increasingly proficient at recognizing higher-level features.

2.2.2 Non-Linearity (ReLU)

ReLU, which is short for Rectified Linear Unit, serves as a commonly employed activation

function within deep learning networks, particularly finding widespread use in Convolutional

Neural Networks (CNNs).

44

The ReLU function is represented mathematically as in Equation 2.2.

 f(x) = max(0, x) (2.2)

Here, x represents the input to the activation function, and f(x) denotes the resulting output.

When x is positive, the output equals x, while for negative x values, the output becomes 0.

An illustration of how ReLU operates can be exemplified as follows: consider the input to

the activation function as -2. When we apply the ReLU function to this input, the resulting output

is 0, given that the input is negative. Conversely, if the input assumes a value of 5, the output

corresponds to 5, owing to the input's positivity. This characteristic of ReLU enables neural

networks to represent intricate associations between inputs and outputs, rendering it apt for

addressing real-world challenges. Here’s another example to help understand the ReLU activation

function. Suppose we have an input value x = -2. When we pass this input through the ReLU

activation function, the output will be 0, because the ReLU function maps all negative values to 0,

as illustrated in Equation 2.3.

x = -2

f(x) = max(0, x) = max(0, -2) = 0 (2.3)

Now, let's consider another input value x = 5. When we pass this input through the ReLU

activation function, the output will be 5, because the ReLU function maps all positive values to the

same value as the input. As demonstrated in Equation 2.4.

x = 5

f(x) = max(0, x) = max(0, 5) = 5 (2.4)

In this way, the ReLU activation function helps the network model complex relationships

between inputs and outputs, making it suitable for solving real-world problems.

Key characteristics of the ReLU activation function:

45

i. Non-Linearity: ReLU introduces non-linearity by applying a thresholding operation. This

allows neural networks to capture complex relationships and patterns in data that linear

transformations cannot model.

ii. Sparse Activation: ReLU activations are sparse, meaning that they can quickly "activate"

(output a non-zero value) for positive inputs and "deactivate" (output zero) for negative

inputs. This sparsity can improve the network's efficiency and training speed.

iii. Vanishing Gradient: ReLU helps alleviate the vanishing gradient problem that can occur

when using activation functions like sigmoid or tanh. In these functions, gradients can

become very small for extreme input values, making learning difficult. ReLU gradients

remain non-zero for positive inputs.

iv. Common Usage: ReLU finds extensive application in numerous deep learning structures,

encompassing Convolutional Neural Networks (CNNs) and feedforward neural networks.

Its popularity can be attributed to its straightforwardness and efficacy.

ReLU has some limitations that are as follow:

i. Dying ReLU Problem: In the case of specific negative inputs, the gradient of ReLU

becomes zero, essentially causing the neuron's learning to halt during backpropagation.

This issue is commonly referred to as the "dying ReLU" problem and can impede or

decelerate the learning procedure.

ii. Leaky ReLU and Variants: To address the dying ReLU problem, variations of ReLU have

been proposed, such as Leaky ReLU (allowing a small slope for negative inputs) and

Parametric ReLU (making the slope trainable).

46

iii. Output Range: ReLU outputs only positive values or zeros, which can cause exploding

activations when used in very deep networks. Techniques like batch normalization can help

mitigate this issue.

2.2.3 Pooling Layer

 The pooling layer is an integral element within Convolutional Neural Networks (CNNs)

and serves the purpose of downsizing the feature maps produced by the convolution layer. The

primary objective of pooling is to decrease the spatial dimensions of the feature maps while

preserving crucial information essential for classification. Additionally, pooling contributes to the

reduction of the network's computational complexity and guards against overfitting by confining

the number of parameters.

In a Convolutional Neural Network (CNN), the pooling layer follows the convolutional

layer and constitutes the second layer. Its principal objective is to diminish both the count of feature

maps and the network's parameters through mathematical operations. In this specific instance, max-

pooling was employed. During max-pooling, each feature map retains solely the maximum value

within a defined matrix size, leading to a reduced quantity of output neurons. Subsequently, the

network advances to the fully connected layer. Another intermediate layer that may find application

is the dropout layer, which is instrumental in mitigating overfitting and divergence within the

network.

The i-th layer of a Convolutional Neural Network (CNN) encompasses both the

convolutional layer and the pooling layer, working in tandem. While the number of such layers can

be expanded to capture intricate details within complex images, it necessitates greater

computational resources. Following the conclusion of the feature extraction procedure, the

resulting output is flattened and subsequently directed into a conventional neural network designed

47

for classification. This concluding step enables the model to comprehend the input image's features

and formulate predictions based on these features.

In CNNs, two prevalent pooling operations are frequently employed: max pooling and average

pooling.

i. Max Pooling: Max pooling is the prevalent form of pooling operation. In this technique, a

pooling window, typically sized as 2x2 or 3x3, traverses the input data. Within each

window, the maximum value is chosen and transmitted to the subsequent layer. Max

pooling effectively captures the most salient feature in the window and reduces the

dimensionality of the data.

ii. Average Pooling: Average pooling bears similarities to max pooling, with the distinction

being that it computes the average value within the pooling window instead of selecting the

maximum. The utilization of average pooling serves to mitigate the likelihood of giving

undue prominence to extreme values within the input data.

Figure 2.2 Pooling types.

There exist two primary types of pooling operations: max pooling and average pooling. In

max pooling, the maximum value is chosen from a set of neighboring pixels within the feature

48

map, while average pooling computes the average value. Max pooling is more commonly

employed due to its lower sensitivity to input noise and variations.

Illustrating max pooling with an example, let's consider a 4x4 feature map produced by the

convolution layer, as depicted earlier. Max pooling operates by partitioning the feature map into

non-overlapping regions and selecting the maximum value from each region. For instance, when

employing a 2x2 pooling window, the outcome of max pooling will yield a 2x2 feature map, as

illustrated above. The mathematical formula for max pooling is given by Equation 2.5.

 y_{i, j} = \max_{k=0}^{f_{h}-1} \max_{l=0}^{f_{w}-1} x_{s \cdot i + k, s \cdot j + l} (2.5)

In this context, x_{i, j} represents the value located at position (i, j) within the feature map, while

f_{h} and f_{w} denote the height and width of the pooling window, respectively. Additionally,

"s" represents the stride, which signifies the gap between the centers of consecutive pooling

windows. Pooling layers offer several benefits in convolutional neural networks:

i. Dimensionality Reduction: Pooling layers are instrumental in diminishing the spatial

dimensions of the input data, thereby contributing to the reduction of computational

demands and memory requisites in the subsequent layers.

ii. Translation Invariance: Pooling captures the most important features in a local

neighborhood, making the network less sensitive to small translations or shifts in the input

data.

iii. Feature Robustness: By retaining only the most salient features, pooling layers help the

network focus on higher-level patterns and reduce the impact of noise and minor variations.

iv. Regularization: Pooling operates as a form of regularization by mitigating overfitting,

compelling the network to acquire more resilient and broadly applicable features.

49

In summary, the pooling layer diminishes the spatial dimensions of the feature maps

generated by the convolutional layer, preserving solely the most crucial information for

classification purposes. These compacted feature maps are subsequently employed as input for the

ensuing layer within the CNN.

2.2.4 Fully connected layer

 The last layer in a Convolutional Neural Network (CNN), also referred to as the

classification layer, assumes the role of making the ultimate prediction grounded in the acquired

features from the preceding layers. Specifically, the fully connected layer accepts the flattened

output derived from the pooling layer and subjects it to a set of weights and biases. The outcome

from the fully connected layer then undergoes an activation function, such as SoftMax, to yield the

ultimate prediction. This prediction manifests as class scores corresponding to each potential class.

These scores facilitate the determination of the class label with the highest score, ultimately serving

as the CNN's definitive prediction.

The fully connected layer within a Convolutional Neural Network (CNN) accepts the

flattened output from the preceding layer, typically stemming from a pooling layer. It subsequently

applies a set of weights and biases to generate a collection of output activations. The mathematical

expression for an individual activation within the fully connected layer can be formulated as

indicated in Equation 2.6.

a = σ(W * x + b) (2.6)

x denotes the input activations originating from the preceding layer, typically in the form of a

flattened vector.

W stands for the weight matrix, serving as the intermediary that maps the input activations to the

resultant output activations.

50

b symbolizes the bias vector, which is incorporated into the weighted input

σ signifies the activation function employed upon the weighted input, encompassing options like

the ReLU or SoftMax function.

a represents the resulting activation yielded by the fully connected layer.

Here's an example to help understand the fully connected layer, suppose we have an input

activations vector x = [x1, x2, x3] and a weight matrix W = [[w1, w2, w3], [w4, w5, w6], [w7, w8,

w9]]. The bias vector b = [b1, b2, b3].

To calculate the output activations of the fully connected layer, we first need to calculate

the weighted input as in Equation 2.7.

 z = W * x + b = [[w1, w2, w3], [w4, w5, w6], [w7, w8, w9]] * [x1, x2, x3] + [b1, b2, b3] (2.7)

Following that, we employ the activation function σ to the weighted input, yielding the

output activations as in Equation 2.8.

a = σ(z) = [σ(z1), σ(z2), σ(z3)] (2.8)

In this way, the fully connected layer uses the weights and biases to transform the input

activations into a set of output activations that are then used for making predictions.

Key characteristics of fully connected layers include:

i. Neuron Connections: Each neuron within a fully connected layer establishes connections

with every neuron in the preceding layer, and these connections possess associated weights.

These weights undergo adaptation during the training phase, dictating the connection

strengths among neurons.

ii. Feature Combination: Fully connected layers amalgamate the features garnered from the

preceding layers to formulate more advanced predictions or classifications. Each neuron

51

within the fully connected layer possesses the capacity to apprehend intricate relationships

amid the input features.

iii. Output Units: The quantity of neurons contained within the fully connected layer dictates

the number of generated output units. In classification tasks, these output units frequently

correspond to distinct classes, whereas in regression tasks, they represent continuous

values.

iv. Activation Function: Each neuron situated in the fully connected layer subjects the

weighted summation of its inputs to an activation function. Commonly employed activation

functions encompass ReLU, sigmoid, and tanh. The activation function introduces non-

linearity into the network, endowing it with the capability to grasp intricate patterns.

v. Bias Term: Fully connected layers typically include a bias term for each neuron, which

allows the network to learn offsets or shifts in the predictions.

vi. Flattening: Within CNNs, fully connected layers are typically preceded by convolutional

and pooling layers. To facilitate the connection between these layers, the output from the

last pooling layer undergoes flattening, transforming it into a 1D vector prior to entering

the fully connected layer.

Fully connected layers assume the responsibility of delivering ultimate predictions or

classifications based on the gleaned features. They excel at capturing intricate relationships among

features, furnishing the network with the capacity to derive generalizations from the acquired

patterns. The results generated by the fully connected layer find utility in tasks such as image

classification, object recognition, sentiment analysis, and various others. Nevertheless, within deep

neural networks, particularly those featuring a multitude of parameters, fully connected layers can

potentially contribute to overfitting. Consequently, regularization techniques like dropout and L2

regularization are frequently employed to mitigate overfitting and enhance generalization

performance

52

2.2.5 SoftMax Function

 The SoftMax function serves as a commonly employed activation function, particularly in

the output layer of a neural network, specifically designed for multi-class classification challenges.

When provided with a vector of real numbers as input, the SoftMax function yields a vector of

probabilities, which collectively sum up to 1. Its primary function is to transform the network's

output into a probability distribution spanning multiple classes, thereby signifying the likelihood

of each class being the correct solution. The SoftMax function is defined as in Equation 2.9.

S(y_i) = (e^(y_i)) / sum(e^(y_j)) for all j

The SoftMax function serves as a commonly employed activation function, particularly in

the output layer of a neural network, specifically designed for multi-class classification challenges.

When provided with a vector of real numbers as input, the SoftMax function yields a vector of

probabilities, which collectively sum up to 1. Its primary function is to transform the network's

output into a probability distribution spanning multiple classes, thereby signifying the likelihood

of each class being the correct solution. Here's a simple example to help understand the SoftMax

function:

Suppose you have a neural network that classifies images of MALIMG into three

categories: Adialer.C, Agent.FYI, and C2LOP.P. The output layer of this network contains three

neurons, one for each class. The output of the network for a given image might look like y = [2, 1,

0]. These values represent the confidence of the network that the image belongs to each class.

However, these values are not probabilities and may not sum to 1. The Softmax function can be

used to convert these values into probabilities as in Equation 2.10.

S(y_1) = e^(2) / (e^(2) + e^(1) + e^(0)) = 0.74

S(y_2) = e^(1) / (e^(2) + e^(1) + e^(0)) = 0.24 (2.10)

S(y_3) = e^(0) / (e^(2) + e^(1) + e^(0)) = 0.02

53

Now, the sum of these values equals 1, effectively indicating a probability distribution

across the classes. The highest value within this distribution, which is 0.74 in this instance, signifies

the network's predicted class, identified as Adialer.C in this particular scenario.

