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ABSTRACT

In this study, �rst of all two new optimal fourth order iterative techniques have

studied for solving single variable non-linear equations. Theses techniques need eval-

uation of one �rst derivative and two function evaluation that satisfy the Kung-Traub

conjecture. These numerical techniques are then extended to techniques for solving

system of non-linear equations.

The establishment and execution of these techniques for solving system of non-

linear equations is based on the concept of element wise vector multiplication and

diagonal matrix.

In case, Jacobian matrix becomes singular at any stage because of approxima-

tion, the above techniques would fail. In order to overcome this di¢ culty, homotopy

techniques for solving system of non-linear equations were introduced. Theoretical

convergence of modi�ed iterative techniques are proved through analysis theorems

and numerical convergence through real time applications are provided to test the

performance of these techniques.
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1.1 Introduction

Applied sciences and engineering describe various mathematical procedure for

solving mathematical models. In general, every problem can not be solved by ana-

lytical techniques, therefore one requires numerical approximation techniques of nu-

merical analysis, for solving such problems. The problem arising maybe linear or

non-linear. It is easy to solve linear problem while non-linear problem maybe di¢ cult

to solve. These problems arise in many areas of sciences, biological sciences, engi-

neering, and natural sciences, etc. There are many situations arise physically where

we need to solve single variable, non-linear algebraic or transcendental equations or

                   Chapter1
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system of non-linear equations. Algebraic equations in particular, polynomial equa-

tions have a wide applications in applied sciences, astronomers compute the distance

between stars and other objects using polynomials, aerospace engineers require poly-

nomials for computing stability of aeroplane or acceleration for rockets, mechanical

engineers use polynomials in designing machines and structures like bridges and have

application in bio-medical engineering.

In 1824, Abel provided that there exists no exact method which should �nd the

roots of polynomial of degree equal or greater than �ve. Therefore, one is forced to use

iterative approximating techniques of numerical analysis. Similarly, transcendental

equations have applications in chemical equilibrium problems, kinematics of mechan-

ics and mathematical physics and have no exact methods to �nd their solution except

numerical iterative techniques. Non-linear ODEs and PDEs have wide applications

in sciences but while solving theses problems, system of non-linear equations arise

which needs to be solved.

Researchers have developed many iterative techniques in the past as well as work-

ing presently also on the techniques to get numerically the solution of single variable

nonlinear equations [1�12] and system of nonlinear equations [13�23]. The researchers

have established iterative techniques which involve derivatives or derivative free for

single variable nonlinear equations as well as iterative techniques involving derivatives

or derivative free memory methods involving divided di¤erences.

In this study, �rst of all iterative schemes involving derivative and function values
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for single variable nonlinear equations will be established via integral inequalities.

Then, these techniques will be extended for solving system of nonlinear equations

use the element wise vector multiplication and diagonal matrix. These techniques

will then be generalized to homotopy techniques for solving the system of nonlinear

equations to avoid the case of non-singular Jacobian matrix.

Nonlinear equations or sets of such equations are used to solve many issues in

mechanics, physics, biology, economics, and other �elds [24]. The equations can be

algebraic, ordinary di¤erential, or partial di¤erential; and systems can include equa-

tions of multiple types as well as equations of the same type. The solutions to these

equations and systems are classi�ed as regular or unique. The implicit function the-

orem or its analogs, which describe all neighboring solutions, are applicable to a

regular solution. The implicit function theorem is inapplicable near a single solution,

and there was no universal technique for analyzing solutions neighboring the unique

one until recently. Although other approaches to such analysis were proposed for spe-

ci�c challenges. Partial di¤erential equations may be found in almost every discipline

of physics, chemistry, and engineering. They can also be found in other disciplines of

the physical sciences, as well as the social sciences, economics, and business. Many

aspects of theoretical physics are expressed as partial di¤erential equations. In certain

circumstances, the axioms demand that the states of physical systems be represented

by partial di¤erential equation solutions. When the axioms are applied to speci�c sit-

uations, partial di¤erential equations developed. The system of nonlinear equations
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has great importance in many engineering and applied sciences. In our daily life,

we have to face with physical problems, where more than one variables have to be

considered with nonlinear phenomena to model it into mathematical equations. The

numerical techniques for solving system of nonlinear equations is very important in

the absence of analytical techniques. They have vast applications in applied sciences

and engineering. For example, as a result of modeling the following problems:

i) Tank reactor in series problem,

ii) Turbulent �ow through a pipe line network,

iii) Mechanical Engineering Problems, etc,

iv) For solving the nonlinear boundary value problems for ODEs and PDEs by

�nite di¤erence methods, we get a system of nonlinear equations.

Before beginning a thorough examination of nonlinearity, it is useful to list some

of the major causes of issues. The following are three classic sources of nonlinear

problems:

First, di¤erential-geometric problems, in which nonlinearity enters naturally via

curvature considerations;

Second, mathematical problems of classical and modern physics;

and �nally, calculus of variations problems involving nonquadratic functional. Of

course, these are not complete sources, and the mathematical parts of subjects such

as economics, genetics, and biology provide totally new nonlinear phenomena. With

the advent of calculus, nonlinear analysis issues developed naturally. In the mathe-
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matical literature of the seventeenth and eighteenth centuries, explicit and innovative

ways of solving problems existed. This work prompted Euler and Lagrange to think

about the general theory of the calculus of variations. Furthermore, while seeking

to base Newton�s technique of indeterminate coe¢ cients rigorously, Cauchy �nally

led to the majorant approach for analytic nonlinear problems. The broad use of this

technique of proof continues to this day. Poincaré, on the other hand, introduced

a fresh dimension to our subject, beginning with his thesis in the 1870s. Poincaré

concentrated on the qualitative features of nonlinear problems, which opened up a

whole new set of mathematical topics. Poincaré introduced new concepts in a vari-

ety of areas, including bifurcation theory (a term coined by Poincaré), the calculus

of variations in the large, and the application of topological methods to the study

of periodic solutions of systems of ordinary di¤erential equations. Cauchy also sys-

tematically applied minimization methods (the steepest descent approach) in the

investigation of the zeros of simultaneous algebraic or transcendental equations over

the real. Hubert�s well-known talk at the International Congress of 1900 o¤ered a

variety of exciting nonlinear issues for analysis, stimulating study on nonlinear elliptic

partial di¤erential equations in particular. This �nal topic proved to be crucial for

growth on a more abstract level. S. Bernstein�s early twentieth-century solutions to

Hilbert�s problems for nonlinear elliptic partial di¤erential equations, in particular,

were su¢ ciently comprehensive to serve as a foundation for further abstraction and

generalization. Di¤erential-geometric problems involving curvature e¤ects are a rich
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and historic source of nonlinear di¤erential systems. The breakthroughs in the calcu-

lus of large variations achieved by Marston Morse beginning in 1922 and subsequently

by Liusternik and Schnirelmann are a last major milestone in the early research of

nonlinear issues. Birkho¤ and Kellogg�s 1922 publication, "Invariant Points in Func-

tion Space" was a seminal study in the development of nonlinear analysis [25]. Vari-

ational inequality issues, nonlinear optimization challenges, equilibrium di¢ culties,

complementarity problems, and integral and di¤erential equations are all examples

of problems that may be solved using �xed point theory. Many scienti�c and engi-

neering issues that are speci�ed by nonlinear functional equations can be addressed

by reducing them to an analogous �xed-point problem. Several approaches, including

the Taylor series, quadrature formulae, homotopy, and decomposition techniques, are

being used to build iterative methods for �nding approximate solutions to nonlin-

ear equations. The Newton technique is a well-known iterative approach for solving

nonlinear equations and their variant forms.

1.1.1 Signi�cance of the Study

Many applied problems in engineering and applied sciences can be modeled by

solving systems of nonlinear equations, which is one of the most fundamental problems

in computational mathematics. So many e¤orts have been made by the mathematical

community to introduce new theories and algorithms for solving systems of nonlinear

equations.
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It will provide new areas of research in computational Mathematics. For solving

the nonlinear boundary value problems for Ordinary Di¤erential Equations and Par-

tial Di¤erential Equations by �nite di¤erence methods, we get a system of nonlinear

equations that need to be solved to �nd the solution to the actual problem.

Similarly, optimization problems appearing in a wide range of physical situations

result in a system of nonlinear equations. There are very few nonlinear systems of

equations that can be solved by analytical techniques. Therefore, one has to use

numerical methods for solving a system of nonlinear equations. Among other types

of nonlinear equation-solving techniques presented in the recent past, there are a

large number of published research articles with Newton-type formulae and variants

of Newton�s method. It is obvious that Newton�s method and its variants extended

for solving nonlinear equations may fail when their Jacobian matrix is singular, but

the homotopy iterative method for solving nonlinear systems does not fail.

1.1.2 Historical Perspective

Systems of linear equations are a well-known part of numerical techniques dating

back to BC. It reached its height during 1600�1700 as a result of the public�s desire for

technological and engineering solutions, but it is still relevant today. This study pro-

poses another iterative strategy for solving linear systems that are based on numerous

transfers of the solution proximity point towards the solution itself, minimizing the

di¤erences of all the system equations at the same time. It is a challenging task re-
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quiring many branches of science and technology to solve nonlinear equations in any

Banach space, including real or complex nonlinear equations, nonlinear systems, and

nonlinear matrix equations [13]. Typically, the answer is not immediately economi-

cal and necessitates an iterative algorithmic technique. This is a �eld of study that

has expanded rapidly in recent years. For solving nonlinear equations iteratively, the

Newton�s method given by

sn+1 = sn �
f(sn)

f 0(sn)
;

is one of the most frequently used methods. The most well-known technique overall is

Newton�s approach, which demonstrates quadratic convergence for a single root and

linear convergence for multiple roots. For the �rst time in 1669, Newton used the

Newton iteration to solve a cubic problem.

1.1.3 The intervention of Numerical Methods

One of humanity�s most signi�cant achievements is the application of mathemat-

ical formulas to portray real-world issues . These tools have been utilized to improve

the environment in which we live as well as to improve technology, medical services

and facilities, modes of transportation, and communications. To do this, we rely on

mathematical techniques to represent real-world issues, beginning with observation,

then analysis, and eventually prediction. Two processes demand special attention:

the �rst is converting observable facts into mathematical formulas, and the second

is generating answers using analytical and numerical approaches. Because real-world
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situations are highly nonlinear, mathematical models portraying these problems are

themselves nonlinear and cannot be addressed analytically. As a result, numerical

approaches are increasingly being employed to assist people in understanding and

predicting the future behavior of real-world situations. Many new families of di¤er-

ential and integral operators have lately been recognized as excellent mathematical

tools for replicating observable phenomena. A new demand for new methods of solv-

ing systems of linear equations emerged at the same time as computing technology,

which facilitated the rapid development of numerical methods for modeling physical

processes by sampling (subdividing) the calculation range and replacing di¤erential

operations with similar algebraic operations [14]. Direct and iterative approaches for

addressing a badly �nished diagonal matrix with a strong main diagonal were created

based on the needs of the �nal di¤erences, �nal elements, and their changes. For both

direct and iterative techniques, methods for e¢ cient storing of the equation system

were devised, taking into consideration the symmetry of the matrix according to the

major diagonal. With the development of new numerical methods (super elements,

the method of border elements) in recent years, there has been a need for solving sys-

tems of linear equations with a totally �lled matrix and one that lacks the primary

diagonal dominance. Iterative methods are frequently employed to solve such jobs,

and the approaches have evolved from the Gauss-Seidel method, Jacobian method,

Homotopy iterative method.

The method shown here is easily adaptable to any ultimate number of equations.
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The geometric equation in two dimensions is a line, but a non-contradictory equation

system includes two lines that cross, generating four angles. The iterative solution

process occurs from only one perspective. In three dimensions, one equation is a

geometric plane; a non-contradictory equation system is composed of three planes

that intersect each other. The iterative solution procedure takes place inside the

pyramid, whose surface is formed of three planar equations, and the pinnacle of a

pyramid is sought. There are eight pyramids, and the solution is sought in just one

of them.

