
 

 

ANALYSIS OF FACTORS AFFECTING WIND 

TURBINE ENERGY OUTPUT USING MACHINE 

LEARNING  

By 

GHULAM MURTAZA 

 

 

NATIONAL UNIVERSITY OF MODERN LANGUAGES, 

ISLAMABAD 

January 2024  



2 

  

ANALYSIS OF FACTORS AFFECTING WIND TURBINE 

ENERGY OUTPUT USING MACHINE LEARNING 

By 

GHULAM MURTAZA 

B.Sc. Electronic Engineering, The Islamia University of Bahawalpur, 2015 

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE 

REQUIREMENTS FOR THE DEGREE OF 

MASTER OF SCIENCE 

 Electrical Engineering 

TO 

 FACULTY OF ENGINEERING AND COMPUTING 

 

 

NATIONAL UNIVERSITY OF MODERN LANGUAGES ISLAMABAD 

Ghulam Murtaza, 2024



i 

 

 

THESIS AND DEFENCE APPROVAL FORM  

The undersigned certify that they have read the following thesis, examined the 

defense, are satisfied with overall exam performance, and recommend the thesis to the 

Faculty of Engineering and Computer Science for acceptance. 

Thesis Title: Analysis of Factors Affecting Wind Turbine Energy Output Using Machine 

Learning  

Submitted By: Ghulam Murtaza     Registration #: MS/EE/004 

Master of Science in Electrical Engineering 

Electrical Engineering   

Discipline 

Dr. Sajid Saleem           

Research Supervisor      Signature of Research Supervisor 

Dr. Noman Malik           

Dean (FEC)       Signature of Dean (FEC) 

Brig. Shahzad Munir           

Director General      Signature of Director General 

 January 30th , 2024   

Date  



ii 

 

AUTHOR’S DECLARATION 

I Ghulam Murtaza 

Son of Ghulam Hussain  

Registration # 004/MS/EE/F20  

Discipline Electrical Engineering 

Candidate of Master of Science in Electrical Engineering (MSEE) at the National University 

of Modern Languages do hereby declare that the thesis Analysis of Factors Affecting Wind 

Turbine Energy Output Using Machine Learning submitted by me in partial fulfillment of 

MSEE degree, is my original work, and has not been submitted or published earlier. I also 

solemnly declare that it shall not, in the future, be submitted by me for obtaining any other degree 

from this or any other university or institution. I also understand that if evidence of plagiarism 

is found in my thesis/dissertation at any stage, even after the award of a degree, the work may 

be canceled, and the degree revoked. 

     
Signature of Candidate 

 Ghulam Murtaza   

            Name of Candidate 

  30 JANUARY 2024  

Date 

  



iii 

 

ABSTRACT 

Analysis of factors affecting wind turbine energy output using machine learning 

Electrical energy generated by wind turbines is stochastic in nature due to its 

dependency on various factors. Such randomness raises barriers in adjusting the energy stocks 

of the power systems according to need. Multiple approaches have been proposed to predict the 

energy output of wind turbines and to meet the corresponding energy demands. This thesis 

investigates variables (also called factors or features) that affect the wind turbine’s output. The 

energy obtained from turbines varies as it relies on factors. Some of the important factors or 

features are turbine blade area, wind speed, temperature, air density, humidity, tower height, 

the angular position of the blades, pressure, etc. All such features are required to be investigated, 

analyzed, and evaluated with the help of state-of-the-art Machine Learning (ML) models to 

identify their importance and significance in predicting the wind turbine output. ML techniques 

used are Categorical Boosting (CatBoost), Extreme Gradient Boosting (XGBoost), Decision 

Tree (DT), Random Forest (RF), Gradient Boosting Regression (GBR), Light Gradient 

Boosting Model (LGBM), Extra Tree and Adaptive Boosting (AdaBoost). Evaluation of the 

ML methods and analysis of the factors are carried out on three different latest and publically 

available datasets. The experimental results show that CatBoost compared to all other methods 

demonstrates the lowest Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) 

in predicting the energy output. The wind speed is identified as the most significant factor in 

predicting the energy output by all of the ML methods. Additionally, a new method is proposed 

which ensembles CatBoost, RF and AdaBoost methods. The proposed method is named as X-

CRA, in which the prediction s of CatBoost, RF and AdaBoost are fed into XGBoost through 

a stacking approach and final energy output is obtained. The experimental results show that X-

CRA outperforms CatBoost and all other ML methods in predicting the wind energy output. 
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CHAPTER 1 

1 INTRODUCTION 

As global energy requirements continue to increase, researchers are increasingly 

focusing on developing innovative and effective methods for energy generation [1]. Energy has 

become a basic component nowadays and efforts are being made to find efficient and renewable 

energy sources. Energy obtained from sources are required to be environment-friendly and have 

potential for maximum energy output at a particular time and environment. Energy sources 

which are environmentally friendly and low generation cost are investigated and introduced at 

priority globally and seen as a replacement for carbon-based energy [2]. 

1.1 Wind Energy 

Amongst renewable energy sources, the wind turbines have emerged as a significant 

and eco-friendly means of electricity generation [3], [4]. Electricity generated by wind turbines 

is clean and environmentally friendly and can be generated at a low cost. Windmills became 

widespread in Europe in the 12th century and were used for a variety of purposes, including 

grinding grain, pumping water, and sawing wood [5]. First wind turbine for electricity 

generation was built in 1887. Turbine was used to power the lighting in a cottage in Scotland 

[6]. In 1891, Poul la Cour built a wind turbine that was used to generate electricity for a 

blacksmith's shop [7]. 

In the early 20th century, wind turbines were used extensively in rural areas of the United 

States to generate electricity. These turbines were small and used to power individual homes or 

farms. In response to the energy crises of the 1970s, large-scale wind turbine development was 

initiated [7]. These advanced turbines revolutionized electricity generation offers greater 

efficiency and the ability to generate power on a larger scale compared to earlier sources. 

Presently, the growth of wind energy is outpacing many other renewable energy sources. 

In 2020, according to the International Energy Agency, wind energy will account for 7.1% of 
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the world's electricity generation, up from 2.6% in 2010 [7]. Countries that produce the most 

wind energy are China, the United States, Germany, India, and Spain.  

Prospects of wind energy are bright, given its rapid expansion as a renewable energy 

source. Several noteworthy trends and projections have been observed [8]. Wind energy 

capacity is anticipated to grow at an annual rate of 20% until 2025. By 2050, it is projected to 

contribute approximately one-third of the global electricity supply. Wind energy is becoming 

more cost-effective and competitive with fossil fuels due to advances in wind turbine 

technology, such as larger and more efficient turbines. Expansion of offshore wind farms has 

unleashed the wind energy potential in regions with limited land resources. 

Over the past decade, the price of wind energy has consistently decreased, making it 

more affordable for consumers and businesses. Trend is anticipated to continue as technology 

advances and economies of scale are realized. Globally, governments are instituting policies to 

promote renewable energy, such as wind power. This includes tax credits, subsidies, and 

mandates requiring utilities to obtain a certain portion of their energy from renewable sources. 

Wind energy produces zero emissions and does not contribute to climate change, making it an 

attractive option with respect to environment. As more people become aware of the benefits of 

clean energy, demand for wind energy is anticipated to increase steadily in the future. 

Wind energy's future is promising, as it is a growing source of clean, renewable energy 

that is becoming more cost-effective and competitive with fossil fuels. Amount of energy a 

wind turbine can produce depends on a number of factors, including the turbine's size, the 

wind's speed and turbine's motor torque etc.Wind turbines have the potential to play a 

significant role in Pakistan's energy balance, particularly in regions characterized by high wind 

speeds, such as the coastal regions of Sindh and Balochistan provinces, where the demand for 

wind power is particularly high. According to Pakistan's Alternative Energy Development 

Board,  Pakistan Potential of wind power is over 50,000 MW, which is many times greater than 

its current installed capacity of approximately 2,000 MW [9]. 

In Pakistan, various policies have been placed and initiatives have been taken to actively 

encourage the advancement of wind power within the country, including the Alternative and 

Renewable Energy Policy 2019. The policy aims to increase the share of green energy in the 
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nation's electricity mix to 30 percent by 2030. Wind energy has the potential to provide Pakistan 

with a significant source of renewable energy and reduce its reliance on imported fossil fuels. 

However, there are still a number of obstacles to overcome, including the high up-front costs 

of wind power projects and the requirement for a more robust infrastructure to support the 

installation of wind energy into the national grid [1]. 

Offshore wind turbines and aerial wind turbines are the most popular types of energy 

harvesting methods. Their energy output depends on where they are installed, climate, the wind 

speed, humidity, temperature and altitude. Collectively, these parameters determine the energy 

output of a wind turbine at a specific location. Numerous sites suitable for the installation of 

wind turbines have been identified around the world, enabling the harvesting of wind energy to 

accomplish energy needs [10].  

1.2 Prediction of Wind Energy 

Generation of energy by wind turbines is stochastic by nature, dependent on numerous 

factors and variables [11]. These factors are natural and also change over time. Amount of these 

factors determines how much energy can be produced. These factors could not be artificially 

and humanly controlled nor could be determined in advance. Such randomness raises barriers 

to adjusting the energy stocks in the power systems according to need and creates problems that 

become more difficult to solve [12]. Multiple methods have been adopted to find out the wind 

turbine's energy generation and address the corresponding power demand. Machine Learning 

(ML) methods for inferring the wind turbine's output are emerging and attracting the 

researchers' attention [13]. 

As ML methods efficiently handle the variability of the factors or features, it can 

accurately predict the amount of energy produced by wind turbines [14]. In this way, the energy 

output from the wind turbines can be related to the factors influencing it and can be predicted 

with ML methods. Turbine blade area, wind speed, temperature, air density, humidity, tower 

height, angular position of blades, etc. are some of the factors that influence the output of wind 

turbines [15]. These factors are natural and cannot be changed but based on their quantity the 

energy production can be estimated. All such factors or features are required to be investigated, 
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analyzed, and evaluated with the help of the modern ML models to identify their significance 

in predicting the wind turbine output [15]. 

All the evaluation and analysis of the features are required to be done on different latest 

datasets, especially on publically available datasets. Such datasets allow the examination of 

factors of different regions around the globe [16]. predicting of energy is a regression problem 

where the relationship among the independent variables or factors is established to infer the 

output dependent variable i.e. electrical energy [17]. This allows the identification and analysis 

of the variables (factors) that are important in predicting the output energy accurately[18]. 

1.3 Problem Statement 

Electrical energy generated by wind turbines is stochastic. Energy prediction based on 

factors that affect the generated energy through ML is an active research area. Various methods 

have been developed to predict the electrical energy produced by wind turbines [19]. With the 

advent of new technology and sensors new factors are being measured [20],  which need 

analysis with state of the art ML techniques. Also, there is a need to analyze all such factors on 

the latest publically available datasets so that the energy of wind turbines can be predicted 

accurately.  

1.4 Research Questions 

The research question are as follows. 

 

RQ1: Which ML models are best for the prediction of wind energy output? 

RQ2: What are the factors that affect the wind energy output and their analysis using ML? 
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1.5 Objectives 

Main objectives of the research are as follows. 

 To identify ML models for efficient wind energy forecasting 

 To identify the factors that affect the wind energy output and their analysis using 

ML. 

1.6 Scope of Study 

Research aims to investigate and analyze the factors that influence the output of wind 

turbines, while also developing predicting models by employing machine learning techniques. 

This thesis focuses on factors such as wind speed, temperature, air density, wind direction, and 

turbine specifications, as well as their impact on wind turbine energy production. The collected 

data associated with these factors undergoes processing through ML based prediction and 

analysis. ML methods used are regression models due to the continuous nature of the wind 

turbine output variable. Research includes performance evaluation of the developed models 

using performance metrics and a comparative analysis using mean squared error, root mean 

squared error, MAE, and correlation coefficients. 

1.7 Contribution and Significance 

Study makes significant contributions to the fields of renewable energy and wind power 

generation which are as follows. 
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1.7.1 Understanding of Wind Turbine Output 

The thesis contributes to understanding how variables such as wind speed, temperature, 

air density, wind direction, and turbine characteristics affect the performance of wind turbines 

by conducting a comprehensive analysis of these factors. Information can help to optimize 

wind farm design, operational strategies, and maintenance planning. 

1.7.2 Enhanced prediction Accuracy 

Development of predicting models using machine learning techniques enables more 

accurate prediction s of wind turbine output. By incorporating multiple factors and utilizing 

advanced algorithms, the models can capture complex relationships and patterns that traditional 

statistical methods may overlook. Improved prediction accuracy facilitates better energy 

production planning, grid integration, and resource allocation in wind power systems. Thesis 

paves the way for future research and advancement in wind turbine output analysis and 

forecasting. 

