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ABSTRACT 

Classification of Cyber Attacks on IoT using Machine Learning 

Internet of Things (IoT) devices are growing rapidly, which are raising concerns 

regarding data security and privacy. With the increase in volume of data generated by IoT 

devices, secure transmission and processing has become essential. Protecting IoT infrastructure 

and devices from cyber-attacks is an active research area now-a-days. The detection and 

classification of attacks on IoT require dynamic and automatic techniques, based on Machine 

Learning (ML). This thesis focuses on the classification of cyber-attacks on IoT using ML. It 

explores the potential of ensemble learning to enhance the accuracy of ML. Two different 

publicly available datasets are used in this thesis. These datasets are UNSW NB 15 and NSL 

KDD. The ensemble learning is implemented by combining the strengths of Extreme Gradient 

Boosting (XGBoost) and Deep Neural Network (DNN). The proposed ensemble learner is 

named as X-DNN. 

The performance evaluation of X-DNN is carried out using, accuracy, precision, recall, 

and F1 scores. The experimental results show that X-DNN demonstrates an accuracy of 85.36% 

in classifying cyber-attacks on UNSW NB 15 dataset whereas it achieves accuracy of 99.81% 

on NSL KDD dataset. X-DNN outperforms state of the art methods such as Hierarchical 

Clustering Decision Tree Twin Support Vector Machine, Gated Recurrent Unit, and Deep 

Neural Networks. The proposed method offers relatively better performance which highlights 

its significance in classifying cyber-security attacks on IoT.a
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CHAPTER 1 

1 INTRODUCTION 

1.1 Introduction 

Internet of Things (IoT) has a wide range of applications in different domains [1]. 

Cyber-attacks on IoT have considerably increased with the passage of time which are raising 

concerns for IoT applications such as smart homes [2], energy [3], healthcare [4], industrial 

processes [5], agriculture [6], and advanced manufacturing [7] sectors. IoT devices generate 

huge amounts of data and require authentication, security, protection and transmission [8] 

mechanisms.  

 

Figure 1.1 IoT Application 

The use of Machine learning (ML) techniques in this regard have considerably increased 

to detect and identify cyber-attacks[9]. In Figure 1.1, an example of IoT application is shown. 

In the given IoT architecture diagram, various components are interconnected to enable 
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seamless communication and functionality. A brief explanation of each component is as 

follows: 

i. Home: This represents the physical residence or living space where the IoT system is 

deployed. It serves as the central hub for connecting and controlling the interconnected 

devices. 

ii. Mic: The microphone component captures audio input and allows voice-based interaction 

with the IoT system. It enables users to give voice commands or communicate with other 

devices. 

iii. Maintenance: Maintenance component represents a set of crucial activities essential for 

ensuring the health and performance of the IoT system. These activities encompass tasks 

such as software updates, device troubleshooting, and maintaining the system's smooth 

operation, contributing to the overall efficiency of the IoT ecosystem. 

iv. Music: This component refers to the integration of music streaming services or audio 

playback devices within the IoT architecture. It allows users to stream and control music 

wirelessly through connected devices. 

v. Setting: The setting component refers to the configuration or customization options 

available for the IoT system. It allows users to adjust various parameters or preferences 

according to their requirements. 

vi. LED: The LED component represents light-emitting diodes, which can be integrated into 

the IoT system for various purposes. These LEDs can serve as indicators, status displays, 

or even interactive elements that respond to user commands. 

vii. Wireless Fidelty: WiFi represents the wireless network connectivity that enables 

communication between different IoT devices within the home environment. It serves as 

the communication medium for data transmission. 

viii. Persons: The persons component represents individuals or users who interact with the IoT 

system. They can engage with the system through voice commands, mobile applications, 

or other interfaces to control and access connected devices. 

ix. Cloud: The cloud component represents the cloud computing infrastructure that provides 

storage, processing, and analysis capabilities for the IoT system. It facilitates data storage, 

advanced analytics, and remote access to the system. 
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x. Games: The games component indicates the integration of gaming devices or applications 

within the IoT system. It enables users to engage in interactive gaming experiences using 

connected devices. 

xi. Home Appliances: This component includes various household appliances that are 

connected to the IoT system. Examples may include smart thermostats, smart lighting 

systems, smart kitchen appliances, and other automated devices that can be remotely 

controlled or monitored. 

The interconnected components in the IoT architecture aim to create a smart and 

automated environment where users can control various devices, access services, and 

personalize their living spaces according to their preferences. 

The rapid development of communication and information technologies has surpassed 

conventional methods for recognizing trivial network settings. The evolution of smart home 

systems has been aided by IoT based technologies which have enhanced quality of life but have 

increased the security concerns as well due to cyber-attacks. Furthermore, IoT allows millions 

of devices to communicate and collaborate [10]. Sensors, internet, Radio Frequency 

Identification (RFID), and similar innovation have enabled transforming of conventional items 

into smart objects to interact with one another [3]. The ability to anticipate future needs and the 

capacity to execute the requirements successfully using IoT is a significant societal and 

industrial revolution. Sensory devices are connected with the IoT to sense the environments 

[11]. 

The IoT consists of three primary stages: data collection, data processing/aggregation, 

and data transmission [3]. Data is collected from various nodes having limited storage, limited 

range, and low computational power. Then the data is analyzed or aggregated and then finally 

transmitted. 

An IoT architecture consists of sensors, actuators, protocols, cloud services, and layers 

that make up the organizing framework. The platform is typically made up of distinct layers 

that allow administrators to maintain, monitor, and evaluate consistency. The application, 

transport, and perception layers are part of an IoT architecture. The first layer utilizes numerous 

smart technologies to gather data by combining facts and connecting users and IoT via 
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distributed computing or advanced data management methods. The second layer is responsible 

for network activities, whereas the third level gathers data. The absence of usage layer security 

is a disadvantage [12].  

Various approaches provide IoT security, some of those were used to secure network 

access control procedures that concentrate on information confidentiality and authentication for 

proper network access. As a result, the IoT-based network necessitates a security function that 

can be utilized as a guard to identify cyber-attacks [13]. As a result, researchers are looking for 

innovative and automatic methods to improve security using Machine Learning (ML) 

algorithms. These systems protect data by examining the entire network activity and generating 

an alert if a security breach is discovered [14]. 

The IoT security has evolved over time, but attacks have also grown broad and 

distracting [15]. Intrusion detection systems (IDSs) based on ML have frequently explored by 

the researchers in attempts to defend the IoT networks. Traditional IDS techniques are less 

efficient owing to their simple and typical characteristics such as monitoring diversity, limited 

bandwidth size, and worldwide connectivity [14]. The most recent ML methods have brought 

revolution in IoT, video surveillance, medical IoT, and others because they are capable of 

identifying unusual and new patterns and detect attacks initiated toward IoT networks. 

Numerous surveys have been conducted on the security and attacks on IoT with focus on 

recently emerging cyber-attacks on IoT [16]. These needs revisiting the state-of-the-art ML 

techniques and requires combining their strengths in an ensemble way to enhance security and 

defend the IoT against cyber-attacks. 

1.2 Problem Statement 

IoT devices requires seamless connectivity beside a robust security framework to ensure 

prevention of malicious traffic and cyber-attacks without compromising the uninterrupted 

connectivity and data transmission [17]. Protecting IoT against cyber attacks, hacking attempts 

and malicious traffic is of an important research area now a days [4]. Numerous methods have 

been proposed to mitigate cyber-attacks [18]. However, there is still a need of new and robust 
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methods to mitigate emerging cyber attacks by using methods especially based on ML and deep 

learning techniques.  

1.3 Research Question 

The main research questions are as follows: 

RQ1: Which Machine learning approaches perform best against which types of cyber-attacks? 

RQ2: How to combine different machine and deep learning techniques in an ensemble way to 

identify the new cyber-attacks efficiently? 

1.4 Objectives 

Main objective are as follows:  

i. To find the best ML algorithms to identify cyber security attacks on IoT 

ii. To perform a comparative analysis of different ML approaches in an ensemble way to 

mitigate new cyber-attacks 

1.5 Scope of Study 

Cybersecurity is one of the most challenging problems that IoT devices confront. 

Sensors, equipment, and networks connected to the internet are subjected to regular internet-

based examination, theft, ransom, espionage, and even destruction [19].  An IoT device is the 

most vulnerable to severe attacks since because it has multiple online nodes spread across large 

areas. IoT attacks could cause chaos and significant economic damages [20]. 
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Security is often overlooked and users are put at risk as vendors compete to bring new 

goods to the market, making IoT device protection even more difficult [21]. The lack of a single 

approach for protecting already deployed gadgets makes the problem even more complex [6]. 

Often IoT devices are unable to upgrade software after purchase by the consumer because they 

do not provide such a functionality. Therefore, it is essential to develop a technique for detecting 

vulnerabilities in IoT. 

With the increasing number and complexity of attacks on IoT, protecting sensitive 

personal and commercial information, and safeguarding security, requires constant attention. 

The adoption of technology has led to including most countries' essential services in cyberspace 

networks. Because of this, the internet has become a rather appealing and effective platform for 

attack. After land, sea, air and space warfare, cyber warfare has been recognized as the fifth 

modern domain war [22]. The accessibility to a global network allows attackers to roam the 

internet freely and target systems in places that would otherwise be out of reach, making attacks 

more straightforward to execute and faster than traditional warfare[23].  So, it is essential to 

develop techniques for detecting anomalies in the networks. 

This thesis focuses on the identification and mitigation of cyber-attacks in the context 

of IoT systems. The primary objective of our thesis is to develop effective methods for 

identifying cyber-attacks targeting IoT systems. Examples of attacks are Reconnaissance, 

Backdoor, Denial of Service (DoS), Exploits, Fuzzers, Probe, Distributed Denial of Service 

(DDoS), R2L, U2R, and unauthorized access attempts. 

To train ML for the identification of cyber-attacks depends upon the dataset. The dataset 

should reflect real-world scenarios and characteristics of cyber-attacks. It should contain 

instances or examples that are similar to the actual attacks that will be occurring in the targeted 

environment, such as IoT systems. The dataset should be sufficiently large to provide an 

adequate number of samples for learning. A larger dataset enables robust and reliable results. 

The dataset should cover a wide range of attack types, including both known and emerging 

ones. For instance, DoS, DDoS, Reconnaissance, Backdoor, Exploits, Fuzzers, Probe, R2L, 

U2R, etc.  
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1.6 Contribution and Significance 

This research applies ML to enhance the security aspect of the IoT. It has applications 

in IoT systems used in home, energy, agriculture, smart homes, advanced manufacturing, and 

industries. The focus is on emerging attacks. The automatic classification of the attacks are 

investigated. The study of cyber-attacks and countermeasures are rapidly growing fields, as 

evidenced by several recent research works [24]. Every day, new types of attacks emerge. So, 

ML algorithms applied on the most recent data sets, combining even more information with the 

essential IoT features help them to work efficiently.  

1.7 Organization of Thesis 

The thesis is organized into five main sections: introduction, literature review, 

methodology, results and discussion, and limitations and conclusion. 

The introduction provides an overview of the study's objectives, the research problem 

background, research questions, and objectives, while also discussing the study's significance. 

The literature review delves into relevant literature in the cybersecurity, machine learning (ML), 

and deep learning (DL) fields, covering the history of cybersecurity, ML and DL evolution, 

their applications in cybersecurity, and existing research on ML in cybersecurity. The 

methodology chapter outlines the research approach, data collection and preprocessing, feature 

selection, data augmentation, proposed model development, and dataset descriptions. The 

results and discussion chapter details the experimental setup, main findings, and comparisons 

among various ML and DL techniques, including the proposed method. The conclusion and 

future work chapter summarizes research outcomes, identifies constraints, suggests future 

research directions, and underscores the study's contribution to cybersecurity and ML. 
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CHAPTER 2 

2 LITERATURE REVIEW 

2.1 Overview 

Cyber-attacks on IoT devices pose severe threats, compromise on data integrity, 

privacy, and the overall functionality of these interconnected systems. Timely identification 

and mitigation of cyber-attacks are vital for safeguarding data, maintaining operational 

efficiency, and protecting user trust in IoT technologies [25]. This chapter provides insights 

into the state of the art methods, highlights research gaps and challenges, and identifies the 

effective ML approaches which can be employed in the cyber-attacks. 

2.2 Internet of Things Security 

A  framework is presented in [1] to classify attacks of botnets for nine devices and 

calculate various performance metrics for different algorithms. The study showed impressive 

results with high attack detection rates of above 99%. 