1.1.4 Homotopy Analysis Method

The use of perturbation techniques [26,27] is global in the �elds of science and en-

gineering. The use of perturbation methods requires governing equations, beginning

conditions, or boundary conditions to contain tiny or large physical factors, which

are referred to as perturbation quantities. The methods of perturbation are straight-

forward and easy to comprehend. Particularly when working with a limited number

of physical parameters, perturbation approximations can have very speci�c conse-

quences in the real world. Sadly, this form of perturbation quantity is not present in

every nonlinear system. In addition, even if there is a physical parameter that is this

tiny, the sub-problem may not have any solutions or may be so sophisticated that

only a select handful of the sub-problems can be addressed. As a result, it is not

a given that one can always acquire perturbation approximations for any particular
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nonlinear issue. This is because it is not guaranteed. In addition to this, it is well

knowledge that the majority of perturbation approximations are only appropriate for

use with very modest values of physical parameters. Therefore, it is not guaranteed

that the results of a perturbation are valid over the whole region for each and every

physical parameter.

The fact that perturbation and asymptotic approximations are ine¢ cient for deal-

ing with nonlinear conditions lends authority to this commonly held notion [28]. As

it turns out, its application is con�ned to partial di¤erential equations (PDEs) and

ordinary di¤erential equations (ODEs) with weakly nonlinear behavior.

The homotopy analysis method, abbreviated as HAM is a method of analytical

approximation constructed to cope with severely nonlinear problems. The year 1992

witnessed the establishment of the HAM organization. In contrast to perturbation

techniques, the (HAM) is una¤ected by the size of physical components, no matter

how small or large they are. This is true regardless of where the component is located.

Second, unlike all other analytic techniques, the HAM provides a simple way to

assure the convergence of solution series, which means that it is valid even if the

nonlinearity is rather strong. This is due to the fact that the HAM is an iterative

process. Furthermore, because it is based on topology�s homotopy, it provides us with

an extremely large level of choice in selecting the base function, the �rst guess, and

so on. As a result, complicated nonlinear ODEs and PDEs may typically be solved

simply using this approach.
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Finally, the HAM achieves a high level of generality by logically incorporating a

variety of proven approaches, such as Lyapunov�s small arti�cial approach, the Ado-

mian decomposition method, the expansion method, and even the Euler transform.

As a result, the HAM provides us with a useful tool for addressing highly nonlinear

situations in engineering, research, and the �nancial industry.

1.2 Some Basic De�nitions & Concepts

It is commonly known that the solution to the single variable nonlinear equation

f(s) = 0; (1.1)

where f : I ! D; for an interval I � R and D � R; is a nonlinear function is required

in many sectors of science and engineering. Iterative algorithms for �nding the roots of

nonlinear equations based on these iterative approaches are becoming one of the most

signi�cant parts of current research. This might be used to solve nonlinear equations.

Clearly, in order to use this iterative procedure, we must compute the second and

third derivatives of the function f(s), which may be inconvenient. To circumvent this

limitation, they propose approximates of the second and third derivatives, which is a

very essential notion that plays a big role in constructing several iterative approaches

that do not need computing the higher derivatives. Some iterative approaches with

high-order convergence for solving a single nonlinear equation have been presented

in recent years. The system of nonlinear equations has great importance in many
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engineering and applied sciences. In our daily life, we have to face physical problems,

where more than one variables have to be considered with nonlinear phenomena to

model it into mathematical equations. The numerical techniques for solving a system

of nonlinear equations are very important in the absence of analytical techniques.

They have vast applications in applied sciences and engineering.

Di¤erential equations are a key technique used to simulate a wide range of real-

world events in many domains of pure and applied research. While there are analytic

methods for solving di¤erential equations, many of the equations encountered in prac-

tice are too complicated to be solved in a closed-form manner. Even if a solution for-

mula is known, it may require integrals that can only be numerically approximated.

In such instances, numerical techniques can be used to solve di¤erential equations

under certain beginning conditions. In science and engineering, initial value issues in

the form of ordinary di¤erential equations are prevalent.

In this section, we will present some de�nitions of nonlinear equations, types of

nonlinear equations from [29], solutions of the equations and iterative methods as

well as their convergence . The basic de�nitions and concepts presented here will be

used throughout this thesis.

1.2.1 Non-linear Equations

A nonlinear system is one in which there is no linear relationship between the

change in the output and the change in the input. Due to the intrinsic nonlinearity
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of most systems, nonlinear problems are of interest to a wide range of scientists,

including engineers, biologists, physicists, mathematicians, and many others.

Algebraic Equations

A mathematical equation is referred to as algebraic if it contains one or more

algebraic expressions. An algebraic equation can also be a polynomial equation.

Polynomial Equations:

For one variable s, and for a positive integer n, constants a0; a1; :::; an�1; :::; an

are the coe¢ cients of the polynomial, an expression of the form

a0s
n + a1s

n�1 + � � �+ an�1s+ an;

is a polynomial in s. In sigma notation, a polynomial can be represented simply as

Pn(s) =
nX
j=0

ajs
n�j:

Transcendental Equations

Transcendental equations are those that contain trigonometric, exponential, and

logarithmic functions.

Trigonometric Polynomial

Tn(s) = �0 +
nX
i=1

(�i cos kx+ �i sin kx):
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Exponential Polynomial

En(s) = �0 +
nX
i=1

(�ia
�kx + �ia

kx):

For exponential polynomial researcher useded the case when a = e � 2:71828:

Logarithmic Polynomial

Lgn(s) = a0 +
nX
i=1

ai loga ix:

1.2.2 System of Nonlinear Equations

Take into consideration a system of n nonlinear equations in n variables. as follows:8>>>>>>>>>><>>>>>>>>>>:

f1 (s1; s2; s3; :::; sn) = 0;

f2 (s1; s2; s3; :::; sn) = 0;

...

fn (s1; s2; s3; :::; sn) = 0:

Another way to describe the system of nonlinear equations in n variables is to de�ne

a vector function F from Rn to Rn:

F (s) = (f1 (s) ; f2 (s) ; :::; fn (s))
T ; (1.2)

where s= (s1; s2; s3; :::; sn)
T : Thus the system of non-linear equations assumes the

form:

F (s) = 0: (1.3)
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The Jacobian matrix F0 (s) for this system is as follows:

F0 (s) =

266666666664

@f1
@s1

@f1
@s2

::: @f1
@sn

@f2
@s1

@f2
@s2

::: @f2
@sn

...
...

...
...

@fn
@s1

@fn
@s2

::: @fn
@sn

377777777775
(1.4)

The Jacobian matrix F0 (s) needs to be non-singular for the iterative techniques to

be extended to a system of nonlinear equations.

Fréchet Di¤erentiable Function

If F : X ! Y where X and Y are normed vector spaces, we say that a linear

transformation A : X ! Y is a Frechet derivative of F at s if for every � > 0 there is

� > 0 such that

kF (s+ h)� F (s)� AhkY � � khkX ;

for all h with khkX � �:

1.2.3 Some Basic Iterative Mehods

The iterative method�s basic notion is that after making an initial estimate of the

exact solution, it is continually improved so that subsequent estimates, or iterations,

move progressively closer to the required solution of the initial problem. A series is

constructed starting with the initial guess, s0; that converges to the root �, and then

Lim
n!1

sn = �. An iteration method is one that generates such a sequence.
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These are the two basic categories for iterative methods:

� One-step iterative method

� Multistep iterative method

One-step Method

Using a single formula, the root is approximated in the one-step technique. These

approaches use a single numerical procedure and locate a single root at a time, usually

after the initial guess is given. When the necessary accuracy is attained using such

numerical techniques, the iterative process comes to an end. The majority of tech-

niques used in literature are one-step techniques. Here are a few well-known one-step

techniques:

Newton�s Method

In this technique, the root of f(x)=0 is approximately determined via a tangent

line. The procedure [29] is as follows, presuming an initial guess of s0:

sn+1 = sn �
f (sn)

f 0 (sn)
; n = 0; 1; 2; ::: and f 0 (sn) 6= 0:

Chebyshev-Halley Method

The Chebyshev-Halley approach is described as follows:

sn+1 = sn �
�
1 + 1

2

Lf (sn)

1��Lf (sn)

�
f(sn)
f 0(sn)

; n = 0; 1; 2; ::: and f 0 (sn) 6= 0; (1.5)
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where

Lf (sn) =
f(sn)f 00(sn)
f 0(sn)

:

Multi-Step Method

A multi-step approach is one that uses two or more numerical procedures in a

predictor-corrector fashion.

Essentially, two numerical methods make up two-step iterative procedures. In

order to obtain a better number for the root, the �rst numerical approach is given the

initial guess. The enhanced value is then applied to the second numerical procedure,

where it is further enhanced. For instance, a common two-step iterative technique is

as follows:

vn = sn � f(sn)
f 0(sn)

;

sn+1 = vn � (sn�vn)f(vn)
f(sn)�2f(vn) ; n = 0; 1; 2; ::: .

Here at �rst-step we have Newton�s method and at the second step, Ostrowski�s

method which is a special case of King�s family of methods.
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Modi�ed Newton�s Method for a System of Non-linear Equations

The Newton�s approach for �nding the solution of a non-linear system is described

below if there are n non-linear equations in n unknowns [29]:

s(k+1) = s(k) � F0
�
s(k)
��1

F
�
s(k)
�
;

where F0
�
s(k)
�
=

266666666664

@f1
@s1

@f1
@s2

::: @f1
@sn

@f2
@s1

@f2
@s2

::: @f2
@sn

...
...

...
...

@fn
@s1

@fn
@s2

::: @fn
@sn

377777777775
is non-singular Jacobian matrix.

Newton-Homotopy Method

For the solution of non-linear equation

f (s) = 0;

Newton�method is modi�ed for the nonlinear problems where divergence occure due

to derivative of function is zero at appromate value by following Wu [30]. An auxiliary

homotopy function

g (s) = 0;

which is known and controllable is necessary to de�ne homotopy continuation for the

function h : R� [0; 1]! R as

h (s; t) = tf (s) + (1� t) g (s) = 0; (1.6)
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where the arbitrary parameter t 2 [0; 1]:

From (1.6), we have the following two boundary conditions:

h (s; 0) = g (s) ;

h (s; 1) = f (s) ;

method of homotopy continuation is choosing di¤erent values of t between 0 and 1,

one attempts to resolve h(s; t) = 0 instead of f(s) = 0 in this case and attempts to

prevent divergence. Consequently, Wu�s Newton-homtopy technique is provided by

sn+1 = sn � h(sn;t)
h0(sn;t)

; h0 (sn; t) 6= 0; n = 0; 1; 2; :::

Error Equation

If the sequence of approximations fsng generated by using an iterative technique

has order of convergence p then it tends to a actual solution s� of non linear equation

(1.1) in such a way that

lim
n!1

sn+1 � s�
(sn � s�)p

= C;

for p � 1. Let en = sn � s�; then the following relationis used to de�ne error

equation [29]

en+1 = Ce
p
n +O(e

p+1
n ) = O(epn):

Convergence Order

The rate of convergence is the rate at which a convergent sequence approaches its

limit [29]. It is described in mathematics as:
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Assume that the iteration sequence fsng1n=1 converges to the value �. Let the

errors at the nth and (n+1)th iterations be en = ��sn and en+1=��sn+1, respectively,

for n>0. If there are two positive constants, c 6= 0 and p > 1, and

Lim
n!1

jsn+1 � �j
jsn � �jp

= Lim
n!1

jen+1j
jenjp

= c , n = 0:

The rate of convergence of sn to � is therefore de�ned as the asymptotic constant

c, and the sequence is said to have converged to with convergence order p. However,

the convergence is linear if p = 1.

