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ABSTRACT  

Title: Modification of finite difference scheme for the time-fractional hyperbolic 

problem with stability analysis  

                 

                 In this thesis the modification of finite difference scheme for the time-fractional 

wave problem with stability analysis for one- and two-dimensional time fractional wave 

equations (1D-TFWE and 2D-TFWE, respectively) on a finite domain is investigated. In the 

empire of mathematical physics and engineering, it has been recently discovered that the 

majority of physical processes give fractional order wave equations when modelled. To 

examine the techniques for solving fractional order wave equations and turn this scenario into 

an attractive research project, the precise solutions are crucial. Furthermore, problems in 

physics, environmental science, biology, and other fields of application have been modeled 

using fractional wave equations. For the (1D-TFWE) and (2D-TFWE), a Crank-Nicolson 

difference approximation is proposed. We explored the method's stability and convergence 

using mathematical induction. Finally, some numerical examples are shown. The numerical 

result and our theoretical analysis accord quite well. 
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CHAPTER 1  

INTRODUCTION  

1.1 Overview  

 The fractional-order partial differential equations have recently gained increased 

attention, due to their copious applications in numerous arenas of science and engineering. 

For instance, describe a wide range of physical and chemical processes as well as biological 

systems, environmental science, and multidisciplinary engineering fields Atanackovic et al. 

[6]. A class of finite difference techniques is used to introduce a numerical analysis for the 

fractional wave equations. The weighted average approaches for regular (non-fractional) wave 

equations are extended using these techniques. An approach that was recently proposed and is 

similar to the traditional John von Neumann stability analysis provides the stability analysis 

for the suggested methodologies. A straightforward and precise stability criterion that is 

applicable to various fractional derivative discretization schemes, arbitrary weight factors, and 

arbitrary orders of the fractional derivative is provided and numerically verified. For clarity, 

numerical test examples and comparisons have been provided. 

The use of partial differential equations (PDEs) as given in Eq. (1.1) mostly in the 

real-world includes solving physical and other issues involving multiple variables, such as 

heat or sound wave propagation Atanackovic et al. [6], elasticity, and others. Academics have 

frequently used the finite difference method (FDM), a potent strategy for resolving Time-

fractional wave equations (TFWEs), to address a wide range of issues, including the one 

raised above. The Dong et al. [1], introduced an exhibited first-order convergence and 

unconditional stability. Also, first-order consistency for advection dispersion equations with 

partial derivative boundary conditions using an implicit finite difference approach. The 

objective of this work is to get numerical solutions for fractional-order telegraph PDEs with 

non-local boundary conditions and investigate the stability of the proposed method. Both the 

Dufort-Frankel difference scheme and the implicit difference method were employed. The 
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authors Sweilam et al.  [15], developed the finite difference method for resolving the 

generalised time fractional telegraph problem; they also provided a study of the stability and 

convergence of the suggested solution. Studying the parameters of the telegraph equation 

linked to the FDEs involved using the R-L fractional time derivative and an approximate 

solution based on FDM. 

A high-order partial differential system with mixed partial derivatives in terms of time 

and space, the pseudo-hyperbolic telegraph equation, is a PDE. In the study of longitudinal 

vibrations, plasma physics, nerve conduction, and response wave, among other physical 

phenomena, the well-known mathematical physics equation known as the pseudo hyperbolic 

equation is commonly studied. Existence and originality of numerical solutions Abdulazeez et 

al. [32]. A number of articles have examined various aspects of pseudo-hyperbolic equations, 

the presence, nonexistence, and uniqueness of solutions, as well as numerical solutions, 

stability analysis, and the existence of solutions. With pseudo-hyperbolic equations in 

vibration, convergence analysis for approximative solutions, semi-discrete and completely 

discrete error estimates, and Cauchy-type issues involving semi-linear higher-order pseudo-

hyperbolic equations in terms of both Caputo and Atangana-Baleanu Caputo fractional 

derivatives, the author was able to achieve approximation. The solution to the pseudo-

hyperbolic telegraph PDEs using the Dufort-Frankel difference method approach was used in 

order to explain PDEs in the sense of the Caputo differential; the Crank-Nicholson finite 

difference approach was utilised, while the Fourier analysis scheme was used to proposal 

stability study and certain reproducible kernel functions.  

Wave propagation is described by a hyperbolic partial differential equation, and wave 

propagation has a finite speed as mentioned in Eq. (1.1). It is frequently maintained or creates 

discontinuities (in the absence of damping) and occurs in various disciplines of science and 

engineering like electromagnetism, fluid dynamics, acoustics, etc. Consider the following 

general partial differential equation involving two variables as 

𝑎
𝜕2𝑢

𝜕𝑥2
+ 𝑏

𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝑐

𝜕2𝑢

𝜕𝑦2
+ 𝑑

𝜕𝑢

𝜕𝑥
+ 𝑒

𝜕𝑢

𝜕𝑦
+ 𝑓𝑢 + 𝑔(𝑥, 𝑦) = 0. (1.1) 

If 𝑏2 − 4𝑎𝑐 > 0 then Eq. (1.1) is known as the hyperbolic equation. The subsequent 

wave equation is one of the well-known types of a hyperbolic equation in one dimension,  

∂2𝑢

∂𝑡2
= 𝑐2∆𝑢(𝑥, 𝑡) + 𝜙(𝑥, 𝑡, 𝑢), (1.2) 

where 𝑢𝑡𝑡, is the divergence of the gradient, c is a constant link to the material elasticity of the 

string, and ∆𝑢(𝑥, 𝑡)⁡ represents the Laplace operator and 𝜙(𝑥, 𝑡, 𝑢) is a source term. 
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Fractional calculus is a branch of mathematics that has an extensive range of 

applications in science, engineering, and mathematical physics. This field was initiated first 

time by two well-known scientists Leibniz and Hospital almost 300 years. On September 30, 

1695, Hospital received a letter, Leibniz asked: "Is it possible to convert derivatives with 

integer order to non-integer order?" Then Hospital said, "What if the order is only half?" 

Leibniz's concept is recognized as the precise age at which fractional calculus was born. 

Fractional or non-integer differential equations and fractional calculus Barro et al. 

[31], are fascinating mathematical topics that the scientific world is currently researching. Due 

to its distinct appearance in mathematics as well as other fields of science and engineering, 

scientific communities' devotion is rather realistic. The symbolization of those derivatives 

changes when the order of the derivatives is non-integer or fractional. In several scientific 

disciplines, the study of fractional order mechanics and fractional calculus has advanced 

recently, from pure mathematical theories to modeling fractional order physical issues in a 

variety of engineering and applied science fields, such as ultra-capacitors, beam heating, and 

the transfer of heat in heterogeneous media, among others. Physical and natural processes can 

be defined using differential equations, and computing the answers to problems of both 

integer and non-integer order is worthwhile because it saves both time and money. The 

fundamental effect of employing fractional differential equations is that they have non-local 

features, which implies that the dynamical systems' current state and all of their previous 

states have an impact on their future state. The practical scenarios stated are typically caused 

by the fact that several physical structures are connected to non-integer order dynamics. 

It can be seen that nearly every area of modern engineering and study uses the 

techniques and tools of fractional calculus (FC). The victory of FC applications is largely 

attributable to the novel models of fractional order, which are often more accurate as 

compared to integer-order modeling and have more benefits than the corresponding classical 

models. All fractional operators can describe the nonlocal and distributed impacts typically 

seen in technological and natural phenomena because they take into account the entire history 

of the activity under examination. As a result, fractional calculus offers a fantastic collection 

of tools for illuminating the genetic and memory properties of many materials and processes. 

Chan et al. [16], covered real-world applications in several scientific and engineering fields. 

Despite the fact that numerous astonishing discoveries have previously been made and 

published by scholars in important monographs, this review article's objective is to showcase 

a few concise descriptions written by well-known specialists in the field of fractional calculus. 
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According to Delany and Bazley's experimental findings Cai et al. [22], both the 

frequency-dependent characteristic impedance and the acoustic wave's spread coefficient were 

present. Later, numerous models were created to illustrate the phenomenon without using a 

physical clarification of the frequency-dependent indices. As a foundation for the continuity 

equation, state equation, and characteristic impendence, the fractional-order acoustic wave 

problem was suggested. The order of fractional derivatives, which has a specific physical 

significance, was created by combining the two distinctive indices. The Herschel model Chen 

et al. [16], has been successfully applied in engineering, and significant influences have been 

made to studying the properties of transport related to non-Newtonian fluids in shear flow 

founded on the conventional non-Newtonian constitutive problem. The two classifications of 

non-Newtonian fluids are time dependent and independent non-Newtonian fluids depending 

on how viscosity is defined. The history-dependent property that the reversible effect suggests 

the variation of inner structure has can be successfully described by a time-variant fractional-

order non-Newtonian problem. The fact that most non-Newtonian fluids do not have a single 

constitutive description in empirical models is the other issue with time-independent non-

Newtonian fluids. A fractional constitutive equation was presented to address this 

shortcoming and represent the observed rise of shear stress at varied velocity gradients. 

 

1.2    Preliminaries 

In this area, we go through various definitions of a fractional derivative, fractional 

integrals and Caputo derivatives of fractional order. The concept of a derivative, which is 

employed to specify the rate of change of a particular function before being utilized to create 

mathematical equations that characterize the behaviour of real-world events, is probably one 

of the most frequently utilized notions in applied mathematics. However, due to the 

complexity of real-life situations, this notion was modified to the fractional derivative 

concept, which was better suited than the local derivative for simulating real-world issues. 

Also present here some basic definitions and concepts which we will use throughout this 

dissertation. 

 

1.2.1 Definition of Caputo Fractional Derivatives   

Caputo derivative of fractional order, first planned by Caputo in 1967. The phenomena 

that take into account earlier interactions as well as problems with nonlocal features can be 
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explained by the Caputo derivative. In this way, the equation can be thought of as having 

"memory." The formula for this type of fractional derivative is Cai et al. [22]. 

𝐷𝑥
𝛼

0
𝐶 𝑢(𝑥) =

1

Γ(𝑛 − 𝛼)
∫

1

(𝑡 − 𝑥)𝛼−𝑛+1

t

0

𝑢(𝑛)(𝑥)d𝑥, 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ 𝑁. (1.3) 

Where Γ (⋅) is the Gamma function and the function u(x) under consideration. 

     

 1.2.2 Finite Difference Scheme     

 The Explicit Method 

The explicit technique uses the system status that is currently known to compute the 

state of the system in the future. The implicit technique predicts the system status at a later 

time based on the system significance at present and future times. When a differential 

equation is included, for instance. 

𝑦′ = 𝐹(𝑦, 𝑡), 

the explicit method expresses it as:  

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝐹(𝑦𝑛 + 𝑡𝑛). 

In other words, if you are aware of the Position at n, you can determine the Position at 𝑛 + 1. 

 

 The Implicit Method 

The state at 𝑛 + 1 is located on the right side of the implicit method as 

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝐹(𝑦𝑛+1 + 𝑡𝑛+1), 

the explicit method takes less time to calculate and is simpler to program. However, because 

of its poor stability, you must pick a step size small sufficient to prevent divergence. On the 

other hand, if you use the right settings, the implicit technique is highly stable and converges. 

However, because an equation needs to be solved at each step, the calculation takes a while. 

 

 Crank-Nicolson method  

The fundamental benefit of the suggested approach is that it provides efficient and 

straightforward answer to the fractional wave equation, without compromising the precision 

of the findings. The performance of the approach was more than excellent in terms of 

calculation accuracy and reliability when the numerical results were compared with the 

variations between the investigated variables of (implicit and explicit). When compared to the 

implicit and explicit algorithms, the proposed technique performed significantly better in 
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terms of running times Samarinaz et al. [33]. The wave equation and other fractional order 

partial differential equations can be quantitatively solved using the CNM, which is a finite 

difference approach. In terms of time, it is a second-order strategy, numerically stable, and 

may be described as an implicit Runge-Kutta algorithm. Here we consider these 

approximations as, 

𝜕2

𝜕𝑥2
𝑢 =

1

2
[
𝑢𝑖+1,𝑗

𝑛 − 2𝑢𝑖,𝑗
𝑛 + 𝑢𝑖−1,𝑗

𝑛

𝛥𝑥2
+

𝑢𝑖+1,𝑗
𝑛+1 − 2𝑢𝑖,𝑗

𝑛+1 + 𝑢𝑖−1,𝑗
𝑛+1

𝛥𝑥2
] + 𝑂(∆𝑥2), (1.4) 

𝜕2

𝜕𝑦2
𝑢 =

1

2
[
𝑢𝑖,𝑗−1

𝑛 − 2𝑢𝑖,𝑗
𝑛 + 𝑢𝑖,𝑗+1

𝑛

𝛥𝑦2
+

𝑢𝑖,𝑗−1
𝑛+1 − 2𝑢𝑖,𝑗

𝑛+1 + 𝑢𝑖,𝑗+1
𝑛+1

𝛥𝑦2
] + 𝑂(∆𝑦2). (1.5) 

 

 1.3 Problem Statement 

In this thesis, we will assume the following time-fractional wave equation arising in 

space is given as, 

𝐷𝑡
𝛼

0
⁡⁡𝐶 𝑢(𝑥, 𝑡) = ∆𝑢(𝑥, 𝑡) + 𝜙(𝑥, 𝑡, 𝑢(𝑥, 𝑡)), 1 < 𝛼 ≤ 2, 𝑡 > 0, 0 < 𝑥 < 1, (1.6) 

where 𝐷𝑡
𝛼

0
⁡⁡𝐶 ⁡represent the fractional order Caputo derivative also ∆𝑢(𝑥, 𝑡)⁡ represents the 

Laplace operator and 𝜙(𝑥, 𝑡, 𝑢(𝑥, 𝑡)), is called source term. If value of α is equal to one then 

this problem converted into standard heat equation and if the value of α is equal to two then 

this problem changed into ordinary wave equation that’s why I have consider the values of α  

between one and two. Besides through the subsequent initial conditions and boundary 

condition are given as:  

𝑢(𝑥, 0) = 𝑓(𝑥)⁡⁡⁡, 𝑢𝑡(𝑥, 0) = g(𝑥), a ≤ 𝑥 ≤ b, (1.7) 

⁡𝑢(𝑎, 𝑡) = ℎ1(𝑡), 𝑢(𝑏, 𝑡) = ℎ2(𝑡), 𝑡 > 0. (1.8) 

In the above,⁡⁡∆⁡are given as, 

⁡∆=
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
. (1.9) 

Respectively, we will extend the finite difference scheme to investigate the physical 

behaviour besides the parameter   through simulations and examine the convergence, error 

bound, and stability of the proposed scheme. 

 

1.4 Research Questions 

After the inclusive literature survey stated above the following research questions or 

research gaps were established: 
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 What is the mathematical formulation of the time-fractional wave problem arising in 

one and two-dimensional environments? 

 To examine the behaviour graphically of the hyperbolic equation against the fractional 

parameter?  

 What is the significant influence of fractional-order parameters on the wave problem? 

 To explore the error bound, of the proposed discretized scheme theoretically? 

 Whether the numerical scheme design for governing problem is stable theoretically? 

 To test the suggested discretized scheme's convergence? 

 What effect do the boundary conditions of Dirichlet and Neumann have on the 

numerical solutions? 

  

1.5 Aim of the Research 

                 There is no earlier study that offers a numerical and theoretical analysis of the 

fractional order wave problem for the Crank-Nicolson method. For the fractional order 

hyperbolic PDEs using the Crank-Nicolson scheme, no one looked at the error limits, 

stability, or convergence analysis. Because of this, we'll study the fractional order wave 

equation numerically and provide analysis of the problem's error bound, stability, and 

convergence. 

 This research will address the wave phenomena against the variation of fractional-

order parameters.  

 This research will offer a comprehensive numerical scheme with convergence and 

stability analysis which will be a significant contribution to computational 

mathematics. 

 The numerical scheme further uses to analyze the behaviour of a more physical model 

of fractional order. 
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1.6 Research Objectives 

In light of the research questions stated in the above sections, our main objectives of 

this research work are to disclose the features in the thesis as follows:  

  

 The mathematical formulation of time-fractional wave problems arising in one and 

two-dimensional environments. 

 Comprehensive study of error bound, of the proposed Crank-Nicolson methods.  

 Examine how the fractional-order parameter affects the wave problem through various 

simulations. 

 Numerical investigation of the influence of boundary conditions on the wave problem. 

 Extend the numerical solutions for the time-fractional wave issue and explore its 

stability theoretically. 

 Investigation convergence of the proposed numerical method. 

 

1.7 Thesis Organization 

In order to address a range of problems, we used a finite difference technique in this 

thesis. It has been discovered that the suggested algorithm is quite effective and user-friendly. 

The accuracy of the offered method is fully supported by computational effort and subsequent 

numerical findings. The assignment is structured as follows: 

The first chapter is distributed into four sections. The first section provides basic 

definitions of TFWEs; the second section includes various basic fractional calculus 

preliminaries; the third section includes some definitions of fractional derivatives; and the 

fourth section discusses the time-fractional wave equation. 

Second chapter consists of brief literature survey of fractional hyperbolic differential 

equations. The study focuses mostly on the wave equation for time fractional order. 
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Therefore, an analytical analysis of the fractional order wave equation in one and two 

dimensions has been done. The current work also includes an equation investigation of the 

Caputo fractional-order derivations. The differential Crank-Nicolson, implicit and explicit 

finite difference approach has been used to analyze the hyperbolic equation. This study also 

outlines potential benefits of applying fractional order wave to actual situations. 

The importance of one-dimensional hyperbolic problems is discussed in Chapter third 

along with their analytical analysis. The mathematical modeling, stability analysis, 

convergence analysis, and error bound explained in this chapter. With the aid of the Tec plot 

software, numerical results of the fractional-order wave problems are obtained. 

In Chapter four, along with their analytical analysis, two-dimensional hyperbolic 

problems are presented. In this chapter we explain the mathematical modeling, stability 

analysis, and convergence analysis. The numerical outcomes of the governing equations are 

derived using the Tec plot software. 

An analysis of the numerical results' performance will be presented in chapter five. 

This chapter will demonstrate and analyses simulation results using the Tec plot programming 

language in order to evaluate our suggested time-fractional hyperbolic partial differential 

equation presented in Chapters 3 and 4. This section is divided essentially into two parts. 

Results analysis, which compares the performance of TFWEs with the precise solution by 

measuring it according to a number of different criteria, is described. 

The thesis will be concluded in chapter six, which will also provide a summary of the 

contributions and also presented the upcoming directions. 
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CHAPTER 2  

LITERATURE REVIEW  

2.1 Overview  

It is observed that modeling of physical procedures utilizing fractional calculus offers 

numerous advantages and discloses significant information about complex systems that could 

be limited with the modeling through the use of classical calculus. In this regard, the research 

community's most popular and difficult topic is the solution to the differential problem of 

fractional order. Research demonstrates that fractional modeling is a reliable method for 

predicting the behaviour of any physical system Atanackovic et al, [6]. Because of its various 

advantages and ability to provide a significant deal of information about complex systems, 

fractional calculus has attracted a lot of attention from academics lately compared to the use of 

classical calculus. The importance of modeling with fractional differential equations has lately 

come to light due to the numerous real-world circumstances that call for the use of fractional 

equations. Numerous disciplines, including signal processing, image theory, economics, 

biology, mechanics, heat transport, chemistry, and Physics, use fractional equation modeling 

Zhang et al. [25]. Many fractional models indeed lack an analytical solution, which is why 

many academics have been striving to predict the development of various numerical 

approaches to come close to a solution. The fractional-order differential equation is a 

challenging subject for this field of study.  

Dong et al. discussed the numerical schemes for the first time to find an accurate 

solution to wave problems. In this article, some remarkable research has been done on the 

execution of splitting methods Dong et al. [1]. An extensive review of the application of a 

semi-analytical scheme is provided by Jafari et al. [2], to look at the solution of fractional-

order issues in series. In this research, the authors did not provide the proper information about 

the stability of the method. Later, an efficient spectral scheme using fractional Legendre 

functions, the Galerkin approach Frank et al. [26], discussed to investigate the numerical 
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solutions of the fractional-order physical model. Some new operational matrices for fractional-

order derivatives were investigated there for the first time and the suggested approach is quite 

practical for resolving issues of this nature. Some more powerful schemes can be found in the 

Mustafa et al. [30], where the researcher extended the numerical, spectral, and semi-analytical 

schemes to explore the physical behaviour besides the fractional-order parameter in the 

fractional-order differential problems. Pskhu et al. [7], examine the Riemann and Caputo 

derivatives of the essential solution to the fractional-order wave equation. Fundamental 

quantum and classical equations are used by Vazquez et al. [11], to generate the finite 

difference equation using the traditional method. Adel et al. [3], describe a group of numerical 

techniques for solving finite wave equations. The Hermite formula-based FDM is a 

prerequisite for this class of strategies. In specifically, the convergence and stability of the 

fractional FDM are inspected utilizing the Von Neumann stability analysis. Sun et al. [16], 

study the numerical result of variable-order time-fractional wave equations. The authors 

investigated the explicit, implicit, and Crank-Nicholson finite difference method for the 

numerical solution. The Fourier method is used to provide and demonstrate the stability 

conditions for these three methods. Probabilistic interpretation and numerical results of time-

fractional wave problem studied by Iafrate et [28]. It is deducted that when the fractional 

parameter plays a significant role in the Brownian motion phenomena. Barro et al. [31], used 

the Laplace transform and the method of variable separation also applied the Caputo order 

type derivative to finite wave equations with memory effect. They conclude that using 

fractional derivatives raises fresh problems for mathematics and engineering.  

