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Abstract

In this research, three new three-step derivative-free methods are developed for

solving system of nonlinear equations. Two of them are memory methods of convergence

order 8.36 and 10, and the third method without memory is of convergence order 8. An

inverse �rst-order divided di¤erence operator for multivariable functions is applied to prove

the local convergence orders of these methods. Numerical results are provided to support

the theoretical conclusions. The comparison with some known methods in the literature

shows that the proposed methods are numerically e¢ cient as compared to these methods.

Keywords: Derivative free iterative methods, Ste¤ensen type methods, With

memory methods Nonlinear system, Error equation, Order of convergence.



iv

Contents

Acknowledgements i

Abstract iii

1 Introduction and Preliminaries 1
1.1 Importance of Derivative-Free Methods . . . . . . . . . . . . . . . . . . . . 2
1.2 Signi�cance of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Applications of Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Development of an Iterative Method . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Aim of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Basic De�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Literature Survey 24
2.1 Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Without Memory Methods . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.2 With Memory Methods . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Without Memory Derivative Free Methods 52
3.1 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Higher Order With Memory Iterative Methods 62
4.1 Modi�cations of Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1.1 NF2 With Memory Method . . . . . . . . . . . . . . . . . . . . . . . 63
4.1.2 NF3 With Memory Method . . . . . . . . . . . . . . . . . . . . . . . 67
4.1.3 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Numerical Solutions of Nonlinear Systems 73
5.1 Computational Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 Some Problems of Nonlinear Systems . . . . . . . . . . . . . . . . . . . . . . 75
5.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



v

6 Conclusions 79
6.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2 Recommendation for Future Work . . . . . . . . . . . . . . . . . . . . . . . 80

Bibliography 82

References 



1

Chapter 1

Introduction and Preliminaries

Finding numerical methods for the solution of systems of nonlinear equation has

a signi�cant area of research. In numerical analysis, solving nonlinear system is a common

problem with applications in the various �elds. The majority of physical issues, includ-

ing biological applications in genetics and population dynamics where impulses originate

spontaneously, can be described by a set of nonlinear equations. Numerical methods play

a crucial role in the �eld of numerical analysis by providing e¢ cient algorithms for solving

mathematical problems that are di¢ cult or impossible to solve analytically.

Nonlinear mathematical problems are more challenging to handle as compared to

linear ones. Solving a system of nonlinear equations is a di¢ cult but important task. Some

iterative methods have been formulated by researchers previously [1�3] for solving nonlinear

equations, including derivative-based schemes and derivative-free schemes. We can simply

treat with the derivatives of functions in some mathematical problems while also it may

be complicated to determine the higher order derivatives. The Newton-Raphson method is
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a numerical method that provides an e¤ective technique to �nd the solution to nonlinear

equations in a variety of scienti�c �elds. This method�s rate of convergence is signi�cantly

higher when compared to the other methods, but it requires derivative computation in each

iteration. To improve the e¤ectiveness of Newton�s method, several schemes have been

proposed in the literature. To establish new methods with higher order of convergence

and e¢ ciency, some of the most essential approaches include using accelerating parameters,

weight functions, and approximations of derivatives by interpolating formulae; restricting

the number of LU decompositions performed during each iteration; etc. It is generally known

that by minimizing the computational cost of the iterative approach, we can increase its

e¢ ciency index. It is crucial to carefully analyze the number of functional evaluations, the

order of convergence, and the operational cost of the iterative approach in order to build

an e¢ cient iterative strategy.

1.1 Importance of Derivative-Free Methods

The development of derivative-free iterative methods with memory for nonlinear

systems is an area of research focused on �nding e¢ cient and robust numerical techniques

to solve complex mathematical problems. Nonlinear systems are mathematical models

that involve equations with nonlinear terms, making their solutions challenging to obtain

analytically.

Traditionally, iterative methods have been widely used to solve nonlinear systems

by iteratively re�ning an initial guess until an acceptable solution is obtained. However,

these methods often require information about the derivatives of the equations, which may
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not be available or may be computational expensive.

Derivative-free methods, on the other hand, aim to overcome these limitations

by relying solely on the function evaluations of the system, without requiring derivative

information. They are particularly valuable when dealing with the situations where the

computation of derivatives is infeasible or impractical [4].

In recent years, there has been a growing interest in developing derivative-free

iterative methods with memory [5, 6]. These methods incorporate memory mechanisms to

store and utilize information from previous iterations, allowing for more e¢ cient convergence

and better exploration of the solution space. By incorporating memory, these methods can

exploit the patterns and structures observed in the previous iterations to guide the search

towards the solution.

The development of such methods involves a combination of mathematical analysis,

algorithm design, and numerical experiments. Researchers aim to devise algorithms that are

not only e¢ cient and accurate but also robust and applicable to a wide range of nonlinear

systems. These methods need to strike a balance between exploration and exploitation,

e¤ectively navigating the solution space while converging to the desired solution.

1.2 Signi�cance of the Study

Derivative-free iterative methods play a signi�cant role in solving nonlinear sys-

tems, particularly when the derivatives of the objective function or constraints are either

unavailable or computational expensive to compute accurately. These methods o¤er sev-

eral advantages and are widely used in various �elds, including optimization, engineering,
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physics, economics, and more. Some of their key signi�cance [1] are as follows:

No Need for derivatives

Traditional optimization techniques often rely on derivatives of the objective func-

tion or constraints. However, in many real-world problems, obtaining derivatives can be

challenging, time-consuming, or even impossible. Derivative-free methods overcome this

limitation by eliminating the requirement for derivative information, making them suitable

for a broader range of problems.

Widely Applicable

Derivative-free methods can be applied to a wide range of functions, including those

that are non-di¤erentiable, discontinuous, noisy, or have complex and irregular behavior.