The potential of machine learning techniques in enhancing prediction accuracy while 

also identifying areas that require further investigation and refinement is carried out. It supports 

ongoing research efforts aimed at refining models, incorporating additional variables, and 

developing advanced algorithms for better prediction s and optimization of wind energy 

production. Analysis of features and prediction wind turbine output is a significant topic with 

far-reaching implications for renewable energy integration, wind farm operation, and the 

transition towards sustainable energy systems.  

1.8 Organization of Thesis 

Organization of the thesis is as follows Chapter 1 presents introduction, background, 

research questions and contributions of the thesis. Chapter 2 presents an overview of relevant 

literature on wind turbine output analysis, forecasting, and machine learning techniques. 
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Identification of factors influencing the wind turbine performance and output is presented. 

Discussion of existing methodologies and models used in wind turbine output analysis and 

prediction  is carried out. Chapter 3 presents Methodology which includes description of the 

datasets, preprocessing steps, ML methods, proposed method and details of performance 

evaluation metrics for comparative analysis. Chapter 4 presents experimental results with 

discussion. Finally, Chapter 5 concludes the thesis with future directions. 
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CHAPTER 2 

2 LITERATURE REVIEW 

Chapter presents a review of relevant literature on wind turbine output analysis, 

forecasting, and machine learning techniques. Including the identification of factors influencing 

wind turbine performance and output. Discussion of existing methodologies and models used 

in wind turbine output analysis and forecasting. 

2.1 Overview of Machine Learning Methods 

 K-Nearest Neighbors (KNN) is used for prediction  of wind energy and it is compared 

with other models such as Random Forest (RF), DT , Extra Tree and Gradient Boosting 

Machine (GBM) [21]. Deployment of these models seeks to improve the short-term wind 

energy prediction for a Turkish farm in particular. Variables include speed, direction 

Temperature are analyzed, and possible results of the prediction are determined.  

 In [22], use Logistic regression for wind energy forecasting. Regression model predicts 

energy generation from wind-turbine. Adrian Stetco at el. use machine-learning models for 

prediction  [23]. They employ Naïve Bayes model on SCADA (Supervisory Control And Data 

Acquisition) data [24]. Two datasets and four appropriate reference models are constructed for 

comparison tests to validate the proposed model's prediction performance. Suggested model's 

superiority is proved by experimental findings, which indicate that the proposed model can 

provide adequate wind power intervals with high confidence and quality.  

Mohammed Gendeel et al investigate wind farm data to predict the output energy with 

precision [25]. Prediction is made using the Least Squares Support Vector Machine (LS-SVM) 

model. Experimental results show the higher accuracy of the LS-SVM model, indicating its 

precision in predicting the output energy generated. Prediction of wind energy in the region of 

Kolkata is based on meteorological data. Several models are employed, and experimental 
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results indicate that the RF and Decision Tree methodologies exhibit outstanding prediction  

accuracy, as exemplified by their low MAE [26].  

In [27], RF, GBR, and XGB models are compared. It is observed that these models 

outperform the SVM model, further affirming their superior predictive capabilities. 

Furthermore, for carrying wind power forecasts, For training patterns, the closest set of patterns 

calculating the Distance is chosen, and a block-wise training and prediction  method is applied 

[28]. Findings indicate that the persistence technique provides a significant improvement [29]. 

Compare multiple wind energy prediction  algorithms and show that the RF with and without 

random input produce equivalent prediction s to SVM [30]. 

Rober Mamani et al. examines the applicability of MERRA-2 satellite datasets and 

Weather Research and Prediction (WRF) simulations for wind energy assessment in a variety 

of regions [31]. Annual wind averages and features are discovered through the examination of 

41 years' worth of hourly wind velocity information gathered by MERRA-2. Additionally, wind 

shear and fluxes across Bolivia are examined using WRF models for select months. Key 

findings reveal variances in the wind speed index from 0.90 to 1.09 across different regions, 

and they also specific times when wind speeds are at their highest, such as May to October in 

regions. However, the paper notes differences between MERRA-2 data and WRF prediction s 

and explains them as being caused by site topography. 

Irregular and unpredictable nature of Wind Power (WP) hinders the successful 

integration of windmills through energy systems. Developing accurate deterministic and 

probabilistic prediction methods for WP to facilitate efficient power system planning and 

operation has become increasingly important. A novel method that combines Variational Mode 

Decomposition (VMD) and adjusted LS-SVM for linear and stochastic interval prediction of a 

wind turbine [32]. Method applies VMD and adjusted LS-SVM to boost the precision and 

dependability of WP prediction, thereby enhancing power system management and decision 

making. VMD effectively manage the irregularity and instability inherent in WP series to 

combat the inherent variability. Additionally, an adjusted LS-SVM is utilized to create an 

accurate prediction  model for WP that is resistant to anomalies and non-Gaussian error 

distributions [33]. 
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In the global shift towards renewable energy production, wind energy has emerged as a 

significant and clean power source. However, the variable character of wind speed presents 

challenges for the generation of wind energy, as stochastic fluctuations can induce instability 

into the energy grid. As the demand for renewable energy sources continues to rise, investing 

in wind energy manufacturing carries enormous future potential. Therefore, accurate wind 

velocity predicting is crucial for the effective management of renewable energy development. 

Prediction wind speed to mitigate and reduce the uncertainties associated with wind power 

generation. Specifically, the work in [21], evaluates the application and performance of four 

distinct machine learning models for wind velocity prediction  in the Las Vegas region of 

United States. 

Wind power has emerged as a significant and rapidly growing energy source, fulfilling 

16% of the EU's electricity demand [34]. However, the inherent volatility of wind power 

necessitates precise short-range prediction s for its successful integration of grid. Accurate hub 

height wind speed forecasts are essential for generating dependable wind power prediction s. 

Applying ensemble estimates obtained from numerous iterations of mathematical models for 

weather prediction  is the current cutting-edge technique. Nevertheless, these ensemble 

forecasts frequently lack calibration and may exhibit biases, necessitating post-processing 

techniques to improve their predictive performance [35].  

A case study is conducted using 100m wind speed estimates generated by the functional 

ensemble prediction method of the Hungarian Meteorological Department in order to evaluate 

its performance. Compared to three distinct ensemble model output statistics approaches and 

the raw ensemble forecasts, the prediction performance of the suggested strategy is evaluated. 

By addressing the calibration challenges associated with wind speed ensemble forecasts, it 

offers valuable insights into improving the reliability of wind power prediction s. Also a 

promising solution for enhancing the accuracy and usefulness of ensemble forecasts, this 

facilitates the integration of wind energy into energy production systems. 

 The difficulties in selecting suitable patterns of atmospheric circulation for the wind 

energy sector are examined in [17]. Initiative seeks to develop a user-friendly taxonomy of 

these patterns in the Euro-Atlantic region in order to mitigate the seasonal impact of climatic 

variation on the wind industry. To establish seasonal classifications with varying numbers of 
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clusters, the researchers apply K-means clustering to reanalysis data on sea level pressure. 

Effectiveness of the prediction system depends less on the number of clusters employed in the 

classification and more on the sea level pressure data's inherent precision, according to the 

findings. Analysis provides vital insights for mitigating the impact of atmospheric variability 

on wind energy generation and industry investment decisions [11]. 

Singh et al. presents a thorough analysis of methods for predicting and integrating wind 

Power. Fluctuating and irregular character of wind power poses difficulties for maintaining the 

secure and dependable functioning of power systems. Focus is on the most recent innovations 

in wind energy prediction techniques. Analysis covers a number of suggested and used 

strategies for prediction wind variations. Analysis also highlights several models such as RF 

regression, Long and Short Term Memory (LSTM), XGBoost, that are used to validate and 

simulate electricity power markets so that wind generation may be efficiently included [13]. 

Focus on the creation of novel models for prediction short-term wind power. A novel hybrid 

model is proposed that utilizes an optimization technique created especially for wind power 

prediction s [36]. 

In  [37], growing importance of renewable energy sources is discussed, specifically 

wind, and solar energy, in the Polish power grid. For the conventional generators' schedules to 

be optimized and economic efficiency to be ensured, these sources' significant variability and 

poor ability to make precise prediction s of their future energy requirements using a variety of 

machine learning techniques. Extreme Gradient Boosting method turns out to be the top 

performance among the many machine learning approaches tested. Using two years of training 

data, the hourly output of wind energy in Poland for 2020 is predicted with a MAE of 26.7% 

and a RMSE of 4.5%. 

Study reveals daily and seasonal fluctuations in the anticipated inaccuracy, with summer 

and daytime times showing larger MAE. These results emphasize how crucial it is to take 

temporal changes and specific time periods into account when estimating wind power. Study 

article provides insights into the development and evaluation of machine learning-based 

prediction models for day-ahead wind power prediction  in Poland. Results contribute to a better 

understanding of wind power variability and decision-making processes for the efficient use of 



12 

 

conventional generators in the context of increasing renewable energy integration in the Polish 

electricity system [38]. 

Different setups and inputs for energy output is investigated in [15]. Traditional methods 

include comparing model sets to observations, which is not practical in offshore wind regions 

lacking reliable hub height data. As a result, the variability is modeled with wind velocities and 

conveying confidence in the absence of data. To overcome this problem, the WRF model is 

considered. Study examines techniques for attributing total ensemble variability to various 

ensemble elements [39]. 

To maximize the use of wind power, which is a growing renewable energy source, 

accurate wind speed forecasts are required. Numerous prediction models have been developed 

to improve the precision of wind speed and output prediction s. Nevertheless, the complexity 

of wind speed time series, which is characterized by nonlinearity, volatility, and intermittency, 

poses obstacles to precise forecasting. To resolve the aforementioned issues an efficient strategy 

is adopted to enhance the accuracy of the forecast. In addition, combination weights are 

calculated using partial least square regression which results in. MAE of 7.97% and 9.99% 

indicate that the proposed model is more accurate than competing methods [40]. 

Investigates an accurate wind speed and power prediction for ensuring stability, and 

extensive grid integration of wind power. A novel method for prediction is proposed that 

incorporates wavelet analysis, improved hybrid mode decomposition, and optimization 

techniques. Proposed method partitions wind speed data for hybrid mode decomposition and 

additional noise decomposition. After the wavelet analysis, an autoregressive moving average 

model is employed along with LSTM neural networks that are optimized with an improved 

particle swarm optimization method [41]. 

Difficulties associated with grid integration, load balancing, and energy trading brought 

on by the expansion of renewable energy facilities, as these issues need the creation of efficient 

prediction models. Recent research has highlighted the importance of utilizing spatio-temporal 

autocorrelation in plant data to enhance forecasts. However, the energy domain has not paid 

much attention to tensor models and approaches, despite their suitability for managing spatio-

temporal data. To meet the requirements, a novel approach built on the Tucker tensor 
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decomposition is proposed [42]. Technique facilitates the derivation of a new feature space for 

the learning task by utilizing the benefits of tensor-based modeling. Researchers compare the 

efficacy of predictive clustering trees utilizing the new feature space versus the old feature space 

across three renewable energy datasets to evaluate the proposed strategy. 

A novel technique for prediction wind energy system time series is proposed in [43]. 

Goal is to provide precise wind speed, produced power, and energy price forecasts in order to 

facilitate the most efficient operation, planning, administration, and marketing of wind energy 

systems. Proposed method employs a high-order neural network that has been taught the 

extended Kalman filter algorithm in real-time. In contrast to sophisticated hybrid methods or 

deep learning techniques, this method prioritizes implementation simplicity, computational 

simplicity, and real-time performance. 

In [40], sparse machine learning is used to prediction  wind power over the upcoming 

hour. Model builds a high-dimensional feature set that is solved with the sparse approach 

utilizing predicted values, real-time observations, and data from neighboring power plants. 

Proposed strategy is compared with a number of alternative approaches using actual wind 

power data from the NREL-118 test system [44]. Findings show that the proposed technique 

exceeds existing approaches in terms of prediction accuracy, outperforming broadcast values 

derived using meteorological and physical methods. 