Recently, Zeng et al. [4], consider the comprehensive analysis of the differential mode 

of fractional order. The equations under study principally involve the time and space 

derivatives of the dispersion- or wave-related fractional kinetic equations. These numerical 

methods can be seen as extensions of finite difference methods. The numerical strategy for 

FDEs also makes use of more established tools, such as the Fourier and von Neumann analytic 

methods. The analytical study of fractional-order linear electrical model was investigated first 

time by Zahra et al. [5]. This article contains the assessments of the fractional-order and 

classical electrical models demonstrated employing the Laplace transform and non-standard 

finite difference technique. Abdulazeez et al. [32], presented the explicit finite difference 

algorithm along the hyperbolic PDEs of fractional order is explained by the fractional 

derivative in the Caputo sense. To investigate the numerical solution of a first-order FDM is 

made for partial differential models of hyperbolic telegraph type of fractional order. A 

judgment among the precise and estimated results is presented to evaluate the suggested 



12 

 

 

 

approach's precision and efficiency. Finally, the answers both accurate and approximate under 

various conditions are displayed graphically. Saeed et al. [21], deliberated, a novel approach 

that is grounded on the explicit finite difference estimation is recommended to inspect the 

study of fractional-order hyperbolic-type PDEs. The authors proved that the suggested 

numerical strategy for the discussed model is very accurate and effective. The numerical 

results of the anticipated system are compared to accurate responses and the previous method 

to show the efficacy of the new approach. The stable difference approach is described for 

numerically solving the multi-dimensional fractional-order hyperbolic-type equation by Pinar 

et al. [8]. They proved the discussed numerical algorithm is stable. This difference scheme is 

solved using a modified Gauss elimination scheme for one-dimensional fractional-order 

hyperbolic-type partial differential equations. Yaseen et al. [24], planned a well-organized 

numerical technique for the precise outcome of a temporal-fractional wave problem using a 

response term founded on the basis of cubic trigonometric functions. The temporal fractional 

derivative is calculated using the conventional FDM, while the space-based derivative is 

discretized using cubic trigonometric B-spline functions. To make sure that errors are not 

amplified, a stability study of the method is conducted. The numerical results are related to 

finite difference models built using the Hermite formulation and the radial-basis functions. It 

is learned that because of its basic interpolation, easy implementation, and low computing 

cost, our numerical solution outperforms the currently used techniques. The scheme's 

convergence analysis is also covered. Many definitions of fractional derivatives and integrals 

(differential integrals) were addressed by Sheng et al. [12], they allow for the explicit 

derivation of formulas and graphs for some particular functions. They also looked at various 

fractional calculus applications. Odibat et al. [3], proposed the consideration is given to the 

TFWEs. The TFWEs is produced by using a fractional derivative of order 𝛼 ∈ (0,2] in the 

standard wave equation in place of the first-order time derivative. Fractional derivatives are 

referred regarded as having the Caputo sense. This article uses the Adomian decomposition 

method to show the analytical results to the fractional wave equations. The explicit solutions 

to the equations have been provided in closed form using beginning conditions, and their 

numerical solutions have then been visually displayed. To illustrate how the present technique 

is applied, four examples are given. The simplicity and efficiency of the current approach are 

excellent. Danesh et al. [13], study classical wave equations are generalized to create spatially 

fractional order wave equations, which are increasingly employed to represent real-world 

super diffusive issues in fields like finance and fluid flow. The analytical Adomian's 

decomposition method (ADM) solutions to the space fractional wave equations are presented 
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in this study. The equations' explicit solutions have been given in closed form using started 

conditions. To demonstrate the use of the new methodologies, two examples the first a one-

dimensional fractional wave problem and the second a two-dimensional fractional hyperbolic 

differential equation are provided. The simplicity and efficiency of the current approach are 

excellent. In this article, Humaira Yasmin et al. [35], presented the fractional derivatives are 

used to analyses fractional nonlinear convection, reaction, and wave equations. An efficient 

method that analysis of this fractional-order suggested model combines the Aboodh 

transformation with the homotopy perturbation approach. To approximate these derivatives, a 

modified method called the homotopy perturbation transform method is developed. Both a 

graphic and a tabular investigation of the analytical simulation are conducted. Rasool shah et 

al. [34], discuss in this article using the novel iterative methodology and the Homotopy 

perturbation method. The fractional derivatives are labeled using the Caputo sense. The 

findings obtained with the help of the suggested methodologies can also be achieved at 

different fractional derivative orders. Due to the fact that we are operating within the realm of 

fractional calculus, we are able to get initial conditions with fractional exponents when 

employing the Laplace transform, which are truly both mathematically and practically 

realistic. Therefore, the majority of academics believed that the Riemann-Liouville definition 

was more precise. It is important to emphasize that these derivatives cannot be used to 

simulate real-world situations involving continuous probability distributions, despite the fact 

that they are strong mathematical tools for doing so. However, because fractional derivatives 

have a memory quality, modelling biological processes as well as those in mathematics, 

physics, and engineering has greatly benefited from the theory and applications of fractional 

calculus. The use of fractional-order derivatives is becoming more prevalent in research 

focused on simulating real-world issues. Because of this, using fractional-order derivatives to 

express various types of issues has become increasingly popular over the past few decades in a 

number of scientific and technical domains. One of the primary justifications for their 

employment in diverse applications is the memory impact of these derivatives as well as their 

nonlocal characteristics. FDEs have progressively assumed more significant roles during the 

last few decades in a variety of disciplines, including physics, biology, mechanics, and 

chemistry Adel et al. [23]. Fractional quantum mechanics was created more recently as a 

result of the expansion of FDEs' applications to quantum mechanics. Everyone is aware that it 

is frequently challenging to find analytical remedies for these issues. In light of this, it is 

crucial and beneficial to employ approximate approaches to discover the approximate 

solutions to these equations. To solve the different fractional equations FDM, finite element 
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methods, spectral approaches, etc. have all been put forth. This area of study is still evolving 

at the moment due to the numerous applications it has in areas as diverse such as hydrology, 

viscoelasticity, and fluid flow. In recent decades, there has been a great deal of interest in 

developing efficient numerical techniques for substantially approximating FDE solutions. The 

last few decades have seen a remarkable advancement in spectral approaches. The main 

benefit of spectral approaches is their ability to produce very accurate results. The four widely 

used spectrum methods are tau, collocation, spectral element approaches, and spectral 

methods. It is obvious that the form of initial condition and the kind of differential equation or 

boundary conditions that regulate it affect the choice of the most effective spectral approach 

that is recommended for solving such differential equations Baleanu et al. [25]. For a variety 

of physical phenomena, including wave processes and damping laws, PDEs incorporating 

derivatives of fractional orders have proven to be suitable models. Finance, arterial science, 

electrochemistry, electromagnetics, and the theory of extremely slow processes are among the 

other uses. The graphs and tables demonstrate that the fractional-order solutions converge to 

an integer solution when the fractional orders get closer to the integer order of the problems. 

Tec plot can be used to display the aforementioned problems in tabular and graphical form. 

Due to the precision, ease of use, and simplicity of the provided methodologies, they can be 

used to resolve current non-linear fractional partial differential equations. 

A group of fractional PDEs with variable coefficients on a finite domain that have 

initial and boundary values is studied, along with some useful numerical methods to solve 

them. We investigate a case where the PDEs may have a fractional spatial derivative with 

either a left or a right hand. The approaches' stability, consistency, and convergence are 

discussed. The stability and convergence results in the fractional PDE are used to merge the 

corresponding conclusions for the classical parabolic and hyperbolic cases into a single 

condition. Tadjeran et al. [4], Researchers in this paper take into account a model of 

fractional-order nerve impulses. Understanding the answers to this model's problems enables 

the management of the nerve impulse process. Because of the memory effect, specifically 

taking into account this model as fractional-order guarantees the ability to analyse in detail. In 

this situation, we first employ an analytical solution, and then, in order to achieve this answer, 

we provide numerical solutions by combining two numerical schemes. The walking wave-type 

solutions to the original problem are then shown. Complex hyperbolic functions, complex 

trigonometric functions Yavuz et al. [29], and algebraic functions are all part of these 

solutions. Also, a linear stability analysis is carried out, and the absolute error is discovered by 

contrasting the numerical and analytical results. This essay discusses the variations and 
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resemblances of the mentioned solution approaches in addition to highlighting the model's 

precise and numerical solutions. As a result, the findings of this research are significant and 

helpful for both mathematicians and engineers, as well as neuroscientists and physicists. 

 

2.2  Research Gap and Conceptual Framework 

The current study concentrates on the two-dimensional finite domain TFWEs. 

For the two-dimensional TFWE, a finite difference approximation is proposed. For 

obtaining the numerical solution of FDEs, variety of schemes and treatments are 

investigated. These include the iteration method, the Adams-Bashforth Moulton 

method, the FDM and homotropy perturbation method. The FDM is one of the most 

effective strategies used in scientific computing and applied mathematics. Then, the 

unknown coefficients are discovered in order to declare that the exact solution is 

approximate with a very small error. For many different forms of FDEs, these 

numerical techniques are regarded as an excellent tool for numerical solution. 

Researchers explore the method's stability and convergence utilizing induction in 

mathematics. Then, a numerical example is given. The numerical result and our 

theoretical analysis are in perfect agreement. The numerically results are computed 

by using Tec plot.  

In light of the research gap stated in the above sections, our main objectives in 

the thesis are: 

 The mathematical formulation of the problem of time-fractional waves that 

occurs in one and two dimensions.  

 Through several simulations, examine the impact of the fractional-order 

parameter on the wave problem.  

 An analysis using numbers of how boundary conditions affect the wave problem.  

 Convergence of the suggested numerical approach is being investigated. 

 Analyze the theoretical stability of the time-fractional wave problem and extend 

the numerical solutions. 

 Inclusive study of error bound, of the proposed Crank-Nicolson methods.  
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CHAPTER 3 

MODIFICATION OF ONE-DIMENSIONAL 

HYPERBOLIC PROBLEM  

3.1 Introduction  

In the areas of anomalous wave, viscous-elasticity, control, etc. fractional calculus has 

attracted a lot of attention. Undoubtedly the most crucial regions of FC application is the 

anomalous wave model, which is one of those. In the fields of physics, chemistry, and 

biology, anomalous wave events are frequently encountered. 

The understanding of integral problems is essential in many areas of applied mathematics sinc

e they naturally arise in several applications in engineering and science presented the Bao et 

al. [1]. The wave process in inhomogeneous porous media, also known as time-dependent 

anomalous wave, can be described using a recently discovered and promising method called 

the TFWEs model. The development of effective numerical techniques is urgently required to 

further the research of the characteristics of variable-order time fractional sub wave equation 

models. FDM approaches Yajun et al. [20], have been widely used to construct 

approximations for partial differential equations regulating wave propagation due to their 

simplicity, flexibility, and robustness. Even stable and precise systems can display this 

behaviour, despite the fact that waves in numerical schemes might propagate at different wave 

speeds than in the actual medium. When creating finite difference schemes in the past, 

accuracy constraints were applied. We look into how finite difference algorithms are 

developed and used to get smaller numerical dispersion errors. 

Fractional calculus is used in a very large number of scientific and technical problems, 

and this number is constantly increasing. The fact that fractional derivatives offer a great 

method for describing memory and hereditary features of diverse materials and processes is 

one of the key benefits of the fractional calculus. Numerous numerical techniques have been 

presented for solving FDEs using various types of fractional derivative operators Shen et al. 
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[14]. Recent years have seen an increase in the number of scientists finding that a variety of 

important dynamical problems exhibit fractional-order behaviour that may alter across time or 

space. This proves that variable-order calculus is a natural candidate to provide a helpful 

mathematical framework for the understanding of complex dynamical problems. Variable-

order differential operators have been defined in a variety of ways by various authors, each 

with a unique meaning tailored to achieve the desired outcomes. A variable-order nonlinear 

fractional wave equation approximation using explicit finite differences was studied by Chen 

et al. [9], for stability and convergence. In order to approximate the variable-order fractional 

advection-wave equation with a nonlinear source term, The Riemann definition, the Caputo 

definition, and the requirement that Current formulations of the variable order operator that 

have been proposed in the literature show that it yields the correct fractional derivative that 

relates to the argument of the functional order. For variable-order fractional differential 

equations, analytical solutions are more challenging to find since the variable-exponent kernel 

of the variable-order operators has received little attention. The growth of numerical methods 

for the solution of variable-order fractional differential equations is still in its infancy. Sun et 

al. [25], based on the various physical causes that would have driven the variable-order, 

utilized the Crank-Nicholson scheme to generate the wave curve of the variable-order 

differential operator model, and created a classification of the variable-order fractional wave 

models. Many of these authors haven't, however, covered the numerical solutions' 

convergence and stability. Zhuang et al. [5], suggested explicit and implicit Euler 

approximations. The numerical methods for TFWEs in a finite domain are investigated in this 

thesis. The Crank-Nicholson scheme is used along with other finite difference schemes. This 

chapter explain the discretization of one-dimensional TFWEs and check its stability, 

convergence and error bound. 

 

 

3.2     Mathematical Methodology 

This section constructed to elaborate the development of finite difference method using the 

Crank-Nicholson strategy. In order to investigating the potential solutions, we will follow the 

following methodology using the finite difference approach also given in diagram 3.1: 
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Diagram 3.1 Working step of the methodology 

The fractional order term  𝐷𝑡
𝛼𝑢(𝑥, 𝑡)⁡will be approximated by the following formula 

𝐷0
𝐶

𝑡
𝛼𝑢(𝑥, 𝑡) =

Δ𝑡−𝛼

Γ(3 − 𝛼)
[𝑢𝑖

𝑛+1 − 2𝑢𝑖
𝑛 + 𝑢𝑖

𝑛−1 + ∑(𝑢𝑖
𝑛−𝑘+1 − 2𝑢𝑖

𝑛−𝑘 + 𝑢𝑖
𝑛−𝑘−1)

𝑛

𝑘=1

𝑏𝛼
𝑘] 

+𝑂(∆𝑡4−𝛼). 

(3.1) 

where 𝑏𝛼
𝑘 = ((1 + 𝑘)2−𝛼 + 𝑘2−𝛼). Space derivative 𝑢𝑥𝑥 will be approximated by  

𝜕2

𝜕𝑥2
𝑢(𝑥, 𝑡) =

1

2
[
𝑢𝑖+1

𝑛 − 2𝑢𝑖
𝑛 + 𝑢𝑖−1

𝑛

Δ𝑥2
+

𝑢𝑖+1
𝑛+1 − 2𝑢𝑖

𝑛+1 + 𝑢𝑖−1
𝑛+1

Δ𝑥2
] + 𝑂(∆𝑥2). (3.2) 

Similarly, the derivative w.r.t. y  can be approximated accordingly. Now, consider one-

dimension hyperbolic fractional order partial differential equation  

𝐷0
𝐶

𝑡
𝛼𝑢(𝑥, 𝑡) =

𝜕2𝑢

𝜕𝑥2
+ 𝜙(𝑥, 𝑡), 𝑎 < 𝑥 < 𝑏, 0 < 𝑡 ≤ 𝑇, 1 < 𝛼 ≤ 2, (3.3) 

Beside through the subsequent initial conditions and boundary condition 

𝑢(𝑥, 0) = 𝑓(𝑥), 𝑢𝑡(𝑥, 0) = 𝑔(𝑥), 𝑎 ≤ 𝑥 ≤ 𝑏, (3.4) 

𝑢(𝑎, 𝑡) = ℎ1(𝑡), 𝑢(𝑏, 𝑡) = ℎ2(𝑡), 𝑡 > 0. (3.5) 

Putting the values from equation (3.1) and (3.2) in equation (3.3) we get; 

𝑢𝑖
𝑛+1 − 2𝑢𝑖

𝑛 + 𝑢𝑖
𝑛−1 + ∑(𝑢𝑖

𝑛−𝑘+1 − 2𝑢𝑖
𝑛−𝑘 + 𝑢𝑖

𝑛−𝑘−1)𝑏𝑘

𝑛

𝑘=1

= 𝑟 (
1

2
𝑢𝑖+1

𝑛+1 − 𝑢𝑖
𝑛+1 +

1

2
𝑢𝑖−1

𝑛+1 +
1

2
𝑢𝑖+1

𝑛 − 𝑢𝑖
𝑛 +

1

2
𝑢𝑖−1

𝑛 )

+
1

2
Γ(3 − 𝛼)Δ𝑡𝛼𝜙𝑖

𝑛+1 +
1

2
Γ(3 − 𝛼)Δ𝑡𝛼𝜙𝑖

𝑛 , 

(3.6) 
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−𝑟

2
𝑢𝑖−1

𝑛+1 + (1 + 𝑟)𝑢𝑖
𝑛+1 −

𝑟

2
𝑢𝑖+1

𝑛+1

=
𝑟

2
𝑢𝑖−1

𝑛 + (2 − 𝑟)𝑢𝑖
𝑛 +

𝑟

2
𝑢𝑖+1

𝑛 − 𝑢𝑖
𝑛−1

− ∑(𝑢𝑖
𝑛−𝑘+1 − 2𝑢𝑖

𝑛−𝑘 + 𝑢𝑖
𝑛−𝑘−1)𝑏𝑘

𝑛

𝑘=1

+
1

2
Γ(3 − 𝛼)Δ𝑡𝛼𝜙𝑖

𝑛+1

+
1

2
Γ(3 − 𝛼)Δ𝑡𝛼𝜙𝑖

𝑛 ,⁡⁡⁡1 ≤ 𝑖 ≤ 𝑀 − 1, 0 ≤ 𝑛 ≤ 𝑁 − 1 

(3.7) 

Δ𝑥 =
𝑏 − 𝑎

𝑀
, Δ𝑡 =

𝑇

𝑁
, 𝑛 =⁡⁡, 𝑥𝑖 = 𝑎 + 𝑖Δ𝑥, 𝑡𝑛 = 𝑛Δ𝑡, 𝑟 =

Γ(3 − 𝛼)Δ𝑡𝛼

Δ𝑥2
, 𝑢𝑖

𝑛

= 𝑢(𝑥𝑖 , 𝑡𝑛), 𝜙𝑖
𝑛 = 𝜙(𝑥𝑖 , 𝑡𝑛), 𝑓𝑖 = 𝑓(𝑥𝑖), 𝑔𝑖 = 𝑔(𝑥𝑖), 

ℎ1
𝑛 = ℎ1(𝑡𝑛), ℎ2

𝑛 = ℎ2(𝑡𝑛), 𝑏𝑘 = (1 + 𝑘)2−𝛼 − 𝑘2−𝛼 . 

(3.8) 

The summation term in Eq. (3.7) can be simplified as: 

∑(𝑢𝑖
𝑛−𝑘+1 − 2𝑢𝑖

𝑛−𝑘 + 𝑢𝑖
𝑛−𝑘−1)𝑏𝑘

𝑛

𝑘=1

= (𝑢𝑖
𝑛𝑏1 − 2𝑢𝑖

𝑛−1𝑏1 + 𝑢𝑖
𝑛−2𝑏1) 

+(𝑢𝑖
𝑛−1𝑏2 − 2𝑢𝑖

𝑛−2𝑏2 + 𝑢𝑖
𝑛−3𝑏2) + (𝑢𝑖

𝑛−2𝑏3 − 2𝑢𝑖
𝑛−3𝑏3 + 𝑢𝑖

𝑛−4𝑏3) 

+(𝑢𝑖
𝑛−3𝑏4 − 2𝑢𝑖

𝑛−4𝑏4 + 𝑢𝑖
𝑛−5𝑏4) + ⋯+ (𝑢𝑖

3𝑏𝑛−2 − 2𝑢𝑖
2𝑏𝑛−2 + 𝑢𝑖

1𝑏𝑛−2) 

+(𝑢𝑖
2𝑏𝑛−1 − 2𝑢𝑖

1𝑏𝑛−1 + 𝑢𝑖
0𝑏𝑛−1) + (𝑢𝑖

1𝑏𝑛 − 2𝑢𝑖
0𝑏𝑛 + 𝑢𝑖

−1𝑏𝑛) 

It can be rewritten as: 

∑(𝑢𝑖
𝑛−𝑘+1 − 2𝑢𝑖

𝑛−𝑘 + 𝑢𝑖
𝑛−𝑘−1)𝑏𝑘

𝑛

𝑘=1

= 𝑢𝑖
𝑛𝑏1 + ∑ 𝑑𝑘𝑢𝑖

𝑛−𝑘

𝑛−1

𝑘=1

− 2𝑢𝑖
0𝑏𝑛 + 𝑢𝑖

−1𝑏𝑛 , 

where (𝑏𝑘+1 − 2𝑏𝑘 + 𝑏𝑘−1) = 𝑑𝑘  

After rearranging the Eq. (3.7), we obtained the following discretization formula as: 

−𝑟

2
𝑢𝑖−1

𝑛+1 + (1 + 𝑟)𝑢𝑖
𝑛+1 −

𝑟

2
𝑢𝑖+1

𝑛+1

=
𝑟

2
𝑢𝑖−1

𝑛 + (2 − 𝑟)𝑢𝑖
𝑛 +

𝑟

2
𝑢𝑖+1

𝑛 − 𝑢𝑖
𝑛−1 − 𝑢𝑖

𝑛𝑏1 − ∑ 𝑑𝑘𝑢𝑖
𝑛−𝑘

𝑛−1

𝑘=1

+ 2𝑢𝑖
0𝑏𝑛 − 𝑢𝑖

−1𝑏𝑛 +
1

2
Γ(3 − 𝛼)Δ𝑡𝛼𝜙𝑖

𝑛+1 +
1

2
Γ(3 − 𝛼)Δ𝑡𝛼𝜙𝑖

𝑛 , 

(3.9) 

It can be changed into the following form: 

−𝑟

2
𝑢𝑖−1

1 + (1 + 𝑟)𝑢𝑖
1 −

𝑟

2
𝑢𝑖+1

1

=
𝑟

2
𝑢𝑖−1

0 + (2 − 𝑟)𝑢𝑖
0 +

𝑟

2
𝑢𝑖+1

0 − 𝑢𝑖
−1 − 𝑢𝑖

0𝑏1 + 2𝑢𝑖
0𝑏0 − 𝑢𝑖

−1𝑏0

+
1

2
Γ(3 − 𝛼)Δ𝑡𝛼𝜙𝑖

1 +
1

2
Γ(3 − 𝛼)Δ𝑡𝛼𝜙𝑖

0, for⁡𝑛 = 0, 

(3.10) 
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−𝑟

2
𝑢𝑖−1

𝑛+1 + (1 + 𝑟)𝑢𝑖
𝑛+1 −

𝑟

2
𝑢𝑖+1

𝑛+1

=
𝑟

2
𝑢𝑖−1

𝑛 + (2 − 𝑟)𝑢𝑖
𝑛 +

𝑟

2
𝑢𝑖+1

𝑛 − 𝑢𝑖
𝑛−1 − 𝑢𝑖

𝑛𝑏1 − ∑ 𝑑𝑘𝑢𝑖
𝑛−𝑘

𝑛−1

𝑘=1

+ 2𝑢𝑖
0𝑏𝑛 − 𝑢𝑖

−1𝑏𝑛 +
1

2
Γ(3 − 𝛼)Δ𝑡𝛼𝜙𝑖

𝑛+1 +
1

2
Γ(3 − 𝛼)Δ𝑡𝛼𝜙𝑖

𝑛 ,

for⁡⁡𝑛 ≥ 1. 