Kung and Traub Conjucture

Multi-step methods based on m function and derivative evaluations can achieve

optimal convergenc order 2m�1; which is also called Kung and Traub conjecture [32,33]

Computational Order of Convergence

Let � be the root of a non-linear equation f (s) = 0 and suppose that sn�1; sn; sn+1

are the three consecutive iterates closer to the root �: Then the computational order

of convergence � is de�ned as [34]:

� t
ln j(sn+1 � �) = (sn � �)j
ln j(sn � �) = (sn�1 � �)j

:
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Computational E¢ ciency

The typical notation for the numerical iterative method�s computational e¢ ciency

is EI, gives its de�nition [34]:

EI = p
1
m ;

where m is the number of function and derivative evaluations needed by the approach

for each iteration and p is the method�s order of convergence.
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Literature Study and Conceptual

One of the very old and important problem in applied sciences and engineering is

to solve the nonlinear equation:

f(s) = 0;

where f(s) is a nonlinear function. Variety of scienti�c and mathematical problem

arising in engineering, natural biosciences and medical sciences can be reduced to non-

linear algebraic and transcendental equations [35�37]. Generally, it is not possible to

calculate their roots by an exact method, therefore one requires numerical approxi-

mate iterative methods. The researchers have developed a lot of iterative methods

such as the best known Newton�s method and it�s variants [2,3,38�47], secant method,

Halley�s method, Chebyshev method and Super-Halley method, etc. The Newton�s

                    Chapter2

                    Framework
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method which is of optimal convergence order two is given by

sn+1 = sn �
f(sn)

f 0(sn)
; n = 0; 1; 2; :::;

f
0
(sn) 6= 0:

The researchers tried to improve convergence order of Newton�s method to cubic and

arrive at cubically convergence methods, such as Weerakoon and Fernando method

[34]:

sn+1 = sn �
2f(sn)

f 0(sn) + f
0(sn � f(sn)

f 0 (sn)
)
;

while Frontini et al [4] obtained the cubically convergent method

sn+1 = sn �
f(sn)

f 0 (sn�f(sn))
2f 0 (sn)

:

In [48], Homeier denied the following cubically convergent method:

sn+1 = sn �
f(sn)

2

0@ 1

f 0(sn)
+

1

f 0(sn � f(sn)

f
0
(sn)
)

1A :
Kung and Traub [33] made a conjecture that the iterative method, without mem-

ory has optimal convergence order 2eval s�1, where evals is number of function and

derivative on evaluation, for example Jarrat�s method [49] is of optimal convergence

order four. Some recently produced optimal and non-optimal iterative methods by

researchers are given in [5�8,15,41,49�52].

Motivated by the above research, in this study �rst of all introduce optimal four

order methods from integral inequalities. Next, the presented fourth order methods

are extended to numerical iterative schemes for solving system of nonlinear equa-

tions. There are many scienti�c and mathematical problems while solving them, one
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comes across system of nonlinear equations. For example solving boundary value

problem,for ODEs and PDEs by �nite di¤erence approximations, are sets system of

nonlinear equations which need to be solved. System of nonlinear equations have a

lot of applications in applied sciences, for example, one requires to solve system of

nonlinear equations in physiology, Chemical equilibrium problem, Kinematics, Com-

bustion problem and economic modeling problem [61] reactor and starry problem by

Tsoulos and Stavrakoudis [17] and transport theory by Lin et al [54].

2.1 Existing Theory

Scientists and engineers have committed their e¤orts to the application of the

homotopy perturbation technique in linear and nonlinear problems since this approach

is used to constantly deform a straightforward issue that is easy to solve into an under-

study problem that is di¢ cult to solve. This approach is the combination of the classic

perturbation method and homotopy in topology, which was initially proposed by He

and systematically described.

To �nd the solution of nonlinear systems, Newton�s method has been modi�ed

in [18], which is modi�ed in quadratically convergent. A lot of variant of Newton�s

have been introduced in the literature for solving nonlinear systems utilizing various

way. Hueso et al [19, 55] used Taylor polynomial for this purpose, Darvishi and

Barati [20] and Noor and El-Sayed [56] applied Adomian decomposition method. In

this study, two new fourth order optimal iterative techniques for solving system of
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non-linear equations have been developed.

In 2022, Thota [58] suggests three iterative methods of order three, six, and seven

respectively, when solving non-linear equations with the modi�ed homotopy perturba-

tion approach paired with a system of equations. These methods solve the equations

in increasing order.

Jarratt�s fourth order iterative method [57] for solving non-linear system is given

in the following form:8>><>>:
v(k) = s(k) � 2

3
F
0
(s(k))�1F(s(k));

s(k+1) = s(k) � 1
2

�
(3F

0
(v(k))� F0

(s(k))�1(3F
0
(v(k)))

�
F
0
(s(k))�1F(s(k)):

(2.1)

Sharma et al [21] constructed the following fourth order method8>><>>:
v(k) = s(k) � 2

3
F
0
(s(k))F(s(k));

s(k+1) = s(k) � 1
2
[I+ 9

4
F
0
(v(k))�1F

0
(s(k)) + 3

4
F
0
(s(k))�1F

0
(v(k))]F

0
(s(k))�1F(s(k)):

(2.2)

Babajee et al [22] extended the fourth order iterative method for the solution of single

variable nonlinear equations given by Soleymani et al. [9] as follows:8>><>>:
v(k) = s(k) � 2

3
f
0
(s(k))f(s(k));

s(k+1) = s(k) � 2f(s(k))

f 0 (s(k))+f 0 (v(k))

�
1-1
4

�
f
0
(v(k))

f 0 (s(k))
� 1
�
+ 3

4

�
f
0
(v(k))

f 0 (s(k))
� 1
�2�

;

to the multivarible case as follows:8>>>>>><>>>>>>:
v(k) = s(k) � 2

3
F
0
(s(k))-1F(s(k));

s(k+1) = s(k) � 2
h
I-1
4

�
F
0
(s(k))-1F

0
(v(k))� I

�
+ 3

4

�
F
0
(s(k))�1F

0
(v(k))� I

�2i
�
�
F
0
(s(k)) + F

0
(v(k))

��1
F(s(k)):

(2.3a)



27

Ullah, M. Z. et al. [10] constructed a new scheme for multi-step iterative methods. The

well-known technique of undetermined coe¢ cients to develop a high order method as

follows in the scalar case (n = 0; 1; 2; :::)8>>>>>>>>>><>>>>>>>>>>:

vn = sn � 2
3
f(sn)
f 0(sn)

;

zn = sn � 1
2
3f 0(vn)+f 0(sn)
3f 0(vn)�f 0(sn)

f(sn)
f 0(sn)

;

wn = zn � f(zn)
q1f 0(sn)+q2f 0(vn)

;

sn+1 = wn � f(wn)
q1f 0(sn)+q2f 0(vn)

:

(2.4)

There are four stages in the structure (2.4), with the third and fourth steps pur-

posefully sharing the same denominator. To further illustrate, it is shown that this

assumption improves the order of convergence from the third to the fourth step while

having a minor impact on the amount of time required to solve the linked linear sys-

tems and the Jacobian. When we extend (2.4) to n dimensions, the Jacobians F
0
(s(k))

and F
0
(v(k)) will be computed once every cycle, and the last two stages won�t put

too much pressure on the method. The convergence rate at the structure�s conclusion

(2.4) increases even more since the correction factors in the third and fourth phases of

our structure (2.4) are equal. In order to propose the contributed high-order method
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for �nding real and complex solutions of the nonlinear systems in what follows8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

v(k) = s(k) � 2
3

�
F
0
(s(k))

��1
F(s(k));

z(k) = s(k) � 1
2

�
3F

0
(v(k))� F0

(s(k))
��1

�
3F

0
(v(k)) + F

0
(s(k))

�
F
0
(s(k))�1F(s(k));

w(k) = z(k) �
��1
2
F
0
(s(k)) + 3

2
F
0
(v(k))

��1
F(z(k));

s(k+1) = w(k) �
��1
2
F
0
(s(k)) + 3

2
F
0
(v(k))

��1
F(w(k)):

(2.5)

The new technique (2.5) needs computing F at three distinct positions every comput-

ing step and the Jacobians F at two di¤erent places. To demonstrate the convergence

order of (2.5), before this �rst recall several key points from the theory of point of

attraction.

For discovering estimation real or complex solutions to nonlinear systems, a large

family of multi-step iterative techniques is described. The �rst method in the class

is built using the well-known technique of indeterminate coe¢ cients, whereas higher-

level schemes are achieved using a frozen Jacobian. The convergence behavior of

the primary suggested iterative approach will be demonstrated using the point of

attraction theory. Then, an m-step technique will be seen to converge with 2m-order.

The computational e¢ ciency index will be discussed, and numerical comparisons with

existing approaches will also be made. Finally, we show how novel techniques can be

used to solve nonlinear partial di¤erential equations.

Ullah, M. Z. et al. [10] are interested in high-order fast approaches with suitable

computational load and e¢ ciency for challenging nonlinear systems. To enhance the
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convergence behavior of the aforementioned well-known approaches, they present a

novel one with eighth-order convergence to �nd both genuine and complex solutions

as well as to develop an e¤ective method to deal with nonlinear problems. The

newly suggested approach requires just �rst-order Frechet derivative assessments and

does not require higher-order Frechet derivatives. Numerical �ndings are presented

to re-verify the suggested method�s e¤ectiveness in locating genuine and complicated

solutions to nonlinear systems with applications.

Lot�T. et. al. [16] design the generic multipoint for solving nonlinear systems of

equations that use the suggested approach as a predictor in the �rst three phases.

In reality, adding one step raises the order of convergence by three units while re-

quiring only one vector-function evaluation. It also has an economically viable frozen

component.

A new ninth-order development of iterative method for solving nonlinear systems

of equations:8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

v(k) = s(k) � F0
(s(k))�1F(s(k));

z(k) = s(k) � 2(F0
(s(k)) + F

0
(v(k)))�1F(s(k));

w(k) = z(k) �
�
7
2
I � 4F 0

(s(k))�1F
0
(v(k)) + 3

2
(F

0
(s(k))�1(F

0
(v(k)))2

�
�F0

(s(k)))�1F(z(k));

s(k+1) = w(k) �
�
7
2
I � 4F0

(s(k))�1F
0
(v(k)) + 3

2
(F

0
(s(k))�1(F

0
(v(k)))2

�
�F0

(s(k)))�1F(w(k));

that will be denoted by M � 9:



30

Firstly, Lot� T. [16] expanded and improved on Weerakoon and Fernando�s ap-

proach to solving nonlinear systems with sixth-order convergence. The examination

of its convergence was discussed. This expanded approach uses a predictor with

two frozen Jacobian matrices to construct a broad multipoint iteration. The overall

technique has been illustrated with certain actual instances. Furthermore, numerical

examples show that these new strategies can compete with the old ones. Equation

solving is a venerable subject in science and engineering, and it is especially impor-

tant in applications. As a result of this, an immense number of iterative approaches

for solving scalar nonlinear equations have been developed. However, it should be

emphasized that many of these strategies are not applicable to their related systems.

Even if this is feasible, certain critical variables must be taken into account. As a

result, there are few viable iterative approaches in this circumstance. Furthermore, it

is worth noting that, while some scalar iterations can be prolonged, they are of little

practical use owing to increased computing costs.

It is worth mentioning that the fourth order methods proposed in this study for

solving system of nonlinear equations uses only one Jacobian matrix per iteration and

element wise multiplication of vectors and diagonal matrix. The above schemes for

nonlinear system would fail or diverge when the Jacobian matrix becomes singular at

any stage due to approximate value. Therefore, the above two optimal fourth order

techniques for solving nonlinear system are generalized to Homotopy techniques for

solving nonlinear system to overcome this problem of divergence or failure.
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2.2 General Concept

Here, we discuss some homotopy analysis methods for developing a techniques for

�nding roots of single variable non-linear equations and system of nonlinear equation

proposed by di¤erent researchers [11,30,31,59].

2.2.1 Homotopy Continuation Method by Wu

For the solution of nonlinear equation of the form

f(s) = 0;

Wu [30], selected auxiliary homotopy function as:

g(s) = 0; (2.6)

which is known and manageable. With the help of auxiliary function (2.6), Wu de�ned

homotopy function as follows:

h : R� [0; 1] �! R

as

h(s; �) = �f(s) + (1� �)g(s); (2.7)

where the parameter � used to perturb the function f(s) in (2.7) lies in interval [0; 1]:

From (2.7), the following conditions at boundary points are introduced

h(s; 0) = g(s);

h(s; 1) = f(s):
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Continuation is to solve h(s; u) = 0 in place of f(s) = 0 to avoid divergence problem

by assuming the values of � 2 (0; 1) in such a way that divergence case is avoided.

There are numerous applications in both numerical and practical mathematics

for the process of swiftly determining the roots of nonlinear equations. The Newton-

Raphson method is by far the most often used method for solving nonlinear equations.

Researchers are still interested in a wide range of topics related to Newton�s approach.

