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ABSTRACT

Title: Investigation of coefficient inequalities for certain new subclasses of analytic functions

The aim of this research is to define and discuss some new subclasses of starlike and convex

functions in an open unit disk. The q-theory and q-differential operators will be used to present

the q-version of already existing results on starlike and convex functions. The classes of analytic

functions with respect to the symmetric point will be explained with the help of q-derivative

certain new classes of q-starlike and q-convex functions with respect to symmetric points

subordinated with exponential functions will be introduced, and these classes will further be

modified by using exponential function with subordination technique. Coefficient inequalities for

the functions belonging to the new classes will be investigated. We will determine the possible

upper bound of the 3rd Hankel determinant for the q-starlike and q-convex functions. The

relevant connections of our new classes and results to known ones will be also pointed out.
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CHAPTER 1

INTRODUCTION

1.1 Overview

This research approaches the interesting area of mathematics called Geometric Function

Theory which covers the study of geometric properties of an analytic function. This is one of the

most fascinating branches of mathematics and it was established at the start of the 20th century.

Though similar ideas also appear in real analysis, in complex analysis the geometry of functions

has had a greater impact. Geometric Function Theory has multiple applications in different areas

of science and mathematics. Due to the application of fundamental hypergeometric series to a

variety of topics, including combinatorics and quantum theory, the field has rapidly grown.

1.2 Riemann Mapping Theorem

To replace a reasonably complicated arbitrary domain, a result by Bernard Riemann was

given known as the Riemann Mapping Theorem in 1851. This allows us to consider open unit

disk E = {z : |z|< 1} as a domain. As a base of Geometric Function Theory, this theorem plays

a vital role. The base of modern function theory is laid by the prominent contribution of Cauchy,

Riemann, and Weierstrass which was established in the 19th century.
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1.3 The subclass of analytic and univalent functions

After that in 1907, univalent functions were studied by Koebe [1, 2] in which both univalent

and analytic functions were considered in open unit disk E. He discovered functions in open unit

disk E that are both analytic & univalent. the univalent analytic and normalized functions are

collected in one class S, For more detail see [1, 2]. The geometry of the image domain indeed

plays a very important role in the detailed study of analytic functions because these are classified

into different classes and further into sub-classes entirely based upon the shapes of their image

domains and other geometrical properties. Therefore, introducing and studying new geometrical

structures as image domains and defining their associated analytic functions has always been

a matter of discussion amongst researchers. The class S of normalized univalent function is a

very significant class in Geometric Function Theory. The main sub-classes of class S are class

S∗ of starlike, the class C of convex univalent function class K of close-to-convex univalent

function, and the class C∗ of quasi-convex univalent function. In 1915, Alexander [3] linked two

classes of convex & starlike functions by leading a relation called the Alexander relation. Any

convex function can be taken to be lower semi-continuous with some possible redefinitions on

the boundary.

1.4 Coefficient bounds

Geometry Function Theory deals with the geometry of complex-valued functions, the problem

of discovering coefficient bounds plays a vital role and these functions are divided into various

subfamilies of set A of normalized analytic functions because of its diverse geometrical analysis

of image domains where A has functions f (z) that are analytic in the open-unit disk E. The

known coefficient assumption for the function was defined by de-Branges in 1985 and used by

Bieberbach in 1916 which is the greatest emergent outcome. Numerous mathematicians have

done remarkable work to disprove or prove this assumption and as a consequence they presented

several sub-families of the class S of univalent function with deference to the geometrical

approach of their images area between 1916-1985. For more detail, see [1, 2].
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1.5 q-calculus

q-calculus is a methodology equal to the use course of calculus but which is centered on the

solution of deriving q-analogous results with-out the use of limits. Jackson [4] deserves credit for

the systematic introduction of q-calculus and Jackson [5] first introduced and provided definitions

for q-derivative & q-integrals. In the 1740s, Euler established the theory of partitions commonly

known as additive analytic number theory which was the genesis of q-analysis. Euler’s works

were not gathered and published until the early 1800s, under the name of the legendary Jacobi,

despite the fact that he had always written in Latin. In 1829, Jacobi proposed his elliptic function

which is theoretically equal to q-analysis as well as his triple, produce identity (also known as the

Gauß Jacobi triple by-product identity). C. F. Gauß (1777–1855) was a significant contributor to

the development of q-calculus. He is credited with the invention of the hypergeometrical series

and associated contiguity relations in 1812.

A crucial topic of research in the realm of conventional mathematical-analysis is quantum or

q-calculus. Its focus is on a useful gener-alization of integration and differentiation procedure

from a theoretical stand point. A vast area of mathematics study with ancient roots and a renewed

emphasis in the present day is quantum calculus. Significantly, the origins of quantum calculus

may be traced all the way back to Bernoulli and Euler’s function. This is an important aspect

of the field. Nonetheless, because of its numerous uses, it has recently caught the attention of

modern mathematicians. It is more challenge than other mathematics disciplines since it involves

intricates calculations and computations. The main objective of this thesis/research will be to

study and by using q-derivative investigate the geometric characteristics of analytic functions.

Ismail et al [6] have introduced q-calculus in the field of Geometer Functions Theory for the

very first time. Produced one of the very first contributions to the use of q-calculus in Geometric

Function Theory. Who created the class of starlike function generalized versions. He did it by

using the difference operator and at the same time, he made a suitable change in the domain of

the functions. He gave his brand-new class the name class of q-starlike function when he first

introduced it. Properties of q-starlike & q-convex functions investigated by various researchers,

which have been introduced by [7, 8].

In 1907, Koebe [9] introduced the theory of univalent-functions which is a classical problem

of complex analysis. He discovered functions in open unit disk E that are both analytic &

univalent. The univalent analytic and normalized functions are collected in one class S. The
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group of functions like these that are analytic & univalent in the open-unit disk E, and satisfy

the normalization conditions was then known as the class S. The class S of univalent function is

the primary focus of investigation in the majority of the Geometric Function Theory. In 1921,

Nevanlinna initiated the concept of a starlike function in open unit disk E, see [10]. The classes

of convex & starlike functions were defined and their geometrical behavior was analyzed, see

[1].

1.6 Hankel determinant

The Hankel matrix which is a square-toed matrix and was named after Hermann Hankel

is distinguished by the fact that each ascending skew diagonal from right to left is constant.

Determinants of such matrices are of great importance. In 1976, Noonan & Thomas [11]

investigated the Hankel determinant of certain analytic functions.

Perhaps the most exciting part of Complex Function Theory is the interaction between

geometry and analysis. These connections between geometric behavior and analytic structure are

at the heart of theory regarding univalent functions. If f (z1) ̸= f (z2) if z1 ̸= z2, then functions

are considered theory regarding univalent functions accepting identical value twice. The current

survey will concentrate on the subclasses of S functions f (z) = z+ a2z2 + a3z3. . . Univalent

and analytic in the open-unit disk |z|< 1. This is the class that involves all univalent function

that has been normalization by the condition f (0) = 0 & f ′(0)− 1 = 0 With an emphasis on

recent findings and open issues, we will focus on coefficient difficulties for the class S and any

classes that are connected to it. Most of the methods we shall communicate have wide scopes

and are not restricted to a coefficient problem, introduced by Duren [12] in 1977. The Hankel

determinant of the univalent functions was introduced by Pommerenke [13] in 1967. Babalola

[14] was the first person to examine the upper bound of H3(1) for subclasses of S. The estimate

for the 3rd Hankel-determinant of the Taylor coefficient of the function f (z) in the open unit disk

falls under particular categories of analytic functions. Restrictions on the 3rd Hankel determinant

for specific categories of analytic functions were introduced by Prajapat et al [15, 16].

This is quite natural to discuss the behavior for sub-classes of normalized univalent function

in the unit-disk by the Fekete-Szego problem Kanas and Darwish obtained to see, [17] the convex

and starlike univalent functions of complex order, Hankel determinant for subclass S∗ and C of a
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starlike and convex function is investigated by Janteng et al [18]. Lecko et al. [19] investigate

the third kind’s sharp-bound of the Hankel determinant for starlike function with order 1
2 .

1.7 The starlike functions with respect to symmetric point

Analyzing symmetrical points w.r.t subclasses of analytic classes is another crucial component

of these classes. In 1959, Sakaguchi [20] introduced the class S∗s of univalent function starlike

w.r.t symmetrical points. Zaprawa [21] studied the solution to coefficient inequalities for starlike

functions w.r.t symmetric points. A number of coefficient problems have been resolved using the

above-described innovative method.

1.8 Preface

The class of starlike functions with regard to symmetrical points connected to the exponential

functions is the subject of our study. 3rd Hankel determinant for starlike and convex functions

w.r.t symmetric points, see [22]. The chapter-wise description is given as under.

In Chapter 2, we will study the basic concept. Preliminary results will be used to derive the

main results and we have discussed the basic classes like the class of univalent function. the

class of caratheodory functions and the subclass of univalent functions and their related results.

The coefficient inequality, Fekete Szeoga problems, and Hankel determinant and result have

been discussed in this part of the thesis and we have also discussed the class of starlike function

w.r.t the symmetrical points and subordination with an exponential function.

In Chapter 3, Focuses primarily on the foundational ideas of Geometric Functions Theory,

which will be essential for understanding later chapters. It begins with the idea of analytic

functions, moves on to the concept of normalized univalent function in open-unit disk E, and

then discusses the fundamental subclasses of univalent function. Additionally, the relationship

between the associated subclasses of the Caratheodory function class P will be examined. It will

be emphasized how important methods like subordination are utilized to explore specific aspects

of analytic functions. There is a thorough introduction to q-calculus as well as current classes of
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q-functions. This chapter does not include any new results and all of the concepts and results

discussed in this chapter are well-known and properly referred to throughout its entirety.

In Chapter 4, two generalized classes have been introduced and explored, the class S∗s (e
z) of

starlike functions and the other class Cs(ez) of convex function by using subordination and a

certain exponential function. We have looked into some intriguing aspects and a number of

inclusion outcomes for these functions. By applying certain values to the various parameters, it

is possible to extract a number of previously derived results as special instances based on our

main results.

In Chapter 5, We will introduces new classes using q-calculus. We have cases defined and

studied the new analytic classes S∗s ,q (e
z) of q-starlike functions and Cs,q (ez) convex functions

w.r.t symmetric points. We have investigated several interesting properties of these classes like

coefficient inequalities, Fekete Szeago problem etc. We have found that many of the previously

deriver results can be followed as particular cases by using our findings with certain Hankel

determinants.

In Chapter 6, we concluded our research work.
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CHAPTER 2

LITERATURE REVIEW

The concept of Geometric Functions Theory was initiated on the basis of analytic function.

The analytic function was first defined by Duren [23] in 1983. He introduced the class A

of analyte function that are nor-malized by conditions that is f (0) = 0 & f ′(0) = 1 where

f ({z) = {z+∑
∝
n=2 an zn,{z ∈ c}, |z| < 1. Robertson initiated the concepts of the theory of

univalent function. we will talk about different kinds of analytic functions, see [24]In 1936.

In 1964, Macgregor [25] introduced the class of univalent functions. In 1975, Silverman [26]

studied univalent functions with negative coefficients that are starlike of order α and convex of

order α coefficient distortion covering and coefficient inequalities are found. As is customary

we will refer to C as the set of complex numbers. Let us also indicate by the letter S the

subclasses of function in A that are univalent in U . In 2000, Altintas [27] investigated the author’s

demonstration of a number of inclusion connections connected to the (η ,δ )neighbor-hoods of

various sub-classes of starlike and convex functions of complex order using the well-known idea

of a neighborhood of analytic function. In 2001, Frasin et al [28] introduced to look into some

aspects of this class, we take into consideration the category of analytic functions B(α). In the

open unit disk, we establish some intriguing requirements for the class of strongly starlike and

strongly convex objects.

Pommerenke [29, 30] defined the Hankel determinant Hq(n), where q and n are positive
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integers, for the functions as S, as shown in the following:

Hq (n) =

∣∣∣∣∣∣∣∣∣∣∣∣

an an+1 · · · an+q−1

an+1 an+2 · · · an+q
...

... . . . ...

an+q−1 an+q · · · an+2q−2

∣∣∣∣∣∣∣∣∣∣∣∣
(2.1)

For fixed positives integer q & n the growths of Hq(n) as n →∝ have been determined by

Noor [31], with bounded boundarys. Ehrenborg [32] investigated the Hankel determinant for

exponential polynomial. For various values of q and n, the Hankel determinant of different orders

is found. For instance when q = 2 and n = 1 the determinant

H2(1) =

∣∣∣∣∣∣a1 a2

a2 a3

∣∣∣∣∣∣ ,= |a1a3 −a2
2|,(a1 = 1) (2.2)

This determinant is a special case of figuring out the highest value of a function |a3 −µa2
2| in S

when µ is real or complex. This is known as the Fekete Szego problem. An other researchers

like Deniz et al [33], Lee et al [34],Cho and Owa [35], Keogh & Merkes [36], Ma [37], Magesh

and Balaji [38], Murugusundaramoorthy et al [39], Reddy et al [40], Ravichandran et al[41],

Tang et al [42]. have investigated the Fekete-Szego inequalitys for a variety of univalent analytic

function subclasses. Now it can be determined that for q = 2 and n = 2.

H2(2) =

∣∣∣∣∣∣a2 a3

a3 a4

∣∣∣∣∣∣ ,= |a2a4 −a2
3| (2.3)

In 1968, Hayman initialed the concept of a second Hankel determinant in univalent function, see

[43]. In 1976, Noon-an and Thomas [44] introduce we calculate the second Hankel-determinants

growth rate for an essentially mean p-valent function. A number of scholars have looked into

what the highest possible value of H2(2) could be. Janteng et al [45, 46], defined the class

the letter S the class of univalent function in the open unit disk E, are analytic, have been

normalized, and have only one possible value. The class of S∗ starlike and C convex function

are the significant subclasses of S. Bansal [47], Lee et al [48], Liu et al [49], Orhan et al [50],

Laxmi and Sharma [51], Shrigan [52], and Huey et al [53]. In 2018, Zaprawa [54] Provide a

different approach to estimating the upper-bound of the Hankel determinant for q = 2 and n = 3

as H2(3) for the different subclasses of S. present a direction in assay the upper-bound of the

Hankel determinant, This determinant we have

H2(3) =

∣∣∣∣∣∣a3 a4

a4 a5

∣∣∣∣∣∣ ,= |a3a4 −a2
4| (2.4)
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Bansal et al [55], Lecko et al [56], Kowalczyk et al [57], Obradovic et al ([58], [59]),Kumar et

al [60], Wang et al [61]. Investigated the formula for the Hankel determinant H3(1), also known

as the 3rd order Hankel determinant can be found as following:

H3 (1) =

∣∣∣∣∣∣∣∣∣
a1 a2 a3

a2 a3 a4

a3 a4 a5

∣∣∣∣∣∣∣∣∣ , (2.5)

= a3 (a2 a4 −a3
2)− a4 (a1 a4 −a2 a3) + a5 (a3 −a2

2), a1 = 1 (2.6)

Takahashi & Nunokawa [62] acquire a specific relationship between the two classes of functions

that we define, which are denoted by the notations S∗(a, p) and C(a, p), respectively. Kumar et

al [63] investigated We look at two Ma–Minda–type sub-classes of starlike & convex functions

that are related with the normalized analytic function This function transfers an open unit disk E

onto a Nephroid–shaped bounded domains that is located in the right–half of the complex planes.