(3.11) 

The discretization described above can be recast in the matrix form shown below:  

𝔸𝐔⃑⃑ 𝑛+1 = 𝔹𝐔⃑⃑ 𝑛 − 𝐔⃑⃑ 𝑛−1 +
1

2
(𝐟 𝑛 + 𝐟 𝑛+1) + 𝐛 𝑛 + 𝐜 𝑛⁡⁡⁡for⁡𝑛 = 0, (3.12) 

𝔸𝐔⃑⃑ 𝑛+1 = 𝔹𝐔⃑⃑ 𝑛 − 𝑏1𝐔⃑⃑ 
𝑛 − (1 − 2𝑏1)𝐔⃑⃑ 

𝑛−1 − 𝑏1𝐔⃑⃑ 
𝑛−2 +

1

2
(𝐟 𝑛 + 𝐟 𝑛+1) + 𝐛 𝑛⁡⁡𝑓𝑜𝑟⁡𝑛 = 1 

 

(3.13) 

𝔸𝐔⃑⃑ 𝑛+1 = 𝔹𝐔⃑⃑ 𝑛 − 𝑏1𝐔⃑⃑ 
𝑛 − (1 − 2𝑏1 + 𝑏2)𝐔⃑⃑ 

𝑛−1 − 𝑏1𝐔⃑⃑ 
𝑛−2 − (𝑏𝑛−1 − 2𝑏𝑛)𝐔⃑⃑ 

0 − 𝑏𝑛𝐔⃑⃑ 
−1

+
1

2
(𝐟 𝑛 + 𝐟 𝑛+1) + 𝐛 𝑛⁡⁡⁡⁡𝑓𝑜𝑟⁡𝑛 = 2 

(3.14) 

𝔸𝐔⃑⃑ 𝑛+1 = 𝔹𝐔⃑⃑ 𝑛 − 𝑏1𝐔⃑⃑ 
𝑛 − (1 − 2𝑏1 + 𝑏2)𝐔⃑⃑ 

𝑛−1 − ∑(𝑏𝑘+2 − 2𝑏𝑘+1 + 𝑏𝑘)𝐔⃑⃑ 
𝑛−𝑘−1

𝑛−2

𝑘=1

− (𝑏𝑛−1 − 2𝑏𝑛)𝐔⃑⃑ 
0 − 𝑏𝑛𝐔⃑⃑ 

−1 +
1

2
(𝐟 𝑛 + 𝐟 𝑛+1) + 𝐛 𝑛⁡⁡𝑓𝑜𝑟⁡𝑛 ≥ 3 

(3.15) 

 

𝔸 =

[
 
 
 
 
 
 
 
 
 
 1 + 𝑟

−𝑟

2
0 ⋯ 0 0

−𝑟

2
1 + 𝑟

−𝑟

2
⋯ 0 0

0
−𝑟

2
1 + 𝑟 ⋯ 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 ⋯ 1 + 𝑟
−𝑟

2

0 0 0 ⋯
−𝑟

2
1 + 𝑟]

 
 
 
 
 
 
 
 
 
 

,

𝔹 =

[
 
 
 
 
 
 
 
 
 
 2 − 𝑟

𝑟

2
0 ⋯ 0 0

𝑟

2
2 − 𝑟

𝑟

2
⋯ 0 0

0
𝑟

2
2 − 𝑟 ⋯ 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 ⋯ 2 − 𝑟
𝑟

2

0 0 0 ⋯
𝑟

2
2 − 𝑟]

 
 
 
 
 
 
 
 
 
 

, 

𝐟 𝑛 =

[
 
 
 
 
 

Γ(3 − 𝛼)Δ𝑡𝛼𝜙1
𝑛

Γ(3 − 𝛼)Δ𝑡𝛼𝜙2
𝑛

Γ(3 − 𝛼)Δ𝑡𝛼𝜙3
𝑛

⋮
Γ(3 − 𝛼)Δ𝑡𝛼𝜙𝑀−2

𝑛

Γ(3 − 𝛼)Δ𝑡𝛼𝜙𝑀−1
𝑛 ]

 
 
 
 
 

, 𝐔⃑⃑ 𝑛 =

[
 
 
 
 
 

𝑢1
𝑛

𝑢2
𝑛

𝑢3
𝑛

⋮
𝑢𝑀−2

𝑛

𝑢𝑀−1
𝑛 ]

 
 
 
 
 

,𝐛 𝑛 =

[
 
 
 
 
 
𝑟𝜃𝑢0

𝑛 + 𝑟𝜃𝑢0
𝑛+1

0
0
⋮
0

𝑟𝜃𝑢𝑀
𝑛 + 𝑟𝜃𝑢𝑀

𝑛+1]
 
 
 
 
 

, 𝐜 𝑛 =

[
 
 
 
 
 

2Δ𝑡𝑔1

2Δ𝑡𝑔2

2Δ𝑡𝑔3

⋮
2Δ𝑡𝑔𝑀−2

2Δ𝑡𝑔𝑀−1]
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3.3 Stability Analysis  

The roundoff error equation is expressed as follows: 

−𝑟𝑢𝑖−1
1 + (1 + 2𝑟)𝑢𝑖

1 − 𝑟𝑢𝑖+1
1 = 𝑟𝑢𝑖−1

0 + (2 − 2𝑟)𝑢𝑖
0 + 𝑟𝑢𝑖+1

0 − 𝑢𝑖
−1⁡⁡for⁡𝑛 = 0,                (3.16) 

−𝑟𝑢𝑖−1
𝑛+1 + (1 + 2𝑟)𝑢𝑖

𝑛+1 − 𝑟𝑢𝑖+1
𝑛+1 = 𝑟𝑢𝑖−1

𝑛 − 2𝑟𝑢𝑖
𝑛 + 𝑟𝑢𝑖+1

𝑛 + (2 − 𝑏1)𝑢𝑖
𝑛 +

∑ 𝑢𝑖
𝑛−𝑘𝑑𝑘

𝑛−1
𝑘=1 + 2𝑢𝑖

0𝑏𝑛 − 𝑢𝑖
−1𝑏𝑛⁡⁡⁡⁡⁡⁡⁡⁡𝑛 ≥ 1                

(3.17) 

We suppose that the solution of the above equation has the following form  𝑢𝑝
𝑘 = 𝛿𝑘𝑒

𝑖𝛽ℎ𝑝, 

from equation (3.16)  

−𝑟𝛿1𝑒
𝑖𝛽ℎ(𝑝−1) + (1 + 2𝑟)𝛿1𝑒

𝑖𝛽ℎ𝑝 − 𝑟𝛿1𝑒
𝑖𝛽ℎ(𝑝+1) = 𝑟𝛿0𝑒

𝑖𝛽ℎ(𝑝−1) +

(2 − 2𝑟)𝛿0𝑒
𝑖𝛽ℎ𝑝 + 𝑟𝛿0𝑒

𝑖𝛽ℎ(𝑝+1) − 𝛿−1𝑒
𝑖𝛽ℎ𝑝,           

(3.18) 

𝑒𝑖𝛽ℎ𝑝[−𝑟𝑒−𝑖𝛽ℎ + (1 + 2𝑟) − 𝑟𝑒𝑖𝛽ℎ]𝛿1 = 𝑒𝑖𝛽ℎ𝑝[𝑟𝑒−𝑖𝛽ℎ + (2 − 2𝑟) +

𝑟𝑒𝑖𝛽ℎ]𝛿0 − 𝛿−1𝑒
𝑖𝛽ℎ𝑝,           

(3.19) 

[−2𝑟{
𝑒−𝑖𝛽ℎ+𝑒𝑖𝛽ℎ

2
} + (1 + 2𝑟)] 𝛿1 = [2𝑟{

𝑒−𝑖𝛽ℎ+𝑒𝑖𝛽ℎ

2
} + (2 − 2𝑟)] 𝛿0 − 𝛿−1, (3.20) 

[−2𝑟𝑐𝑜𝑠𝛽ℎ + 1 + 2𝑟]𝛿1 = [2𝑟𝑐𝑜𝑠𝛽ℎ + 2 − 2𝑟]𝛿0 − 𝛿−1, (3.21) 

[1 + 2𝑟(1 − 𝑐𝑜𝑠𝛽ℎ)]𝛿1 = [2 − 2𝑟(1 − 𝑐𝑜𝑠𝛽ℎ)]𝛿0 − 𝛿−1, (3.22) 

[1 + 2𝑟(2𝑠𝑖𝑛2 𝛽ℎ

2
)] 𝛿1 = [2 − 2𝑟(2𝑠𝑖𝑛2 𝛽ℎ

2
)] 𝛿0 − 𝛿−1, (3.23) 

[1 + 4𝑟𝑠𝑖𝑛2(
𝛽ℎ

2
)] 𝛿1 = [2 − 4𝑟𝑠𝑖𝑛2(

𝛽ℎ

2
)] 𝛿0 − 𝛿−1 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ ∴ 𝑘 = 0, (3.24) 

Lemma: 1 In [16] the coefficients r and 𝑑𝑘  have the following properties,     

   r > 0, 0 < 𝑏𝑘  < 𝑏𝑘−1 ⁡≤ 1⁡,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀⁡𝑘 = 1,2,…𝑁,   

       0 < 𝑑𝑘  < 1,  ∑ 𝑑𝑘 = 1 −𝑛−1
𝑘=0 𝑏𝑘 . 

 

Lemma: 2 In [16] assume that 𝛿𝑘(𝑘 = 1,2… , 𝑁 − 1) is the solution, then we have  

|𝛿𝑘| ≤ |𝛿0| 

Proof: we use mathematical induction to achieve the proof method. When k=0, we get  

𝛿1 =
[2 − 4𝑟𝑠𝑖𝑛2(

𝛽ℎ

2
)] 𝛿0 − 𝛿−1

[1 + 4𝑟𝑠𝑖𝑛2(
𝛽ℎ

2
)]

=
[2 − 4𝑟𝑠𝑖𝑛2(

𝛽ℎ

2
)] 𝛿0

[1 + 4𝑟𝑠𝑖𝑛2(
𝛽ℎ

2
)]

−
𝛿−1

[1 + 4𝑟𝑠𝑖𝑛2 (
𝛽ℎ

2
)]

, (3.25) 

|𝛿1| ≤
[2 − 4𝑟𝑠𝑖𝑛2 (

𝛽ℎ

2
)]

[1 + 4𝑟𝑠𝑖𝑛2 (
𝛽ℎ

2
)]

|𝛿0| −
1

[1 + 4𝑟𝑠𝑖𝑛2 (
𝛽ℎ

2
)]

|𝛿−1|, (3.26) 

|𝛿1| ≤
2 − 4𝑟𝑠𝑖𝑛2 (

𝛽ℎ

2
) − 1

[1 + 4𝑟𝑠𝑖𝑛2 (
𝛽ℎ

2
)]

|𝛿0|, (3.27) 
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|𝛿1| ≤
1 − 4𝑟𝑠𝑖𝑛2 (

𝛽ℎ

2
)

[1 + 4𝑟𝑠𝑖𝑛2 (
𝛽ℎ

2
)]

|𝛿0|, (3.28) 

|𝛿𝑘| ≤ |𝛿0|. (3.29) 

from Equation (3.17) 

−𝑟𝛿𝑘+1𝑒
𝑖𝛽ℎ(𝑝−1) + (1 + 2𝑟)𝛿𝑘+1𝑒

𝑖𝛽ℎ𝑝 − 𝑟𝛿𝑘+1𝑒
𝑖𝛽ℎ(𝑝+1) = 𝑟𝛿𝑘𝑒

𝑖𝛽ℎ(𝑝−1) +

(2 − 𝑏1 − 2𝑟)𝛿𝑘𝑒
𝑖𝛽ℎ𝑝 + 𝑟𝛿𝑘𝑒

𝑖𝛽ℎ(𝑝+1) + ∑ 𝛿𝑘−𝑗𝑒
𝑖𝛽ℎ𝑝𝑑𝑘

𝑛−1
𝑘=1 + 2𝑏𝑛𝛿0𝑒

𝑖𝛽ℎ𝑝 −

𝑏𝑛𝛿−1𝑒
𝑖𝛽ℎ𝑝, 

(3.30) 

𝛿𝑘+1[1 + 2𝑟 − 𝑟𝑒𝑖𝛽ℎ − 𝑟𝑒−𝑖𝛽ℎ] = 𝛿𝑘[𝑟𝑒
−𝑖𝛽ℎ + (2 − 𝑏1 − 2𝑟) + 𝑟𝑒𝑖𝛽ℎ] +

∑ 𝛿𝑘−𝑗𝑑𝑘
𝑛−1
𝑘=1 + 2𝑏𝑛𝛿0 − 𝑏𝑛𝛿−1⁡.  

(3.31) 

After simplifying we have  

𝛿𝑘+1[1 + 4𝑟𝑠𝑖𝑛2(
𝛽ℎ

2
)] = 𝛿𝑘[2 − 𝑏1 − 4𝑟𝑠𝑖𝑛2(

𝛽ℎ

2
)] + ∑ 𝛿𝑘−𝑗𝑑𝑘

𝑛−1
𝑘=1 + 2𝑏𝑛𝛿0 −

𝑏𝑛𝛿−1. 

(3.32) 

The above equation can be written as  

𝛿𝑘+1 =
𝛿𝑘[2 − 𝑏1 − 4𝑟𝑠𝑖𝑛2(

𝛽ℎ

2
)] + ∑ 𝛿𝑘−𝑗𝑑𝑘

𝑛−1
𝑘=1 + 2𝑏𝑛𝛿0 − 𝑏𝑛𝛿−1

1 + 4𝑟𝑠𝑖𝑛2(
𝛽ℎ

2
)

, (3.33) 

next, we let          

|𝛿𝑛| ≤ |𝛿0|  (n=2, 3, …. k),  

       

|𝛿𝑘+1| ≤ |
𝛿𝑘[2−𝑏1−4𝑟𝑠𝑖𝑛2(

𝛽ℎ

2
)]+∑ 𝛿𝑘−𝑗𝑑𝑘

𝑛−1
𝑘=1 +2𝑏𝑛𝛿0−𝑏𝑛𝛿−1

1+4𝑟𝑠𝑖𝑛2(
𝛽ℎ

2
)

|, (3.34) 

|𝛿𝑘+1| ≤ |
−4𝑟𝑠𝑖𝑛2(

𝛽ℎ

2
)𝛿𝑘+∑ 𝛿𝑘−𝑗𝑑𝑘

𝑛−1
𝑘=0 +2𝑏𝑛𝛿0−𝑏𝑛𝛿−1

1+4𝑟𝑠𝑖𝑛2(
𝛽ℎ

2
)

|, (3.35) 

|𝛿𝑘+1| ≤
4𝑟𝑠𝑖𝑛2(

𝛽ℎ

2
)|𝛿𝑘|+∑ 𝑑𝑘|𝛿𝑘−𝑗|+2𝑏𝑛|𝛿0|−𝑏𝑛|𝛿−1|

𝑛−1
𝑘=0

1+4𝑟𝑠𝑖𝑛2(
𝛽ℎ

2
)

, (3.36) 

|𝛿𝑘+1| ≤
4𝑟𝑠𝑖𝑛2(

𝛽ℎ

2
)+∑ 𝑑𝑘+2𝑏𝑛−𝑏𝑛

𝑛−1
𝑘=0

1+4𝑟𝑠𝑖𝑛2(
𝛽ℎ

2
)

|𝛿0|, (3.37) 

|𝛿𝑘+1| ≤
4𝑟𝑠𝑖𝑛2(

𝛽ℎ

2
)+∑ 𝑑𝑘+𝑏𝑛

𝑛−1
𝑘=0

1+4𝑟𝑠𝑖𝑛2(
𝛽ℎ

2
)

|𝛿0|, (3.38) 

|𝛿𝑘+1| ≤
1+4𝑟𝑠𝑖𝑛2(

𝛽ℎ

2
)

1+4𝑟𝑠𝑖𝑛2(
𝛽ℎ

2
)
|𝛿0| ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ ∴ 𝑢𝑠𝑖𝑛𝑔⁡𝑙𝑒𝑚𝑚𝑎⁡1(𝑏), (3.39) 

|𝛿𝑘+1| ≤ |𝛿0|⁡  (3.40) 

Hence completes the proof.  
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3.4 Convergence Analysis 

Consider, equation (3.10) and (3.11) 

−𝑟𝑢𝑖−1
1 + (1 + 2𝑟)𝑢𝑖

1 − 𝑟𝑢𝑖+1
1 = 𝑟𝑢𝑖−1

0 + (2 − 2𝑟)𝑢𝑖
0 + 𝑟𝑢𝑖+1

0 − 𝑢𝑖
−1 + 𝜙

𝑖
    for     

𝑛 = 0, 
(3.41) 

−𝑟𝑢𝑖−1
𝑛+1 + (1 + 2𝑟)𝑢𝑖

𝑛+1 − 𝑟𝑢𝑖+1
𝑛+1 = 𝑟𝑢𝑖−1

𝑛 − 2𝑟𝑢𝑖
𝑛 + 𝑟𝑢𝑖+1

𝑛 + (2 − 𝑏1)𝑢𝑖
𝑛 

+ ∑ 𝑢𝑖
𝑛−𝑘𝑑𝑘

𝑛−1

𝑘=1

+ 2𝑢𝑖
0𝑏𝑛 − 𝑢𝑖

−1𝑏𝑛 + 𝜙
𝑖
𝑛⁡⁡⁡⁡⁡⁡for⁡⁡⁡⁡⁡⁡𝑛 ≥ 1. 

(3.42) 

Let 𝑢(𝑥𝑖, 𝑡𝑘)⁡, (i = ⁡1, 2, … . . , m − 1; ⁡k = ⁡1, 2, … . . , n) be the precise answer of the TFWE 

at mesh point (𝑥𝑖, 𝑡𝑘). Then express as, 

    𝑒𝑖
𝑘 = 𝑢(𝑥𝑖, 𝑡𝑘) − 𝑢𝑖

𝑘 ,⁡⁡⁡⁡⁡⁡𝑖 = 1, 2, … . . , 𝑚 − 1; ⁡⁡⁡⁡⁡⁡𝑘 = ⁡1, 2, … . . , 𝑛,⁡ 

𝑒𝑘 = (𝑒1
𝑘 , 𝑒2

𝑘 , 𝑒3
𝑘 , … . . , 𝑒𝑚−1

𝑘 )
𝑇
, 

 

using 𝑒0 = 0,⁡ therefore we have to  

−𝑟𝑒𝑖−1
1 + (1 + 2𝑟)𝑒𝑖

1 − 𝑟𝑒𝑖+1
1 + 𝑒𝑖

−1 = 𝑅𝑖
1 ⁡⁡⁡for⁡⁡⁡n = 0, (3.43) 

−𝑟𝑒𝑖−1
𝑛+1 + (1 + 2𝑟)𝑒𝑖

𝑛+1 − 𝑟𝑒𝑖+1
𝑛+1 + 𝑒𝑖

−1𝑏𝑛 = 𝑟𝑒𝑖−1
𝑛 − 2𝑟𝑒𝑖

𝑛 + 𝑟𝑒𝑖+1
𝑛  

+(2 − 𝑏1)𝑒𝑖
𝑛 + ∑ 𝑒𝑖

𝑛−𝑘𝑑𝑘

𝑛−1

𝑘=1

+ 𝑅𝑖
𝑛+1⁡⁡⁡⁡for⁡⁡⁡𝑛 > 0, 

(3.44) 

where, 

𝑅𝑖
𝑛+1 = 𝑢(𝑥𝑖, 𝑡𝑛+1) − 2𝑢(𝑥𝑖, 𝑡𝑛) + 𝑢(𝑥𝑖, 𝑡𝑛−1) 

+ ∑ 𝑏𝑘

𝑛−1

𝑘=1

{⁡𝑢(𝑥𝑖, 𝑡𝑛−𝑘+1) − 2𝑢(𝑥𝑖, 𝑡𝑛−𝑘) + 𝑢(𝑥𝑖, 𝑡𝑛−𝑘−1)} 

−𝑟{𝑢(𝑥𝑖+1, 𝑡𝑛) − 2𝑢(𝑥𝑖, 𝑡𝑛) + 𝑢(𝑥𝑖−1, 𝑡𝑛) + 𝑢(𝑥𝑖+1, 𝑡𝑛+1) − 2𝑢(𝑥𝑖, 𝑡𝑛+1) 

+𝑢(𝑥𝑖−1, 𝑡𝑛+1)}. 

(3.45) 

𝑅𝑖
𝑛+1 = ∑ 𝑏𝑘

𝑛
𝑘=0 {⁡𝑢(𝑥𝑖 , 𝑡𝑛−𝑘+1) − 2𝑢(𝑥𝑖, 𝑡𝑛−𝑘) + 𝑢(𝑥𝑖, 𝑡𝑛−𝑘−1)} −

r{𝑢(𝑥𝑖+1, 𝑡𝑛) − 2𝑢(𝑥𝑖, 𝑡𝑛) + 𝑢(𝑥𝑖−1, 𝑡𝑛) + 𝑢(𝑥𝑖+1, 𝑡𝑛+1) − 2𝑢(𝑥𝑖, 𝑡𝑛+1) +

𝑢(𝑥𝑖−1, 𝑡𝑛+1)} . 