Prominent characteristics of the softmax function include:

i. Probability Distribution: The softmax function transforms logits into a legitimate

probability distribution encompassing multiple classes. Each value within the resulting

vector denotes the likelihood of the input belonging to the corresponding class.

ii. Normalization: This function normalizes the logits by exponentiating them and

subsequently dividing the results by the sum of the exponentiated values. This

normalization procedure ensures that the resultant output probabilities always sum up to 1.

iii. Amplifying Differences: The softmax function amplifies the differences between logits.

Logits with larger values will have larger exponentiated values, resulting in higher

probabilities, while logits with smaller values will have lower probabilities.

iv. Numerical Stability: The exponential function can lead to numerical instability when

dealing with very large or very small values. Techniques like subtracting the maximum

value from the logits before applying softmax (known as the log-sum-exp trick) help

mitigate this issue.

v. Multiclass Classification: The utilization of SoftMax in the output layer of a neural network

is a common practice for tasks involving multi-class classification. Ordinarily, the class

associated with the highest SoftMax probability is designated as the predicted class.

The SoftMax function assumes a pivotal role in both the training and deployment of neural

networks for classification purposes. Throughout the training process, it collaborates with a loss

function, such as cross-entropy, to calculate the loss and facilitate the adjustment of the network's

54

weights via backpropagation. In the inference phase, the output produced by the SoftMax function

furnishes the predicted class probabilities for the given input data.

2.3 Performance Metrics

We conducted Performance Metrics analysis using four criteria:

i. Accuracy.

ii. Sensitivity.

iii. Specificity.

iv. F-score.

2.3.1 Accuracy

Accuracy is a frequently employed metric for assessing the effectiveness of a classifier. In

the context of Convolutional Neural Networks (CNNs), accuracy can be calculated as in Equation

2.11.

Accuracy = (TN + TP) / (TN + TP + FN + FP) (2.11)

TN (True Negative) represents the count of instances correctly classified as negative. TP

(True Positive) signifies the count of instances correctly classified as positive. FN (False Negative)

represents the count of instances incorrectly classified as negative. FP (False Positive) represents

the count of instances incorrectly classified as positive.

As an illustration, let's consider a scenario in which a CNN is trained to categorize a set of

malware images. Among 1000 images, the CNN accurately identifies 900 as malware (TP) and

55

100 as non-malware (TN). However, it also incorrectly classifies 50 images as not being malware

(FN) and 50 images as being malware (FP). In this case, the accuracy of the CNN as in Equation

2.12.

Accuracy = (100 + 900) / (100 + 900 + 50 + 50) = 1000 / 1200 = 83.33% (2.12)

The accuracy metric provides a holistic view of the model's performance, but its

comprehensiveness may vary in different scenarios. To assess the performance of a CNN more

thoroughly, other metrics like precision, recall, F1-score, among others, can be employed.

2.3.2 Sensitivity (True Positive Rate or Recall)

Sensitivity, also referred to as True Positive Rate or Recall, stands as a critical performance

metric in machine learning classification tasks. It gauges the model's proficiency in correctly

identifying positive instances among all the actual positive instances present in the dataset. In

essence, it assesses how well the model avoids false negatives. Mathematically, Sensitivity can be

expressed as in Equation 2.13.

Sensitivity = (True Positives) / (True Positives + False Negatives) (2.13)

True Positives (TP) denote instances correctly classified as positive by the model, while

False Negatives (FN) represent instances that are truly positive but are inaccurately categorized as

negative by the model.

Sensitivity is particularly important in situations where the consequences of missing

positive instances are significant. For example, in medical diagnosis, a false negative might mean

failing to identify a disease in a patient who actually has it, which could have serious consequences.

56

A heightened sensitivity signifies that the model excels at capturing positive instances and

mitigating false negatives, while a diminished sensitivity implies that the model overlooks a

substantial number of positive instances.

2.3.3 Specificity (True Negative Rate)

Specificity, alternatively termed the True Negative Rate, constitutes another pivotal

performance metric within machine learning classification tasks. This metric assesses the model's

capability to accurately recognize negative instances among all the genuine negative instances

within the dataset. In essence, it evaluates how adeptly the model avoids false positives.

Mathematically, Specificity can be expressed as in Equation 2.14.

Specificity = (True Negatives) / (True Negatives + False Positives) (2.14)

True Negatives (TN) denote instances correctly classified as negative by the model, while

False Positives (FP) represent instances that are genuinely negative but are erroneously categorized

as positive by the model.

Specificity is especially relevant in situations where correctly identifying negative instances

is crucial. For example, in security systems, a false positive could lead to unnecessary alarms and

disruptions. Elevated specificity signifies that the model excels at accurately identifying negative

instances and mitigating false positives. Conversely, reduced specificity implies that the model is

erroneously classifying a noteworthy number of negative instances as positive.

57

2.3.4 F-score (F1-Score)

The F-score, particularly the F1-Score, serves as a singular metric that amalgamates both

precision and recall (or sensitivity) to furnish a well-rounded evaluation of a model's performance

in binary classification tasks. It proves especially valuable when faced with class imbalance or the

necessity to account for both false positives and false negatives.

The F1-Score represents the harmonic mean of precision and recall, as in Equation 2.15.

F1-Score = 2 * (Precision * Recall) / (Precision + Recall) (2.15)

Precision signifies the proportion of correct positive predictions relative to the total number

of positive predictions generated by the model. It gauges the model's aptitude for avoiding false

positives. Recall (Sensitivity) embodies the ratio of correct positive predictions to the complete

count of actual positive instances within the dataset. It assesses the model's proficiency in averting

false negatives. The F1-Score strikes an equilibrium between precision and recall. It considers both

false positives and false negatives and proves particularly advantageous when seeking a

compromise between these two forms of errors. A high F1-Score signals an effective equilibrium

between precision and recall, while a lower F1-Score suggests an inequity between these two

metrics.

58

2.4 Conclusion

 The subsequent statements encapsulate the findings derived from the literature review.

Table 2.1: Conclusive literature review.

Serial Title Year Dataset Result Remark

1

Robust intelligent

malware detection using

deep learning. [57]

2019

MALIMG 96%
Initial

accuracy MALEVIS 86.29%

2

Convolutional neural

networks for malware

classification. [60]

2016

MALIMG 95.33%
Improved

accuracy MALEVIS 90.59%

3

How to make attention

mechanisms more

practical in malware

classification. [62]

2019 MALEVIS 91.31%

Improved

accuracy

for

MALEVIS.

4

Detection of malicious

code variants based on

deep learning. [59]

2018

MALIMG 94.5%
Variation

in accuracy MALEVIS 92.13%

5

Binary malware image

classification using

machine learning with

local binary pattern.

[58]

2017

MALIMG 93.72%

Variation

in accuracy MALEVIS 92.24%

6

Malware classification

using image

representation. [61]

2019

MALIMG 96.08%
Variation

in accuracy MALEVIS 93%

59

7

A New Malware

Classification

Framework Based on

Deep Learning

Algorithms. [63]

2021

MALIMG 97.78%

Most

appropriate
MALEVIS 96.6%

This chapter introduced the concept of deep learning, along with the associated notions of

neural networks and Convolutional Neural Networks (CNNs). Particular attention was devoted to

the typical layers employed in CNN implementations. Finally, the chapter delved into the metrics

employed for the assessment of CNN models.

CHAPTER 3

METHODOLOGY

3.1 Visualizing malware as images

The process of converting malware code into images initiates by reading the binary file as

an array of 8-bit unsigned integers. These binary values are subsequently transformed into decimal

values, which are stored in a new decimal vector representing the malware sample. Finally, the

resulting decimal vector undergoes reshaping into a 2D matrix, which is then visualized as a

grayscale image. The dimensions of this 2D matrix, i.e., the spatial resolution of the image, are

contingent on the size of the malware binary file. Additionally, this representation can detect zero-

padding, which is employed for block alignment and to reduce executable entropy [39].

Figure 3.1: Binary codes to grayscale images.

Figure 3.1 illustrates the process of converting malware binary files into grayscale images.

Initially, the binary file is read as a vector comprising 8-bit unsigned integers, and each element is

converted into its decimal equivalent (e.g., [00000000] in binary corresponds to [0] in decimal, and

[11111111] corresponds to [255]). These decimal values are then stored in a new vector

representing the malware sample. Subsequently, this vector is reshaped into a 2D matrix, which is

61

visualized as a grayscale image. The dimensions of the 2D matrix, or image resolution, are

primarily determined by the binary file's size, following the resolution approach used by Nataraj et

al. [16]. It has been observed that malware variants within the same family often exhibit similar

textures (appearances), as demonstrated in Figure 3.2.

.

Figure 3.2: MALEVIS grayscale images.

Visualizing malware as images can be especially useful for large datasets where manual

analysis may not be feasible, and can also help in reducing the dimensionality of the data for easier

analysis. Nevertheless, it's crucial to emphasize that this approach does not replace conventional

62

malware analysis methods. The accuracy of visual analysis should be considered in conjunction

with other techniques to attain a comprehensive comprehension of malware and its behaviors.

3.2 Proposed Framework

The presented model presents an efficient structure for classifying malware by employing

a hybrid deep neural network architecture. This framework comprises four main stages, as

illustrated in Figure 1: data collection, the design of the neural network architecture, training, and

evaluation. Moreover, Figure 2's system flowchart offers a more detailed breakdown of each of

these stages.

Figure 3.3: Proposed methodology for malware classification.

In Figure 3.4, the pre-training section showcases networks that have already undergone training

63

and are currently being utilized as feature extractors. On the other hand, in the training section, the

first three layers represent fully connected layers employed for the learning process. Lastly, the

final layer signifies a SoftMax classifier, responsible for the classification process.

Figure 3.4: Flowchart of DL architecture for malware classification.

To commence, malware data is collected from various sources, including MALIMG

[16] and MALEVIS [41]. Detailed explanations of these malware classification datasets will be

64

provided in a subsequent section. Following data collection, the proposed deep neural network

architecture is constructed.

At this stage, two pre-processing steps are carried out. Initially, an appropriate deep

learning (DL) architecture is selected for performing malware classification tasks. This decision is

based on preliminary experiments that have demonstrated the potential advantages of a hybrid

module [42] in enhancing overall accuracy. Subsequently, transfer learning is explored to address

specific challenges encountered during the classification process, such as time constraints and the

large dataset size. In the context of transfer learning, the feature extraction step is initiated using

pre-trained networks. Finally, a general classifier, such as a support vector machine or SoftMax, is

employed for the classification task. This approach has been tailored to the proposed architecture

as an effective means of overcoming the aforementioned challenges.

3.3 Data Sets

A dataset refers to a well-organized compilation of data utilized for the training, validation,

or testing of machine learning models. Typically, datasets comprise a collection of instances or

observations, wherein each instance encompasses several features or attributes. Additionally, these

instances often include a target or label that the model endeavors to predict or classify. In our

analysis, we employ the following two datasets:

i. MAILMG Dataset.

ii. MALEVIS Dataset.

3.3.1 MALIMG dataset

"MALIMG" is probably a shorthand for the "Malicious Image" dataset, which serves as a

dataset for assessing the efficacy of image-based malware detection models. The MALIMG dataset

encompasses a variety of malicious and benign image files, including icons and executables,

65

frequently encountered within Windows operating systems. The objective is to train machine

learning models capable of effectively discerning benign from malicious images by considering

their visual characteristics and additional attributes [52], [53].

Figure 3.5: Names and percentage distribution of the MALIMG dataset.

The MALIMG datasets serve as a means to assess the resilience and adaptability of various

machine learning models, including deep learning models, when it comes to detecting malware in

image formats. These datasets establish a standard for appraising the performance of diverse

algorithms, aiding researchers in pinpointing areas for enhancing malware detection [16].

The MALIMG dataset encompasses a total of 9,339 malware samples, divided into 25

distinct classes, each represented as grayscale images. These samples are distributed among

different malware families or classes, each with varying quantities of samples. In experimental

setups, 90% of the malware samples within each family are randomly selected for training

66

purposes, while the remaining 10% are reserved for testing. This results in a training set comprising

8,394 samples and a testing set containing 945 samples [54].

Figure 3.6: Import the MALIMG dataset in Web IDE.

3.3.2 MALEVIS Dataset

The proposed method's performance evaluation was conducted using the MALEVIS

(Malware Evaluation with Vision) dataset. This dataset comprises 14,226 RGB byte images

categorized into 26 classes, encompassing 25 distinct malware categories and 1 benign software

class. The dataset was partitioned into 9,100 samples for training and 5,126 samples for testing,

with an even distribution of 350 images per class [44]. The malware classes included in the dataset

encompass Adposhel, Agent-fyi, Allaple.A, Amonetize, Androm, AutoRun-PU, BrowseFox,

Dinwod! rfn, Elex, Expiro-H, Fasong, HackKMS.A, Hlux!IK, Injector, InstallCore.C, MultiPlug,

Neorekla-mi, Neshta, Regrun.A, Sality, Snarasite.D!tr, Stantinko, VBA/Hilium.A, VBKrypt, and

Vilsel [45].