We look into the properties of quasi-Hadamard and convolution products for these classes of

functions. Singh et al [64] introduced we define several analytic function classes, and their

subclasses, and derive sharp upper bounds on the functional |a3 −ζ a2
2| for the analytic function

f (z) belonging to these classes and subclasses. Tang et al [42] analyzed for a specific normalized

analytic function defined on the open unit disk and the authors find Fekete-Szego inequality.

Resides in a space that is both symmetric and starlike in relation to the real axis. Wang et al [65]

introduced coefficient inequality for starlike functions. All of these bounds are sharp, including

the bounds of the 1st and 3rd initial coefficients the bounds of inequality of the Fekete-Szego

types and estimates of the 2nd and 3rd Hankel determinants for the subclass of starlike functions.

In 1984, Mocanu [66] introduced w.r.t symmetric points on the starlike function. Aghalary

et al [67] studied the problem of stability for the class of function that are uniformly starlike

w.r.t symmetrical points and we offer the lower bounds of their stable radius. In 2015, Krishna

et al [68] introduced a sharp-upper bounds for the 2nd Hankel functional associated with the

kth root transform [ f (zk)]
1
k a starlike & convex functions w.r.t symmetric points constructed

on the open unit disk in the complex plane using Toeplitz determinants is said to belong to the

classes of normalized analytic functions f (z) when it is shown to belong to this class. In 2020,

Singh and Kaur [69] analyzed by making use of subordination, we were able to establish the

Fekete Szego functional as well as the sharp upper bounds for the functions that belongs to a

particular subclass of starlike function that is created by symmetric points. Senguttuvan et al [70]

developed a thorough subclass of analytic functions with regard to symmetrical points, which
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are denoted by the notation ( j,k). In addition, they have broadened the scope of the study by

incorporating quantum calculus. In 2006, Shanmugam et al [71] introduced sharp upper bounds

of |a3 − µa2
2| are established for functions f (z) = z+ a2z2 + a3z3 + . . . that belong to specific

subclasses of starlike & convex functions w.r.t symmetrical points. In 2012, Singh et al [72]

integral representation are developed, and precise coefficient estimations are found. In addition

to this, the Fekete-Szego problem has been solved, and the second Hankel determinant has been

taken into consideration for these classes. In 2014, Aouf et al [73] investigate the upper-bound

of the form |a3 −µa2
2| for the function f (z) that belongs to a certain subclass of starlike function

they w.r.t k-symmetrical points of complex order. These bounds are sharp. In addition to this,

we provide applications of our findings to a variety of functions, each of which is defined by

convolution with normalized analytic functions.

In 2021, Panigrahi et al [74] investigated this is the case when the function belongs to

particular subclasses of starlike and convex functions w.r.t symmetrical points. In addition Fekete

Szego inequalities for the function denoted by z
f (z) , as well as the inverse function, denoted

by f , are explored for the classes that have been previously specified, and particular examples

are highlighted for discussion. In 2022, Karthikeyan et al [75] introduced a new sub-class of

multivalent functions w.r.t symmetrical points featuring highers order derivatives is presented

here, as well as studied in detail. They have established the class subordinate to a conical region

that is affected by Janowski function in order to unify and extend a variety of wellknown result.

In doing so, they hoped to broaden their applicability. The most important findings of their

study are the outcomes of inclusion, the subordination property, and the coefficient inequality

of the designated class. In 2022, Mohamad et al [76] studied the functions W.r.t symmetric

conjugate points in an open unit disk by defining new sub-classes S∗s ,c (α,β ,A,B) and derived

some of its fundamental characteristics. For functions in this new subclass it was examined how

to estimate the Taylor-Maclaurin coefficients the Hankel determinant the Fekete-Szego inequality

and the distortion and growth constraints. In 2016, Vamshee Krishna et al [77] studied this study

uses Toeplitz determinants to give the best upper bound on the H3(1) Hankel determinant for

starlike & convex functions w.r.t symmetric points. In 2017, Patil and Khairnar [78] introduced

is to use the Toeplitz determinant to get the best upper-bound for the H3(1) Hankel-determinant

for a starlike function w.r.t symmetric point. In 2022, Khan et al [79] introduced the class

of starlike function w.r.t symmetrical points subordinated with sine functions. In addition to

this, they research us to study the lower bounds & upper bound for the coefficients of the 3rd
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Hankel-determinant for this stated class. In addition to this, the Zalcman functional (a2
3 −a5) is

also determined.

In 2019, Naz et al [80] introduced Mocanu & Miller defined the class of admissible. Function

(ω,q) such that the differential, subordination implies p(ẑ) ≺ q(ẑ), where p is an analytic

function in D with p(0)−1 = 0. They analyzed how this class works when q(z) = ez. As an

application, they found several conditions that make it clear that normalized analytic function f

belongs to the group of starlike function that are subordinated to the exponential function. In

2022, Lecko et al [81] introduced and explored a new category consisting of regularly occurring

functions in the unit disc. In order to accomplish this, they make use of a modified variant

of the intriguing analytic formula that Robertson presented (but did not fully use) for starlike

functions with respect to a boundary point. This is done by subordinating the functions to an

exponential function. In 2022, Singh [82] introduced the upper bound of a number of coefficient

functional for a particular subclasses of analytic functions connected to the exponential functions

in the open-unit disk. In 2000, Ehrenborg [83] studied a determinant of exponential polynomials

called the Hankel determinant. In 2019, Zaprawa [84] introduced S∗e and Ke, two classes of

univalent functions. Both classes maintain their symmetry or invariance when subjected to

rotations and a few issues relating to the coefficients of these types of functions. are investigated

for that classes an estimation of the Hankel-determinants H2,1,H2,2, & H3,1. In addition to this,

nearly all of these inequalities are sharp. The primary concept that is presented in his study is

based on the concept of representing the functionals that are being addressed in terms of their

dependence on the fixed second coefficient of the functions in specific classes. In 2019, Shi [85]

Studied a look at particular sub-families S∗e & Ce of univalent function associate with exponential

function that are symmetrical along the real axis in the scope of the open-unit disk E. Finding

the boundaries of the Hankel determinant for order three is our objective for these classes. In

addition the estimated of the 3rd Hankel determinant that is presented in this study for the family

S∗e improves the constraints that were examined not too long ago. In addition, research into

2-fold symmetrical functions and 3-fold symmetrical function has been conducted using the

same constraints. In 2022, Shi et al [86] introduced the inverse function connected to a class

of bounded turning function subordinated to the exponential function were the focus of our

discussion of specific coefficient-related issues. We determined the upper and lower bounds for a

few starting coefficients the Fekete Szegö types inequality and the estimation of the 2nd and 3rd

Hankel determinant. These boundaries have all been shown to be precise. In 2022, Shi et al [87]
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analyzed the coefficients of the functions, and related function can be made using constraints on

the logarithmic coefficient of analytic functions. This finding has led to a lot of interest in the

study of logarithmic-related issues of a particular subclasses of univalental functions in recent

years. A sub-class of starlike function S∗e associated with the exponential mappings was taken

into consideration in the current analysis.

Another important aspect of subclasses of starlike and convex with respectable to symmetrical

points is related to an exponential function. Cho et al [88] defined the class S∗α of the starlike

function of order α . Of starlike functions associated with exponential functions. In addition

to this, sharp radii problems have also been investigated in their article. In 2015, Mendiratta

[89] extended the work of Zhang et al [90] by determining the Fekete Szegö problems for

a class S∗s and the 3rd Hankel deter-minant and upper-bound of the deter-minant H3(1) are

also obtained. The inclusion relation coefficient estimates growth less and distortion result

subordination theorem and different radii constant for function belonging to the class S∗e are

derived using the structural formula. In 2020, Ganesh et al [91] investigated the class S∗s (e
z)

of starlike function with respect to symmetrical function. Various intention results related to

coefficient inequalities and Hankel determinant for function belonging to the class S∗s (e
z) are

derived subordination has been used to define the corresponding class Cs(ez) of convex function

w.r.t symmetrical point associated with exponential functions.

It took a very long time for additional development in this area to take place, but it turned out

to be a successful comeback when see, [92, 93] published their work on complexs operator along

with their separate q-generalization. These are referred to as q-Picard singular integral operators

and q-Gauss-Weierstrass singular integral operators respectively. By utilizing fundamental

q-hypergeometric functions, in 2011, Srivastava [94] built a solid framework for q-calculus

applications in Geometric Function Theory. Aral and Gupta [95, 96, 97] produced another

series of contributions by defining the q-askakov Durrmeyer operator by using q-eta functions.

These definitions were published in three separate years. They also used their q-extensions to

come up with a number of geometric results. In 2012, Purohit [98] introduced was the first

person to introduce and analyze a class in the open-unit disk for the multivalently analytic

functions. Additionally, he was the first person to employ a specific operator of q-derivative in

a work. He made a significant contribution by providing q-extensions for several findings in

analytic function theory. In a way analogous to this a number of q-calculus operators such as

integral and derivative in fractional form have been utilized to define and investigate a variety of
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different sub-classes of analytic functions. In 2013, Aldweby and Darus [99, 100] introduced the

q-perators by utilizing the idea of convolution of analytic functions that are normalized, which

was inspired by the research done in q-calculus. In addition, they talked about the geometrical

structure of the defined operators in the classes of analytic functions which involve the q-version

of hypergeometric function in compact disk. Selvakumaran et al. [101, 102] define the ideas of

a fractionals form of q-calculus to explain the study being done in Geometric Function Theory

about q-calculus. Using the unit disk as the domain, he defined and researched the q-integral

operators for analytic functions. During the course of their additional research on these operators,

the researchers noticed that the convexity of defined operators in classes of analytic functions

that had actually been defined by a linear multiplier part q-differential integral operators was

present. The development of a generalized class of starlike functions was one of the most recent

contributions. In 2015, Agrawal and Sahoo [103] provided this information, which was of the

alpha order.

Very recently, a large number of researchers in the field of Geometric Functions Theory

such as Noor et al. ([104],[105],[106],[107],[108], [109],[110],) Ramachandran et al. [111] and

Mahmood and Sokó [112], have used q-calculus to contribute to the creation of the results.

The work of the above researcher motivated us to define a new class S∗s ,q (e
z) of q-starlike

function w.r.t symmetrical points are subordinate with an exponential operator, and the class

Cs,q (ez) of q-convex function w.r.t symmetric points subordinate with exponential Hankel

determinant for our function belonging to our new classes defined and Fekete Szegö problems

of functions belonging to class S∗s ,q (e
z) and Cs,q (ez) will be determined we will show that our

needy defined classes are the advancement of that have been above-mentioned classes defined by

various researcher. It will also be shown that our new results are a refinement of results already

derived in articles [90], and [91]. analytic approaches subordination techniques and concepts of

q-calculus will be order to derive our main results.
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CHAPTER 3

PRELIMINARY CONCEPTS

In this chapter, we provide a succinct overview of some fundamental ideas from Geometric

Function Theory that will be relevant in our subsequent chapters. The class S of nor-malized

univalent function and several of its sub-classes, which are determined by both geometric and

analytic criteria, are introduced in this chapter.

3.1 Analytic Functions

Geometric Function Theory heavily relies on analytic functions as

Definition 3.1.1 [2] In mathematics, A function that can be locally written as a convergent

power series of complex numbers is referred to be an analytic function. This means that the

function can be approximated by a polynomial function with increasing degrees of accuracy as

we take more terms of the series. Analytic functions are important in complex analysis, a branch

of mathematics that studies complex numbers and their functions.

An important property of analytic functions is that they preserve many algebraic and ge-

ometric properties under composition, such as differentiability, continuity, and conformality

(preserving angles and shapes). This makes analytic functions a powerful tool for solving

problems in various fields, such as physics, engineering, and economics.
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Theorem 3.1.2 Riemann Mapping Theorem [1] Let D be a simply connected domain with at

least 2nd boundary’s points. Then there exist unique analytic functions that map onto an open

unit disk in E.

Instead of dealing with an arbitrary domain D, in Geometric Functions Theory we deal with an

open unit disk E. The Riemann Mapping Theorem is responsible for the choice of an open unit.

Riemann’s fundamental mapping theorem, which he developed about 1850, provided a strong

foundation for the study of Geometric Function Theory.

Definition 3.1.3 Class A [2] The class A includes functions f that are analytic in an open unit

disc E and have Taylor series of the type

f (z) = z+
∞

∑
n=2

anzn ,z ∈ E. (3.1)

3.2 Univalent Functions

In 1907, Koebe [9] presented the fundamental concept that is used in the investigation of

univalent functions. Univalent functions are a class of functions that are defined on the open unit

disc E of the complex plane and distinguished by the fact that they accept a value in E just once

and map E onto a schlicht domain. Another name for this class of functions is schlicht functions

(a German word used to describe a zone without branch points and without self-overlapping

boundaries.).

Definition 3.2.1 In complex analysis a function f (z) is said to be univalent (one-to-one) in a

region D of the complex planes if for any 2 distinct point z1 and z2 in D, f (z1) ̸= f(z2). In other

words, the function does not map two different points in D to the same point in the range.

A function f (z) is called univalent in the entire complex plane if it is univalent in the entire plane.

Univalent functions have several important properties, including the fact that they are conformal

maps. That is, they preserve angles locally and therefore preserve the shapes of small regions.

They are crucial to the study of complex analysis and Geometric Function Theory. Examples of

univalent functions include polynomial functions, exponential functions, and certain types of

trigonometric functions such as the sine and cosine functions.
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3.3 The Class S of Univalent Functions

Let there be a function f (z) that is univalent and has the form (3.1). When this occurs, we

refer to the function as a normalized univalent function and the class of functions that share this

characteristic is represented by the letter S and defined as follows.

Definition 3.3.1 Class S is stated to be formed by the functions univalent and belonging to class

A. In other words, S ={f ∈ A, and f is univalent in E}.

The Koebe function is considered to be the most significant univalent function,

K(z) =
1
4

(
1+ z
1− z

)2

− 1
4
=

z
(1− z)2 =

∞

∑
n=1

nzn ,z ∈ E. (3.2)

is a well-known example of a function that belongs to class S. With the exception of the negative

real axis from −1
4 to,∞ the Koebe-function translates E onto the entire complex plane. In [2, 1] it

is discussed how K(z) maintains its invariance qualities when subjected to simple transformations

such rotation, omitted-value transformation, disk automorphism, conjugation, and dilation.

Caratheordory functions are included in the set of functions that make up the class P. These

functions all have a real portion that is greater than zero. This class serves as the foundation for

the definition of a large number of subclasses of univalent functions. In relation to the class P,

we go through fundamental ideas, the application of which will be necessary for our work.

3.4 Class P of Caratheodory Functions

It has been noted that there are functions with image domains limited to the open half-planes

whenever there is numerous complex valued function whose image domains span the entire

complex planes. Such function fall under the class P, see [2].

Definition 3.4.1 If a function p that is analytic in E has the form then we say that it belongs to

the class P.

p(z) = 1+
∞

∑
n=1

pnzn . (3.3)

condition

Re(p(z))> 0.
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Each and every p ∈ P is considered to be a function in E with a positive real component.

Theorem 3.4.2 The theorem of Caratheodory [113] If p ∈ P and p(z) = 1+∑
∞
n=1 pnzn, so

|cn| ≤ 2.

This strong inequality satisfies the requirements of the Mobius function as well.

Lo(z) =
1+ z
1− z

= 1+
∞

∑
n=1

zn2.

3.5 Subordination

Subordination is a mathematical technique that was first introduced in 1909. Further-

more,Littlewood [114, 115] and Rogosinski [116, 117] studied its properties.Subordination

is a powerful technique in Geometric Function Theory that allows one to relate two functions

defined on different domains. In particular, given two functions f (z) and g(z), defined on the unit

disk E = z : |z|< 1, We state this g is subordinate to f if there exists a functions w(z) analytic

and univalent in D such that g(z) = f (w(z)), and w(0) = 0,w′(0)> 0. The Schwarz function,

which is defined as follows, is a determinant of the concept of subordination.