A systematic review of the security challenges faced by the IoT technology is presented 

in [14]. In IoT, there is an increase in connected devices, which leads to a decline in security 

management, leaving it open to security attacks that can cause significant financial and 

reputational losses. There are various security issues that exist at IoT layers, with a particular 

emphasis on DDoS attacks, which pose a noteworthy threat to the cyber world. Furthermore, 

various anomaly detection techniques have been explored along with future research challenges 

and potential solutions [26]. 
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Several research papers have addressed the security challenges posed by the Internet of 

Things (IoT) and its large-scale deployment of connected devices. In [27], an unsupervised 

anomaly detection system was proposed for large-scale smart grids using symbolic dynamic 

filtering (SDF) for feature extraction, achieving a high accuracy of 99%. Ref [28] introduced a 

two-stage detection method for Mobile Ad Hoc Network (MANETs), wireless Sensor 

Networks (WSNs), and IoT networks, which demonstrated detection rates exceeding 90% for 

node velocity scenarios. The importance of enhancing the security of IoT networks due to the 

large scale of IoT devices being developed and deployed is challenging due to the limited 

computational ability of these devices and the difficulty in applying encryption and 

authentication to prevent malicious cyber-attacks [29]. Various studies have focused on security 

concerns of IoT networks with new and conventional ML-based approaches. Different studies 

have focused on different safety concerns, although others provide a variety of security methods 

dependent on various models and strategies.  

The challenges of privacy, safety, and security in the IoT systems are discussed in  [30]. 

Traditional techniques and tools are not efficient in preventing and protecting against new types 

of cyber threats, and therefore, up-to-date, dynamic, and robust, security measures are reported 

essential to secure IoT systems. Regarding security in IoT development, a study [31] highlights 

the security issues in IoT development and emphasizes the need to link high-risk network 

activities with entities to promote industrial development. It investigates the use of deep 

learning for intelligent system defense and automated monitoring, along with the contribution 

of IoT in detecting and responding to cyber-attacks and securing edge data transmission. Lastly, 

research in [32] investigated intrusion detection and security in the growing networks of the 

IoT, emphasizing the use of advanced deep learning techniques for detecting intrusions and 

abnormal behavior in large-scale IoT networks [33]. 

In the context of the growing networks of the IoT and their vulnerability to security 

threats, the research [34] study effect of intrusion detection and security in the growing 

networks of the IoT, which generate huge amounts of vulnerable data to security threats. 

Conventional intrusion detection systems (IDSs) are insufficient for advanced attacks. So it 

investigates the utilization of sophisticated deep learning methods for detecting intrusions 

automatically and identifying abnormal behavior in a precise manner. Public network-based 

datasets of IDSs are used and the performance of DL techniques are based on different metrics.  



   11 

 

 

2.2.1 Machine Learning 

This section provides an overview of different ML techniques used for the identification 

and detection of cyber-attacks. 

In response to the escalating challenges in securing IoT systems within smart cities due 

to the exponential growth of network traffic, researchers proposed a Random Forest Based 

method for Anomaly Detection in IoT systems [35]. The exponential growth of network traffic 

through IoT systems in smart cities has introduced new cybersecurity challenges. Infected IoT 

devices can be detected at distributed fog nodes using the Random Forest Based method, which 

achieves a classification accuracy of 99.34%. The authors in [36] argue that their approach is 

effective in addressing IoT cybersecurity threats in smart cities. It evaluate the performance of 

multiple ML models to achieve accurate prediction of attacks and anomalies in IoT systems. It 

is shown that the Random Forest based algorithm gives accuracy of 99.4%. In the realm of IoT 

security against denial of service (DoS) attacks, a study  [37] deploy ML classifiers to secure 

IoT against denial of service (DoS) attacks. A comprehensive study conducted on classifiers by 

the authors to develop IDSs and evaluated their performance using popular datasets NSL-KDD, 

UNSW-NB15, and CIDDS-001. They also analyzed the substantial distinction among 

classifiers statistically using Friedman and Nemenyi tests and evaluated the response time of 

classifiers on IoT. 

A framework on Authentic and protocol-compliant DoS attack cases is proposed in [38]. 

The framework is compare with three classifiers, C4.5, Averaged one-dependence estimators 

(AODE), and Multilayer Perceptron (MLP) using different features, and the results are reported 

in the form of false positive rate, true positive rate, training time, accuracy and error. 

Considering the obtained results, the framework appears to be effective in detecting attacks. 

The AODE and C45 classifiers, when used with complete features without feature selection, 

yield the highest accuracy rates [39]. In contrast, the MLP classifier exhibited the highest false 

positive rate and training time. A novel approach is presented to detect multi-layer DDoS 

attacks in IoT devices using ML techniques [40]. The network system includes Software-

Defined Networking (SDN) switches, cloud servers, and IoT devices, IoT gateways. The 

sensory data is collected from eight smart poles in the system and processed to extract features 

to identify DDoS attacks [41]. The collected data is split into training and testing samples, 
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achieving over 97% test accuracy using DT based methods. An ML-based framework [25] is 

used for identifying botnet attacks on IoT devices. The framework is a lightweight system with 

less computational power requirement for detecting botnet-based attacks. The framework uses 

sequential detection architecture and an efficient feature selection procedure. It achieves a high 

level of accuracy, around 99%, using several ML algorithms which are Naïve Bayes, artificial 

neural network (ANN), and decision tree [42].  

According to [43] the increasing popularity of smart homes and the potential security 

risks has come with the devices and sensors being connected to the internet. A hybrid IDS 

incorporating RF, XGBoost, DT, KNN methods are used for the detection of cyber-attacks. An 

intrusion detection in Aerospace Cyber-Physical Systems (ACPS) is proposed [44] for the 

system equipped with sensors, data analysis tools and wireless standards. These systems are 

prone to cyber threats that compromise their safety, efficiency, and reliability. ML approaches 

have demonstrated encouraging outcomes in the cybersecurity applications such as identifying 

intrusion [45]. However, the lack of available data on IoT attacks is a significant problem for 

applying machine learning techniques to this field. The study compares different machine 

learning models and network architectures for efficiency and accuracy, and achieves over 99% 

accuracy with low energy consumption and memory usage. A two-stage hybrid framework is 

employed for enhancing the accuracy of intrusion detection systems in IoT networks [46]. The 

method utilizes a genetic algorithm to select appropriate features and ML algorithms, such as 

ensemble classifier, SVM, and DT, for classification. The study reports 99.8% accuracy with 

10-fold cross-validation on a multiclass NSL-KDD database.  

In light of the significant challenges encountered in IoT security, researchers in [30] 

highlight the significant challenges faced by IoT security and how ML has emerged as a 

powerful method to recognize threats, and suspicious activities in networks. A comprehensive 

literature review and comparison of various ML algorithms are carried out in detecting attacks 

and anomalies.  It also highlights the potential of ML-based techniques in providing an effective 

solution to the security issues faced by the IoT networks [47]. ML algorithms are widely used 

in diverse areas, including healthcare and IoT. However, there is a high possibility of 

manipulating the training datasets, which can produce biased results. To tackle this issue, a 

solution is proposed [48] that uses a private cloud and blockchain technology. The system 

allows dataset owners to securely store and manage their data, preventing tampering and 
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ensuring the integrity of the data. A Framework discusses the increasing concern for attacks on 

IoT systems and the enormous types of attacks that can occur [49]. They compare various ML 

algorithms, including ANN, LR, RF, SVM, and DT, using evaluation metrics such as accuracy, 

f1 score, recall, and precision and area under the ROC Curve. The results suggest that the RF 

algorithm performs relatively well, compared to other methods, although all methods have 

similar accuracy. 

Investigating the application of machine learning algorithms to IoT datasets, including 

the RF classifier, SVM, and LR, is the focal point of the study in [50]. This study extensively 

compares the outcomes concerning various metrics, such as the F1 score, accuracy, area, recall, 

precision, and error rate. The results show that RF and SVM algorithms perform almost 

similarly in terms of all parameters, achieving high accuracy rates of 96.85% and 96.74%, 

respectively. RF gives a true negative rate of 95.65%, while SVM yields a true negative rate of 

95.87%. The precision and F-measure scores are also high for both algorithms. It also 

emphasizes the importance of detecting and preventing phishing attacks in IoT devices to 

safeguard online transactions. An ML-based IDS for an Energy Aware Smart Home (EASH) 

framework [51] is designed to address service failures, security issues, and abnormality in the 

Cyber-Physical System (CPS). The system analyzes network attacks and communication 

failures using ML techniques to differentiate abnormality sources. The framework achieves an 

85% accuracy rate and shows potential for further development to enhance accuracy. In [52] an 

analysis of Bot-IoT is carried out, which contains about 73 million instances and is used to 

detect numerous botnet attacks in IoT networks using ML. The paper discusses the dataset's 

features, pitfalls, and data cleaning procedures, as well as its use in published research. In their 

overview of machine learning (ML) approaches to IoT security, the authors in [3] delve into 

the security challenges associated with the Internet of Things (IoT). Security issues related to 

IoT are discussed and six research questions are addressed and identified as emerging research 

directions shaping future investigations in this area [53]. The work emphasizes the significance 

of developing models that can incorporate the latest advancements and technologies from big 

data and ML to identify IoT attacks with high accuracy and efficiency in real or nearly real-

time. 

Exploring security issues in the Web of Things (WoT), [9] highlights the vulnerabilities 

of this expansive network of services and applications to attacks such as sinkhole, overhang 
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dropping, and denial of service (DoS). To address these concerns, the use of an IDS based on 

ML algorithms is suggested. It emphasizes the importance of a properly designed IDS to protect 

the future network infrastructure of smart cities. It also draws attention to the constraints of the 

widely used cloud-based IDS, which deals with high latency, resulting in slow detection of 

malicious users. The study in [11] investigate the effect of intrusion detection in the face of 

increasing web organization and the need to protect against data theft and information security 

risks. It presents two different approaches to intrusion detection, one using association rule data 

mining and the other using a ML algorithm SVM, and comparing their outcomes on the KDD 

Cup '99 dataset. The results show that SVM outperforms in terms of precision. It is reported 

that the model achieves excellent accuracy in detecting the four types of attacks, in contrast to 

the existing methodologies. Research in [54] underscore the importance of data security 

measurement and privacy in the IoT and the need for dynamic methods to address the nature of 

attacks. It emphasizes the use of ML techniques for IDS in IoT networks and explores various 

architectures and methods for identifying compromised IoT devices. It provides an analysis of 

the contemporary literature on attack types and ML-based IDS, focusing on IoT attacks. 

In [55] ML techniques for detecting and identifying IoT devices are compared, with a 

focus on non-cryptographic approaches. Rogue IoT devices pose a serious security risk to the 

IoT ecosystem, and detecting and identifying them is a crucial first step in securing the network. 

It discusses various ML-related enabling technologies, such as learning algorithms, feature 

engineering, incremental learning, and abnormality detection. A system called ANTE is 

proposed for early detection of botnets in the IoT using ML algorithms [56]. The evaluation of 

the system is assessed by testing it on four typical datasets.  Similarly, a framework [57] is 

proposed for a ML-IDS for detecting IoT network attacks, due to the growing security risks and 

privacy posed by the proliferation of IoT devices. The framework uses feature scaling, 

dimensionality reduction, and six different ML models to analyze the UNSW-NB15 dataset. 

The experimental evaluation shows that the proposed ML-IDS achieved competitive accuracy, 

recall, F1-score, precision, Mathew Correlation Coefficient (MCC), and kappa compared to 

existing works [58]. The framework suggests that ML-supervised algorithm-based IDS for IoT 

can help enhance the privacy and security challenges of IoT A framework by [59] uses a feature 

selection and ML-based approach to optimize security in the IoT network. The presence of 

cyberattacks and security risks represents a substantial threat to the integrity and stability of IoT 

systems. Consequently, the development and implementation of a machine learning framework 
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are imperative to effectively mitigate these risks and ensure the robust security of IoT 

environments. The proposed approach in [60] involves dimension reduction using linear 

discriminant analysis (LDA) to reduce the size of network data, followed by training machine 

learning predictors using the reduced dataset. The efficiency of the approach is assessed using 

various criteria, and the results show the impact of the ML approach in enhancing security in 

the IoT network. 