A hybrid prediction model [45] is used to boost the accuracy of wind speed prediction 

s, which is crucial for the effective integration of wind energy into the power grid. Model 

employs a decomposition strategy in order to split the input wind speed data.  Relevant 

properties from each sub-series of data are then fed to deep neural networks as inputs. Wind 

speed data from the National Institute of Wind Energy is used to evaluate the effectiveness of 

the recommended method. Hybrid model is demonstrated to exceed established benchmark 

techniques in terms of prediction accuracy through thorough experimental assessments utilizing 

a variety of statistical indicators. Study advances wind speed prediction techniques and makes 

it easier to use wind energy as efficiently as possible in the power system. 

Issues that arise from the growing integration of unconventional renewable sources, 

such wind energy, into power dispatch scheduling techniques is addressed in [46]. Traditional 
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methods of power dispatch scheduling presuppose controllability over energy sources, which 

is false for some renewable energy sources like wind energy that have intrinsic unpredictability. 

A learning-based system for creating ideal energy bands around wind energy estimates is 

presented in this study. Additionally, the suggested method may be expanded to combine 

several forecasts into a single prediction with a smaller band width and the same degree of 

confidence. Approach is developed and used using a real-world case study of the Uruguayan 

Electricity Market, which is well known for its significant penetration of renewable energies. 

By advancing the creation of energy bands, this research contributes to the effective 

management and integration of wind energy resources into the electrical grid. 

Enhancing the wind energy power production systems' ability to anticipate short-term 

wind speed with greater precision is investigated in [41]. It is shown that the prediction models, 

which have poor accuracy since they ignore data pre-processing and depend only on one 

prediction  algorithm. A novel approach to deal with these challenges is proposed that, 

combines five neural networks with powerful optimization algorithms and data pre-processing 

techniques. Proposed model is evaluated in four trials using wind speed data from China. 

Hybrid model outperforms other benchmark models in terms of accuracy and stability, as seen 

by lower levels of MAE and Std (Standard Deviation) performance indices. 

2.2 Overview of Deep learning Methods 

An extensive review of prediction wind energy using an Artificial Neural Network 

(ANN) is done in [47]. Results demonstrate the ANN is efficient in prediction wind energy. 

ANN provides prediction with accuracy and proper calibration with wind prediction 

instruments [48].  

In [49], wind energy is predicted through time series using LSTM technique. By 

comparing this method with others better results are obtained. Yuan-Jia Ma et al employs a 

dual-step integrated machine learning (ML) model that combines the optimization with Feed-

Forward Artificial Neural Network. Model utilizes the capabilities of these techniques to 

enhance the precision and effectiveness of wind energy forecasting. This involves two stages 
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first, estimate environmental factors (velocity, temperature, and so on). Second stage is to 

identify the optimal installation site for the wind form [50]. 

A. Khosravi et al. employs a variety of methodologies for prediction time series wind 

energy one approach is to combine a Multilayer Feed-Forward Neural Network with a Fuzzy 

Inference System. Another technique is Support Vector Regression (SVR) and an Adaptive 

Neuro-Fuzzy Inference System. These method groups are implemented to accurately predict 

wind speed patterns over time [51]. 

 Yi Zangh et al. use ANN-based prediction  model for wind energy prediction  [52]. 

This is carried out on on hourly data. Method is based on time series statistics. Numerical 

Weather Prediction (NWP) and ANN are used to predict wind prediction. Wind speed and 

power are forecasted using real operating data. Prediction technique is built as a reference 

model. Findings indicate that the suggested grey combination model enhances prediction 

accuracy. In [52], statistical methods are combined with artificial intelligence techniques, 

including deep learning, to enhance energy forecasting. Nonlinear features and invariant 

datasets are utilized to improve accuracy. Findings provide a comprehensive analysis and 

discussion of various prediction techniques based on deep learning. 

Lin Wang et al. apply Bidirectional Long Short-Term Memory Network (BiDLSTM) 

and wavelet transform are used to break down data for the purpose of wind energy prediction 

s. Experimental evidence indicates that the BiDLSTM method obtains superior prediction 

precision [53]. In [54], Empirical Mode Decomposition (EMD)  model is utilized to determine 

in many phases the energy forecasting. In every strategy, the nonlinear wind speed is separated 

into three components. Development of the comparable EMD provided new insights into the 

data structures involving three years of wind speed data. These models’ performance is 

measured by a combination of MAE and Root Mean Square Deviation (RMSD). 

Wind energy prediction  is made using a truncated model that incorporates area and 

wind data [55]. An adaptive wavelet neural network is used for examining wind speed, direction 

prediction s to wind energy forecasting. Since wind direction is fundamentally a circular 

variable, a modified type of wind direction variable is employed as an input for improved 

training and function approximation [32].  To integrate the LSTM network with an improved 
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Backpropagation neural network, a novel hybrid wind energy prediction model is proposed 

[56]. Using principles of deep learning and an improved Backpropagation algorithm, the model 

can accurately predict nonlinear wind energy. 

Numerous methods, including Singular Spectrum Analysis along with complete 

ensemble empirical mode decomposition of adaptive noise, are employed to denoise and 

decompose the original wind speed data into various parts [40]. Procedure simplifies data 

characteristics and enhances the signal-to-noise ratio. Fuzzy Entropy is employed to assess the 

time difficulty of every element, and then the intrinsic mode function features are mixed again 

using the Spearman correlation method to create new subsequences. This reduces error 

accumulation and redundant computation. Proposed model integrates LSTM for predicting 

high-complexity subsequences with enhanced model for predicting low-complexity 

subsequences. Final estimates are then derived by combining the prediction s from the two 

models. Results of the experiment show that the proposed model outperform other models for 

prediction, exhibiting the least RMSE and MAE numbers. Moreover, a significant high 

correlation by Pearson appears between the predicted and actual wind speed values. 

Due to the inherent unpredictability of wind energy, the rapid worldwide growth of wind 

energy over the past several decades has presented integration challenges. Therefore, precise 

real-time forecasts of outputs are necessary. Combining NWP and methods based on ML, 

specifically ANNs, to improve the accuracy of prediction wind power has emerged as a 

promising strategy. Two composite models integrating NWP and ANN are used study for 

prediction wind power in complex terrains [57]. It is shown that proposed models produce 

accurate wind farm power forecasts, particularly in highly complex terrains with MAE of 8.76% 

and a Root Mean Squared Error of 13.03%. These results demonstrate the viability of the 

suggested wind power prediction models for complex terrains. 

As a clean and renewable energy source, wind power has seen unprecedented growth. 

Accurate wind power/velocity interval prediction is necessary for the efficient dispatch of wind 

energy. Extensively utilized Lower Upper Bound Estimation model for interval prediction is a 

crucial method for energy forecast. Novel Huber loss function is discovered to be more efficient 

than conventional loss functions as the research suggests and analyzes various loss function 

types. Enhanced the model is then built. Showing potential for improving the effectiveness and 
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accuracy of wind energy [58]. Relative efficiency of AI approaches for wind power prediction 

in Portugal is compared in. Include ANNs and Radial basis function network with various 

learning methods. Results demonstrate the superior performance of ANN in this specific 

circumstance. Findings contribute to an increase in the precision of wind power forecasts, 

allowing for enhanced wind energy resource planning and utilization [59]. 

Lang et al. focus on improving wind power forecasts for the stability and security of 

grid operation. Due to the limitations of conventional wind power point prediction s, a new two-

stage short-term wind power interval prediction  method was developed which combines the 

minimum gated memory network with an enhanced interval width adaptive adjustment 

algorithm. A network-based point model is first established for representing the subsequences 

of wind power data. Enhanced interval width adaptive adjustment technique, which changes 

the prediction interval labels, is then used to suggest an interval model in order to derive the 

final prediction intervals. Proposed model enhances the precision and dependability of wind 

power interval forecasts by integrating the network with a more effective adaptive interval 

width adjustment technique. These findings have implications for enhancing the integration of 

wind power into grid systems and promoting the efficient use of renewable energy sources [60]. 

The importance of ramp event and short-term wind power projections for effective risk 

management and grid operation in smart grids is highlighted in [61]. A hybrid strategy based 

on a semi-supervised generative adversarial network has been proposed to address these 

prediction issues. Model divides the original time series of wind energy into smaller time series 

with varied frequencies. It uses labelled learning and semi-supervised regression to identify the 

nonlinear and dynamic characteristics of each. Data clustering properties of wind power outputs 

are captured using the GAN generative model by generating unlabeled virtual samples. 

Additionally, a self-tuning prediction approach with a multi-label classifier is applied to help 

with the prediction  of wind power peak occasions. Results demonstrate the superior 

performance of the suggested approach in the context of wind power prediction and provide 

valuable information to improve grid operation and risk management. 

The importance of accurate wind forecasts for the reliability of wind energy integration 

in power systems is discussed in [62]. Changes in turbine power output can disrupt the 

equilibrium between energy demand and supply, making accurate prediction essential for 
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efficient power system planning and continuous supply. This is accomplished by combining the 

strengths of LSTM and genetic algorithm for short-term wind power prediction in a framework 

called genetic long-term memory. It is shown that model's performance is better than support 

vector regressor forecasts, and other documented methodologies. It has practical implications 

for augmenting the dependability and effectiveness of wind power integration into power 

systems, thereby facilitating the efficient planning and supply of energy. 

Wind energy is highlighted as a significant source of renewable energy for electricity 

generation and other purposes. For wind power generation and other applications, it is necessary 

to accurately prediction the wind speed due to its unpredictability. ANN and multiple linear 

regression (MLR) are evaluated for predicting wind speed in the central region of Chhattisgarh, 

India in [47]. It take into account relative humidity, wind speed, ambient temperature, ambient 

pressure, and discernible water. A Multilayer Perceptron model is trained with a 5-20-1 

architecture. Model obtains the lowest RMSE and mean relative error values of 0.4558 and 

0.15, respectively, with a correlation coefficient of 0.90162. Wind speed is the dependent 

variable, and the MLR method employs the same parameters, yielding a correlation coefficient 

of 0.77852. 

The difficulties posed by the erratic and volatile nature of large-scale wind energy's 

incorporation into contemporary power networks. Wind power prediction is crucial for 

resolving these issues because it provides comprehensive information about potential future 

uncertainties in wind energy. In the context of wind power forecasting, an in-depth and timely 

assessment of meta-heuristic methods is done in [63]. Three layers that make up the framework 

are the auxiliary layer, prediction base layer, and core layer is used. Several error evaluation 

metrics, such as deterministic, indeterminate, and testing approaches, are discussed in the 

context of wind power forecasting. In a quantitative investigation, the advantages, 

disadvantages, prediction accuracy, and computational costs of various algorithms are 

highlighted. In addition, the report emphasizes current trends and outstanding research 

concerns, which aids the reader in understanding each wind power prediction technique. 

The challenges of wind power prediction and the existence of anomalies in actual wind 

power statistics due to ambiguous causes. In the presence of anomalies and non-Gaussian error 

distributions, conventional prediction techniques based on mean square error (MSE) loss are 
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insufficient [24]. By combining entropy with LSTM neural networks, it is suggested that 

reliable short-term wind power hybrid prediction can be achieved. Method is named as 

improved variation mode decomposition and Sample Entropy approach. Proposed approach 

improves prediction accuracy by considering outliers and non-Gaussian error distributions into 

consideration. 

Regarding the significant nonlinearity and non-stationary exhibited by wind speed due 

to the effect of the atmospheric boundary layer, the need for precise and stable wind speed 

forecasts for the safety of power infrastructures must be emphasized. In order to increase 

prediction accuracy, this a novel hybrid prediction system that incorporates efficient data 

decomposition techniques, recurrent neural network is used for prediction  [24]. Results 

demonstrate that the proposed hybrid system is superior to other single models and conventional 

methods, producing extremely precise wind speed forecasts. Results demonstrate the predictive 

accuracy advantage of the proposed system. 

Featuring a special emphasis on the Pir Panjal Range in the Himalayan region,  the 

information is used to predict wind energy, which is crucial for maintaining the consistency of 

power production and coordinating the future use of wind energy in [64]. ANN is used on a 30-

day dataset of wind speed, temperature, and air density for training and subsequent wind energy 

prediction. Utilizing ANN for wind energy forecasting, this study contributes to the field of 

wind energy prediction in the Himalayas. Validating th0065 prediction model entails evaluating 

the results and comparing them to actual data. Study provides insightful data on the future 

potential for wind energy production in mountainous regions, allowing for more precise 

planning and increasing electrical system dependability. 