Definition 3.5.1 Assume that g(E) = D and let g ∈ s. and f (0) = g(0) if f is analytic in E and

f (E)⊂ D then f is subordinate to g, written as f ≺ g.

3.6 Certain Subclasses of the class S

Several fundamental sub-classes of convex, star-like, close-to-convex & quasi-convex func-

tions are included in this section. In addition, a review will be made of the relationship that

these classes have with the caratheodory functions as well as some of the aspects that are already

known about these classes.

3.6.1 Starlike and Convex Functions

The class of all starlike functions, which is represented by the symbol S∗, defines it as,
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Definition 3.6.1 [1],[2] Let f ∈ E be defined by f (z) = z+∑
∞
n=2 anzn,z ∈ E Then we say that f

is starlike with respect to the origin if f is univalent and the image f (E) is a star-shaped domain

with respect to the origin.

The following is an analytic description of starlike function: [10]

S∗ = { f ∈ A : Re
z f ′(z)
f (z)

> 0, z ∈ E}. (3.4)

One well-known example of this class is the Koebe function, which can be represented by the

notation (3.2).

Definition 3.6.2 [1],[2] A domain D is said to be convex if the line connecting any two points

in the domain totally resides in the domain. A function f is referred to as a convex function if it

maps E onto a convex domain D. The class of all convex functions, C, is used to represent it.

study 1913

C = { f ∈ A : Re(
(z f ′(z))′

f ′(z)
)> 0,z ∈ E}. (3.5)

The beautiful relation among these classes was introduced by Alexander [3] and is given by

f ∈C ⇐⇒ z f ′ ∈ S∗. (3.6)

Definition 3.6.3 (Symmetric Points) In Geometry Function Theory, symmetric points refer to

points that are symmetric with respect to a given curve or surface, such as a circle or a sphere.

Specifically, if we have a function f (z) defined on a region of the complex plane, and a point z0

in the region, the symmetric point of z0 w.r.t the curve or surface defined by | f (z)|= | f (z0)| is a

point z1 such that: | f (z1)|= | f (z0)|, and the line connecting z0 and z1 is perpendicular to the

curve or surface defined by | f (z)|= | f (z0)|.

In other words, the symmetric point of z0 w.r.t the curve or surface defined by | f (z)|= | f (z0)| is

a point z1 such that the line connecting z0 and z1 is perpendicular to the curve or surface, and the

distances from z0 and z1 to the curve or surface are equal.

The concept of symmetric points is used in Geometry Function Theory to study the behavior

of complex functions and their singularities. It is a powerful tool for analyzing the geometry of

complex functions and their properties and is widely used in the study of complex analysis and

related fields.
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Definition 3.6.4 (Exponential Function) If an exponential function is symmetric about a point,

then the point of symmetry must lie on the vertical asymptote of the function. This is because the

exponential function grows or decays very rapidly as x moves away from the point of symmetry.

To be more precise, let’s consider a kind of exponential function: f (x) = ax.

Definition 3.6.5 (Subclass of a Starlike Function) In, 2015 Mendiratta et al [89] defined the

class of starlike function S∗e = S∗(ex) we have

z f ′ (z)
f (z)

≺ ex,z ∈ E.

Definition 3.6.6 (Convex Function in Symmetric Point) In,1977 Da and Singh [118] introduced

the class of convex functions define we have

Re{ 2{z f ′(z)}′

{ f (z)− f ((−z)}′
}> 0,∀z ∈ E.

Definition 3.6.7 (Starlike Functions with respect to Symmetric Point) In, 2020 Ganesh et al.

[91] introduced the class of starlike functions defined we have

2[z f ′(z)]
f (z)− f (−z)

≺ ez,z ∈ E.

3.7 Quantum Calculus or q-calculus

Quantum calculus has to do with the q-analogues of mathematic facts which can be written

as q → 1−. Euler (1707–1783) was the first person to study q-calculus and Jackson did the

same thing before the 20th century. Researchers have recently paid a lot of attention to this

area because of how it can be used in Maths and Physics. Purohit [119] came up with a more

general version of q-formula Taylor’s by using ideas from fractional q-calculus. Jackson found

the q-derivative and the q-integral in a systematical way [4, 6].

Researchers used the q-calculus preliminary results to study sub-classes of univalent func-

tions in the field of Geometric Function Theory. Ismail [6] used q-calculus to define and research

the generalized starlike functions. Recently, the definition of the q-close-to-convex functions and

a number of intriguing findings were made; for more information, see [120]. Raghavendar and
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Swaminathan explored a few of these functions’ fundamental characteristics [121]. There are

also q-analogues of integral transforms, and many of the important results from classical analysis

have been extended to the q-analogues. q-operators are defined and studied with the help of the

convolution of normalized analytic functions See ([122],[123], [124]). Calculus based on the

fractional q-difference was first described by Al-Salam [125] and Agarwal [126]. Later on, Sel-

vakumaran et al. [127], Ramachandran et al. [128] defined various classes of analytic functions

and the convexity features of those functions using the fractional q-operator. The progression of

q-theory can be traced back to the following references: ([129],[130],[131],[132],[133])

3.7.1 q-Derivative

The first person introduced the q-derivative by Jackson [4] In 1908.

Definition 3.7.1 Let f ∈ A Then q-derivative of f is

Dq f (z) =
f (qz)− f (z)

qz− z
,z ̸= 0 and Dq f (0) = f ′(0),0 < q < 1. (3.7)

we have q → 1−,[n]q → n, and Dq f (z)→ f ′(z) as f ′(z) is an ordinary derivative. from (3.7),

(3.1) we have

Dq f (z) = 1+
∞

∑
n=2

[n]qanzn−1,z ∈ E. (3.8)

where

[n]q = {1−qn

1−q
. (3.9)

[6] The following is an explanation of the properties of the q-derivative.

1. consider g1(z) = zn to be a function. we have q-derivative

Dqg1(z) = [n]qzn−1,as[n]q,wehave(3.9) (3.10)

2. consider f ,g ∈ B ⊂C such that q-derivative of f and g(z) exist for all z ∈ B. Then

For any constants a1 and a2, we have

Dqa1 f (z)+a2gz) = a1Dq f (z)+a2Dqg(z) (3.11)

Dq( f (z)g(z)) = g(z)Dq f (z)+ f (qz)Dqg(z) (3.12)

Dq(
f (z)
g(z)

) =
g(z)Dq f (z)− f (qz)Dqg(z)

g(z)g(z)(qz)
,g(z)g(z)(qz) ̸= 0. (3.13)

Ademgullari et al [134], In 2016. shown that for f ∈ A. we have

Dq(log f (z)) =
Dq f (z)

f (z)
,z ∈ E. (3.14)
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3.7.2 q-Starlike Function

Introduced the class q-starlike function by Ismail et al [6].

Definition 3.7.2 consider f ∈ A we have f ∈ s∗q as

| z
f (z)

(Dq f (z)− 1
1−q

| ≤ 1
1−q

,z ∈ E,0 < q < 1. (3.15)

when q → 1−, we get the well-known class S∗

3.7.3 q-Convex Function

According to Srivastava and Owa’s definition of class Cq in 1989 [135], which includes

q-analogues of convex functions,

Definition 3.7.3 cosider f ∈ A, we have f ∈Cq if

|zD2 f (z)
Dq f (z)

− 1
1−q

| ≤ 1
1−q

,∈ E,0 < q < 1 (3.16)

when q → 1−, we get the well-known class C.

3.8 Preliminary Lemmas

Lemma 3.8.1 [136] If p ∈ P, then|pn| ≤ 2,∀n ∈ N.

Lemma 3.8.2 [137] Ifp(z) = 1+ p1z+ p2z2+ p3z3+ p4z4+ · · · . If Re(p(z))> 0 in E, then for

some x,z with |x| ≤ 1, |z| ≤ 1, we have

2p2 = p2
1 + x(4− p2

1), for some x, |x| ≤ 1

4P3 = p3
1 +2p1(4− p2

1)x− p1(4− p2
1)x

2 +2(4− p2
1)(1−|x|2)z.

Lemma 3.8.3 [120] If p ∈ P, then |p2 − vp2
1|≤ max|{1, |2v−1|} for any v ∈C.
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CHAPTER 4

ANALYTIC FUNCTIONS WITH RESPECT TO SYMMETRIC

POINTS

In this chapter, we will review the class of starlike functions w.r.t symmetric points related to

exponential function where subordination technique will be used by in [91], where [91] he has

investigated the same intertiary results related to the function belonging to the class of starlike

function w.r.t symmetric point.

4.1 The Classes of starlike and Convex Function with Respect to Symmetric

Points

The concept of univalent functions with respect to symmetrical points was first introduced by

Sakaguchi [20] in 1959, who defined and studied the class S∗s of starlike functions w.r.t symmetric

points and showed that these functions are convex, and hence univalent. In 1975, Das and Singh

[118] analyzed the corresponding class of convex function w.r.t symmetric points represented by

Cs.

Definition 4.1.1 [91] A function f ∈ A, and f is said to be in the class S∗s (e
z) if and only if

2[z f ′(z)]
f (z)− f (−z)

≺ ez,z ∈ E. (4.1)



23

Definition 4.1.2 [91]A function f ∈ A f ∈Cs(ez) if and only if

2[z f ′(z)]′

( f (z)− f (−z))′
≺ ez,z ∈ E. (4.2)

4.2 Main Results

Theorem 4.2.1 If f ∈ S∗s (e
z) then |a2| ≤ 1

2 , |a3| ≤ 1
2 , |a4| ≤ 19

48 ,|a5| ≤ 13
24 .

Proof: As f ∈ S∗s (e
z) as

2[z f ′(z)]
f (z)− f (−z)

= ew(z). (4.3)

Consider, we have

f (z) = z+a2z2 +a3z3 +a4z4 +a5z5 + ...., (4.4)

f ′(z) = 1+2a2z+3a3z2 +4a4z3 +5a5z4 + · · · . (4.5)

Using (4.4) and (4.5), we consider

2[z f ′(z)]
f (z)− f (−z)

=
2
[
z[1+2a2z+3a3z2 +4a4z3 +5a5z4 + ....

]
(z+a2z2 +a3z3 +a4z4 +a5z5 + ....)− (−z+a2z2 −a3z3 +a4z4 −a5z5 + ....)

=
2z
[
1+2a2z+3a3z2 +4a4z3 +5a5z4 + ....

]
(z+a2z2 +a3z3 +a4z4 +a5z5 + ....+ z−a2z2 −a3z3 +a4z4 +a5z5 + ....)

=
2z[1+2a2z+3a3z2 +4a4z3 +5a5z4 + ....]

2z[1+a3z2 +a5z4]

=
1+2a2z+3a3z2 +4a4z3 +5a5z4 + · · ·

1+a3z2 +a5z4

= 1+2a2z+2a3z2 +(4a4z4 −2a3a2)z3 +(4a5z5 −2a2
3)z

4 + · · · , (4.6)

we have

p(z) =
1+w(z)
1−w(z)

.

Equivalent,

w(z) =
p(z)−1
p(z)+1

. (4.7)

As we know that

p(z) = 1+ p1z+ p2z2 + p3z3 + p4z4 + · · · . (4.8)
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From (4.8) in (4.7) we have

w(z) =
1+ p1z+ p2z2 + p3z3 + p4z4 + ...−1
1+ p1z+ p2z2 + p3z3 + p4z4 + ...+1

,

we have

=
p1z
2

+

(
p2

2
−

p2
1

4

)
z2+

(
p3

2
− p1 p2

2
+

p3
1

8

)
z3+

(
p4

2
− p1 p4

2
−

p2
2

4
+

3p2
1 p2

8
−

p4
1

16

)
z4+ · · · .

(4.9)

Since

ew(z) =1+w(z)+
(w(z))2

2!
+

(w(z))3

3!
+
(w(z))4

4!
+ · · · . (4.10)

From (4.10), we get

ew(z)= 1+
p1z
2

+

(
p2

2
−

p2
1

4

)
z2+

(
p3

2
− p1 p2

2
+

p3
1

8

)
z3+

(
p4

2
− p1 p4

2
−

p2
2

4
+

3p2
1 p2

8
−

p4
1

16

)
z4+· · ·

+
1
2
(

p1z
2

+

(
p2

2
−

p2
1

4

)
z2 +

(
p3

2
− p1 p2

2
+

p3
1

8

)
z3 +

(
p4

2
− p1 p4

2
−

p2
2

4
+

3p2
1 p2

8
−

p4
1

16

)
z4 + · · ·)2

+
1
6
(

p1z
2

+

(
p2

2
−

p2
1

4

)
z2 +

(
p3

2
− p1 p2

2
+

p3
1

8

)
z3 +

(
p4

2
− p1 p4

2
−

p2
2

4
+

3p2
1 p2

8
−

p4
1

16

)
z4 + · · ·)3

+
1
24

(
p1z
2

+

(
p2

2
−

p2
1

4

)
z2 +

(
p3

2
− p1 p2

2
+

p3
1

8

)
z3 +

(
p4

2
− p1 p4

2
−

p2
2

4
+

3p2
1 p2

8
−

p4
1

16

)
z4 + · · ·)4

+· · · .(4.11)

This gives us

ew(z) = 1+
p1z
2

+

(
p2

2
−

p2
1

4
+

p2
1

8

)
z2 +

(
p3

2
− p1 p2

2
+

p3
1

8
−

p3
1

8
+

p1 p2

4
−

p3
1

48

)
z3

+

(
p4

2
− p1 p4

2
−

p2
2

4
+

3p2
1 p2

8
−

p4
1

16
+

p2
2

8
+

3p4
1

32
− p1 p3

4
+

p2
1 p2

16
−

p4
1

384

)
z4 + · · · ,

Which implies that

ew(z) = 1+
p1z
2

+

(
p2

2
+(

−2p2
1 + p2

1
8

)

)
z2 +

(
p3

2
+(

−2p1 p2 + p1 p2

4
)−

p3
1

48

)
z3 +

(
p4

2
+

−2p1 p3 + p1 p3

4
+

−2p2
2 + p2

2
8

+
6p2

1 p2 −4p2
1 p2 − p2

1 p2

16
+

−24p4
1 +36p4

1 −12p4
1 + p4

1
384

)
z4+· · ·

= 1+
p1z
2

+

(
p2

2
−

p2
1

8

)
z2 +

(
p3

2
− p1 p2

4
+

p3
1

48

)
z3 +

(
p4

2
− p1 p3

4
−

p2
2

8
+

p2
1 p2

16
+

p4
1

384

)
z4

+ · · · .(4.12)

From (4.6) and (4.12) we compare the coefficient which gives us

2a2 =
p1

2
,
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This gives us

a2 =
p1

4
, (4.13)

we have

2a3 =
p2

2
−

p2
1

8
.

This implies that

a3 =
p2

4
−

p2
1

16
. (4.14)

Now, we consider

4a4 =
p3

2
− p1 p2

4
+

p3
1

48
+2a3a2

4a4 =
p3

2
− p1 p2

4
+

p3
1

48
+2(

p2

4
−

p2
1

16
)

p3
1

4

=
p3

2
− p1 p2

4
+

p3
1

48
+

p1 p2

8
−

p3
1

32
.