This �exibility makes them well-suited for tackling real-world problems that often involve

complex and nonlinear relationships.

Computational E¢ ciency

Derivative-free methods often require fewer function evaluations compared to derivative-

based methods. This advantage is especially relevant when evaluating the objective func-

tion is computational expensive, such as in simulations, engineering design optimization,

or black-box optimization. By reducing the number of function evaluations, these methods

can signi�cantly save computational resources and time.

Accessibility and Ease of Implementation

Derivative-free methods are often relatively easy to implement and require minimal

problem-speci�c knowledge. They can be applied as black-box optimization techniques,

where the underlying function�s structure or mathematical properties need not be fully
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understood or explicitly exploited.

1.3 Applications of Numerical Methods

The ultimate goal of developing derivative-free iterative methods with memory is

to provide powerful tools for solving complex nonlinear systems, enabling advancements

in various scienti�c and engineering �elds. These methods play a crucial role in various

aspects of daily life, enabling us to solve complex problems and make informed decisions.

Some common applications of numerical methods are as follows:

Weather forecasting employ numerical methods [2], to simulate atmospheric con-

ditions, predict weather patterns, and provide forecasts. These models solve a system of

partial di¤erential equations to simulate the behavior of the atmosphere, taking into account

factors like temperature, pressure, humidity, and wind velocity.

Numerical methods are extensively used in �nance and investment. Numerical

techniques [3, 7] such as Monte Carlo simulations, numerical integration, and optimization

methods help analyze �nancial risks, determine asset prices, estimate option values, and

optimize investment portfolios. Numerical methods are vital in medical imaging technolo-

gies like computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound.

These methods reconstruct images from collected data, solve inverse problems, and perform

image processing tasks such as denoising, deblurring, and segmentation.

Numerical methods are also employed in data analysis to extract meaningful in-

sights from large data sets. Techniques such as regression analysis, data interpolation, clus-

tering, and machine learning algorithms utilize numerical methods [8] to uncover patterns,
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make predictions, and support decision-making processes. These methods are used exten-

sively in computer graphics and animation to simulate realistic physical phenomena, such

as �uid dynamics, cloth simulation, and particle systems. These methods solve complex

mathematical equations to create visually appealing and physically accurate simulations

and visual e¤ects. Numerical methods like �nite element analysis (FEA) are essential in

structural engineering to analyze and design buildings, bridges, and other structures. FEA

models simulate the behavior of structures under di¤erent loads, helping engineers optimize

designs, assess structural integrity, and ensure safety. These methods aid in transportation

and tra¢ c planning by simulating tra¢ c �ow, optimizing tra¢ c signal timings, and pre-

dicting congestion patterns. These methods help improve tra¢ c management, reduce travel

time, and enhance overall transportation e¢ ciency. They are also used in the design and op-

timization of energy systems, such as power grids and renewable energy installations. They

assist in modeling energy production, distribution, and consumption, optimizing power �ow,

and assessing system stability and reliability.

Numerical methods are essential for controlling robotic systems and designing

control algorithms [9]. They enable accurate modeling, simulation, and control of complex

robotic systems, improving their performance, precision, and autonomy. Trigonometric

functions are approximated using numerical programing. The value of ocean currents is

estimated using numerical methods. Problems involving the heat equation in science and

engineering are solved using numerical techniques. The motion of planets, the development

of aircraft wings, tidal phenomena and volcanic eruption are all predicted using numeri-

cal methods. These are just a few examples of how numerical methods have permeated
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various aspects of daily life. From scienti�c research to technological advancements, numer-

ical methods are instrumental in solving problems, making predictions, and improving our

understanding of the world around us.

1.4 Development of an Iterative Method

It is possible to build methods with memory from methods without memory. The

objective is to add parameters to the original scheme and examine the error equation of the

approach to determine whether any speci�c values of these parameters enable us to improve

the order of convergence of the scheme. When the function 
 depends on more than one

prior iteration, like the iterative expression

�j+1 = 
(�j ;�j�1;�j�2; : : :);

then the iterative scheme is said to be iterative scheme with memory.

Developing an iterative method with memory from a method without memory in

numerical analysis typically involves incorporating a history of past evaluations and using

that information to guide the iterative process. Here�s a general approach to developing

such a method:

Initially, understand the basic iterative method without memory is required to

enhance it with memory. This could be a standard iterative method like Newton�s method,

the bisection method, or any other suitable method for solving the speci�c problem.

De�ne the memory structure. Determine the appropriate data structure to store

the history of function evaluations and corresponding points. The memory structure should

allow e¢ cient retrieval of past evaluations and facilitate the use of historical information
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during the iterative process.

Store function evaluations and points. Adapt the original iterative method to store

the function evaluations and corresponding points in the memory structure. Each time a

new function evaluation is performed, store the evaluation result and the associated point

in the memory.

Modify the iterative procedure to incorporate historical information from the mem-

ory. This can involve using past evaluations to update the search direction, adjust step sizes,

or modify other parameters to improve convergence or e¢ ciency.

Develop a strategy to utilize the historical information during the iterative process.

This can include determining how many past evaluations to consider, de�ning rules for

selecting the most relevant historical data, or designing algorithms to update the memory

structure dynamically.

Test and re�ne the method. Implement the memory-enhanced iterative method

and test it on a range of test problems. Compare its performance with the original method

without memory, evaluating factors such as convergence rate, accuracy, robustness, and

e¢ ciency.

Analyze the convergence properties of the memory-enhanced method. Conduct

theoretical analysis, if possible, to establish convergence guarantees or other desirable prop-

erties. Validate the method by comparing its results with known solutions or using bench-

mark problems.

De�ne the memory-enhanced method based on the analysis and validation results.