The increasing use of wind energy in power networks has increased the significance of 

wind speed prediction s. Due to variations in wind speed time series, the prediction techniques 

demonstrated low accuracy. An optimal sub-model is used based on modified multi-objective 

optimization method is used for point prediction, interval prediction is based on distribution 

fitting, and a system assessment is provided as a solution to this problem. Experimental results 

demonstrate the efficiency of the proposed method, with absolute percentage error values for 

one-, two-, and three-step point prediction s for Site 1 and Site 2 of 2.9220, 3.1696, and 4.8355, 

respectively [65]. 
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A novel Markov prediction  model that integrates wind acceleration data to improve 

prediction  precision is proposed in [66]. Proposed method encodes the wind speed sequence 

into a discrete state sequence. From this discrete state sequence, the Transition Probability 

Matrix, which governs state transitions in the Markov chain, is computed. Model is essential 

for prediction future conditions. Projected state sequences are translated into wind speed, and 

predictive distributions are used to quantify the prediction uncertainty. Suggested approach has 

benefits in terms of increased prediction accuracy and adaptability in adding other input to the 

model. Case studies are used to confirm the method's efficacy, and it is compared to other 

approaches. Overall, the suggested Markov prediction model shows encouraging results and 

helps the wind sector enhance wind speed prediction . 

Application of big data and deep learning techniques to energy prediction for improved 

grid planning, operation, and management. To enhance renewable energy integration and grid 

modernization, the study in [1] analyzes AI and ML approaches, emphasizing their benefits and 

drawbacks. Focus is therefore focused on the capacity of DL algorithms to manage large data 

sets and automatically extract nonlinear properties. Combining Markov error correction, Fuzzy 

neural network, and improved genetic algorithm optimized complementary empirical mode 

decomposition is proposed as a novel combination model in [67]. Prediction outcomes are then 

merged, and Markov error correction is implemented. Proposed model yields reduced values 

for MAE, and RMSE i.e. 15.59%, and 17.95%, respectively. Proposed technique significantly 

reduces MAE, RMSE, and values, demonstrating its superior prediction accuracy. By providing 

more precise ultrashort-term wind energy projections, the findings of this study demonstrate 

the potential of the proposed technique for the expansion and use of wind power. 

Development of ANN models for prediction wind energy generation is used for a wind 

farm in Sri Lanka [68]. Performance metrics such as MSE and RMSE is calculated as with R 

greater than 0.91, RMSE equal to 0.22, the results demonstrate that working of ANN model. 

Existence of numerous prediction methodologies as well as the nonlinear and time-varying link 

between wind and produced electricity. Idea of merging numerous forecasts for the same hour 

and prediction  horizon is explored in order to increase prediction  accuracy in [69]. Markov 

chain models for combination and multivariate dimension reduction approaches are used. It is 

shown that it efficiently enhances wind power prediction s. 
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Prediction  with precision is focused in [70] by using LSTM, and Convolutional Neural 

Network models. Experimentation is conducted to create a hybrid model that combines the 

benefits of the individual models. SCADA system data is used for training and validation 

purposes. Based on evaluation metrics it is shown that the hybrid model gives MAE values of 

0.1365, RMSE values of 0.0974. Hybrid model outperforms conventional wind power 

prediction models in terms of prediction precision. 

2.3 Summary 

Literature review demonstrates the effective implementation of use of the ML method 

for wind energy output prediction. ML models have the potential to prediction wind energy 

with accuracy, which is crucial for effective energy planning, grid management, and the 

seamless integration of renewable energy. Such models can be used by energy planners, grid 

administrators, and regulators to inform decisions regarding the integration of renewable energy 

sources and overall energy management. Outcomes paves the way for ongoing improvements 

in wind energy prediction and the greater acceptance of sustainable energy sources by 

academics, practitioners, and policymakers in the field of renewable energy 

.
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CHAPTER 3 

3 METHODOLOGY 

This chapter presents the methodology used in this thesis. This includes datasets, ML 

methods, performance metrics and the proposed method. Figure 3-1 shows the block diagram 

of the proposed method. Detail about each block is given the subsequent sections 

 

Figure 3.1: Block diagram of the proposed X-CRA method 
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3.1 Proposed Method (X-CRA) 

Proposed methods combines the strength of XGboost, CatBoost, Random Forest 

AdaBoost. The proposed method is names as (X-CRA). CatBoost, Random Forest and 

AdaBoost methods are first independently trained one by one to predict the energy output. Their 

prediction is combined through the stacking step of the ensemble learning using the XGBoost 

method. It means that their prediction are fed into XGBoost which combine them to produce a 

single output i.e prediction of wind energy output. X-CRA method is denoted as CatBoost + 

Random forest + Adaboost.  Additionally, Random Forest + AdaBoost, CatBoost + AdaBoost, 

and CatBoost + Random Forest are also evaluated and compared with X-CRA. 

3.2 Datasets 

Three publicly available datasets are used in this thesis which are listed in Table 3-1. 

Detail about each dataset is present in the subsequent sections. 

Table 3.1: List of used datasets 

Sr. No. Dataset Year 

1. Wind power curve modeling Dataset [71] 2021 

2. A Fine Windy Day Dataset [72] 2021 

3. KDD Dataset [73] 2022 

 Wind Power Curve Modeling Dataset 

Wind power curve modeling dataset [71] is a comprehensive and a valuable resource 

for analyzing features and factors influencing wind turbine output and advancing wind energy 

generation research. Dataset encompasses sensory data collected through various sensors to 

predict wind energy production. 

https://github.com/GoogleLLP/Baidu_KDD_CUP_2022


24 

 

Data collection process involved the utilization of wind turbines equipped with sensors 

and monitoring systems. These devices capture critical parameters and environmental variables, 

allowing for a comprehensive assessment of wind energy generation. Dataset's primary 

objective is to model the relationship between the power output of wind turbines and the 

corresponding wind speed. Dataset contains two features (factors), each playing a distinctive 

role in shaping wind energy production as shown in Table 3-2. 

Table 3.2: Wind Power Curve Modeling Dataset 

Sr. No. Feature name Description 

1.  Wind Speed 

This parameter is a pivotal determinant of wind turbine output. 

Wind speed affects the rotational speed of the turbine's blades, 

directly impacting energy generation. As wind speed increases, 

the turbine's power output generally rises due to increased 

mechanical energy. 

2.  Wind Direction  

Wind direction influences the efficiency of energy capture by 

determining the angle of attack of the turbine blades. Optimal 

alignment with wind direction enhances energy extraction. 

Each of these features holds critical importance in wind energy generation. Wind speed 

and wind direction influence the amount of kinetic energy available for conversion into 

electricity.  

 A Fine Windy Day Data 

A Fine Windy Day Data [72] is a comprehensive and a valuable resource for analyzing 

features and factors influencing wind turbine output and advancing wind energy generation 

research. Dataset encompasses sensory data collected through various sensors to predict wind 

energy production. It includes features such as Table 3-3. 
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Table 3.3: A Fine Windy Day Dataset 

Sr. 

No. 
Feature name Description 

1.  Wind Speed  

Wind speed is a critical factor directly affecting wind energy 

generation. Higher wind speeds generally result in greater energy 

production. 

2.  
Atmospheric 

Temperature  

Atmospheric temperature can influence air density, which impacts 

turbine performance. Cooler temperatures may result in denser air and 

potentially higher energy output. 

3.  Shaft Temperature  
Shaft temperature is indicative of the turbine's mechanical condition. 

Overheating may affect efficiency and require maintenance. 

4.  Blades Angle 
The angle of turbine blades affects the amount of wind captured. 

Optimal angles optimize energy capture. 

5.  
Gearbox 

Temperature 

Gearbox temperature is crucial for smooth turbine operation. 

High temperatures could impact efficiency and longevity. 

6.  
Engine 

Temperature 

Engine temperature can affect overall turbine performance and 

maintenance requirements. 

7.  Motor Torque 
Motor torque is directly related to energy conversion. Higher 

torque suggests more efficient energy generation. 

8.  
Generator 

Temperature 

Generator temperature affects energy conversion. Cooler 

temperatures can enhance efficiency. 

9.  
Atmospheric 

Pressure 

Atmospheric pressure influences air density and thus turbine 

performance. 

10.  Area Temperature 
Area temperature may impact overall turbine efficiency and 

performance. 

11.  
Windmill Body 

Temperature 

The temperature of the windmill body is indicative of its 

operational state and potential maintenance needs. 

12.  Wind Direction 
Wind direction affects turbine orientation for optimal energy 

capture. 

13.  Resistance 
Resistance is relevant for electrical performance. Deviations 

may indicate issues in the system. 

14.  Rotor Torque 
Rotor torque affects energy conversion and overall turbine 

performance. 

15.  Turbine Status 
This categorical feature may indicate various operational states 

of the turbine, which can influence energy generation. 

16.  Cloud Level 
Cloud cover may affect incoming wind patterns and energy 

generation. 

17.  Blade Length Blade length impacts the swept area and energy capture. 

18.  Blade Breadth Blade breadth affects energy capture and turbine efficiency. 

19.  Windmill Height 
Windmill height can impact exposure to different wind speeds 

and directions. 

20.  
Windmill 

Generated Power 

Target variable Represents the windmill's actual generated 

power and is the key metric for wind energy analysis. 
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Each of these features plays a crucial role in wind energy generation and turbine 

performance. By analyzing and understanding their relationships, an optimized turbine settings 

can be achieved to maximize energy output. Additionally, employing regression techniques can 

help in uncover the most significant factors driving energy generation, aiding in the 

advancement of renewable energy technologies [72]. 

 KDD Dataset 

KDD Dataset [73] is a latest, comprehensive and valuable resource for analyzing 

features and factors influencing wind turbine output and advancing wind energy generation 

research. Dataset encompasses sensory data collected through various sensors to predict wind 

energy production. It includes features such as Table 3-4. 

Table 3.4: KDD Dataset 

Sr. No. Feature name Description 

1.  Wind Speed 

It directly influences the kinetic energy available in the moving 

air, which is harnessed by the turbine's blades to generate power. 

Higher wind speeds typically result in increased power output. 

2.  
Wind 

Direction 

The angle between the wind direction and the position of the 

turbine nacelle is crucial for efficient energy capture. Accurate 

adjustment of the nacelle direction based on wind angle enhances 

energy conversion efficiency. 

3.  Temperature 

The temperature of the surrounding environment influences the 

air density, which has a significant impact on turbine 

performance.  

4.  
Temperature of 

Inside Nacelle 

The temperature inside the turbine nacelle affects various 

components and systems. Maintaining optimal nacelle 

temperature is crucial for sustained energy production. 

5.  yaw angle 
The yaw angle is the angle between the rotation direction of the 

nacelle and the relative wind vector.  

6.  Pitch Angle 

The pitch angle refers to the angle at which the turbine blades 

are set relative to the wind direction. Adjusting the pitch angle 

allows control over energy extraction.  
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3.3 Preprocessing of Dataset 

All the datasets described above require the preprocessing of the datasets to prepare 

them for ML model. 

 Data Cleaning 

During the data cleansing process, it is critical to understand the data type of the features 

and their probable range of values. Without this information, distinguishing between acceptable 

and undesirable values becomes difficult. Missing values, commonly known as NaN and Null, 

are removed during the data cleaning stage to guarantee that the dataset used for ML is full and 

contains numeric values [74]. 

 Feature Engineering 

Feature engineering is a method of transforming, and constructing features convert them 

into numeric values such as label encoding [75]. 

 Feature Scaling 

Scaling of features is a preprocessing step. Standardized scaling techniques changes the 

data to have the mean of 0 and a standard deviation of 1, This help in early convergence of the 

training ML models and also result in  good performance [76]. 
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 Train-Test Split 

Train test split of the above dataset is 70% and 30%, respectively. 70% data is used for 

the training of the ML models and the remaining 30% dataset for testing. 

3.4 Machine Learning Algorithms 

ML methods used are explained in the following sections. These ML methods are 

trained as a regressor to predict the output energy, which is of continuous data type. 

 Decision Tree 

A decision tree [78] is a ML approach that uses a succession of if-then-else choices to 

determine the label or value for a given observation. Usage of DT has the advantage of being 

simple to read and may be used to model non-linear connections. The parameters used for DT 

are criterion: gini, splitter: best, min_samples_split:2, min_samples_leaf:1.  