Thus we have

a4 =
p3

8
− p1 p2

32
−

p3
1

384
. (4.15)

Next, to find the coefficient value of a5, we have

4a5 =
p4

2
− p1 p3

4
−

p2
2

8
+

p2 p2
1

16
+

p4
1

384
+2a2

3

4a5 =
p4

2
− p1 p3

4
−

p2
2

8
+

p2 p2
1

16
+

p4
1

384
+2(

p2

4
−

p2
1

16
)2

=
p4

2
− p1 p3

4
−

p2
2

8
+

p2 p2
1

16
+

p4
1

384
+

p2
2

8
+

p4
1

128
−

p2
1 p2

16
,

We have

a5 =
p4

8
− p1 p3

16
+

p4
1

384
. (4.16)

which implies that

a2 =
p1

4
,a3 =

p2

4
−

p2
1

16
,a4 =

p3

8
− p1 p2

32
−

p3
1

384
,a5 =

p4

8
− p1 p3

16
+

p4
1

384
. (4.17)

Now, we use Lemma 3.8.1, in (4.13)

a2 =
p1

4
,

So we get

|a2| ≤
1
2
. (4.18)
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Apply the Lemma 3.8.3, in (4.14), we get

|a3| ≤ | p2

4
−

p2
1

16
|

≤ 1
4
|p2 −

p2
1

4
|

≤ 2
4

max|{1, |2(1
4
)−1|}

≤ 1
2

max[1,
1
2
].

Thus we have

|a3| ≤
1
2
. (4.19)

Now so we get again in (4.15) applying the Lemma 3.8.1 as

a4 =
p3

8
− p1 p2

32
−

p3
1

384

|a4|= | p3

8
− p1 p2

32
−

p3
1

384
|.

We use

|a−b| ≤ |a|+ |b|,

which leads us

≤
∣∣∣∣| p3

8
− p1 p2

32
|+ |

p3
1

384
|
∣∣∣∣

≤
∣∣∣∣| p3

8
|+ | p1 p2

32
|+ |

p3
1

384
|
∣∣∣∣

= |2
8
+

4
32

+
8

384
|.

So, we get

|a4| ≤
19
48

. (4.20)

We use Lemma 3.8.1 in (4.16)

|a5| ≤
∣∣∣∣| p4

8
− p1 p3

16
|+

4p4
1

384
|
∣∣∣∣ .

As we know

|a−b| ≤ |a|+ |b|,

so we get

≤
∣∣∣∣| p4

8
|+ | p1 p3

16
|+ |

4p4
1

384
|
∣∣∣∣
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=
2
8
+

4
16

+
16

384
,

which implies that

|a5| ≤
13
24

. (4.21)

This completes the proof.

Theorem 4.2.2 If f ∈ S∗s (e
z) then |a3 −a2

2| ≤
1
2

Proof: Mathematical technique as used in the proof of the Theorem 4.2.1 and using (4.17), we

get

|a3 −a2
2|= | p2

4
−

p2
1

16
−

p2
1

16
|.

We have

|a3 −a2
2|= | p2

4
−

2p2
1

16
|

= | p2

4
−

p2
1

8
|

=
1
4
|p2 −

p2
1

2
|.

Now, we use Lemma 3.8.3, which gives us

≤ 2
4

max|{1, |2(1
2
)−1|}

≤ 1
2

max[1,0]

|a3 −a2
2| ≤

1
2
, (4.22)

This completes the proof.

Theorem 4.2.3 If f ∈ S∗s (e
z) then |a2a3 −a4| ≤ 529+57

√
118

3468 .

Proof: Proceeding as proof the Theorem 4.2.1 and using (4.17), we get

|a2a3 −a4|= | p1

4
(

p2

4
−

p2
1

16
)− (

p3

8
− p1 p2

32
−

p3
1

384
|

= |( p1 p2

16
−

p3
1

64
− p3

8
+

p1 p2

32
+

p3
1

384
)|.

Thus we have

|a2a3 −a4|= |3p1 p2

32
− p3

8
−

5p3
1

384
|. (4.23)
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Now we use Lemma 3.8.2, this gives us

|a2a3 −a4|=
∣∣∣∣3p1

32
[
p2

1
2
+

x(4− p2
1)

2
]− 1

8
[
p3

1
4
+

p1(4− p2
1)x

2
−

p1(4− p2
1)x

2

4
+

(4− p2
1)(1−|x|2)z

2
]−

5p3
1

384

∣∣∣∣
=

∣∣∣∣3p3
1

64
+

3x(4− p2
1)p1

64
−

p3
1

32
−

p1(4− p2
1)x

16
+

p1(4− p2
1)x

2

32
−

(4− p2
1)(1−|x|2)z

16
−

5p3
1

384

∣∣∣∣
=

∣∣∣∣ p1(4− p2
1)x

2

32
+

3x(4− p2
1)p1 −4p1(4− p2

1)x
64

−
(4− p2

1)(1−|x|2)z
16

−
p3

1
32

+
3p3

1
64

−
5p3

1
384

∣∣∣∣
=

∣∣∣∣ p1(4− p2
1)x

2

32
−

x(4− p2
1)p1

64
−

(4− p2
1)(1−|x|2)z

16
+

(−12+18−5)p3
1

384

∣∣∣∣
|a2a3 −a4|=

∣∣∣∣ p1(4− p2
1)x

2

32
−

x(4− p2
1)p1

64
−

(4− p2
1)(1−|x|2)z

16
+

p3
1

384

∣∣∣∣ . (4.24)

Denotes |x|= t ∈ [0,1], p1 = c ∈ [0,2].Then, by employing the equation of triangle inequality

(4.24) gives us

|a2a3 −a4| ≤
c(4− c2)t2

32
+

t(4− c2)c
64

+
(4− c2)

16
+

c3

384
.

Suppose that

F(c,1)≡ c(4− c2)t2

32
+

t(4− c2)c
64

+
(4− c2)

16
+

c3

384
,

we have
∂F
∂ t

=
c(4− c2)

64
+

t(4− c2)c
16

≥ 0.

The function F(c, t) does not decrease for any value of t within [0,1]. This demonstrates that the

maximum value of F(c, t) is reached when t = 1.

MaxF(c, t) = F(c,1) =
c(4− c2)t2

32
+

t(4− c2)c
64

+
(4− c2)

16
+

c3

384
.

Let us define

M(c) =
c(4− c2)t2

32
+

t(4− c2)c
64

+
(4− c2)

16
+

c3

384
. (4.25)

Which implies that

M′(c) =−17c2

128
+

3
16

− c
8
. (4.26)

−17c2

128
− c

8
+

3
16

= 0, (4.27)

Simplify

c =− 8
17

+
2
√

118
17

.

M′′(c) =−17c
64

− 1
8
.
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M′(c) vanishes at c = r∗ =− 8
17 +

2
√

118
17 . The result of a computation calculation is that M′′(c)<

0, which indicates that the function M(c) is able to reach its highest value at M(c). r∗ =

−8+2
√

118
17 . we get

From (4.25) we have

M(r∗) =
529+59

√
118

3468
.

|a2a3 −a4| ≤
529+59

√
118

3468
. (4.28)

This completes the proof.

Theorem 4.2.4 If f ∈ S∗s (e
z) then |a2a4 −a2

3| ≤
3
8

Proof: From equation (4.17) of Theorem 4.2.1, we get

|a2a4 −a2
3|= | p1

4
(

p3

8
− p1 p2

32
−

p3
1

384
)− (

p2

4
−

p2
1

16
)2|

= | p3 p1

32
−

p2
1 p2

128
−

p4
1

1536
−

p2
2

16
−

p2
1 p2

32
−

p4
1

256
|.

Use Lemma 3.8.2 we get,

|a2a4−a2
3|=

∣∣∣∣ p1

32

[
p3

1
4
+

p1(4− p2
1)x

2
−

p1(4− p2
1)x

2

4
+

(4− p2
1)(1−|x|2)z

2

]
−

p2
1

128

[
p2

1
2
+

x(4− p2
1)

2

]

−
p4

1
1536

− 1
16

(
p2

1
2
+

x(4− p2
1)

2

)2

−
p2

1
32

[
p2

1
2
+

x(4− p2
1)

2

]
−

p4
1

256
|

=

∣∣∣∣ p4
1

128
+

p2
1(4− p2

1)x
64

−
p2

1(4− p2
1)x

2

128
+

p1(4− p2
1)(1−|x|2)z
64

−
p4

1
256

−
p2

1x(4− p2
1)

256
−

p4
1

1536

−
p4

1
64

−
x(4− p2

1)p2
1

32
−

x2(4− p2
1)

2

64
−

2p4
1

64
+

x(4− p2
1)p2

1
64

−
p4

1
256

|.

Simplify

|a2a4 −a2
3|=

∣∣∣∣ p1(4− p2
1)(1−|x|2)z
64

−
p2

1(4− p2
1)x

2

128
−

p2
1x(4− p2

1)

256
−

x2(4− p2
1)p2

1
64

−
p4

1
1536

∣∣∣∣ .
(4.29)

Denote |x|= t ∈ [0,1], p1 = c ∈ [0,2] by employing the equation of triangle inequality

|a2a4 −a2
3| ≤

(4− c2)

32
+

c2(4− c2)t2

128
+

c2t(4− c2)

256
+

t2(4− c2)2

64
+

c4

1536
.

Let us consider

F(c, t) =
(4− c2)

32
+

c2(4− c2)t2

128
+

c2t(4− c2)

256
+

t2(4− c2)2

64
+

c4

1536
. (4.30)



30

Thus we get
∂F
∂ t

=
(4− c2)c2

256
+

(4− c2)c2t
64

+
(4− c2)2t

32
≥ 0.

Which gives that F(c, t) is increasing for any then t in [0,1]. this show that F(c, t) has maximum

value at t = 1.

MaxF(c, t) = F(c, t) =
(4− c2)

32
+

c2(4− c2)

128
+

c2(4− c2)

256
+

(4− c2)2

64
+

c4

1536
.

Let us define

M(c) =
(4− c2)

32
+

c2(4− c2)

128
+

c2(4− c2)

256
+

(4− c2)2

64
+

c4

1536
. (4.31)

We get

M′(c) =
−c3

48
− 5(−c2 +4)c

128
− c

16
.

We have

M′′(c) =
7c2

128
− 7

32
.

If c = 0, M′(c) disappears. A quick calculation reveals that the function M(c) has its maximum

values at c = 0, which indicates that M′′(c)< 0.we get equation (4.31) M(0) = 16
64 +

4
32

simplify

|a2a4 −a2
3| ≤ M(0) =

16+8
64

.

As

|a2a4 −a2
3| ≤ M(0) =

3
8
, (4.32)

Hence we obtain this proof.

Theorem 4.2.5 If f ∈ S∗s (e
z) then |H3(1)|= 0.5893

Proof: Consider

H3(1) =

∣∣∣∣∣∣∣∣∣
a1 a2 a3

a2 a3 a4

a3 a4 a5

∣∣∣∣∣∣∣∣∣
= a3

∣∣∣∣∣∣a2 a3

a3 a4

∣∣∣∣∣∣−a4

∣∣∣∣∣∣a1 a3

a2 a4

∣∣∣∣∣∣+a5

∣∣∣∣∣∣a1 a2

a2 a3

∣∣∣∣∣∣ ,
since a1 = 1

H3(1) = a3 (a2 a4−a2
3)−a4 (a4−a2 a3)+a5 (a3−a2

2), by applying triangle triangle inequality

we get

|H3 (1)| ≤ |a3 | | (a2 a4 −a3
2) | + | a4 | | (a4 −a2a3) | + | a5 | | (a3 − a2

2)|. (4.33)
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Now, substituting the equations (4.19), (4.20), (4.21), (4.22), (4.28), and (4.32) in (4.33) we get

|H3(1)| ≤ 0.5893.

This completes the proof.

Theorem 4.2.6 If f ∈Cs(ez) then |a2| ≤ 1
4 , |a3| ≤ 1

6 , |a4| ≤ 19
192 ,|a5| ≤ 13

120 .

Proof: Consider
2 [ z f ′ ( z ) ]′

( f ( z)− f (−z ) )′
= ew (z). (4.34)

As we know

f (z) = z+a2z2 +a3z3 +a4z4 +a5z5 + ...,

f ′(z) = 1+2a2z+3a3z2 +4a4z3 +5a5z4 + ...,

z f ′(z) = z+2a2z2 +3a3z3 +4a4z4 +5a5z5 + ...,

Thus, we have

(z f ′(z))′ = 1+4a2z+9a3z2 +16a4z3 +25a5z4 + · · · . (4.35)

As

f (z)− f (−z) = [2z+2a3z3 +2a5z5 + ...]

( f (z)− f (−z))′ = [2+6a3z2 +10a5z4 + ...],

Which leads us

( f (z)− f (−z))′ = 2[1+3a3z2 +5a5z4 + ...]. (4.36)

From (4.35) and (4.36) we get

2[z f ′(z)]′

( f (z)− f (−z))′
=

2[1+4a2z+9a3z2 +16a4z3 +25a5z4 + ...]

2[1+3a3z2 +5a5z4 + ...]

=
[1+4a2z+9a3z2 +16a4z3 +25a5z4 + ...]

[1+3a3z2 +5a5z4 + ...]
.

Implies that

2[z f ′(z)]′

( f (z)− f (−z))′
= 1+4a2z+6a3z2 +(16a4 −12a3a2)z3 +(20a5 −18a2

3)z
4 + · · · , (4.37)

we know that

p ( z ) =
1 + w ( z )
1 −w ( z )

,
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we can have

w(z) =
p ( z ) − 1
p ( z ) + 1

. (4.38)

As we know that

p(z) = 1+ p1z+ p2z2 + p3z3 + p4z4 + · · · . (4.39)

From (4.38) and (4.39) we have

w(z) =
1+ p1z+ p2z2 + p3z3 + p4z4 + ...−1
1+ p1z+ p2z2 + p3z3 + p4z4 + ...+1

.

=
p1z
2

+

(
p2

2
−

p2
1

4

)
z2 +

(
p3

2
− p1 p2

2
+

p3
1

8

)
z3 +

(
p4

2
− p1 p4

2
−

p2
2

4
+

3p2
1 p2

8
−

p4
1

16

)
z4 + · · · .

(4.40)

Since we have

ew(z) =1+w(z)+
(w(z))2

2!
+

(w(z))3

3!
+
(w(z))4

4!
+ · · · . (4.41)

From (4.40) in (4.41) we get

ew(z)= 1+
p1z
2

+

(
p2

2
−

p2
1

4

)
z2+

(
p3

2
− p1 p2

2
+

p3
1

8

)
z3+

(
p4

2
− p1 p4

2
−

p2
2

4
+

3p2
1 p2

8
−

p4
1

16

)
z4+· · ·

+
1
2
(

p1z
2

+

(
p2

2
−

p2
1

4

)
z2 +

(
p3

2
− p1 p2

2
+

p3
1

8

)
z3 +

(
p4

2
− p1 p4

2
−

p2
2

4
+

3p2
1 p2

8
−

p4
1

16

)
z4 + · · ·)2

+
1
6
(

p1z
2

+

(
p2

2
−

p2
1

4

)
z2 +

(
p3

2
− p1 p2

2
+

p3
1

8

)
z3 +

(
p4

2
− p1 p4

2
−

p2
2

4
+

3p2
1 p2

8
−

p4
1

16

)
z4 + · · ·)3

+
1
24

(
p1z
2

+

(
p2

2
−

p2
1

4

)
z2 +

(
p3

2
− p1 p2

2
+

p3
1

8

)
z3 +

(
p4

2
− p1 p4

2
−

p2
2

4
+

3p2
1 p2

8
−

p4
1

16

)
z4 + ..)4+· · ·(4.42)

This gives us

ew(z) = 1+
p1z
2

+

(
p2

2
−

p2
1

4
+

p2
1

8

)
z2 +

(
p3

2
− p1 p2

2
+

p3
1

8
−

p3
1

8
+

p1 p2

4
−

p3
1

48

)
z3

+

(
p4

2
− p1 p4

2
−

p2
2

4
+

3p2
1 p2

8
−

p4
1

16
+

p2
2

8
+

3p4
1

32
− p1 p3

4
+

p2
1 p2

16
−

p4
1

384

)
z4 + · · · ,(4.43)

which implies that

ew(z) = 1+
p1z
2

+

(
p2

2
−

p2
1

8

)
z2 +

(
p3

2
− p1 p2

4
+

p3
1

48

)
z3 +

(
p4

2
− p1 p3

4
−

p2
2

8
+

p2
1 p2

16
+

p4
1

384

)
z4

+· · · .