Addressing the challenge of imbalanced multiclass output data in IoT datasets, the study 

presented in [61] introduces an Intrusion Detection System (IDS) for the IoT that employs the 

XGBoost model. The accuracy of the proposed method is assessed using two IoT imbalanced 

datasets, and the XGBoost model demonstrated exceptional attack detection capabilities. It 

emphasizes the need for high security levels to protect IoT networks, which are easily attacked 

by cybercriminals, and ML-based IDSs as a crucial security solution to monitor safe network 

traffic and detect network's abnormal behavior to avoid attacks Dissertation [62] present a 

method in which SVM is used to detect port sweep attacks and compared it with an ensemble-

based hybrid classification approach that used weak and strong classifiers. The results evaluate 

that the ensembled approach performed better, with a Random Forest accuracy of 99.82%, ANN 

accuracy of 99.70%, and SVM accuracy of 93.29% on intrusion detection rather than attack 

type classification. Within the context of the banking sector, which faces elevated cybersecurity 

risks due to the sensitive nature of its data, [20] presents a novel strategy for identifying 

Distributed Denial of Service (DDoS) attacks in IoT-based monitoring systems. The banking 

industry is particularly vulnerable to cyberattacks due to the high value of the data they hold. 

The method uses a Banking Dataset and applies multiple classification models, including SVM, 

KNN, and RF algorithms. The SVM algorithm achieves the highest accuracy score of 99.5%. 

It is concluded that the SVM algorithm is more resilient in detecting DDoS attacks than KNN, 

RF, and other existing ML and DL techniques. 

Addressing the escalating cybersecurity threats posed by the proliferation of the IoT in 

institutions and companies, the study in [63] discusses the use of AI in cybersecurity to combat 

the increasing cybersecurity threats faced by institutions and companies due to the rise in the 

use of the IoT. A system is proposed that combines a CNN with a LSTM algorithm to detect 

BASHLITE and Mirai attacks on four types of security cameras, which are common and severe 

attacks in the IoT. The suggested system achieves optimal performance, with high F1 scores, 
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recall and precision, for detecting botnet attacks on IoT devices, specifically cameras. The 

system's success highlights the potential of AI in cybersecurity to detect and mitigate 

sophisticated cyber threats. In the context of network traffic anomaly detection, [64] propose 

an ML based IDS to detect anomalies in network traffic. The CICIDS2017 data set is used, 

which includes both current and historical attacks, and implemented multiple classifiers such 

as DT, NB, RF and LR after preprocessing the data set through cleaning, normalization, 

oversampling, and feature selection. It highlights the importance of using machine learning-

based models in detecting sophisticated and undetected threats quickly and efficiently.  

A Framework by [24] used for botnets detection using ML techniques. The existing 

techniques for botnet detection are not effective for detecting botnets at an early stage. 

Honeypots are utilized to lure botnet infiltrations and reveal the identities and activities of the 

attackers, causing attackers to avoid them. ML techniques are used to support the detection and 

prevention of bot attacks. The proposed framework employs an Ensemble classifier with 

Stacking Process (ECASP) to identify the most suitable features for the machine learning 

classifiers to use as input. The proposed method achieves an accuracy of 94.08%, sensitivity of 

86.5%, specificity of 85.68%, and F-measure of 78.24%. In response to the escalating cyber 

threats and vulnerabilities in the healthcare ecosystem, [65] proposes a ML approach to analyze 

cyber threats and exposure in the healthcare ecosystem. The healthcare industry has become 

more vulnerable to cyber-attacks, owing mostly to the increasing deployment of electronic 

health records and the integration of connected medical devices. In the healthcare system, the 

approach can be used to manage risks to identify potential patterns of security issues. 

In their survey [66] focuses on privacy protection techniques for IoT, based on ML and 

DL. They highlight the need for data privacy in IoT applications, which are extensively adopted 

in the eHealth environment, industries, smart cities, and autonomous vehicles. They analyze 

the current privacy threats and attacks, present various ML and DL architectures proposed for 

privacy protection in IoT, and provide implementation details and publish results of each 

method. They conclude by identifying the most efficient solutions to address various privacy 

threats and attacks in IoT. Introducing a novel approach for cybersecurity threat identification 

and classification in the Internet of Things (IoT) environment, [67] harnesses machine learning 

and artificial intelligence (AI) tools.  
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The approach, called Mayfly Optimization-Regularized Extreme Learning Machine 

(MFO-RELM), preprocesses the IoT data and carries out classification using the RELM model. 

The proposed study utilizes the Manta Ray Foraging Optimization (MFO) algorithm to improve 

the productivity to identify attacks with the RELM model. Presenting a machine learning-based 

approach in [68] the study focuses on the detection of network fault severity and the 

identification of IoT devices based on multiple attributes. The proposed framework captures 

different features from each network flow to identify various network attacks. Experiments with 

different ML algorithms such as SVM, DT, and RF, and found that RF and DT classifiers are 

carried out, the best performing ML algorithms with an accuracy of about 96.98%. Whereas, 

Gaussian Naive Bayes is found to be the least performing model with an accuracy of about 

54.41%. 

Introducing an innovative edge-cloud architecture called LocKedge for detecting 

cyberattacks in IoT networks, [94] with low complexity and high accuracy. The authors 

implemented the proposed mechanism in two ways, namely centralized and federated learning, 

and evaluated its performance by comparing it with other ML and DL methods. The evaluation 

was accomplished using the BoT-IoT dataset. The results indicate that LocKedge exhibits 

superior performance in accuracy and complexity, and can detect attacks quickly at the edge 

layer, reducing the workload of the cloud. In their discussion, [95] highlight the importance of 

detecting and monitoring emerging security risks in IoT systems, given the increasing elegance 

and variety of security threats. They classify IoT security risks and issues and review current 

Network Intrusion Detection Systems (NIDS) methods, data sets, and sniffing applications for 

IoT networks.  Proposing a general framework for intrusion detection in IoT using Graph 

Neural Network (GNN) technologies, [96] relies on a network embedding feature 

representation to address labeled data that is high-dimensional, redundant, and rare within IoT. 

They use a network embedding feature representation as a solution for handling labeled data 

that is high dimensional, redundant, and rare in the context of IoT. This approach is motivated 

by the challenge of obtaining labeled samples and the imbalanced distribution of sample 

categories. The suggested method was tested using public datasets and outperformed several 

contemporary algorithms in many evaluation metrics. 

Addressing the susceptibility of IoT to cyberattacks due to its distributed nature, [97] 

introduces a mechanism tested with the latest dataset and benchmark algorithms and achieves 
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a 99.94% detection rate with 0.066(ms) time, showing an auspicious outcome in terms of 

accuracy and speed efficiency. The architecture can efficiently detect sophisticated bot attacks, 

making it a reliable solution for IIoT security against botnet attacks. Based on misuse or 

anomaly detection, a representative survey [7] evaluated the security challenges faced by smart 

devices and networks. An analysis of ML approaches for IoT security, different types of attacks, 

and IoT architecture is provided, along with proposed solutions based on ML. Providing a 

survey of IDS for IoT from 2015 to 2019, [98] explores various IDS deployment and analysis 

strategies within IoT architecture. They explore diverse IDS deployment and analysis strategies 

in IoT architecture, while emphasizing the security challenges and issues involved in IoT. They 

also examine various intrusions in IoT and review the recent updates, challenges related to ML 

and DL techniques, and security issues overall, they provide a valuable reference for researchers 

and practitioners working on IoT security and IDS. In their overview of eighty studies published 

between 2016 and 2021,  

2.2.2 Deep Learning  

A framework called Deep Feature Embedding Learning (DFEL) is proposed by [69] for 

detecting cyberattacks in IoT environments. The framework uses deep learning to improve 

accuracy and reduce detection time. DFEL successfully detects internet intrusion and meets 

detection performance and speed. Emphasizing the critical role of security in the success of IoT 

networks and the significant losses incurred due to Distributed Denial of Service (DDoS) 

attacks, [70] employs the CICIDS2017 dataset to evaluate their proposed deep learning models 

for DDoS attack detection. The authors use CICIDS2017 dataset to evaluate their proposed 

deep learning models for DDoS attack detection, achieving an accuracy of 97.16%. They also 

compare their models to traditional ML algorithms and identify open research challenges in the 

use of DL for IoT cyber security. 

In their proposal [71] introduce a methodology to turn network traffic data into an image 

form and train a ResNet CNN model to efficiently detect these attacks. Also they suggest 

integrating AI-based techniques like deep learning models can improve the reliability and 

effectiveness of traditional security solutions in detecting complex attacks. Providing a 
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comprehensive taxonomy of notable deep learning (DL) techniques used in designing network-

based Intrusion Detection Systems (IDS), [72] reviews recent articles on Network Intrusion 

Detection systems (NIDS), emphasizing their strengths and limitations. The study also 

highlights research challenges and potential future improvements in ML and DL-based NIDS. 

Introducing a novel security framework for IoT attack detection based on a deep learning 

model, [73] conducts experimental evaluations using a dataset derived from twenty infected 

IoT devices running on Raspberry Pi. The experimental evaluation employs a dataset from 

twenty infected IoT devices running on Raspberry Pi, and the proposed model achieves an 

attack detection accuracy of 96%. It emphasizes the importance of machine learning models in 

utilizing the enormous amount of data originated by IoT devices to ensure their security. 

Dissertation [74] propose a DL-based anomaly detection (AD) system for cellular IoT 

devices to address the security challenges and device management of existing IoT networks. 

The system is demonstrated to be effective in identifying anomalies in IoT devices with 

potential applications in smart logistics. The author in [75] validate a proposed model using 

various intrusion detection datasets and compare their results with existing deep learning 

implementations. According to the results, DL methods, especially CNN models, are effective 

in identifying anomalies accurately in IoT networks and can be used for intrusion detection 

systems. Research [76] discuss the use of DL-based models for identifying anomalies in time-

series data. Experiments with different look-back values and timestamps are reported by the 

authors. According to the authors, anomaly detection techniques should be accurate and 

efficient in IoT and cybersecurity contexts. Exploring the end-to-end security challenges within 

IoT ecosystems [77] the unique security issues that IoT solutions face and the need to address 

them to ensure the security of IoT products and services. They provide an overview of IoT and 

identify potential threats to IoT security, along with their attack surfaces and associated hazards. 

They also discuss various DL approaches for IoT security, their strengths, weaknesses, and 

opportunities for future research. Proposing an ensemble deep learning model for cyber threat 

hunting in the IoT,[78] tackles the imbalanced nature of IoT datasets by extracting new 

balanced data. Their model achieves high accuracy, surpassing other models in the comparison 

The importance of securing smart electronic gadgets, and how traditional techniques 

may not be suitable for devices with resource constraints [64]. The research evaluates and 

compares the efficiency of CNN, DNN and LSTM algorithms. The Deep Convolutional Neural 
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Network (DCNN) model [79] consists of two convolutional layers and three fully connected 

dense layers. The model is evaluated on the IoTID20 dataset, and its performance is analyzed 

using different performance metrics. Several optimization techniques, such as Nesterov-

accelerated Adaptive Moment Estimation (Nadam), Adaptive Movement Estimation 

(AdaMax), and Adaptive Moment (Adam), are applied to the proposed model, which 

outperforms various advanced DL and traditional ML techniques. A Cognitive Adaptive 

System (CAS) is designed for industrial production systems [80]. The system utilizes 

Reinforcement Learning (RL) in conjunction with IoT edges to overcome a variety of 

challenges and enhance productivity. 

A DL-based IDS framework [81] is proposed for Agriculture 4.0 networks to detect 

DDoS attacks. The proposed system combines LSTM and CNN architectures to achieve high 

F1-score, precision, accuracy and recall, in identifying different types of DDoS attacks using 

the CIC-DDoS2019 dataset. The proposed model outperforms existing systems and achieves a 

high degree of precision. It is concluded that the proposed model offers the highest level of 

protection against cyber threats to Agriculture 4.0. A DL-powered anomaly detection model for 

IoT systems is proposed to identify malicious data and ensure their exclusion from IoT-driven 

decision support systems [82]. The proposed DL model uses a denoising autoencoder to obtain 

robust features that are not significantly affected by the unstable environment of IoT. The 

proposed model's effectiveness in improving the accuracy of identifying attacks in IoT models 

is demonstrated through experimental results. The DL-based intrusion detection model named 

DIDS for IoT networks [83] is proposed that includes the prediction of unknown attacks to 

reduce computational overhead, increase throughput, and achieve a low false alarm rate. The 

proposed method outperforms standard algorithms in detecting attacks earlier with reduced 

computational time, achieving 99% accuracy in detecting attacks. It highlights the significance 

of AI techniques in IoT networks, making life easier and more connected. The challenges of 

providing security for IoT devices is discussed and a DL algorithm is proposed for IDS [84]. 