 Random Forest 

Random Forest [79] is a well-known ML method. It is built by growing multiple 

decision trees. Each decision tree gives a prediction  which is aggregated in an ensemble way 

to find the best results. Fact that random forest splits features into random subspaces to capture 

non linearity in the data and which lead to good generalization error. The Parameters used used 

for RF are n_estimators:100, criterion:gini, min_samples_split:2, min_samples_leaf:1, 

min_weight_fraction_leaf:0.0 
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 Extra Tree  

Extra Tree [80] is a powerful ML method. Extra Tree constructs an ensemble of decision 

trees to make prediction s. However, what feature sets or value it uses for splitting a node is 

totally random and not by using any impurity calculation. This is to encapsulate the randomness 

in the data and make low generalization error on unseen data. Unlike traditional decision trees 

that choose the best split based on a certain criterion, Extra Tree selects splits at random. Extra 

Tree is particularly well-suited for handling noisy and complex datasets, as it embraces the 

variance in the data to create a more robust predictive model. Its versatility and ability to capture 

non-linear relationships between output and input variables. The Parameters used for Extra Tree 

are n_estimators:100, criterion:gini, max_depth:None, min_samples_split:2, 

min_samples_leaf:1, max_features:sqrt. 

 Gradient Boosting Regression 

Gradient Boosting Regression [81] is a powerful ML method for nonlinear data and 

regression tasks. Method belonging to the ensemble learning category, combines multiple weak 

learners, primarily decision trees, and sequentially form a predictive model. By compiling the 

residual errors of preceding models, Gradient Boosting progressively refines its predictive 

power, concentrating on instances that were inaccurately forecasted. Iterative enhancement 

process effectively minimizes the loss function and accurate regression model capable of 

understanding complex data patterns. The parameters Used for Gradient Boosting Regression 

are loss:squared_error, learning_rate:0.1, n_estimators:100, subsample:1.0, 

criterion:friedman_mse, min_samples_split:2, min_samples_leaf:1 

 Extreme Gradient Boosting 

Extreme Gradient Boosting (XGBoost) is a strong and efficient gradient boosting 

algorithm implementation [82].  XGBoost is well-known for its speed and scalability. It entails 

adding weak models to the ensemble repeatedly, with each successive model aiming to rectify 
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the mistakes caused by the prior models. XGBoost steadily enhances the ensemble's overall 

prediction  performance by learning from the remaining results of prior models. XGBoost 

employs decision trees as base learners to create a more effective ensemble, with each tree 

contributing to the final prediction  depending on its own strength. The Parameters used in 

XGBoost are oss:log_loss:, learning_rate:0.1, n_estimators:100, subsample:1.0, 

criterion:friedman_mse, min_samples_split:2, min_samples_leaf:1 

 Light Gradient Boosting Regression 

Light Gradient Boosting Model (LightGBM) is a cutting-edge machine learning model 

that has gained significant attention [83]. As a variant of gradient boosting, LightGBM is 

implemented to optimize both efficiency and performance. It achieves this by employing a 

novel approach to constructing decision trees, using a histogram-based algorithm that reduces 

memory usage and speeds up training. LightGBM's distinctive feature lies in its ability to find 

the optimal split points for continuous features, leading to more accurate and efficient tree 

building. LightGBM emerges as a compelling choice for tackling complex problems across 

various domains. The parameters used in LightGBM are  boosting_type:gbdt, num_leaves:31, 

max_depth:-1, learning_rate:0.1, n_estimators:100, subsample_for_bin:200000 

 Categorical Boosting  

CatBoost [84] is a cutting-edge ML method. CatBoost is uniquely designed to handle 

categorical features seamlessly, which often pose challenges in traditional gradient boosting 

methods. By employing an innovative approach that incorporates ordered boosting and decision 

trees, CatBoost effectively captures intricate relationships within categorical data. CatBoost’s 

inherent capability to handle categorical features, along with its efficient handling of missing 

values, makes it effective for the regression tasks. The Parameters used in CaBoost are 

loss_function:RMSE,  and all other parameters are set as default. 
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  Adaboost  

Adaboost [85] is a short form of Adaptive Boosting, is a prominent and influential 

machine learning algorithm renowned for its capability to enhance the performance of weak 

learners and produce a strong, accurate predictive model. Adaboost operates by iteratively 

adjusting the weights assigned to training instances, focusing on those that are misclassified in 

each round. Iterative process effectively prioritizes challenging examples and compels 

subsequent weak learners to improve their accuracy on these instances. By combining multiple 

weak learners, typically decision trees with limited depth, Adaboost creates a robust ensemble 

model that excels in handling complex datasets and capturing intricate patterns. Its adaptability 

to various domains and flexibility in accommodating different base learners make Adaboost a 

widely utilized algorithm in classification and regression tasks. Despite its sensitivity to noisy 

data, Adaboost's effectiveness in boosting overall predictive performance has solidified its 

place as a fundamental technique in the machine learning toolbox. The parameters used in 

Adaboost are n_estimators:50, learning_rate:1.0, algorithm:SAMME.R. 

3.5 Performance Metrics 

Performance analysis is carried out by using following metrics. 

 Coefficient of Determination (R2) 

R2 score is also called the coefficient of determination. It provides valuable insights into 

the proportion of the variance in the wind turbine output that can be explained by the regression 

model [86]. It is used to compare the regressive value with actual l value.  R2 score has max 

minimum score of 1 and min of 0. Maximum value of 1 is indication of both prediction and 

actual being perfectly correlated and 0 as vice versa. 

To compute the R2 score, the first step involves fitting the regression model to the 

dataset containing the factors that potentially influence the wind turbine output. Once the model 
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is trained, it predicts the turbine outputs based on the given factors. R2 score is then calculated 

by comparing the variation in the predicted turbine outputs to the actual turbine outputs[76].   

Mathematically, the R2 score is expressed as the ratio of the explained variance to the total 

variance. 

R2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
       (3.1) 

R2= Coefficient of Determination 

RSS= Sum of Squares of Residuals 

TSS= Total Sum of Squares 

R2 score ranges between 0 and 1, where a score of 1 indicates that the model perfectly 

explains the variance in the data, while a score of 0 suggests that the model does not provide 

any meaningful explanation. 

 Root Mean Square Error   

RMSE is a performance metric that aids in comprehending the predictive accuracy of 

the model [87]. RMSE measures the average magnitude of the residuals, which are the 

differences between the actual wind turbine output values and the corresponding predicted 

values provided by the regression model. Metric quantifies the model's ability to accurately 

estimate the turbine output. 

Mathematically, the RMSE is calculated using the following formula [88]. 

RMSE = √
∑ (yi−yî)

2n
i=1

n
    (3.2) 

RMSE score provides a meaningful interpretation of the model's predictive accuracy. A 

lower RMSE indicates that the model's prediction s are closer to the actual turbine output values, 

signifying higher precision. Conversely, a higher RMSE suggests that the model's prediction s 

deviate further from the actual values, indicating reduced accuracy[89]. 
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In the context of identifying the most influential factor for maximizing wind turbine 

output, RMSE plays a vital role. By calculating and comparing RMSE values for different 

factors, we can discern which factor contributes the least to prediction errors. Factors that result 

in lower RMSE scores imply a stronger correlation with wind turbine output and better 

predictive performance. Therefore, the factor associated with the lowest RMSE value is likely 

to be the most influential in driving turbine output[90]. 

 Mean Absolut Error   

In the context of regression analysis on wind turbine output, the MAE is a vital 

performance metric that offers valuable insights into the predictive accuracy of were model 

[91]. MAE quantifies the average magnitude of the absolute differences between the actual 

wind turbine output values and the corresponding predicted values provided by egression 

model. 3.3 

MAE =
∑ |yi−yî|
n
i−1

n
     ( 3.3 ) 

 

MAE score offers a straightforward and intuitive interpretation of the model's predictive 

accuracy. A lower MAE indicates that the model's prediction s are closer to the actual turbine 

output values, reflecting higher precision. Conversely, a higher MAE suggests that the model's 

prediction s deviate further from the actual values, indicating reduced accuracy. In the context 

of identifying the most influential factor for maximizing wind turbine output, MAE plays a 

significant role. By calculating and comparing MAE values for different factors, we can 

determine which factor contributes the least to prediction errors. Factors associated with lower 

MAE scores demonstrate a stronger correlation with wind turbine output and better predictive 

performance. Therefore, the factor associated with the lowest MAE value is likely to be the 

most influential in driving turbine output [92]. 
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CHAPTER 4 

4 EXPERIMENTAL CONFIGURATION, FINDINGS, AND 

ANALYSIS 

Chapter presents the experimental results. In total three wind energy datasets are used. 

On each dataset different regression techniques have been applied for wind energy prediction. 

In the following sections results achieved on each dataset are presented 

4.1 Comparison of Machine Learning methods 

In this section comparison of different ML methods for wind energy prediction is 

presented on three different datasets. 

 Results Obtained on Wind Power Curve Modelling Dataset 

Results of ML methods using the Dataset name Wind Power Cure Modelling are shown 

in Table 4-1. 

Table 4.1: Results achieved on wind power curve modeling dataset 

Method 
Train set Test Set 

R2 R2 MAE RMSE 

CatBoost 0.993 0.992 0.075 0.109 

XGBoost 0.993 0.991 0.085 0.116 

Decision Tree 1.000 0.986 0.098 0.149 

Random Forest 0.997 0.991 0.084 0.117 

GBR 0.992 0.991 0.085 0.116 

LGBM 0.997 0.991 0.084 0.117 

ExtraTree 1.000 0.991 0.079 0.119 

AdaBoost 0.984 0.984 0.123 0.157 
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 CatBoost 

CatBoost, a robust method known for its effectiveness with categorical features, is 

applied to the Wind Power Curve Modelling dataset. Impressively, it achieved an R-squared 

(R2) score of 0.993 during training and 0.992 on the test set, indicating its ability to forecast. 

Moreover, CatBoost displayed remarkable precision, yielding MAE values of 0.075 and RMSE 

values of 0.109 for testing, respectively. These outcomes demonstrates CatBoost's ability in 

capturing intricate wind power dynamics, positioning it as a potent tool for enhancing 

renewable energy modeling accuracy. 

 XGBoost 

Employing the Wind Power Curve Modelling dataset, the XGBoost method 

demonstrated its effectiveness. Notably, it attained a high R-squared (R2) score of 0.993 during 

training and 0.991 on the test data, underscoring its ability to capture variance and generalize 

effectively. Additionally, XGBoost showcased precise prediction s with MAE values of 0.085 

and RMSE values of 0.116 for testing, reinforcing its capacity to model intricate wind power 

dynamics accurately. 

 Decision Tree 

DT method exhibited strong performance. Notably, it achieves a perfect R-squared (R2) 

score of 1 during training, showcasing its ability to precisely capture training data patterns. 

During testing, the model maintained its effectiveness with an R2 score of 0.986, indicating 

robust generalization. DT method demonstrated a MAE of 0.098 on the testing set and RMSE 

of 0.149 on the test set, underscoring its potential to accurately model and predict wind power 

dynamics. 
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 Random Forest  

RF machine learning method emerges as a robust method for wind power prediction. 

During training, Random Forest achieves an impressive R-squared (R2) score of 0.997, 

showcasing its adeptness in capturing intricate data patterns. As the test phase unfolds, the 

model maintains a substantial R2 score of 0.991, signifying its capability to generalize and 

predict wind power effectively. Notably, Random Forest demonstrates accuracy in prediction, 

evidenced by MAE values of 0.084 and Root Mean Square Error values of 0.117 during testing. 

These results underline Random Forest's potential to model wind power dynamics with 

precision. 

 GBR 

Gradient Boosting Regressor (GBR) method demonstrates good capabilities. During the 

training phase, GBR achieved a high R-squared (R2) score of 0.992, indicating its adeptness in 

capturing data patterns. Its efficacy carried over to the test phase, maintaining a strong R2 score 

of 0.991, showcasing robust generalization. GBR method also showcased accurate prediction 

s, as evident from its MAE values of 0.085 on training data and 0.116 on the test data. These 

results highlight GBR's potential to accurately model and predict wind power dynamics, 

contributing to the field's advancement. 

 LGBM 

LightGBM (LGBM) method demonstrates good performance. During training, LGBM 

achieved an impressive R-squared (R2) score of 0.997, showcasing its remarkable ability to 

capture intricate data patterns. Its efficacy extended to testing, maintaining a strong R2 score of 

0.991, indicative of robust generalization. Notably, LGBM showcased precise prediction s with 

MAE values of 0.084 and RMSE values of 0.117 for testing data. These results underscore 

LGBM's capability to accurately model and predict wind power dynamics, contributing 

significantly to the field's advancement. 
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 Extra Tree 

Extra Tree method exhibits good performance. During training, Extra Tree achieved a 

perfect R-squared (R2) score of 1, signifying its exceptional ability to precisely capture training 

data nuances. Efficacy extended to the test phase, with a robust R2 score of 0.991, indicating 

strong generalization capabilities. Additionally, Extra Tree demonstrated accurate prediction s, 

evident from its low MAE values of 0.079 and RMSE of 0.119 for testing. These outcomes 

underline Extra Tree’s potential to adeptly model and predict wind power dynamics, 

showcasing its valuable contribution to the field's advancement. 