(4.44)

From (4.37) and (4.44) we comparing coefficient which gives us

4a2 =
p1

2
.
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This gives us

a2 =
p1

8
. (4.45)

We have

6a3 =
p2

2
−

p2
1

8
.

This implies that

a3 =
p2

12
−

p2
1

48
. (4.46)

Now we consider

(16a4 −12a3a2) =
p3

2
− p1 p2

4
+

p3
1

48
.

We have

16a4 =
p3

2
− p1 p2

4
+

p3
1

48
+12(

p2

12
−

p2
1

48
)

p1

8
.

This implies that

a4 =
p3

32
− p1 p2

128
−

p3
1

1536
. (4.47)

As

(20a5 −18a2
3) =

p4

2
− p1 p3

4
−

p2
2

8
+

p2 p2
1

16
+

p4
1

384
.

Next, to find the coefficient value of a5, we have

20a5 =
p4

2
− p1 p3

4
−

p2
2

8
+

p2 p2
1

16
+

p4
1

384
+18a2

3

20a5 =
p4

2
− p1 p3

4
−

p2
2

8
+

p2 p2
1

16
+

p4
1

384
+18(

p2

12
−

p2
1

48
)2

20a5 =
p4

2
− p1 p3

4
−

p2
2

8
+

p2 p2
1

16
+

p4
1

384
+18(

p2
2

144
+

p4
1

2304
−

p2
1 p2

384
)

a5 =
p4

40
− p1 p3

80
−

p2
2

160
+

p2 p2
1

320
+

p4
1

7680
+

p2
2

160
−

p2
1 p2

320
+

p4
1

2560
.

a5 =
p4

40
− p1 p3

80
−

p2
2

160
+

p2 p2
1

320
+

p4
1

7680
+

p2
2

160
−

p2
1 p2

320
+

p4
1

2560
.

This implies that

a5 =
p4

40
− p1 p3

80
+

8p4
1

15360
. (4.48)

As

a2 =
p1

8
,a3 =

p2

12
−

p2
1

48
,a4 =

p3

32
− p1 p2

128
−

p3
1

1536
,a5 =

p4

40
− p1 p3

80
+

8p4
1

15360
. (4.49)

From (4.45) we use Lemma 3.8.1, which gives us

|a2| ≤
1
4
. (4.50)
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Use the Lemma 3.8.3 in (4.46).

a3 =
p2

12
−

p2
1

48

|a3| ≤
2

12
max|{1, |2(1

4
)−1}|

≤ 1
6

max[1,
1
2
].

Thus we have

|a3| ≤
1
6
. (4.51)

Now so we get again, we apply the Lemma 3.8.1 in (4.47).

|a4|= | p3

32
− p1 p2

128
−

p3
1

1536
|,

we use

|a−b| ≤ |a|+ |b|,

which leads us

≤
∣∣∣∣| p3

32
− p1 p2

128
|+ |

p3
1

1536
|
∣∣∣∣

≤
∣∣∣∣| p3

32
|+ | p1 p2

128
|+ |

p3
1

1536
|
∣∣∣∣

= | 2
32

+
4

128
+

8
1536

|,

so, we get

|a4| ≤
19

192
. (4.52)

We use the Lemma 3.8.1 in (4.48)

|a5|= | p4

40
− p1 p3

80
+

p4
1

1920
|

≤
∣∣∣∣| p4

40
− p1 p3

80
|+

p4
1

1920
|
∣∣∣∣ .

As we know

|a−b| ≤ |a|+ |b|.

So we get

≤
∣∣∣∣| p4

40
|+ | p1 p3

80
|+ |

p4
1

1920
|
∣∣∣∣

=
2

40
+

4
80

+
16

1920
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We have

|a5| ≤
13

120
. (4.53)

Hence, we obtain this proof

Theorem 4.2.7 If f ∈Cs(ez) then |a3 −a2
2| ≤

1
6 ,

Proof: Using the similar Mathematical techniques as used in the proof of the Theorem 4.2.6

and using (4.49), we get

|a3 −a2
2|= | p2

12
−

p2
1

48
−

p2
1

64
|,

we have

|a3 −a2
2|= | p2

12
−

7p2
1

192
|.

Now, we use Lemma 3.8.3, which gives us

≤ 2
12

max|{1, |2( 7
16

)−1}|

|a3 −a2
2| ≤

1
6
. (4.54)

This completes the proof.

Theorem 4.2.8 If f ∈Cs(ez) then |a2a3 −a4| ≤ 829+85
√

170
21168

Proof: Using the similar Mathematical techniques as used in the proof of the Theorem 4.2.6

and using (4.49), we get

|a2a3 −a4|= | p1

8
[
p2

12
−

p2
1

48
]− [

p3

32
− p1 p2

128
−

p3
1

1536
]|.

We have

= |7p1 p2

384
− p3

32
−

3p3
1

1536
|. (4.55)

Use the Lemma 3.8.2, we have

= |7p1

384
[
p2

1
2
+

x(4− p2
1)

2
]− 1

32
[
p3

1
4
+

p1(4− p2
1)x

2
−

p1(4− p2
1)x

2

4
+
(4− p2

1)(1−|x|2)z
2

]−
3p3

1
1536

|

|a2a3 −a4|= |
p1(4− p2

1)x
2

128
−

5p1x(4− p2
1

768
−

(4− p2
1)(1−|x|2)z

64
−

p3
1

1536
|. (4.56)

Denotes |x|= t ∈ [0,1], p = c ∈ [0,2] then by using triangle inequality (4.56) gives us

|a2a3 −a4| ≤
(4− c2)ct2

128
+

5(4− c2)ct
768

+
(4− c2)

64
+

c3

1536
.
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(F,1)≡ (4− c2)c
128

+
5(4− c2)c

768
+

(4− c2)

64
+

c3

1536

Thus we get
∂F
∂ t

=
(4− c2)ct

64
+

5(4−C2)c
768

.

The function F(c, t) is increasing for any t in [0,1] this shows that F(c, t) has max value at t = 1.

MaxF(c, t) = F(c,1) =
(4−C2)c

128
+

5(4− c2)c
768

+
4− c2

64
+

c3

1536
.

Consider

M(c) =
(4−C2)c

128
+

5(4− c2)c
768

+
4− c2

64
+

c3

1536
. (4.57)

M′(c) =
−21c2

512
+

11
192

− c
32

c =
−8+2

√
170

21
. (4.58)

From (4.58) in (4.57) we get,

|a2a3 −a4| ≤
829+85

√
170

21168
. (4.59)

This completes the proof.

Theorem 4.2.9 If f ∈Cs(ez) then |a2a4 −a2
3| ≤

25
576 ,

Proof: From equation (4.49) of Theorem 4.2.6 we get

|a2a4 −a2
3|= | p1

8
(

p3

32
− p1 p2

128
−

p3
1

1536
)− (

p2

12
−

p2
1

48
)2|

= | p3 p1

256
−

p2
1 p2

1024
−

p4
1

12288
−

p2
2

144
+

p2
1 p2

288
−

p4
1

2304
|.

Use the Lemma 3.8.2 we get,

|a2a4−a2
3|= | p1

256
[
p3

1
4
+

p1(4− p2
1)x

2
−

p1(4− p2
1)x

2

4
+
(4− p2

1)(1−|x|2)z
2

]−
p2

1
1024

[
p2

1
2
+

x(4− p2
1)

2
]

−
p4

1
12288

− 1
144

(
p2

1
2
+

x(4− p2
1)

2
)2 −

p2
1

288
[
p2

1
2
+

x(4− p2
1)

2
]−

p4
1

2304
|

= |
p4

1
1024

+
p2

1(4− p2
1)x

512
−

p2
1(4− p2

1)x
2

1024
+

p1(4− p2
1)(1−|x|2)z
512

−
3p4

1
8192

−
3p2

1x(4− p2
1)

8192
−

p4
1

12288

−
p4

1
576

−
x(4− p2

1)p2
1

288
−

x2(4− p2
1)

2

576
+

p4
1

576
+

x(4− p2
1)p2

1
576

−
p4

1
2304

|.
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Simplify

|a2a4−a2
3|= |

p1(4− p2
1)(1−|x|2)z
512

−
p2

1(4− p2
1)x

2

1024
+

25p2
1x(4− p2

1)

73728
−

x2(4− p2
1)p2

1
576

+
17p4

1
36864

|.

(4.60)

Denote |x|= t ∈ [0,1], p1 = c ∈ [o,2] then using triangle inequality, we get

|a2a4 −a2
3| ≤

(4− c2)

256
+

c2(4− c2)t2

1024
+

25c2t(4− c2)

73728
+

t2(4− c2)c2

576
+

17c4

36864
,

we have

F(c, t) =
(4− c2)

256
+

c2(4− c2)t2

1024
+

25c2t(4− c2)

73728
+

t2(4− c2)c2

576
+

17c4

36864
. (4.61)

Which implies that
∂F
∂ t

=
2(4− c2)c2t

1024
+

25(4− c52)c2

73728
+

2(4− c2)2t
576

≥ 0.

Which that F(c, t) is rising for any value of t in the [0,1]. this demonstrates the maximum value

of F(c, t) at t = 1

MaxF(c, t) = F(c, t) =
(4− c2)

256
+

c2(4− c2)

1024
+

25c2(4− c2)

73728
+

(4− c2)c2

576
+

17c4

36864
.

Let us define

M(c) =
(4− c2)

256
+

c2(4− c2)

1024
+

25c2(4− c2)

73728
+

(4− c2)c2

576
+

17c4

36864
. (4.62)

We get

M′(c) =
−29c3

36864
+

(−25c2 +100)c
36864

− (−23c2 +4)c
4608

− c
128

.

We have

M′′(c) =
65c2

6144
− 77

3072
.

If c = 0, M′(c) disappears. A quick calculation reveals that the function M(c) has its maximum

values at c = 0, which indicates that M′′(c)< 0. Hence, we have (4.62) we get, M(0) = 4
256 +

16
576

Simplify

|a2a4 −a2
3| ≤ M(0) =

36+64
2304

.

As

|a2a4 −a2
3| ≤

25
576

. (4.63)

This completes the proof.

Theorem 4.2.10 If f ∈Cs(ez) then |H3(1)| ≤ 0.11678



38

Proof: Consider

H3(1) =

∣∣∣∣∣∣∣∣∣
a1 a2 a3

a2 a3 a4

a3 a4 a5

∣∣∣∣∣∣∣∣∣
= a3

∣∣∣∣∣∣a2 a3

a3 a4

∣∣∣∣∣∣−a4

∣∣∣∣∣∣a1 a3

a2 a4

∣∣∣∣∣∣+a5

∣∣∣∣∣∣a1 a2

a2 a3

∣∣∣∣∣∣
Since a1 = 1

H3 ( 1 ) = a3 ( a2 a4 − a3
2 ) − a4 ( a4 − a2 a3 ) + a5 ( a3 − a2

2 ), by applying triangle

triangle inequality, we get

|H3 ( 1 ) | ≤ | a3 | | (a2 a4 − a3
2 ) | + | a4 | | ( a4 −a2a3 ) | + | a5 | | ( a3 −a2

2 ) |. (4.64)

Now, substituting the equations (4.51), (4.52), (4.53, (4.54), (4.59), (4.63) in (4.64), we get

|H3(1)| ≤ 0.11678 (4.65)

Thus the theorem is proved.
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CHAPTER 5

THE NEW CLASSES S∗s ,q (e
z) AND Cs,q (ez) ASSOCIATED WITH

EXPONENTIAL FUNCTION

In this chapter making use of a linear operator, we will introduce and study some new classes

of analytic functions with respect to symmetrical points. These classes generalize some known

classes of analytic and univalent functions. We will also discuss their interrelations, coefficient

bounds, and some other results. Moreover, we will investigate some interesting proportions of

functions that belong to our new classes.

5.1 The Classes of q-Starlike and q-Convex Function with Respect to Sym-

metric Points

The concept of univalent functions with respect to symmetric points.

Definition 5.1.1 A function f ∈ A, and f is said to be in the class S∗s,q(e
z) if and only if

2[zDq f (z)]
f (z)− f (−z)

≺ ez,z ∈ E. (5.1)

Definition 5.1.2 A function f ∈ A, is in the class f ∈Cs,q(ez) if and only if
2[Dq(zDq f (z))]

Dq[ f (z)− f (−z)]
≺ ez,z ∈ E. (5.2)
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5.2 Main Results

For the following results, we consider [1]q = q1, [2]q = q2, [3]q = q3, [4]q = q4, [5]q =

q5,q ∈ (0,1) unless otherwise stated.

Theorem 5.2.1 If f ∈ S∗s,q(e
z) then

|a2| ≤
1
q2

,

|a3| ≤
1

q3 −q1
,

|a4| ≤ | 1
q4

+(
q2

q4q2(q3 −q1)
− 1

q4
)+(

1
6q4

− q2

2q2(q3 −q1)q4
)|,

|a5| ≤ | 1
(q5 −q1)

− 1
q5 −q1

+(
−1

2(q5 −q1)
+

(4q3 −q1)

(2(q3 −q1))2(q5 −q1)
)+(

1
2(q5 −q1)

− 1
16(q3 −q1)(q5 −q1)

)+(
1

24(q5 −q1)
+

16(q3 −q1)

(8(q3 −8))2(q5 −q1))
)|.

Proof: Consider
2[zDq f (z)]

f (z)− f (−z)
= ew(z). (5.3)

We get
2[zDq f (z)]

f (z)− f (−z)
= q1+a2q2z+(a3q3−q1a3)z2+(a4q4−a3a2q2)z3+(a5q5−q1a5−a2

3q3+q1a2
3)z

4+· · · .

(5.4)

Let us define the function

p(z) =
1+w(z)
1−w(z)

.

Equivalently

w(z) =
p(z)−1
p(z)+1

. (5.5)

That is

w(z)=
p1z
2

+

(
p2

2
−

p2
1

4

)
z2+

(
p3

2
− p1 p2

2
+

p3
1

8

)
z3+

(
p4

2
− p1 p4

2
−

p2
2

4
+

3p2
1 p2

8
−

p4
1

16

)
z4+· · · .