(3.45) 

Consider, 

𝐷𝑡
𝛼𝑢(𝑥, 𝑡) + 𝐶1(𝜏) =

Δ𝑡−𝛼

Γ(3−𝛼)
[∑ (𝑢𝑖

𝑛−𝑘+1 − 2𝑢𝑖
𝑛−𝑘 + 𝑢𝑖

𝑛−𝑘−1)𝑏𝑘
𝑛
𝑘=0 ], (3.46) 

 and  

𝜕2

𝜕𝑥2 𝑢(𝑥, 𝑡) + 𝐶2(Δ𝑥2) =
1

2Δ𝑥2 {𝑢𝑖+1
𝑛 − 2𝑢𝑖

𝑛 + 𝑢𝑖−1
𝑛 + 𝑢𝑖+1

𝑛+1 − 2𝑢𝑖
𝑛+1 + 𝑢𝑖−1

𝑛+1}, (3.47) 

therefore, 
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𝑅𝑖
𝑛+1 = Δ𝑡𝛼Γ(3 − 𝛼) [𝐷𝑡

𝛼𝑢(𝑥, 𝑡) −
𝜕2

𝜕𝑥2 𝑢(𝑥, 𝑡)] + 𝐶1(𝜏
1+𝛼) + 𝐶2(𝜏

𝛼Δ𝑥2). (3.48) 

Also |𝑅𝑖
𝑛+1| ≤ 𝐶(𝜏1+𝛼 + 𝜏𝛼Δ𝑥2), i = ⁡1, 2, … . . , m − 1, k = 0, 1, 2, … . . , n 

where C is a constant term, 

Proposition: In [5] ‖𝑒𝑘‖∞ ≤ 𝐶𝑏𝑘−1
−1 (𝜏1+𝛼 + 𝜏𝛼Δ𝑥2), 𝑘 = 1, 2,… . . , 𝑛⁡, where ‖𝑒‖∞ =

max
1≤𝑖≤𝑚−1

|𝑒𝑖
𝑘| and C is a constant value. 

Proof: Applying the mathematical induction method. For𝐾 = 1 , let‖𝑒1‖∞ = |𝑒𝑖
1| =

max
1≤𝑖≤𝑚−1

|𝑒𝑖
1|, we have  

|𝑒𝑖
1| ≤ −𝑟|𝑒𝑖−1

1 | + (1 + 2𝑟)|𝑒𝑖
1| − 𝑟|𝑒𝑖+1

1 | + |𝑒𝑖
−1|, (3.49) 

|𝑒𝑖
1| ≤ |−𝑟𝑒𝑖−1

1 + (1 + 2𝑟)𝑒𝑖
1 − 𝑟𝑒𝑖+1

1 + 𝑒𝑖
−1| = 𝑅𝑖

1, (3.50) 

≤ 𝐶𝑏0
−1(𝜏1+𝛼 + 𝜏𝛼Δ𝑥2). (3.51) 

Suppose that  

‖𝑒𝑗−1‖
∞

≤ 𝐶𝑏𝑗
−1(𝜏1+𝛼 + 𝜏𝛼Δ𝑥2), 𝑗 = 1, 2, … ,𝐾⁡𝑎𝑛𝑑⁡|𝑒𝑖

𝐾+1|

= max
1≤𝑖≤𝑚−1

|𝑒𝑖
𝐾+1|⁡. 

(3.52) 

Note that   𝑏𝑗
−1 ≤ 𝑏𝑘

−1, 𝑗 = 0, 1, 2, … 𝑘,  we have  

|𝑒𝑖
𝐾+1| ≤ −𝑟|𝑒𝑖−1

𝐾+1| + (1 + 2𝑟)|𝑒𝑖
𝐾+1| − 𝑟|𝑒𝑖+1

𝐾+1| + 𝑏𝑛|𝑒𝑖
−1|, (3.53) 

|𝑒𝑖
𝐾+1| ≤ |−𝑟𝑒𝑖−1

𝑘+1 + (1 + 2𝑟)𝑒𝑖
𝑘+1 − 𝑟𝑒𝑖+1

𝑘+1 + 𝑒𝑖
−1𝑏𝑛|,  (3.54) 

= |𝑟𝑒𝑖−1
𝑘 − 2𝑟𝑒𝑖

𝑘 + 𝑟𝑒𝑖+1
𝑘 + (2 − 𝑏1)𝑒𝑖

𝑘 + ∑ 𝑒𝑖
𝑘−𝑗

𝑑𝑘
𝑘−1
𝑗=1 + 𝑅𝑖

𝑛+1|, (3.55) 

≤ |𝑟𝑒𝑖−1
𝑘 − 2𝑟𝑒𝑖

𝑘 + 𝑟𝑒𝑖+1
𝑘 + (2 − 𝑏1)𝑒𝑖

𝑘 + ∑ 𝑒𝑖
𝑘−𝑗

𝑑𝑗
𝑘−1
𝑗=1 | + |𝑅𝑖

𝑛+1|,  (3.56) 

≤ 𝑟|𝑒𝑖−1
𝐾 | + (2 − 𝑏1 − 2𝑟)|𝑒𝑖

𝐾| + 𝑟|𝑒𝑖+1
𝐾 | + ∑ 𝑑𝑗⁡|𝑒𝑖

𝐾−𝑗|𝑘−1
𝑗=1 + 𝐶(𝜏1+𝛼 +

𝜏𝛼Δ𝑥2),  

(3.57) 

≤ 𝐶1‖𝑒
𝑘‖∞ + 𝐶2‖𝑒

𝑘‖∞ + 𝐶3‖𝑒
𝑘‖∞ + ∑ 𝑑𝑗 ⁡‖𝑒

𝑘−𝑗‖
∞

𝑘−1
𝑗=1 + 𝐶(𝜏1+𝛼 + 𝜏𝛼Δ𝑥2),  (3.58) 

≤ {⁡𝐶1 + 𝐶2 + 𝐶3 + ∑ 𝑑𝑗
𝑘−1
𝑗=1 + 𝑏𝑘}𝑏𝑘

−1𝐶(𝜏1+𝛼 + 𝜏𝛼Δ𝑥2), (3.59) 

= 𝑏𝑘
−1𝐶(𝜏1+𝛼 + 𝜏𝛼Δ𝑥2).  (3.60) 

Because  

lim
𝑛→∞

𝑏𝑘
−1

𝑘𝛼 = lim
𝑛→∞

𝑘−𝛼

(𝐾+1)1−𝛼−𝑘1−𝛼 , (3.61) 

= lim
𝑛→∞

𝑘−1

(1+
1

𝑘
)1−𝛼−1

, (3.62) 

= lim
𝑛→∞

𝑘−1

(1−𝛼)𝑘−1,⁡=
1

1−𝛼
. (3.63) 

Hence, there is a constant C. 
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‖𝑒𝑘‖∞ ≤ 𝐶𝑘𝛼(𝜏1+𝛼 + 𝜏𝛼Δ𝑥2). (3.64) 

Therefore 𝑘𝜏 ≤ 𝑇 is finite, the outcome is as follows. 

Theorem: In [5] let 𝑢𝑖
𝑘 ⁡ be the calculated approximate value of 𝑢(𝑥𝑖, 𝑡𝑘) using the 

difference approach. In that case, a positive constant C exists such that 

|𝑢𝑖
𝑘 − 𝑢(𝑥𝑖 , 𝑡𝑘)| ≤ 𝐶(𝜏 + Δ𝑥2),⁡⁡⁡i = 1, 2… ⁡m − 1; ⁡k = ⁡1, 2⁡… n.  (3.65) 

 

3.5 Error Bound 

Consider the equation (3.11) we get,  

+𝑟𝑢𝑖−1
𝑛+1 − (1 + 2𝑟)𝑢𝑖

𝑛+1 + 𝑟𝑢𝑖+1
𝑛+1 + 𝑟𝑢𝑖−1

𝑛 + (2 − 𝑏1 − 2𝑟)𝑢𝑖
𝑛 + 𝑟𝑢𝑖+1

𝑛 +

2𝑢𝑖
0𝑏𝑛 − 𝑢𝑖

−1𝑏𝑛 + ∑ 𝑢𝑖
𝑛−𝑘𝑑𝑘

𝑛−1
𝑘=1 = 0 ,   

(3.66) 

Expand 𝑢𝑖−1,𝑗+1, 𝑢𝑖,𝑗+1, 𝑢𝑖+1,𝑗+1, 𝑢𝑖−1,𝑗, 𝑢𝑖+1,𝑗 and 𝑢𝑖,𝑗−𝑘  by Taylor’s series expansion 

 𝕋𝑖,𝑗 = 𝑟 (((𝑢)𝑖,𝑗 − ℎ(𝑢𝑥)𝑖,𝑗 +
1

2!
ℎ2(𝑢𝑥𝑥)𝑖,𝑗 −

1

3!
ℎ3(𝑢𝑥𝑥𝑥)𝑖,𝑗 + ⋯) −

𝑘 ((𝑢𝑦)𝑖,𝑗
− ℎ(𝑢𝑦𝑥)𝑖,𝑗

+
1

2!
ℎ2(𝑢𝑦𝑥𝑥)𝑖,𝑗 −

1

3!
ℎ3(𝑢𝑦𝑥𝑥𝑥)𝑖,𝑗 + ⋯) +

1

2
𝑘2 ((𝑢𝑦𝑦)𝑖,𝑗

− ℎ(𝑢𝑦𝑦𝑥)𝑖,𝑗
+

1

2!
ℎ2(𝑢𝑦𝑦𝑥𝑥)𝑖,𝑗

−
1

3!
ℎ3(𝑢𝑦𝑦𝑥𝑥𝑥)𝑖,𝑗

+ ⋯) −

1

3!
𝑘3 ((𝑢𝑦𝑦𝑦)𝑖,𝑗

− ℎ(𝑢𝑦𝑦𝑦𝑥)𝑖,𝑗
+

1

2!
ℎ2(𝑢𝑦𝑦𝑦𝑥𝑥)𝑖,𝑗

−
1

3!
ℎ3(𝑢𝑦𝑦𝑦𝑥𝑥𝑥)𝑖,𝑗

+ ⋯) +

⋯) − (1 − 2𝑟) ((𝑢)𝑖,𝑗 + 𝑘(𝑢𝑦)𝑖,𝑗
+

1

2!
𝑘2(𝑢𝑦𝑦)𝑖,𝑗

+
1

3!
𝑘3(𝑢𝑦𝑦𝑦)𝑖,𝑗

+ ⋯) +

𝑟 (((𝑢)𝑖,𝑗 + ℎ(𝑢𝑥)𝑖,𝑗 +
1

2!
ℎ2(𝑢𝑥𝑥)𝑖,𝑗 +

1

3!
ℎ3(𝑢𝑥𝑥𝑥)𝑖,𝑗 + ⋯) + 𝑘 ((𝑢𝑦)𝑖,𝑗

+

ℎ(𝑢𝑦𝑥)𝑖,𝑗
+

1

2!
ℎ2(𝑢𝑦𝑥𝑥)𝑖,𝑗

+
1

3!
ℎ3(𝑢𝑦𝑥𝑥𝑥)𝑖,𝑗

+ ⋯) +
1

2
𝑘2 ((𝑢𝑦𝑦)𝑖,𝑗

+

ℎ(𝑢𝑦𝑦𝑥)𝑖,𝑗
+

1

2!
ℎ2(𝑢𝑦𝑦𝑥𝑥)𝑖,𝑗

+
1

3!
ℎ3(𝑢𝑦𝑦𝑥𝑥𝑥)𝑖,𝑗

+ ⋯) +
1

3!
𝑘3 ((𝑢𝑦𝑦𝑦)𝑖,𝑗

+

ℎ(𝑢𝑦𝑦𝑦𝑥)𝑖,𝑗
+

1

2!
ℎ2(𝑢𝑦𝑦𝑦𝑥𝑥)𝑖,𝑗

+
1

3!
ℎ3(𝑢𝑦𝑦𝑦𝑥𝑥𝑥)𝑖,𝑗

+ ⋯) + ⋯) + 𝑟 ((𝑢)𝑖,𝑗 −

ℎ(𝑢𝑥)𝑖,𝑗 +
1

2!
ℎ2(𝑢𝑥𝑥)𝑖,𝑗 −

1

3!
ℎ3(𝑢𝑥𝑥𝑥)𝑖,𝑗 + ⋯) + (2 − 𝑏1 − 2𝑟)(𝑢)𝑖,𝑗 +

𝑟 ((𝑢)𝑖,𝑗 + ℎ(𝑢𝑥)𝑖,𝑗 +
1

2!
ℎ2(𝑢𝑥𝑥)𝑖,𝑗 +

1

3!
ℎ3(𝑢𝑥𝑥𝑥)𝑖,𝑗 + ⋯) + 2𝑏𝑛(𝑢)𝑖,0 −

𝑏𝑛(𝑢)𝑖,−1 + ∑ 𝑑𝑘 ((𝑢)𝑖,𝑗 − 𝑛𝑘(𝑢𝑦)𝑖,𝑗
+

1

2!
(𝑛𝑘)2(𝑢𝑦𝑦)𝑖,𝑗

−𝑛−1
𝑘=1

1

3!
(𝑛𝑘)3(𝑢𝑦𝑦𝑦)𝑖,𝑗

+ ⋯) . 

(3.67) 
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After simplification we get, 

𝕋𝑖,𝑗 = −(𝑢)𝑖,𝑗 + 𝑏1(𝑢)𝑖,𝑗 − 2𝑏𝑛(𝑢)𝑖,0 + 𝑏𝑛(𝑢)𝑖,−1 − 2ℎ2(𝑢𝑥𝑥)𝑖,𝑗 −

𝑟ℎ2(𝑢𝑦𝑥𝑥)𝑖,𝑗
−

𝑟

2!
(𝑘ℎ)2(𝑢𝑦𝑦𝑥𝑥)𝑖,𝑗

−
𝑟

3!
𝑘3ℎ2(𝑢𝑦𝑦𝑦𝑥𝑥)𝑖,𝑗

+ 𝑘𝑢𝑦 +
1

2!
𝑘2(𝑢𝑦𝑦)𝑖,𝑗

+

1

3!
𝑘3(𝑢𝑦𝑦𝑦)𝑖,𝑗

− ∑ 𝑑𝑘 ((𝑢)𝑖,𝑗 − 𝑛𝑘(𝑢𝑦)𝑖,𝑗
+

1

2!
(𝑛𝑘)2(𝑢𝑦𝑦)𝑖,𝑗

−𝑛−1
𝑘=1

1

3!
(𝑛𝑘)3(𝑢𝑦𝑦𝑦)𝑖,𝑗

+ ⋯) + 𝑂(ℎ3) + 𝑂(𝑘ℎ)3 + 𝑂(𝑘5ℎ4) + 𝑂(𝑘4) + 𝑂(𝑛𝑘)4. 

(3.68) 

Hence, the order of the Local truncation error at the point (𝑖ℎ, 𝑗𝑘) is 𝑂(ℎ3) + 𝑂(𝑘ℎ)3 +

𝑂(𝑘5ℎ4) + 𝑂(𝑘4) + 𝑂(𝑛𝑘)4. 

 

Algorithm: 1 

1:  a, b, T,M,N ∈ 𝑁  , 𝑈(𝑥, 𝑡)  1 < 𝛼 ≤ 2                       (Input data) 

2:  𝑓 ≔ 𝑓𝑟𝑎𝑐𝑑𝑖𝑓𝑓(𝑈(𝑥, 𝑡), 𝑡, 𝛼) −
𝜕2

𝜕𝑥2 𝑈(𝑥, 𝑡); (Evaluation of function) 

3: for i from 0 by 1 while i ≤ M do; 

       𝑥[𝑖] ≔ 𝑎 + ∆𝑥𝑖;        end do:                            (Step size in x direction) 

4: for n from 0 by 1 while n ≤ N do; 

     ⁡𝑡[𝑛] ≔ ∆𝑡𝑛;            end do:                              (Step size in time direction) 

5: for i from 0 by 1 while i ≤ M do; 

    𝑢[𝑖, 0] ≔ 𝑒𝑣𝑎𝑙(𝑈(𝑥, 𝑡), [𝑥 = 𝑥[𝑖], 𝑡 = 0]);     (Evaluation of initial conditions) 

⁡⁡⁡⁡𝑢[𝑖, −1] ≔ 𝑢[𝑖, 1] − ∆𝑡. 𝑒𝑣𝑎𝑙(𝑈(𝑥, 𝑡), [𝑥 = 𝑥[𝑖], 𝑡 = 0]);⁡⁡⁡                   
    end do: 

6: for n from 0 by 1 while n ≤ N do; 

    𝑢[0, 𝑛] ≔ 𝑒𝑣𝑎𝑙(𝑈(𝑥, 𝑡), [𝑥 = 𝑎, 𝑡 = 𝑡[𝑛]]);⁡⁡⁡⁡ (Evaluation of boundary conditions) 

⁡⁡⁡⁡𝑢[𝑀, 𝑛] ≔ 𝑒𝑣𝑎𝑙(𝑈(𝑥, 𝑡), [𝑥 = 𝑏, 𝑡 = 𝑡[𝑛]]);⁡⁡⁡ 
     end do: 

7: for n from 0 by 1 while n ≤ N-1 do; 

     for i from 0 by 1 while i ≤ M-1 do; 

      (Evaluation of equation 3.6) 

    end do; 

8: Sol[n+1]: =fsolve ({Eq [i1, n] $ i1=1...M-1}); assign(op(sol[n+1]); 

    end do: 
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CHAPTER 4  

MODIFICATION OF TWO-DIMENSIONAL 

HYPERBOLIC PROBLEM 

In this chapter, the understanding of the fractional differential problem is essential in 

many areas of applied mathematics since it naturally arises in several applications in 

engineering and science. Calculus that uses fractions or non-integers agreements with integrals 

and derivatives of any real or complex order Jahanshahi et al. [27]. This topic was the result of 

a famous scientific debate between L'Hopital and Leibniz in 1695, which many eminent 

mathematicians, including Euler, Laplace, Abel, Liouville, and Riemann, later explored and 

expanded. Numerous scientists have studied the topic, not just in mathematics but also in 

physics and engineering. As a result, in recent years, it has gained attention. The concept of a 

derivative is widened by fractional calculus in circumstances where the order of the derivative 

is not an integer. Despite the fact that the notion of fractional derivatives and integrals can be 

seen as a generalisation of the corresponding conventional ones, it is nevertheless a very 

strange and challenging subject. Therefore, this mathematical instrument may occasionally be 

deemed to be far from reality. However, since many physical events are intrinsically described 

by fractional orders, fractional order calculus is required to fully understand them. It is crucial 

to remember that there are only two main definitions of the fractional derivative: the first, 

proposed by Riemann, is the derivative of the convolution of a given function and a power law 

kernel, and the second, proposed by Caputo, is the convolution of the local derivative of a 

given function with a power law function. Current discussion among academics in this field 

has made it difficult to determine which definition is mathematically well-formulated. As a 

result, many have conducted theoretical and applied investigations to undoubtedly prove that 

definition. Because the Caputo allows for typical initial circumstances when experimenting 

with integral transforms, such as the Laplace transform Sousa et al. [19], some applied 

mathematicians have proposed that it is useful for real-world problems. The use of FPDEs in 

mathematical modelling has also has attracted a lot of interest recently. The numerical solution 
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of FPDEs has only received a few suggestions for algorithms. These techniques include the 

spectrum approach, variational iteration method, homotopy analysis method, generalised 

differential transform method, homotopy perturbation method, Jacobi-Tau approximation 

method, and finite difference method Danesh et al, [13]. Integral equation theory and 

application are significant topics in applied math. Additionally, there is a close connection 

between differential and integral equations, and various issues that are employed in the 

modelling of numerous physical and chemical processes can be written in either way. The 

behaviour of the process under investigation is often considered to depend only on its current 

state in the mathematical description of a physical process; this assumption is supported by a 

large class of dynamical systems. When this assumption is not true, however, the use of a 

classical model in systems analysis and their design may lead to inferior performance. In these 

circumstances, it is best to keep in mind that the system's behaviour also contains details about 

the preceding state. Time delay systems are what these are known as. In terms of the values of 

the function at earlier times, the fractional derivative of an unknown function at a given time is 

represented. Another modification is to suppose that the order of fractional derivatives and 

integrals is not constant because it can take on any value. This provides an extension of the 

conventional fractional calculus known as variable-order FC. 

In order to simulate continuum mechanics, wave, heat conduction, geophysics, 

magnetism, electricity, neutron transport, and many other phenomena, fractional differential 

problems are required Chen et al. [9]. Many boundary-value problems (BVPs) and initial-

value problems (IVPs), related to ordinary differential equations and partial differential 

equations, respectively, can be converted into integral problems. Due to the fact that the 

solution of inverse BVPs with fractal curves as their domains may be investigated, which is 

something that the classical calculus is unable to perform, the singular and weakly singular 

integral issues are of particular significance. We get the fractional-order differential problems 

of the Abel and other types when we model. These applications of the singular problem 

Bekiros et al. [5], have made the numerical solutions of such problems a popular issue among 

researchers. Several methods have been developed for this purpose, including finite difference 

Chen et al. [16], Laplace transforms, product integration, collocation type, Homotopy 

perturbation Yasmin et al. [35], semi-analytical, spline Abbas et al. [24], etc. The integral 

modeling issues frequently lack a smooth kernel. Due to the dependence of approximate 

technique convergence on the smoothness of the integral equation solution, it is difficult to 

examine the solution and estimate it numerically in this case. 
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As a result, the standard approaches did not work effectively under these 

circumstances. FDEs have been used to formulate a significant number of applied problems, 

and as a result, their solutions have received a great deal of attention. The anomalous wave or 

dispersion observed in many problems is modelled using fractional space derivatives. Sousa et 

al. [19], several papers on fractional calculus are connected to wave issues. There are more 

and more publications in the literature that use numerical methods to analyze various 

fractional wave models. The fractional wave equation explaining super wave has recently 

become the subject of numerical solutions. Mathematical strategies that do not always require 

second-order discretization for the fractional derivative to attain second-order precision have 

been used to produce numerical methods for models with super wave. 

The difficult issue for scientists is to create a numerical approach that is quick, precise, 

and efficient. The following fractional order hyperbolic partial differential model is solved in 

the chapter using a finite difference scheme and the Crank-Nicolson method. 

. 