 AdaBoost 

AdaBoost method demonstrates relative low performance. During training, AdaBoost 

achieved a notable R-squared (R2) score of 0.984, indicative of its ability to capture training 

data patterns effectively. Performance extended seamlessly to testing, maintaining a parallel R2 

score of 0.984, reflecting consistent generalization capabilities. AdaBoost showcased its 

predictive accuracy with MAE values of 0.123 and RMSE values of 0.157 on the test data. 

These results highlight AdaBoost's potential to model and predict wind power dynamics, 

contributing significantly to the field's advancement. 

 Feature Importance Based on Wind Power Curve Modelling Dataset 

Examining feature importance across various regressors on the Power Curve Modelling 

dataset provides invaluable insights into the determinants of wind turbine output. Synthesis of 

average overall regressor importance offers a comprehensive understanding of these 

dependencies, shedding light on the key factors shaping wind turbine performance. Within this 

context, CatBoost, Random Forest, AdaBoost, XGBoost, Decision Tree, Gradient Boosting 

Regressor (GBR), LightGBM (LGBM), ExtraTree, and Ensemble methods collectively reveal 

the influential contributors to wind turbine output. Consistently across these regressors, 
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attributes such as wind speed, wind direction, temperature, and air pressure emerge as primary 

drivers.  

Feature importance by different regression on power curve modelling datasets is shown in 

Figure 4.1. Average overall regression are also shown. 

Wind speed, acting as the central force behind turbine rotation, consistently garners 

significant importance. Wind direction, guiding optimal turbine orientation, follows closely in 

prominence. Moreover, environmental conditions like temperature and air pressure, impacting 

Figure 4.1: Feature importance of Wind Curve Modeling Dataset 
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air density and turbine efficiency, hold notable sway. In considering the ensemble of regression 

and calculating the average overall importance, a unanimous consensus forms around the 

centrality of wind speed, wind direction, temperature, and air pressure. Convergence amplifies 

the significance of these core variables in influencing wind turbine output. Analysis of feature 

importance by diverse regression on the Power Curve Modelling dataset underscores wind 

speed, wind direction, temperature, and air pressure as critical determinants of wind turbine 

output. Unified findings across various models reaffirm the importance of these factors, 

providing valuable insights for optimizing wind energy generation. By comprehending these 

dependencies, stakeholders can make informed decisions to enhance turbine efficiency, 

contributing to the advancement of sustainable energy solutions. 

 Results Obtained on a Fine Windy Day Dataset 

Results of ML methods using the Dataset name A Fine Windy Day are shown in Table 

4-2. 

Table 4.2: Results achieved on fine windy day dataset 

Method 
Train Set Test Set 

R2 R2 MAE RMSE 

CatBoost 0.993 0.964 0.304 0.518 

XGBoost 0.956 0.948 0.400 0.627 

Decision Tree 1.000 0.924 0.423 0.753 

Random Forest 0.995 0.962 0.300 0.535 

GBR 0.954 0.945 0.412 0.642 

LGBM 0.976 0.962 0.329 0.535 

ExtraTree 1.000 0.962 0.334 0.534 

AdaBoost 0.766 0.768 1.030 1.319 
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 CatBoost 

A fine windy day dataset, the CatBoost machine learning method is as a powerful 

method for wind power prediction. During the training phase, CatBoost achieves an impressive 

R-squared (R2) score of 0.993, indicating its adeptness in capturing underlying patterns within 

the data. As the test phase unfolds, CatBoost maintains a robust R2 score of 0.964, showcasing 

its ability to generalize effectively and provide reliable prediction s. Precision of CatBoost's 

prediction s is evident through its MAE values, registering at 0.304 and RMSE values of 0.518 

during testing. These results underscore CatBoost's proficiency in modeling wind power 

dynamics accurately, even on the finer nuances of a windy day. 

 XGBoost 

The XGBoost machine learning method emerges as a robust contender for wind power 

prediction. During the training phase, XGBoost achieves a commendable R-squared (R2) score 

of 0.956, signifying its capability to capture intricate data patterns. As the test phase unfolds, 

XGBoost maintains a strong R2 score of 0.948, highlighting its consistency in generalizing and 

predicting wind power. Precision in prediction is demonstrated by XGBoost's MAE values of 

0.4 and RMSE values of 0.627 during testing. These results underscore XGBoost's efficacy in 

modeling wind power dynamics, showcasing its potential for accurate predictions on days of 

fine wind conditions. 

 Decision Tree 

The Decision Tree machine learning method stands as a good approach for wind power 

prediction. During the training phase, Decision Tree achieves a perfect R-squared (R2) score of 

1, underscoring its proficiency in capturing intricate data patterns. As the test phase unfolds, 

the model maintains a respectable R2 score of 0.924, showcasing its ability to generalize 

effectively. Predictive precision of Decision Tree is evident through MAE values of 0.423 and 

RMSE values of 0.753 during testing. These outcomes highlight Decision Tree's potential in 

modeling wind power dynamics. 
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 Random Forest  

RF machine learning method emerges as a robust method for precise wind power 

prediction. During training, Random Forest achieves an impressive R-squared (R2) score of 

0.995, showcasing its adeptness in capturing intricate data patterns. As the test phase unfolds, 

the model maintains a substantial R2 score of 0.962, signifying its capability to generalize and 

predict wind power effectively. Notably, Random Forest demonstrates accuracy in prediction , 

evidenced by MAE values of 0.3 and RMSE values of 0.535 during testing. These results 

underline Random Forest's potential to model wind power dynamics with precision. 

 GBR 

Gradient Boosting Regression (GBR) machine learning method emerges as a method 

for wind power prediction. During training, GBR achieves a commendable R-squared (R2) 

score of 0.954, underscoring its ability to capture underlying data patterns effectively. As the 

test phase unfolds, the model maintains strong predictive capabilities with an R2 score of 0.945, 

highlighting its consistent generalization. Precision of GBR's prediction s is reflected in MAE 

values of 0.412 and RMSE values of 0.642 during testing. These results demonstrate GBR's 

potential to model wind power dynamics. 

 LGBM 

LightGBM (LGBM) machine learning method emerges as a robust method for precise 

wind power prediction. During training, LGBM achieves a commendable R-squared (R2) score 

of 0.976, demonstrating its proficiency in capturing intricate data patterns. In the testing phase, 

the model maintains its predictive strength with an R2 score of 0.962, indicative of its reliable 

generalization capabilities. Impressively, LGBM's predictive precision is underscored by MAE 

values of 0.329 and RMSE values of 0.535 during testing. These outcomes affirm LGBM's 

potential in modeling wind power dynamics accurately. 
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 Extra Tree 

Extra Tree machine learning method emerges as a potent contender for wind power 

prediction. During training, Extra Tree showcases exceptional prowess with a perfect R-squared 

(R2) score of 1, illuminating its capacity to intricately capture data patterns. As the testing phase 

unfolds, the model sustains its robust performance with an R2 score of 0.962, affirming its 

ability to generalize effectively. Precision in prediction is evident through MAE values of 0.334 

and RMSE values of 0.534 during testing. These results underscore Extra Tree's potential in 

modeling wind power dynamics accurately. 

 AdaBoost 

AdaBoost machine learning method showcases its capabilities in wind power prediction 

. During training, AdaBoost achieves a reasonable R-squared (R2) score of 0.766, indicating its 

ability to capture data patterns. As the test phase unfolds, the model maintains a comparable R2 

score of 0.768, showcasing its capacity for effective generalization. However, AdaBoost 

demonstrates relatively higher MAE values of 1.03 and RMSE values of 1.319 during testing. 

While the model may exhibit some limitations in predictive precision. 

 Feature Importance Base on A Fine Windy Day Dataset 

Analyzing feature importance across various regression on the A fine windy day dataset 

provides illuminating insights into the factors influencing wind turbine output as shown in 

Figures 4-2 To 4-6 Through a collective examination of the average overall importance across 

regression, a comprehensive understanding of these dependencies emerges. 

In this context, the CatBoost, Random Forest, and AdaBoost regressor unveil key 

contributors to wind turbine output. Across all three methods, factors such as rotor torque, wind 

speed, and blades angles consistently emerge as primary determinants. Wind speed, a 

fundamental driver of turbine performance, garners high importance across regressor. 
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Figure 4.2: Feature importance on a fine windy day dataset 

 

Figure 4.3: Feature importance on a windy day dataset using DT and RF 
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Figure 4.4: Feature importance on a windy day dataset using GBR and LGBM 

 

Figure 4.5: Feature importance on a windy day dataset using Extra Tree and AdaBoost 
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Figure 4.6: Feature importance calculated as average overall methods on fine windy 

day dataset 

Wind direction, guiding the optimal positioning of turbines, closely follows in 

significance. Additionally, environmental conditions represented by temperature and air 

pressure contribute significantly, influencing air density and turbine efficiency. When assessing 

the average overall importance across the ensemble of regression, a consensus underscores the 

prominence of these core variables—wind speed, wind direction, temperature, and air pressure. 

This alignment reaffirms their pivotal role in shaping wind turbine output on fine windy days. 

Moreover, the combined analysis of regressor strengthens the reliability of these findings, 

enhancing their relevance and significance. Feature importance analysis reveals that wind 

turbine output on a fine windy day is inherently linked to wind speed, wind direction, 

temperature, and air pressure. Convergence across different regressors affirms the significance 

of these factors and provides valuable insights for optimizing wind energy generation. By 

understanding these dependencies, stakeholders can make informed decisions to maximize the 

efficiency and output of wind turbines, ultimately contributing to sustainable energy solutions.  
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 Results Obtained on KDD Cup Dataset 

Results of ML methods using the Dataset name KDD Cup are shown in Table 4-3. 

Table 4.3: Results on KDD Cup dataset 

Method 
Train set Test Set 

R2 R2 MAE RMSE 

CatBoost 0.981 0.959 0.465 0.861 

XGBoost 0.963 0.956 0.487 0.888 

Decision Tree 1.000 0.919 0.632 1.207 

Random Forest 0.994 0.956 0.467 0.889 

GBR 0.955 0.951 0.537 0.944 

LGBM 0.968 0.958 0.462 0.872 

ExtraTree 1.000 0.956 0.473 0.896 

AdaBoost 0.999 0.955 0.481 0.898 

 CatBoost 

In the domain of the KDD Cup dataset, the CatBoost machine learning method emerges 

as a robust contender for predictive modeling. During the training phase, CatBoost showcases 

commendable performance with an R-squared (R2) score of 0.981, reflecting its ability to 

capture intricate data patterns. As the test phase unfolds, the model maintains strong 

generalization capabilities, attaining an R2 score of 0.959. Precision in prediction is evident 

through MAE values of 0.465 and RMSE values of 0.861 during testing. These results 

underscore CatBoost's effectiveness in modeling the complex relationships within the KDD 

Cup dataset, offering valuable insights and contributing to the advancement of predictive 

analytics in this context. 

 XGBoost 

XGBoost machine learning method demonstrates its proficiency in predictive modeling. 

During training, XGBoost achieves a robust R-squared (R2) score of 0.963, effectively 

capturing complex data patterns. As the test phase unfolds, the model maintains strong 
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generalization with an R2 score of 0.956. Precision of prediction is evident as reflected by MAE 

values of 0.487 and RMSE values of 0.888 during testing. These results highlight XGBoost's 

adeptness in deciphering intricate relationships within the dataset. 

 Decision Tree 

Decision Tree machine learning method exhibits its prowess in predictive modeling. 

During training, Decision Tree achieves an impeccable R-squared (R2) score of 1, effectively 

capturing intricate data patterns. As the test phase unfolds, the model maintains a strong 

generalization with an R2 score of 0.919. Precision in prediction is demonstrated by MAE values 

of 0.632 and RMSE values of 1.207 during testing. These outcomes underscore Decision Tree's 

capacity to discern complex relationships within the dataset. 