Fine-tune the parameters, adjust the memory management strategy, or consider additional
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enhancements based on the insights gained from testing and analysis.

Document the memory-enhanced iterative method, including the algorithm, imple-

mentation details, and any theoretical analysis. Publish your �ndings in academic journals

or share the method with the relevant scienti�c or engineering community.

Remember that the speci�c steps and considerations may vary depending on the

problem and the nature of the original method. The development of an iterative method

with memory requires a combination of mathematical analysis, algorithmic design, and

practical experimentation to ensure its e¤ectiveness and e¢ ciency in solving real-world

problems.

1.5 Aim of the Study

Overall, the development of derivative-free iterative methods with memory repre-

sents an active and exciting area of research, with the potential to revolutionize the way

of approach and solve challenging nonlinear problems, ultimately leading to improved com-

putational techniques and a deeper understanding of complex systems. In this study, the

aim is to �nd the solution of mathematical problems by derivative-free methods that are

without memory and with memory.
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1.6 Basic De�nitions

Here, we provide a few foundational terms and ideas that we will utilize throughout

the thesis.

Nonlinear Equation

An equation in which a term�s maximum degree is two or greater than two is called

nonlinear equation [10]. A nonlinear equation has at least one term that is not linear. When

nonlinear equations are graphed, they show themselves as curved lines. Nonlinear equation

can be represented in the following form

#(�) = 0;

where #(�) is non linear function.

Di¤erent forms of nonlinear equation may include the following:

Polynomial Equation

Equations involving polynomial expressions with terms of di¤erent degrees. A

general form of a nonlinear polynomial equation [11] is given by:

#(�) = cj�
j + cj�1�

j�1 + � � �+ c1� + c0:

where cj ; cj�1; : : : c1; c0 are the coe¢ cients of the polynomial. Nonlinear polynomial equa-

tions are equations where the highest power of the variable, �; is greater than one. Solving

nonlinear polynomial equations can be challenging and often requires numerical methods

or approximation techniques, especially for higher degree polynomials.
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Exponential Equation

Equations in which the variable appears in the exponent and a constant base [13].

The general form of a nonlinear exponential equation is:

#(�) = a:b� + c:d� + � � � = 0:

where a; b; c; d; etc., are constants, and � is the variable. These equation involves exponen-

tial terms with variables raised to di¤erent powers. Note that not all nonlinear exponential

equations have algebraic solutions, and that often numerical methods are required for ob-

taining approximations of the answers. These methods entail performing computations

repeatedly on computers or calculators until an accurate enough result is obtained.

Logarithmic Equation

These equations involve logarithmic functions and contain variables raised to a

power. The general form of a nonlinear exponential equation [13] is:

a logb(c� + d) + e = 0:

where a, b, c, d, and e are constants and � is the variable. This equation represents a

logarithmic function logb(c� + �) multiplied by a constant a and then added to another

constant e; resulting in an equation that must be solved for �:

Trigonometric Equation

Nonlinear trigonometric equations [14] involve trigonometric functions like sine,

cosine, tangent, etc. and have some nonlinear terms. In its simplest form, a nonlinear
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trigonometric equation involves one or more trigonometric functions of an angle or variable.

The equation may also include constants, coe¢ cients, and other algebraic terms. The

general form of a nonlinear trigonometric equation is:

#1(�) = #2(�)

where #1(�) and #2(�) are expressions involving trigonometric functions of the angle �: e.g.,

(�2 � 1) sin(�) = 2� cos(�)

Di¤erential Equation

Di¤erential equations [15] are mathematical equations that involve derivatives of

one or more unknown functions, and the relationships between the functions and their

derivatives are nonlinear. A nonlinear ordinary di¤erential equation (ODE) with a single

variable can be de�ned in general form as the following:

z(�;
d�

dt
;
d2�

dt2
; : : : ;

dj�

dtj
) = 0:

where z represents a nonlinear function involving variable � and its derivatives upto nth

order. The equation states that the function z, its derivatives evaluated at �, and their

derivatives up to the nth order should sum up to zero.

Nonlinear di¤erential equations are commonly used in physics, biology, economics,

and chemistry, among other science and engineering disciplines. There is no universal

approach to solve analytically all nonlinear di¤erential equations because of their complexity.

To �nd approximative answers, however, numerical techniques like numerical approximation

and computer simulations are often used.
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System of Nonlinear Equations

A collection of two or more than two nonlinear equations is referred to as a system

of nonlinear equations. Consider a system of n equations with n unknowns [16],

#1(�1; �2; �3; : : : ; �n) = 0;

#2(�1; �2; �3; : : : ; �n) = 0;

...

#n(�1; �2; �3; : : : ; �n) = 0:

(1.1)

Its more compact form is:

S(�1; �2; �3; : : : ; �n) =

8>>>>>>>>>><>>>>>>>>>>:

#1(�1; �2; �3; : : : �n)

#2(�1; �2; �3; : : : �n)

...

#n(�1; �2; �3; : : : �n)

= 0;

simply,

S(�) = 0: (1.2)

Finding the zeros

The values of the variable vector � satisfying the given system of equations (1.1),

are called the zeros [17] of system of nonlinear equation.

Numerical Method

A numerical method in numerical analysis is a mathematical technique aimed at

getting numerical approximate solution to the mathematical problem. Numerical methods
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[18], including root-�nding methods, aim to �nd the roots or solutions of equations. The

bisection method, Newton-Raphson method, and secant method are popular numerical

methods for �nding roots of equations.

Iterative Methods

Iterative methods [19] are the repetition of a mathematical method performed on

the outcome of a prior step to get gradually better approximations to the problem�s solution.