67

Figure 3.7: Names and percentage distribution of the MALEVIS dataset.

To assess the performance of the proposed method, a dataset of byte images was generated,

consisting of 26 distinct classes, comprising 25 malware categories and one legitimate class. The

dataset creation process involved extracting binary images from malware files obtained from

Comodo Inc. These binary images were then converted into 3-channel RGB format using the

bin2png script developed by Sultanik. Subsequently, the vertically elongated images were resized

to two different square resolutions: 224x224 pixels and 300x300 pixels [44].

Figure 3.8: Import the MALEVIS dataset in Web IDE.

CHAPTER 4

IMPLEMENTATION AND EVALUATIONS

4.1 Overview

This section offers a detailed overview of the implementation, experimental accuracy, and

assessment of the proposed deep neural network model. In our implementation, we opted to utilize

the Google Colab notebooks platform, which provides substantial virtual RAM, storage capacity,

and GPU acceleration. The experience of working with Google Colab notebooks closely resembles

that of working with the popular Kaggle Notebooks platform.

We decided to use the TensorFlow and Keras API for our implementation due to its ease of

use and availability of extensive documentation and support from Google. Keras is an open-source

neural network library that serves as an interface for TensorFlow, which is a free and open-source

machine learning library primarily designed for deep neural network training and inference.

The process started by uploading the MALIMG and MALEVIS dataset zip files to Google

Drive. This allowed us to access the data from the zipfiles in the notebook. Next, the Keras

preprocessing library was used to extract the images and labels automatically. The datasets were

divided into training and testing sets using the scikit-learn package. The training set was employed

to train the neural network, adjusting its weights and biases. On the other hand, the testing set was

utilized to assess the CNN's accuracy. Following the training and testing phases, accuracy and

confusion matrices were visualized using Python's Matplotlib and Seaborn packages. The initial

learning rate was set at 0.001, with a reduction by a factor of 10 after every 20 epochs. Weight

decay and momentum were configured to 0.0005 and 0.9, respectively. The parameters within the

69

M-CNN network were initialized using the VGG-16 [56] weights. Random shuffling of the training

data was performed in each epoch. Model evaluation was based on accuracy, representing the

proportion of correctly labeled malware samples in the test data.

4.1.1 TensorFlow

TensorFlow is a robust open-source software library tailored for large-scale numerical

computations, particularly in the realm of machine learning. In the context of malware data

analysis, TensorFlow serves as a valuable tool for constructing machine learning models capable

of analyzing malware samples and discerning between malicious and non-malicious files. This is

accomplished by developing deep neural networks, which undergo training on a dataset comprising

both malware and non-malware samples. TensorFlow provides a flexible platform for training,

validating, and deploying these models, allowing researchers and practitioners to perform

sophisticated malware analysis and classification.

Key features of TensorFlow include:

i. Graph Computation: TensorFlow employs a dataflow graph as a means to depict

mathematical computations. This approach empowers users to delineate intricate

computational processes and models using a symbolic representation that operates at a

higher level.

ii. Automatic Differentiation: TensorFlow includes an automatic differentiation feature, which

is crucial for training neural networks using gradient descent optimization algorithms.

iii. Flexible Architecture: It supports both CPUs and GPUs for efficient numerical

computations, which are crucial for training large neural networks.

70

iv. Abstraction Levels: TensorFlow offers different levels of abstraction, from high-level APIs

like Keras (a neural network API) to lower-level APIs that allow users to have more control

over model design.

v. Wide Range of Libraries: TensorFlow provides various libraries and tools for building

different types of machine learning models, including image and text analysis,

reinforcement learning, and more.

vi. Model Deployment: TensorFlow models can be deployed on various platforms, including

cloud services, mobile devices, browsers, and embedded systems.

vii. Community and Ecosystem: TensorFlow boasts a thriving and engaged community actively

involved in its advancement. This vibrant community provides an abundance of resources,

tutorials, and pre-trained models, simplifying the initiation of diverse machine-learning

endeavors.

viii. TensorBoard: TensorFlow includes a visualization tool called TensorBoard that helps users

visualize and monitor training progress, model architectures, and other relevant

information.

ix. Support for Various Neural Network Architectures: TensorFlow supports building various

neural network architectures, from simple feedforward networks to more complex

convolutional networks, recurrent networks, and more.

TensorFlow has made substantial contributions to the progression of machine learning and deep

learning, enhancing accessibility and efficiency for researchers, developers, and data scientists in

the creation and deployment of advanced machine learning models.

71

4.1.2 Keras

Keras is an open-source high-level software library that offers a Python interface for

artificial neural networks. Its purpose is to streamline the construction and training of deep learning

models by supplying a user-friendly and high-level API. Keras serves as a user-friendly interface

for the underlying TensorFlow library, delivering a more intuitive and accessible means for users

to create, train, and assess neural networks. Some notable characteristics of Keras encompass:

i. User-Friendly API: Keras offers a straightforward and comprehensible interface for

creating and training neural networks. It enables users to specify models with just a few

lines of code, ensuring accessibility for individuals ranging from newcomers to seasoned

experts in deep learning.

ii. Modularity: Keras emphasizes modularity, allowing users to build complex neural network

architectures by combining pre-defined building blocks called "layers." These layers can

be stacked and interconnected to create different architectures.

iii. Flexibility: While Keras provides high-level abstractions, it also offers a degree of

flexibility that enables users to customize their models by specifying layer configurations,

activation functions, optimization algorithms, loss functions, and more.

iv. Support for Various Backends: Initially, Keras supported multiple deep learning libraries

as backends, including TensorFlow, Theano, and Microsoft Cognitive Toolkit (CNTK).

However, starting with TensorFlow 2.0, Keras is tightly integrated with TensorFlow,

making TensorFlow the default backend.

v. Multi-Layer Perceptrons (MLPs) and More: Keras offers extensive support for various

neural network architectures, encompassing straightforward feedforward networks (multi-

72

layer perceptrons), convolutional neural networks (CNNs), recurrent neural networks

(RNNs), and amalgamations of these architectural styles.

vi. Model Visualization: Keras includes tools like TensorBoard integration that help users

visualize their model architectures, training progress, and other metrics.

vii. Transfer Learning and Pre-Trained Models: Keras simplifies the process of transfer

learning by providing access to pre-trained models through its applications module. This

capability is especially valuable for harnessing models that have been trained on expansive

datasets to address particular tasks.

viii. Community and Resources: Keras has a strong community of users and contributors, which

has led to a wealth of tutorials, guides, and resources available for both beginners and

experienced users.

To sum it up, Keras offers an accessible and flexible means of developing, training, and

deploying deep learning models. Its emphasis on ease and modularity has made it a favored option

among researchers, developers, and data scientists, enabling them to explore neural networks

without delving into intricate low-level intricacies.

4.1.3 NumPy

NumPy, an abbreviation for Numerical Python, stands as a foundational library within the

Python programming language, and it enjoys extensive application in machine learning and

scientific computing. Its core functionality revolves around enabling the manipulation of large,

multi-dimensional arrays and matrices, bolstered by an array of high-level mathematical operations

tailored for efficient use with these arrays. NumPy serves as a pivotal cornerstone for numerous

machine learning libraries and frameworks.

73

Here are some key aspects of NumPy in machine learning:

i. Multi-Dimensional Arrays: NumPy introduces the numpy.ndarray data type, which allows

you to create arrays of various dimensions (e.g., 1D, 2D, 3D) to store and manipulate data

efficiently. These arrays possess homogeneity, indicating that all their elements share the

same data type.

ii. Efficient Element-Wise Operations: NumPy offers an extensive collection of mathematical

and logical functions that can be applied to arrays in an element-wise manner. This makes

it easy to perform operations like addition, subtraction, multiplication, and more on entire

arrays at once, which is crucial for machine learning computations.

iii. Broadcasting: NumPy incorporates broadcasting, enabling operations on arrays with

different shapes and sizes without requiring explicit looping, thus enhancing code

simplicity and performance.

iv. Integration with Machine Learning Libraries: Many machine learning libraries and

frameworks, including TensorFlow and PyTorch, are built on top of NumPy or have

NumPy-like interfaces. This makes it easy to seamlessly integrate NumPy arrays into

machine learning workflows.

v. Random Number Generation: NumPy provides a random number generation module

(numpy.random) that is commonly used for tasks like data augmentation, initialization of

model parameters, and generating random samples for statistical experiments.

vi. Linear Algebra Operations: NumPy encompasses an extensive array of linear algebra

functions, including matrix multiplication, eigenvalue decomposition, and singular value

decomposition, which are crucial components of numerous machine learning algorithms,

particularly those rooted in linear algebra.

74

vii. Data Manipulation and Preprocessing: NumPy is instrumental in data preprocessing tasks,

such as scaling, normalization, and reshaping of data, which are often required before

feeding data into machine learning models.

viii. Performance Optimization: NumPy is implemented in C and Fortran, which makes it highly

optimized for numerical computations. This results in efficient code execution, a crucial

factor in machine learning applications, especially for large datasets and complex models.

In conclusion, NumPy stands as a foundational library in machine learning, offering

indispensable tools for the efficient handling of numerical data. Its versatile array of operations and

mathematical functions are essential for tasks such as data manipulation, model training, and

evaluation within the realm of machine learning.

4.1.4 Seaborn

Seaborn, a Python data visualization library frequently employed in machine learning and

data analysis, serves as an invaluable tool. Built upon Matplotlib, another widely-used data

visualization library, Seaborn offers a more user-friendly interface for crafting informative and

visually appealing statistical graphics. Its utility shines when expeditiously exploring data,

visualizing variable relationships, and generating informative presentations and reports within the

context of machine learning.

Seaborn boasts the following key attributes and applications in the realm of machine learning:

i. Statistical Visualization: Seaborn excels at creating statistical visualizations that help you

understand the distribution of data, identify patterns, and visualize relationships between

variables. It supplies functions for producing a diverse range of plots, encompassing

histograms, scatter plots, bar plots, box plots, violin plots, and may more.

75

ii. Integration with Pandas: Seamlessly integrating with Pandas DataFrames, Seaborn

simplifies the task of working with and visualizing data stored in Pandas data structures.

iii. Automatic Estimation and Aggregation: Seaborn often automatically computes and

visualizes summary statistics (e.g., means, medians, confidence intervals) within plots,

simplifying the process of exploring and understanding data.

iv. Color Palettes: Seaborn offers a variety of aesthetically pleasing color palettes, making it

easy to create visually appealing visualizations. These palettes are particularly useful when

distinguishing between categories or groups of data.

v. Facet Grids: Seaborn provides tools for creating facet grids, which allow you to create

multiple plots or facets, each showing a subset of your data based on specific variables.

This is useful for visualizing relationships within different subsets of your dataset.

vi. Regression Analysis: Seaborn includes functions for visualizing and exploring linear and

non-linear relationships between variables, making it handy for regression analysis in

machine learning.

vii. Categorical Data Visualization: Seaborn specializes in visualizing categorical data. It offers

functions for creating count plots, bar plots, and categorical scatter plots that are useful for

exploring relationships in categorical data.

viii. Time Series Visualization: Seaborn supports time series data visualization, making it useful

for analyzing and plotting time-based datasets in machine learning tasks.

ix. Customization: While Seaborn offers sensible defaults for numerous plot styles, it also

affords extensive customization options for plots, encompassing colors, styles, labels, and

beyond.

76

In summary, Seaborn serves as a valuable asset within the machine learning workflow. It

streamlines the process of visualizing and comprehending data, a pivotal step in data preprocessing,

feature engineering, and model evaluation. It helps data scientists and machine learning

practitioners create informative and visually appealing visualizations quickly and effectively.

4.1.5 Scikit-learn

Scikit-learn, commonly denoted as "sklearn," stands as a well-liked open-source machine

learning library tailored for the Python programming language. Renowned for its versatility, it

ranks among the most extensively employed libraries for an array of machine learning endeavors.

Its applications span classification, regression, clustering, dimensionality reduction, model

selection, and data preprocessing. This robust library is constructed atop other Python libraries like

NumPy, SciPy, and matplotlib, furnishing a uniform and approachable API for seamless interaction

with a multitude of machine learning algorithms.

Here are some key aspects of scikit-learn:

i. Scikit-learn encompasses an extensive repertoire of machine learning algorithms,

encompassing both supervised and unsupervised learning paradigms. Among the array of

algorithms at its disposal are Supervised learning algorithms, which comprise Support

Vector Machines, Decision Trees, Random Forests, k-Nearest Neighbors, Linear and

Logistic Regression, and more. In the realm of Unsupervised learning, Scikit-learn boasts

algorithms such as Clustering (including K-Means and Hierarchical clustering) and

Dimensionality Reduction (featuring PCA and t-SNE), along with Gaussian Mixture

Models, and various others.