𝐷𝑡
𝛼

0
⁡⁡𝐶 𝑢(𝑥, 𝑦, 𝑡) = ∆𝑢(𝑥, 𝑦, 𝑡) + 𝜙(𝑥, 𝑦, 𝑡, 𝑢(𝑥, 𝑦, 𝑡)), 1 < 𝛼 ≤ 2, 𝑡 > 0, 𝑥 ∈

[0, 1], y ∈ [0,1]. 
(4.1) 

Besides through the subsequent initial conditions and boundary condition 

𝑢(𝑥, y, 0) = f(𝑥, 𝑦), 𝑢𝑡(𝑥, y, 0) = g(𝑥, 𝑦), 0 ≤ 𝑥 ≤ 1,

0 ≤ y ≤ 1, 
(4.2) 

𝑢(𝑥, y, 𝑡) = h(𝑥, y, 𝑡), 𝑥 ∈ 𝜕Ω × [0,1], y ∈ 𝜕Ω × [0,1],  0 ≤ t ≤ T,⁡⁡   (4.3) 

𝐷𝑡
𝛼

0
⁡⁡𝐶 ,  Represent the fractional order Caputo derivative,⁡∆𝑢(𝑥, 𝑦, 𝑡) Symbolize partial 

derivatives and 𝜙(𝑥, 𝑦, 𝑡, 𝑢(𝑥, 𝑡)), is called source term.  

 

4.1 Mathematical Method 

It is aimed to analyze the two-dimensional time-fractional hyperbolic partial 

differential equations, Moreover, the concentration equation under the effect of source term 

with initial and boundary value problem. By considering the above assumptions, the 

governing TFWEs are.  

𝐷𝑡
𝛼𝑢(𝑥, 𝑦, 𝑡) =

𝜕2

𝜕𝑥2
𝑢(𝑥, 𝑦, 𝑡) +

𝜕2

𝜕𝑦2
𝑢(𝑥, 𝑦, 𝑡) + 𝜙(𝑥, 𝑦, 𝑡),

1 < 𝛼 ≤ 2⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡for⁡⁡𝑥 ∈ [0,1],⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑦 ∈ [0,1], 𝑡 > 0⁡. 

(4.4) 

 Since 
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𝐷𝑡
𝛼𝑢(𝑥, 𝑦, 𝑡) =

Δ𝑡−𝛼

Γ(3−𝛼)
[𝑢𝑖,𝑗

𝑛+1 − 2𝑢𝑖,𝑗
𝑛 + 𝑢𝑖,𝑗

𝑛−1 + ∑ (𝑢𝑖,𝑗
𝑛−𝑘+1 − 2𝑢𝑖,𝑗

𝑛−𝑘 +𝑛
𝑘=1

𝑢𝑖,𝑗
𝑛−𝑘−1)((1 + 𝑘)2−𝛼 + 𝑘2−𝛼)] + 𝑂(∆𝑡4−𝛼).  

(4.5) 

Using crank-Nicolson scheme  

𝜕2

𝜕𝑥2
𝑢(𝑥, 𝑦, 𝑡) =

1

2
[
𝑢𝑖+1,𝑗

𝑛 − 2𝑢𝑖,𝑗
𝑛 + 𝑢𝑖−1,𝑗

𝑛

Δ𝑥2
+

𝑢𝑖+1,𝑗
𝑛+1 − 2𝑢𝑖,𝑗

𝑛+1 + 𝑢𝑖−1,𝑗
𝑛+1

Δ𝑥2
] + 𝑂(∆𝑥2), (4.6) 

𝜕2

𝜕𝑦2
𝑢(𝑥, 𝑦, 𝑡) =

1

2
[
𝑢𝑖,𝑗−1

𝑛 − 2𝑢𝑖,𝑗
𝑛 + 𝑢𝑖,𝑗+1

𝑛

Δ𝑦2
+

𝑢𝑖,𝑗−1
𝑛+1 − 2𝑢𝑖,𝑗

𝑛+1 + 𝑢𝑖,𝑗+1
𝑛+1

Δ𝑦2
] + 𝑂(∆𝑦2). 

(4.7) 

Putting the values from equation (4.5), (4.6) and (4.7) in equation (4.4) we get  

Δ𝑡−𝛼

Γ(3−𝛼)
[𝑢𝑖,𝑗

𝑛+1 − 2𝑢𝑖,𝑗
𝑛 + 𝑢𝑖,𝑗

𝑛−1 + ∑ (𝑢𝑖,𝑗
𝑛−𝑘+1 − 2𝑢𝑖,𝑗

𝑛−𝑘 + 𝑢𝑖,𝑗
𝑛−𝑘−1)((1 + 𝑘)2−𝛼 +𝑛

𝑘=1

𝑘2−𝛼)] =
1

2Δ𝑥2
[𝑢𝑖+1,𝑗

𝑛+1 − 2𝑢𝑖,𝑗
𝑛+1 + 𝑢𝑖−1,𝑗

𝑛+1 + 𝑢𝑖+1,𝑗
𝑛 − 2𝑢𝑖,𝑗

𝑛 + 𝑢𝑖−1,𝑗
𝑛 ] +

1

2Δ𝑦2
[𝑢𝑖,𝑗+1

𝑛+1 −

2𝑢𝑖,𝑗
𝑛+1 + 𝑢𝑖,𝑗−1

𝑛+1 + 𝑢𝑖,𝑗+1
𝑛 − 2𝑢𝑖,𝑗

𝑛 + 𝑢𝑖,𝑗−1
𝑛 ] + 𝜙(𝑥𝑖, 𝑦𝑗, 𝑡

𝑛).  

(4.8) 

Dividing both sides with 𝛥𝑡−𝛼/𝛤(3 − 𝛼) we have 

𝑢𝑖,𝑗
𝑛+1 − 2𝑢𝑖,𝑗

𝑛 + 𝑢𝑖,𝑗
𝑛−1 + ∑ (𝑢𝑖,𝑗

𝑛−𝑘+1 − 2𝑢𝑖,𝑗
𝑛−𝑘 + 𝑢𝑖,𝑗

𝑛−𝑘−1)((1 + 𝑘)2−𝛼 +𝑛
𝑘=1

𝑘2−𝛼) =
Γ(3−𝛼)

2Δ𝑡−𝛼Δ𝑥2
[𝑢𝑖+1,𝑗

𝑛+1 − 2𝑢𝑖,𝑗
𝑛+1 + 𝑢𝑖−1,𝑗

𝑛+1 + 𝑢𝑖+1,𝑗
𝑛 − 2𝑢𝑖,𝑗

𝑛 + 𝑢𝑖−1,𝑗
𝑛 ] +

Γ(3−𝛼)

2Δ𝑡−𝛼Δ𝑥2
[𝑢𝑖,𝑗+1

𝑛+1 − 2𝑢𝑖,𝑗
𝑛+1 + 𝑢𝑖,𝑗−1

𝑛+1 + 𝑢𝑖,𝑗+1
𝑛 − 2𝑢𝑖,𝑗

𝑛 + 𝑢𝑖,𝑗−1
𝑛 ] +

Γ(3−𝛼)

Δ𝑡−𝛼 𝜙(𝑥𝑖, 𝑦𝑗, 𝑡
𝑛) 

.  

(4.9) 

Suppose that 

Γ(3−𝛼)

2Δ𝑡−𝛼Δ𝑥2 = 𝑟1 ,⁡⁡⁡⁡
Γ(3−𝛼)

2Δ𝑡−𝛼Δ𝑦2 = 𝑟2 ,⁡⁡⁡
Γ(3−𝛼)

Δ𝑡−𝛼 𝜙(𝑥𝑖, 𝑦𝑗 , 𝑡
𝑛) = 𝜙(𝑥𝑖, 𝑦𝑗 , 𝑡

𝑛) = 𝜙𝑖,𝑗
𝑛 ,

((1 + 𝑘)2−𝛼 + 𝑘2−𝛼) = 𝑏𝑘  ,   

 

𝑢𝑖,𝑗
𝑛+1 − 2𝑢𝑖,𝑗

𝑛 + 𝑢𝑖,𝑗
𝑛−1 + ∑(𝑢𝑖,𝑗

𝑛−𝑘+1 − 2𝑢𝑖,𝑗
𝑛−𝑘 + 𝑢𝑖,𝑗

𝑛−𝑘−1)

𝑛

𝑘=1

𝑏𝑘

= 𝑟1[𝑢𝑖+1,𝑗
𝑛+1 − 2𝑢𝑖,𝑗

𝑛+1 + 𝑢𝑖−1,𝑗
𝑛+1 + 𝑢𝑖+1,𝑗

𝑛 − 2𝑢𝑖,𝑗
𝑛 + 𝑢𝑖−1,𝑗

𝑛 ]

+ 𝑟2[𝑢𝑖,𝑗+1
𝑛+1 − 2𝑢𝑖,𝑗

𝑛+1 + 𝑢𝑖,𝑗−1
𝑛+1 + 𝑢𝑖,𝑗+1

𝑛 − 2𝑢𝑖,𝑗
𝑛 + 𝑢𝑖,𝑗−1

𝑛 ] + 𝜙𝑖,𝑗
𝑛 . 

(4.10) 

After rearranging the above equation,  

𝑢𝑖,𝑗
𝑛+1 = 2𝑢𝑖,𝑗

𝑛 − 𝑢𝑖,𝑗
𝑛−1 + 𝑟1[𝑢𝑖+1,𝑗

𝑛+1 − 2𝑢𝑖,𝑗
𝑛+1 + 𝑢𝑖−1,𝑗

𝑛+1 + 𝑢𝑖+1,𝑗
𝑛 − 2𝑢𝑖,𝑗

𝑛 + 𝑢𝑖−1,𝑗
𝑛 ] +

𝑟2[𝑢𝑖,𝑗+1
𝑛+1 − 2𝑢𝑖,𝑗

𝑛+1 + 𝑢𝑖,𝑗−1
𝑛+1 + 𝑢𝑖,𝑗+1

𝑛 − 2𝑢𝑖,𝑗
𝑛 + 𝑢𝑖,𝑗−1

𝑛 ] − ∑ (𝑢𝑖,𝑗
𝑛−𝑘+1 − 2𝑢𝑖,𝑗

𝑛−𝑘 +𝑛
𝑘=1

𝑢𝑖,𝑗
𝑛−𝑘−1) 𝑏𝑘 + 𝜙

𝑖,𝑗
𝑛 . 

(4.11) 

OR 

−𝑟1(𝑢𝑖+1,𝑗
𝑛+1 + 𝑢𝑖−1,𝑗

𝑛+1 ) + (1 + 2𝑟1 + 2𝑟2)𝑢𝑖,𝑗
𝑛+1 − 𝑟2(𝑢𝑖,𝑗+1

𝑛+1 + 𝑢𝑖,𝑗−1
𝑛+1 ) ⁡= (4.12) 
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𝑟1(𝑢𝑖+1,𝑗
𝑛 + 𝑢𝑖−1,𝑗

𝑛 ) + (2 − 2𝑟1 − 2𝑟2)𝑢𝑖,𝑗
𝑛 + 𝑟2(𝑢𝑖,𝑗+1

𝑛 + 𝑢𝑖,𝑗−1
𝑛 ) − 𝑢𝑖,𝑗

𝑛−1 −

∑ (𝑢𝑖,𝑗
𝑛−𝑘+1 − 2𝑢𝑖,𝑗

𝑛−𝑘 + 𝑢𝑖,𝑗
𝑛−𝑘−1)𝑛

𝑘=1 𝑏𝑘 + 𝜙
𝑖,𝑗
𝑛 ⁡,   

The summation term in Eq. (4.12) can be simplified as: 

∑(𝑢𝑖,𝑗
𝑛−𝑘+1 − 2𝑢𝑖,𝑗

𝑛−𝑘 + 𝑢𝑖,𝑗
𝑛−𝑘−1)𝑏𝑘

𝑛

𝑘=1

= (𝑢𝑖,𝑗
𝑛 𝑏1 − 2𝑢𝑖,𝑗

𝑛−1𝑏1 + 𝑢𝑖,𝑗
𝑛−2𝑏1) 

+(= 𝑢𝑖,𝑗
𝑛−1𝑏2 − 2𝑢𝑖,𝑗

𝑛−2𝑏2 + 𝑢𝑖,𝑗
𝑛−3𝑏2) + (𝑢𝑖,𝑗

𝑛−2𝑏3 − 2𝑢𝑖,𝑗
𝑛−3𝑏3 + 𝑢𝑖,𝑗

𝑛−4𝑏3) 

+(𝑢𝑖,𝑗
𝑛−3𝑏4 − 2𝑢𝑖,𝑗

𝑛−4𝑏4 + 𝑢𝑖,𝑗
𝑛−5𝑏4) + ⋯+ (𝑢𝑖,𝑗

3 𝑏𝑛−2 − 2𝑢𝑖,𝑗
2 𝑏𝑛−2 + 𝑢𝑖,𝑗

1 𝑏𝑛−2) 

+(𝑢𝑖,𝑗
2 𝑏𝑛−1 − 2𝑢𝑖,𝑗

1 𝑏𝑛−1 + 𝑢𝑖,𝑗
0 𝑏𝑛−1) + (𝑢𝑖,𝑗

1 𝑏𝑛 − 2𝑢𝑖,𝑗
0 𝑏𝑛 + 𝑢𝑖,𝑗

−1𝑏𝑛) 

It can be rewritten as: 

∑(𝑢𝑖,𝑗
𝑛−𝑘+1 − 2𝑢𝑖,𝑗

𝑛−𝑘 + 𝑢𝑖,𝑗
𝑛−𝑘−1)𝑏𝑘

𝑛

𝑘=1

= 𝑢𝑖,𝑗
𝑛 𝑏1 + ∑ 𝑑𝑘𝑢𝑖,𝑗

𝑛−𝑘

𝑛−1

𝑘=1

− 2𝑢𝑖,𝑗
0 𝑏𝑛 + 𝑢𝑖,𝑗

−1𝑏𝑛 , 

where (𝑏𝑘+1 − 2𝑏𝑘 + 𝑏𝑘−1) = 𝑑𝑘  

−𝑟1(𝑢𝑖+1,𝑗
𝑛+1 + 𝑢𝑖−1,𝑗

𝑛+1 ) + (1 + 2𝑟1 + 2𝑟2)𝑢𝑖,𝑗
𝑛+1 − 𝑟2(𝑢𝑖,𝑗+1

𝑛+1 + 𝑢𝑖,𝑗−1
𝑛+1 ) =

𝑟1(𝑢𝑖+1,𝑗
𝑛 + 𝑢𝑖−1,𝑗

𝑛 ) + (2 − 2𝑟1 − 2𝑟2)𝑢𝑖,𝑗
𝑛 + 𝑟2(𝑢𝑖,𝑗+1

𝑛 + 𝑢𝑖,𝑗−1
𝑛 ) − 𝑢𝑖,𝑗

𝑛 𝑏1 +

2𝑢𝑖,𝑗
0 𝑏𝑛 − 𝑢𝑖,𝑗

−1𝑏𝑛 + ∑ 𝑢𝑖,𝑗
𝑛−𝑘𝑑𝑘

𝑛−1
𝑘=1 + 𝜙

𝑖,𝑗
𝑛   . 

(4.13) 

Hence, discretized form of equation (4.4) is:  

−𝑟1(𝑢𝑖+1,𝑗
𝑛+1 + 𝑢𝑖−1,𝑗

𝑛+1 ) + (1 + 2𝑟1 + 2𝑟2)𝑢𝑖,𝑗
𝑛+1 − 𝑟2(𝑢𝑖,𝑗+1

𝑛+1 + 𝑢𝑖,𝑗−1
𝑛+1 ) =

𝑟1(𝑢𝑖+1,𝑗
𝑛 + 𝑢𝑖−1,𝑗

𝑛 ) + (2 − 2𝑟1 − 2𝑟2 − 𝑏1)𝑢𝑖,𝑗
𝑛 + 𝑟2(𝑢𝑖,𝑗+1

𝑛 + 𝑢𝑖,𝑗−1
𝑛 ) + 2𝑢𝑖,𝑗

0 𝑏𝑛 −

𝑢𝑖,𝑗
−1𝑏𝑛 + ∑ 𝑢𝑖,𝑗

𝑛−𝑘𝑑𝑘
𝑛−1
𝑘=1 + 𝜙

𝑖,𝑗
𝑛 . 

(4.14) 

Transferred equation (4.13) and (4.14) respectively into the following form, 

−𝑟1(𝑢𝑖−1,𝑗
1 + 𝑢𝑖+1,𝑗

1 ) + (1 + 2𝑟1 + 2𝑟2)𝑢𝑖,𝑗
1 − 𝑟2(𝑢𝑖,𝑗−1

1 + 𝑢𝑖,𝑗+1
1 )

= 𝑟1(𝑢𝑖−1,𝑗
0 + 𝑢𝑖+1,𝑗

0 ) + (4 − 2𝑟1 − 2𝑟2 − 𝑏1)𝑢𝑖,𝑗
0 + 𝑟2(𝑢𝑖,𝑗−1

0

+ 𝑢𝑖,𝑗+1
0 ) − 𝑢𝑖,𝑗

−1 + 𝜙
𝑖,𝑗

⁡⁡⁡⁡⁡𝑓𝑜𝑟⁡𝑛 = 0, 

(4.15) 

−𝑟1(𝑢𝑖+1,𝑗
𝑛+1 + 𝑢𝑖−1,𝑗

𝑛+1 ) + (1 + 2𝑟1 + 2𝑟2)𝑢𝑖,𝑗
𝑛+1 − 𝑟2(𝑢𝑖,𝑗+1

𝑛+1 + 𝑢𝑖,𝑗−1
𝑛+1 ) =

𝑟1(𝑢𝑖+1,𝑗
𝑛 + 𝑢𝑖−1,𝑗

𝑛 ) + (2 − 2𝑟1 − 2𝑟2 − 𝑏1)𝑢𝑖,𝑗
𝑛 + 𝑟2(𝑢𝑖,𝑗+1

𝑛 + 𝑢𝑖,𝑗−1
𝑛 ) + 2𝑢𝑖,𝑗

0 𝑏𝑛 −

𝑢𝑖,𝑗
−1𝑏𝑛 + ∑ 𝑢𝑖,𝑗

𝑛−𝑘𝑑𝑘
𝑛−1
𝑘=1 + 𝜙

𝑖,𝑗
𝑛 ⁡⁡𝑓𝑜𝑟⁡⁡𝑛 ≥ 1, 

(4.16) 

𝑤ℎ𝑒𝑟𝑒⁡⁡𝑖 = 1,2,3,… 𝑙⁡, 𝑗 = 1,2,3,…𝑚,  

                

The discretization described above can be recast in the matrix form shown below: 

for 𝑛 = 0 
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𝔸𝐔⃑⃑ 𝑛+1 = 𝔹𝐔⃑⃑ 𝑛 − 𝐔⃑⃑ 𝑛−1 +
1

2
(𝐟 𝑛 + 𝐟 𝑛+1) + 𝐛 𝑛 + 𝐜 𝑛 (4.17) 

for 𝑛 = 1 

𝔸𝐔⃑⃑ 𝑛+1 = 𝔹𝐔⃑⃑ 𝑛 − 𝑏1𝐔⃑⃑ 
𝑛 − (1 − 2𝑏1)𝐔⃑⃑ 

𝑛−1 − 𝑏1𝐔⃑⃑ 
𝑛−2 +

1

2
(𝐟 𝑛 + 𝐟 𝑛+1) + 𝐛 𝑛 

for 𝑛 = 2 

𝔸𝐔⃑⃑ 𝑛+1 = 𝔹𝐔⃑⃑ 𝑛 − 𝑏1𝐔⃑⃑ 
𝑛 − (1 − 2𝑏1 + 𝑏2)𝐔⃑⃑ 

𝑛−1 − 𝑏1𝐔⃑⃑ 
𝑛−2 − (𝑏𝑛−1 − 2𝑏𝑛)𝐔⃑⃑ 

0 − 𝑏𝑛𝐔⃑⃑ 
−1

+
1

2
(𝐟 𝑛 + 𝐟 𝑛+1) + 𝐛 𝑛 

for 𝑛 ≥ 3 

𝔸𝐔⃑⃑ 𝑛+1 = 𝔹𝐔⃑⃑ 𝑛 − 𝑏1𝐔⃑⃑ 
𝑛 − (1 − 2𝑏1 + 𝑏2)𝐔⃑⃑ 

𝑛−1 − ∑(𝑏𝑘+2 − 2𝑏𝑘+1 + 𝑏𝑘)𝐔⃑⃑ 
𝑛−𝑘−1

𝑛−2

𝑘=1

− (𝑏𝑛−1 − 2𝑏𝑛)𝐔⃑⃑ 
0 − 𝑏𝑛𝐔⃑⃑ 

−1 +
1

2
(𝐟 𝑛 + 𝐟 𝑛+1) + 𝐛 𝑛 

(4.18) 

where  

𝔸 =

[
 
 
 
 
 
1 + 2𝑟𝜃 −𝑟𝜃 0 ⋯ 0 0

−𝑟𝜃 1 + 2𝑟𝜃 −𝑟𝜃 ⋯ 0 0
0 −𝑟𝜃 1 + 2𝑟𝜃 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 1 + 2𝑟𝜃 −𝑟𝜃
0 0 0 ⋯ −𝑟𝜃 1 + 2𝑟𝜃]

 
 
 
 
 

, 𝐔⃑⃑ 𝑛 =

[
 
 
 
 
 
 

𝑢𝑖,1
𝑛

𝑢𝑖,2
𝑛

𝑢𝑖,3
𝑛

⋮
𝑢𝑖,𝑀−2

𝑛

𝑢𝑖,𝑀−1
𝑛

]
 
 
 
 
 
 

,

𝐟 𝑛 =

[
 
 
 
 
 
 

Γ(3 − 𝛼)Δ𝑡𝛼𝜙𝑖,1
𝑛

Γ(3 − 𝛼)Δ𝑡𝛼𝜙𝑖,2
𝑛

Γ(3 − 𝛼)Δ𝑡𝛼𝜙𝑖,3
𝑛

⋮
Γ(3 − 𝛼)Δ𝑡𝛼𝜙𝑖,𝑀−2

𝑛

Γ(3 − 𝛼)Δ𝑡𝛼𝜙𝑖,𝑀−1
𝑛

]
 
 
 
 
 
 

, 𝐛 𝑛 =

[
 
 
 
 
 
 
𝑟𝜃𝑢𝑖,0

𝑛 + 𝑟𝜃𝑢𝑖,0
𝑛+1

0
0
⋮
0

𝑟𝜃𝑢𝑖,𝑀
𝑛 + 𝑟𝜃𝑢𝑖,𝑀

𝑛+1
]
 
 
 
 
 
 

 

𝔹 =

[
 
 
 
 
 
2 − 2𝑟(1 − 𝜃) 𝑟(1 − 𝜃) 0 ⋯ 0 0

𝑟(1 − 𝜃) 2 − 2𝑟(1 − 𝜃) 𝑟(1 − 𝜃) ⋯ 0 0
0 𝑟(1 − 𝜃) 2 − 2𝑟(1 − 𝜃) ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 2 − 2𝑟(1 − 𝜃) 𝑟(1 − 𝜃)

0 0 0 ⋯ 𝑟(1 − 𝜃) 2 − 2𝑟(1 − 𝜃)]
 
 
 
 
 

,⁡ 

𝐜 𝑛 =

[
 
 
 
 
 
 

2Δ𝑡𝑔𝑖,1

2Δ𝑡𝑔𝑖,2

2Δ𝑡𝑔𝑖,3

⋮
2Δ𝑡𝑔𝑖,𝑀−2

2Δ𝑡𝑔𝑖,𝑀−1]
 
 
 
 
 
 

, 𝐔⃑⃑ 0 =

[
 
 
 
 
 
 

𝑓𝑖,1
𝑓𝑖,2
𝑓𝑖,3
⋮

𝑓𝑖,𝑀−2

𝑓𝑖,𝑀−1]
 
 
 
 
 
 

. 