Iterative procedures are mathematical approaches to problem-solving that produce a series

of approximations until the desired level of precision is reached. In iterative method each

approximation �j is derived from prior approximation �j�1 and also gives improvement

towards solution as compared with the previous iteration �j�1.

Iterative Methods without Memory

Iterative methods without memory use only the value of the previous iteration

in the current iteration. Iterative techniques without memory can considerably boost the

order of convergence of with memory methods with the right choice of parameters, and they

transform into schemes with memory [4].

Iterative Methods with Memory

When more than one previous iteration is needed to calculate the next iteration

in an iterative method for solving nonlinear equations, this is referred to as with memory

numerical method [5]. Methods with memory typically have well-balanced behavior in the

sense of the wideness of the set of convergent initial estimations.



15

Jacobian Matrix

A Jacobian matrix [16] is a matrix of partial derivatives. The Jacobian matrix

provides information about the local behavior of a function and is often used in various

�elds such as physics, engineering, and optimization. If

S(�1; �2; �3; : : : ; �n) =

#1(�1; �2; : : : ; �n)

#2(�1; �2; : : : ; �n)

...

#n(�1; �2; : : : ; �n)

;

then S0(�1; �2; : : : ; �n) is Jacobian and is de�ned as

S0(�1; �2; : : : ; �n) =

266666666664

@#1
@�1

@#1
@�2

: : : @#1
@�n

@#2
@�1

@#2
@�2

: : : @#2
@�n

...
...

...
...

@#n
@�1

@#n
@�2

: : : @#n
@�n

377777777775
: (1.3)

Accelerating Parameter

In numerical methods for solving nonlinear systems, the term "accelerating para-

meter" typically refers to a parameter that controls the convergence behavior of the iterative

algorithm used to solve the system. It is often used in iterative methods such as Newton�s

method or its variants.

The purpose of an accelerating parameter [21] is to improve the convergence rate

of the iterative algorithm, allowing it to converge to the solution more quickly. By adjusting

the value of the accelerating parameter, you can control the trade-o¤ between the speed of
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convergence and stability. It is the function value that boosts the order of convergence of

the numerical method approximation.

The choice of an appropriate accelerating parameter depends on the characteristics

of the speci�c nonlinear system being solved and the desired convergence behavior [22]. It

often requires some trial and error or careful tuning to �nd the optimal value that balances

convergence speed and stability.

Finite di¤erence methods

Finite di¤erence methods are a class of numerical techniques used to approximate

solutions to di¤erential equations. They are widely used in various �elds, including physics,

engineering, and �nance, to solve di¤erential equations that describe physical or mathemat-

ical phenomena.

The basic idea behind �nite di¤erence methods [23] is to approximate derivatives

between neighboring points in a grid by replacing them with �nite di¤erence quotients. In-

stead of working with the continuous functions and derivatives, the equations are discretized

on a grid, and the derivatives are approximated using the function values at discrete points.

Finite di¤erence methods can be applied to solve partial di¤erential equations, such as the

wave equation.

Finite di¤erence methods have di¤erent variations such as central di¤erences, for-

ward di¤erences, and backward di¤erences. The choice of the speci�c method depends on

the problem�s characteristics, such as the order of accuracy required, stability considera-

tions, and computational e¢ ciency.
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1st Order Divided Di¤erence for Vector Valued Functions

The �rst-order divided di¤erence for a vector-valued function is a way to ap-

proximate the derivative of the function using divided di¤erences rather than the exact

derivative [5]. It provides a linear approximation to the rate of change of the vector-valued

function between the two points.

For a multi-variable vector-valued function S, the divided di¤erence is a mapping

[:; :;S] : D�D � Rn � Rn ! L(Rn);

which is described as:

(� � �)[�;�;S] = S(�)� S(�); 8�; � 2 Rn:

In cases where S is di¤erentiable, the �rst-order divided di¤erence is de�ned as follows:

[� + h;�;S] =

1Z
0

S0(� + th)dt; 8�;h 2 Rn:

Computational Errors

In numerical analysis, there are several types of computational errors [24�26] that

can occur during the process of solving mathematical problems using numerical methods.

Here are some common types of computational errors:

Truncation Error

A truncation error [24] occurs when a mathematical operation or a numerical

method introduces an approximation or truncation of an in�nite process. For example,

when solving di¤erential equations using numerical methods, the process of discretizing the
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continuous domain can introduce errors. It is the resulting error that arises when an in�-

nite sum is reduced and approximated by a �nite sum in numerical analysis and scienti�c

computing. For instance, if we use the �rst two non-zero terms of the Taylor series to

approximate the sine function. The speed of light in a vacuum is 2:99792458 � 108ms�1.

Its truncated value up to two decimal places is 2:99 � 108. Hence the truncation error is

the di¤erence between these values, which is 0:00792458� 108.

Round-o¤ Errors

This type of errors arise due to the limited precision of computer arithmetic.

When calculations involve real numbers with in�nitely many decimal places, computers can

only represent them with a �nite number of digits. This can lead to rounding errors and

accumulation of small errors throughout the computations. Round-o¤ errors [24, 25] are

the di¤erence between an approximation of a number used in computation and its exact

(correct) value. For example, if a number like 1
3 and a computer with six signi�cant digits,

this value may be approximated as 0.333333. The di¤erence between the result of 13 and

the value of 0.333333 is the amount of rounding error.

Algorithmic Errors

Algorithmic errors are caused by errors or limitations in the design or imple-

mentation of an algorithm. These errors can lead to incorrect results even with exact

arithmetic [24]. For example, using an incorrect formula or applying an algorithm in an

inappropriate context can introduce algorithmic errors.

Data Errors
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Data errors [25] occur when there are inaccuracies or inconsistencies in the input

data used for computations. These errors can propagate through the calculations and a¤ect

the �nal results. It is important to carefully consider the quality and precision of the input

data to minimize data errors.