The evaluation of the proposed model is assessed using a commonly used dataset, and compared 

against the efficacy of established intrusion detection methods. [85] proposes a model for IoT 

networks to detect DDoS attacks, in which systems are restricted by their limited resources and 

dynamic communication, leading to security limitations. The model combines three DL 

algorithms, RNN, LSTM-RNN, and CNN, to develop a bidirectional CNN-BiLSTM DDoS 
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detection model that accurately detects and distinguishes DDoS from legitimate traffic. The 

four models were evaluated using the CICIDS2017. 

Underlining the pivotal role of Intrusion Detection Systems (IDS) in safeguarding the 

IoT environment,  [86] discuss the importance of IDS in securing the IoT environment. They 

highlight the significance of efficient security management techniques and the secure 

functioning of IoT devices. They also propose a new IDS based on deep learning, called fuzzy 

CNN, to improve the security of IoT communication. The proposed IDS is found to be 

beneficial in optimizing the accuracy of detection, detecting DoS attacks efficiently, and 

reducing false positive rates. They provide a thorough examination of IoT network security 

using quality-of-service metrics, and compare them with currently existing security metrics, 

leading to a detailed analysis. In their Study [87] present a DL approach for IDS in the IoT 

using the focal loss function to tackle the problem of imbalanced datasets. The proposed 

approach is implemented using two established neural network architectures and assessed with 

three datasets from various IoT domains by the authors. Compared to existing intrusion 

detection models, the proposed method outperforms them in terms of precision, recall, 

accuracy, and MCC. They conclude that their approach using the focal loss function is effective 

for training DL models for IDS in IoT. 

2.2.3 Ensemble Methods  

The growing risks of cybersecurity threats and attacks in smart cities due to the 

widespread deployment of IoT applications are discussed in [88]. Stacking, bagging, and 

boosting are among the methods the authors explore to improve the detection system. The 

authors further explore the integration of multi-class classification, cross-validation, and feature 

selection techniques to enhance the accuracy of the system. The experimental outcomes suggest 

that the proposed methodology is efficient in identifying cyberattack. In their research [89] 

propose an ensemble method and deep learning model to classify the type of attack and protect 

IoT devices. Their method significantly enhances network-level security in IoT devices that 

utilize the Message Queuing Telemetry Transport (MQTT) protocol by employing ML 

techniques to effectively diagnose and mitigate attacks. The system allows dataset owners to 
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securely store and manage their data, preventing tampering and ensuring the integrity of the 

data. Botnet attacks, in particular, are a serious and widespread threat to IoT devices. A study 

by [90] use the real N-BaIoT dataset, which includes both malicious and benign patterns, to 

train and test the CNN with a Long Short-Term Memory (LSTM) model. Overall, the CNN-

LSTM model detects botnet attacks from a wide range of IoT devices with high accuracy. 

Introducing an innovative approach for identifying Distributed Denial of Service 

(DDoS) attacks, [91] combines supervised and unsupervised machine learning algorithms. By 

using an advanced data processing framework, this method separates anomalous traffic from 

normal data using a clustering algorithm based on the CICIDS2017 dataset. In their proposal 

[3] present a new technique called IDS based on Spike Neural Network and Decision Tree 

(SNNDT) for IoT devices which uses Decision Tree (DT) to select optimal samples and SNN 

to identify cyber-attacks. The SNN uses Non-Leaky Integrate and Fire (NLIF) neurons and a 

Random Order Code (ROC) technique to minimize devices' power usage and reduce latency. 

Simulation results show that IDS-SNNDT has high detection accuracy and less latency with 

low power usage as compared to the other two methods. Proposing an efficient NIDS named 

DCNNBiLSTM [92] based on DL techniques. The system has been trained and tested using 

real-time traffic datasets, achieving an excellent accuracy rate on CICIDS2018 and Edge_IoT 

datasets.  

The authors highlight the exceptional performance of DL in numerous identification 

tasks. With the increasing reliance on Internet technology and the subsequent surge in data 

generation, ensuring network security has become a pressing concern. The research paper [93] 

proposes a novel XGBoost-DNN model for network intrusion detection, which combines the 

XGBoost technique for feature selection and deep neural network (DNN) for classification. The 

experiments conducted on the NSL-KDD dataset demonstrate the superiority of the proposed 

model over existing shallow machine learning algorithms such as logistic regression, SVM, and 

naive Bayes in terms of accuracy, precision, recall, and F1-score. The XGBoost-DNN model 

outperforms these algorithms, achieving a consistent classification accuracy of 97%. Notably, 

the paper introduces a unique feature selection method using the importance score generated by 

XGBoost. The research highlights the potential of deep learning models in intrusion detection 

and suggests further exploration for multiclass classification in the future. 
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In [13] the utilization of DL and ML techniques in IoT security and their performance 

in identifying attacks is discussed. The study also identifies smart IDS with intelligent 

architectural frameworks. SVM and RF are among the most used methods, Dissertation [15] 

presents a systematic review of botnet detection techniques based on ML in the context of 

software-defined networking (SDN). The authors highlight the significant threat that botnets 

pose to organizations and the advantages of SDN in network management. The survey evaluates 

several dissertations published from 2006 to 2015 for botnet attack detection and SDN, 

respectively. The authors follow Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) guidelines for their evaluation and address current research challenges in 

the area while proposing directions for future research. The article [99] provides a summary of 

the security challenges associated with IoT systems and highlights the insufficiency of 

traditional security techniques in addressing them. The authors suggest that utilizing ML and 

DL solutions is essential for dynamically improve the security of IoT devices. They explore the 

potential of AI expertise in providing an up-to-date security system for upcoming IoT systems. 

In their discussion [100] address the security concerns associated with the widespread use of 

IoT technologies and the potential use of ML to address these issues. The authors provide an 

overview of the major security challenges encountered by IoT systems, and review the 

contemporary ML-based solutions that have been proposed to mitigate them.  

Emphasizing the importance of protecting digital systems from potential threats and 

attacks, [101] explores how machine learning (ML) models can be employed to predict and 

detect these threats. They focus on comparing the accuracy of different linear ML algorithms 

for detecting cyber-attacks. They also mention the use of balance procedures in the presentation 

and how the classifiers' accuracy is compared.  Presenting a detailed survey of existing research 

on malware detection, [102] highlights the strengths and weaknesses of different ML 

algorithms. The findings of the study suggest that ML can be an effective approach for 

identifying malware attacks. The paper provides valuable insights for researchers and 

practitioners seeking to implement ML algorithms for detecting malware in enterprise 

information systems based on IoT. Proposing the Decision Tree Twin Support Vector Machine 

and Hierarchical Clustering (HC-DTTWSVM) method for the effective detection of various 

types of network intrusion, [103] demonstrates comparable evaluation in terms of detection 

capability when compared to a recently proposed Network Intrusion Detection (NID) method. 

The study's findings demonstrate that Generic samples have the most elevated levels of 
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Precision, Recall, F1-score, and G-mean. In general, the comparative analysis suggests that the 

HC-DTTWSVM algorithm is an efficient approach for NIDS, surpassing the detection accuracy 

of several recently proposed methods. The analysis of the literature shows that the HC-

DTTWSVM algorithm improve detection accuracy with 81.21% and 85.95%on the UNSW NB 

15 and NSL KDD datasets respectively. 

2.3 Summary: 

In conclusion, this literature review has highlighted the prominence of DL-based 

methods, such as CNN and LSTM, in achieving high accuracy in detecting a variety of network 

attacks. The integration of feature selection and extraction methods has shown substantial 

enhancements in IDS performance. Future research directions should emphasize multi-modal 

approaches, real-time detection, adaptability, resource-efficient solutions, data diversity, 

scalability, user-friendly interfaces, and standardized benchmarks to propel advancements in 

the field of cyber-attack detection and identification. That requires the need of further 

investigation 
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CHAPTER 3 

3 METHODOLOGY 

3.1 Overview 

The proposed methodology for identifying cyber-attacks on IoT devices is shown in 

Figure 3.1. It consists of employing different ML techniques to accurately identify and classify 

cyber-attacks. The proposed method combines the strength of XG-Boost and DNN, named as 

X-DNN.  Each block in the diagram represents a key step in the process and is explained in 

detail in the subsequent sections. 

 

Figure 3.1: Steps used in the proposed method to identify cyber attacks 



26 

 

3.2 Proposed Method 

Ensemble learning [116] is a ML approach that integrates multiple models to enhance 

the predictive model's precision, accuracy, robustness and resilience. This technique involves 

aggregating the outputs of several individual models to generate a consolidated prediction. 

There are various techniques for ensemble learning such as stacking, boosting, and bagging and 

others. These techniques aim to combine different models in a way that compensates for the 

weaknesses of individual models and leverages their strengths to produce a more accurate 

prediction. Stacking is a powerful ensemble technique that can combine the predictions of 

multiple ML models, in order to enhance the overall performance. It can be used to leverage 

the strengths of different models, while mitigating their weaknesses. In this thesis the strength 

of XGboost and DNN are combined, which result in a new method that is called X-DNN.  

The X-DNN consists of DNN and XGBoost, both are trained on the UNSW NB15 and 

NSL KDD datasets to classify the various types of cyber-attacks. Both DNN and XGBoost 

models are combined together to enhance the overall accuracy of X-DNN. The model consists 

of two separate inputs, one for the DNN model and the other for the XGBoost model. Three 

dense layers with 64, 32, and 10 units each are included in the DNN model, and the hidden 

layers are activated using ReLU, while the output layer is activated using softmax function. 

Using both models DNN and XGBoost together to improve classification performance, 

an ensemble technique known as model averaging is employed. This technique involves 

obtaining prediction scores from both the DNN and XGBoost models and computing the 

average probabilities for each data point. Based on the combined predictions of the two models, 

we leveraged the complementary capabilities of the DNN in capturing hidden patterns and the 

apply XGBoost in handling data analysis. Ensembling of the DNN and XGBoost models 

through averaging yields significant benefits over using individual models alone. The ensemble 

approach enable us to achieve improved accuracy and robustness in classification compared to 

using either model in isolation or other ensemble techniques. The experimental results show 

the effectiveness of ensemble technique in enhancing classification accuracy and effectively 

addressing the challenges presented by the datasets 
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3.3 Datasets 

The selection of an appropriate dataset is crucial for the successful implementation of 

any ML-based approach. To select a dataset for this research, several factors were taken into 

consideration, including the type, quality, size and the diversity of cyber-attack types present in 

the dataset. It is also vital to consider the representativeness of the data with respect to the 

problem being addressed, and the availability of labeled data. 

Two different datasets are used which are, UNSW-NB15 [104] and NSL KDD [105] 

datasets. UNSW-NB15 dataset contains 257,673 instances of network traffic records with 

different types of cyber-attacks, i.e., Fuzzers, DoS, Reconnaissance, Backdoor, Exploits, 

Analysis, Worms, Shellcode, Generic, and normal traffic. Moreover, the UNSW-NB15 dataset 

serves as a benchmark dataset, which has been widely used in various researches  [3] [8] [11] 

[46] [57] [103] [106]. The dataset also includes a ground truth, which is important for the 

evaluation of ML models.  

Fuzzers are attack methods that involve sending a large amount of random or 

unexpected data to applications or systems to identify vulnerabilities. Denial of Service attacks 

aims to disrupt the availability of network services by overwhelming them with a flood of 

requests, rendering them unavailable for legitimate users. Reconnaissance attacks are 

exploratory in nature, involving an attacker probing a network to gather information about 

potential vulnerabilities or targets. Backdoor attacks aim to create unauthorized access points 

in a system, allowing attackers to bypass normal security controls and gain persistent access. 

Exploits involve taking advantage of known vulnerabilities in software or systems to gain 

unauthorized access or execute malicious code. Analysis attacks include efforts to scrutinize a 

target system's behavior and characteristics to gain insights for further exploitation. Worms are 

self-replicating malware that spread across networks, often causing widespread damage and 

data loss. Shellcode attacks involve injecting malicious code directly into a system's memory 

to execute unauthorized actions or provide remote control. Generic attacks are broad and less 

specific in nature, often used as a catch-all category for unclassified or generalized cyber 

threats. Normal traffic represents legitimate network activity without malicious intent, serving 

as a baseline for comparison in cybersecurity research and threat detection. 
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The NSL KDD dataset comprises a total of 125,972 instances of network traffic records. 