77

ii. Data Preprocessing: Scikit-learn provides a suite of data preprocessing tools, encompassing

functions for tasks like scaling, normalization, imputation of missing values, feature

selection, and feature extraction.

iii. Model Evaluation: The library supplies functions for assessing machine learning models

through metrics such as accuracy, precision, recall, F1-score, ROC AUC, and others. It also

supports techniques like cross-validation to ensure robust model assessment.

iv. Hyperparameter Tuning: Scikit-learn includes tools for hyperparameter tuning through

methods like grid search and randomized search, making it easier to find the best

hyperparameters for your models.

v. Pipeline: Scikit-learn allows you to build data processing and modeling pipelines, ensuring

that data preprocessing and model training are handled in a structured and reproducible

manner.

vi. Feature Engineering: The library offers various feature engineering techniques, such as

one-hot encoding, label encoding, and text vectorization, to prepare data for machine

learning models.

vii. Seamless Integration with Other Libraries: Scikit-learn smoothly integrates with other well-

known Python libraries like NumPy, Pandas, and Matplotlib, facilitating a seamless

workflow for data manipulation and visualization.

viii. Ease of Use: Scikit-learn is renowned for its straightforward and uniform API, ensuring

accessibility for both novice and seasoned machine learning professionals.

ix. User Community and Documentation: Scikit-learn boasts a sizable and engaged user

community, complemented by comprehensive documentation, tutorials, and practical

examples to assist users in initiating their journey and grasping the library's potential.

78

Overall, scikit-learn is a versatile and essential tool in the machine learning ecosystem. It simplifies

the implementation of various machine learning algorithms and provides a standardized interface

for building, evaluating, and deploying machine learning models. Whether you are a novice or an

expert in machine learning, scikit-learn is a valuable resource for your data science and machine

learning projects.

4.1.6 Matplotlib.pyplot

Matplotlib.pyplot is a Python library that facilitates the generation of static, animated, and

interactive visual representations across a diverse array of formats, including line plots, bar charts,

scatter plots, histograms, and numerous others. It is part of the larger Matplotlib library, which is

a comprehensive data visualization library for Python. pyplot is a subpackage within Matplotlib

that provides a simple and convenient interface for creating and customizing plots.

Here are the key components and features of matplotlib.pyplot:

i. Plotting Functions: Pyplot offers an assortment of plotting functions that streamline the

process of generating a wide array of plots, all achievable with just a few lines of code. For

example, you can create line plots using plt.plot(), scatter plots with plt.scatter(), bar charts

with plt.bar(), and histograms with plt.hist().

ii. Customization: You can customize every aspect of your plots, including titles, labels, axis

limits, colors, markers, line styles, and more. Pyplot offers a range of functions, such as

plt.title(), plt.xlabel(), plt.ylabel(), plt.legend(), plt.grid(), and more, to incorporate labels

and annotations into your plots.

79

iii. Subplots: Using the plt.subplots() function, you can arrange multiple plots within the same

figure, organizing them in a grid-like manner. This is useful for comparing different aspects

of your data in a single figure.

iv. Save and Export: Matplotlib offers the flexibility to save your plots in multiple file formats,

such as PNG, PDF, SVG, and others, using the plt.savefig() function.

v. Interactive Features: While pyplot is primarily used for static plots, you can combine it with

other libraries like Jupyter Notebook and interactive widgets to create interactive

visualizations for exploring data.

vi. Integration with NumPy: Matplotlib smoothly integrates with NumPy arrays, simplifying

the process of plotting data stored within NumPy arrays.

vii. Support for LaTeX: You can use LaTeX for rendering text and mathematical expressions

in titles, labels, and annotations, which is particularly useful for creating scientific plots.

4.1.7 Google Collaboratory

Google Collaboratory, commonly referred to as Colab, is a freely accessible Jupyter

Notebook environment provided by Google. It allows users to write and execute code, edit

documents, and run interactive web applications. Colab provides a cloud-based platform with free

access to GPUs and TPUs, making it an ideal environment for conducting large-scale data

experiments and machine learning projects. Additionally, Colab notebooks can be stored and

shared on Google Drive, allowing users to collaborate on projects in real-time and share accuracy

with others. Google Colab provides access to a virtual machine with a GPU and a CPU. The amount

of RAM, GPU, and CPU cores provided by Colab varies depending on the type of runtime being

used. Currently, the standard runtime provided by Colab offers 12 GB of RAM, an V100 GPU.

80

The high-RAM runtime provides 25 GB of RAM while the A100 GPU. Key features of Google

Colab include:

i. Colab offers complimentary access to Graphics Processing Units (GPUs) and Tensor

Processing Units (TPUs), both of which are hardware accelerators that greatly enhance the

training speed of deep learning models..

ii. Colab operates entirely in the cloud, eliminating concerns about the capabilities of your

local machine and allowing you to write and execute code on powerful remote servers.

iii. Jupyter Notebook Integration: Colab uses the Jupyter Notebook interface, allowing you to

write and run code in cells. This notebook-style interface makes it easy to write, execute,

and visualize code step by step.

iv. Colab comes equipped with popular libraries for data science and machine learning,

including TensorFlow, PyTorch, pandas, NumPy, and others, already installed. This

eliminates the need for setup and configuration, saving you time and effort.

v. Easy Data Sharing: You can upload and store datasets directly in your Colab environment.

Additionally, you can easily share your Colab notebooks with others for collaboration or

educational purposes.

vi. Google Drive Integration: Colab notebooks are saved in your Google Drive, making it easy

to organize and access your work from various devices.

vii. Code Snippets and Markdown: Colab supports Markdown cells, allowing you to document

your code and experiments. You can also include images, hyperlinks, and formatted text to

make your notebooks more informative.

viii. Interactive Visualizations: You can create interactive plots and visualizations using

libraries like Matplotlib and Seaborn. These visualizations help you better understand your

data and experiment results.

ix. Easy Setup and Environment Management: Since Colab is cloud-based, you don't need to

worry about installing and managing libraries and dependencies. Everything is handled by

Google's infrastructure.

81

x. Time-Limited Sessions: Colab sessions are time-limited, meaning that after a certain period

of inactivity, your environment might be disconnected. However, you can always reconnect

and continue your work.

In summary, Google Colab is a powerful and user-friendly tool for writing, executing, and

sharing Python code, especially for data science, machine learning, and research tasks. Its

combination of cloud resources, pre-installed libraries, and collaboration features makes it an

excellent choice for both beginners and experienced developers.

4.1.8 Our Proposed Model

We have reduced the complexity of our deep learning model by simplifying the architecture

of our Convolutional Neural Network (CNN). Previously models consisted of many Convolution

layers, Max-pooling layers, Dense layers, and SoftMax layers for classification. The previous

architecture resulted in a high number of trainable weights and biases, this hinders the model's

ability to effectively generalize to unfamiliar data.

To reduce the complexity, we have made the following changes, Here's the breakdown of the

layers. VGG16 base layers (pre-trained). These layers are not trainable, except for the last few.

i. It consists a flatten layer.

ii. A Dense layer containing 512 units and utilizing the 'relu' activation function.

iii. Batch Normalization layer.

iv. Dropout layer with dropout rate 0.5.

v. A Dense layer consisting of 256 units and using the 'relu' activation.

vi. A Dense layer comprising 128 units with the 'relu' activation.

vii. The final Dense layer with 26 units in its output (assuming it's a classification task) and

activation 'SoftMax'.

82

The cumulative count of layers in the model, encompassing both the foundational and

additional layers, would be the sum of these layers. The count includes all types of layers (Conv2D,

MaxPooling2D, Dense, etc.). The new architecture accuracy in a reduced number of trainable

weights and biases, improving the generalization performance of the model. The following is a

summary of the layers of the CNN when applied to the MALIMG dataset, along with the number

of trainable weights and biases (params) in each layer:

Figure 4.1: Number of layers trainable weights and biases (params) utilized for

MALIMG dataset.

A breakdown of the CNN applied to the MALEVIS dataset is provided below, including

the number of trainable weights and biases (params) in each layer:

83

Figure 4.2: Number of layers trainable weights and biases (params) utilized for MALEVIS

dataset.

With these changes, our model has a reduced complexity, making it easier to train and

improving its generalization performance on new data.

4.2 Accuracy

The table reveals that the CNN achieves an average validation accuracy of 99% on the MALIMG

dataset, while on the MALEVIS dataset, it achieves a validation accuracy of 97.12%.

84

Table 4.1: Accuracy of MALIMG and MALEVIS datasets.

Dataset Accuracy

MALIMG 99%

MALEVIS 97.12%

The following figures illustrate the evolution of accuracy for both the training and

validation sets at each epoch in the most recent training run..

Figure 4.3: Accuracy for MALIMG Dataset.

Figure 4.4: Accuracy for MalVis Dataset.

85

4.2.1 MALIMG Dataset

Here's a breakdown of the code:

i. Importing the Required Library: The code begins by importing the matplotlib.pyplot

module as plt. This module is a part of the Matplotlib library, which is commonly used for

creating visualizations in Python.

ii. Extracting Training History: The variables acc, val_acc, loss, and val_loss are utilized to

store the 1. training accuracy, 2. validation accuracy, 3. training loss, and 4. validation loss

values, correspondingly. These values are likely obtained from the history object after

training a machine learning model. The history object typically contains metrics recorded

at each epoch during training.

iii. Defining Epochs: The epochs variable is defined as a range representing the number of

epochs. This will serve as the label for the x-axis of the plot..

iv. Plotting Training Accuracy and the Validation Accuracy: The code uses plt.plot() to create

two lines on the same plot. One line represents the training accuracy (acc) and is displayed

in red ('r'). The other line represents the validation accuracy (val_acc) and is displayed in

blue ('b').

v. Setting Title and Legend: The title of the plot is set using plt.title(). In this instance, it is

configured as "Training and validation accuracy." The plt.legend() function introduces a

legend to the plot, facilitating the differentiation between the training and validation

accuracy lines. The loc=0 argument specifies that the legend should be placed in the "best"

location on the plot.

86

vi. Creating a New Figure: plt.figure() creates a new figure, which means that subsequent plots

will be drawn on a new canvas. This is typically used when you want to create multiple

separate plots in a single script or code block.

vii. Displaying the Plot: Finally, plt.show() is used to display the plot on the screen. This

command is essential for rendering the visualizations you've created using Matplotlib.

In summary, this code generates a plot that shows the progression of training and validation

accuracy over epochs. It aids in evaluating the performance of your model on both the training and

validation datasets, and in identifying indications of either overfitting or generalization issues.

Figure 4.5: Graphs depicting the growth of Training accuracy (in red) and Validation accuracy

(in blue) as the number of epochs increases on the MALIMG dataset.

87

4.2.2 MALEVIS Dataset

The code snippet creates a depiction of a machine-learning model's training and validation

accuracy over several epochs using the matplotlib library. Let's break down the code step by step:

i. Importing the Required Library: The code starts by importing the matplotlib.pyplot module

as plt. This module is used for creating various types of plots and visualizations in Python.

ii. Extracting Training History Metrics: The variables acc, val_acc, loss, and val_loss is used

to store specific metrics from the history1 object. Typically, metrics that were captured

while a machine learning model was being trained can be found in the history1 object.

Specifically:

a. acc: Training accuracy values recorded over different epochs.

b. val_acc: Validation accuracy values recorded over different epochs.

c. loss: Training loss values recorded over different epochs.

d. val_loss: Validation loss values recorded over different epochs.

iii. Defining Epochs: The variable epochs is created as a range that spans the length of the acc

list. This range is used to represent total number of epochs plotted on x-axis.

iv. Plotting Training and Validation Accuracy: The code uses the plt.plot() function to create

two lines on the same plot:

a. The first line represents the training accuracy (acc) and is drawn in red ('r').

b. The second line represents the validation accuracy (val_acc) and is drawn in blue

('b').

v. Setting Title and Legend:

a. plt.title() sets the title of the plot to "Training and validation accuracy".

88

b. plt.legend(loc=0) adds a legend to plot, indicating that which line correlate to

training accuracy and which communicate with the validation accuracy. The loc=0

argument specifies that the legend should be placed in the "best" location on the

plot.

vi. Creating a New Figure: plt.figure() is used to create a new figure. This is useful if you want

to create multiple separate plots in the same script or code block.

vii. Displaying the Plot: Finally, plt.show() is called to display the plot on the screen.

In summary, this code generates a line plot that visualizes, progression of training and

validation accuracy across epochs. You may learn more about how effectively your model is

learning from the training data and whether it is overfitting or generalizing to new data by

comparing these two curves. The visualizations help you make informed decisions about model

training and adjustments.