Convergence Errors

Convergence errors [25] occur in iterative numerical methods when the sequence

of approximations fails to reach the true solution within a speci�ed tolerance. These errors

can arise due to factors such as inappropriate initial guesses, ill-conditioned problems, or

insu¢ cient number of iterations.

Stability Errors

Stability errors are associated with the numerical stability of an algorithm [26]. An

algorithm is considered numerically stable if small errors in the input data or intermediate

calculations do not signi�cantly a¤ect the �nal result. Unstable algorithms can amplify

errors and produce inaccurate results.

Inherent Error

The term "inherent error" refers to a programming fault that is often unavoidable

and occurs regardless of what the user does. The code has to be modi�ed by the programmer

or software developer to �x this mistake [26]. For instance, consider the decimal number

0.1. In binary representation, it becomes a repeating fraction 0.000110011001100... Due

to the limited number of bits used to represent the number, the binary representation is

truncated at some point. When the truncated value is converted back to decimal, there is
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a small discrepancy between the original value and the rounded value.

Under�ow and Over�ow Errors

Under�ow error occurs when a computed result is smaller in magnitude than the

smallest representable number in the computer�s arithmetic system. Over�ow error occurs

when a computed result exceeds the largest representable number. These errors [26] can

occur when working with very large or very small numbers and can lead to loss of precision

or even crash the computation.

Error Equation

Consider a system of nonlinear equations (1.2). Let �j and �j+1 be any two

consecutive numerical iterations that are near the actual root �t with ej and ej+1are their

respective errors,

ej = �j � �t

ej+1 = �j+1 � �t

be the jth and (j + 1)th step errors. The error equation [6] is de�ned as:

ej+1 = Ce
q
j +O(e

q+1
j );

where C is an asymptotic error constant.

Order of Convergence

Assume the sequence f�jg is the result of a numerical method that converges to

exact root �t. Let ej and ej+1 be the j
th and (j+1)th step errors. If there is a real constant



21

with the value q � 1 such that:

C = lim
j!1



�j+1 � �t



�j � �t

q = lim
j!1

kej+1k
kejkq

; (1.4)

then q is said to be the order of convergence [6] of the sequence f�jg.

Linearly Convergent Sequence

A linearly convergent sequence [27] refers to a sequence of numbers that approaches

a desired value at a linear rate. Using (1.4), a sequence of iteration, f�jg; is linearly

convergent, if q = 1.

Quadratic Convergence

A quadratic convergent sequence [27] refers to a sequence of numbers that con-

verges to a limit with a quadratic rate. In simpler terms, it means that the di¤erence be-

tween consecutive terms in the sequence decreases quadratically as the sequence progresses

towards its limit.

Quadratic convergence is considered faster than linear convergence because the

di¤erence between consecutive terms decreases at a faster rate. As a result, quadratic

convergent sequences typically reach their limit more rapidly compared to sequences that

exhibit linear convergence.

Quadratic convergence is often observed in certain numerical algorithms and itera-

tive methods for solving equations, such as the Newton-Raphson method for �nding roots of

equations. These methods exploit the local quadratic behavior near the solution to achieve

faster convergence. From (1.4), a sequence f�jg is of quadratic convergence order if q = 2.

E¢ ciency Index

The e¢ ciency index [6, 28] takes into consideration the convergence order and
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number of functions or derivative evaluations of each iteration. If q is the convergence order

and n is the number of functions and derivative evaluations per cycle, then the e¢ ciency

index is given by:

E = q1=n:

For instance, the convergence order of Newton�s method is 2 and n = 2, therefore its

e¢ ciency index is 1:4142.

1.7 Organization

In this research, some higher-order Ste¤ensen-type derivative-free schemes are for-

mulated. Divided di¤erences are used for approximations of derivatives. Six chapters con-

stitute this thesis.

� The �rst one concerns the introductory concept of the research work carried out. It

also contains some basic de�nitions.

� The second chapter highlights the contributions of some well-known researchers. It

also contains a convergence analysis of some well-known previous iterative methods.

� The third chapter presents the formulation and convergence analysis of new multi-

step derivative-free methods without memory for the solution of system of nonlinear

equations.

� The development and convergence analysis of the newly established iterative derivative-

free methods with memory are covered in the fourth chapter.

� Numerical testing of the newly developed methods is provided in the �fth chapter.
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� The sixth one comprises conclusions and future recommendations.
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Chapter 2

Literature Survey

Numerous analytical problems concerning several �elds of science, engineering, and

technology require the solution of the nonlinear equation

#(�) = 0; (2.1)

for

# : D � R! R;

is a nonlinear function as well as the nonlinear system of equation

S(�) = 0; (2.2)

for

S : D � Rn ! Rn :

We have simple as well as complicated functions and mostly the solution of those com-

plicated functions is not easily determined. We use iterative methods [29] to solve such

      Chapter 2

 Literature Survey 
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problems. These methods are designed to solve complex problems by gradually re�ning an

approximate solution until a desired level of accuracy is achieved.

Iterative methods are often employed to solve complex mathematical problems

that cannot be solved analytically or directly [30]. These problems may involve large sys-

tems of equations, optimization, numerical integration, or di¤erential equations. Iterative

methods provide a practical and e¢ cient approach to tackle such problems. In many cases,

iterative methods are more computational e¢ cient and scalable compared to direct meth-

ods. Direct methods aim to obtain an exact solution in a �nite number of steps, which can

be computational expensive and memory-intensive for large-scale problems. In contrast,

iterative methods provide approximate solutions that can be re�ned gradually, allowing for

more e¢ cient computation and better scalability. Iterative methods can handle large-scale

problems by performing computations in smaller manageable chunks, which reduces mem-

ory requirements and computational costs. Iterative methods are particularly e¤ective in

solving nonlinear equations and ill-conditioned problems. Nonlinear equations often lack

analytical solutions, and iterative methods provide an iterative search for their solutions.