𝐔⃑⃑ −1 can be computed as: 

𝐔⃑⃑ −1 = 𝐔⃑⃑ 1 − 𝐜 𝑛 

We can obtain the following results.  

Lemma: The coefficients 𝑏𝑛(𝑛 = 0,1,2… ) fulfill:  

1) 𝑏𝑛 > 𝑏𝑛+1, 𝑛 = 0,1,2… ; 

2) 𝑏0 = 1⁡, 𝑏𝑛 > 0, 𝑛 = 0,1,2… ; 
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4.2 Stability Analysis  

We assume that 𝑢̃𝑖,𝑗
𝑘 ⁡, (𝑖 = 0,1,2… , 𝑙⁡; 𝑗 = 0,1,2… ,𝑚; ⁡⁡𝑘 = 0,1,2… , 𝑛; ) is estimated solution. 

The error is:  

𝜀𝑖,𝑗
𝑘 = 𝑢̃𝑖,𝑗

𝑘 − 𝑢𝑖,𝑗
𝑘 , (𝑖 = 0,1,2… , 𝑙⁡; 𝑗 = 0,1,2… ,𝑚; ⁡⁡𝑘 = 0,1,2… , 𝑛; )    (4.19) 

Satisfies, 

 

−𝑟1(𝑢𝑖+1,𝑗
𝑛+1 + 𝑢𝑖−1,𝑗

𝑛+1 ) + (1 + 2𝑟1 + 2𝑟2)𝑢𝑖,𝑗
𝑛+1 − 𝑟2(𝑢𝑖,𝑗+1

𝑛+1 + 𝑢𝑖,𝑗−1
𝑛+1 ) ⁡=

𝑟1(𝑢𝑖+1,𝑗
𝑛 + 𝑢𝑖−1,𝑗

𝑛 ) + (2 − 2𝑟1 − 2𝑟2)𝑢𝑖,𝑗
𝑛 + 𝑟2(𝑢𝑖,𝑗+1

𝑛 + 𝑢𝑖,𝑗−1
𝑛 ) − 𝑢𝑖,𝑗

𝑛−1 −

∑ (𝑢𝑖,𝑗
𝑛−𝑘+1 − 2𝑢𝑖,𝑗

𝑛−𝑘 + 𝑢𝑖,𝑗
𝑛−𝑘−1)𝑛

𝑘=1 𝑏𝑘 + 𝜙
𝑖,𝑗
𝑛 ,⁡  from equation (4.12) 

(4.20) 

−𝑟1(𝑢𝑖+1,𝑗
𝑛+1 + 𝑢𝑖−1,𝑗

𝑛+1 ) + (1 + 2𝑟1 + 2𝑟2)𝑢𝑖,𝑗
𝑛+1 − 𝑟2(𝑢𝑖,𝑗+1

𝑛+1 + 𝑢𝑖,𝑗−1
𝑛+1 ) =

𝑟1(𝑢𝑖+1,𝑗
𝑛 + 𝑢𝑖−1,𝑗

𝑛 ) + (2 − 2𝑟1 − 2𝑟2 − 𝑏1)𝑢𝑖,𝑗
𝑛 + 𝑟2(𝑢𝑖,𝑗+1

𝑛 + 𝑢𝑖,𝑗−1
𝑛 ) + 2𝑢𝑖,𝑗

0 𝑏𝑛 −

𝑢𝑖,𝑗
−1𝑏𝑛 + ∑ 𝑢𝑖,𝑗

𝑛−𝑘𝑑𝑘
𝑛−1
𝑘=1 + 𝜙

𝑖,𝑗
𝑛 ⁡⁡⁡𝑓𝑜𝑟⁡⁡𝑛 ≥ 1,⁡ from equation (4.14) 

(4.21) 

−𝑟1(𝜀𝑖−1,𝑗
1 + 𝜀𝑖+1,𝑗

1 ) + (1 + 2𝑟1 + 2𝑟2)𝜀𝑖,𝑗
1 − 𝑟2(𝜀𝑖,𝑗−1

1 + 𝜀𝑖,𝑗+1
1 ) + 𝜀𝑖,𝑗

−1 =

𝑟1(𝜀𝑖−1,𝑗
0 + 𝜀𝑖+1,𝑗

0 ) + (2 − 2𝑟1 − 2𝑟2)𝜀𝑖,𝑗
0 + 𝑟2(𝜀𝑖,𝑗−1

0 + 𝜀𝑖,𝑗+1
0 )⁡⁡⁡⁡⁡⁡⁡⁡𝑓𝑜𝑟⁡⁡⁡⁡⁡𝑛 = 0,   

(4.22) 

−𝑟1(𝜀𝑖−1,𝑗
𝑛+1 + 𝜀𝑖+1,𝑗

𝑛+1 ) + (1 + 2𝑟1 + 2𝑟2)𝜀𝑖,𝑗
𝑛+1 − 𝑟2(𝜀𝑖,𝑗−1

𝑛+1 + 𝜀𝑖,𝑗+1
𝑛+1 ) + 𝑏𝑛𝜀𝑖,𝑗

−1 =

𝑟1(𝜀𝑖+1,𝑗
𝑛 + 𝜀𝑖−1,𝑗

𝑛 ) + (2 − 2𝑟1 − 2𝑟2 − 𝑏1)𝜀𝑖,𝑗
𝑛 + 𝑟2(𝜀𝑖,𝑗+1

𝑛 + 𝜀𝑖,𝑗−1
𝑛 ) + 2𝜀𝑖,𝑗

0 𝑏𝑛 +

∑ 𝜀𝑖,𝑗
𝑛−𝑘𝑑𝑘

𝑛−1
𝑘=1 ⁡⁡𝑓𝑜𝑟⁡𝑛 ≥ 1.     

(4.23) 

This can be written as:  

  

{

𝐴𝑬1 + 𝑬−1 = 𝐵𝑬0

𝐴𝑬𝐾+1 + 𝑏𝑛𝑬
−1 = 𝐵′𝑬𝐾 − 𝑏1𝑬

𝑘 + ∑ 𝑑𝑘𝑬
𝑛−𝑘

𝑛−1

𝑘=1

+ 2𝑏𝑛𝑬
0 

  

(4.24) 

where,  

𝑬𝑘 =

[
 
 
 
 
 
 
 

𝑬1
𝑘

𝑬2
𝑘

.

.

.
𝑬𝑙−2

𝑘

𝑬𝑙−1
𝑘 ]

 
 
 
 
 
 
 

, and   𝑬𝑖
𝑘 =

[
 
 
 
 
 
 
 

𝜀𝑖,1
𝑘

𝜀𝑖,2
𝑘

.

.

.
𝜀𝑖,𝑚−2

𝑘

𝜀𝑖,𝑚−1
𝑘 ]

 
 
 
 
 
 
 

,          𝑖 = 1,2,3,… 𝑙, 

Therefore, the following conclusion can be supported by mathematical induction. 
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Theorem: 1 ‖𝑬𝒌‖
∞

≤ ‖𝑬𝟎‖
∞
⁡, 𝒌 = 𝟎, 𝟏, 𝟐,…. 

Proof: For K=1, 

−𝑟1(𝜀𝑖−1,𝑗
1 + 𝜀𝑖+1,𝑗

1 ) + (1 + 2𝑟1 + 2𝑟2)𝜀𝑖,𝑗
1 − 𝑟2(𝜀𝑖,𝑗−1

1 + 𝜀𝑖,𝑗+1
1 ) + 𝜀𝑖,𝑗

−1 ⁡

= 𝑟1(𝜀𝑖−1,𝑗
0 + 𝜀𝑖+1,𝑗

0 ) + (2 − 2𝑟1 − 2𝑟2)𝜀𝑖,𝑗
0 + 𝑟2(𝜀𝑖,𝑗−1

0 + 𝜀𝑖,𝑗+1
0 )

= 𝐵𝑬𝟎. 

(4.25) 

Let,|𝜀𝑝,𝑞
1 | = ⁡ max

1≤𝑖≤𝑙−1;1≤𝑗≤𝑚−1
⁡ |𝜀𝑖,𝑗

1 |, we have  

|𝜀𝑝,𝑞
1 | = ⁡−𝑟1(|𝜀𝑝,𝑞

1 | + |𝜀𝑝,𝑞
1 |) + (1 + 2𝑟1 + 2𝑟2)|𝜀𝑝,𝑞

1 | ⁡⁡− 𝑟2(|𝜀𝑝,𝑞
1 | + |𝜀𝑝,𝑞

1 |) +

|𝜀𝑝,𝑞
−1 ⁡|, 

(4.26) 

≤ ⁡−𝑟1(|𝜀𝑝+1,𝑞
1 | + |𝜀𝑝−1,𝑞

1 |) + (1 + 2𝑟1 + 2𝑟2)|𝜀𝑝,𝑞
1 | ⁡⁡− 𝑟2(|𝜀𝑝,𝑞+1

1 | + |𝜀𝑝,𝑞−1
1 |)

+ |𝜀𝑝,𝑞
−1 ⁡|, 

(4.27) 

≤⁡⁡ |−𝑟1(𝜀𝑝+1,𝑞
1 + 𝜀𝑝−1,𝑞

1 ) + (1 + 2𝑟1 + 2𝑟2)𝜀𝑝,𝑞
1 ⁡⁡− 𝑟2(𝜀𝑝,𝑞+1

1 + 𝜀𝑝,𝑞−1
1 ) + 𝜀𝑝,𝑞

−1|, (4.28) 

|𝐵𝑬𝟎| ≤ ‖𝐸0‖∞,                 (4.29) 

also,  ‖𝑬𝟏‖
∞

≤ ‖𝑬𝟎‖
∞
. (4.30) 

Suppose that ‖𝑬𝒔‖∞ ≤ ‖𝑬𝟎‖
∞
⁡, 𝒔 = 𝟏, 𝟐, …𝒌. Let |𝜀𝑝,𝑞

𝑘+1| =

⁡ max
1≤𝑖≤𝑙−1;1≤𝑗≤𝑚−1

⁡ |𝜀𝑖,𝑗
𝑘+1|,  

 

|𝜀𝑝,𝑞
𝑘+1| = ⁡−𝑟1(|𝜀𝑝,𝑞

𝑘+1| + |𝜀𝑝,𝑞
𝑘+1|) + (1 + 2𝑟1 + 2𝑟2)|𝜀𝑝,𝑞

𝑘+1| − 𝑟2(|𝜀𝑝,𝑞
𝑘+1| +

|𝜀𝑝,𝑞
𝑘+1|) + 𝑏𝑛|𝜀𝑝,𝑞

−1 ⁡|,   
(4.31) 

≤ −𝑟1(|𝜀𝑝+1,𝑞
𝑘+1 | + |𝜀𝑝−1,𝑞

𝑘+1 |) + (1 + 2𝑟1 + 2𝑟2)|𝜀𝑝,𝑞
𝑘+1| − 𝑟2(|𝜀𝑝,𝑞+1

𝑘+1 | + |𝜀𝑝,𝑞−1
𝑘+1 |)

+ 𝑏𝑛|𝜀𝑝,𝑞
−1 ⁡|, 

(4.32) 

≤⁡⁡ |−𝑟1(𝜀𝑝+1,𝑞
𝑘+1 + 𝜀𝑝−1,𝑞

𝑘+1 ) + (1 + 2𝑟1 + 2𝑟2)𝜀𝑝,𝑞
𝑘+1 ⁡⁡− 𝑟2(𝜀𝑝,𝑞+1

𝑘+1 + 𝜀𝑝,𝑞−1
𝑘+1 ) +

𝑏𝑛𝜀𝑝,𝑞
−1|,   

(4.33) 

= |𝑟1(𝜀𝑝+1,𝑞
𝑘 + 𝜀𝑝−1,𝑞

𝑘 ) + (2 − 2𝑟1 − 2𝑟2 − 𝑏1)𝜀𝑝,𝑞
𝑘 + 𝑟2(𝜀𝑝,𝑞+1

𝑘 + 𝜀𝑝,𝑞−1
𝑘 )

+ 2𝜀𝑝,𝑞
0 𝑏𝑘 + ∑ 𝜀𝑝,𝑞

𝑘−𝑠𝑑𝑠

𝑘−1

𝑠=1

|, 

(4.34) 

≤ 𝑟1(|𝜀𝑝+1,𝑞
𝑘 | + |𝜀𝑝−1,𝑞

𝑘 |) + (2 − 2𝑟1 − 2𝑟2 − 𝑏1)|𝜀𝑝,𝑞
𝑘 | + 𝑟2(|𝜀𝑝,𝑞+1

𝑘 | + |𝜀𝑝,𝑞−1
𝑘 |)

+ 2𝑏𝑘|𝜀𝑝,𝑞
0 | + ∑ 𝑑𝑠|𝜀𝑝,𝑞

𝑘−𝑠|

𝑘−1

𝑠=1

, 
(4.35) 

≤ 𝑟1(‖𝑬
𝒌‖

∞
+ ‖𝑬𝒌‖

∞
) + (2 − 2𝑟1 − 2𝑟2 − 𝑏1)‖𝑬

𝒌‖
∞

+ 𝑟2 (‖𝑬𝒌‖
∞

+ (4.36) 
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‖𝑬𝒌‖
∞
) + 2𝑏𝑘‖𝑬

𝒌‖
∞

+ ∑ 𝑑𝑠‖𝑬
𝒌‖

∞
⁡𝑘−1

𝑠=1 , 

≤ {𝑟1 + (2 − 2𝑟1 − 2𝑟2 − 𝑏1) + 𝑟2 + 2𝑏𝑘 + ∑ 𝑑𝑠⁡
𝑘−1
𝑠=1 }‖𝑬𝒌‖

∞
⁡,  (4.37) 

≤ {−𝑟1 − 𝑟2 − 𝑏1 + 2(1 + 𝑏𝑘) + ∑ 𝑑𝑠⁡
𝑘−1
𝑠=1 }‖𝑬𝒌‖

∞
, (4.38) 

= ‖𝑬𝒌‖
∞

, (4.39) 

also,  ‖𝑬𝒌+𝟏‖
∞

≤ ‖𝑬𝟎‖
∞

.      (4.40) 

   

As a result, the following theorem is proved. 

Theorem 2: The Crank-Nicolson difference approximation defined by (4.22) and (4.23) is 

unconditionally stable. 

 

4.3 Convergence Analysis 

                    Suppose that u(xi, yj , tk), i = 0,1,…… . . l; j = 0,1,…… .m; k = 0,1,…… . n⁡, be the 

precise resolution of the PDE for fractions at the mesh point. (𝒙𝒊, 𝒕𝒌).⁡Define  

ei,j
k = ⁡u(xi⁡, yj, tk) −⁡ui,j

k ⁡, i = 0,1, …… . . l; j = 0,1,…… .m; k = 0,1, …… . n⁡, and ek =

(⁡e1
k, e2

k, … . em−1
k ) T, using e0 = 0,⁡were  

 

   𝑒𝑖
𝑘 =

[
 
 
 
 
 
 
 

𝑒𝑖,1
𝑘

𝑒𝑖,2
𝑘

.

.

.
𝑒𝑖,𝑚−2

𝑘

𝑒𝑖,𝑚−1
𝑘 ]

 
 
 
 
 
 
 

,     ⁡𝑖 = 1,2…… . . 𝑙 − 1 ,     

Substitution into (4.22) and (4.23) indications to 

−𝑟1(𝑒𝑖+1,𝑗
1 + 𝑒𝑖−1,𝑗

1 ) + (1 + 2𝑟1 + 2𝑟2)⁡𝑒𝑖,𝑗
1 − 𝑟2(𝑒𝑖,𝑗+1

1 + 𝑒𝑖,𝑗−1
1 ) + 𝑒𝑖,𝑗

−1 = 𝑅𝑖,𝑗
1 ,  (4.41) 

−𝑟1(𝑒𝑖−1,𝑗
𝑘+1 + 𝑒𝑖+1,𝑗

𝑘+1 ) +⁡(1 + 2𝑟1 + 2𝑟2)⁡𝑒𝑖,𝑗
𝑘+1 − 𝑟2(𝑒𝑖,𝑗+1

𝑘+1 + 𝑒𝑖,𝑗−1
𝑘+1 ) + 𝑒𝑖,𝑗

−1𝑏𝑛 =

𝑟1(𝑒𝑖−1,𝑗
𝑘 + 𝑒𝑖+1,𝑗

𝑘 ) + (2 − 2𝑟1 − 2𝑟2 − 𝑏1)𝑒𝑖,𝑗
𝑘 + 𝑟2(𝑒𝑖,𝑗+1

𝑘 + 𝑒𝑖,𝑗−1
𝑘 ) +

∑ 𝑒𝑖,𝑗
𝑛−𝑘𝑑𝑘

𝑛−1
𝑘=1 + 𝑅𝑖,𝑗

𝑛+1,            

(4.42) 

where, 𝑅𝑖
𝑛+1 = 𝑢(𝑥𝑖⁡, 𝑦𝑗 , 𝑡𝑛+1) − 2𝑢(𝑥𝑖 , 𝑦𝑗⁡𝑡𝑛) + 𝑢(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑛−1) +

∑ 𝑏𝑘
𝑛−1
𝑘=1 {⁡𝑢(𝑥𝑖 , 𝑦𝑗, 𝑡𝑛−𝑘+1) − 2𝑢(𝑥𝑖 , 𝑦𝑗, 𝑡𝑛−𝑘) + 𝑢(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑛−𝑘−1)} −

𝑟1[𝑢(𝑥𝑖+1, 𝑦𝑗 , 𝑡𝑛+1) − 2𝑢(𝑥𝑖 , 𝑦𝑗, 𝑡𝑛+1) + 𝑢(𝑥𝑖−1, 𝑦𝑗, 𝑡𝑛+1) + 𝑢(𝑥𝑖+1, 𝑦𝑗, 𝑡𝑛) −

(4.43) 
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2𝑢(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑛) + 𝑢(𝑥𝑖−1, 𝑦𝑗, 𝑡𝑛) − 𝑟2[𝑢(𝑥𝑖 , 𝑦𝑗+1, 𝑡𝑛+1) − 2𝑢(𝑥𝑖 , 𝑦𝑗, 𝑡𝑛+1) +

𝑢(𝑥𝑖 , 𝑦𝑗−1, 𝑡𝑛+1) + 𝑢(𝑥𝑖 , 𝑦𝑗+1, 𝑡𝑛) − 2𝑢(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑛) + 𝑢(𝑥𝑖 , 𝑦𝑗−1, 𝑡𝑛)], 

𝑅𝑖
𝑛+1 = ∑ 𝑏𝑘

𝑛−1

𝑘=0

{⁡𝑢(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑛−𝑘+1) − 2𝑢(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑛−𝑘) + 𝑢(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑛−𝑘−1)}

− 𝑟1[𝑢(𝑥𝑖+1, 𝑦𝑗, 𝑡𝑛+1) − 2𝑢(𝑥𝑖 , 𝑦𝑗, 𝑡𝑛+1) + 𝑢(𝑥𝑖−1, 𝑦𝑗, 𝑡𝑛+1)

+ 𝑢(𝑥𝑖+1, 𝑦𝑗 , 𝑡𝑛) − 2𝑢(𝑥𝑖 , 𝑦𝑗 , 𝑡𝑛) + 𝑢(𝑥𝑖−1, 𝑦𝑗, 𝑡𝑛)

− 𝑟2[𝑢(𝑥𝑖 , 𝑦𝑗+1, 𝑡𝑛+1) − 2𝑢(𝑥𝑖 , 𝑦𝑗, 𝑡𝑛+1) + 𝑢(𝑥𝑖 , 𝑦𝑗−1, 𝑡𝑛+1)

+ 𝑢(𝑥𝑖 , 𝑦𝑗+1, 𝑡𝑛) − 2𝑢(𝑥𝑖 , 𝑦𝑗, 𝑡𝑛) + 𝑢(𝑥𝑖 , 𝑦𝑗−1, 𝑡𝑛)], 

(4.44) 

from the above equations (26), (27), (28), we have 

𝐷𝑡
𝛼𝑢(𝑥𝑖⁡, 𝑦𝑗 , 𝑡𝑘+1) + 𝑂(𝜏) =

Δ𝑡−𝛼

Γ(3−𝛼)
[∑ (𝑢𝑖,𝑗

𝑛−𝑘+1 − 2𝑢𝑖,𝑗
𝑛−𝑘 + 𝑢𝑖,𝑗

𝑛−𝑘−1)𝑏𝑘
𝑛
𝑘=0 ], (4.45) 

𝜕2

𝜕𝑥2 𝑢(𝑥𝑖⁡, 𝑦𝑗 , 𝑡𝑘+1) + 𝑂(∆𝑥2) =
1

2
[
𝑢𝑖+1,𝑗

𝑛 −2𝑢𝑖,𝑗
𝑛 +𝑢𝑖−1,𝑗

𝑛

Δ𝑥2 +
𝑢𝑖+1,𝑗

𝑛+1 −2𝑢𝑖,𝑗
𝑛+1+𝑢𝑖−1,𝑗

𝑛+1

Δ𝑥2 ], (4.46) 

𝜕2

𝜕𝑦2 𝑢(𝑥𝑖⁡, 𝑦𝑗 , 𝑡𝑘+1) + 𝑂(∆𝑦2) =
1

2
[
𝑢𝑖,𝑗−1

𝑛 −2𝑢𝑖,𝑗
𝑛 +𝑢𝑖,𝑗+1

𝑛

Δ𝑦2 +
𝑢𝑖,𝑗−1

𝑛+1 −2𝑢𝑖,𝑗
𝑛+1+𝑢𝑖,𝑗+1

𝑛+1

Δ𝑦2 ]. (4.47) 

  Hence, 

𝑅𝑖,𝑗
𝑘+1 = 𝑂(𝜏1+𝛼 +⁡𝜏𝛼(∆𝑥)2 +⁡𝜏𝛼(∆𝑦)2).         (4.48) 

|𝑅𝑖,𝑗
𝑘+1| ⁡≤ 𝐶⁡(𝜏1+𝛼 +⁡𝜏𝛼(∆𝑥)2 +⁡𝜏𝛼(∆𝑦)2),  (4.49) 

𝑖 = 0,1,…… . . 𝑙 − 1; ⁡𝑗 = 0,1,…… .𝑚 − 1; ⁡𝑘 = 0,1, …… . 𝑛, 

where C is constant. Therefore, we achieve, 

Theorem 3:      ‖𝑒𝑘‖∞ ⁡≤ 𝐶⁡𝑏𝑘−1
−1 ⁡(𝜏1+𝛼 +⁡𝜏𝛼(∆𝑥)2 +⁡𝜏𝛼(∆𝑦)2), 𝑘 = 1,2, … . . 𝑛,⁡ 

     𝑤ℎ𝑒𝑟𝑒⁡‖𝑒𝑘‖∞ = ‖𝑒𝑘‖∞ =⁡ max
1≤𝑖≤𝑙−1;1≤𝑗≤𝑚−1

|𝑒𝑖,𝑗
𝑘 |⁡.  And C is a constant term.  