These records encompass various types of cyber-attacks, which are primarily classify into five 

attack types: Probe, DoS, Remote to Local (R2L), User to Root (U2R), and Normal. Each 

instance in the dataset comprises of 44 different features that capture relevant information about 

the network traffic.  

Probe attacks involve the systematic exploration of a network to gather information 

about its configuration, services, and vulnerabilities. Attackers aim to identify potential 

weaknesses without directly causing harm. Denial of Service attacks disrupt network services 

by overwhelming them with excessive traffic, rendering them inaccessible to legitimate users. 

This type of attack can disrupt normal network operations. R2L attacks attempt to exploit 

vulnerabilities in remote systems to gain unauthorized local access. Attackers aim to escalate 

their privileges and gain control over the target system. U2R attacks involve a regular user 

trying to exploit vulnerabilities to gain superuser privileges on a system. Attackers aim to 

elevate their access level to the highest possible. Normal traffic represents legitimate network 

activities and serves as a baseline for comparison in cybersecurity research. It includes routine, 

non-malicious network communication. 

3.3.1 Preprocessing of dataset: 

The preprocessing steps are applied to the UNSW NB15 and NSL KDD dataset before 

using them for the training and testing of X-DNN.  

Data pre-processing, or data preparation, is the first step in the data processing 

operation. The extraction of flow-based features from raw data is the initial stage in data 

processing. This stage aims to transform the data into a format that ML algorithms can learn. 

The dataset progresses through subsequent stages encompassing data cleaning, feature 

engineering, and feature scaling. 

Data cleansing requires an understanding of the significance of each feature, its 

anticipated data type, and its possible range of values. Without this knowledge, it becomes 

challenging to differentiate between acceptable and unacceptable values. In the data cleaning 



29 

 

stage, the rows in the data frame that contain missing values, also known as "NaN and Null" 

values, are eliminated to ensure that the dataset used for analysis is complete and accurate. 

The UNSW NB 15 and NSL KDD datasets are carefully checked for any missing values 

and anomalies in data. The missing data is handled by deleting the instances with missing values 

using dropna function of Python. The anomalies in the data are also checked and corrected 

manually where necessary.  

Feature engineering [107] involve selecting, transforming, and creating features 

(variables) that can be used as inputs for a ML algorithm to enhance its performance in making 

predictions or classifications. In label encoding, categorical variables are transformed into 

numerical values that can be used in ML models. 

In the process of feature engineering, one of the employed data preprocessing techniques 

is called label encoding. This technique is utilized to transform textual data into numeric format. 

The label encoder assigns a unique numerical value to each category in the feature, which is 

then used as input to ML algorithms. 

Feature scaling [108] is another important practice in data preprocessing. Standard 

scaling transforms the data to have a mean of 0 and a standard deviation of 1, which normalizes 

the data and improves the efficacy of ML algorithms. Feature scaling is the process of 

transforming the data such that all the features or variables are on the same scale. Standard 

Scaler is one of the widely used scaling techniques in ML, which ensures that the data has zero 

mean and unit variance. The scalar object is fitted on the training data to learn the mean and 

standard deviation of each feature, and the learned parameters are used to scale datasets. 

Standard Scaler scales each feature, ensuring that each feature has a mean of zero and variance 

of one. 
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3.3.2 Selection of top-ranking features 

After applying these data preprocessing techniques to the UNSW NB 15 and NSL KDD 

dataset, a transformed dataset with encoded categorical features and standardized numerical 

features are obtained. This transformed dataset was then used in further analysis, including 

feature selection, to recognize the most important features for detecting network intrusions. 

Table 3.1: Selection of Top ranked Features from the UNSW NB 15 Dataset 

Sr. No. Feature Description 

1 Dpkts Total packets sent to the destination port 

2 Rate Packet rate, indicating the speed of data transmission 

3 Sttl 
Source Time to Live, remaining lifespan of a packet before it's 

discarded 

4 Sload Load in packets per second for the source  

5 Dload Load in packets per second for the destination 

6 Sinpkt Total input packets from the source 

7 Swin 
Window sizes at the source, indicating the data quantity that can be 

sent before acknowledgment 

8 Dwin 
Window sizes at the destination, indicating the data quantity that can 

be sent before acknowledgment 

9 Stcpb Source TCP sequence number base values 

10 Dtcpb Destination TCP sequence number base values 

11 dmean Mean value for the destination across various attributes 

12 ct_srv_src Count of connections sharing the same service source 

13 ct_state_ttl Count of connections with the same state TTL 

14 ct_dst_ltm 
Number of connections with the same destination Last Time 

Modified (LTM) 

15 ct_src_dport_ltm Count of connections sharing the same source destination port LTM 

16 ct_dst_sport_ltm 
Count of connections sharing the same destination source port LTM, 

respectively 

17 ct_dst_src_ltm Count of connections with the same destination source LTM 

18 ct_src_ltm Count of connections with the same source LTM 

19 ct_srv_dst Count of connections with the same service destination 

20 is_sm_ips_ports 
Indicates whether the IP or port is small, potentially signaling 

unusual or malicious traffic 
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UNSW NB 15 contains 43 features, whereas NSL KDD contains 40 features. To 

decrease dataset dimensionality and improve learning algorithms' efficiency, a feature selection 

process is applied. The process of feature selection, particularly using the SelectKBest 

technique, plays a crucial role in refining the models' ability to accurately detect network 

intrusions. By focusing on the 20 most significant features, as identified by their ANOVA F-

values, we ensure that the models are not burdened by redundant or irrelevant data, which can 

often lead to overfitting or decreased performance. This careful pruning of the feature set not 

only enhances the efficiency of the learning algorithms but also contributes to a more 

interpretable model.  

The selected features from the UNSW NB 15 dataset provide essential insights into 

network traffic and behavior. SelectKBest function is employed to select the 20 most significant 

features according to their respective importance scores. The selected features are then used to 

train the ensemble model. Table 3.1 and 3.2 presents the 20 most significant features achieved 

through the selectKBest feature selection methodology on both datasets. 

Table 3.2: Selection of Top Ranked Features from the NSL KDD Dataset 

Sr. No. Feature Description 

1 
num_failed_logi

ns 

Counts the number of failed login attempts, indicative of 

unauthorized access or potential security breaches 

2 
num_compromis

ed 

Counts the number of compromised conditions, with an elevated 

count indicating security vulnerabilities or unauthorized access 

3 is_host_login 
Binary feature determining if the login is by a host, distinguishing 

between regular user logins and potential host-level logins 

4 is_guest_login 
Binary feature identifying guest logins, crucial in understanding the 

nature of login attempts 

5 srv_count 
Represents the number of services accessed during the connection, 

offering insights into the diversity of services used 

6 serror_rate 
Indicates the percentage of connections that encountered errors 

from a general perspective 

7 srv_serror_rate 
Indicates the percentage of connections that encountered errors 

specifically during service access 

8 rerror_rate 
Indicates the percentage of connections that encountered general 

errors 
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9 srv_rerror_rate 
Indicates the percentage of connections that encountered errors 

specifically during service access 

10 same_srv_rate 
Calculates the percentage of connections using the same service, 

helping to identify patterns of repeated service usage 

11 
srv_diff_host_rat

e 

Focuses on the percentage of connections to different hosts, 

revealing the diversity of host connections 

12 dst_host_count 
Represents the number of destination hosts, providing insights into 

the overall network structure 

13 
dst_host_srv_cou

nt 

Represents the number of services on destination hosts, offering 

insights into the diversity of services on the network 

14 
dst_host_same_s

rv_rate 

Calculates the percentage of connections to hosts offering the same 

service 

15 
dst_host_diff_srv

_rate 

Gauges diversity in service usage by representing the percentage of 

connections to hosts offering different services 

16 
dst_host_same_s

rc_port_rate 
Provides insights into source port patterns 

17 
dst_host_srv_diff

_host_rate 
Offers insights into destination port patterns 

18 
dst_host_serror_

rate 

Indicates the error rate for connections to destination hosts from a 

general perspective 

19 
dst_host_srv_ser

ror_rate 

Indicates the error rate for connections to destination hosts 

specifically during service access 

20 
dst_host_rerror_

rate 

Indicates the error rate for connections to destination hosts from a 

general perspective 

3.3.3 Train Test Split 

The train-test split is a common practice in machine learning and data analysis to assess 

the generalization ability of a model. It involves randomly partitioning the dataset into two 

separate subsets: 80 percent the training set and 20 percent testing set. 
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3.4 Machine and Deep Learning Algorithms 

The study explores a range of algorithms employed in this research. The focus is on 

various algorithms, revealing how machines understand and tackle complex tasks. This 

encompasses the exploration of computational processes designed to discern patterns from data 

and make informed decisions. Various algorithms are scrutinized, providing a comprehensive 

insight into their applications and implications within classification of cyber attacks on IoT. 

The ML and DL algorithms used are as follows: 

3.4.1 Support Vector Machine 

SVM [109] is a well-known and powerful ML technique that provides high accuracy 

while requiring computational power. SVM technique utilizes the features to create a decision 

boundary or hyperplane, followed by applying classification methods to differentiate among 

multiple groups. When the data size is not substantial, SVM outperforms neural networks. The 

classifier functions perform well in distinguishing harmful IoT traffic from safe traffic. This 

transforms a low-dimensional feature space into a high-dimensional feature space by employing 

sophisticated kernel functions. SVM has several kernel functions that are utilized to improve 

model learning and optimize performance.  

3.4.2 Decision Tree 

A DT [110] is a classifier that makes use of a series of if-then-else decisions to identify 

the label for a given observation. The benefit of using DT is that they are easy to interpret and 

can be used to model non-linear relationships. The DT model is applied on the train set and its 

performance is evaluated using the test set. 
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3.4.3 Random Forest 

The Random Forest (RF) algorithm [111] is another well-known ML method. This 

technique uses many unique decision trees to find the best results, with their findings combined 

(referred to as bagging) to get good outcomes. The fact that random forest splits features into 

tiny samples instead of relying on feature correlation makes it different from traditional. After 

partitioning the preprocessed dataset into train and test sets, the RF algorithm is applied. 

3.4.4 Logistic Regression 

In LR [111] the input features are compared to the probability of belonging to a class 

based on their relationship. Based on a logistic function, LR estimates the likelihood of an 

instance belonging to a particular class (sigmoid function). It calculates the weighted sum of 

the input features and their corresponding coefficients, and then applies the logistic function to 

transform this linear combination into a probability value. LR optimizes the coefficients 

(weights) during the training phase using techniques such as maximum likelihood estimation 

or gradient descent to find the optimal values that minimize the difference between the predicted 

probabilities and the actual class labels. 

3.4.5 Deep Neural Network 

DNN [112] are complex neural networks with input and multiple hidden neurons 

at output layers. The hidden number of neurons is primarily responsible for parameter 

optimization. Dropout regularization is a technique used for reducing overfitting while 

improving deep neural network generalization. 

At a high level, a DNN model can be viewed as a series of layers, where each layer 

performs computation on the input data, passing the output to the next layer until the final layer 

produces the model's prediction. The layers themselves are composed of neurons that take in 
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the output from the previous layer and apply some transformation to it, typically in the form of 

a nonlinear activation function. 

The DNN model used in this thesis is a feedforward neural network architecture 

consisting of multiple densely connected layers. The DNN model incorporates three dense 

layers with 64, 32, and 10 units (neurons) with reLu as activation function and softmax as action 

function at the output neuron for the UNSW NB 15 dataset whereas for NSL KDD dataset three 

dense layers with 64, 32 and 5 units are used. The dense layers are followed by Rectified Linear 

Units (ReLUs) activation functions, introducing nonlinearity. The ReLU activation function is 

applied to the output of each dense layer, except for the output layer. 

The input data is fed into the DNN model, and it undergoes forward propagation through 

the layers. During forward propagation, the inputs are multiplied by the weight matrices 

associated with each layer, and biases are added. The outputs from the previous layer serve as 

inputs to the subsequent layer, and this process continues until the final layer is reached. 

To train the DNN model, a backpropagation algorithm with stochastic gradient descent 

optimization is used. The model parameters are updated iteratively to minimize a defined loss 

function, such as categorical cross-entropy, which measures the discrepancy between the 

predicted probabilities and the true labels. DNNs are capable of learning complex features and 

patterns with in the data, which can be helpful in identifying cyber-attacks and anomalies in 

network traffic. It can automatically extract hierarchical representations of data, allowing them 

to effectively capture non-linear relationships and dependencies between input features. DNNs 

can learn and derive hierarchical representations of data features, enabling them to capture 

complex relationships between input features and output labels. The DNN model is applied on 

the training set and subsequently evaluated. 