Ill-conditioned problems, where small changes in the input can lead to large changes in

the output, can also be handled e¤ectively by iterative methods. Iterative methods can

often provide valuable insights into the behavior and characteristics of a problem through

convergence analysis. By examining the convergence behavior of an iterative algorithm,

researchers can determine the rate of convergence, stability, and the conditions under which

the method will produce an accurate solution.

The most popular and e¤ective method for �nding a solution of (2.2) is the Newton-
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Rapson�s scheme [31], which is represented by:

�j+1 = �j � [S0(�j)]�1S(�j); j = 0; 1; 2; : : : ;

where S0(�j) is the Jacobian matrix represented in (1.3) computed at j
th iteration. In each

iteration, this numerical scheme requires one function evaluation and its derivative value

at a point. This method converges quadratically. This approach has a few �aws. When

S is a simple function and we can easily compute the �rst-order derivative, the method is

widely used and suitable. In other cases, Newton�s method fails and is not applicable for

non-di¤erentiable functions. We use the secant method to get over this di¢ culty, which uses

function value rather than derivative in Newton�s method, but it converges superlinearly

instead of quadratically. To manage this di¢ culty, Ste¤ensen�s technique was developed.

Ste¤ensen�s method and Newton�s method have the similarity that both formulations are

quadratically convergent, which is where their comparison ends.

When using an iterative scheme for solving nonlinear system of equation that

involve derivatives may require computational cost. Researchers are actively engaged to

de�ne iterative methods with fewer computational cost and that are time saving. In the

recent years, researchers have been working to develop one point and multiple-point cost-

e¤ective methods for solving nonlinear equations. They presented various modi�cations

using approximations of derivatives and Taylor expansions. Newton�s method requires the

evaluation of two functions at each step, i.e., S and the �rst derivative of S, while the

Ste¤ensen�s method involves functions only, which is helpful when the derivative of function

S is di¢ cult to �nd or does not exist.

Overall, iterative methods are of paramount importance in scienti�c and compu-
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tational �elds, enabling the e¢ cient and accurate solution of complex problems. Their

�exibility, scalability, and ability to handle large-scale and nonlinear problems make them

indispensable tools for researchers, engineers, and analysts.

2.1 Iterative Methods

The iterative methods may be classi�ed according to our topic in the categories

whose details and examples are given in the following:

2.1.1 Without Memory Methods

Single-step iterative methods are numerical methods for solving equations or sys-

tems of equations by repeatedly improving an initial guess until an approximation of the

solution is obtained. Iterative methods gradually improve the result through subsequent it-

erations, compared to direct approaches, which give an accurate solution in a �nite number

of steps.

Newton Raphson�s Technique

Suppose �t be a simple zero of #, with #(�t) = 0; #
0(�t) 6= 0: For a single non-linear

equation (2.1), Newton�s method for �nding an exact root �t is given as [16]:

�j+1 = �j �
#(�j)

#0(�j)
:

For the system of non-linear of equations (2.2), the modi�ed Newton�s method [16] which

solves it iteratively is

�j+1=�j�[S0(�j)]�1S(�j); j = 0; 1; 2; : : : (2.3)
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where [S0(�j )]�1 is the inverse of S0(�j ) and is known as the Jacobian matrix, given by

(1.3). It has quadratic convergence [32,33].

Ste¤ensen�s Method

Ste¤ensen�s method [32] is a root-�nding approach similar to Newton�s method,

in which an approximation of the derivative is substituted rather than the derivative itself

in the Newton-Rapson method [34]. It also has a quadratic convergence order similar

to Newton�s method. This method was �rst introduced by Frederik Ste¤ensen in 1930.

Ste¤ensen developed this iterative method [35] for �nding the �xed point of a function.

Ste¤ensen�s method is a modi�cation of Newton�s method that is given as:

�j+1 = �j �
#(�j)

2

#(�j + #(�j))� #(�j)
; (2.4)

where #0 is a derivative of #, and is replaced by the di¤erence at each step that is:

#0(�j) �
#(�j + #(�j))� #(�j)

#(�j)
:

The generalized Ste¤ensen�s method for system of nonlinear equations can be expressed as

follows:

�j+1 = �j � [�j ;�j ;S]�1S(�j); j = 0; 1; 2; : : : ;

where,

�j = �j + S(�j):

Note that �rst order divided di¤erence of S on the points � and � can be de�ned as

component to component as follows:

[�;�; S]i;k =
#i(�1;�2; :::;�k�1;�k;�k+1; :::�n)�#i(�1;�2; :::;�k�1;�k;�k+1; :::; �n)

�k � �k
; 1 � i; k � n:
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The choice of method depends on the speci�c problem being solved, as each approach has

advantages and limitations.

Multistep Methods

A multistep method without memory combines information from several iterations

to compute the solution at the current iteration. Unlike methods with memory, these

methods do not require storing or accessing the intermediate solutions between the previous

iterations and the current iteration.