PROOF: 

Using mathematical induction scheme, For K=1.  

Let ‖𝑒𝑘‖∞ =⁡⁡ |𝑒𝑝,𝑞
1 | = ⁡ max

1≤𝑖≤𝑙−1;1≤𝑗≤𝑚−1
|𝑒𝑖,𝑗

1 |⁡, 

consider equation from (4.26) 

|𝑒𝑖,𝑗
1 | ≤ −𝑟1(|𝑒𝑝+1,𝑞

1 | + |𝑒𝑝−1,𝑞
1 |) + (1 + 2𝑟1 + 2𝑟2)|𝑒𝑝,𝑞

1 | − 𝑟2(|𝑒𝑝,𝑞+1
1 | +

|𝑒𝑝,𝑞−1
1 |) + |𝑒𝑝,𝑞

−1|,    
(4.50) 

≤⁡⁡ |−𝑟1(𝑒𝑝+1,𝑞
1 + 𝑒𝑝−1,𝑞

1 ) + (1 + 2𝑟1 + 2𝑟2)𝑒𝑝,𝑞
1 − 𝑟2(𝑒𝑝,𝑞+1

1 + 𝑒𝑝,𝑞−1
1 ) + 𝑒𝑝,𝑞

−1 | =

⁡𝑅𝑝,𝑞
1  ,  

(4.51) 

≤ 𝐶⁡𝑏0
−1(𝜏1+𝛼 +⁡𝜏𝛼(∆𝑥)2 +⁡𝜏𝛼(∆𝑦)2).       (4.52) 

Suppose that  ‖𝑒𝑠‖∞ ≤ 𝐶⁡𝑏𝑠−1
−1 (𝜏1+𝛼 +⁡𝜏𝛼(∆𝑥)2 +⁡𝜏𝛼(∆𝑦)2); 𝑠 = 0,1,2,… . , 𝑘 − 1.⁡         
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And |𝑒𝑝,𝑞
𝑘+1| = ⁡ max

1≤𝑖≤𝑙−1;1≤𝑗≤𝑚−1
|𝑒𝑖,𝑗

𝑘+1|⁡.⁡Note that 𝑏𝑠
−1 ⁡≤ ⁡ 𝑏𝑘

−1⁡, 𝑠 = 0,1,… , 𝑘. we have  

|𝑒𝑝,𝑞
𝑘+1| ⁡≤ ⁡⁡−𝑟1(|𝑒𝑝+1,𝑞

𝑘+1 | + |𝑒𝑝−1,𝑞
𝑘+1 |) + (1 + 2𝑟1 + 2𝑟2)|𝑒𝑝,𝑞

𝑘+1| − 𝑟2(|𝑒𝑝,𝑞+1
𝑘+1 | +

|𝑒𝑝,𝑞−1
𝑘+1 |) + 𝑏𝑛|𝑒𝑝,𝑞

−1|, 
(4.53) 

≤⁡⁡ |−𝑟1(𝑒𝑝+1,𝑞
𝑘+1 + 𝑒𝑝−1,𝑞

𝑘+1 ) + (1 + 2𝑟1 + 2𝑟2)𝑒𝑝,𝑞
𝑘+1 − 𝑟2(𝑒𝑝,𝑞+1

𝑘+1 + 𝑒𝑝,𝑞−1
𝑘+1 ) +

𝑏𝑛𝑒𝑝,𝑞
−1 |⁡,  

(4.54) 

= |𝑟1(𝑒𝑝+1,𝑞
𝑘 + 𝑒𝑝−1,𝑞

𝑘 ) + (2 − 2𝑟1 − 2𝑟2 − 𝑏1)𝑒𝑝,𝑞
𝑘 ⁡⁡− 𝑟2(𝑒𝑝,𝑞+1

𝑘 + 𝑒𝑝,𝑞−1
𝑘 )

+ ∑ 𝑒𝑝,𝑞
𝑛−𝑘𝑑𝑘

𝑛−1

𝑘=1

+ 𝑅𝑝,𝑞
𝑛+1|, 

(4.55) 

≤⁡ |𝑟1(𝑒𝑝+1,𝑞
𝑘 + 𝑒𝑝−1,𝑞

𝑘 ) + (2 − 2𝑟1 − 2𝑟2 − 𝑏1)𝑒𝑝,𝑞
𝑘 ⁡⁡− 𝑟2(𝑒𝑝,𝑞+1

𝑘 + 𝑒𝑝,𝑞−1
𝑘 )

+ ∑ 𝑒𝑝,𝑞
𝑛−𝑘𝑑𝑘

𝑛−1

𝑘=1

| + |𝑅𝑝,𝑞
𝑛+1|, 

(4.56) 

≤⁡𝑟1(|𝑒𝑝+1,𝑞
𝑘 | + |𝑒𝑝−1,𝑞

𝑘 |) + (2 − 2𝑟1 − 2𝑟2 − 𝑏1)|𝑒𝑝,𝑞
𝑘 | − 𝑟2(|𝑒𝑝,𝑞+1

𝑘 | +

|𝑒𝑝,𝑞−1
𝑘 |) +⁡∑ 𝑑𝑘

𝑛−1
𝑘=1 |𝑒𝑝,𝑞

𝑛−𝑘| + 𝐶⁡(𝜏1+𝛼 +⁡𝜏𝛼(∆𝑥)2 +⁡𝜏𝛼(∆𝑦)2),   
(4.57) 

≤ ⁡𝐶1(‖𝑒
𝑘‖∞ + ‖𝑒𝑘‖∞) + 𝐶2‖𝑒

𝑘‖∞ + 𝐶3(‖𝑒
𝑘‖∞ + ‖𝑒𝑘‖∞) +⁡∑ 𝑑𝑘‖𝑒

𝑛−𝑘‖∞

𝑛−1

𝑘=1

+ 𝐶⁡(𝜏1+𝛼 +⁡𝜏𝛼(∆𝑥)2 +⁡𝜏𝛼(∆𝑦)2), 

(4.58) 

≤⁡ [𝐶1 + 𝐶2 + 𝐶3 + ∑ 𝑑𝑘
𝑛−1
𝑘=1 ) +⁡𝑏𝑘]⁡𝑏𝑘

−1⁡𝐶(𝜏1+𝛼 +⁡𝜏𝛼(∆𝑥)2 +⁡𝜏𝛼(∆𝑦)2), (4.59) 

= 𝑏𝑘
−1⁡𝐶(𝜏1+𝛼 +⁡𝜏𝛼(∆𝑥)2 +⁡𝜏𝛼(∆𝑦)2).   (4.60) 

Because, 

lim
𝑘→∞

𝑏𝑘
−1

𝑘𝛼 =⁡ lim
𝑘→∞

𝑘−𝛼

(𝑘+1)1−𝛼−𝑘1−𝛼⁡, (4.61) 

= lim
𝑘→∞

𝑘−1

(1+
1

𝑘
)1−𝛼−1

, (4.62) 

= lim
𝑘→∞

𝑘−1

⁡(1−∝)𝑘−1 =
1

1−𝛼
.                                   (4.63) 

Hence there is a constant C, 

‖𝑒𝑘‖∞ ≤ 𝐶𝑘𝛼 ⁡(𝜏1+𝛼 + (𝜏1+𝛼 +⁡𝜏𝛼(∆𝑥)2 +⁡𝜏𝛼(∆𝑦)2)), (4.64) 

  

 if ⁡𝐾𝜏 ≤ 𝑇, is finite, then we get the following theorem. 
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Theorem 4: Let 𝑢𝑖,𝑗
𝑘  be the estimated value of 𝑢(𝑥𝑖⁡, 𝑦𝑗 , 𝑡𝑘),⁡ calculated by use of the 

difference scheme (8) and (9). Then there is a positive constant term C, such that  

|𝑢𝑖,𝑗
𝑘 − u(𝑥𝑖⁡, 𝑦𝑗 , 𝑡𝑘)⁡| ⁡≤ 𝐶⁡(𝜏 +⁡(∆𝑥)2 +⁡(∆𝑦)2),  

𝑖 = 1,2,…… . . 𝑙 − 1; ⁡𝑗 = 1,2…… .𝑚 − 1; ⁡𝑘 = 1,2…… . 𝑛. 

 

 

4.4   Algorithm: 2 

(Input data) 

1:  𝑎1, 𝑏1, 𝑎2, 𝑏2, T,𝑀𝑥 ,𝑀𝑦, 𝑁, 𝜃 ∈ 𝑁  , 𝑈(𝑥, 𝑦, 𝑡)  1 < 𝛼 ≤ 2    (Evaluation of function) 

2:  𝑓 ≔ 𝑓𝑟𝑎𝑐𝑑𝑖𝑓𝑓(𝑈(𝑥, 𝑦, 𝑡), 𝑡, 𝛼) −
𝜕2

𝜕𝑥2 𝑈(𝑥, 𝑦, 𝑡) −
𝜕2

𝜕𝑦2 𝑈(𝑥, 𝑦, 𝑡); 

3: for i from 0 by 1 while i ≤ 𝑀𝑥 do;⁡⁡                (Step size in x direction) 

       𝑥[𝑖] ≔ 𝑎1 + ∆𝑥𝑖;        end do:                             

4: for j from 0 by 1 while j ≤ 𝑀𝑦 do;⁡⁡               (Step size in y direction) 

       𝑦[𝑗] ≔ 𝑎2 + ∆𝑦𝑗;        end do:                       

5: for n from 0 by 1 while n ≤ N do;                  (Step size in time direction) 

     ⁡𝑡[𝑛] ≔ ∆𝑡𝑛;            end do:                           

6: for i from 0 by 1 while i ≤  𝑀𝑥 do; 

    for j from 0 by 1 while j ≤  𝑀𝑦 do;                  (Evaluation of initial conditions) 

    𝑢[𝑖, 𝑗, 0] ≔ 𝑒𝑣𝑎𝑙(𝑈, [𝑥 = 𝑖∆𝑥, 𝑦 = 𝑗∆𝑦, 𝑡 = 0]);    

⁡⁡⁡⁡𝑢[𝑖, 𝑗, −1] ≔ 𝑢[𝑖, 𝑗, 1] + 2∆𝑡. 𝑒𝑣𝑎𝑙 (
𝑑

𝑑𝑡
𝑈(𝑥, 𝑦, 𝑡), [𝑥 = 𝑖∆𝑥, 𝑦 = 𝑗∆𝑦, 𝑡 = 0]) ;⁡⁡⁡  

    end do: 

6: for n from 1 by 1 while n ≤ N do; 

    for j from 0 by 1 while j ≤ 𝑀𝑦 do;        (Evaluation of boundary conditions) 

    𝑢[0, 𝑗, 𝑛] ≔ 𝑒𝑣𝑎𝑙(𝑈(𝑥, 𝑦, 𝑡), [𝑥 = 𝑎1, 𝑦 = 𝑗∆𝑦, 𝑡 = 𝑛∆𝑡]);⁡⁡⁡⁡  

⁡⁡⁡⁡𝑢[⁡𝑀𝑥 , 𝑗, 𝑛] ≔ 𝑒𝑣𝑎𝑙(𝑈(𝑥, 𝑦, 𝑡), [𝑥 = 𝑏1, 𝑦 = 𝑗∆𝑦, 𝑡 = 𝑛∆𝑡]);   
    do; 

   for i from 1 by 1 while i ≤ ⁡𝑀𝑥 − 1 do; 

   𝑢[𝑖, 0, 𝑛] ≔ 𝑒𝑣𝑎𝑙(𝑈(𝑥, 𝑦, 𝑡), [𝑥 = 𝑖∆𝑥, 𝑦 = 𝑎2, 𝑡 = 𝑛∆𝑡]); 

   𝑢[𝑖,𝑀𝑦, 𝑛] ≔ 𝑒𝑣𝑎𝑙(𝑈(𝑥, 𝑦, 𝑡), [𝑥 = 𝑖∆𝑥, 𝑦 = 𝑏2, 𝑡 = 𝑛∆𝑡]); 

   do; do: 

7: for n from 0 by 1 while n ≤ N-1 do; 

     for i from 1 by 1 while i ≤𝑀𝑥 − 1 do; 

     for j from 1 by 1 while j≤𝑀𝑦 − 1 do; 

     R [i, j, n] = (Evaluation of equation 4.8) 

     end do; end do; 

8: Sol[n+1]: =fsolve ({seq (seq (R [i, j, n], i=1... 𝑀𝑥 − 1), j=1…𝑀𝑦 − 1)});                              

assign(op(sol[n+1]);  end do: 
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CHAPTER 5 

PERFORMANCE EVALUATION 

Numerical Implementation 

Consider the following wave equation 

𝐷0
𝐶

𝑡
𝛼𝑢(𝑥, 𝑡) =

𝜕2𝑢

𝜕𝑥2
+ 𝑡 sin(𝑥) ,⁡⁡⁡⁡⁡⁡⁡⁡⁡0 < 𝑥 < 1,⁡⁡⁡⁡⁡⁡⁡⁡⁡0 < 𝑡 ≤ 1,⁡⁡⁡⁡⁡⁡⁡⁡1 < 𝛼 ≤ 2, 

With the following initial conditions and boundary conditions, 

𝑢(𝑥, 0) = 𝑓𝑖 = 0, ⁡⁡⁡⁡⁡𝑢𝑡(𝑥, 0) = 𝑔𝑖 = sin(𝑥) ,⁡⁡⁡⁡⁡⁡⁡0 ≤ 𝑥 ≤ 1, 

𝑢(0, 𝑡) = 0,⁡⁡⁡⁡⁡⁡⁡⁡𝑢(1, 𝑡) = 𝑡 sin(1) ,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑡 > 0. 

for 𝑀 = 4, 𝜃 = 1/2 and 𝑁 = 5, 

Solution: In this problem 𝑎 = 0, 𝑏 = 1, ∆𝑥 = 0.25⁡, ∆𝑡 = 0.2, 𝑇 = 1, 𝜙(𝑥, 𝑡) = 𝑡 sin(𝑥), 

and 𝛼 = 1.5 implies that 

𝑀 =
𝑏 − 𝑎

∆𝑥
= 4, 𝑁 =

𝑇

∆𝑡
= 5, 

and 𝑥𝑖 = 𝑎 + 𝑖∆𝑥 = 𝑖/4 , for 𝑖 = 0,1,2,3,4 is given as: 

𝑥0 = 0, 𝑥1 = 0.25, 𝑥2 = 0.50, 𝑥3 = 0.75, 𝑥4 = 1, 

Similarly, 𝑡𝑛 = 𝑛∆𝑡 = 𝑛/5,for 𝑛 = 0,1,2,3,4,5 is given as: 

𝑡0 = 0, 𝑡1 = 0.2, ⁡𝑡2 = 0.4, 𝑡3 = 0.6, ⁡𝑡4 = 0.8, 𝑡5 = 1. 

First initial conditions, 𝑢(𝑥𝑖, 0) = 0,⟹⁡for 𝑖 = 0,1,2,3 is given as: 

𝑢(𝑥0, 0) = 0, 𝑢(𝑥1, 0) = 0, 𝑢(𝑥2, 0) = 0, 𝑢(𝑥3, 0) = 0, 𝑢(𝑥4, 0) = 0, 

respectively. The second initial conditions, 𝑢(𝑥𝑖, 1) = 𝑢(𝑥𝑖, −1) + 2Δ𝑡𝑔𝑖, for 𝑖 = 0,1,2,3 is 

given as:  

𝑢(𝑥0, 1) = 𝑢(𝑥0, −1) + 2(0.2) sin(0) ⟹ 𝑢(𝑥0, 1) = 𝑢(𝑥0, −1) 

𝑢(𝑥1, 1) = 𝑢(𝑥1, −1) + 2(0.2) sin(0.25) ⟹ 𝑢(𝑥1, −1) = 𝑢(𝑥1, 1) − 0.0989 

𝑢(𝑥2, 1) = 𝑢(𝑥2, −1) + 2(0.2) sin(0.50) ⟹ 𝑢(𝑥2, −1) = 𝑢(𝑥2, 1) − 0.1918 

𝑢(𝑥3, 1) = 𝑢(𝑥3, −1) + 2(0.2) sin(0.75) ⟹ 𝑢(𝑥3, −1) = 𝑢(𝑥3, 1) − 0.2726, 

respectively. First boundary conditions, 𝑢(0, 𝑡𝑛) = 0,⁡for 𝑛 = 1,2,3,4,5 is given as: 

⁡𝑢(0, 𝑡1) = 0, 𝑢(0, 𝑡2) = 0, 𝑢(0, 𝑡3) = 0, 𝑢(0, 𝑡4) = 0, 𝑢(0, 𝑡5) = 0, 
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Respectively. The second boundary conditions, 𝑢(1, 𝑡𝑛) = 𝑡𝑛 sin(1) for 𝑛 = 1,2,3,4,5 is 

given as: 

𝑢(1, 𝑡0) = 0 × sin(1) = 0, 𝑢(1, 𝑡1) = (0.2) sin(1) = 0.1683, 𝑢(1, 𝑡2) = (0.2) sin(1)

= 0.3366 

𝑢(1, 𝑡3) = (0.2) sin(1) = 0.5049,𝑢(1, 𝑡4) = (0.2) sin(1) = 0.6732, 𝑢(1, 𝑡5) = (0.2) sin(1)

= 0.8415 

Since the source term 𝑓(𝑥, 𝑡) = 𝑡 sin(𝑥). The tridiagonal matrices of order 3 × 3 are given as: 

𝐴 = [
1 + 2r −r 0

−r 1 + 2r −r
0 −r 1 + 2r

] = [
3.5365295 −1.2682647 0

−1.2682647 3.5365295 −1.2682647
0 −1.2682647 3.5365295

], 

𝐴−1 = [
0.2408534 0.0730436 0.0204206
0.0730436 0.2612741 0.0730436
0.0204206 0.0730436 0.2408534

] 

and                   𝐵 = [
−2r r 0
r −2r r
0 r −2r

] = [
−2.5365294 1.2682647 0
1.2682647 −2.5365294 1.2682647

0 1.2682647 −2.5365294

], 

Therefore, the Crank-Nicolson finite difference formula (3.12) for 𝑛 = 0, is given as: 

[
3.5365295 −1.2682647 0

−1.2682647 3.5365295 −1.2682647
0 −1.2682647 3.5365295

](

𝑢1
1

𝑢2
1

𝑢3
1

) 

= [
−2.5365294 1.2682647 0
1.2682647 −2.5365294 1.2682647

0 1.2682647 −2.5365294

](
0
0
0
) − (

𝑢1
1 − 0.0989616

𝑢2
1 − 0.1917702

𝑢3
1 − 0.2726555

)

+
1

2
{(

0
0
0
) + (

0.0039222
0.0076005
0.0108063

)} + (
0
0
0
) + (

0
0

0.10672
) ,⟹ (

𝑢1
1

𝑢2
1

𝑢3
1

) = (
0.04945
0.09588
0.13622

)

= 𝐔⃑⃑ 𝟏. 

The Crank-Nicolson finite difference formula (3.13) for 𝑛 = 1, is given as:     

[
3.5365295 −1.2682647 0

−1.2682647 3.5365295 −1.2682647
0 −1.2682647 3.5365295

](

𝑢1
2

𝑢2
2

𝑢3
2

) 

= [
−2.5365294 1.2682647 0
1.2682647 −2.5365294 1.2682647

0 1.2682647 −2.5365294

] [

𝑢1
1

𝑢2
1

𝑢3
1

] − 𝑏1 [

𝑢1
1

𝑢2
1

𝑢3
1

] − (1 − 2𝑏1) (
0
0
0
) 

−𝑏1 (

𝑢1
1 − 0.0989616

𝑢2
1 − 0.1917702

𝑢3
1 − 0.2726555

) +
1

2
((

0.0041220
0.0079878
0.0113569

) + (
0.0082440
0.0159755
0.0227137

)) + (
0
0
0
), 
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⟹ (

𝑢1
2

𝑢2
2

𝑢3
2

) = (
0.098993
0.19183
0.27271

) = 𝐔⃑⃑ 𝟐. 