89

Figure 4.6: Graphs depicting the growth of Training accuracy (in red) and Validation accuracy

(in blue) as the number of epochs increases on the MALEVIS dataset.

4.3 Confusion Matrix

A confusion matrix represents the predicted class i.e. Output Class considered as rows, and

the true class i.e. Target Class considered as columns. The diagonal cells indicate correctly

classified observations, while the off-diagonal cells indicate misclassifications. The final column

on the graph exhibits the precision (positive predictive value) and false discovery rate, which

represent the percentage of accurately and inaccurately classified instances for each predicted class,

respectively. The lowermost row on the plot showcases the recall (true positive rate) and false

negative rate, which represent the percentage of instances from each class that were correctly and

erroneously classified, respectively.

90

4.3.1 MALIMG Dataset

This code snippet evaluates the performance of a Convolutional Neural Network (CNN)

machine learning model using a confusion matrix and visualization. Let's walk through the code:

i. Importing Libraries: The code starts by importing essential libraries, including `numpy` as

`np`, `pandas` as `pd`, `metrics` from `sklearn`, `seaborn` for visualization, and

`matplotlib.pyplot` (as `plt`).

ii. Predicting Class Probabilities: The Improved_CNN model's predict method is used to

obtain class probabilities for each sample in the test set (X_test). These probabilities are

stored in the y_pred_prob variable.

iii. Predicted Class Labels: The argmax function from numpy is used on y_pred_prob along

axis=1. This operation retrieves the index (class label) with the highest probability for each

sample, resulting in the predicted class labels which are then stored in the y_pred array.

iv. True Class Labels: Similarly, the true class labels are obtained by applying argmax to y_test

(the ground truth labels).

v. Calculating Confusion Matrix: To compute the confusion matrix, the `confusion_matrix`

function from `sklearn.metrics` is utilized. This function calculates the confusion matrix

based on the true class labels (`y_test2`) and the predicted class labels (`y_pred`). The

resulting confusion matrix is saved in the `c_matrix` variable.

vi. Defining a Confusion Matrix Visualization Function: A custom function called

confusion_matrix is defined to create a heatmap visualization of the confusion matrix. This

function takes the confusion matrix, class names, and optional parameters for figure size

and font size.

91

vii. Creating the Heatmap: The confusion_matrix function is called to create a heatmap

visualization of the confusion matrix. The class names are obtained from

batches.class_indices.keys(), which likely corresponds to the class labels used in the

dataset. The heatmap is customized with tick labels, axis labels, and font sizes.

viii. Displaying the Heatmap: Finally, the heatmap visualization of the confusion matrix is

displayed using plt.show().

In summary, this code calculates the confusion matrix for evaluating a machine learning

model's performance, particularly for a multi-class classification problem. It then visualizes the

confusion matrix using a heatmap, providing insights into the model's classification accuracy and

potential misclassifications across different classes.

Figure 4.7: Confusion Matrix on MALIMG dataset.

92

4.3.2 MALEVIS Dataset

The piece of code assesses the performance of a machine learning model by computing a

confusion matrix and subsequently presenting it using a heatmap. Let's break down the code step

by step:

i. Importing Libraries: The code commences by importing essential libraries, including

`numpy` (as `np`), `pandas` (as `pd`), `metrics` from `sklearn` for evaluation, `seaborn` for

visualization, and `matplotlib.pyplot` (as `plt`) for generating plots.

ii. Predicting Class Probabilities: The Improved_CNN model is employed to predict class

probabilities for each sample in the test set (X_test). The resulting probabilities are then

saved in the y_pred_prob variable.

iii. Predicted Class Labels: Predicted class labels are derived from y_pred_prob by applying

the argmax function along axis=1. For each sample, this operation chooses the index (class

label) with the highest predicted probability. The resulting predicted labels are then stored

in the `y_pred` array.

iv. True Class Labels: The true class labels are obtained by applying argmax to the ground

truth labels y_test. The resulting true class labels are stored in the y_test2 array.

v. Calculating Confusion Matrix: To compute the confusion matrix, the code employs the

`confusion_matrix` function from `sklearn.metrics`. The confusion matrix is generated

using the true class labels (`y_test2`) and predicted class labels (`y_pred`). The resulting

confusion matrix is then stored in the variable `c_matrix`.

vi. Defining a Confusion Matrix Visualization Function: A custom function called

confusion_matrix is defined to create a heatmap visualization of the confusion matrix. This

93

function takes the confusion matrix, class names, and optional parameters for figure size

and font size.

vii. Creating the Heatmap: The confusion_matrix function is called to generate a heatmap

visualization of the confusion matrix. The class names are likely obtained from

batches.class_indices.keys(), which likely correspond to the class labels used in the dataset.

The heatmap is customized with tick labels, axis labels, and font sizes.

viii. Displaying the Heatmap: Finally, the heatmap visualization of the confusion matrix is

displayed using plt.show().

In summary, to assess a machine learning model's performance, this code computes the

confusion matrix and then presents it using a heatmap. By visualizing the confusion matrix, the

model's accuracy and misclassifications across various classes can be comprehended, facilitating

performance analysis and model enhancement.

Figure 4.8: Confusion Matrix on MALEVIS dataset.

94

4.4 Model Complexity

In deep learning, the complexity of a model is determined by the neural network's size and

structure, which includes its number of layers, neurons, and parameters. A simple example of a

model with low complexity could be a single-layer feedforward neural network with a few neurons

and a limited number of parameters. On the other hand, a model with high complexity would be a

deep convolutional neural network with an extensive number of layers, a large quantity of neurons,

and numerous parameters.

Finding the right balance between model complexity and generalization ability is a trade-

off in deep learning. For instance, a model that is highly complex with an abundance of layers and

neurons may exhibit good performance on the training data. However, if the model is overly

complex, it may overfit the training data and perform inadequately on new, unseen data. In such

scenarios, a simpler model that is less prone to overfitting may perform better in practical

applications.

Therefore, it's crucial to find the right balance between model complexity and

generalization ability. This often requires careful experimentation, such as using techniques like

regularization, early stopping, and hyperparameter tuning, to avoid overfitting and select the best

model for a given problem. Some common measures of model complexity in deep learning include

[43]:

i. To simplify the architecture of the model, it is recommended to decrease the number of

dense layers, as having multiple dense layers can increase its complexity.

ii. To simplify the model, the number of units in each dense layer should be reduced. Smaller

layer sizes usually result in simpler models.

iii. Reduce Regularization Strength: The L2 regularization strength is set to 0.01 for all dense

layers. We reduce this value to a smaller value so to make the regularization effect milder.

95

iv. Reduce Dropout Rate: A dropout rate of 0.5 has been established, which means 50% of the

connections are dropped during training. We reduce this rate to retain more connections

during training.

v. Simplify Batch Normalization: Batch normalization can be useful for training deep

networks, but it can also add complexity. We consider using it only in a subset of layers or

removing it altogether.

vi. Model size: The size of a model can be quantified by various factors, including the number

of layers, the number of neurons per layer, or the total number of operations needed to

generate a prediction.

vii. Training time: Training a complex model can take longer, as the model has more parameters

to learn and may require more computation.

viii. Prediction time: The prediction time for a model can also be influenced by its complexity,

as more complex models may require more computation to make a prediction.

The experiments were previously carried out on a Linux platform that utilized an Intel Core

i9 processor, which was clocked at 4.8 GHz and had 32 GB RAM. The training process of the

previously introduced network architecture took approximately 30 hours to complete, conducted

without the assistance of GPU acceleration, and was stopped at the 150-epoch mark. In contrast,

our proposed model incorporates a V100 with impressive specifications including 5,120 CUDA

cores, 640 Tensor Cores, and a fundamental clock speed of approximately 1,380 MHz.

Additionally, it boasts 16 GB of high-speed memory, enabling it to effortlessly surpass 200 epochs

during the training process in 4 hours.

4.5 Model Performance Metrics

The code showcases a pipeline for training, evaluating, and visualizing the performance

metrics of a machine-learning model. It gives insights into how well the model is performing on

the test data and provides a visual representation of its performance using a bar plot.

96

i. Importing Libraries:

import matplotlib.pyplot as plt

import numpy as np

from sklearn.metrics import confusion_matrix, accuracy_score, recall_score, precision_score,

f1_score

This part of the code imports the necessary libraries. matplotlib.pyplot is used for data

visualization, numpy for numerical computations, and various metrics from sklearn.metrics

are imported to evaluate the model's performance.

ii. Training the Model:

Improved_CNN.fit(X_train, y_train, epochs=10, batch_size=32, validation_split=0.2)

The Improved_CNN machine-learning model is trained using the X_train dataset and its

corresponding labels, y_train. The training process includes 10 epochs and a batch size of 32

samples. Furthermore, 20% of the dataset is reserved for validation to monitor the model's

performance during training.

iii. Predicting and Evaluating:

y_pred = Improved_CNN.predict(X_test)

y_pred_labels = np.argmax(y_pred, axis=1)

Once the model is trained, it can predict outcomes on the test data X_test. The resulting

probabilities for each class are saved in y_pred. To convert these probabilities into class

labels, the np.argmax(y_pred, axis=1) line is used, this line of code selects the class index

with the highest probability for each sample, effectively determining the predicted class label.

97

iv. Computing Metrics:

accuracy = accuracy_score(np.argmax(y_test, axis=1), y_pred_labels)

sensitivity = recall_score(np.argmax(y_test, axis=1), y_pred_labels, average='macro')

specificity = recall_score(np.argmax(y_test, axis=1), y_pred_labels, average='macro')

f1 = f1_score(np.argmax(y_test, axis=1), y_pred_labels, average='macro')

The code calculates several evaluation metrics based on the true labels (y_test) and the

predicted labels (y_pred_labels). These metrics include:

accuracy_score: Measures the proportion of correct predictions.

recall_score (sensitivity): Measures the ability to identify positive samples.

precision_score: Measures the accuracy of positive predictions.

f1_score: Harmonic mean of precision and recall.

v. Plotting the Graph:

metrics_names = ['Accuracy', 'Sensitivity', 'Specificity', 'F1-score']

metrics_values = [accuracy, sensitivity, specificity, f1]

plt.bar(metrics_names, metrics_values)

plt.title('Model Performance Metrics')

plt.xlabel('Metrics')

plt.ylabel('Value')

plt.show()

The code creates a bar plot using matplotlib.pyplot. It uses the previously computed metrics

and their corresponding names. The plot's title, x-label, and y-label are set to provide context,

and then the plot is displayed using plt.show().

98

4.5.1 Model Performance Metrics for MALIMG Dataset

Figure 4.9: Model Performance Metrics for MALIMG dataset.

4.5.2 Model Performance Metrics for MALEVIS Dataset

Figure 4.10: Model Performance Metrics for MALEVIS dataset.

99

4.6 Model Performance Metrics over Epochs

A line chart is created to visualize the metric values over the epochs. Each metric has its

own line on the chart. The horizontal axis corresponds to the epochs, while the vertical axis portrays

the metric values. To enhance comprehensibility and context, labels, a title, a legend, and a grid

are incorporated. This code exemplifies a procedure involving the performance metrics of a

machine learning model are tracked and visualized over multiple epochs during training. Let's

break down the code step by step:

i. Importing Libraries:

The necessary libraries are imported for data visualization, numerical operations, and

computing performance metrics.

ii. Initializing Metric Lists:

accuracy_list = []

sensitivity_list = []

specificity_list = []

f1_list = []

Four empty lists are created to store the metrics for each epoch.

iii. Setting Number of Epochs:

epochs = 10

Number of epochs is equals to 10.

100

iv. Epoch Loop:

for epoch in range(epochs):

A loop iterates over each epoch, starting from 0 and going up to epochs - 1.

v. Training and Predicting:

Improved_CNN.fit(X_train, y_train, epochs=1, batch_size=32, validation_split=0.2,

verbose=1)

y_pred = Improved_CNN.predict(X_test)

y_pred_labels = np.argmax(y_pred, axis=1)

It specifies the quantity of training examples handled in each iteration, known as a mini-

batch, during the training process. A batch size of 32 implies that 32 training examples are

processed simultaneously before updating the model's weights. The validation_split parameter,

set to 0.2 in this context, designates the portion of the training data reserved for use as a

validation dataset. In this configuration, 20% of the training data is allocated for validation

purposes during training. This helps monitor the model's performance and prevent overfitting.

vi. Within each epoch loop:

The model (Improved_CNN) is trained for one epoch using the training data and validation

split. The trained model is applied to the test data for making predictions, and subsequently,

class labels are extracted through the utilization of the np.argmax() function.

vii. Computing Metrics:

It calculates several evaluation metrics commonly used in machine learning, particularly

for classification tasks. These metrics are used to assess the performance of a machine learning

model, often a classifier, on a given dataset.