� In 2008, Noor et al. [36] developed two di¤erent two-step iterative methods for solving

the system of nonlinear equations with a cubic order of convergence, which are as

follows: 8>><>>:
yj = �j � S0(�j)�1S(�j);

�j+1 = �j � 4[S0(�j) + 3S0(
�j+2yj

3 )]�1S(�j); j = 0; 1; 2; : : :

(2.5)

and 8>><>>:
yj = �j � S0(�j)�1S(�j);

�j+1 = �j � 4[3S0(
2�j+yj

3 ) + S0(yj)]�1S(�j); j = 0; 1; 2; : : :

The error equation that (2.5) satis�es is given by:

[S0(�j) + 3S
0(
�j + 2yj

3
)]ej+1 = [S

00(�j)S
0(�j)

�1S00(�j)]e
3
j +O(ej)

4:

� In 2011, Grau-Sanchez et al. [37] presented two iterative methods with order of con-

vergence as four and �ve respectively are given as:

�
(3)
j+1 = �3(�j ;�

(1)
j+1) = �

(1)
j+1 � 2S

0(�j)
�1S(zj);
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where

zj = �
(1)
j+1 �

1

2
S0(�j)

�1S(�
(1)
j+1);

�
(1)
j+1 = �j � S

0(�j)
�1S(�j);

and the error results in

E3 = �
(3)
j+1 � �t =

9

2
C32e

4
j +O(e)

5:

The next iterative method they presented is

�
(4)
j+1 = �4(�j ;�

(1)
j+1;�

(2)
j+1) = �

(2)
j+1 � S

0(�
(1)
j+1)

�1S(�
(2)
j+1);

and the error equation is

E4 = �
(4)
j+1 � �t = 8C2(C2ej)(C3e

3
j ) +O(ej)

6:

� In 2012, Soleymani et al. [38] introduced the seventh-order approach for solving sin-

gle variable nonlinear equations, implying a �rst-order divided di¤erence, which is

represented as follows: 8>>>>>><>>>>>>:

yj = �j �
#(�j)

#0(�j)
;

tj = yj �G(�j)
#(yj)
#[�j ;yj ]

;

�j+1 = tj �H(�j)
#(tj)
#[yj ;tj ]

;

(2.6)

where

�j =
#(yj)

#(�j)
;

G and H are real valued weight functions and #[�j ;yj ] means the �rst order divided

di¤erence at the point �j and yj with

#[�j ; yj ] =
#(yj)� #(�j)
yj � �j

:
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� In 2014, Abad et al. [39] extended (2.6) for the system of nonlinear equations as

follows: 8>>>>>><>>>>>>:

yj = �j � [S0(�j)]�1S(�j);

tj = yj � h(�j)[�j ;yj ; S]�1S(yj);

�j+1 = tj � K(�j)[yj ;tj ; S]�1S(tj);

(2.7)

where

�j = I � [S0(�j)]�1[�j ;yj ;S]

and h and K are real valued weight functions. The convergence order of without

memory method (2.7) for the solution of system of nonlinear equations is seven.

� In 2013, Ren et al. [40] developed the Ste¤ensen-type three-step multi-point method

as follows:8>>>>>><>>>>>>:

yj = �j � [�j ;�j ;S]�1S(�j);

zj = �j + a(yj � �j);

�j+1 = �j � [�j ;�j ; S]�1(bS(�j) + cS(zj)); j = 0; 1; 2; :::;

where S : Rn ! Rn is system of nonlinear equations and [�j ;�j ;S] is the divided

di¤erence. Ren�s proved that [40] the convergence order of Ste¤ensen-type method is

quadratic if (1� a)c = 1� b and cubic if a = b = c = 1:

� In 2014, Sharma et al. in [31] proposed a derivative-free iterative method with fourth

order of convergence is as follows:8>><>>:
yj = �j � [�j ;�j ;S]�1S(�j );

�j+1 = yj � (aI +G(j)((3� 2a)I + (a� 2)G(j)))[�j ;�j ;S]
�1S(yj );

(2.8)
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wherein

�j = �j + bS(�j ); zj = yj + cS(yj ); a 2 R; b; c 2 R=f0g;

G(j) = [�j ;�j ;S]
�1[zj ;yj ;S]

and I is the identity matrix.

� Sharma et al. [42] improved the convergence speed of (2.8) to 2+
p
5 when a 6= 3 and

2 +
p
6 when a = 3 by considering:8>>>>>><>>>>>>:

B(j) = �[�j�1;�j�1;S]�1; j � 1;

yj = �j � [�j ;�j ;S]�1S(�j ); j � 0,

�j+1 = yj � faI +Gj((3� 2a)I + (a� 2)Gj)g [�j ;�j ;S]�1S(yj );

(2.9)

where

�j = �j +B
(j)S(�j ):

� In 2014, Sharma et al. [43] established a multi-point three step "seventh order scheme",

which is de�ned as:8>>>>>><>>>>>>:

yj = �j � [�j ;�j ;S]�1S(�j ); where �j = �j +B
(j)S(�j ):

zj = yj�
n
3I � [�j ;�j ;S]�1([yj ;�j ;S] + [yj ;�j ;S])

o
[�j ;�j ;S]

�1S(yj);

�j+1 = zj � [zj ;yj ;S]�1
�
[�j ;�j ;S] + [yj ;�j ;S]� [zj ;�j ;S]

	
[�j ;�j ;S]

�1S(zj ):

De�ning ej = yj � �t, the error equations are as follows:8>>>>>><>>>>>>:

ee = (I + �S0(�t))ej + �S0(�t)(C2e2jC3e3j ) +O(ej)4;
ej = C2eejej +O(ej)3;
eej = C22 (ee2j + e2j )ej + C2eejC2ejej +A2e2j +O(ej)5:

(2.10)
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By using (2.10), the following error equation is obtained:

ej+1 = C2ejC2eej + C2ejC2ej � C3ejej)eej +O(ej)8:
� In 2016, Wang et al. [4] introduced two multistep derivative-free iterative techniques

with four- and six-order convergence for solving systems of nonlinear equations, which

are as follows:

yj = �j � [�j ;�j ;S]�1S(�j);