Since we have

ew(z) =1+w(z)+
(w(z))2

2!
+

(w(z))3

3!
+
(w(z))4

4!
+ · · · . (5.6)

From (5.6), we get

ew(z)= 1+
p1z
2

+

(
p2

2
−

p2
1

4

)
z2+

(
p3

2
− p1 p2

2
+

p3
1

8

)
z3+

(
p4

2
− p1 p4

2
−

p2
2

4
+

3p2
1 p2

8
−

p4
1

16

)
z4+· · ·

+
1
2
(

p1z
2

+

(
p2

2
−

p2
1

4

)
z2 +

(
p3

2
− p1 p2

2
+

p3
1

8

)
z3 +

(
p4

2
− p1 p4

2
−

p2
2

4
+

3p2
1 p2

8
−

p4
1

16

)
z4 + · · ·)2

+
1
6
(

p1z
2

+

(
p2

2
−

p2
1

4

)
z2 +

(
p3

2
− p1 p2

2
+

p3
1

8

)
z3 +

(
p4

2
− p1 p4

2
−

p2
2

4
+

3p2
1 p2

8
−

p4
1

16

)
z4 + · · ·)3
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+
1
24

(
p1z
2

+

(
p2

2
−

p2
1

4

)
z2 +

(
p3

2
− p1 p2

2
+

p3
1

8

)
z3 +

(
p4

2
− p1 p4

2
−

p2
2

4
+

3p2
1 p2

8
−

p4
1

16

)
z4 + · · ·)4 + · · · .

This gives us

ew(z)= 1+
p1z
2

+

(
p2

2
−

p2
1

8

)
z2+

(
p3

2
− p1 p2

4
+

p3
1

48

)
z3+

(
p4

2
− p1 p3

4
−

p2
2

8
+

p2
1 p2

16
+

p4
1

384

)
z4+· · · .

(5.7)

Now we compare the coefficient (5.4), (5.7) which gives us

a2 =
p1

2q2
. (5.8)

We have

a3 =
p2

2q3 −q1
−

p2
1

8q3 −q1
. (5.9)

Now, we consider

a4 =
p3

2q4
− p1 p2

4q4
+

p1 p2q2

q4(4q2(q3 −q1))
+

p3
1

48q4
−

p3
1q2

16q2(q3 −q1)q4
, (5.10)

and

a5 =
p4

2(q5 −q1)
− p1 p3

4(q5 −q1)
−

p2
2

8(q5 −q1)
+

p2
1 p2

16(q5 −q1)
+

p4
1q

384(q5 −q1)

+

(
p2

2
(2(q3 −q1))2 +

p4
1

(8(q3 −q1))2 −
2p2

1 p2

2(q3 −q1)8(q3 −q1)

)
q3 −q1

q5 −q1
. (5.11)

By apply Lemma 3.8.3 and Lemma 3.8.1, we get

|a2| ≤
1
q2

, (5.12)

|a3| ≤
1

q3 −q1
. (5.13)

Now, so we get again apply the Lemma 3.8.1 as

|a4|=
∣∣∣∣ p3

2q4
− p1 p2

4q4
+

p1 p2q2

q4(4q2(q3 −q1))
+

p3
1

48q4
−

p3
1q2

16q2(q3 −q1)q4

∣∣∣∣ .
We use |a−b| ≤ |a|+ |b| which leads us

|a4| ≤
∣∣∣∣ 1
q4

+(
q2

q4q2(q3 −q1)
− 1

q4
)+(

1
6q4

− q2

2q2(q3 −q1)q4
)

∣∣∣∣ . (5.14)

By Lemma 3.8.1, and triangular inequalities, we get

|a5| ≤
∣∣∣∣ 1
(q5 −q1)

− 1
q5 −q1

+(
−1

2(q5 −q1)
+

(4q3 −q1)

(2(q3 −q1))2(q5 −q1)
)

+(
1

2(q5 −q1)
− 1

16(q3 −q1)(q5 −q1)
)+(

1
24(q5 −q1)

+
16(q3 −q1)

(8(q3 −8))2(q5 −q1))
)|. (5.15)

Hence, this completes the proof

Taking q → 1− in the above result we get the results that have been already proved in [91] as
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shown in the following corollary.

Corollary: If f ∈ S∗s (e
z) then |a2| ≤ 1

2 , |a3| ≤ 1
2 , |a4| ≤ 19

48 , |a4| ≤ 13
24 .

Theorem 5.2.2 If f ∈ S∗s ,q (e
z) then |a3 −a2

2| ≤
1

q3−q1
,

Proof: Using the similar Mathematical techniques as used in the proof the Theorem 5.2.1, from

(5.8), (5.9) we have

|a3 −a2
2|=

∣∣∣∣ p2

2(q3 −q1)
−

p2
1

8(q3 −q1)
−

p2
1

(2q2)2

∣∣∣∣
=

∣∣∣∣ p2

2(q3 −q1)
−

p2
1(4q2

2 −8(q3 −q1))

(2q2)28(q3 −q1)

∣∣∣∣
=

1
2(q3 −q1)

(|p2 −
p2

14q2
2 −8(q3 −q1)

(2q2)24
|.

Now, we use Lemma 3.8.3 this gives us

|a3 −a2
2| ≤

2
2(q3 −q1)

max|{1, |2
(4q2

2 −8(q3 −q1))

(2q2)24
−1|}

≤ 1
(q3 −q1)

max|{1,
(4q2

2 −8(q3 −q1))− (2q2)
22

(2q2)22
|}

|a3 −a2
2| ≤

1
q3 −q1

, (5.16)

which is the required result. Taking q → 1− in the above result we get the results that have been

already proved in [91] as shown in the following corollary.

Corollary: If f ∈ S∗s (e
z) then |a3 −a2

2| ≤
1
2 .

Theorem 5.2.3 If f ∈ S∗s ,q (e
z) then

|a2a3−a4| ≤ 1/3
1

q2q4 ((q1 −q3 −9)q2 −3q4)
2 (q1 −q3)

(((
−4q1

2 +(8q3 +2)q1 −4q3
2 −2q3 −18

)
q2

2+2q4 (q1 −q3 −12)q2−6q4
2
√

(4q12 +(−8q3 −2)q1 +4q32 +2q3 +18)q22 −2q4 (q1 −q3 −12)√
q2 +6q42 −5q2

((
q1 −q3 +

63
5

)
(q1 −q3 −3)q2

2 + (12q1−12q3−90)q4q2
5 −9/5q4

2
)
(q1 −q3) .

Proof: Using the similar Mathematical techniques as used in the proof the Theorem 5.2.1 and

using the value of coefficients, (5.8), (5.9), (5.10), we get

|a2a3 −a4|= | p1 p2

4q2(q3 −q1)
+

p1 p2

4q4
− p1 p2q2

q4q24(q3 −q1)
− p3

2q4
−

p3
1

16q2(q3 −q1)
−

p3
1

48q4

+
p3

1q2

16q2(q3 −q1)q4
|.

Now applying the Lemma 3.8.2, we have

|a2a3 −a4|= |
p1(4− p2

1)x
2

8q4
+

p1x(4− p2
1)

8q2(q3 −q1)
+

p1x(4− p2
1)

8q4
−

p1q2x(4− p2
1)

8q4q2(q3 −q1)
−

p1(4− p2
1)x

4q4
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−
(4− p2

1)(1−|x|2)z
4q4

+
p3

1
8q2(q3 −q1)

+
p3

1
8q4

−
p3

1q2

8q4q2(q3 −q1)
−

p3
1

8q4
−

p3
1

16q2(q3 −q1)

−
p3

1
48q4

+
p3

1q2

16q2(q3 −q1)q4
|. (5.17)

Denote |x|= t ∈ [0,1], p1 = c ∈ [0,2]. Then using triangle inequality, we have

|a2a3−a4| ≤
(4− c2)c

8q4
+(

(4− c2)c
8q2(q3 −q1)

+
(4− c2)c

8q4(q3 −q1)
− (4− c2)c

8q4
)+

4− c2

4q4
+(

c3

16q2(q3 −q1)

− c3

48q4
− c3

16q4(q3 −q1)
).

which implies that

F(c,1)≡ (4− c2)ct2

8q4
+(

(4− c2)ct
8q2(q3 −q1)

+
(4− c2)ct

8q4(q3 −q1)
− (4− c2)ct

8q4
)+

4− c2

4q4
+(

c3

16q2(q3 −q1)

− c3

48q4
− c3

16q4(q3 −q1)
).

By computing the value of ∂F
∂ t , we note that the function F(c, t) is non-decreasing for any t in

[0,1]. This shows that F(c, t) has a maximum value at t = 1, so we get

M(c) =
(4− c2)c

8q4
+(

(4− c2)c
8q2(q3 −q1)

+
(4− c2)c

8q4(q3 −q1)
− (4− c2)c

8q4
)+

4− c2

4q4

+(
c3

16q2(q3 −q1)
− c3

48q4
− c3

16q4(q3 −q1)
). (5.18)

as

M′(c) =
4−3c2

8q2(q3 −q1)
+

4−3c2

8q4(q3 −q1)
− c

2q4
+

3c2

16q2(q3 −q1)
− c2

16q4
− 3c2

16q4(q3 −q1)
.

M′(c) vanishes at c = r∗, where

r∗ =
1

q1q2 −q2q3 −9q2 −3q4
(2(2q2q1 −2q2q3 +

√
4q2

1q2
2 −8q1q2

2q3 +4q2
2q2

3 −2q1q2
2 −√

2q1q2q4 +2q2
2q3 +2q2q3q4 +18q2

2 +24q2q4 +6q2
4)).

This means that the function M(c) can take the maximum value at r∗,

|a2a3−a4| ≤ 1/3
1

q2q4 ((q1 −q3 −9)q2 −3q4)
2 (q1 −q3)

(((
−4q1

2 +(8q3 +2)q1 −4q3
2 −2q3 −18

)
q2

2+2q4 (q1 −q3 −12)q2−6q4
2
√

(4q12 +(−8q3 −2)q1 +4q32 +2q3 +18)q22 −2q4 (q1 −q3 −12)√
q2 +6q42−5q2

((
q1 −q3 +

63
5

)
(q1 −q3 −3)q2

2 + (12q1−12q3−90)q4q2
5 −9/5q4

2
)
(q1 −q3)(5.19)
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which gives us the required result.

Taking q → 1− in the above result we get the results that have been already proved in [91] as

shown in the following corollary.

Corollary: If f ∈ S∗s (e
z) then |a2a3 −a4| ≤ 529+57

√
118

3468 .

Theorem 5.2.4 If f ∈ S∗s ,q (e
z) then |a2a4 −a2

3| ≤
4

(2(q3−q1))2 +
1

q2q4

Proof: Using the similar Mathematical techniques as used in the proof the theorem 5.2.1, we

begin the proof with, (5.8), (5.9), (5.10), we get

|a2a4 −a2
3|= | p1 p3

4(q2q4)
+(

p2
1 p2q2

q2q4(8q2(q3 −q1))
−

p2
1 p2

8q4q2
)+(

p4
1

48q4q2
−

p4
1q2

16q2(q3 −q1q4q2
)

−
p2

2
(2q3 −q1)2 −

p4
1

(8q3 −q1)2 +
2p2 p2

1
(2(q3 −1)8(q3 −q1)

|. (5.20)

Use the Lemma 3.8.2, and by denoting |x|= t ∈ [0,1], p1 = c ∈ [0,2] with some simplification,

we get

|a2a4 −a2
3| ≤

(4− c2)

4(q2q4)
+

c2(4− c2)t2

16q2q4
+

c2(4− c2)t
8q2q4

− c2t(4− c2)

16(q2q4)
− c2t(4− c2)

8(q2q4)
+

c2t(4− c2)

16(q2q4)

+
c2t(4− c2)q2

16(q2q4q2)(q3 −1)
− c2t(4− c2)

2(2(q3 −1))2 +
c2t(4− c2)

(2(q3 −1))(8(q3 −1)
+

(4− c2)2t2

4(2(q3 −q1))2 +
c4

16q2q4

+
q2c4

16q2q4q2(q3 −q1)
− c4

16q2q4
+

c4

48q2q4
− c4q2

16q2(q3 −q11)q4q2
− c4

(8(q3 −q1))2

+
c4

2(q3 −q1)(8(q3 −q1))
− c4

4([2(q3 −q1)])2 +
c4

16q2q4
. (5.21)

Let us consider

F(c, t) =
(4− c2)

4(q2q4)
+

c2(4− c2)t2

16q2q4
+

c2(4− c2)t
8q2q4

− c2t(4− c2)

16(q2q4)
− c2t(4− c2)

8(q2q4)
+

c2t(4− c2)

16(q2q4)

+
c2t(4− c2)q2

16(q2q4q2)(q3 −q1)
− c2t(4− c2)

2(2(q3 −q1))2 +
c2t(4− c2)

(2(q3 −q1))(8(q3 −q1)
+

(4− c2)2t2

4(2(q3 −q1))2

+
c4

16q2q4
+

q2c4

16q2q4q2(q3 −q1)
− c4

16q2q4
+

c4

48q2q4
− c4q2

16q2(q3 −q1)q4q2

− c4

(8(q3 −q1))2 +
c4

2(q3 −1)(8(q3 −q1))
− c4

4([2(q3 −q1)])2 +
c4

16q2q4
.

Since ∂F
∂ t shows that F(c, t) is increasing for any then t in [0,1], and F(c, t) has maximum value

at t = 1, so we may write M(c) = F(c,1) and

M′(c) =− c3

4q2q4
+

(c2 +4)c
4q2q4

+
2q2c3

16(q2q4q2(q3 −q1))
+

2q2(−c2 +4)c
16([2]2q4q4(q3 −q1))
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+
2(−c2 +4)c
(2(q3 −q1))2 +

2c2

2(q3 −q1)8(q3 −q1)
+

2(−c2 +4)
2(q3 −q1)8(q3 −q1)

− c
2q2q4

+
4q2c3

16q2q4q2(q3 −q1
− 4c3

8(q3 −q1)
. (5.22)

As M′(c) vanishes at c = 0 and M′′(c)< 0 which means that the function M(c) has maximum

value at c = 0. Hence we have |a2a4 −a2
3| ≤ M(0) which implies that

|a2a4 −a2
3| ≤

4
(2(q3 −q1))2 +

1
q2q4

, (5.23)

which is the required result.

Taking q → 1− in the above result we get the results that have been already proved in [91] as

shown in the following corollary.

Corollary: If f ∈ S∗s (e
z) then ≤ |a2a4 −a2

3| ≤
3
8

Theorem 5.2.5 If f ∈ S∗s ,q (e
z) then

H3(1)≤
1

q3 −q1

(
4 (2q3 −2q1)

−2 +
1

q2q4

)
+1/18

1

|q4|(q1 −q3)q2q4 ((q1 −q3 −9)q2 −3q4)
2

(
6
∣∣∣∣q3 −q1 −1

q3 −q1

∣∣∣∣+ ∣∣∣∣q3 −q1 −3
q3 −q1

∣∣∣∣+6
)(((

−4q1
2 +(8q3 +2)q1 −4q3

2 −2q3 −18
)

q2
2 +2q4

(q1 −q3 −12)q2−6q4
2
√

(4q12 +(−8q3 −2)q1 +4q32 +2q3 +18)q22 −2q4 (q1 −q3 −12)

√
q2 +6q42−5

(
(q1 −q3 −3)

(
q1 −q3 +

63
5

)
q2

2 +
(12q1 −12q3 −90)q4q2

5
−9/5q4

2
)
(q1 −q3)q2

+
1

q3 −q1

(
2 (q5 −q1)

−1 +
q3 −q1

(−q1 (q5 −q1)+q3 (q5 −q1))
2 − (−q1 (q5 −q1)+q3 (q5 −q1))

−1

+(24q5 −24q1)
−1 +

q3 −q1

4 (q1 −q3)
2 q5 −4q1 (q32 +q1 −2q3)

.