One disadvantage of the approaches is that the initial approximation s0 must be

chosen so that it is su¢ ciently close to the true solution to ensure that the methods

converge. This is something that everyone knows. It is not an easy process to identify

a criterion for selecting s0 hence, e¢ cient and globally convergent algorithms are

required.

In homotopy analysis method, set h is a �xed constant and it can be determined by

h-curves. However, it is computationally intensive with computing times for seeking

a proper value of h. In Newton-homotopy analysis method (N-HAM), we determine

h by Newton�Raphson scheme as Wu de�ned Newton�s homotopy method [30]:

s(k+1) = s(k) � h(s(k); �)

h0(s(k); �)
; k = 0; 1; 2; 3; ::: (2.8)

where the divergence case occurs at

h0(s; �) = 0 i.e., �f 0(s) + (1� �)g0(s) = 0;

to avoid divergence, it may be considered

h0(s; �) 6= 0 i.e., �f 0(s) + (1� �)g0(s) 6= 0:
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Thus, on integration, we get:

�f(s) + (1� �)g(s) = Ex+R or Ees +R; (2.9)

where R is an arbitrary constant which can be considered zero.

It is observed that the auxiliary function g(s) satis�es the following choices, as

seen from equation (2.9)

i. � = 0 implies g(s) = Ex+R or Ees +R;

ii. � = 1 implies f(s) = Ex+R or Ees +R;

iii. � 2 (0; 1) implies g(s) = E1f(s) + E2s+R or E1f(s) + E2es +R;

where E1and E2 are non-zero coe¢ cients, for the sake of simplicity, we choose:

g(s) = Ex+R or Ees +R:

The problem that needs to be solved is contained within a set of problems by homo-

topy, or continuation, techniques for nonlinear systems.

Solving a problem of the form

F(s) = 0;

to �nd unknown solution s�, it may be considered a family of problems described

using a parameter � that takes values in [0; 1]. A problem with a known solution,

s(0); is equivalent to the case where � = 0; whereas a problem with an unknown

solution, s(1) = s�; is equivalent to the case where � = 1: Consider s(0) as an initial
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approximation to the solution of

F(s�) = 0:

De�ne a homotopy function with the help of an auxiliary function

H : [0; 1]�Rn ! Rn

by

H(�; s) = �F (s) + (1� �)[F(s)� F(s(0))] = F(s) + (�� 1)F(s(0)): (2.10)

For di¤erent values of �, a solution to

H(�; s) = 0;

will found.

It can be observed that for � = 0; the equation (2.10) reduces in the following

form

0 = H(0; s) = F(s)� F(s(0));

and the solution is s(0). For � = 1; the equation (2.10) becomes in the following form

0 = H(1; s) = F(s);

and the solution is s(1) = s�.

The parameter in the function H gives us a family of functions that can take us

from the known value s(0) to the answer s(1) = s�: The function H is referred to as

a homotopy between

H(0; s) = F(s)� F(s(0))
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and

H(1; s) = F(s):

The continuation problem is to �gure out how to move from the known solution of

H(0; s) = 0 (s(0));

to the unknown solution of

H(1; s) = 0(s(1) = s�);

which is the answer to

F(s) = 0:

Following the above mentioned technique Newton�s homotopy method for the solution

of system of nonlinear equations constructed by [30] as follows:

s(k+1) = s(k) �
�
H 0(s(k); �)

��1
H(s(k); �); k = 0; 1; 2; 3; :::

2.2.2 Homotopy Perturbation Method by Golbabai

Golbabai A. et. al [11] used the homotopy perturbation method for solving system

of non-linear algebraic equations. Also this method showed the accuracy and fast

convergence than other iterative methods. Consider system of non-linear equations

of the form

	(X) =

8>><>>:
f(X) = 0;

g(X) = 0;

X = (s;v)T 2 R2; (2.11)
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where f; g : R2 ! R and ' : R2 ! R2: We assume that X� = (�; �)T is a zero of

equation (2.11) and q = (�; )T is an initial guess su¢ ciently close to X�: Then, by

using Taylor series around q for the equation (2.11), we have

	(X) =

8>><>>:
f(q) + (s� �)fs(q) + (v � )fv(q) + F (X) = 0;

g(q) + (s� �)gs(q) + (v � )gv(q) +G(X) = 0;
(2.12)

where

F (X) = f(X)� f(q)� (s� �)fs(q)� (v � )fv(q);

and

G(X) = g(X)� g(q)� (s� �)gs(q)� (v � )gv(q):

We can rewrite equation (2.12) as follows:8>><>>:
xfs(q) + yfv(q) = �fs(q) + fv(q)� f(q)� F (X);

xgs(q) + ygv(q) = �gs(q) + gv(q)� g(q)�G(X):

Many academics have utilized various numerical algorithms in recent years to solve

	(X) = 0. Golbabai proposed an iterative approach for solving nonlinear equations

that involve rewriting the given nonlinear equation as a system of coupled equations.

Scientists and engineers have committed their e¤orts to the application of the homo-

topy perturbation technique in linear and nonlinear problems since this approach is

used to constantly deform a straightforward issue that is easy to solve into an under-

study problem that is di¢ cult to solve. This approach is the combination of the

classic perturbation method and homotopy in topology, which was initially proposed

by He and systematically described. The Homotopy perturbation method is used to
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numerically solve a system of nonlinear equations. Ji-Huan He was the �rst on who in-

vented the homotopy perturbation technique (HPM) in 1999. Until today, it has been

utilized to tackle a wide range of linear and nonlinear problems. It describes several

unique iterative techniques for nonlinear equation system solutions. A comparison

of the present technique�s �ndings with those of the Newton-Raphson methodology

demonstrates the precision and speedy convergence of the new approaches. Most non-

linear systems lack accurate analytic solutions, numerical and analytic approximation,

that�s why these techniques was employed.

2.2.3 Homotopy Analysis Method by Abbasbandy

Abbasbandy et al. [31] suggests using HAM (homotopy analysis method) as a

method for solving a variety of nonlinear algebraic problems. Additionally, ADM

(Adomian�s decomposition method) and HPM (homotopy perturbation method) pro-

vide a wide range of solutions. Also, explain the connection between the HAM ap-

proach and the other two methods. In addition, by utilizing the Newton-Raphson

approach, they are able to produce a numerical methodology that is more e¤ective.

This methodology goes by the name of the Newton-homotopy analysis method (N-

HAM). The newly suggested improvement technique is put to the test on a few dif-

ferent examples, and the �ndings suggest that it is both a useful tool and an e¤ective

enhancement for the process of solving nonlinear equations.
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2.2.4 Homotopy Analysis Method by He

In 2012, He [59] proposed a suggestion for an alternate method to create the

homotopy equation by using an auxiliary term. The construction of an appropriate

homotopy equation and the selection of an appropriate starting guess is considered to

be the two most signi�cant processes involved in the implementation of the homotopy

perturbation method. When the homotopy parameter is zero, the homotopy equation

needs to be designed in such a way that it may approximately represent the solution

property. Additionally, the initial solution is supposed to be chosen with an unknown

parameter, which is then found after one or two iterations of the homotopy equation.

Consider a general nonlinear equation

Lu+Nu = 0;

where L and N are, respectively, the linear operator and nonlinear operator.

The �rst step for the method is to construct a homotopy equation in the form

[?, 61,62]
_

Lu+ p(Lu�
_

Lu+Nu) = 0; (2.13)

where
_

L is a linear operator with a unknown constant and
_

Lu = 0 can approximately

describe the solution property. The embedding parameter p monotonically increases

from zero to unit as the trivial problem (
_

Lu = 0) is continuously deformed to the

original one (Lu+Nu) = 0):

This is the suggestion for an alternative method to the construction of the homo-
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topy equation that Ji- Huan He provided.

_

Lu+ p(Lu�
_

Lu+Nu) + ap(1� p)u = 0; (2.14)

where � is an auxiliary parameter that is being used. When � = 0;(3.5) turns out

to be that of the classical one expressed in (2.13). The auxiliary term, ap(1 � p)u;

disappears entirely when p = 0 or p = 1; so the auxiliary term will a¤ect neither

the initial solution (p = 0) nor the real solution (p = 1): Noor [63] was the �rst

person to investigate using the homotopy perturbation approach in conjunction with

an auxiliary term.

In order to demonstrate how the solution process works, take the example of a

nonlinear oscillator in the form

d2u

dt2
+ bu+ cu3 = 0; u(0) = A; u

0
(0) = 0; (2.15)

where b and c are positive constants.

Equation (2.15) admits a periodic solutions, and the linearized of (2.15) is

u
00
+ !2u = 0; u(0) = A; u

0
(0) = 0; (2.16)

where ! is the frequency of eq (2.15).

The following homotopy equation is one that develop with the help of an auxiliary

term:

u
00
+ !2u+ p[(b� !2)u+ cu3] + ap(1� p)u = 0:

It has been demonstrated that the homotopy perturbation approach may e¤ectively,

easily, and accurately solve a broad class of nonlinear di¤erential equations; typi-
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cally, one iteration is su¢ cient for engineering applications with acceptable precision,

which makes the method accessible to individuals who don�t have any background in

mathematics.

2.3 Framework of Dissertation

In Chapter-3, two optimal fourth order iterative schemes for solving single variable

nonlinear equations are developed via integral inequalities. Their convergence analysis

is discussed and some model numerical examples are provided to test the performance

of their techniques.

In Chater-4, extension of iterative schemes of section 3 is established. Their con-

vergence analysis is described and applications are provided to check their e¢ ciency

and performance.

In Chapter-5, techniques of chapter are generalized to homotopy techniques for

solving the nonlinear system along with some test examples.

Finally, in Chapter-6, conclusion of this study and future work is highlights.

At the end, references that are being used to produce this research are provided.
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Optimal Techniques for Solving

Single Variable Nonlinear

Algebraic and Transcendental

In this chapter, two optimal fourth order techniques are developed for solving

single variable nonlinear integral inequalities. Further, their convergence analysis is

done and some test examples are given for showing their performance in comparison

with some other similar techniques existing in the literature.

                 Chapter3

Equations
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3.1 Development of Optimal Fourth order tech-

niques via integral Inequalities

Let us consider the another inequality by N. S. Barnett et al. [60] which is men-

tioned below in the form of the following theorem:

Theorem: Let f : [a; b] ! R be a twice di¤erentiable mapping on (a; b) and

f
00
: (a; b)! R be bounded, i.e.

f 00
1
= sup(f

00
(t)) <1;8t 2 (a; b):

Then, the following inequality is obtained:������f(s)� 1

b� a

bZ
a

f(t)dt� (s� a+ b
2
)
f(b)� f(a)
b� a

������
� 1

2

8<:
 
(s� a+b

2
)2

(b� a)2 +
1

4

!2
+
1

12

9=; (b� a)2 kf 0k1
� (b� a)2

6

f 0
1
; (3.1)

8s 2 [a; b]:

Rewriting, for a = sn and b = s; we have:

bZ
a

f 0(t)dt � (s� sn)f 0(s)�
�
s� sn
2

�
(f 0(s)� f 0(sn))

f(s) � f(sn) + (s� sn)f
0
(s) +

�
s� sn
2

�
(f 0(s)� f 0(sn)) : (3.2)

Now for the non-linear equation f(s) = 0; (3.2) implies:

s = sn �
2f(sn)

f 0(s) + f 0(sn)
:
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So, the iterative scheme becomes:8>><>>:
sn+1 = sn � f(sn)

f 0(vn)+f 0(sn)
;

where vn = sn � f(sn)
f 0(sn)

:

(3.3)

Let us now consider the approximation of derivative of function f
0
(vn) introduced by

Chun [46] as follows:

f
0
(v) � f 0(sn)

f(sn)� f(vn)
f(sn) + f(vn)

;

in (3.3), the following two step iterative method is obtained:8>><>>:
vn = sn � f(sn)

f 0 (sn)
;

sn+1 = sn � 2f(vn)

f 0 (sn)

�
f(sn)+f(vn)
f(sn)�f(vn)

�
:

In order to improve convergence order, the following method is proposed:8>><>>:
vn = sn � � f(sn)f 0(sn)

;

sn+1 = vn � � f(vn)f 0 (sn)

�
f(sn)+f(vn)
�f(sn)��f(vn)

�
:

(3.4)

Now considering the inequality by N. S. Barnett et al. [60] which is mentioned below

in the form of the following theorem:

Theorem: Let f : [a; b] ! R be a twice di¤erentiable mapping on (a; b) and

f
00
: (a; b)! R be bounded, i.e.

f 00
1
= sup(f

00
(t)) <1;8t 2 (a; b):
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Then, the following inequality is obtained:������f(s)� 1

b� a

bZ
a

f(t)dt� (s� a+ b
2
)f

0
(s)

������
�

���� 124(b� a)2 + 12(s� a+ b2 )2
���� kf 0k1

� (b� a)2
2

f 0
1
: (3.5)

From the above inequality, 8s 2 [a; b]; for a = sn and b = s; we have:

f(s) � f(sn) + (s� sn)f
0
(s)� (s� sn)(s�

s+ sn
2

)f
00
(s):

Consider the non-linear equation f(s) = 0; we obtain:

s = sn �
f(sn)

f 0(s)� (s� s+sn
2
)f 00(s)

:

So, the iterative scheme becomes:8>><>>:
vn = sn � f(sn)

f 0 (sn)
;

sn+1 = sn � f(sn)

f 0 (vn)+2
f(sn)

f 0(sn)
f 00 (vn)

:

(3.6)

Considering the approximations of f
0
(vn) written as

f
0
(vn) � f

0
(sn)

f(sn)� f(vn)
f(sn) + f(vn)

; (3.7)

and f
00
(vn) as follows:

f
00
(vn) � 2

�
f(vn)� f(sn)
(vn � sn)2

� f
0
(vn)

vn � sn

�
;

or

f
00
(vn) � 2

�
f
0
(sn)

f(sn)

�2
f(vn)

f(vn)� f(sn)
f(sn) + f(vn)

: (3.8)
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Therefore, the two step iterative scheme (3.6) can be modi�ed by using approxima-

tions given in (3.7) and (3.8) as follows:8>><>>:
vn = sn � f(sn)

f 0 (sn)

sn+1 = vn � f(sn)

f 0 (sn)

�
f(vn)(f(sn)+f(vn))

f2(sn)�2f(sn)f(vn)+f2(vn)

�
:

We therefore propose the following two-step method using arbitrary parameters �; �;  2

R; for improving the convergence order:8>><>>:
vn = sn � f(sn)

f 0 (sn)
;

sn+1 = vn � f(sn)

f 0 (sn)

�
f(vn)(f(sn)+f(vn)

�f2(sn)+�f(sn)f(vn)+f2(vn)

�
:

(3.9)

3.2 Convergence Analysis

Here, in this section convegence of newly proposed iterative methods (3.4) and

(3.9) is being analzed in order to prove that the iterative methods are of optimal

convergence order four.

Theorem 1 Let w 2 I be a single root of f : I � R! R in an open optimal I: If s0

is su¢ ciently close to w; then the method described by (3.9) has optimal fourth order

convergence for � = 1; � = �1;  = �3: The error equation obtained by using Maple

18, is given by

en+1 = �c2c3e4n + o(e5):

Proof. Let us consider error in nth approximation

en = sn � w;
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expanding f(sn) and f
0
(sn) to w; we get:

f(sn) = f
0
(w)(en + c2e

2
n + c3e

3
n + c4e

4
n + o(e

5
n)); (3.10)

f
0
(sn) = f

0
(w)(1 + s2en + 3c3e

2
n + 4c4e

3
n + o(e

4
n)); (3.11)

where

ck =
1

k!

f (k)(w)

f(w)
; k = 2; 3; :::; .

Using (3.10) and (3.11) to obtained the following error function

f(sn)

f 0(sn)
= en � c2e2n + 2(c22 � c3)e3n + (4c32 � 7c2c3 + 3c3) + e4n

+(8c42 + 10c2c4 + 6c
2
3 � 4c3 � 20c3c22)e5n + o(e6n); (3.12)

The error equation of �rst step of method (3.9) is calculated as follows:

vn = w + c2e
2
n + (�2c22 + 2c3)e3n � (7c2c3 � 4c32 � 3c4)e4n

+o(e5n):

Expanding the function f(vn), as above, we have:

f(vn) = f
0
(w)(c2e

2
n + 2(c3 � c22)e3n + (�8c2c3 + 3c4 + 5c32)e4n) (3.13)

+O(e5n):
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To obtain the error function involving in the second step of method (3.9), the equa-

tions (3.10), (3.11)and (3.13) are utilized as follows:

f(sn)

f 0(sn)

�
f(vn)(f(sn) + f(vn))

�f 2(sn) + �f(sn) + f(vn) + f 2(vn)

�
=

c2e
2
n

�
+

�
(� �
�2
� �
�
)c2 +

2

�
c3

�
e3n

+

�
3

�
c4 + (

�4�
�2

� 10
�
)c2c3 + (

�2

�3
+
6

�
� 

�2
+
6�

�2
)c32

�
e4n

+O(e5n):

Finally, the error equation of method (3.9) becomes for arbitrary values of �; � and

 as follows:

sn+1 = w + (1� 1

�
)c2e

2
n +

�
(
3

�
+
�

�2
� 2) + (2� 2

�
)c3

�
e3n

+

�
(3� 3

�
)c4 + (

10

�
+
4�

�2
� 7)c2c3

+(��
2

�3
� 6

�
+


�2
� 6�
�2
+ 4)c32

�
e4n + o(e

5
n):

Setting the coe¢ cients of e2n and e
3
n equal to zero and obtain the values of parameters

as given below:

� = 1; � = �1;  = �3:

For the above mentioned values of parameters, we have the following error equation:

sn+1 = w � c2c3e4n + o(e5);

en+1 = �c2c3e4n + o(e5):

which shows that the method is of optimal convergence order four for � = 1; � =

�1;  = �3:
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Similarly, using Maple 18, the error equation of method (3.4) is given by

en+1 = (�c2c3 + 3c32)e4n + o(e5n);

for � = 1; � = 1; � = �1 and � = 1:

Thus, the method (3.4) is of optimal convergence order four for the given choice of

parameters.

3.3 Some Model Numerical Examples

In this section, some model numerical examples given in the literature [12] is used

to show numerical performance of the proposed iterative techniques (3.4) and (3.9).

f1(s) = sin(2 cos s)� 1� x2 + esin(s
3); s� = �0:7848959876:::

f2(s) = xe
s2 � sin2 s+ 3 cos s+ 5; s� = �1:2076478271:::

f3(s) = s
3 + 4x2 � 10; s� = 1:36523001341:::

f4(s) = sin(s) + cos(s) + s; s� = �0:4566247045:::
f5(s) = s=2� sin s; s� = 1:89549426703:::

f6(s) =
p
s2 + 2x+ 5� 2 sin s� s2 + 3; s� = 2:33196765588:::

f7(s) =
p
s� cos s; s� = 0:64171437087:::

f8(s) = s
2 + sin(s=5)� 1=4; s� = 0:40999201798:::

f9(s) = e
�s sin s+ log(1 + x2)� 2; s� = 2:44774828645:::

f10(s) =
p
s3 + sin s� 30; s� = 9:716501993365:::

The computation is performed using Maple 18 rounded to 500 signi�cant digits.

The stopping criteria used is

jsn � sn�1j < �;

where � = 10�50; n is the number of iterations.
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Let us denote the newly introduced optimal forth order methods (3.4) and (3.9)

by NMZ1 and NMZ2 respectively, and their comparison is made up with Jarrat�s

method [49] by JTM given by following8>><>>:
vn = sn � 2

3
f(sn)

f 0 (sn)
;

sn+1 = vn �
�
3f 0(vn)+f 0(sn)
6f 0(vn)�2f 0(sn)

�
f(sn)

f 0 (sn)
:

and Madhu, K., & Jayaraman, J forth order method [12] by MKJJ given by8>><>>:
vn = sn � 2

3
f(sn)

f 0 (sn)
;

sn+1 = vn � 4f(sn)

f
0
(sn)+3f 0(vn)

(1 + 5
16
( f

0(vn)

f
0
(sn)

� 1)2)(1 + 1
4
(f

0
(sn)

f 0(vn)
� 1)2)

in table 3.1.

f s0 JTM MKJJ NMZ1 NMZ2
it jsn � sn�1j it jsn � sn�1j it jsn � sn�1j it jsn � sn�1j

f1 -0.9 4 1.6(10�067) 4 4.4(10�065) 3 4.3(10�062) 3 3.4(10�071)
-0.7 4 1.4(10�070) 4 7.2(10�066) 3 1.5(10�061) 3 2.4(10�084)

f2 -1.7 5 1.4(10�085) 5 4.2(10�058) 4 3.4(10�056) 4 9.6(10�083)
-1.0 5 2.0(10�199) 5 3.8(10�116) 4 4.7(10-115) 4 8.2(10�100)

f3 1.6 4 2.4(10�063) 4 1.2(10�059) 3 7.8(10�035) 3 2.2(10�090)
1.0 5 1.4(10�187) 5 2.5(10�149) 4 1.3(10�127) 4 6.7(10�178)

f4 -0.2 4 2.1(10�077) 4 5.4(10�076) 3 9.3(10�074) 3 1.3(10�078)
-0.6 4 4.3(10�100) 4 1.2(10�099) 3 3.3(10�098) 3 1.1(10�099)

f5 1.6 5 5.7(10�169) 5 7.9(10�137) 4 3.5(10�177) 4 5.1(10�074)
2.0 4 7.4(10�079) 4 1.2(10�074) 3 1.4(10�070) 3 2.3(10�090)

f6 2.1 4 6.5(10�096) 4 6.3(10�097) 3 1.1(10�089) 3 6.5(10�088)
2.5 4 4.5(10�094) 4 7.8(10�096) 3 1.8(10�095) 3 2.9(10�090)

f7 0.2 4 8.7(10�063) 4 2.5(10�060) 3 1.1(10�052) 3 1.3(10�193)
0.9 4 3.5(10�079) 4 6.9(10�081) 3 1.8(10�086) 3 2.7(10�103)

f8 0.2 5 7.4(10�151) 5 3.8(10�114) 4 2.5(10�094) 4 8.5(10�155)
1.5 5 3.1(10�074) 5 5.6(10�065) 4 1.81(10�055) 4 7.5(10�112)

f9 1.9 4 1.0(10�084) 4 3.1(10�108) 3 1.1(10�079) 3 3.3(10�091)
2.7 4 5.8(10�102) 4 1.3(10�100) 3 1.1(10�121) 3 6.6(10�105)

f10 9.9 4 3.3(10�100) 4 1.7(10�101) 3 7.3(10�106) 3 6.1(10�100)
9.2 4 1.9(10�078) 4 9.4(10�079) 3 9.1(10�080) 3 1.9(10�078)

Table 3.1 Compaison of results of proposed methods for given examples
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3.3.1 Discussion on Results

It is observed that from the table 3.1 the numerical test example produced much

better results of newly proposed iterative methods NMZ1(3.4) and NMZ2 (3.9) as in

their comparison with Jarrat�s method JTM [49] and Madhu, K., & Jayaraman, J

method MKJJ [12].
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Techniques for Solving System of

Here, in this chapter, two fourth order optimal iterative techniques NMZ1(3.4)

and NMZ2 (3.9) for solving single variable nonlinear equations of chapter 3 are ex-

tended for solving nonlinear system. It is mentioning that the introduced fourth order

techniques uses only one Jacobian matrix for each iterative step. For the goal of ex-

tending iterative methods for nonlinear systems, element-wise vector and diagonal

matrix multiplication is also de�ned.

The convergence analysis of the nonlinear system is also discussed and application

are provided in comparison with other similar methods in the literature.

Chapter 4

          NonlinearEquations

    Extension toOptimal Iterative
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4.1 Establishment of Iterative Techniques for Non-

linear System

For the goal of establishment of iterative techniques for the solution of nonlinear

system of equations given as

F(s) = [f1(s); f2(s); :::; fn(s)]
T = 0; (4.1)

where

s = [s1; s2; :::; sn]
T ;

vector multiplication needs to be de�ne.