101

The accuracy_score function then compares the true labels (converted to their original form)

with the predicted labels and computes the accuracy of the model, which is the proportion of

correctly classified instances. Metrics are computed for the current epoch using the true labels

(y_test) and the predicted labels (y_pred_labels).

viii. Appending Metrics to Lists:

accuracy_list.append(accuracy)

sensitivity_list.append(sensitivity)

specificity_list.append(specificity)

f1_list.append(f1)

The computed metrics for the current epoch is appended to their respective lists.

ix. Plotting Line Chart:

Here's an explanation of each part of the code:

i. `epochs_range = range(1, epochs + 1)`: This line creates a range of integers from 1 to

`epochs`, inclusive. In deep learning, an epoch refers to one complete pass through the

entire training dataset. This range will be used on the x-axis of the plot to represent the

epochs.

ii. `plt.plot(epochs_range, accuracy_list, label='Accuracy')`: This line plots the accuracy

values over the epochs. `epochs_range` is on the x-axis, and `accuracy_list` contains the

accuracy values corresponding to each epoch. The `label` argument is used to specify a

label for this curve in the legend.

iii. `plt.plot(epochs_range, sensitivity_list, label='Sensitivity')`: Similar to the previous line,

this line plots sensitivity values (recall) over the epochs. `sensitivity_list` contains the

sensitivity values corresponding to each epoch.

102

iv. `plt.plot(epochs_range, specificity_list, label='Specificity')`: Similarly, this line plots

specificity values. However, there might be an error in your code, as both `sensitivity_list`

and `specificity_list` seem to be plotted with the same data. Specificity should be computed

separately using the appropriate function, as mentioned in the previous explanation.

v. `plt.plot(epochs_range, f1_list, label='F1-score')`: This line plots the F1-score values over

the epochs. `f1_list` contains the F1-score values corresponding to each epoch.

vi. `plt.xlabel('Epochs')` and `plt.ylabel('Metric Value')`: These lines set labels for the x-axis

and y-axis of the plot, indicating what each axis represents.

vii. `plt.title('Model Performance Metrics over Epochs')`: This line sets a title for the plot,

providing a brief description of what the plot is showing.

viii. `plt.legend()`: This line adds a legend to the plot, which will identify each curve based on

the labels specified when plotting the metrics. This helps in distinguishing between

different lines on the plot.

ix. `plt.grid(True)`: This line adds a grid to the plot, making it easier to read and interpret the

data points.

x. `plt.show()`: Finally, this line displays the plot with all the specified metrics over the range

of epochs. This visualization can be useful for monitoring how your model's performance

changes during training and identifying trends or issues in the training process.

In summary, this code tracks and visualizes the performance metrics of a machine learning

model over multiple epochs during training, providing insights into how the model's performance

evolves over time.

103

4.6.1 Model Performance Metrics over Epochs for MALIMG Dataset

Figure 4.11: Model Performance Metrics over Epochs for MALIMG dataset.

4.6.2 Model Performance Metrics over Epochs for MALEVIS Dataset

Figure 4.12: Model Performance Metrics over Epochs for MALEVIS dataset.

104

4.7 Results for MALIMG Dataset

We applied the MALIMG dataset to four distinct models: AlexNet, ResNet-50, the model

proposed in a research paper, and our own proposed model. Through this evaluation, we computed

four essential performance metrics: 1. Accuracy, 2. Sensitivity, 3. Specificity, and 4. F-score. The

outcomes of this analysis are detailed below:

4.7.1 AlexNet Model

AlexNet is a CNN architecture that gained prominence after winning in the 2012 ImageNet

Large Scale Visual Recognition Challenge (ILSVRC). It is known for its deep architecture and

played a significant role in popularizing deep learning for image classification tasks.

4.7.1.1 Accuracy (Acc)

 Accuracy serves as a widely employed metric for assessing the overall performance of a

classification model. It is determined by dividing the number of instances correctly predicted by

the model by the total number of instances in the dataset. In our scenario, an accuracy rate of 90.5%

implies that the AlexNet model accurately categorized 90.5% of the images within the MALIMG

dataset.

4.7.1.2 Sensitivity (True Positive Rate or Recall)

 Sensitivity evaluates a model's effectiveness in accurately recognizing positive instances

among the genuine positives within the dataset. In the realm of malware classification, it measures

105

the model's capability to successfully detect malware instances. An achieved sensitivity rate of

94.26% indicates that the model accurately identified 94.26%.

4.7.1.3 Specificity (True Negative Rate)

 Specificity evaluates a model's aptitude in accurately distinguishing negative instances

from the genuine negatives within the dataset. In the context of malware classification, it indicates

the model's effectiveness in accurately categorizing legitimate software instances. An 89.44%

specificity score signifies that the model accurately identified 89.44% of legitimate software

images the dataset.

4.7.1.4 F-score (F1-score)

 The F-score, also referred to as the F1-score, represents the harmonic average of precision

and recall (sensitivity), offering a balanced assessment of a model's accuracy in correctly

identifying both positive and negative instances. The F1-score considers both false positives and

false negatives. An F1-score of 86.98% signifies a favorable equilibrium between precision and

recall in the model's classification.

 To sum up, the metrics presented for the AlexNet model on the MALIMG dataset indicate

that the model is demonstrating strong performance in terms of overall accuracy, sensitivity

(malware detection), specificity (legitimate software classification), and the equilibrium between

precision and recall. These metrics offer valuable insights into various facets of the model's

performance and contribute to the assessment of its effectiveness for the specified classification

task.

106

4.7.2 ResNet-50 Model

ResNet-50 is a convolutional neural network architecture characterized by its proficiency

in managing highly deep networks while addressing the vanishing gradient challenge. It is a

member of the ResNet (Residual Network) architecture family and has been widely utilized in

different image classification assignments.

4.7.2.1 Accuracy (Acc)

 As mentioned earlier, accuracy is calculated as the proportion of instances that the model

predicted correctly out of the total number of instances in the dataset. An accuracy rate of 97.5%

signifies that the ResNet-50 model accurately categorized 97.5% of the images within the

MALIMG dataset.

4.7.2.2 Sensitivity (True Positive Rate or Recall)

 Sensitivity assesses the model's aptitude for accurately recognizing positive instances

among the actual positives within the dataset. A sensitivity score of 95.42% signifies that the

ResNet-50 model correctly identified 95.42% of the actual malware images in the dataset.

4.7.2.3 Specificity (True Negative Rate)

 Specificity assesses the model's capacity to accurately distinguish negative instances from

the true negatives within the dataset. A specificity of 98.78% means that the ResNet-50 model

correctly classified 98.78% of the legitimate software images in the dataset.

107

4.7.2.4 F-score (F1-score)

 It offers a well-balanced evaluation of a model's ability to accurately identify both positive

and negative instances. An F1-score of 97.36% signifies a favorable equilibrium between precision

and recall in the classification performed by the ResNet-50 model. To summarize, the metrics

presented for the ResNet-50 model on the MALIMG dataset indicate that the model outperforms

the AlexNet model across various aspects, including overall accuracy, sensitivity (malware

detection), specificity (legitimate software classification), and the equilibrium between precision

and recall. These improved metrics indicate that the ResNet-50 model is more capable of correctly

classifying both malware and legitimate software images in the dataset.

4.7.3 Paper Proposed Model

4.7.3.1 Accuracy (Acc)

 As mentioned earlier, accuracy is determined by the proportion of instances that the model

predicted correctly out of the total number of instances in the dataset. An accuracy score of 97.78%

signifies that the proposed model made correct classifications for 97.78% of the images within the

MALIMG dataset.

4.7.3.2 Sensitivity (True Positive Rate or Recall)

 Sensitivity evaluates the model's capability to accurately recognize positive instances,

specifically malware images, among the actual positive instances within the dataset. A sensitivity

108

score of 98.75% signifies that the proposed model accurately recognized 98.75% of the actual

malware images in respective dataset.

4.7.3.3 Specificity (True Negative Rate)

Specificity assesses the model's capacity to accurately distinguish negative instances (in

this case, legitimate software images), from the actual negatives present in the dataset. A specificity

of 97.02% means that the proposed model correctly classified 97.02% of the legitimate software

images in the dataset.

4.7.3.4 F-score (F1-score)

 The F-score, also known as the F1-score, represents the harmonic average of precision

and recall (sensitivity). It offers an equilibrium-based metric for assessing a model's accuracy in

correctly identifying both positive and negative instances. An F1-score of 95.84% suggests a

favorable equilibrium between precision and recall in the classification performed by the proposed

model.

4.7.4 Our Proposed Model

4.7.4.1 Accuracy (Acc)

 As mentioned earlier, accuracy is determined by the proportion of instances correctly

predicted relative to the total number of instances within the dataset. An accuracy level of 99%

109

signifies that our suggested model accurately categorized 99% of images within the MALIMG

dataset.

4.7.4.2 Sensitivity (True Positive Rate or Recall)

 Sensitivity evaluates the model's ability to precisely detect positive instances, particularly

malware images, among the actual positive instances in the dataset. A sensitivity rate of 98.87%

signifies that our suggested model accurately detected 98.87% of the real malware images within

the dataset.

4.7.4.3 Specificity (True Negative Rate)

 Specificity evaluates the model's capacity to accurately distinguish negative instances (in

this instance, legitimate software images) from the true negatives present in the dataset. A

specificity of 99% means that our proposed model correctly classified 99% of the legitimate

software images in the dataset.

4.7.4.4 F-score (F1-score)

It offers a well-balanced assessment of a model's accuracy in identifying both positive and

negative instances. F1-score of 99% indicates an extremely high level of accuracy and balance

between precision and recall in our proposed model's classification.

The reported metrics for our proposed model on the MALIMG dataset is exceptional. An accuracy

level of 99% indicates nearly flawless classification performance throughout the entire dataset. The

high sensitivity and specificity values indicate that our model is highly skilled at identifying both

110

malware and legitimate software instances. The remarkably high F1-score further underscores the

excellent balance between precision and recall in our model's predictions.

In summary, reported metrics for the proposed model on the MALIMG dataset suggest that this

model is performing remarkably well. It has a high overall accuracy, indicating strong classification

performance across the entire dataset. Furthermore, the elevated sensitivity and specificity values

demonstrate the model's proficiency in detecting both malware and legitimate software instances.

The elevated F1-score signifies a strong equilibrium between accurately recognizing both positive

and negative instances. Our proposed model's performance reflects a thorough understanding of

the dataset, effective model architecture, and likely advanced techniques in training and

optimization. These results can have valuable implications for real-world malware detection and

classification tasks.

Here are the conclusive outcomes achieved for the MALIMG dataset:

Table 4.2: Conclusive outcomes of MALIMG dataset

MALIMG

Models Accuracy
Sensitivity

(Recall)
Precision F-Score

Alex Net 90.5 % 94.26 % 89.44 % 86.98 %

Resnet-50 97.5 % 95.42 % 98.78 % 97.36 %

Paper

Proposed
97.78 % 98.75 % 97.02 % 95.84 %

Our Proposed

Model
99 % 98.87 % 99% 99.74 %

111

4.8 Results for MALEVIS Dataset

We conducted an assessment using the MALEVIS dataset, applying it to four distinct

models: AlexNet, ResNet-50, the model proposed in a research paper, and our own proposed

model. Through this evaluation process, we computed four essential performance measures: 1.

Accuracy, 2. Sensitivity,3. Specificity, and 4. F-score. The outcomes of this analysis are presented

below.

4.8.1 AlexNet Model

AlexNet is a CNN architecture that garnered significant recognition and acclaim by

emerging as the winning in the 2012 ImageNet Large Scale Visual Recognition Challenge

(ILSVRC). It is known for its deep architecture and played a significant role in popularizing deep

learning for image classification tasks.

4.8.1.1 Accuracy (Acc)

Accuracy is a commonly used metric to measure how well a classification model performs

overall. This metric is computed by dividing the number of instances correctly predicted by the

total number of instances in the dataset. In that scenario, an accuracy level of 90.5% signifies that

the AlexNet model accurately categorized 90.5% of the images within the MALIMG dataset.

112

4.8.1.2 Sensitivity (True Positive Rate or Recall)

Sensitivity assesses the model's capability to accurately recognize positive instances among

the true positives within the dataset. In the context of malware classification, it reflects the model's

effectiveness in detecting malware instances. A sensitivity rate of 94.26% indicates that the model

accurately detected 94.26% of images in dataset.

4.8.1.3 Specificity (True Negative Rate)

Specificity assesses the model's capacity to accurately distinguish negative instances from

the true negatives within the dataset. In the context of malware classification, it indicates the

model's ability to correctly classify legitimate software instances. A specificity score of 89.44%

signifies that the model accurately categorized 89.44% of the dataset.

4.8.1.4 F-score (F1-score)

 The F-score, which is the harmonic mean of precision and recall (sensitivity), offers a

well-rounded assessment of a model's accuracy in correctly identifying both positive and negative

instances. The F1-score considers both false positives and false negatives. F1-score of 86.98%

signifies a favorable equilibrium between precision and recall in the model's classification.