Proof: Consider

H3(1) =

∣∣∣∣∣∣∣∣∣
a1 a2 a3

a2 a3 a4

a3 a4 a5

∣∣∣∣∣∣∣∣∣= a3

∣∣∣∣∣∣a2 a3

a3 a4

∣∣∣∣∣∣−a4

∣∣∣∣∣∣a1 a3

a2 a4

∣∣∣∣∣∣+a5

∣∣∣∣∣∣a1 a2

a2 a3

∣∣∣∣∣∣ , Since a1 = 1
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H3(1) = a3(a2a4 −a2
3)−a4(a4 −a2a3)+a5(a3 −a2

2), by applying triangle triangle inequality,

we get

|H3(1)| ≤ |a3||(a2a4 −a2
3)|+ |a4||(a4 −a2a3)|+ |a5||(a3 −a2

2)|. (5.24)

Now, substituting the equations, in (5.24) we get the required result.

|H3(1)| ≤
1

q3 −q1

(
4 (2q3 −2q1)

−2 +
1

q2q4

)
+1/18

1

|q4|(q1 −q3)q2q4 ((q1 −q3 −9)q2 −3q4)
2(

6
∣∣∣∣q3 −q1 −1

q3 −q1

∣∣∣∣+ ∣∣∣∣q3 −q1 −3
q3 −q1

∣∣∣∣+6
)(((

−4q1
2 +(8q3 +2)q1 −4q3

2 −2q3 −18
)

q2
2 +2q4

(q1 −q3 −12)q2−6q4
2
√

(4q12 +(−8q3 −2)q1 +4q32 +2q3 +18)q22 −2q4 (q1 −q3 −12)

√
q2 +6q42−5

(
(q1 −q3 −3)

(
q1 −q3 +

63
5

)
q2

2 +
(12q1 −12q3 −90)q4q2

5
−9/5q4

2
)
(q1 −q3)q2

+
1

q3 −q1

(
2 (q5 −q1)

−1 +
q3 −q1

(−q1 (q5 −q1)+q3 (q5 −q1))
2 − (−q1 (q5 −q1)+q3 (q5 −q1))

−1

+(24q5 −24q1)
−1 +

q3 −q1

4 (q1 −q3)
2 q5 −4q1 (q32 +q1 −2q3)

. (5.25)

which are the required results.

Taking q → 1− in the above result we get the results that have been already proved in [91] as

shown in the following corollary.

Corollary: If f ∈ S∗s (e
z) then |H3(1)| ≤ 0.5893.

Theorem 5.2.6 If f ∈Cs,q(ez) then

|a2| ≤ 1
q2

2

|a3| ≤ 1
q2

3−q3

|a4| ≤ | 1
q2

4
+(−1

q2
4
+ q3

(q2
3−q3)q2

4
)+( −q3

2(q2
3−q3)q2

4
+ 1

6q2
4
)|

|a5| ≤ 1
(q2

5−q5q1)
− 1

(q2
5−q5q1)

+(
4(q3

3−q2
3q1)

(2(q2
3−q3q1))2(q2

5−q5q1)
− 1

2(q2
5−q5q1)

)

+( 1
2(q2

5−q5q1)
− (q3

3−q2
3q1)

(q2
3−q3q1)(q2

3−q3q1)(q2
5−q5q1)

)+(
16(q3

3−q2
3q1)

(8(q2
3−q3q1)2(q2

5−q5q1)
+ 1

24(q2
5−q5q1)

)|.

Proof: Consider
2Dq[zDq f (z)]

Dq( f (z)− f (−z))
= ew(z). (5.26)
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This gives us
2Dq[zDq f (z)]

Dq( f (z)− f (−z))
=

2
[
q1 +q2

2a2z+q2
3a3z2 +q2

4a4z3 +q2
5a5z4 + ....]

2 [q1 +q3a3z2 +q5a5z4]+ ...]
,

which implies that

= q1+q2
2a2z+

(
q2

3a3 −q1q3a3
)

z2+
(
q2

4a4 −q2
2q3a3a2

)
z3+

(
q2

5 −q1q5)a5 − (q3
3 −q1q2

3)a
2
3)
)

z4+· · · .

(5.27)

Let us define the function

p(z) =
1+w(z)
1−w(z)

.

That is

w(z) =
p(z)−1
p(z)+1

. (5.28)

So, we have

w(z) =
1+ p1z+ p2z2 + p3z3 + p4z4 + ...−1
1+ p1z+ p2z2 + p3z3 + p4z4 + ...+1

.

That is

w(z) =
p1z
2

+

(
p2

2
−

p2
1

4

)
z2 +

(
p3

2
− p1 p2

2
+

p3
1

8

)
z3 +

(
p4

2
− p1 p4

2
−

p2
2

4
+

3p2
1 p2

8
−

p4
1

16

)
z4 + · · · .

(5.29)

Using the taylor series of ew(z), we may write the above equation as

ew(z) = 1+
p1z
2

+

(
p2

2
−

p2
1

8

)
z2 +

(
p3

2
− p1 p2

4
+

p3
1

48

)
z3 +

(
p4

2
− p1 p3

4
−

p2
2

8
+

p2
1 p2

16
+

p4
1

384

)
z4

+ · · · .
(5.30)

Now compare the coefficient which gives us

a2 =
p1

2q2
2
, (5.31)

a3 =
p2

2(q2
3 −q3q1)

−
p2

1
8(q2

3 −q3q1)
, (5.32)

a4 =
p3

2q2
4
− p1 p2

4q2
4
+

p2 p1q3

4(q2
3 −q3q1)q2

4
−

p3
1q3

16(q2
3 −q3q1)q2

4
+

p3
1

48q2
4
. (5.33)

By some computation, we get the value of a5 as

a5 =
p4

2(q2
5 −q5q1)

− p1 p3

4(q2
5 −q5q1)

+
p2

2(q
3
3 −q2

3q1)

(2(q2
3 −q3q1))2(q2

5 −q5q1)
−

p2
2

8(q2
5 −q5q1)

+
p4

1(q
3
3 −q2

3q1)

(8(q2
3 −q3q1))2(q2

5 −q5q1)
+

p4
1

384(q2
5 −q5q1)

+
p2 p2

1
16(q2

5 −q5q1)

−
2p2

1 p2(q3
3 −q2

3q1)

(16(q2
3 −q3)(q2

3 −q3)(q2
5 −q5q1)

. (5.34)
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Now, we use Lemma 3.8.1 to get the coefficient bound of a2 as

|a2| ≤
1
q2

2
, (5.35)

and by Lemma 3.8.3, we get

|a3| ≤
1

q2
3 −q3q1

. (5.36)

Now again an application of Lemma 3.8.1 gives us

|a4| ≤
∣∣∣∣ 1
q2

4
+(

−1
q2

4
+

q3

(q2
3 −q3)q2

4
)+(

−q3

2(q2
3 −q3)q2

4
+

1
6q2

4
)

∣∣∣∣ , (5.37)

and

|a5| ≤
1

(q2
5 −q5q1)

− 1
(q2

5 −q5q1)
+(

4(q3
3 −q2

3q1)

(2(q2
3 −q3q1))2(q2

5 −q5q1)
− 1

2(q2
5 −q5q1)

)

+(
1

2(q2
5 −q5q1)

−
(q3

3 −q2
3q1)

(q2
3 −q3q1)(q2

3 −q3q1)(q2
5 −q5q1)

)+(
16(q3

3 −q2
3q1)

(8(q2
3 −q3q1)2(q2

5 −q5q1)
+

1
24(q2

5 −q5q1)
)|. (5.38)

Hence, we obtain this completes the proof

Taking q → 1− in the above result we get the results that have been already proved in [91] as

shown in the following corollary.

Corollary: If f ∈Cs(ez) then |a2| ≤ 1
4 , |a3| ≤ 1

6 , |a4| ≤ 19
192 ,|a5| ≤ 13

120 .

Theorem 5.2.7 If f ∈Cs,q (ez) then |a3 −a2
2| ≤

1
q2

3−q3q1

Proof: Using the similar Mathematical techniques as used in the proof of the Theorem 5.2.6

and using (5.31), (5.32) we get

|a3 −a2
2|= | p2

2(q2
3 −q3q1)

−
p2

1
8(q2

3 −q3q1)
−

p2
1

4q2
2q2

2
|

= | p2

2(q2
3 −q3q1)

− (
(p2

14q2
2q2

2 + p2
18(q2

3 −q3q1))

8(q2
3 −q3q1)4q2

2q2
2

)|.

Now, we use Lemma 3.8.3 this gives us

≤ 1
q2

3 −q3q1
max|{1, |2( 1

q2
3 −q3q1

)−1|}

≤ 1
q2

3 −q3q1
max|{1, |(

2−q2
3 −q3q1

q2
3 −q3q1

)|}

|a3 −a2
2| ≤

1
q2

3 −q3q1
, (5.39)
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which is the required result

Taking q → 1− in the above result we get the results that have been already proved in [91] as

shown in the following corollary.

Corollary: If f ∈Cs(ez) then |a3 −a2
2| ≤

1
6

Theorem 5.2.8 If f ∈Cs,q (ez) then |a2a3−a4| ≤ 1
726(q22q32+(−q22+3/11q4)q3−3/11q42)

2
q22q42(q3−1)q3(

12
√

3
(

q2
4q3

4 +
(
−2q2

4 + 17q2
2q4

6

)
q3

3 +
(

q2
4 +
(
−17q4

2

6 − 17q4
6

)
q2

2 +1/2q4
2
)

q3
2 +
(

17q2
2q4

2

6

−q4
3q3+1/2q4

4
√

((q32 −q3)q22 +1/3q4 (q3 −q4))((q32 −q3)q22 +3/8q4 (q3 −q4))+1370q3
6q2

6+(
−4110q2

6 +1104q2
4q4
)

q3
5+
(
4110q2

6 +
(
−1104q4

2 −2208q4
)

q2
4 +297q2

2q4
2)q3

4+
(
−1370q2

6

+
(
2208q4

2 +1104q4
)

q2
4+
(
−594q4

3 −297q4
2)q2

2+27q4
3q3

3+
(
−1104q2

4q4
2 +297q4

3 (q4 +2)

q2
2 −81q4

4q3
2 +
(
−297q2

2q4
4 +81q4

5)q3 −27q4
6

Proof: Using the coefficient bounds investigated in the previous result and similar Mathematical

techniques as used in the proof of the Theorem 5.2.6, and using (5.31), (5.32 (5.33), we get

|a2a3 −a4|= | p1

2(q2)2 [
p2

2((q3)2 −q3q1)
−

p2
1

8((q3)2 −q3q1)
]− [

p3

2q2
4
− p1 p2

4q2
4

+
p2 p1q3

4(q2
3 −q3q1)q2

4
−

p3
1q3

16(q2
3 −q3q1)q2

4
+

p3
1

48q2
4
]|.

We have

|a2a3 −a4|= | p1 p2

4(q2)2((q3)2 −q3q1)
+

p1 p2

4(q4)2 −
p1 p2q3

4(q2)2((q3)2 −q3q1)q4
− p3

2(q4)2

−
p3

1
16(q2)2((q3)2 −q3q1)

+
p3

1q3

16(q2)2((q3)2 −q3q1)q4
−

p3
1

48(q4)2 |. (5.40)

By the Lemma 3.8.2, we get

|a2a3 −a4|= |
p1(4− p2

1)x
2

8(q4)2 +
p1(4− p2

1)x
8(q2)2((q3)2)−q3)

+
p1(4− p2

1)x
8(q4)2 −

p1(4− p2
1)xq3

8(q2)2((q3)2)−q3)q4

−
p1(4− p2

1)x
4(q4)2 −

(4− p2
1)(1−|x|2)z
4(q4)2 +

p3
1

8(q2)2((q3)2 −q3)
+

p3
1

8(q)42
−

p3
1q3

8(q2)2((q3)2 −q3)q4

−
p3

1
8(q4)2 −

p3
1

16(q2)2((q3)2 −q3)
+

p3
1q3

16(q2)2((q3)2 −q3)q4
−

p3
1

48(q4)2 |.

Simplify

|a2a3 −a4|= |
p1(4− p2

1)x
2

8(q4)2 +
p1(4− p2

1)x
8(q2)2((q3)2)−q3)

−
p1(4− p2

1)x
8(q4)2 −

p1(4− p2
1)xq3

8(q2)2((q3)2)−q3)q4
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−
(4− p2

1)(1−|x|2)z
4(q4)2 +

p3
1

16(q2)2((q3)2 −q3)
−

p3
1

48(q)42
−

p3
1q3

16(q2)2((q3)2 −q3)q4
|. (5.41)

Denote |x|= t ∈ [0,1]p = c ∈ [0,2]. then using triangle inequality 4.2 gives us

|a2a3 −a4| ≤
c(4− c2)t2

8(q4)2 − c(4− c2)t
8(q2)2((q3)2)−q3)

+
c(4− c2)t

8(q4)2 +
c(4− c2)tq3

8(q2)2((q3)2)−q3)q4

+
(4− c2)

4(q4)2 − c3

16(q2)2((q3)2 −q3)
+

c3

48q2
4
+

c3q3

16(q2)2((q3)2 −q3)q4
.

Consider

|a2a3 −a4| ≡
c(4− c2)t2

8(q4)2 − c(4− c2)t
8(q2)2((q3)2)−q3)

+
c(4− c2)t

8(q4)2 +
c(4− c2)tq3

8(q2)2((q3)2)−q3)q4

+
(4− c2)

4(q4)2 − c3

16(q2)2((q3)2 −q3)
+

c3

48(q4)2 +
c3q3

16(q2)2((q3)2 −q3)q4
.

Thus we get
∂F
∂ t

=
c(4− c2)t

4(q4)2 − c(4− c2)

8(q2)2((q3)2)−q3)
+

c(4− c2)

8(q4)2 +
c(4− c2)q3

8(q2)2((q3)2)−q3)q4

MaxF(c, t)=F(c,1)=
c(4− c2)t2

8(q4)2 − c(4− c2)t
8(q2)2((q3)2)−q3)

+
c(4− c2)t

8(q4)2 +
c(4− c2)tq3

8(q2)2((q3)2)−q3)q4

+
(4− c2)

4(q4)2 − c3

16(q2)2((q3)2 −q3)
+

c3

48q42
+

c3q3

16(q2)2((q3)2 −q3)q4
.

Let us define

M(c) =
c(4− c2)t2

8(q4)2 − c(4− c2)t
8(q2)2((q3)2)−q3)

+
c(4− c2)t

8(q4)2 +
c(4− c2)tq3

8(q2)2((q3)2)−q3)q4

+
(4− c2)

4(q4)2 − c3

16(q2)2((q3)2 −q3)
+

c3

48q2
4
+

c3q3

16(q2)2((q3)2 −q3)q4
. (5.42)

We have

M′(c) =
−7c2

16(q4)2 +
−c2 +4
4(q4)2 +

c2

16(q2)2((q3)2 −q3)
− −c2 +4

8(q2)2((q3)2 −q3)

− c2q3

16(q2)2((q3)2 −q3)q4
− (−c2 +4)q3

8(q2)2((q3)2 −q3)
− c

2(q4)2 .