4.1.1 Elementwise Vector Multiplication

The element wise vector multiplication can be achieve via vector and diagonal

matrix multiplication as follows:

F(s) � F(v) =

266666666664

f1(s)

f2(s)

...

fn(s)

377777777775
�

266666666664

f1(v)

f2(v)

...

fn(v)

377777777775
=

266666666664

f1(s)f1(v)

f2(s)f2(v)

...

fn(s)fn(v
(k)(k))

377777777775
;

via

F(s) � F(v) = diag(F(s))F(v) = diag(F(v))F(s)
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i.e.,

F(s) � F(v) =

266666666664

f1(s) 0 � � � 0

0 f2(s) � � � 0

...
...

...
...

0 0 � � � fn(s)

377777777775

266666666664

f1(v)

f2(v)

...

fn(v)

377777777775

=

266666666664

f1(v) 0 � � � 0

0 f2(v) � � � 0

...
...

...
...

0 0 � � � fn(v)

377777777775

266666666664

f1(s)

f2(s)

...

fn(s)

377777777775
and inverse of vector de�ned as follows:

(F(s))�1 =

266666666664

f1(s)

f2(s)

...

fn(s)

377777777775

�1

=

266666666664

1
f1(s)

1
f2(s)

...

1
fn(s)

377777777775
:

Thus, with the help of these notions iteration schemes (3.4) and (3.9) can be extended

very easily for solving nonlinear system. The iterative technique uses one Jacobian per

iteration and element wise vector multiplication or achieved via vector and diagonal

matrix multiplication.
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4.1.2 Proposed Methods

The extension of (3.4) for the nonlinear system is proposed as follows:8>><>>:
v(k) = s(k) �

�
F
0
(s(k))

��1
F(s(k));

s(k+1) = v(k) �
��
F
0
(s(k))

��1
F(v(k))

�
�
��
F(s(k))� F(v(k))

��1 � �F(s(k)) + F(v(k))��
(4.2)

Similarly, the extension of (3.9) for the nonlinear system can be written as:8>>>>>><>>>>>>:
v(k) = s(k) �

�
F
0
(s(k))

��1
F(s(k));

s(k+1) = v(k) �
��
F
0
(s(k))

��1
F(v(k))

�
�
�
F(v(k)) �

�
F(s(k)) + F(v(k))

�
�(F2(s(k))� 2F(s(k)) � F(v(k)) + F2(v(k)))�1

� (4.3)

where

s(k) = [s(k)1 ; s
(k)
2 ; :::; s

(k)
n ]

T ;

F(s(k)) = [f1(s
(k)); f2(s

(k)); :::; fn(s
(k))]T :

4.2 Analysis of Iterative Techniques

In this section, it is proved that the local convergence order of the iterative tech-

niques (4.2) (4.3) is four as described in the following theorems:

Theorem 2 Let F : D � Rn ! Rn be su¢ ciently Frēchetdi¤erentiable on an open

convex set D of w 2 Rn with F(w)=0 and let det(F0(w)) 6=0. Then, the sequence

fs(k)g generated by (4.2) converges to w with local convergence order of atleast four.
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One error equations given by

e
¯
(k+1) =M(e

¯
(k))4 +O(e

¯
(k))5; (4.4)

where

M=(-A
¯ 2
A
¯ 3
+ 3A
¯
3
2):

Proof. Let

e
¯
(k) = s(k) �w,

where

e
¯
(k) = [e

¯
(k); e
¯
(k); :::; e

¯
(k)]T ;

with

w=[w1; w2; :::; wn]T ;

as the actual solution of the nonlinear system:

F(s) = 0:

The Taylor series expansion of F(s(k)) about w can be written as:

F(s(k)) = F(s(k) �w+w) = F(w + e
¯
(k));

= F(w) + F
0
(w)[e

¯
(k) +

1

2!
F
0
(w)�1F

00
(w)(e

¯
(k))2

+
1

3!
F
0
(w)�1F

000

(w)(e
¯
(k))3 + :::];

= A1(e¯
(k) + A2(e¯

(k))2 + A3(e¯
(k))3 +O(e

¯
(k))4; (4.5)
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where

A1 = F
0
(w) and Ai =

1

i!
F
0
(w)�1F

(i)

(w); for i � 2:

Also,

F
0
(s(k)) = A1(I + 2A2e¯

(k) + 3A3(e¯
(k))2 + 4A3(e¯

(k))3 +O(e
¯
(k))4; (4.6)

where I is the identity matrix and

F
0
(s(k))�1 = A1(I + 2A2e¯

(k) + (4A22 � 3A3)(e¯
(k))2

+(6A3A2 + 6A2A3 � 8A32 � 4A4)(e¯
(k))3

+O(e
¯
(k))4: (4.7)

From (4.6) and (4.7), we obtain

F
0
(s(k))�1F(s(k)) = e

¯
(k) � A2(e¯

(k))2 + (2A22 � 2A3)(e¯
(k))3

+(�3A4 � 4A32 + 3A3A2 + 4A2A3)(e¯
(k))4

+O(e
¯
(k))5: (4.8)

Thus, using (4.8) in �rst step of (4.2), we get:

v(k) �w = A2(e¯
(k))2 + (�2A22 + 2A3)(e¯

(k))3

+(�3A3A2 � 4A2A3 + 4A32 + 3A4)(e¯
(k))4

+O(e
¯
(k))5; (4.9)

On expanding using Taylor expansion:

F(v(k)) = A1(A2(e¯
(k))2) + 2(A3 � 2A22)(e¯

(k))3

+(�7A2A3 + 3A4 + 5A32)(e¯
(k))4 +O(e

¯
(k))5: (4.10)
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Also,

F
0
(s(k))�1:F(v(k)) = A2(e¯

(k))2 + (�4A22 + 2A3)(e¯
(k))3

+(3A4 � 8A2A3 � 6A3A2 + 13A32)(e¯
(k))4

+O(e
¯
(k))5: (4.11)

Using (4.5), (4.7), (4.10) and (4.11) in the 2nd step of (4.2), we get the �nall error

equation of two step method as follows:

s(k+1) �w = (�A2A3 + 3A32)(e¯
(k))4 +O(e

¯
(k))5;

e
¯
(k+1) = M(e

¯
(k))4 +O(e

¯
(k))5;

where

M = (�A2A3 + 3A32):

Hence proved.

We have used here Maple 18 to complete the above results.

Similarly, using Maple 18, the error equation of proposed method (4.3) is derived

as follows:

e
¯
(k+1) = (�A2A3)(e¯

(k))4 +O(e
¯
(k))5:

Therefore, both the iterative scheme (4.2) and (4.3) for solving nonlinear systems are

of optimal convergence order four.
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4.3 Numerical Applications

In this section, some physical applications are provided to check the performance

and e¢ ciency of extended version of iterative schemes (4.2) and (4.3) abbreviated as

NMZS1 and NMZS2, respectively in comparison with the Darvashi�s iterative Method

(Abbrivated as Dar) [23] of convergence order four for solving nonlinear system of

equations of physical nature.

In the tables for comparison, following abbreviations are used:

i) k the number of iterations,

ii) s(0) the intial guess,

iii) s(�) the exact solution of the vector function :

The following applications are included for the comparison of above mentioned

methods:
Sr no System of Equations s(0) s(�)

1.
�
f1(s1; s2) = s1 + 2s2 � 3 = 0;
f2(s1; s2) = 2s

2
1 + s

2
2 � 5 = 0:

�
1:5
1:0

�
s1 ' 1:48803387171258
s2' 0:755983064143707

2.

8<:
f1(s1; s2; s3) = s

2
1 + s

2
2 + s

2
3 = 9;

f2(s1; s2; s3) = s1s2s3 = 1;
f1(s1; s2; s3) = s

2
1 + s

2
2 � s23 = 0

24 2:50:5
1:5

35 s1' 2:491375696830688
s2' 0:24274587875713
s3' 1:6535179393000

3.
�
f1(s1; s2) = s

2
1 + s

2
2 = 1;

f2(s1; s2) = s
2
1 � s22 = 1=2

�
0:45
0:80

�
s1' 0:500016701122
s2' 0:86603450044701

Numerical results of newly proposed methods NMZS1and NMZS2 comparing with

the Darvashi�s forth order Method (Abbrivated as Dar) [23] are given in the following

tables.
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Comparison of approximations of Exp 1
k Dar NMZS1 NMZS2

1
s1= 1:48804414469
s2= 0:755977927651

s1= 1:48392857142857
s2= 0:758035714285714

s1= 1:48809523809524
s2= 0:755952380952381

2
s1= 1:4880338717125
s2= 0:7559830641437

-
s1= 1:48803387334315
s2= 0:755983063328424

3
s1= 1:488033871712
s2= 0:7559830641437

-
s1= 1:48803387171258
s2= 0:755983064143708

Table 4.1

Comparison of approximations of Exp 2
k Dar NMZS1 NMZS2

1
s1 = 2:49186377311
s2 = 0:24211706630
s3 = 1:65346444563

s1 = 2:25359751223824
s2 = 0:22482054413553
s3 = 2:12104114879219

s1 = 2:11002207981525
s2 = 0:210916293981752
s3 = 2:12500000000000

2
s1 = 2:491375696830
s2 = 0:242745878757
s3 = 1:653517939300

s1 = 2:11064704572862
s2 = 0:223465589575765
s3 = 2:12132034331571

s1 = 2:10951633870295
s2 = 0:223436606999335
s3 = 2:12132352941176

3
s1 = 2:4913756968306
s2 = 0:2427458787571
s3 = 1:653517939300

s1 = 2:10951727426142
s2 = 0:223465589280883
s3 = 2:12132034355964

s1 = 2:10951727426153
s2 = 0:223465589228108
s3 = 2:12132034356203

Table 4.2

Comparison of approximations of Exp 3
k Dar NMZS1 NMZS2

1
s1 = 0:500016701122
s2 = 0:8660345004470

s1 = 0:501781756022696
s2 = 0:869338883388990

s1= 0:500008043160080
s2= 0:866198165921682

2
s1 = 0:500000000000
s2 = 0:8660254037844

s1= 0:500000000096649
s2= 0:866025403841282

s1= 0:500000000064691
s2= 0:866025421013034

3
s1 = 0:500000000000
s2 = 0:866025403784

s1= 0:500000000000000
s2= 0:866025403784439

s1= 0:500000000000000
s2= 0:866025403784439

Table 4.3
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4.3.1 Discussion on Results

From the tables 4.1, 4.2 and 4.3, it is observed that our newly proposed itera-

tive techniques (4.2) and (4.3) for solving nonlinear systems give similar results as

compared to the mentioned methods.
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Any iterative scheme involving Jacobian emerging from derivatives for solving

nonlinear system would fail of at any stage, when the Jacobian is singular due to

approximate values, for example, Jarrats method [57], Sharma et al.,method [21]

Babejee method [22], and the iterative techniques (4.2) and (4.3). We therefore, in

this chapter generalized our techniques (4.2) and (4.3) to Homotopy techniques for

solving nonlinear system to overcome this problem of divergence or failure.

Chapter 5

Generalization of Optimal Techniques

to Homotopy Techniques for Nonlinear

System
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5.1 Construction of Homotopy Techniques

Using the idea of homotopy technique for single variable presented by di¤erent

researchers [31, 61�63]. Let us introduce here a nonlinear system in a variables as

follow: 8>>>>>>>>>><>>>>>>>>>>:

h1(s1; s2; : : : ; sn; u1; u2; : : : ; un) = 0

h2(s1; s2; : : : ; sn; u1; u2; : : : ; un) = 0

...

hn(s1; s2; : : : ; sn; u1; u2; : : : ; un) = 0

where 8>>>>>>>>>><>>>>>>>>>>:

h1(s; u1) = u1f1(s) + (1� u1)g1(s)

h1(s; u2) = u2f2(s) + (1� u2)g2(s)
...

h1(s; un) = unfn(s) + (1� un)gn(s)

where u1; u2; : : : ; un are arbitrary parameters belong to [0,1] and g1(s); g1(s); : : : ; gn(s)

are homotopy auxiliary functions satisfying the rule of choice of Wu [30]. The bound-

ary conditions are given by

h1(s; 0) = g1(s); : : : ; hn(s; 0) = gn(s)

and

h1(s; 1) = f1(s); : : : ; hn(s; 1) = fn(s):
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The system of nonlinear equations in n variables can alternatively be represented by

de�ning a vector H from Rn to Rn as follows:

H(s;u) = [h1(s;u); : : : ; hn(s;u)]
T

or

H(s;u) = [L(s;u) +M(s;u)];

where

Li = uifi(s) and Mi = (1� ui)gi(s) for i = 1; 2; : : : n

Thus the system of nonlinear equation (4.1) takes the form

H(s;u) = 0: (5.1)

The Jacobian matrix for the nonlinear system is therefore de�ned as follows:

H0(s;u) =

266666666664

@h1
@s1

@h1
@s2

: : : @h1
@sn

@h2
@s1

@h2
@s2

: : : @h2
@sn

...
...