To sum up, the metrics presented for the AlexNet model on the MALIMG dataset indicate

that the model demonstrates commendable performance across various aspects, encompassing

overall accuracy, sensitivity (malware detection), specificity (legitimate software classification),

and the equilibrium between precision and recall. These metrics offer valuable insights into

different facets of the model's performance and serve as valuable tools for assessing its efficacy in

the specified classification task.

113

4.8.2 ResNet-50 Model

ResNet-51 is a continuation of the ResNet architecture, celebrated for its capability to

successfully train extremely deep neural networks while alleviating the issue of the vanishing

gradient. The number "51" here might refer to a specific variant of the ResNet architecture with 51

layers.

4.8.2.1 Accuracy (Acc)

 Accuracy is a metric that denotes the proportion of instances correctly predicted out of the

total instances in the dataset. An accuracy of 90.76% signifies that the ResNet-51 model accurately

categorized 90.76% of the images within the MALEVIS dataset.

4.8.2.2 Sensitivity (True Positive Rate or Recall)

 Sensitivity assesses the model's capability to accurately recognize positive instances

(malware images) among the actual positive instances in the dataset. A sensitivity score of 87.89%

indicates that the ResNet-51 model correctly identified 87.89% of the actual malware images

within the MALEVIS dataset.

4.8.2.3 Specificity (True Negative Rate)

 Specificity evaluates the model's aptitude for accurately distinguishing negative instances

(legitimate software images) from the true negative instances in the dataset. A specificity of 91.46%

means that the ResNet-51 model correctly classified 91.46% of the legitimate software images in

the MALEVIS dataset.

114

4.8.2.4 F-score (F1-score)

The F-score, also known as the F1-score, is the harmonic average of precision and recall

(sensitivity). It offers an equilibrium-based metric for assessing a model's accuracy in correctly

identifying both positive and negative instances. A F1-score of 89.95% signifies a well-balanced

trade-off between precision and recall in the ResNet-51 model's classification on the MALEVIS

dataset.

In summary, the reported metrics for the ResNet-51 model on the MALEVIS dataset

suggest that the model is performing well. It demonstrates reasonable overall accuracy, sensitivity

(detection of malware), specificity (classification of legitimate software), and a balanced F1 score.

These metrics offer valuable insights into how the model performs in the domain of malware

detection using image data.

4.8.3 Paper Proposed Model

The term "model proposed in the paper" pertains to a machine learning model that was

presented in a research paper with the aim of detecting malware using image data. This model

likely incorporates specific architecture and techniques designed to achieve optimal performance

on the MALEVIS dataset.

4.8.3.1 Accuracy (Acc)

 Accuracy is a measure that expresses the proportion of instances correctly predicted in

relation to the total number of instances within the dataset. An accuracy of 96.6% means that the

model proposed in the paper correctly classified 96.6% of the images in the MALEVIS dataset.

115

4.8.3.2 Sensitivity (True Positive Rate or Recall)

 Sensitivity assesses the model's aptitude for accurately recognizing positive instances

(malware images) among the true positives in the dataset. A sensitivity score of 97.1% signifies

that the proposed model correctly identified 97.1% of the actual malware images within the

MALEVIS dataset.

4.8.3.3 Specificity (True Negative Rate)

 Specificity evaluates the model's capacity to accurately discern negative instances

(legitimate software images) among the actual negatives in the dataset. A specificity score of 94.9%

indicates that the proposed model accurately classified 94.9% of the legitimate software images

within the MALEVIS dataset.

4.8.3.4 F-score (F1-score)

 The F-score, alternatively referred to as the F1-score, is a statistical metric that combines

precision and recall (sensitivity) using the harmonic mean. It provides a comprehensive evaluation

of the model's ability to accurately classify both positive and negative instances. F1-score of 94.5%

indicates a favorable balance between precision and recall in proposed model's classification on

the MALEVIS dataset.

In summary, the reported metrics for the model proposed in the paper on the MALEVIS

dataset suggest that the model is performing well. It demonstrates a strong overall accuracy,

sensitivity (detection of malware), specificity (classification of legitimate software), and a balanced

F1-score. These metrics offer valuable insights into how well the suggested model performs in the

context of malware detection with image data.

116

4.8.4 Our Proposed Model

"Our proposed model" denotes a machine learning model we've designed and created to

tackle the challenge of detecting malware using image data. This model is based on our own

architecture and techniques, tailored to achieve optimal performance on the MALEVIS dataset.

4.8.4.1 Accuracy (Acc)

 Accuracy is a metric that evaluates the percentage of correctly predicted instances in

relation to the sum of instances within the dataset. An accuracy of 97.12% means that our proposed

model correctly classified 97.12% of the images in the MALEVIS dataset.

4.8.4.2 Sensitivity (True Positive Rate or Recall)

 Sensitivity assesses the model's capacity to accurately recognize positive instances

(malware images) among the true positive instances within the dataset. A sensitivity score of

97.14% signifies that our proposed model correctly recognized 97.14% of the actual malware

images within the MALEVIS dataset.

4.8.4.3 Specificity (True Negative Rate)

Specificity assesses the model's capacity to accurately distinguish negative instances

(legitimate software images) from the true negatives within the dataset. A specificity of 99.6%

means that our proposed model correctly classified 99.6% of the legitimate software images in the

MALEVIS dataset.

117

4.8.4.4 F-score (F1-score)

 The F-score, also known as the F1-score, symbolizes the harmonic equilibrium between

precision and recall (sensitivity). It provides a balanced evaluation of a model's accuracy in

identifying both positive and negative instances. F1-score of 99% signifies an outstanding balance

between precision and recall in the classification conducted by our model on the MALEVIS

dataset.

In summary, the reported metrics for our proposed model on the MALEVIS dataset indicate

that our model is performing remarkably well. It achieves high accuracy, sensitivity (detection of

malware), specificity (classification of legitimate software), and an exceptional F1 score. These

metrics highlight the outstanding performance of our model in the domain of image-based malware

detection. Here are the conclusive outcomes achieved for the MALEVIS dataset:

Table 4.3: Conclusive outcomes of MALEVIS dataset

MALEVIS

Models Accuracy
Sensitivity

(Recall)
Precision F-Score

Alex Net 93.22 % 94.81 % 89.96 % 88.89 %

Resnet-50 90.76 % 87.89 % 91.46 % 89.95 %

Paper

Proposed
96.5 % 96 % 94.9 % 94.5 %

Our Proposed

Model
97.12 % 96.50 % 97.72 % 99 %

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

The research presents a new deep learning architecture for detecting malware variants, a

persistent challenge in cyber security. The recommended approach employs a deep neural network

model that relies on pre-trained networks and leverages transfer learning hence to extract features

from an extensive collection of malware datasets. The deep neural network is then trained with a

supervised learning method for maximum effectiveness in detecting obfuscated and packed

malware. The process entails converting malware samples into grayscale images and utilizing

Convolutional Neural Networks (CNN) to categorize them. Our method outperforms current

industry standards, as demonstrated by experiments conducted on two challenging malware

classification datasets, MALIMG, and MALEVIS. Furthermore, the proposed cloud-based

Integrated Development Environment (IDE) architecture is deliberately crafted to ensure optimal

performance, even in situations where computing power and resource availability are limited.

Additionally, our findings indicate that increasing the number of hidden layers in deep learning can

enhance performance up to a certain threshold. Our proposed model obtained an accuracy of

97.12% on the MALEVIS dataset and achieved 99% accuracy on the MALIMG datasets.

Previously it was 96.5% for MALEVIS dataset and 97.78% for MALIMG dataset.

In previously proposed model, AlexNet has a basic architecture consisting of 8 layers,

which includes 5 convolutional layers and 3 fully connected layers. Additionally, the architecture

features 2 normalization layers, 3 pooling layers, 7 ReLU (Rectified Linear Unit) layers, and

concludes with 1 softmax layer. In total, AlexNet comprises 21 layers. ResNet-50, with a depth of

119

50 layers, follows a basic architecture that involves 2 pooling operations, 1 softmax layer, and 1

fully connected layer. Previously, the model incorporated numerous Convolution layers, Max-

pooling layers, Dense layers, and SoftMax layers, resulting in a high number of trainable weights

and biases. This complexity hindered the model's generalization to unfamiliar data. To address this,

we made the following changes, building upon the VGG16 base layers (pre-trained) with specific

modifications:

i. A flatten layer.

ii. A Dense layer with 512 units and 'relu' activation.

iii. Batch Normalization layer.

iv. Dropout layer with a dropout rate of 0.5.

v. Another Dense layer with 256 units and 'relu' activation.

vi. A Dense layer with 128 units and 'relu' activation.

vii. The final Dense layer with 26 units in its output, assuming it's a classification task,

and 'SoftMax' activation. The last few layers are trainable, while the VGG16 base

layers remain fixed. These changes aim to improve the model's efficiency and

generalization capability.

Additionally, in past purposed models the training and testing was carried out on a Linux

platform utilizing an Intel Core i9 processor with a clock speed of 4.8 GHz and 32 GB RAM. The

training of the previously introduced architecture took around 30 hours to complete, carried out

without GPU acceleration and terminated at the 150-epoch mark. In contrast, our proposed model

incorporates a V100 with impressive specifications, including 5,120 CUDA cores, 640 Tensor

Cores, and a base clock speed of approximately 1,380 MHz. Moreover, it features 16 GB of high-

speed memory, enabling it to effortlessly surpass 200 epochs during the training process within 4

hours.

Nevertheless, our proposed architecture incorporates fewer hidden layers to streamline the

model's complexity. Despite this reduction in hidden layers, our method has undergone evaluation

using two established benchmark malware classification datasets, and the accuracy results

demonstrate its superior effectiveness.

120

5.2 Future Work

The suggested approach did not evaluate adversary attacks using specifically crafted inputs.

Our goal in the subsequent study is to assess the resilience of our method against evasion attacks.

Certain malware features exhibit similarity across various malware families, leading to

misclassification. To mitigate this issue, we intend to enhance our deep learning model to reduce

such similarities. Currently, our model has been tested solely on two datasets: Malimg and Malevis.

However, we plan to expand our testing to include additional datasets like Microsoft BIG 2015 in

future evaluations. We observed that employing additional hidden layers in deep learning enhances

performance up to a certain threshold. For future study, less hidden layers will be utilized to

mitigate more model complexity.

121

REFERENCES

[1] Ö. Aslan and R. Samet (2023). A Survey of Adversarial Attack and Defense Methods for

Malware Classification in Cyber Security. IEEE Access, vol. 25, pp. 467-496

[2] Ö. Aslan and R. Samet (2020). A comprehensive review on malware detection approaches.

IEEE Access, vol. 8, pp. 6249–6271

[3] R. Gupta and S. P. Agarwal (2017). A comparative study of cyber threats in emerging

economies. Globus, Int. J. Manage. IT, vol. 8, no. 2, pp. 24–28

[4] S. A. Roseline, S. Geetha, S. Kadry, and Y. Nam (2020). Intelligent vision-based malware

detection and classification using deep random forest paradigm. IEEE Access, vol. 8, pp.

206303–206324

[5] M. Nisa, J. H. Shah, S. Kanwal, M. Raza, M. A. Khan, R. Damaševičius, and T. Blažauskas

(2020). Hybrid malware classification method using segmentation-based fractal texture,

vol. 10, pp. 10144966

[6] M. Sikorski and A. Honig (2012). Practical Malware Analysis: The Hands-On Guide to

Dissecting Malicious Software. San Francisco, CA, ISBN 978-1-59327-290-6

[7] Ö. Aslan (2017). Performance comparison of static malware analysis tools versus antivirus

scanners to detect malware. Proc. Int. Multidisciplinary Stud. Congr. (IMSC), pp. 1–6.

[8] S. K. Pandey and B. M. Mehtre (2014). Performance of malware detection tools: A

comparison. Proc. IEEE Int. Conf. Adv. Commun., Control Comput. Technol., pp. 1811–

1817.

[9] Ö. Aslan and R. Samet (2017). Investigation of possibilities to detect malware using

existing tools. Proc. IEEE/ACS 14th Int. Conf. Comput. Syst. Appl. (AICCSA), pp. 1277–

1284.

[10] M. Chandramohan, H. B. K. Tan, L. C. Briand, L. K. Shar, and B. M. Padmanabhuni (2013)

A scalable approach for malware detection through bounded feature space behavior

modeling. Proc. 28th IEEE/ACM Int.Conf. Automated Softw. Eng. (ASE), pp. 312–322.

122

[11] S. Das, Y. Liu, W. Zhang, and M. Chandramohan (2016). Semantics-based online malware

detection: Towards efficient real-time protection against malware. IEEE Trans. Inf.

Forensics Security, vol. 11, no. 2, pp. 289–302.