M′(c) vanishes at c = r∗, where

c =− 1
11(q2)2(q3)2 −11(q2)2q3 +3q3q4 −3(q4)2 (2(2(q2)

2(q3)
2 −2(q2)

2q3+



51

√
48q4

2q4
3 −96q4

2q3
3 +48q4

2q2
3 +34q2

2q3
3q4 −34q2

2q2
3q2

4 −34q2
2q2

3q4 +34q2
2q3q2

4 +6q2
3q2

4 −12q3q3
4 +6q4

4)),

which means that the function M(c) can take maximum value at c in (5.40), we get

|a2a3 −a4| ≤
1

726 (q22q32 +(−q22 +3/11q4)q3 −3/11q42)
2 q22q42 (q3 −1)q3(

12
√

3
(

q2
4q3

4 +
(
−2q2

4 + 17q2
2q4

6

)
q3

3 +
(

q2
4 +
(
−17q4

2

6 − 17q4
6

)
q2

2 +1/2q4
2
)

q3
2 +
(

17q2
2q4

2

6 -

q3
4q3+1/2q4

4
√

((q32 −q3)q22 +1/3q4 (q3 −q4))((q32 −q3)q22 +3/8q4 (q3 −q4))+1370q3
6q2

6+(
−4110q2

6 +1104q2
4q4
)

q3
5+
(
4110q2

6 +
(
−1104q4

2 −2208q4
)

q2
4 +297q2

2q4
2)q3

4+
(
−1370q2

6

+
(
2208q4

2 +1104q4
)
[2]q

4+
(
−594q4

3 −297q4
2) [2]q2+27q4

3q3
3+
(
−1104q2

4q4
2 +297q4

3 (q4 +2)

q2
2 −81q4

4q3
2 +
(
−297q2

2q4
4 +81q4

5)q3 −27q4
6(5.43)

which is the required result.

Taking q → 1− in the above result we get the results that have been already proved in [91] as

shown in the following corollary.

Corollary: If f ∈Cs(ez) then |a2a3 −a4| ≤ 829+85
√

170
21168 .

Theorem 5.2.9 If f ∈Cs,q (ez) then

|a2a4 −a2
3| ≤

1
q2

2q2
4
+

16
4(2(q2

3 −q3))2

Proof: Using the similar Mathematical techniques as used in the proof of the Theorem 5.2.6

and using (5.31), (5.32), (5.33), we get

|a2a4−a2
3|= | p1

2q2
2
(

p3

2q2
4
− p1 p2

4q2
4
+

p2 p1q4q3

4q2
2(q

2
3 −q3)q2

4
−

p3
1q4q3

16q2
2(q

2
3 −q3)q2

4
)−(

p2

2(q2
3 −q3)

−
p2

1
8(q2

3 −q3)
)2|.

This gives us

= | p1 p3

4(q2
2q2

4)
+(

p2
1 p2q4q3

(2q2
2)4q2

2(q
2
3 −q3)q2

4
−

p2
1 p2

8q2
4q2

2
)+(

p4
1

(8(q2
3 −q3))2 −

p4
1q4q3

32q4
2(q

2
3 −q3)q2

4
)

−
p2

2
(2(q2

3 −q3))2 −
p4

1
(8(q2

3 −q3))2 +
2p2 p2

1
2(q2

3 −q3)8(q2
3 −q3)

)|. (5.44)

Use the Lemma 3.8.2 we get

|a2a4 −a2
3|= | p1

4(q2
2q2

4)
[
p3

1
4
+

p1(4− p2
1)x

2
−

p1(4− p2
1)x

2

4
+

(4− p2
1)(1−|x|2)z

2
]

+
p2

1q4q3

(8q4
2)(q

2
3 −q3)q2

4
[
p2

1
2
+

x(4− p2
1)

2
]−

p2
1

8q2
4q2

2
[
p2

1
2
+

x(4− p2
1)

2
]+

p4
1

(8(q2
3 −q3))2

−
p4

1q4q3

32q4
2(q

2
3 −q3)q2

4
−

(
p2

1
2 +

x(4−p2
1)

2 )2

(2(q2
3 −q3))2 −

p4
1

(8(q2
3 −q3))2 +

2[ p2
1

2 +
x(4−p2

1)
2 ]p2

1

(2(q2
3 −q3))(8(q2

3 −q3))
|,
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simplify

|a2a4 −a2
3|= |(

p1(4− p2
1)(1−|x|2)z

8(q2
2q2

4)
)−

p2
1(4− p2

1)x
2

16q2
2q2

4
+(

p2
1(4− p2

1)x
8q2

2q2
4

+
p2

1x(4− p2
1)q4q3

16(q4
2(q

2
3 −q3)q2

4)

−
p2

1x(4− p2
1)

16(q2
2q2

4)
+

p2
1x(4− p2

1)

2(q2
3 −q3)8(q2

3 −q3)
−

p2
1(4− p2

1)

2(2(q2
3 −q3)2)

)−
x2(4− p2

1)
2

4(2q2
3 −q3)2 +(

q4q3 p4
1

16(q4
2(q

2
3 −q3)q2

4q2

−
p4

1
16q2

2q2
4
−

p4
1q3q4

32q4
2(q

2
3 −q3)q2

4
−

p4
1

4(2(q2
3 −q3))2 +

p4
1

2(q2
3 −q3)(8(q2

3 −q3))

−
p4

1
4([2(q2

3 −q3)])2 +
p4

1
16q2

2q2
4
)|. (5.45)

Denote |x|= t ∈ [0,1], p1 = c ∈ [0,2] then using triangle inequality,we get

|a2a4 −a2
3| ≤

(4− c2)

4(q2
2q2

4)
)+

c2(4− c2)t2

16q2
2q2

4
+(

c2(4− c2)t
8q2

2q2
4

+
c2t(4− p2

1)q4q3

16(q4
2(q

2
3 −q3)q2

4)
−

c2t(4− p2
1)

16(q2
2q2

4)

+
c2t(4− c2)

2(q2
3 −q3)8(q2

3 −q3)
− c2(4− c2)

2(2(q2
3 −q3)2)

)+
t2(4− c2)2

4(2q2
3 −q3)2 +(

q4q3c4

16(q4
2(q

2
3 −q3)q2

4q2

− c4

16q2
2q2

4
− c4q3q4

32q4
2(q

2
3 −q3)q2

4
− c4

(8(q2
3 −q3))2 +

c4

2(q2
3 −q3)(8(q2

3 −q3))

− c4

4([2(q2
3 −q3)])2 +

c4

16q2
2q2

4
). (5.46)

Let us consider

F(c, t) =
(4− c2)

4(q2
2q2

4)
)+

c2(4− c2)t2

16q2
2q2

4
+(

c2(4− c2)t
8q2

2q2
4

+
c2t(4− p2

1)q4q3

16(q4
2(q

2
3 −q3)q2

4)
−

c2t(4− p2
1)

16(q2
2q2

4)

+
c2t(4− c2)

2(q2
3 −q3)8(q2

3 −q3)
− c2(4− c2)

2(2(q2
3 −q3)2)

)+
t2(4− c2)2

4(2q2
3 −q3)2 +(

q4q3c4

16(q4
2(q

2
3 −q3)q2

4q2

− c4

16q2
2q2

4
− c4q3q4

32q4
2(q

2
3 −q3)q2

4
− c4

(8(q2
3 −q3))2 +

c4

2(q2
3 −q3)(8(q2

3 −q3))

− c4

4([2(q2
3 −q3)])2 +

c4

16q2
2q2

4
).

Thus we get
∂F
∂ t

=−c2(4− c2)t
8q2

2q2
4

+
c2(4− c2)

8q2
2q2

4
+

c2(4− p2
1)q4q3

16(q4
2(q

2
3 −q3)q2

4)
−

c2(4− p2
1)

16(q2
2q2

4)
+

c2(4− c2)

2(q2
3 −q3)8(q2

3 −q3)
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+
t(4− c2)2

(2q2
3 −q3)2 ,

which gives that F(c, t) is increasing for any then t in [0,1]. this show that F(c, t) has maximum

value at t = 1.

MaxF(c, t) = F(c,1) =
(4− c2)

4(q2
2q2

4)
+

c2(4− c2)

16q2
2q2

4
+(

c2(4− c2)

8q2
2q2

4
+

c2(4− p2
1)q4q3

16(q4
2(q

2
3 −q3)q2

4)
−

c2(4− p2
1)

16(q2
2q2

4)

+
c2(4− c2)

2(q2
3 −q3)8(q2

3 −q3)
− c2(4− c2)

2(2(q2
3 −q3)2)

)+
(4− c2)2

4(2q2
3 −q3)2 +(

q4q3c4

16(q4
2(q

2
3 −q3)q2

4q2

− c4

16q2
2q2

4
− c4q3q4

32q4
2(q

2
3 −q3)q2

4
− c4

(8(q2
3 −q3))2 +

c4

2(q2
3 −q3)(8(q2

3 −q3))

− c4

4([2(q2
3 −q3)])2 +

c4

16q2
2q2

4
). (5.47)

Let us define

M(c) =
(4− c2)

4(q2
2q2

4)
)+

c2(4− c2)

16q2
2q2

4
+(

c2(4− c2)

8q2
2q2

4
+

c2(4− p2
1)q4q3

16(q4
2(q

2
3 −q3)q2

4)
−

c2(4− p2
1)

16(q2
2q2

4)

+
c2(4− c2)

2(q2
3 −q3)8(q2

3 −q3)
− c2(4− c2)

2(2(q2
3 −q3)2)

)+
(4− c2)2

4(2q2
3 −q3)2 +(

q4q3c4

16(q4
2(q

2
3 −q3)q2

4q2

− c4

16q2
2q2

4
− c4q3q4

32q4
2(q

2
3 −q3)q2

4
− c4

(8(q2
3 −q3))2 +

c4

2(q2
3 −q3)(8(q2

3 −q3))

− c4

4([2(q2
3 −q3)])2 +

c4

16q2
2q2

4
). (5.48)

If M′(c) vanishes at c = 0 A simple computation yields that M′′(c) < 0 which means that the

function M(c) has maximum value at c = 0. Hence we have

|a2a4 −a2
3| ≤ M(0) =

4
4q2

2q2
4
+

16
4((2(q2

3 −q3))2 ,

which implies that

|a2a4 −a2
3| ≤

1
q2

2q2
4
+

16
4(2(q2

3 −q3))2 , (5.49)

which is the required result.

Taking q → 1− in the above result we get the results that have been already proved in [91] as

shown in the following corollary.

Corollary: If f ∈Cs(ez) then |a2a4 −a2
3| ≤

25
576 .



54

Theorem 5.2.10 If f ∈Cs,q (ez) then

|H3(1)| ≤
1

8712 ((q32 −q3)q22 +3/11q4 (q3 −q4))
2 q33q44q22 (q1 −q3)(q3 −1)2(

66q3
2
√

(3q22q32 −3q22q3 +q3q4 −q42)(8q22q32 −8q22q3 +3q3q4 −3q42)
(
q3 − 14

11

)(
q3

2 (q3 −1)2 q2
4 + 17q3q4(q3−1)(q3−q4)q2

2

6 +1/2q4
2 (q3 −q4)

2
)
(q1 −q3)

√
2+30140q3

2(
−396q4

4

685 +q3
3 (q3 − 14

11

)
(q1 −q3)(q3 −1)

)
(q3 −1)2 q2

6+24288
(

9q4
5

23 − 9q3q4
4

23 −q3
3 ((q3 − 14

11

)
q1− 13q3

2

46 − 41q3
253 + 33

46 (q3 −1)q4+q3
4 (q3 − 14

11

)
(q1 −q3)(q3 −1)q3q4 (q3 −1)q2

4+6534 (q3 −q4)

q4
2
(

24q4
5

121 − 24q3q4
4

121 −q3
3
((

q3 − 14
11

)
q1 +

5q3
2

11 − 18q3
11 + 16

11

)
(q3 −1)q4 +q3

4 (q3 − 14
11

)
(q1 −q3)(q3 −1)

)
q2

2+594 (q3 −q4)
2
(((

−q3 +
14
11

)
q1 − 13q3

2

11 + 34q3
11 − 24

11

)
q4 +q3

(
q3 − 14

11

)
(q1 −q3)

)
q3

2q4
3

Proof: Consider

H3(1) =

∣∣∣∣∣∣∣∣∣
a1 a2 a3

a2 a3 a4

a3 a4 a5

∣∣∣∣∣∣∣∣∣= a3

∣∣∣∣∣∣a2 a3

a3 a4

∣∣∣∣∣∣−a4

∣∣∣∣∣∣a1 a3

a2 a4

∣∣∣∣∣∣+a5

∣∣∣∣∣∣a1 a2

a2 a3

∣∣∣∣∣∣, Since a1 = 1

H3(1) = a3(a2a4 − a2
3)− a4(a4 − a2a3)+ a5(a3 − a2

2), by applying triangle inequality, we

get

|H3(1)| ≤ |a3||(a2a4 −a2
3)|+ |a4||(a4 −a2a3)|+ |a5||(a3 −a2

2)|. (5.50)

Now substituting all these values in (5.50) we get the desired inequality for

|H3(1)| ≤
1

8712 ((q32 −q3)q22 +3/11q4 (q3 −q4))
2 q33q44q22 (q1 −q3)(q3 −1)2(

66q3
2
√
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(
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11
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2
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2
)
(q1 −q3)

√
2+30140q3
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−396q4

4
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11
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6+24288
(

9q4
5

23 − 9q3q4
4
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11

)
q1− 13q3
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4 (q3 − 14

11
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2
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4
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q3 − 14
11
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4 (q3 − 14
11
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11
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q3

2q4
3.(5.51)

Taking q → 1− in the above result we get the results that have been already proved in [91] as

shown in the following corollary.

Corollary: If f ∈Cs(ez) then |H3(1)≤ 0.11678.
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CHAPTER 6

CONCLUSION

In this thesis, we have focussed on the coefficients of the functions that are analytic, univalent,

and normalized in an open unit disk. Firstly, we summarized the basic definitions and results

from Geometric Function Theory and those preliminary concepts have been further used to drive

our new results, we have also explored the inventions in Quantum Calculus. The applications of

the q-derivative operator in Geometric Functions Theory has been studied in detail, and further,

the q-theory has been used to present certain novel classes of analytic function with respect to

symmetric points.

Our work is centered on the classes of starlike functions and convex functions with respect to

symmetric points and the q-extension of these classes has been investigated. We have summarized

the existing work done see [91] on class S∗s (e
z) of starlike functions with respect to symmetric

points and its corresponding class of Cs(ez) of convex functions with regard to symmetric points.

The functions in these classes are subordinated to the exponential function. we have presented the

q-version of the above-mentioned classes by defining the class S∗s ,q (e
z) of q-starlike functions

with respect to symmetric points associated with exponential function and the class Cs,q (ez)

of q-convex functions with respect to symmetric points subordinated to exponential functions.

These classes have been introduced with the utilization q-derivative operator. The subordination

technique has been used to investigate these classes.

We have explored certain interesting properties of the functions belonging to our new classes

including the coefficient bound and Fekete Szego problems. The third-order Hankel determinant

determinant of functions in classes S∗s ,q (e
z) and Cs,q (ez) have been determined. It has been



56

noted that our new classes are the refined ones as compared to the existing classes and our new

results are the advancement of the already derived theorems by various researchers in the field of

Geometric Functions Theory. We have validated our newly derived results by taking the limit as

q → 1−, this gave us the known results.

We hope that our research will make a remarkable contribution to the field of univalent functions

theory and it is pleased to mention here that a part of this thesis has been published in a well-

reputed journal given as under.

Zameer Abbas and Sadia Riaz, Coefficient inequalities for certain subclass of starlike functions

with respect to symmetric points related with q-exponential function, Scientific Inquiry and

Review, (2023), 7(4), 35-52.

6.1 Future work

The work presented in this thesis is all about the starlike function and convex functions

with respect to symmetric points associated with the exponential function. We have two ideas

for the extension of our derived results in the future. First, The results presented in our thesis

can be investigated for the advanced classes of q-close-to-convex function and q-quasi convex

function and the inclusion results can be derived. Secondly, Using the Subordination technique

and the concepts of Quantum calculus, the new classes associated with the boundary points can

be investigated and its comparison with the classes presented in our research can be shown.
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