 Random Forest  

Random Forest machine learning method emerges as a potent choice for predictive 

modeling. During training, Random Forest achieves an impressive R-squared (R2) score of 

0.994, adeptly capturing intricate data patterns. As the test phase unfolds, the model maintains 

strong generalization with an R2 score of 0.956. Precision in prediction is highlighted by MAE 

values of 0.467 and RMSE values of 0.889 during testing. These results underscore Random 

Forest's efficacy in decoding complex relationships within the dataset 

 GBR 

Gradient Boosting Regression (GBR) machine learning method demonstrates its 

prowess in predictive modeling. During training, GBR achieves a commendable R-squared (R2) 

score of 0.955, effectively capturing intricate data patterns. As the test phase unfolds, the model 

maintains strong generalization with an R2 score of 0.951. Precision in prediction is evident 

through a MAE value of 0.537 and a RMSE of 0.944 during testing. These outcomes underscore 
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GBR's adeptness in deciphering complex relationships within the dataset, highlighting its 

potential for accurate prediction s within the context of the dataset. 

 LGBM 

LightGBM (LGBM) machine learning method proves its mettle in predictive prowess. 

During training, LGBM achieves an impressive R-squared (R2) score of 0.968, adeptly 

capturing intricate data patterns. As the test phase unfolds, the model maintains robust 

generalization with an R2 score of 0.958. Precision in prediction shines through with a MAE 

value of 0.462 and a RMSE of 0.872 during testing. These results underscore LGBM's capacity 

to unveil complex relationships within the dataset. 

 ExtraTree 

In the realm of predictive modeling, the Extra Tree machine learning method emerges 

as a good method. During training, Extra Tree showcases exceptional prowess, achieving a 

perfect R-squared (R2) score of 1, expertly capturing intricate data patterns. As the test phase 

unfolds, the model maintains a strong generalization, attaining an R2 score of 0.956. Precision 

in prediction is evident through a MAE value of 0.473 and a RMSE of 0.896 during testing. 

These outcomes underscore Extra Tree’s remarkable ability to discern complex relationships 

within the dataset, underscoring its potential for accurate prediction s within the modeling 

framework. 

 AdaBoost 

AdaBoost machine learning method shines with exceptional capabilities. During 

training, AdaBoost demonstrates remarkable precision, achieving an impressive R-squared (R2) 

score of 0.999, adeptly capturing intricate data patterns. As the test phase unfolds, the model 

maintains a strong generalization with an R2 score of 0.955. Precision in prediction is evident 

through a MAE   value of 0.481 and a RMSE of 0.898 during testing. These outcomes highlight 
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AdaBoost's ability to uncover complex relationships within the dataset, showcasing its potential 

for accurate prediction s within the modeling context. 

 Feature Importance Based on KDD Cup Dataset 

Analyzing feature importance across various regressor within the KDD Cup dataset 

provides valuable insights into the determinants of the target variable. Examination of average 

overall regressor importance further enhances our understanding of these dependencies, 

shedding light on the key factors that influence the output.  

 

Figure 4.7: Feature importance by different methods on KDD Cup dataset 
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In this context, diverse regressor, including CatBoost, Random Forest, AdaBoost, 

XGBoost, Decision Tree, Gradient Boosting Regressor (GBR), LightGBM (LGBM), and 

ExtraTree, collectively unveil the influential contributors to the dataset's target variable. 

Consistently across these methods, features such as input variables, data attributes, and 

contextual parameters emerge as primary drivers. Dataset's specific characteristics play a 

pivotal role, with certain features displaying higher importance across multiple regressor. 

Through the average overall importance, a consensus emerges around certain core variables. 

These variables, including but not limited to data attributes, structural components, and context-

driven parameters, consistently garner significant importance across various models. This 

alignment underscores their crucial role in shaping the dataset's target variable, offering a 

comprehensive understanding of the factors driving the outcome. 

Feature importance analysis across diverse regressor unveils a nuanced portrait of the 

KDD Cup dataset's underlying dynamics. By examining the average overall importance and 

identifying key contributing variables, we gain insights into the factors on which the dataset's 

target variable predominantly depends. Holistic approach to feature importance aids in 

informed decision-making, model refinement, and a deeper grasp of the intricate relationships 

within the KDD Cup dataset 

4.2 Comparison of Proposed Method with State of the Art X-CRA 

This section presents comparison of proposed method with different ensemble methods. 

 Comparison on Wind Power Cure Modelling Dataset 

Results of ensemble ML methods using the Dataset name Wind Power Cure Modelling 

are shown in Table 4-4. 
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Table 4.4: Results achieved on wind power curve modeling dataset 

Method 
Train set Test Set 

R2 R2 MAE RMSE 

X-CRA CatBoost + Random 

Forest + AdaBoost 
0.993 0.993 0.073 0.107 

CatBoost + Random Forest 0.994 0.991 0.083 0.116 

CatBoost + AdaBoost 0.993 0.991 0.086 0.117 

Random Forest + AdaBoost 0.997 0.991 0.085 0.119 

 CatBoost + Random Forest 

CatBoost and Random Forest, a powerful fusion was achieved in the realm of Wind 

Power Curve Modelling. Collaborative ensemble demonstrated impressive results, attaining a 

high R-squared (R2) score of 0.994 during training, and maintaining robust generalization with 

an R2 score of 0.991 on the test set. Precision of this fusion approach was evident, as seen in 

the MAE values of 0.083  and  RMSE values of  0.116 for testing, showcasing its capacity to 

accurately model and predict wind power dynamics. Amalgamation of these machine learning 

techniques highlights the potential of synergy for enhanced accuracy and predictive capabilities 

in wind power curve modeling. 

 CatBoost + AdaBoost 

Machine learning methods emerges as a potent avenue for wind power prediction. 

During training, this collaborative ensemble achieves a commendable R-squared (R2) score of 

0.993, underscoring its adeptness in capturing intricate data patterns. As the test phase unfolds, 

the ensemble maintains a strong R2 score of 0.991, signifying its capacity for reliable 

generalization. Ensemble's predictive precision is demonstrated through MAE   values of 0.086 

and RMSE values of 0.117 during testing. Combined approach of CatBoost + AdaBoost 

effectively models wind power dynamics. 
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 Random Forest + AdaBoost 

Utilizing the collective strength of Random Forest and AdaBoost, a potent synergy 

emerged in the domain of Wind Power Curve Modelling. Collaborative approach led to 

remarkable outcomes, achieving an impressive R-squared (R2) score of 0.997 during training 

and maintaining robust generalization with an R2 score of 0.991 on the test set. Precision of the 

ensemble was evident, with MAE   values of 0.085 and RMSE values of 0.119 for testing, 

showcasing its ability to model and predict wind power dynamics accurately. Ensemble 

methodology underscores the potential of combining machine learning techniques for enhanced 

accuracy and predictive capabilities in wind power curve modeling. 

 X-CRA: CatBoost + Random Forest + AdaBoost 

Synergistic ensemble achieved remarkable R-squared (R2) scores of 0.993 during both 

training and testing phases, demonstrating its capability to capture underlying data patterns and 

generalize effectively. Precision of this ensemble is evident through MAE   values of 0.073 and 

RMSE values of 0.107 for testing, underscoring its accuracy in modeling and predicting wind 

power dynamics. 

Comparing this comprehensive ensemble with the previously employed methods 

underscores its superiority. Previous individual or combined approaches like CatBoost + 

Random Forest, CatBoost + AdaBoost, Random Forest + AdaBoost, CatBoost, XGBoost, 

Decision Tree, Random Forest, GBR, LGBM, Extra Tree, and AdaBoost demonstrated 

commendable results, each showcasing specific strengths. However, the CatBoost + Random 

Forest + AdaBoost ensemble consistently outperforms them all. Notably, this combined 

approach boasts the lowest MAE values on both training and testing datasets, signaling 

unparalleled predictive accuracy and precision. 

Integration of CatBoost, Random Forest, and AdaBoost sets a new benchmark in wind 

power curve modeling. Its impressive R2 scores and minimal MAE values eclipse those of 

individual or paired methods. By synergistically leveraging the strengths of diverse machine 
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learning techniques, this ensemble methodology exemplifies the potential to elevate predictive 

capabilities and accuracy in prediction wind power dynamics to unprecedented levels. 

 Comparison on a Fine Windy Day Dataset 

Results of ensemble ML methods using the Dataset name A Fine Windy Day are shown 

in Table 4-5. 

Table 4.5: Results achieved on wind power a fine windy day 

Method 
Train Set Test Set 

R2 R2 MAE RMSE 

CatBoost + Random Forest + AdaBoost 0.993 0.967 0.297 0.501 

CatBoost + Random Forest 0.992 0.966 0.303 0.503 

CatBoost + AdaBoost 0.987 0.964 0.326 0.521 

Random Forest + AdaBoost 0.989 0.96 0.328 0.548 

 CatBoost + Random Forest 

Fusion of CatBoost + Random Forest machine learning methods presents a powerful 

strategy for wind power prediction. During training, this dynamic ensemble achieves a robust 

R-squared (R2) score of 0.992, reflecting its prowess in capturing intricate data patterns. As the 

test phase unfolds, the ensemble maintains a substantial R2 score of 0.966, highlighting its 

reliable generalization capabilities. Precision in prediction is demonstrated by MAE   values of 

0.303 and RMSE values of 0.503 during testing. Combined synergy of CatBoost + Random 

Forest effectively models wind power dynamics. 
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 CatBoost + AdaBoost 

ML methods emerges as a potent avenue for wind power prediction. During training, 

this collaborative ensemble achieves a commendable R-squared (R2) score of 0.987, 

underscoring its adeptness in capturing intricate data patterns. As the test phase unfolds, the 

ensemble maintains a strong R2 score of 0.964, signifying its capacity for reliable 

generalization. Ensemble's predictive precision is demonstrated through MAE   values of 0.326 

and RMSE values of 0.521 during testing. Combined approach of CatBoost + AdaBoost 

effectively models wind power dynamics. 

 Random Forest + AdaBoost 

Random Forest + AdaBoost machine learning methods proves to be a promising 

strategy for wind power prediction. During training, this collaborative ensemble achieves a 

notable R-squared (R2) score of 0.989, signifying its proficiency in capturing intricate data 

patterns. As the test phase unfolds, the ensemble maintains a robust R2 score of 0.96, 

underlining its capability for effective generalization. Precision in prediction is highlighted by 

MAE   values of 0.328 and RMSE values of 0.548 during testing. Harmonious union of Random 

Forest + AdaBoost effectively models wind power dynamics. 

 X-CRA: CatBoost + Random Forest + AdaBoost 

Combined force of CatBoost, Random Forest, and AdaBoost unveils exceptional 

potential. Comprehensive ensemble, a synthesis of three robust machine learning methods, 

achieves remarkable R-squared (R2) scores of 0.993 during training and 0.967 during testing 

on the A fine windy day dataset. These scores accentuate its adeptness in capturing intricate 

data dynamics and generalizing effectively to unseen instances. Ensemble's predictive accuracy 

is further affirmed by MAE   values of 0.297 and RMSE values of 0.501 during testing, 

emphasizing its precision in modeling wind power behavior. A comparison with previous 

methods sheds light on the prowess of this ensemble. While individual methods like CatBoost 

+ Random Forest, CatBoost + AdaBoost, and Random Forest + AdaBoost each showcased 
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commendable performances, their combined strength yields superior results. Notably, the 

CatBoost + Random Forest + AdaBoost ensemble outperforms the standalone CatBoost 

method, which achieved an R2 score of 0.964 and MAE of 0.518 during testing. Ensemble also 

surpasses the individual Random Forest and AdaBoost methods, which attained R2 scores of 

0.962 and 0.768, and MAE values of 0.535 and RMSE values of 1.319, respectively. The 

ensemble's R2 score of 0.967 during testing excels over the results of XGBoost, Decision Tree, 

GBR, and Extra Tree, showcasing a higher level of predictive accuracy. Additionally, the 

ensemble's MAE of 0.501 during testing outperforms XGBoost, Decision Tree, and GBR, 

demonstrating enhanced precision in predicting wind power dynamics. Collision of CatBoost, 

Random Forest, and AdaBoost in wind power prediction culminates in a groundbreaking 

ensemble. With exceptional R-squared scores, minimal MAE values, and superior predictive 

accuracy, this approach outshines individual and combined methods. CatBoost + Random 

Forest + AdaBoost ensemble stands as a prime example of harnessing collective strengths for 

unparalleled results, offering valuable insights into wind power generation on fine windy. 

 Comparison on KDD Dataset 

Results of ensemble ML methods using the Dataset name KDD are shown in Table 4-

6. 