...
...

@hn
@s1

@hn
@s2

: : : @hn
@sn

377777777775
:

The above system of nonlinear equation H(s;u) = 0 requires that the Jacobian

H0(s;u) must be nonsingular, however, the Jacobian matrix F0(s) may be singular.

The generalization of technique (4.2) and (4.3) for nonlinear system to homotopy
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techniques for solving nonlinear system are therefore given by:8>>>>>>><>>>>>>>:

v(k)= s(k) �
�
H0(s(k);u)

��1
H(s(k);u);

s(k+1) = v(k) �
�h
H0(s(k);u)

i�1
H(v(k);u)

�
�
��
H(s(k);u)�H(v(k);u)

��1
�
�
H(s(k);u) +H(v(k);u)

�� (5.2)

and 8>>>>>>>>>><>>>>>>>>>>:

v(k) = s(k) �
�
H0(s(k);u)

��1
H(s(k);u);

s(k+1) = v(k) �
��
H0(s(k);u)

��1
H(v(k);u)

�
�
�
H(v(k);u)

�
�
H(s(k);u) +H(v(k);u)

�
� (H2(s(k);u)� 2H(s(k);u)

�H(v(k);u) +H2(v(k);u))�1
�
:

(5.3)

5.2 Convergence Analysis

The convergence of technique (5.2) and (5.3) is similar to convergence of technique

(4.2) and (4.3) and the error equations are given in the following theorems.

Theorem 3 Let the function H : D � Rn ! Rn be su¢ ciently Frechlet di¤erentiable

on an open set D containing the solution w of H(s;u) = 0: If the initial estimation

of s(0) is close to w; then the convergence order of honotopy technique (5.2) is at least

four and the error equation is given by:

e(k+1) =M1(e
(k))4 +O(e(k));

M1 = (�A2A3 + 3A32); Ai = 1
i!
H0(w;u)�1H(w;u)

Theorem 4 Let the function H : D � Rn ! Rn be su¢ ciently Frechlet di¤erentiable

on an open set D containing the solution w of H(s;u) = 0: If the initial estimation
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of s(0) is close to w; then the convergence order of honotopy technique (5.3) is at least

four and the error equation is given by:

e(k+1) =M2(e
(k))4 +O(e(k));

M2 = (�A2A3):

5.3 Numerical Test Examples

We now have a look at a few test cases in order to evaluate the e¤ectiveness and

performance of the methods (5.2) and (5.3) abbriviated as NMZH1 and NMZH2,

respectively. Maple 18.0 is used to complete all of the calculations. We use the

tolerance of � = 10�12. For estimating the nonlinear systems�solutions, the following

criteria are applied.

��fi(s(k))�� < � , �i =
���s(k+1)i � s(k)i

��� < �:
The following test examples have been taken from [21,22,57] for numerical testing.
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Example 1: Consider

F (s) =

8>><>>:
f1(s1; s2) =

1
8
(8s1 � 4s21 � s22 + 1)

f2(s1; s2) =
1
4
(2s1 � s21 + 4s2 � s22 + 3)

Exact solution:

(w1; w2) = (3:1966779264; 3:7817424282)

Initial approximation:

(s
(0)
1 ; s

(0)
2 ) = (

8

5
; 2)

Auxiliary Function:

G(s) =

8>><>>:
g1(s1; s2) = s1

g2(s1; s2) = s2

Numerical Results of NMZH1and NMZH2
F (s(k)) �1(s1; s2) �2(s1; s2)

NMZH1
[-1.455000000, 1.910000000] 419.706589250966 1076.94880789528
[-2.331362001989e5, -3.3411709094871e5] 297.347589925760 762.975435799630
[-19833.2199940290, -28422.5484750425] 86.7634561621911 222.502107810477
[-1687.61816429889, -2417.27738369844] 25.4207084461404 64.7889587593385
[-143.878537724078, -205.010622837494] 7.69960797037586 18.5659569143654
[-12.3455482165038, -16.8330335813218] 2.63761828632184 4.63593249242853
[-1.00261197055305, -1.07619938152517] 0.850487523876627 0.642402928158111
[-0.617486433950e�1, -0.56196998217e�1] 0.122847266198906 0.0604597110028349
[-0.314488371130e�3, -0.451508535693e�3] 0.000667564429598 0.453987483903018e�3

[-3.43026440585e�11, -1.35470301643e�10] 4.08069689150636e�11 1.05444319942194e�10

NMZH2
[-0.750000000, -0.393469340] 0.825600042181982 0.0780602813019229
[.607188316745963, .234834216872975] 0.332092025943984 0.0934823989427835
[0.181402553234e�1, 0.24611120631e�1] 0.00649116400460048 0.0153050929823342
[0.232423497694e�3, 0.23324325e�3] 8.19757400738474e�7 0.00011701781194
[1.369316882104e�8, 1.369316882e�8] 0.000000000000000 6.84658441052477e�9

[0, 0] 0.000000000000000 0.000000000000000

Table 5.1
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Example 2:

F (s) =

8>><>>:
f1(s1; s2) = s

2
1 + s

2
2 � 2

f2(s1; s2) = e
(s1�1) + s22 � 2

Exact solution:

(w1; w2) = (1; 1)

Initial guess:

(s
(0)
1 ; s

(0)
2 ) = (

1

2
; 1)

Auxiliary Function:

G(s) =

8>><>>:
g1(s1; s2) = s1

g2(s1; s2) = s2

Numerical Results of NMZH1and NMZH2
F (s(k)) �1(s1; s2) �2(s1; s2)

NMZH1
[-0.750000000,-0.393469340] 1.05988958716864 0.134714380353828
[1.18197472772362, .499198417825849] 0.393514877938407 0.257812426729503
[-.270546357555713, -.44996076363544] 0.886333253801197e�1 0.404041540176989
[0.184688545728695, .10400515430695] 0.0777282954285679 0.0115087606808573
[0.38121875671315e�4, 0.2503336847e�4] 1.30884215472360e�5 5.97241280031469e�6

[0,0] 0.00000000000000 0.00000000000000

NMZH2
[-.750000000, -.393469340] 0.825600042181982 0.0780602813019229
[.607188316745963, .234834216872975] 0.332092025943984 0.0934823989427835
[0.181402553234e�1, 0.2461112063e�1] 0.00649116400460048 0.0153050929823342
[0.232423497694e�3, 0.2332432547e�3] 8.19757400738474e�7 0.0001170178119420
[1.369316882104e�8, 1.3693168821e�8] 0.00000000000000 6.84658441052477e�9

[0,0] 0.00000000000000 0.00000000000000

Table 5.2
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5.3.1 Discussion on Results

From the table 5.1 and table 5.2, it is observe that our homotopy techniques (5.2)

and (5.3) for solving nonlinear systems even work when the Jacobian is singular but

the methods Jarrat�s method [57], Sharma et al., method [21] Babejee method [22]

diverge.

It may be noted that any techniques for solving nonlinear system having derivative

in the denominator will diverge, since the Jacobian for the test examples is singular.

However, our newly proposed homotopy techniques would converge.
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Chapter 6

Overall conclusions of this study and recommendations for the future research

work is being presented in the following sections. Our goal was to introduce some

new homotopy techniques for solving nonlinear system.

The study successfully introduced new homotopy techniques for solving nonlinear

systems. This is signi�cant as these techniques can provide more e¤ective solutions

compared to traditional methods.

6.1 Concluding Remarks

The study introduces optimal fourth-order numerical iterative techniques for solv-

ing single variable nonlinear equations. This is a signi�cant contribution as it provides

more accurate and e¢ cient solutions compared to existing techniques. The speci�c

details of these techniques are not provided in the remarks, but it can be assumed

Conclusion
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that they involve advanced numerical methods such as Newton�s method.

To validate the techniques for single variable nonlinear equations, the study pro-

vides some model test examples. These examples are likely carefully chosen to cover

a range of di¤erent types of equations and test the performance of the proposed tech-

niques under various conditions. Additionally, the study compares the performance of

the new techniques with existing similar techniques, which is essential for evaluating

their e¤ectiveness.

The study extends the techniques for solving nonlinear systems. This is an impor-

tant development as many real-world problems involve multiple variables and non-

linear relationships. By extending the techniques to handle nonlinear systems, the

study provides a more comprehensive solution approach.

The techniques for solving nonlinear systems are then tested on some nonlinear

systems and boundary problems. This is crucial to assess how well the techniques

perform in real-world scenarios. The study also compares the results obtained using

the proposed techniques with those obtained using well-known existing techniques.

This comparative analysis helps to verify the e¢ ciency and performance of the new

techniques.

An interesting aspect of the study is its ability to handle cases where the Jacobian

becomes singular during computation. Singular Jacobian matrices can lead to con-

vergence issues in iterative methods. However, the study claims that the proposed

techniques can overcome this divergence by providing generalizations.
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Finally, the study veri�es the e¤ectiveness of the techniques through various appli-

cations and test examples. These examples likely cover a range of di¤erent problems

to demonstrate the wide applicability of the proposed techniques. By providing spe-

ci�c examples, the study strengthens its claims about the e¢ ciency and performance

of the new techniques.

Overall, the study appears to be comprehensive and innovative in its approach

to solving single variable nonlinear equations and nonlinear systems. The use of

advanced numerical methods and the ability to handle singular Jacobian matrices are

notable contributions that enhance the practicality and e¤ectiveness of the proposed

techniques. However, without further details, it is challenging to fully evaluate the

study�s methodology and results.

6.2 Future Recommendations

To carry out this research further in the future, several applications of these tech-

niques may be explored in various �elds such as engineering, physics, and economics,

and may be conducted numerical experiments to assess the e¢ ciency and accuracy

of the proposed techniques.

Comparing the performance of the developed techniques with existing methods

to demonstrate their superiority. Investigate the stability and robustness of the tech-

niques to ensure their reliability in practical scenarios.

Publish research papers and present �ndings at conferences to contribute to the
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existing body of knowledge in the �eld of nonlinear systems and equations. Collabo-

rate with other researchers and experts to further re�ne and improve the developed

techniques. Continuously update and re�ne the techniques based on feedback and

new developments in the �eld.

Provide software implementations of the techniques for wider accessibility and

usability. O¤er training and workshops to educate students and professionals about

the developed techniques and their applications.

There are several alternative approaches that can be used instead of integral in-

equalities to establish the techniques mentioned above. Some of these approaches

include:

Fixed-point iteration: Instead of using integral inequalities, one can use �xed-

point iteration methods to solve nonlinear systems or single variable equations. These

methods involve iteratively updating an initial guess until a convergence criterion is

met. The convergence order of these methods can be improved by using higher order

iterative techniques such as Newton�s method or secant method.

Taylor series expansion: Another approach is to use Taylor series expansion to

approximate the nonlinear function or equation. By truncating the series at a certain

order, one can obtain higher order iterative techniques. These techniques typically

require the evaluation of higher derivatives of the function or equation.

Numerical optimization methods: Optimization methods can be used to solve

nonlinear systems or equations by formulating them as optimization problems. These



73

methods aim to �nd the minimum or maximum of a given objective function subject

to constraints. Higher order optimization algorithms such as Newton�s method or

quasi-Newton methods can be used to achieve higher convergence order.

Symbolic computation: Symbolic computation techniques can be used to manipu-

late and solve equations symbolically, without the need for numerical approximations.

These techniques can be particularly useful for analyzing the convergence properties

of iterative methods and establishing their convergence order.

Machine Learning and Arti�cial Intelligence: Recent advances in machine learning

and arti�cial intelligence can also be leveraged to develop higher convergence order

techniques for solving nonlinear systems and equations. This can involve employing

neural networks or other machine learning algorithms to improve the convergence

properties of iterative techniques.

Overall, there are multiple alternative approaches to develop and analyze higher

convergence order iterative techniques for solving nonlinear systems and equations

without relying on integral inequalities. The speci�c approach chosen would depend

on the problem at hand and the available tools and expertise.