Based on the UNSW-NB15 and NSL KDD datasets, a DNN model is trained using the 

Keras sequential API, The DNN model comprises three dense layers, each consisting of 64, 32, 

and 10 units, respectively. Each hidden layer is activated using a ReLU activation function, 

which has 20 input dimensions. Multi-class classification is achieved using the softmax 

activation function in the output layer. Nevertheless, the DNN architecture used for the NSL 

KDD dataset is similar but with modified layers comprising 64, 32, and 5 dense layers. 



36 

 

A DNN involves progressively learning complex representations of data through 

multiple hidden layers, leveraging non-linear activation functions and optimizing the weights 

using training data. This enables DNNs to handle more sophisticated tasks and achieve higher 

levels of accuracy and performance compared to traditional shallow neural networks. A DNN 

model is constructed using the categorical_crossentropy loss function, using the Adam 

optimizer with 0.001 learning rate, and evaluating their performance by accuracy metric.  

Overfitting is prevented by using an early stop callback.  

The DNN model trained on UNSW NB 15 and NSL KDD datasets consist of a total of 

3,754 and trainable parameters. With a batch size of 32, the DNN model is trained for 50 epochs 

or early as mentioned above. As the model is being trained, it was monitored for performance 

on both the training and validation datasets.  

In the UNSW NB 15 dataset, the training process is halted prematurely at the 38th epoch 

in accordance with the early stopping callback function. This is due to the model's performance 

on the validation dataset not improving for a certain number of epochs (in this case, 5 epochs) 

based on the validation loss. After the training process on the UNSW NB 15 dataset, the DNN 

model training accuracy is approximately 83.25% and a validation accuracy of approximately 

83.07%. These results indicate that the model successfully captured patterns in the dataset and 

exhibited good generalization to unseen data and did not have overfitting problems. In contrast, 

when evaluated on the NSL KDD dataset, an accuracy of approximately 99.67% and a 

validation accuracy of approximately 99.62% after completing the training process is achieved 

with DNN model. These high accuracy values suggest that the model effectively learned the 

underlying patterns in the NSL KDD dataset. 

The loss values for the training and validation datasets of UNSW NB 15 are calculated 

to be 0.4414 and 0.4456, respectively. Similarly, for the NSL KDD dataset, the corresponding 

loss values for the training and validation sets are 0.0109 and 0.0162, respectively. These loss 

values represent the average discrepancy between the predicted and actual values, with lower 

values indicating better performance of the model in minimizing the prediction errors. 
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3.4.6 EXtreme Gradient Boosting 

EXtreme Gradient Boosting (XGBoost) [113] is a powerful and efficient execution of 

the gradient boosting algorithm. XGBoost is particularly well-suited for tabular data and is often 

used due to its high performance and scalability. It involves iteratively adding weak models to 

the ensemble, with each consecutive model attempting to correct the mistakes made by the 

previous models. By learning from the residuals of the previous models, XGBoost gradually 

improves the overall predictive capability of the ensemble.XGBoost utilizes decision trees as 

base learners. Decision trees are simple yet effective models that make predictions based on a 

series of hierarchical if-else conditions. XGBoost combines multiple DT to form an ensemble, 

where each tree contributes to the final prediction based on its individual strength. 

The XGBoost algorithm optimizes a specific objective function by considering both the 

model's accuracy and its complexity. This objective function incorporates a loss function that 

measures the deviation between predicted and actual labels, as well as regularization terms that 

control the complexity of the model. By finding the optimal balance between accuracy and 

complexity, XGBoost delivers robust and generalizable classification models. XGBoost is an 

ML algorithm that utilizes a gradient boosting framework for classification tasks. It is known 

for high accuracy and ability to handle complex datasets. In this thesis XGBoost is trained on 

two distinct datasets: NSL KDD and UNSW NB 15. 

The architecture of the XGBoost model involves ensembling of decision trees. This 

technique involves sequentially training each tree in an effort to correct the mistakes made by 

the previous trees. This iterative process aims to optimize the model's performance by 

minimizing the loss function. XGBoost incorporates several hyperparameters that can be tuned 

to enhance its predictive capabilities, such as the number of trees, tree depth, learning rate, and 

regularization parameters. The XGBoost model accuracy is 85.14% when applied to the UNSW 

NB 15 dataset. Although slightly lower than the accuracy on the NSL KDD dataset, this result 

still demonstrates the model's effectiveness in classifying network connections in a different 

dataset. The performance may vary due to the differences in the data characteristics, such as the 

distribution of features and the complexity of the underlying patterns. 
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The XGBoost model is 99.71% accurate when applied to the NSL KDD dataset. This 

indicates that the model performed exceptionally well in accurately classifying the network 

connections in this dataset. The high accuracy can be attributed to XGBoost ability to capture 

intricate patterns and relationships in the data, thereby enabling accurate predictions. The results 

are obtained by individually training the XGBoost model on both datasets. 

3.4.7 Gated Recurrent Unit 

The GRU [114] is a type of recurrent neural network designed to process sequential data 

by preserving information from the previous time step. The GRU model is trained on the train 

set to learn patterns in the input data and forecast the corresponding target variable. The 

accuracy metric is used to assess the GRU model’s performance on the train set. 

3.4.8 Multi-Layer Perceptron 

MLP [115] is an artificial feedforward neural network. It comprises multiple node 

layers, each node is a basic processing unit that receives one or more inputs, applies a weighted 

sum function, and passes the result through a non-linear activation function to produce an 

output. After applying the MLP model, the results are evaluated based on the accuracy metric. 

Accuracy measures the proportion of instances correctly classified in the test set. 

3.5 Performance Criteria 

In the intricate landscape of machine learning, deciphering the performance of 

classification models is akin to navigating through a labyrinth of insights. Imagine it as the 

compass guiding us through the dense terrain of algorithms. Precision, recall, accuracy, and the 

F1 score act as our North Star, illuminating the path toward a model's prowess. It's not just 

about metrics; it's about sculpting models that stand resilient in the face of real-world 
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challenges. Let's embark on this analytical journey to refine, optimize, and ensure our models 

are not just algorithms but trusted allies in the realm of intelligent decision-making. 

3.5.1 Confusion matrix 

The Confusion Matrix is an evaluation matrix for classifier performance. The matrix is 

commonly used to express a classification model's competence on a UNSW NB 15 and NSL 

KDD test dataset where actual values are known. The confusion matrix gives False Negative 

(FN), True Positive (TP), False Positive (FP), and True Negative (TN) for the classes. 

Following are the definitions for TP, FP, FN, and TN for a Ci class. where 

• TP(Ci) = Instances that belong to class Ci and that are correctly classified as Ci. 

• FP (Ci) = Instances that do not belong to class Ci but are classified as Ci 

• FN (Ci) = Instances that belong to class Ci and that are misclassified as non-Ci. 

• TN (Ci) = Instances that do not belong to class Ci and are classified as not belonging to 

class Ci. 

3.5.2 Accuracy 

The metric of accuracy is employed to assess the effectiveness of a classification model 

applied on UNSW NB 15 and NSL KDD. The accuracy of a model is only a single facet of its 

comprehensive performance. Eq. (1) depicts the measurement of single class accuracy. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +  𝑇𝑁 

𝐹𝑃 + 𝑇𝑃 +  𝑇𝑁 + 𝐹𝑁
                                                                 (3.1) 

3.5.3 Precision 

Precision is defined as a positive predictive value. It measures the proportion of genuine 

positive classifications within all positive classifications. In other words, it indicates how many 
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of the instances that the model classified as positive are actually positive in UNSW NB 15 and 

NSL KDD. The following Eq. (2) gives the precision value for a single class: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                                 (3.2) 

3.5.4 Recall 

Recall is the percentage of individuals in a population associated with one or more 

anomalies in the system. True positive rate is also known as Recall, which is how many times 

out of every 100 individuals determined initially to have a problem did not have one. The recall 

value for a single category can be found using Eq., which has the 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                 (3.3)  

3.5.5 F1 Score 

It is important to note that the F1 score measures both precision and recall, and provides 

an overall summary of the algorithm's performance. It is particularly useful when one class has 

significantly more instances than the other class. It may not be possible to use accuracy as a 

reliable metric in these circumstances, as the algorithm may simply predict the majority class 

for all instances. As a result of Eq. (4), the F1 Score value for a single class can be determined.  

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2 ∗  𝑇𝑃

2 ∗  𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
                                                                 (3.4) 

3.5.6 ROC curve 

For multiclass classification, a one vs all approach is used to calculate the ROC curve 

and AUC metric. The positive classes are treated individually, while the negative classes are 

grouped together. After calculating the area under the ROC curve for each class, the true 

positive rate (TPR) and false positive rate (FPR) for each threshold are plotted against the ROC 

curve. 
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CHAPTER 4 

4 EXPERIMENTAL RESULTS AND ANALYSIS  

4.1 Overview 

The results of the proposed algorithm X-DNN for identification of Cyber-attacks on IoT 

are presented and discussed in this chapter. All the algorithms are trained and tested using 

Google Colab.  

This thesis evaluates several ML approaches, including DT, LR, random forest, SVM, 

and ensemble models based on DNN. The performance of these approaches varied depending 

on the type of cyber-attack. For example, decision trees performed well for DOS attacks, while 

RF performed well for probing attacks. Our ensemble model X-DNN performed well across a 

range of cyber-attack types 

The results also indicate that ML techniques are highly effective in identifying new 

cyber-attacks on IoT. Also explored the use of ensemble models that integrate different ML and 

DL techniques for identifying cyber-attacks. X-DNN outperforms the other approaches, 

achieving high accuracy. This suggests that combining different ML and DL techniques in an 

ensemble way is highly effective approach for identifying cyber-attacks.  

4.2 Performance Comparison of Machine Learning Models 

ML models stand at the forefront of this endeavor, providing the computational power 

to discern patterns and anomalies indicative of such security breaches. This section delves into 

a comparative analysis of several ML models to discern their efficacy in the classification of 

cyber-attacks on IoT devices. To ensure a comprehensive evaluation, we employed a range of 
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models, each with its theoretical strengths and practical applications. The models under scrutiny 

include LR, known for its simplicity and interpretability; DT, prized for their decision-making 

transparency; MLP, which leverage the power of neural networks; RF, which combines 

multiple decision trees to improve predictive accuracy; and XGBoost, recognized for its 

efficiency and performance in structured datasets. 

The comparison is based on a set of established performance metrics: Accuracy, 

Precision, Recall, and the F1-Score. These metrics collectively offer a multifaceted view of 

model performance, each providing unique insights into the models’ predictive capabilities. 

Accuracy measures the overall correctness of the model, Precision assesses the model's 

exactness in predicting positive instances, Recall evaluates the model's completeness in 

identifying all positive cases, and the F1-Score harmonizes Precision and Recall, offering a 

single measure of the model's balanced performance. 

The models were tested on two distinct datasets: the NSL KDD dataset, a benchmark in 

the field of network intrusion detection, and the UNSW NB 15 dataset, which represents a more 

contemporary and nuanced set of network interactions. The ensuing analysis offers a rigorous 

comparison of the models’ performances, revealing their strengths and weaknesses in detecting 

cyber-attacks within different data environments. 

4.2.1 Comparison on NSL KDD Dataset 

The NSL KDD dataset, a benchmark dataset in network intrusion detection, was first 

employed to gauge the performance of our chosen ML models. LR demonstrated commendable 

accuracy at 84%, with precision, recall, and F1-score metrics following suit, indicating reliable 

predictive power. DT offered slightly higher accuracy at 86%, suggesting good fit for the data, 

but with a marginally lower recall. MLP showed improved accuracy at 89%, though the F1-

score indicated a need for balance between precision and recall. RF achieved an accuracy of 

87%, with consistent performance across all metrics, reflecting its robustness through ensemble 

learning. However, it was the XGBoost model that delivered a standout performance with an 

accuracy nearing perfection at 99.78%, and equally high precision and recall scores, solidifying 
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its dominance in handling the NSL KDD dataset. This comparative performance analysis of the 

models is visually summarized in Figure 4.1, which provides a clear graphical representation 

of the accuracy levels achieved by each ML model on the NSL KDD dataset. 

 

Figure 4.1: Comparison of ML models on NSL KDD dataset 

4.2.2 Comparison on UNSW NB 15 Dataset 

Turning our attention to the UNSW NB 15 dataset, designed to represent modern 

network traffic and attacks, the models were subjected to a more challenging classification task. 