[12] A. Lanzi, D. Balzarotti, C. Kruegel, M. Christodorescu, and E. Kirda (2010). AccessMiner:

Using system-centric models for malware protection. Proc. 17th ACM Conf. Comput.

Commun. Secur, pp. 399–412.

[13] R. Tian, R. Islam, L. Batten, and S. Versteeg (2010). Differentiating malware from

cleanware using behavioural analysis. Proc. 5th Int. Conf. Malicious Unwanted Softw, pp.

23–30.

[14] B. Anderson, D. Quist, J. Neil, C. Storlie, and T. Lane (2011). Graph-based malware

detection using dynamic analysis. J. Comput. Virol., vol. 7, no. 4, pp. 247–258.

[15] X. Hu, T.-C. Chiueh, and K. G. Shin (2009). Large-scale malware indexing using function-

call graphs. Proc. 16th ACM Conf. Comput. Commun. Secur. (CCS), pp. 611–620.

[16] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath (2011). Malware images:

Visualization and automatic classification. Proc. 8th Int. Symp. Visualizat. Cyber Secur.

(VizSec), pp. 1–7.

[17] P. Trinius, T. Holz, J. Göbel, and F. C. Freiling (2009). Visual analysis of malware behavior

using treemaps and thread graphs. Proc. 6th Int. Workshop Vis. Cyber Secur, pp. 33–38.

[18] M. F. Zolkipli and A. Jantan (2010). A framework for malware detection using combination

technique and signature generation. Proc. 2nd Int. Conf. Comput. Res. Develop., May 2010,

pp. 196–199.

[19] A. A. Yilmaz, M. S. Guzel, I. Askerbeyli and E. Bostanci (2018) A vehicle detection

approach using deep learning methodologies. Proc. Int. Conf. Theor. Appl. Comput. Sci.

Eng., pp. 64-71, Nov. 2018.

[20] K. Griffin, S. Schneider, X. Hu, and T. C. Chiueh (2009). Automatic generation of string

signatures for malware detection. Proc. Int. Workshop Recent Adv. Intrusion, vol. 9, pp.

379-398.

[21] Y. Tang, B. Xiao, and X. Lu (2009). Using a bioinformatics approach to generate accurate

exploit-based signatures for polymorphic worms. Comput. Secur., vol. 28, no. 8, pp. 827–

842.

123

[22] B. Liu and R. Sandhu (2015). Fingerprint-based detection and diagnosis of malicious

programs in hardware,’’ IEEE Trans. Rel., vol. 64, no. 3, pp. 1068–1077.

[23] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X. Y. Zhou, and X. Wang (2009).

Effective and efficient malware detection at the end host. Proc. USENIX Secur. Symp., vol.

4, 2009, pp.

[24] Cui, F. Xue, X. Cai, Y. Cao, G.-G. Wang, and J. Chen (2018). Detection of malicious code

variants based on deep learning,’’ IEEE Trans. Ind. Informat., vol. 14, no. 7, pp. 3187–

3196.

[25] Ö. Aslan, R. Samet, and Ö. Ö. Tanrıöver (2020). Using a subtractive center behavioral

model to detect malware. Secur. Commun. Netw., vol. 2020, pp. 1–17.

[26] N. Usman, S. Usman, F. Khan, M. A. Jan, A. Sajid, M. Alazab, and P. Watters (2021).

Intelligent dynamic malware detection using machine learning in IP reputation for forensics

data analytics, vol. 118, pp.124-141.

[27] J. Xue, Y. Wang, F. Zhang, and X. Gao (2021). APTMalInsight: Identify and cognize APT

malware based on system call information and ontology knowledge framework, vol. 546,

pp. 633-664.

[28] Ö. Aslan, R. Samet, and Ö. Ö. Tanrıöver (2020). Using a subtractive center behavioral

model to detect malware, Secur. Commun. Netw., vol. 2020, pp. 1-17.

[29] Y. Ye, D. Wang, T. Li, and D. Ye (2007). IMDS: Intelligent malware detection system.

Proc. 13th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining (KDD), pp. 1043-

1047.

[30] D. Carlin, A. Cowan, P. O’Kane and S. Sezer (2017). The effects of traditional anti-virus

labels on malware detection using dynamic runtime opcodes", IEEE Access, vol. 5, pp.

17742-17752.

[31] R. Islam, R. Tian, L. M. Batten, and S. Versteeg (2013). Classification of malware based

on integrated static and dynamic features. J. Netw. Comput. Appl., vol. 36, no. 2, pp.461

[32] E. M. Alkhateeb and M. Stamp (2019). A dynamic heuristic method for detecting packed

malware using naive bayes. Proc. Int. Conf. Electr. Comput. Technol. Appl. (ICECTA), pp.

1-6.

[33] Chowdhury, M., Rahman, A., & Islam, R. (2018). Malware analysis and detection using

data mining and machine learning classification. International conference on applications

124

and techniques in cyber security and intelligence: applications and techniques in cyber

security and intelligence, pp. 266–274.

[34] Kim, H.-J. (2018). Image-based malware classification using convolutional neural network.

In Advances in computer science and ubiquitous computing, pp. 1352–1357.

[35] F. Song and T. Touili (2014). Pushdown model checking for malware detection. Int. J.

Softw. Tools Technol. Transf., vol. 16, no. 2, pp. 147–173.

[36] Rehman, Z.-U., Khan, S. N., Muhammad, K., Lee, J. W., Lv, Z., Baik, S. W., Shah, P. A.,

Awan, K., & Mehmood, I. (2018). Machine learning assisted signature and heuristicbased

detection of malwares in Android devices. Computers and Electrical Engineering, vol. 69,

pp. 828–841.

[37] W. Huang and J. W. Stokes (2016). MtNet: A multi-task neural network for dynamic

malware classification. Proc. Int. Conf. Detection Intrusions Malware, Vulnerability

Assessment vol. 96, pp. 236–211.

[38] Y. Ye, L. Chen, S. Hou, W. Hardy, and X. Li (2018). DeepAM: A heterogeneous deep

learning framework for intelligent malware detection. Knowl. Inf. Syst., vol. 54, no. 2, pp.

265–285.

[39] S. Venkatraman, M. Alazab, and R. Vinayakumar (2019). A hybrid deep learning image-

based analysis for effective malware detection. J. Inf. Secur. Appl., vol. 47, pp. 377–389.

[40] S. Akarsh, K. Simran, P. Poornachandran, V. K. Menon and K. P. Soman (2019). Deep

Learning Framework and Visualization for Malware Classification", 2019 5th International

Conference on Advanced Computing & Communication Systems (ICACCS), pp. 1059-

1063.

[41] U. Tayyab, F. Khan, M. Durad, A. Khan and Y. Lee (2022). A Survey of the Recent Trends

in Deep Learning Based Malware Detection", Electronics (MDPI) Journal of Cybersecurity

and Privacy, pp. 800-829.

[42] H. Lallie, L. Shepherd, J. Nurse, A. Erola, G. Epiphaniou, C. Maple, et al (2021). Cyber

Security in the Age of COVID-19: A Timeline and Analysis of Cyber-crime and Cyber-

attacks During the Pandemic. Computers & Security, vol. 105, pp. 1-20.

[43] Bozkir, A.S.; Cankaya, A.O.; Aydos, M. (2019). Utilization and comparision of

convolutional neural networks in malware recognition. Proceedings of the 2019 27th Signal

Processing and Communications Applications Conference (SIU), Sivas, Turkey, pp. 1–4.

125

[44] Patil, S.; Varadarajan, V.; Walimbe, D.; Gulechha, S.; Shenoy, S.; Raina, A.; Kotecha, K.

(2021). Improving the Robustness of AI-Based Malware Detection Using Adversarial

Machine Learning. Algorithms, vol. 14, pp. 297.

[45] Hammad, B.T.; Jamil, N.; Ahmed, I.T.; Zain, Z.M.; Basheer, S. Robust (2022). Malware

Family Classification Using Effective Features and Classifiers. Appl. Sci, vol. 12, pp. 7877.

[46] S. Sriram, R. Vinayakumar, V. Sowmya, M. Alazab, and K. P. Soman (2020). Multi-scale

learning based malware variant detection using spatial pyramid pooling network,’’ in Proc.

IEEE Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), pp. 740–745.

[47] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-An and H. Ye (2018). Significant permission

identification for machine-learning-based Android malware detection, IEEE Trans. Ind.

Informat., vol. 14, pp. 3216-3225.

[48] Gao, X.; Hu, H.; Shan, C.; Liu, B.; Niu, Z.; Xie, H. (2020). Malware classification for the

cloud via semi-supervised transfer learning. J. Inf. Secur. Appl. 2020, vol. 55, pp 102661.

[49] L. Liu, B.-S. Wang, B. Yu and Q.-X. Zhong (2017). Automatic malware classification and

new malware detection using machine learning", Frontiers Inf. Technol. Electron. Eng.,

vol. 18, no. 9, pp. 1336-1347.

[50] W. Han, J. Xue, Y. Wang, F. Zhang, and X. Gao (2021). APTMalInsight: Identify and

cognize APT malware based on system call information and ontology knowledge

framework, Inf. Sci., vol. 546, pp. 633–664.

[51] Z. Shan and X. Wang (2014). Growing grapes in your computer to defend against malware.

IEEE Trans. Inf. Forensics Security, vol. 9, no. 2, pp. 196–207.

[52] Qi, P.; Wang, W.; Zhu, L.; Ng, S.K. (2021). Unsupervised domain adaptation for static

malware detection based on gradient boosting trees. Proceedings of the 30th ACM

International Conference on Information & Knowledge Management (CIKM ’21),

Queensland, Australia, pp. 1457–1466.

[53] Verma, V.; Muttoo, S.K.; Singh, V.B. (2002). Multiclass malware classification via first-

and second-order texture statistics. Comput. Secur. 2002, vol. 97, pp. 101-123.

[54] Zaheer Masood, Khalid Majeed, Raza Samar, Muhammad Asif Zahoor Raja (2017). Design

of Mexican Hat Wavelet neural networks for solving Bratu type nonlinear systems.

Neurocomputing Volume 221, 19 January 2017, Pages 1-14

126

[55] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, and S. Venkatr (2019).

Robust intelligent malware detection using deep learning. IEEE Access, vol. 7, pp. 46717–

46738, 2019.

[56] J.-S. Luo and D. C.-T. Lo (2017). Binary malware image classification using machine

learning with local binary pattern. Proc. IEEE Int. Conf. Big Data (Big Data), Dec. 2017,

pp. 4664–4667.

[57] Z. Cui, F. Xue, X. Cai, Y. Cao, G.-G. Wang, and J. Chen (2018). Detection of malicious

code variants based on deep learning. IEEE Trans. Ind. Informat., vol. 14, no. 7, pp. 3187–

3196, Jul. 2018, doi: 10.1109/tii.2018.2822680.

[58] D. Gibert (2016). Convolutional neural networks for malware classification. M.S. thesis,

Univ. Rovira Virgili, Tarragona, Spain, Oct. 2016.

[59] A. Singh, A. Handa, N. Kumar, and S. K. Shukla (2019). Malware classification using

image representation. Proc. Int. Symp. Cyber Secur. Cryptogr. Mach. Learn. Cham,

Switzerland: Springer, Jun. 2019, pp. 75–92.

[60] X. Ma, S. Guo, H. Li, Z. Pan, J. Qiu, Y. Ding, and F. Chen (2019). How to make attention

mechanisms more practical in malware classification. IEEE Access, vol. 7, pp. 155270–

155280, 2019, doi: 10.1109/access.2019.2948358.

[61] Ömer Aslan, Abdullah Asim Yilmaz (2021). A New Malware Classification Framework

Based on Deep Learning Algorithms. IEEE Digital Object Identifier

10.1109/ACCESS.2021.30895, vol.9.

[62] BENCHADI. DJAFER YAHIA M , BOJAN BATALO, AND KAZUHIRO FUKUI

(2023). Efficient Malware Analysis Using Subspace-Based Methods on Representative

Image Patterns . IEEE VOLUME 11, 2023

[63] Jaafar M. Alghazo, David M. Feinauer, Sherif E. Abdelhamid (2023). Exploring Automatic

Malware Detection through Deep Learning Models . Department of Computer and

Information Sciences, Virginia Military Institute, Lexington, Virginia, USA

[64] Olorunjube James Falana , Adesina Simon Sodiya , Saidat Adebukola Onashoga , Biodun

Surajudeen Badmus (2022). Mal-Detect: An intelligent visualization approach for malware

detection. Science Direct Journal of King Saud University - Computer and Information

Sciences Journal of King Saud University - Volume 34, Issue 5, May 2022, Pages 1968-

1983

[65] Ahmed Bensaoud, Jugal Kalita (2022). Deep multi-task learning for malware image

classification . Science Direct Journal of Information Security and Applications Volume

64, February 2022, 103057