The Crank-Nicolson finite difference formula (3.14) for 𝑛 = 2, is given as:     

[
3.5365295 −1.2682647 0

−1.2682647 3.5365295 −1.2682647
0 −1.2682647 3.5365295

](

𝑢1
3

𝑢2
3

𝑢3
3

) 

= [
−2.5365294 1.2682647 0
1.2682647 −2.5365294 1.2682647

0 1.2682647 −2.5365294

](
0.098993
0.19183
0.27271

) − 𝑏1 (
0.098993
0.19183
0.27271

) 

−(1 − 2𝑏1 + 𝑏2) (
0.04945
0.09588
0.13622

) − 𝑏1 (
0
0
0
) − (𝑏1 − 2𝑏2) (

0
0
0
) − 𝑏2 (

−0.0494766
−0.0958772
−0.1363155

) 

+
1

2
((

0.0078443
0.0152010
0.0216125

) + (
0.0117665
0.0228014
0.0324187

)) + (
0
0
0
) ,(

𝑢1
3

𝑢2
3

𝑢3
3

) = (
0.14853
0.28778
0.40910

) = 𝐔⃑⃑ 𝟑 

The Crank-Nicolson finite difference formula (3.15) for 𝑛 = 3, is given as: 

[
3.5365295 −1.2682647 0

−1.2682647 3.5365295 −1.2682647
0 −1.2682647 3.5365295

](

𝑢1
4

𝑢2
4

𝑢3
4

) 

= [
−2.5365294 1.2682647 0
1.2682647 −2.5365294 1.2682647

0 1.2682647 −2.5365294

](
0.14853
0.28778
0.40910

) − 𝑏1 (
0.14853
0.28778
0.40910

) 

−(1 − 2𝑏1 + 𝑏2) (
0.098993
0.19183
0.27271

) − (𝑏3 − 2𝑏2 + 𝑏1)⁡(
0.04945
0.09588
0.13622

) − (𝑏2 − 2𝑏3) (
0
0
0
) 

−𝑏3 (
−0.0494766
−0.0958772
−0.1363155

) +
1

2
((

0.0117665
0.0228014
0.0324187

) + (
0.0156887
0.0304019
0.0432249

)) + (
0
0
0
) ,⟹ (

𝑢1
4

𝑢2
4

𝑢3
4

)

= (
0.19806
0.38376
0.54551

) = 𝐔⃑⃑ 4. 

The Crank-Nicolson finite difference formula (3.15) for 𝑛 = 4, is given as: 

[
3.5365295 −1.2682647 0
−1.2682647 3.5365295 −1.2682647

0 −1.2682647 3.5365295

](

𝒖𝟏
𝟓

𝒖𝟐
𝟓

𝒖𝟑
𝟓

) 

= [
−2.5365294 1.2682647 0
1.2682647 −2.5365294 1.2682647

0 1.2682647 −2.5365294

](
0.19806
0.38376
0.54551

) − 𝑏1 (
0.19806
0.38376
0.54551

) 
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−(1 − 2𝑏1 + 𝑏2) (
0.14853
0.28778
0.40910

) − ∑(𝑏𝑘+2 − 2𝑏𝑘+1 + 𝑏𝑘)𝐔⃑⃑ 
3−𝑘

2

𝑘=1

− (𝑏3 − 2𝑏4) (
0
0
0
)

− 𝑏4 (

𝑢1
1 − 0.0989616

𝑢2
1 − 0.1917702

𝑢3
1 − 0.2726555

) 

+
1

2
((

0.0156887
0.0304019
0.0432249

) + (
0.0196109
0.0380024
0.0540312

)) + (
0
0
0
) ,⟹ (

𝑢1
5

𝑢2
5

𝑢3
5

) = (
0.24760
0.47973
0.68188

) = 𝐔⃑⃑ 5. 

 

5.1 Representation of graphs  

To assess our proposed time-fractional hyperbolic partial differential equation 

introduced in Chapters 3 and 4, this chapter will show and discuss simulation results by using 

Tec plot software. Essentially, there are two parts to this section. Results analysis, which is an 

assessment of the effectiveness of TFWEs using various parameters and a comparison with 

the exact answer, are shown below. To evaluate the effectiveness of the suggested algorithm, 

numerous challenges have been resolved. In this chapter, the same results as well as some 

fresh results have been attained. 

  

5.2  Comparison with Different Parameters in 1D  

 

 

 
Figure 5.2.1: For 𝑢(𝑥, 𝑡) = e2𝑥+𝑡 
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In terms of the first problem, a precise and numerical solution is found for various 

values of α. Figure 5.2.1 Two-dimensional representation of (a) approximate solutions 

and exact solution 𝑢(𝑥, 𝑡) = e2𝑥+𝑡, and (b) absolute error against 𝛼 when 𝑀 = 50 and 

𝑁 = 100. Some intriguing findings can be seen in the graph 5.2.1 the approximate 

solution approaches the exact solution using the Crank-Nicolson difference scheme, 

and the error decreases. From this figure, it can be deduced that M=50 and N=100 

both achieve the same level of accuracy. 

 

 

  
 

Figure 5.2.2: For 𝑢(𝑥, 𝑡) = e𝑡 sin(𝑥) 
 

 
In figure 5.2.2 Two-dimensional representation of (a) approximate solutions and exact 

solution 𝑢(𝑥, 𝑡) = e𝑡 sin(𝑥), and (b) absolute error against 𝑀 when 𝛼 = 1.2 and 𝑁 =

100. The closed contact is validated with the accurate solution of example 𝑈 =

𝑒𝑡 sin(𝑥), which also provides Two-dimensional Crank-Nicolson technique solution 

graphs when various value of M and N=100. 
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Figure 5.2.3: For 𝑢(𝑥, 𝑡) = 𝑡2 sin(𝑥) 
 

In Figure 5.2.3 Two-dimensional representation of (a) approximate solutions 

and exact solution 𝑢(𝑥, 𝑡) = 𝑡2 sin(𝑥), and (b) absolute error against various value of 

𝛼 when 𝑀 = 40 and 𝑁 = 100 that is the evidence that the suggested method is highly 

accurate and reliable. 

 

  
Figure 5.2.4: For 𝑈(𝑥, 𝑡) = 𝑥4𝑡3 − 𝑥3 − 𝑡2 + 𝑥𝑡 

 

In figure 5.2.4 Two-dimensional representation of (a) approximate solutions 

and exact solution 𝑢(𝑥, 𝑡) = 𝑥4𝑡3 − 𝑥3 − 𝑡2 + 𝑥𝑡, and (b) absolute error against 𝑀 

when 𝛼 = 1.4 and 𝑁 = 100. The behaviour of the particular and numerical solution of 

the fractional order hyperbolic partial differential equation 𝑈(𝑥, 𝑡) = 𝑥4𝑡3 − 𝑥3 −

𝑡2 + 𝑥𝑡 for α=1.4 is depicted in figure 5.2.4. The estimated solution gets closer and 

closer to the exact solution, resulting in a diminishing absolute error.  
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Figure 5.2.5: For ⁡𝑈(𝑥, 𝑡) = cos⁡(𝑥 − 𝑡) 
 

Figure 5.2.5 Two-dimensional representation of (a) approximate solutions and 

exact solution 𝑢(𝑥, 𝑡) = cos(𝑥 − 𝑡), agree pretty well with the numerical solutions for 

various values of M, and (b) absolute error against 𝑀 when 𝛼 = 2 and 𝑁 = 100. the 

approximate and exact solutions for the Two-dimensional plot are displayed in Figure 

5.2.5 to demonstrate the technique's correctness. It is clear that the answers are 

strikingly similar. Clearly, the suggested approach is quite precise and effective. 

Extremely high levels of agreement among the solutions are visible in the graph. Our 

method appears to give noticeably greater accuracy. 

 

 

Figure 5.2.6: For 𝑈(𝑥, 𝑡) = 𝑡3 sin(𝑥2) 
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The behaviour of the precise and numerical solution of the TFWEs for 

different values of α is shown in figure 5.2.6 are very similar to the precise answers, 

which also Two-dimensional representation of (a) approximate solutions and exact 

solution 𝑢(𝑥, 𝑡) = 𝑡3 sin(𝑥2), and (b) absolute error against 𝛼 when 𝑀 = 40 and 𝑁 =

100. It is clear that the suggested approach is entirely correct and effective, 

 

 

 
 

Figure 5.2.7: For 𝑈(𝑥, 𝑡) = 𝑥4𝑡3 − 𝑥3𝑡2 − 𝑥2𝑡 + 𝑥 
 

 

In Figure 5.2.7 Two-dimensional representation of (a) approximate solutions 

and exact solution 𝑢(𝑥, 𝑡) = 𝑥4𝑡3 − 𝑥3𝑡2 − −𝑥2𝑡 + 𝑥, and (b) absolute error against 

𝑀 when 𝛼 = 1.7 and 𝑁 = 100. The solutions in fractional order at α =1.7 serve to 

validate the proposed method for addressing issues involving fractional initial and 

boundary values. The findings go into great detail and are directly related to accurate 

solutions to the problems. 
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Figure 5.2.8: For 𝑈(𝑥, 𝑡) = 𝑒(𝑥−𝑡) 
 

In Figure 5.2.8 Two-dimensional representation of (a) approximate solutions 

and exact solution 𝑢(𝑥, 𝑡) = e𝑥−𝑡, and (b) absolute error against 𝑀 when 𝛼 = 2 and 

𝑁 = 25. The estimated solution gets closer and closer to the actual solution, resulting 

in a diminishing absolute error. Clearly, the suggested strategy is very accurate and 

efficient.  

 

 

Figure 5.2.9: For 𝑈(𝑥, 𝑡) = 𝑡5sin⁡(x) 

 

x

u
(x

,1
)

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0.8

0.9

1

M = 30
M = 40
M = 50
Exact Sol.

(a) x

A
.E

.
0 0.2 0.4 0.6 0.8 1

0

0.005

0.01

0.015

0.02 M = 30
M = 40
M = 50

(b)

x

u
(x

,1
)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

 = 1.6
 = 1.8
 = 2.0
Exact Sol.

(a) x

A
.E

.

0 0.5 1 1.5 2
0

0.005

0.01

0.015

0.02

 = 1.6
 = 1.8
 = 2.0

(b)



48 

 

 

 

Figure 5.2.9 Two-dimensional representation of (a) approximate solutions and 

exact solution 𝑢(𝑥, 𝑡) = 𝑡5 sin(𝑥), and (b) absolute error against 𝛼 when 𝑀 = 100 

and 𝑁 = 100. The estimated solution approaches the exact solution more closely, 

resulting in a decreasing error. When M and N are both equal to 100, we can observe 

that the Crank-Nicolson technique produces approximate results. 

 

 

5.3 Conclusion of 1 D 

 

In this section, various problems have been solved by means of the proposed one-

dimensional fractional order hyperbolic PDE using the Crank-Nicolson technique has been 

used to resolve a number of issues in one dimensional. It is observed that the obtained results 

are well-matched to the existing results. Additionally, it should be emphasized that the Crank-

Nicolson approach effectively couples fractional order hyperbolic partial differential 

equations, particularly for highly nonlinear systems. The innovative nonlinear physical 

problem in the complicated geometry may now be solved using this effective strategy. 
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5.4  Comparison with Different Parameters in 2D 

(a)  (b)  
 

 

(c)      (d) 

 

 

Figure 5.4.1: For 𝐔(𝐱, 𝐲, 𝐭) = 𝐞(𝟐𝐱+𝟐𝐲+𝐭) 
 

Figure 5.4.1 Graphical illustration of (a) 2D behaviour of the numerical solution 

against 𝛼 (b) 3D variation in the absolute error behaviour against 𝛼 (c) exact solution 

𝑢(𝑥, 𝑦, 𝑡) = e2𝑥+2𝑦+𝑡 and (d) approximate solution (when 𝛼 = 2) in three-dimensions when 

𝑀 = 20 and 𝑁 = 20. The precise and CNM solutions are seen to be in close proximity to one 

another. The graphs have demonstrated that the exact and produced results are extremely 

close and have validated the applicability of the current methodology. 
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(a)      (b) 

 
(c)      (d) 

 

Figure 5.4.2: For 𝐔(𝐱, 𝐲, 𝐭) = 𝐞𝐭𝐬𝐢𝐧(𝐱 + 𝐲) 

Figure 5.4.2 Graphical illustration of (a) 2D behaviour of the numerical solution 

against 𝑀 = 𝑀𝑥 = 𝑀𝑦 (b) 3D variation in the absolute error behaviour against 𝑀 (c) exact 

solution 𝑢(𝑥, 𝑦, 𝑡) = e𝑡 sin(𝑥 + 𝑦) and (d) approximate solution (when 𝑀 = 15) in three-

dimensions when 𝛼 = 1.2 and 𝑁 = 20. Figure 5.4.2 also gives two-dimensional Crank-

Nicolson technique solution graphs and validates the closed contact with the precise solution 

of Example⁡𝑈 = 𝑒𝑡𝑠𝑖𝑛(𝑥 + 𝑦). As a result, example have exact solution 𝑈 = 𝑒𝑡. 𝑠𝑖𝑛(𝑥 + 𝑦) 

has been accurately resolved using the suggested way. 
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Figure 5.4.3: For 𝑼(𝒙, 𝒚, 𝒕) = 𝒕𝟐𝒔𝒊𝒏(𝒙 + 𝒚) 
 

Figure 5.4.3 Graphical illustration of (a) 2D behaviour of the numerical solution 

against 𝑀 = 𝑀𝑥 = 𝑀𝑦 (b) 3D variation in the absolute error behaviour against 𝑀 (c) exact 

solution 𝑢(𝑥, 𝑦, 𝑡) = 𝑡2 sin(𝑥 + 𝑦) and (d) approximate solution (when 𝑀 = 15) in three-

dimensions when 𝛼 = 1.3 and 𝑁 = 20. The proposed method to tackle problems involving 

fractional initial and boundary values is validated by the solutions in fractional order at α=1.3. 

The findings are in-depth and directly tied to the precise answers to the issues. 
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Figure 5.4.4: For 𝐔(𝐱, 𝐲, 𝐭) = 𝐱𝟒𝐲𝟒𝐭𝟑 − 𝐱𝟑𝐲𝟑 − 𝐭𝟐 + 𝐱𝐲𝐭 
 

Figure 5.4.4 Graphical illustration of (a) 2D behaviour of the numerical solution 

against 𝛼 (b) 3D variation in the absolute error behaviour against 𝛼 (c) exact solution 

𝑢(𝑥, 𝑦, 𝑡) = 𝑥4𝑦4𝑡3 − 𝑥3𝑦3 − 𝑡2 + 𝑥𝑦𝑡 and (d) approximate solution (when 𝛼 = 2) in three-

dimensions when 𝑀 = 30 and 𝑁 = 20. To show the accuracy of the technique, the 

approximate and exact solutions for the two-dimensional plot are shown in Figure 5.4.4 by 

setting values of the parameter α=1.1, α=1.5, and α=2. The solutions are obviously 

remarkably similar. Clearly, the suggested strategy is quite accurate and successful. The graph 

displays an incredibly high level of agreement between the solutions. Our technique seems to 

deliver significantly better accuracy. 
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(a)      (b) 

 
(c)      (d) 

 

Figure 5.4.5: For 𝐔(𝐱, 𝐲, 𝐭) = 𝐭𝐜𝐨𝐬(𝐱 + 𝐲) 

Figure 5.4.5 Graphical illustration of (a) 2D behaviour of the numerical solution 

against 𝛼 (b) 3D variation in the absolute error behaviour against 𝛼 (c) exact solution 

𝑢(𝑥, 𝑦, 𝑡) = 𝑡 cos(𝑥 + 𝑦) and (d) approximate solution (when 𝛼 = 2) in three-dimensions 

when 𝑀 = 20 and 𝑁 = 100. In figure 5.4.5 plot the absolute error profile at various time 

scales to demonstrate the precision of the scheme. By fixing values of the parameter 𝛼 = 1.1, 

𝛼 = 1.5, and 𝛼 = 2, the approximate and exact solutions for the 2D plot are displayed in 

Figure 5.4.5. It is clear that the solutions are remarkably similar. The proposed approach is 

obviously very precise and effective. 
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(a)      (b) 

 
(c)      (d) 

 

Figure 5.4.6: For 𝒖(𝒙, 𝒚, 𝒕) = 𝒕𝟑 𝐬𝐢𝐧𝟐(𝒙 + 𝒚) 

Figure 5.4.6 Graphical illustration of (a) 2D behaviour of the numerical solution against 

𝑀 = 𝑀𝑥 = 𝑀𝑦 (b) 3D variation in the absolute error behaviour against 𝑀 (c) exact solution 

𝑢(𝑥, 𝑦, 𝑡) = 𝑡3 sin2(𝑥 + 𝑦) and (d) approximate solution (when 𝑀 = 25) in three-dimensions 

when 𝛼 = 1.6 and 𝑁 = 20. The proposed method is obviously highly precise and effective, 

and it has been observed that various values of α, the numerical solutions are closely related to 

the exact answers. 
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(a)      (b) 

 
(c)      (d) 

 

Figure 5.4.7: For 𝐔(𝐱, 𝐲, 𝐭) = 𝐱𝟒𝐲𝟒𝐭𝟑 − 𝐱𝟑𝐲𝟑𝐭𝟐 − 𝐱𝟐𝐲𝟐𝐭 + 𝐱𝐲 

 

 

Figure 5.4.7 Graphical illustration of (a) 2D behaviour of the numerical solution 

against 𝛼 (b) 3D variation in the absolute error behaviour against 𝛼 (c) exact solution 

𝑢(𝑥, 𝑦, 𝑡) = 𝑥4𝑦4𝑡3 − 𝑥3𝑦3𝑡2 − 𝑥2𝑦2𝑡 + 𝑥𝑦 and (d) approximate solution (when 𝛼 = 2) in 

three-dimensions when 𝑀 = 20 and 𝑁 = 20. The two-dimensional graph 5.4.7 shows some 

surprising results: as the order of approximation increases when using the Crank-Nicolson 

scheme, the estimated solution approaches the particular solution, and the error rapidly 

declines. 
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Figure 5.4.8: For 𝑼(𝒙, 𝒚, 𝒕) = 𝒆𝟑(𝒙+𝒚+𝒕) 

 

Figure 5.4.8 Graphical illustration of (a) 2D behaviour of the numerical solution 

against 𝑀 (b) 3D variation in the absolute error behaviour against 𝑀 (c) exact solution 

𝑢(𝑥, 𝑦, 𝑡) = e3(𝑥+𝑦+𝑡) and (d) approximate solution (when 𝑀 = 15) in three-dimensions 

when 𝛼 = 1.8 and 𝑁 = 20. The behaviour of the numerical solution to the fractional wave 

equation and its precise solution is nearly identical. The estimated solution is thought to get 

closer to the exact solution, as well as the error minimized.  
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(a)      (b) 

 
(c)      (d) 

 
 

Figure 5.4.9: For 𝐔(𝐱, 𝐲, 𝐭) = (𝐱 − 𝐲)𝟑𝐭𝟓 + 𝐭𝟑 − (𝐱 + 𝐲)𝟐 + 𝐱𝐲𝐭 
 

 

Figure 5.4.9 Graphical illustration of (a) 2D behaviour of the numerical solution 

against 𝑀 (b) 3D variation in the absolute error behaviour against 𝑀 (c) exact solution 

𝑢(𝑥, 𝑦, 𝑡) = (𝑥 − 𝑦)3𝑡5 + 𝑡3 − (𝑥 + 𝑦)2 + 𝑥𝑦𝑡 and (d) approximate solution (when 𝑀 = 30) 

in three-dimensions when 𝛼 = 1.9 and 𝑁 = 20. To show the accuracy of the technique, the 

approximate and exact solutions for the two-dimensional plots are shown in Figure 5.4.9 by 

setting values of the parameter α=1.9. The solutions are obviously remarkably similar. 

Clearly, the suggested strategy is quite accurate and successful. 
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5.5  Conclusion of 2D 

In two dimensional the fractional wave equations are solved using a class of numerical 

techniques that are presented in this chapter. The finite difference approach based on the 

Crank-Nicolson formula underlies this class of procedures. The analysis of the numerical 

outcomes of the fractional finite difference scheme is given special consideration. The 

suggested problem's exact and numerical solutions are contrasted, and the resultant stability 

condition is quantitatively verified. This comparison allows us to draw the conclusion that the 

numerical solutions and exact solutions have a very good agreement. The Tec plot 

programming environment was used for all computations in this thesis work. 
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CHAPTER 6  

CONCLUSION AND FUTURE WORK 

6.1 Summary  

This thesis extends and reviews P. Zhuang and F. Liu's finite difference modification 

for time fraction hyperbolic partial differential equations. First, we consider the fractional 

wave equations in one and two dimensions over a finite region. Differential equations have 

been used to create a model for the issue in physics and other domains. Stability is proved, 

and the convergence in a bounded domain is examined for the one-dimensional and two-

dimensional Crank-Nicolson differential approximations. Numerical findings are presented 

using graphs. In order to investigate the exact solution of the problems, an effective 

connection between the fractional order wave equation and the Crank-Nicolson method is 

presented in this study. This method is based on discretizing the Caputo sense using a finite 

difference formulation. The stability of the system has been extensively studied through the 

use of techniques such as Von Neumann stability analysis. It is shown that the scheme is 

perfectly stable. The system is also given a convergence analysis. The main finding was as 

follows: 

It has been determined and confirmed that the suggested approach is effective, well-

suited, and accurate for dealing with fractional order wave models. By changing the value of 

𝛼(alpha), the graphs of the One dimensional and two-dimensional equations are 

approximately the same as the numerical solution. Some innovative results demonstrate that 

the proposed strategy can produce more accurate results with less computing effort and 

expense. Exact and numerical solutions are provided for t=0.1. There is excellent agreement 

between the numerical solution and one-dimensional numerical methods. The conformable 

fractional derivative brings great convenience to the study of fractional differential equations 
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due to its unique properties. By taking a comparison with different parameters the equation 

gives an exact solution. By using an error analysis against the parameter α, convergence of the 

provided strategy has been demonstrated. The Crank-Nicolson technique can be applied to 

solve FDEs. It is important to state that the suggested solution reduces computing time and 

work at a concrete level.   

The examination story in the field of numerical techniques is not yet complete. The 

recommended approach can be expanded to investigate the numerical wave solution of several 

physical mechanisms that need to be investigated using suggested techniques, such as: 

Higher-dimensional fractional wave models, generalized fractional wave models, Physical 

problem arising in physical nature.               
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