Here, LR accuracy dipped to 73.92%, underscoring the model's limitations in adapting to more 

complex data structures.  

DT and MLP shared an identical accuracy of 80.95%, with DT showing superior recall, 

indicative of its ability to capture a higher rate of true positive attacks. RF presented a modest 

increase in accuracy at 81.8%, reflecting the strength of the ensemble approach in a more 

diverse dataset. Yet again, XGBoost prevailed with the highest accuracy of 82.81%, 

demonstrating a consistent ability to adapt and maintain performance even in the face of more 

intricate and varied data. This comparative performance analysis of the ML 2wmodels is 

visually summarized in Figure 4.2, which provides a clear graphical representation of the 

accuracy levels achieved by each ML model on the UNSW NB 15 dataset. 
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Figure 4.2: Comparison of ML models on UNSW NB 15 dataset 

The comparative analysis revealed a clear stratification among the ML models when 

applied to cybersecurity threat classification in IoT environments. The XGBoost algorithm’s 

superior performance across both datasets is noteworthy, suggesting that its sophisticated 

boosting and tree-pruning techniques are well-suited for the complex and high-dimensional 

nature of network traffic data.  

Table 4.1: Performance Comparison of Machine Learning Methods 

Model Name UNSW NB 15 NSL KDD 

LR 73.92% 83.73% 

DT 80.95% 85.95% 

MLP 80.95% 89.06% 

XGBoost 81.30% 99.78% 

RF 82.81% 87.37% 

The detection accuracy of the XGBoost algorithm, along with other selected ML 

algorithms, was evaluated on the NSL-KDD and UNSW NB 15 datasets. These comparative 

accuracy results are detailed in Table 4.1. The consistency of XGBoost high precision and recall 

suggests it is a robust choice for minimizing both false positives and false negatives a critical 

consideration in cybersecurity where the cost of either can be high. In contrast, simpler models 

like LR struggled with the more complex UNSW NB 15 dataset, indicating that while such 

models may offer speed and interpretability, they may not always be suitable for the nuanced 
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requirements of modern intrusion detection. The performance of MLP and DT on both datasets 

suggests these models can offer a middle ground, balancing complexity and interpretability. 

However, the ensemble approaches, as seen in RF and particularly XGBoost, appear to provide 

a more adaptable framework for this domain. 

4.3 Performance Analysis of X-DNN 

Accuracy, a widely employed metric, measures the overall correctness of predictions 

during model training. For instance, the accuracy of UNSW NB 15 is 85.3%, while NSL KDD 

exhibits a notably high accuracy of 99.7%. However, when faced with imbalanced datasets, 

relying solely on accuracy may not provide a complete picture.  

The detection accuracy of the X-DNN algorithm, along with other selected DL 

algorithms, was evaluated on the NSL-KDD and UNSW NB 15 datasets. These comparative 

accuracy results are detailed in Table 4.2. The results, presented in Table 4.2, show the 

performance of the deep belief network (DBN)[118], stacked non-symmetric deep auto-encoder 

(S-NDAE) [118], differential evolution and extreme learning machine (DE-ELM)  [119], HC-

DTTSVM [103], and X-DNN algorithms. The analysis reveals that the X-DNN algorithm 

achieves a detection accuracy of 99.79% for normal samples, which is comparable to the 

performance of HC-DTTSVM 96.69%, and higher than that of DBN 95.64%, S-NDAE 97.73% 

and DE-ELM 96.80% algorithms. In terms of detecting Probe samples, X-DNN demonstrate a 

detection accuracy of 84.35 %, outperforming HC-DTTSVM 78.75%, DBN 72.97% and DE-

ELM 62.74%, but slightly trailing behind S-NDAE 94.67%. For DoS samples, the X-DNN 

algorithm achieves a detection accuracy 97.78%, which is higher than HC-DTTSVM 94.20%, 

DBN 87.96% and DE-ELM 91.50%, and S-NDAE 94.58%. 

Notably, the X-DNN algorithm exhibits promising results in detecting U2R and R2L 

samples, achieving detection accuracies of 26.82% and 36.60% respectively. Although these 

accuracies are significantly higher than those obtained by DBN and DE-ELM (0.00% for both 

U2R and R2L), they are still lower than S-NDAE (2.70% for U2R and 3.82% for R2L). The 

XDNN algorithm, proposed in this study, demonstrates exceptional performance across all 
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categories. It achieves a detection accuracy of 99.79% for Normal samples, outperforming all 

other algorithms. For Probe samples, XDNN achieves an accuracy of 84.35%, which is higher 

than DBN, DE-ELM, HC-DTTSVM, and S-NDAE. The XDNN algorithm also showcases 

remarkable accuracy for DoS samples 97.78%. The detection accuracy of different intrusion 

detection algorithms on the UNSW NB 15 dataset is presented in Table 4.3. The comparison 

includes the DT, LR, SVM, HC-DTTSVM algorithm, and the proposed X-DNN model. 

Table 4.2: Comparative Analysis of Class-Wise Accuracy on NSL-KDD Dataset 

Category 
DBN 

[118] 

S-NDAE 

[118] 

DE-ELM 

[119] 

HC-

DTTSVM 

[103] 

X-DNN 

Normal 95.64% 97.73% 96.80% 96.69% 99.79% 

Probe 72.97% 94.67% 62.74% 78.75% 84.35% 

DoS 87.96% 94.58% 91.50% 94.20% 97.78% 

U2R 0.00% 2.70% 0.00% 24.32% 26.82% 

R2L 0.00% 3.82% 11.90% 21.60% 36.60% 

Table 4.3: Comparative Analysis of Class-Wise Accuracy on UNSW-NB15 dataset 

Category DT LR SVM 
HC-

DTTSVM 
X-DNN 

Normal 74.93% 64.54% 75.60% 88.84% 77.38% 

Reconnaissance 80.77% 49.57% 78.30% 52.83% 67.03% 

Backdoor 4.97% 22.47% 3.30% 8.23% 41.28% 

DoS 8.83% 0.00% 4.60% 64.25% 64.53% 

Exploits 90.08% 24.97% 92.70% 80.17% 83.27% 

Analysis 0.00% 0.00% 0.00% 12.56% 98.54% 

Fuzzers 55.24% 36.28% 47.10% 29.23% 99.23% 

Worms 72.72% 38.64% 9.10% 25.00% 62.57% 

Shellcode 60.84% 1.32% 53.20% 38.62% 99.79% 

Generic 96.96% 96.29% 95.80% 98.18% 71.24% 

Among the algorithms evaluated, the X-DNN model achieves the highest accuracy in 

several categories. For Normal samples, X-DNN achieves an accuracy of 77.38%, surpassing 

the performance of Decision Tree 74.93%, LR 64.54%, SVM 75.60%, and HC-DTTSVM 
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88.84% algorithms. In the Reconnaissance category, X-DNN obtains an accuracy of 67.03%, 

outperforming Decision Tree 80.77%, LR 49.57%, SVM 78.30%, and HC-DTTSVM 52.83%. 

Remarkably, the X-DNN model showcases significant improvements in the Backdoor category, 

achieving an accuracy of 41.28%, compared to Decision Tree 4.97%, LR 22.47%, SVM 3.30%, 

and HC-DTTSVM 8.23%.  

For DoS samples, X-DNN achieves an accuracy of 64.53%, surpassing Decision Tree 

8.83%, LR 0.00%, SVM 4.60%, and HC-DTTSVM 64.25%. In the Exploits category, X-DNN 

achieves an accuracy of 83.27%, outperforming Decision Tree 90.08%, LR 24.97%, SVM 

92.70%, and HC-DTTSVM 80.17%. Notably, the X-DNN model demonstrates exceptional 

accuracy in the Analysis category with 87.52%, surpassing the performance of Decision Tree 

0.00%, LR 0.00%, SVM 0.00%, and HC-DTTSVM 12.56%.  

 

Figure 4.3: X-DNN class-wise Classification Performance on NSL KDD Dataset 

For Fuzzers and Shellcode samples, X-DNN achieves superior accuracy compared to 

other algorithms, obtaining 99.23% and 99.79% respectively. In contrast, DT, LR, SVM, and 

HC-DTTSVM algorithms show relatively lower accuracies in these categories. For the Generic 

category, X-DNN achieves an accuracy of 71.24%, comparable to Decision Tree 96.96%, LR 

96.29%, and SVM 95.80%, but slightly lower than HC-DTTSVM 98.18%. For comparison, 

several individual models as discussed above and compared with the proposed method. The 

results are shown in Figure 4.3 and 4.4 for NSL KDD and UNSW NB 15. The GRU model 

achieved an accuracy of 73.95%, LR achieved 73.92% accuracy, DT model achieved 80.9% 
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accuracy, and the MLP model achieved 80.95% accuracy, Random Forest achieved accuracy 

of 81.8% and, the HC-DTTSVM model achieved 81.21% accuracy, and CNN achieved 81.6% 

accuracy on the test set. All the accuracies of these models are achieved on the test set of UNSW 

NB 15 dataset. 

Precision becomes essential when the accuracy of positive predictions is of paramount 

importance. For UNSW NB 15, precision values vary across classes, emphasizing the need to 

scrutinize specific class performances. The precision for class 0 (Normal) is 0.77, indicating 

that 77% of instances predicted as class 0 were true positives. Conversely, NSL KDD 

demonstrates precision values of 1 for classes 0 (Normal) and 1 (Probe), reflecting high 

accuracy in positive predictions. Precision becomes essential when the accuracy of positive 

predictions is of paramount importance. For UNSW NB 15, precision values vary across 

classes, emphasizing the need to scrutinize specific class performances. The precision for class 

0 (Normal) is 0.77, indicating that 77% of instances predicted as class 0 were true positives. 

Conversely, NSL KDD demonstrates precision values of 1 for classes 0 (Normal) and 1 (Probe), 

reflecting high accuracy in positive predictions. 

 

Table 4.4: Classification Performance of X-DNN Model on NSL KDD Dataset Classes 

Class Attack type precision recall f1-score 

0 Normal 1.00 1.00 1.00 

1 Probe 1.00 1.00 1.00 

2 DoS 0.99 1.00 0.99 

3 R2L 0.96 0.98 0.97 

4 U2R 0.75 0.55 0.63 

Similarly, in Table 4.4, the precision of NSL KDD is shown and for class 0 (Normal) & 

1 (Probe) is 1.00, indicating that the model's predictions for this class have high accuracy. The 

weighted average precision is 1, which means that on average the model’s positive predictions 

were correct 100% of the time. Precision for the NSL KDD and UNSW NB 15 datasets are 

depicted in Figure 4.5 and 4.6 respectively. In situations where false positives (FP) carry 

significant consequences, precision values are carefully examined. Precision, calculated as TP 

/ (TP + FP), is a key indicator of the model's positive prediction accuracy. Meanwhile, recall, 

also known as sensitivity, gauges the model's ability to identify all relevant instances of a class. 
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The recall values for UNSW NB 15 range from 0.00 to 1.00, with an overall weighted average 

recall of 0.85. It's observed that certain classes exhibit lower recall values, suggesting 

challenges in correctly identifying instances. However, classes 0 (normal), 1 (reconnaissance), 

2 (Backdoor), 4 (exploits), 8 (shellcode), and 9 (Generic) have relatively low recall values, 

suggesting that the model struggles to correctly identify some instances of these classes. For 

the NSL KDD dataset, Class 4 demonstrates a relatively low recall value. However, overall, the 

recall value for the NSL KDD dataset is exceptionally high, reaching a value of 1. Recall for 

the NSL KDD and UNSW NB 15 datasets are depicted in Figure 4.3 and 4.4 respectively. 