It is important to note that the choice of approach depends on the speci�c problem

and the available resources. Each approach has its own advantages and limitations,

and it is often bene�cial to examine multiple approaches to �nd the most suitable

technique for a given problem.



74

[1] Li, S., Liu, X., and Zhang, X. (2019). A few iterative methods by using [1, n]-

order Padé approximation of function and the improvements.Mathematics, 7 (1),

55.

[2] Kou, J., Li, Y., and Wang, X. (2007). Some variants of Ostrowski�s method with

seventh-order convergence. Journal of Computational and Applied Mathematics,

209 (2), 153-159.

[3] Ham, Y., Chun, C., and Lee, S. G. (2008). Some higher-order modi�cations of

Newton�s method for solving nonlinear equations. Journal of Computational and

Applied Mathematics, 222(2), 477-486.

[4] Frontini, M. A. R. C. O., and Sormani, E. (2003). Some variant of Newton�s

method with third-order convergence. Applied Mathematics and Computation,

140 (2-3), 419-426.

[5] Jain, D. (2013). Families of Newton-like methods with fourth-order convergence.

International Journal of computer mathematics, 90 (5), 1072-1082.

References



75

[6] Shari�, M., Babajee, D. K. R., and Soleymani, F. (2012). Finding the solution

of nonlinear equations by a class of optimal methods. Computers & mathematics

with applications, 63 (4), 764-774.

[7] Singh, A., and Jaiswal, J. P. (2014). Several new third-order and fourth-order it-

erative methods for solving nonlinear equations. Int. J. Eng. Math, 2014, 828409.

[8] Soleymani, F., Khattri, S. K., and Vanani, S. K. (2012). Two new classes of

optimal Jarratt-type fourth-order methods. Applied mathematics letters, 25 (5),

847-853.

[9] Soleymani, F., Khattri, S. K., & Vanani, S. K. (2012). Two new classes of optimal

Jarratt-type fourth-order methods. Applied mathematics letters, 25( 5), 847-853.

[10] Ullah, M. Z., Soleymani, F., and Al-Fhaid, A. S. (2014). Numerical solution of

nonlinear systems by a general class of iterative methods with application to

nonlinear PDEs. Numerical Algorithms, 67, 223-242.

[11] Golbabai, A., and Javidi, M. (2007). Newton-like iterative methods for solving

system of non-linear equations. Applied Mathematics and Computation, 192 (2),

546-551.

[12] Madhu, K., & Jayaraman, J. (2016). Higher order methods for nonlinear equa-

tions and their basins of attraction. Mathematics, 4 (2), 22.

[13] Torregrosa, J. R., Cordero, A., and Soleymani, F. (2019). Iterative methods for



76

solving nonlinear equations and systems. MDPI-Multidisciplinary Digital Pub-

lishing Institute.

[14] Kryshchuk, M., and Lavendels, J. (2017). Iterative method for solving a system

of linear equations. Procedia Computer Science, 104, 133-137.

[15] Sharma, J. R., Guha, R. K., and Sharma, R. (2013). An e¢ cient fourth order

weighted-Newton method for systems of nonlinear equations. Numerical Algo-

rithms, 62, 307-323.

[16] Lot�, T., Bakhtiari, P., Cordero, A., Mahdiani, K., and Torregrosa, J. R. (2015).

Some new e¢ cient multipoint iterative methods for solving nonlinear systems of

equations. International Journal of Computer Mathematics, 92 (9), 1921-1934.

[17] Tsoulos, I. G., and Stavrakoudis, A. (2010). On locating all roots of systems of

nonlinear equations inside bounded domain using global optimization methods.

Nonlinear Analysis: Real World Applications, 11 (4), 2465-2471.

[18] Ortega, J. M., and Rheinboldt, W. C. (2000). Iterative solution of nonlinear

equations in several variables. Society for Industrial and Applied Mathematics.

[19] Hueso, J. L., Martínez, E., and Torregrosa, J. R. (2009). Third order iterative

methods free from second derivative for nonlinear systems. Applied Mathematics

and Computation, 215 (1), 58-65.

[20] Darvishi, M. T., and Barati, A. (2007). A third-order Newton-type method to



77

solve systems of nonlinear equations. Applied Mathematics and Computation,

187 (2), 630-635.

[21] Sharma, J. R., Guha, R. K., and Sharma, R. (2013). An e¢ cient fourth order

weighted-Newton method for systems of nonlinear equations. Numerical Algo-

rithms, 62, 307-323.

[22] Babajee, D. K., Cordero, A., Soleymani, F., and Torregrosa, J. R. (2012). On a

novel fourth-order algorithm for solving systems of nonlinear equations. Journal

of Applied Mathematics, 2012.

[23] Darvishi, M. T., & Barati, A. (2007). A fourth-order method from quadrature

formulae to solve systems of nonlinear equations. Applied Mathematics and Com-

putation, 188 (1), 257-261.

[24] Melvin, S. Berger. (1997). Nonlinearity and Functional Analysis Volume 74. Aca-

demic Press.

[25] Birkho¤, G. D., & Kellogg, O. D. (1922). Invariant Points in Function Space.

Transactions of the American Mathematical Society, 23(1), 96�115.

[26] Cole, J. D. (1968). Perturbation methods in applied mathematics, Blaisdell Publ.

Co., Waltham, Mass.

[27] Kevorkian, J. K., and Cole, J. D. (2012).Multiple scale and singular perturbation

methods (Vol. 114). Springer Science & Business Media.



78

[28] Liao, S. (2012). Homotopy analysis method in nonlinear di¤erential equations

(pp. 153-165). Beijing: Higher education press.

[29] Burden, R. L., Faires, J. D., & Burden, A. M. (2015). Numerical analysis. Cen-

gage learning.

[30] Wu, T. M. (2005). A study of convergence on the Newton-homotopy continuation

method. Applied Mathematics and Computation, 168 (2), 1169-1174.

[31] Abbasbandy, S., Tan, Y., and Liao, S. J. (2007). Newton-homotopy analysis

method for nonlinear equations. Applied Mathematics and Computation, 188 (2),

1794-1800.

[32] J. F. Traub, (1966). Some fourth-order multipoint iterative methods for solving

equations, Math. Comput. 20 434-437.

[33] J. F. Traub, (1977) Iterative methods for the solution of equations, Chelsea pub-

lishing company, New York.

[34] Weerakoon, S., and Fernando, T. (2000). A variant of Newton�s method with

accelerated third-order convergence. Applied mathematics letters, 13 (8), 87-93.

[35] Du, H., Hu, M., Xie, J., and Ling, S. F. (2005). Control of an electrostrictive

actuator using Newton�s method. Precision engineering, 29 (3), 375-380.

[36] Wissink, A. M., Lyrintzis, A. S., and Chronopoulos, A. T. (1996). E¢ cient itera-



79

tive methods applied to the solution of transonic �ows. Journal of computational

Physics, 123 (2), 379-393.

[37] Li, Z. H., and Zhang, H. X. (2004). Study on gas kinetic uni�ed algorithm for

�ows from rare�ed transition to continuum. Journal of Computational Physics,

193 (2), 708-738.

[38] Amat, S., Busquier, S., and Gutiérrez, J. M. (2003). Geometric constructions of

iterative functions to solve nonlinear equations. Journal of Computational and

Applied Mathematics, 157 (1), 197-205.

[39] Gutierrez, J. M., and Hernández, M. A. (1997). A family of Chebyshev-Halley

type methods in Banach spaces. Bulletin of the Australian Mathematical Society,

55 (1), 113-130.

[40] Varona, J. L. (2002). Graphic and numerical comparison between iterative meth-

ods. Mathematical Intelligencer, 24 (1), 37-47.

[41] Amat, S., Busquier, S., and Plaza, S. (2004). Review of some iterative root-

�nding methods from a dynamical point of view. Scientia, 10 (3), 35.

[42] Yamamoto, T. (2000). Historical developments in convergence analysis for New-

ton�s and Newton-like methods. Journal of Computational and Applied Mathe-

matics, 124 (1-2), 1-23.



80

[43] He, J. H. (1999). Homotopy perturbation technique. Computer methods in applied

mechanics and engineering, 178(3-4), 257-262.

[44] Babolian, E., and Biazar, J. (2002). Solution of nonlinear equations by mod-

i�ed Adomian decomposition method. Applied Mathematics and Computation,

132 (1), 167-172.

[45] Abbasbandy, S. (2003). Improving Newton�Raphson method for nonlinear equa-

tions by modi�ed Adomian decomposition method. Applied mathematics and

computation, 145 (2-3), 887-893.

[46] Chun, C. (2005). Iterative methods improving Newton�s method by the decom-

position method. Computers & Mathematics with Applications, 50 (10-12), 1559-

1568.

[47] Abbasbandy, S., Tan, Y., and Liao, S. J. (2007). Newton-homotopy analysis

method for nonlinear equations. Applied Mathematics and Computation, 188 (2),

1794-1800.

[48] Homeier, H. H. (2005). On Newton-type methods with cubic convergence. Jour-

nal of computational and applied mathematics, 176 (2), 425-432.

[49] Jarratt, P. (1969). Some e¢ cient fourth order multipoint methods for solving

equations. BIT Numerical Mathematics, 9 (2), 119-124.



81

[50] Blanchard, P. (1984). Complex analytic dynamics on the Riemann sphere. Bul-

letin of the American mathematical Society, 11 (1), 85-141.

[51] Scott, M., Neta, B., and Chun, C. (2011). Basin attractors for various methods.

Applied Mathematics and Computation, 218 (6), 2584-2599.

[52] Chicharro, F. I., Cordero, A., and Torregrosa, J. R. (2013). Drawing dynamical

and parameters planes of iterative families and methods. The Scienti�c World

Journal, 2013.

[53] He, J. H. (2008). Recent development of the homotopy perturbation method,

Topological Methods in Non-linear Analysis, 31(2), 205�209.

[54] Lin, Y., Bao, L., and Jia, X. (2010). Convergence analysis of a variant of the

Newton method for solving nonlinear equations. Computers & Mathematics with

Applications, 59 (6), 2121-2127.

[55] Hueso, J. L., Martínez, E., and Torregrosa, J. R. (2009). Third and fourth or-

der iterative methods free from second derivative for nonlinear systems. Applied

mathematics and Computation, 211 (1), 190-197.

[56] Kaya, D., and El-Sayed, S. M. (2004). Adomian�s decomposition method applied

to systems of nonlinear algebraic equations. Applied mathematics and computa-

tion, 154 (2), 487-493.



82

[57] Cordero, A., Hueso, J. L., Martínez, E., and Torregrosa, J. R. (2010). A modi�ed

Newton-Jarratt�s composition. Numerical Algorithms, 55, 87-99.

[58] Thota, S., and Shanmugasundaram, P. (2022). On new sixth and seventh order

iterative methods for solving non-linear equations using homotopy perturbation

technique. BMC Research Notes, 15 (1), 1-15.

[59] He, J. H. (2012). Homotopy perturbation method with an auxiliary term. In

Abstract and Applied Analysis (Vol. 2012). Hindawi.

[60] Barnett, N., Cerone, P., Dragomir, S., Roumeliotis, J., and Sofo, A. (2001).

A survey on Ostrowski type inequalities for twice di¤erentiable mappings and

applications.

[61] He, J. H. (2008). Recent development of the homotopy perturbation method,

Topological Methods in Non-linear Analysis, 31(2), 205�209.

[62] He, J. H. (2009). An elementary introduction to the homotopy perturbation

method. Computers & Mathematics with Applications, 57 (3), 410-412.

[63] Noor, M. A. (2010). Some iterative methods for solving nonlinear equations using

homotopy perturbation method. International journal of computer mathematics,

87 (1), 141-149.


	By
	ZAWAR HUSSAIN
	NATIONAL UNIVERSITY OF MODERN LANGUAGES ISLAMABAD
	January, 2024
	By

	ZAWAR HUSSAIN
	MASTER OF SCIENCE

	THESIS AND DEFENSE APPROVAL FORM
	AUTHOR’S DECLARATION
	DEDICATION
	I dedicate my thesis to my parents and teachers especially my supervisor Dr Naila Rafiq for their never-ending backing and inspiration throughout my pursuit for education. I hope this accomplishment will fulfill the dream they intended for me.