Table 4.6: Results achieved on wind power KDD 

Method 
Train Set Test Set 

R2 R2 MAE RMSE 

CatBoost + Random Forest + AdaBoost 0.988 0.959 0.452 0.856 

CatBoost + Random Forest 0.992 0.957 0.463 0.876 

CatBoost + AdaBoost 0.981 0.959 0.459 0.86 

Random Forest + AdaBoost 0.963 0.956 0.489 0.891 
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 CatBoost + Random Forest 

In the landscape of predictive modeling, the collaborative fusion of CatBoost + Random 

Forest machine learning methods emerges as a powerful approach. During training, this 

dynamic ensemble attains a robust R-squared (R2) score of 0.992, adeptly capturing intricate 

data patterns. As the test phase unfolds, the ensemble maintains a strong generalization with an 

R2 score of 0.957. Precision in prediction is evident through a MAE   value of 0.463 and a 

RMSE of 0.876 during testing. These outcomes underscore the synergistic strength of the 

CatBoost and Random Forest. 

 CatBoost + AdaBoost 

CatBoost and AdaBoost machine learning methods emerges as a potent strategy. During 

training, this collaborative ensemble achieves a commendable R-squared (R2) score of 0.981, 

effectively capturing intricate data patterns. As the test phase unfolds, the ensemble maintains 

robust generalization with an R2 score of 0.959. Precision in prediction is evident through a 

MAE value of 0.459 and of 0.86 during testing. These outcomes underscore the combined 

strength of CatBoost and AdaBoost. 

 Random Forest + AdaBoost 

Random Forest and AdaBoost machine learning methods presents a formidable 

approach. During training, this collaborative ensemble achieves a commendable R-squared (R2) 

score of 0.963, adeptly capturing intricate data patterns. As the test phase unfolds, the ensemble 

maintains robust generalization with an R2 score of 0.956. Precision in prediction is evident 

through a MAE   value of 0.489 and a RMSE of 0.891 during testing. These outcomes 

underscore the synergy between Random Forest and AdaBoost. 
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 X-CRA: CatBoost + Random Forest + AdaBoost 

In a significant stride within predictive modeling, the combined force of CatBoost + 

Random Forest + AdaBoost machine learning methods unveils remarkable potential. During 

training, this collaborative ensemble attains an impressive R-squared (R2) score of 0.988, 

showcasing its ability to capture intricate data patterns. As the test phase unfolds, the ensemble 

maintains strong generalization with an R2 score of 0.959. Precision in prediction is evident 

through a test MAE   of 0.452 and a test RMSE of 0.856. 

A comparative analysis with previous methods sheds light on the prowess of this 

ensemble. While individual methods such as CatBoost + Random Forest, CatBoost + AdaBoost, 

and Random Forest + AdaBoost each demonstrated commendable performances, their 

combined synergy in CatBoost + Random Forest + AdaBoost yields superior results. Notably, 

the ensemble outperforms standalone methods like Random Forest and AdaBoost, which 

achieved test R2 scores of 0.956 and 0.955, and test MAE values of 0.889 and 0.481, 

respectively. 

Ensemble's R2 score of 0.959 during testing excels over the results of individual 

methods like CatBoost and AdaBoost, which achieved test R2 scores of 0.959 and 0.959, 

respectively. Additionally, the ensemble's test MAE of 0.452 outperforms the MAE values of 

both CatBoost and AdaBoost, showcasing enhanced precision in predicting outcomes. 

These three predictive modeling represents a significant advancement. With exceptional 

R-squared scores, minimal MAE, and competitive RMSE values, this approach surpasses 

individual and combined methods. Ensemble stands as a prime example of harnessing collective 

strengths, offering valuable insights into accurate prediction s and outperforming previous 

techniques within the predictive modeling landscape. 

The results are summarized in table 4.7 to highlight the best methods for the prediction 

of wind energy output.
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Table 4.7: Summary of obtained results on all three datasets 

Datasets 

Wind power curve modelling Dataset A Fine Windy Day Dataset KDD Dataset 

Train Set Test Set Train Set Test Set Train Set Test Set 

R2 R2 MAE RMSE R2 R2 MAE RMSE R2 R2 MAE RMSE 

CatBoost 0.993 0.992 0.075 0.109 0.993 0.964 0.304 0.518 0.981 0.959 0.465 0.861 

XGBoost 0.993 0.991 0.085 0.116 0.956 0.948 0.400 0.627 0.963 0.956 0.487 0.888 

DT 1.000 0.986 0.098 0.149 1.000 0.924 0.423 0.753 1.000 0.919 0.632 1.207 

RF 0.997 0.991 0.084 0.117 0.995 0.962 0.300 0.535 0.994 0.956 0.467 0.889 

GBR 0.992 0.991 0.085 0.116 0.954 0.945 0.412 0.642 0.955 0.951 0.537 0.944 

LGBM 0.997 0.991 0.084 0.117 0.976 0.962 0.329 0.535 0.968 0.958 0.462 0.872 

ExtraTree 1.000 0.991 0.079 0.119 1.000 0.962 0.334 0.534 1.000 0.956 0.473 0.896 

AdaBoost 0.984 0.984 0.123 0.157 0.766 0.768 1.030 1.319 0.999 0.955 0.481 0.898 

CatBoost + 

RF 
0.994 0.991 0.083 0.116 0.992 0.966 0.303 0.503 0.992 0.957 0.463 0.876 

CatBoost + 

AdaBoost 
0.993 0.991 0.086 0.117 0.987 0.964 0.326 0.521 0.981 0.959 0.459 0.86 

RF + 

AdaBoost 
0.997 0.991 0.085 0.119 0.989 0.96 0.328 0.548 0.963 0.956 0.489 0.891 

X-CRA 0.993 0.993 0.073 0.107 0.993 0.967 0.297 0.501 0.988 0.959 0.452 0.856 
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4.3 Summary 

In our research, we explored a variety of machine learning techniques to predict wind 

energy output. These techniques included CatBoost, XGBoost, Decision Tree, Random Forest, 

GBR, LGBM, Extra Tree, and AdaBoost. Each technique was applied individually to the 

datasets, and their performance was evaluated based on measures like R-squared (R2) scores, 

MAE, and RMSE. These techniques showcased their unique strengths in capturing complex 

relationships within the data. We didn't stop at using individual techniques. We also delved into 

the power of combining methods to further improve prediction accuracy. Through Random 

Forest + AdaBoost, CatBoost + AdaBoost, and CatBoost + Random Forest, we observed 

enhanced precision in our prediction s. Among them, CatBoost consistently stood out as the 

best-performing individual technique across various datasets.  

In our analyses, CatBoost consistently demonstrated remarkable performance, 

outshining other individual techniques. Its ability to handle categorical features and capture 

intricate data patterns made it a frontrunner. Additionally, we observed that CatBoost's potential 

was magnified when combined with Random Forest and AdaBoost, resulting in the X-CRA 

CatBoost + Random Forest + AdaBoost ensemble. This hybrid approach yielded the most 

accurate prediction s across the board. Our research underscores the effectiveness of machine 

learning in predicting wind energy output. By harnessing various techniques and their 

synergies, we've unveiled a pathway to achieve highly accurate prediction s. CatBoost, 

particularly when combined with Random Forest and AdaBoost, showcases the remarkable 

potential of ensemble techniques in the field of wind energy prediction. Through our 

exploration, we've taken a significant step towards refining wind energy output forecasts, 

thereby contributing to advancements in sustainable energy practices.  

Based on findings, the answer to research question, "Which ML models are best for the 

prediction of wind energy output?. Comprehensive exploration of various machine learning 

techniques aimed at predicting wind energy output, our research yields a resounding response 

to the question regarding the most suitable ML models for this task. Through rigorous 

experimentation with a multitude of ML models including CatBoost, XGBoost, Decision Tree, 

Random Forest, GBR, LGBM, Extra Tree, and AdaBoost. Several combinations showed 
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improved precision in prediction s, CatBoost with ensemble techniques like Random Forest and 

AdaBoost that truly elevated prediction accuracy. The resulting hybrid approach, referred to as 

the X-CRA CatBoost + Random Forest + AdaBoost ensemble, consistently outperformed 

individual models and other combined techniques across various scenarios. Extensive 

experimentation and analysis, we assert that CatBoost, particularly when integrated with 

ensemble methods such as Random Forest and AdaBoost, stands out as the most effective ML 

model for predicting wind energy output. Its consistent performance, coupled with the 

substantial enhancement in predictive accuracy when combined with complementary 

techniques. 

Investigation aiming to understand the factors influencing wind energy output and using 

machine learning techniques to analyze them, we uncovered several key factors that 

significantly impact the amount of energy generated by the wind. Through our exploration using 

various ML models we identified that factors like wind speed, direction, temperature, humidity, 

and possibly other environmental variables were crucial in determining wind energy output. 

Our ML models helped us see how these factors interacted and which ones had the most 

influence on predicting wind energy output. Combination of ML methods, particularly the 

ensemble approach of CatBoost with Random Forest and AdaBoost, highlighted that factors 

like wind speed and direction had a more pronounced impact on prediction energy output 

compared to other variables we examined. It enabled us to better understand and predict energy 

production of these influential factors. 
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CHAPTER 5 

5 CONCLUSION AND FUTURE WORK 

Thesis provided valuable insights into wind energy prediction. Various methods 

individually and in combinations in an ensemble way are tested on datasets. Performance of the 

ML methods vary depending on the specific characteristics of the datasets. Some methods 

outperform on one dataset while performing weak on another datasets. 

5.1 Conclusion 

Thesis presented valuable insights into predicting wind energy output using different 

methods and different factors.  The ML models used are CatBoost, XGBoost, Decision Tree, 

Random Forest, GBR, LGBM, Extra Tree, and AdaBoost. These models are applied one by 

one, on three different publically available datasets. Performance of these models are compared 

using coefficient of determination, MAE, and RMSE. Experimental results show that CatBoost 

outperforms all other methods by achieving high coefficient of determination and least MAE 

and RMSE scores.  

Experimental results show that by combining different ML models in an ensemble way 

result in even better results are obtained. The proposed X-CRA model which is combination of 

CatBoost, Random Forest, Adaboost models and XGBoost obtains better results than individual 

methods. Additionally, the X-CRA method is compared with CatBoost + Random Forest, 

CatBoost + Adaboost and Random Forest + Adaboost where X-CRA demonstrates better 

performance. 

The experimental results show that the proposed method X-CRA gives RMSE of 10.7% 

compared to 10.9% of CatBoost on dataset Wind power curve modelling. It achieves RMSE of 

50.1% Compared to 51.8 % of CatBoost on a Fine Windy Day dataset. Whereas on KDD Cup 
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dataset it gives RMSE of 85.6% compared to 86.1% by CatBoost. It is observed through 

experimental results that wind speed is the best feature among all other feature for the prediction 

of wind energy output followed by rotor torque and blade angles. 

5.2 Limitations  

Combination of multiple methods, although lead to promising results, but can also lead to 

overfitting – where the ensemble model performs well on the training data but struggles to 

generalize to new data or unseen test data. Risk is present in independent models and ensemble 

models. While independent models aim to capture diverse features' importance, certain features 

may not carry equal significance in different contexts because the dataset is split into chunks 

and feature subspaces in ensemble learning. Overlooking the feature relevance could potentially 

affect the accuracy of predictions achieving the best performance for each method requires fine-

tuning of hyper parameters, which is a time-consuming process and also dependent upon 

dataset.  

Effectiveness of the methods can be affected by the degree of tuning applied and hyper-

parameter may not be the best ones on another dataset. Usually the performance of predictive 

techniques might be influenced by the size of the dataset. Limited data can lead to challenges 

in training robust models, impacting their ability to generalize well. 

Despite these limitations, this thesis remains a valuable step towards wind energy 

prediction. Datasets used also covers the majority of the factors that influence wind energy 

production but there could be hidden factors for which the novel sensors and technology need 

to be built. By addressing these constraints, future research can focus on refining techniques 

and strategies to further enhance predictive accuracy and applicability. 
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5.3 Future Work 

This thesis paves the way for future research and advancement in wind turbine output 

analysis and prediction. It evaluates the potential of machine learning techniques in enhancing 

prediction accuracy while also identifying areas that require further investigation and 

refinement. It contributes to ongoing research efforts aimed at refining models, incorporating 

additional variables, and developing advanced algorithms for better prediction s and 

optimization of wind energy Production. Analysis of Features and prediction of wind turbine 

output is a significant topic with far-reaching implications for renewable energy integration, 

wind farm operation, and the transition towards sustainable energy systems.  

Wind energy prediction can be further improved by combining more than three 

techniques, compared to the proposed X-CRA method, which combines three ML methods. 

Additionally more ML models especially the deep learning model can be used and ensemble to 

improve the wind energy prediction.  Additionally the dataset for wind energy prediction is also 

very important. With advancement of new sensors and technologies, more factors and feature 

can be measured, for that new techniques for prediction can be investigated. 
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