 

Table 4.5: Classification Performance of X-DNN Model on UNSW NB15 Dataset Classes 

Class Attack Type precision recall f1-score 

0 Normal 0.77 0.18 0.29 

1 Reconnaissance 0.67 0.01 0.02 

2 Backdoor 0.41 0.03 0.06 

3 DoS 0.60 0.88 0.71 

4 Exploits 0.83 0.81 0.82 

5 Analysis 0.98 0.97 0.97 

6 Fuzzers 1.00 1.00 1.00 

7 Worms 0.61 0.69 0.65 

8 Shellcode 1.00 0.00 0.01 

9 Generic 0.70 0.27 0.39 

Incorporating both precision and recall, the F1-Score emerges as a comprehensive 

metric, particularly useful in scenarios with imbalanced class distributions. Calculated as the 

harmonic mean of precision and recall, the F1-Score offers a balanced assessment of a model's 

ability to handle both false positives and false negatives. Its application becomes imperative for 

a nuanced understanding of a classification model's overall performance in real-world 

scenarios. The F1-scores for other classes of UNSW NB 15 dataset range from 0.00 to 0.97, 

which indicates the level of accuracy of the model for each class. The weighted average F1-

score of 0.83 suggests that the overall accuracy of the model is decent. In contrast, the NSL 

KDD dataset, the weighted average F1-score of 1.00 indicates that the model achieves a 

commendable overall accuracy. F1-Score for the NSL KDD and UNSW NB 15 datasets are 

depicted in Figure 4.3 and 4.4. 
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Figure 4.4: X-DNN class-wise Classification Performance on UNSW NB 15 Dataset 

   

  
Figure 4.5: ROC Curves for NSL KDD dataset Classes using X-DNN 
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Figure 4.6: ROC Curves for UNSW NB 15 dataset Classes using X-DNN 
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ROC (Receiver Operating Characteristic) and AUC (Area Under the Curve) are 

assessment metrics. AUC, on the other hand, represents the area under the ROC curve. AUC is 

a scalar value between 0 and 1, where 0 represents a classifier that predicts all samples wrong, 

and 1 represents a perfect classifier that predicts all samples correctly. Table. 4.6 and 4.7 shows 

that the proposed model X-DNN is able to perfectly distinguish between different classes. 

Fig.4.5 and 4.6 provide the ROC curve subsequently for each specific attack class of the UNSW 

NB 15 and NSL KDD datasets. 

Table 4.6: AUC Metrics for Classes in NSL KDD Dataset 

Attack type AUC Value 

Normal 1.00 

Probe 1.00 

DoS 1.00 

R2L 1.00 

U2R 1.00 

Table 4.7: AUC Metrics for Classes in UNSW NB15 Dataset 

Attack Type AUC Value 

Normal 0.94 

Reconnaissance 0.92 

Backdoor 0.93 

DoS 0.95 

Exploits 0.98 

Analysis 1.00 

Fuzzers 1.00 

Worms 0.97 

Shellcode 0.96 

Generic 0.98 
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The confusion matrix demonstrates the model's competency by displaying the number 

of true positive, true negative, false positive, and false negative predictions. As a measure of 

the model's performance on the test dataset, confusion matrices are computed for each class. In 

the confusion matrix, each class is represented by the number of instances that are correctly and 

incorrectly classified.  

 

Figure 4.7: X-DNN Model Evaluation with Confusion Matrix for UNSW NB 15 Dataset 

 

Figure 4.8: X-DNN Model Evaluation with Confusion Matrix for NSL KDD Dataset 

From Fig 4.7 and 4.8, it can be seen that the model performed well for some classes, 

such as class Fuzzers and Probe, which is correctly classified for all instances. However, the 
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model performed poorly for some other classes, such as class DOS, which has a high number 

of misclassified instances on both datasets. 

4.4 Comparison of Proposed Method with DL Models 

The advent of DL in the field of cybersecurity has provided sophisticated tools capable 

of detecting and classifying intricate cyber threats in IoT environments. In this section, we 

present a comparative analysis between established DL models and our proposed ensemble 

model, termed X-DNN, which integrates the strengths of XGBoost and DNN. 

To benchmark the efficacy of these models, we utilized a set of performance metrics 

Accuracy, Precision, Recall, and F1-Score across two key datasets in cybersecurity: NSL KDD 

and UNSW NB 15. Additionally, for our proposed X-DNN model, we examined detailed 

performance indicators such as the confusion matrix, ROC curves, and AUC values for each 

class, enabling a granular analysis of its classification prowess. 

4.4.1 Comparison on NSL KDD Dataset 

The NSL KDD dataset results demonstrate that the traditional DL models, such as GRU 

and HC-DTTSVM, show respectable performance with accuracies of 83% and 86% 

respectively. However, they fall short when compared to the standalone XGBoost and DNN 

models, which showcase near-perfect accuracy, precision, and recall metrics. Our proposed X-

DNN model surpasses these figures marginally, achieving an accuracy of 99.81%. While there 

is a slight decrease in precision and recall to 94% and 90% respectively, the F1-Score of 92% 

indicates a strong balance between precision and recall, crucial for reliable cyber threat 

detection. This comparative performance analysis of the models is visually summarized in 

Figure 4.9, which provides a clear graphical representation of the accuracy levels achieved by 

each DL models on the NSL KDD dataset. 
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Figure 4.9: Comparison of DL models on NSL KDD dataset 

4.4.2 Comparison on UNSW NB 15 Dataset 

When applied to the more challenging UNSW NB 15 dataset, the traditional DL models 

maintain a consistent performance, with GRU achieving an accuracy of 73.95%. The HC-

DTTSVM model shows a significant improvement with an accuracy of 81.3%. However, our 

proposed X-DNN model demonstrates superior performance, with an accuracy of 85.36%, 

precision at 85%, and recall also at 85%.  

 

Figure 4.10: Comparison of DL models on UNSW NB 15 dataset 
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The F1-Score of 83% is noteworthy, as it suggests that X-DNN maintains high 

performance in precision and recall even when dealing with more complex and nuanced data 

types found in modern network traffic. This comparative performance analysis of the models is 

visually summarized in Figure 4.10, which provides a clear graphical representation of the 

accuracy levels achieved by each DL model on the UNSW NB 15 dataset. Our proposed X-

DNN model's performance warrants a detailed examination beyond conventional metrics. The 

confusion matrix for each class will reveal the model's specific strengths in identifying each 

type of attack, while the ROC curves and AUC values will provide insights into the model's 

true positive rate against the false positive rate at various threshold settings. This analysis will 

shed light on the model's robustness and reliability in operational settings. 

Table 4.8: Performance Comparison of the Proposed Method with Deep Learning Methods 

Model Name UNSW NB 15 NSL KDD 

GRU 73.95% 83.05% 

HC-DTTSVM 81.21% 85.95% 

XGBoost 81.30% 99.78% 

DNN 83.31% 99.71% 

X-DNN (Proposed) 85.36% 99.81% 

4.5 Discussion 

The experimental results show that the X-DNN ensemble model represents an efficient 

approach for detecting cyber-attacks in the IoT environments. This ensemble model exhibited 

superior performance compared to both the individual DNN and XGBoost models, not only in 

terms of accuracy but also in various evaluation metrics. These results suggest that combining 

the strengths of DNN and XGBoost allows for a more comprehensive capture of the intricate 

patterns inherent in the data. 

Based on the assessment, the ensemble model appears to perform well, although there 

is room for improvement, particularly for classes with low accuracy. The ROC curve analysis 

further shows the ensemble model's efficiency, as it exhibits a notably high true positive rate 

across all the attack classes. This signifies its ability in accurately identifying each specific type 
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of attack. These outcomes serve as evidence for the working of ensemble learning techniques 

in the scenario of cyber-security applications. Moreover, they provide valuable insights into the 

performance characteristics of diverse ML approaches employed for the identification of cyber-

attacks in the IoT environments. 
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CHAPTER 5 

5 CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

Thesis presents effectiveness of machine learning techniques, specifically the ensemble 

of XGBoost and DNN, in identifying cyber-attacks on IoT, achieving accuracy of 85.36% and 

99.81% in the UNSW NB 15 and NSL KDD datasets, respectively. These results demonstrated 

that X-DNN exhibits exceptional performance in classifying cyber-attacks. The selection of the 

UNSW NB 15 and NSL KDD datasets is based on comprehensive coverage of cyber-attack 

instances in IoT environments. While these datasets provided valuable insights and served as 

benchmarking tools. The proposed method utilizes an ensemble approach, which is stemmed 

from the complementary strengths of XGBoost and DNN algorithms. This combination resulted 

in high accuracy in identifying diverse cyber threats within IoT environments.  

In the comparative analysis, X-DNN's performance was evaluated against other selected 

DL algorithms, employing the NSL-KDD and UNSW NB 15 datasets. The analysis revealed 

that for normal samples, X-DNN achieved a detection accuracy of 99.79%, surpassing HC-

DTTSVM and other algorithms. Furthermore, in detecting Probe and DoS samples, X-DNN 

demonstrated superior accuracy, significantly outperforming the compared algorithms. This 

highlights X-DNN effectiveness in differentiating between various types of cyber threats. One 

of the remarkable aspects of X-DNN's performance is its capability to detect U2R and R2L 

samples, where it achieved higher accuracies than other sophisticated models. The class-wise 

comparative analysis further emphasizes X-DNN efficacy. On the NSL KDD dataset, X-DNN 

outperformed other algorithms in almost all categories, demonstrating particularly strong 

performance in normal, probe, and DoS categories. Similarly, on the UNSW NB 15 dataset, X-

DNN achieved the highest accuracy in several categories, notably improving the detection in 

the backdoor and analysis categories. 
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Precision and recall metrics provided deeper insights into X-DNN's performance. On 

the UNSW NB 15 dataset, precision values varied across classes, highlighting X-DNN’s ability 

to correctly predict positive instances with high reliability. In contrast, the NSL KDD dataset 

showed precision values of 1 for normal and probe classes, indicating the model's exceptional 

accuracy in these classifications. The recall values, representing the model's ability to identify 

all relevant instances of a class, also favored X-DNN, particularly in the NSL KDD dataset. 

The F1-Score, a critical metric that combines precision and recall, reinforced the balanced 

performance of X-DNN. The model demonstrated a high F1-Score across various classes, 

signifying its capability to effectively manage false positives and negatives, a crucial aspect in 

cybersecurity threat detection. 

In a comparative evaluation with other ML and DL models, X-DNN maintained its 

superiority, particularly on the more challenging UNSW NB 15 dataset. It showed higher 

accuracy, precision, recall, and F1-Scores than traditional ML and DL models. This 

comparative analysis underscored X-DNN effectiveness in handling complex and nuanced data 

types found in modern network traffic. 

5.2 Limitation  

While the results of X-DNN ensemble model are promising, it is imperative to 

acknowledge the existing limitations that impact the accuracy of cyber-attack identification in 

IoT devices. One critical limitation is the dependency on labeled data for training our machine 

learning models. The reliance on labeled data poses challenges as it restricts the model's ability 

to adapt swiftly to emerging cyber threats without retraining and updating, potentially affecting 

its accuracy in real-time scenarios. Additionally, the datasets utilized, namely the UNSW NB 

15 and NSL KDD datasets, while valuable, might not encompass the entirety of potential cyber-

attack variations observed in IoT environments.  

This limitation could potentially hinder the model's capability to detect and categorize 

new, unconventional attack patterns not present in the training data, thereby impacting its 

overall accuracy in detecting novel threats. In terms of dataset size, the relatively small nature 
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of the UNSW NB 15 dataset might limit the model's capacity to capture the diverse spectrum 

of cyber-attacks prevalent in IoT ecosystems. Their limitations regarding newer attack patterns 

open avenues for future research to expand and enhance dataset representativeness. While the 

model achieves commendable accuracy rates based on these datasets, it's essential to recognize 

that generalization to unseen or diverse cyber threats could be hindered due to the dataset's 

limitations. Moving forward, addressing these limitations requires exploring advanced deep 

learning methodologies and potentially incorporating diverse data sources beyond network 

traffic data. The inclusion of metadata or contextual information could significantly enhance 

the model's capacity to discern nuanced cyber threats and improve accuracy. 

5.3 Future Work 

Future endeavors in this domain should prioritize the acquisition of larger and more 

diverse datasets that encapsulate the evolving landscape of cyber threats within IoT 

environments. The pursuit of extensive datasets, inclusive of emerging cyber-attack patterns 

and variations, will significantly augment the model's capabilities. Evaluating our model's 

performance across diverse datasets will be pivotal. It will not only bolster our understanding 

of its adaptability but also fortify its generalization capacities, paving the way for a more 

resilient and precise cyber-attack identification system.  

Moreover, exploration into cutting-edge generalization techniques is crucial. This 

exploration will aim to fortify the model's resilience against newer, unforeseen cyber threats. 

Continual updates and expansion of the dataset to incorporate the latest cybersecurity threats 

will be instrumental. This continual update mechanism ensures our model remains relevant and 

effective in combating the ever-evolving cyber landscape. Looking ahead, the development of 

a real-time detection system emerges as a priority. A system that swiftly identifies and responds 

to cyber-attacks in real-time can significantly mitigate their impact. This proactive stance 

ensures a rapid response, minimizing potential damages within IoT environments. 
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