�j+1 = 	4(�j ;�j ;�j ;yj) = yj��1S(yj); (2.11)

where

�1 = (3I � 2[�j ;�j ;S]�1[yj ;�j ;S])[�j ;�j ;S]�1;

�j = �j + S(�j); �j = �j � S(�j);

and I is the identity matrix. The order of convergence of (2.11) is four. The other

form they presented is as follows:

yj = �j�[�j ;�j ;S]�1S(�j);

zj = 	4(�j ;�j ;�j ;yj) = yj � �1S(yj); (2.12)

�j+1 = 	5(�j ;�j ;�j ;yj ;zj ) = zj � �1S(zj ):

The scheme (2.12) has one more functional evaluation, and its order of convergence

is six with the following error equation:

ej+1 = (�11S0(�)2C3C32+30C52�11C3C32+2S0(�)2C23C2+C23C2+(S0(�)4C23C2)ej+O(e7j ):
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� In 2019, Cordero et al. [44] developed the four-order convergent scheme for solving

nonlinear equation S(�) = 0 as follows:8>>>>>><>>>>>>:

yj = �j � �S0(�j)�1S(�j);

�j+1 = �j � [I + I
2�M(�j)(I +

�
2� (I +

�
2�M(�j))

�1M(�j))]S(tj)S
0(�j)

�1S(�j);

where; M(�j) = I � S0(�j)�1S0(yj);
(2.13)

�; � and � 2 R; � 6= 0 and I denotes the n�n identity matrix. The error equation is:

ej+1 = ((5� 2�)C32 � C3C2 +
C4
9
)e4j +O(ej)

5:

Based on the scheme (2.13), the following three-step, sixth order scheme is proposed :8>>>>>><>>>>>>:

yj = �j � 2
3S

0(�j)
�1S(�j);

�j = �j � [I + 3
4M(�j)(I + 6(4I � 3�M(�j))

�1M(�j))]S(tj)S
0(�j)

�1S(�j);

�j+1 = zj � [(
S0(�j) + �S0(yj))�1(S0(�j) + �S0(yj))]S0(�j)�1S(zj));

where � 2 R; I denotes the n � n identity matrix,
; � and � are newly introduced

parameters. The error equation is:

ej+1 =
1

729(I + �)
(1458�(I + �)C3C

3
2 + 972��� 8748�� 2430�+ 21870)C52

�81(1 + �)C3C4 + (486� 54�)C22C4 + 729(I + �)C23C2

+(486�� 4374)C22C3C2 � 3645(1 + �)C3C32 )e6j +O(ej)7;

which showed that 8� 2 R and 8� 2 R; � 6= 1; the presented scheme has sixth order

of convergence.

� In 2019, Behl et al. [45], presented three-step iterative formulation, which is de�ned
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as: 8>>>>>><>>>>>>:

yj = �j � S0(�j)�1S(�j);

zj = yj �
�
I + (�� 2)U(j+1)

��1
(S+ �U(j+1))S0(�j )�1S(yj);

�j+1 = zj � ([yj ; zj ;S])�1S(zj ):

(2.14)

where [yj ; zj ;S] is a �rst order divided di¤erence and � is a free disposable parameter

with

U(j+1) = I � [S0(�j )]�1[�j ;yj ;S]:

Scheme (2.14) has sixth-order convergence.

� In 2019, Bahl et al. [44], generalized the three-parameter iteration scheme for the

solution of single variable nonlinear equations is given below:

�j+1 = �j �
�
1 +

M(�j)

2�

�
1 +

�M(�j)

2� � �M(�j)

��
#(�j)

#0(�j)
; � 6= 0; (2.15)

where

M(�j) = 1�
#0(yj)

#0(�j)
; yj = �j � �

#(�j)

#0(�j)
;

and extend scheme (2.15) to solve a system of nonlinear equations S(�) = 0: The

generalized form is:8>>>>>><>>>>>>:

yj = �j � �S0(�j)�1S(�j );

�j+1 = �j � [I + 1
2�M(�j)(I +

�
2� (I �

�
2�M(�j))

�1M(�j)]S
0(�j)

�1S(�j);

where, M(�j) = I � S0(�j)�1S0(yj); �; �; � 2 R and � 6= 0;
(2.16)

and I denotes n � n identity matrix. The convergence order of (2.16) is Four, where

� = 2
3 and � = 2:
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Based on the two-step fourth-order scheme (2.16), a three-step sixth-order scheme

was given that involves one more functional evaluation in comparison to (2.16).is as

follows:8>>>>>><>>>>>>:

yj = �j � 2
3S

0(�j)
�1S(�j);

zj = �j � [I +
3M(�j)

4 (I + 6(4I � 3�M(�j)�1M(�j)]S0(�j)�1S(�j);

�j+1 = zj � [(
S0(�j) + �S0(yj))�1(S0(�j) + �S0(yj))]S0(�j)�1S(zj); � 2 R:

where I refer n� n identity matrix, 
; � and � are newly added real parameters.

2.1.2 With Memory Methods

� In 2019, Fuad et al. [22] presented a one-step method with memory, with an order of

convergence of 3.90057 as follows:8>>>>>><>>>>>>:

�j = �j � �j#(�j); �j = 1
N 0
4(�j)

;

&j =
N
00
5 (�j)

2N 0
5(�j)

; j � 2;

�j+1 = �j �
#(�j)

#[�j ;�j ]
(I + &j

#(�j)

#[�j ;�j ]
); j � 0:

Where �j and &j are accelerating parameters. The acceleration of convergence would

be attained without the use of any functional evaluation, as well as without imposing

more steps.

� In 2019, Cordero et al. [47] presented a scheme with memory without adding new

functional evaluation by approximating the accelerating parameter using Newton�s

interpolating polynomials, which are as follows:

�j+1 = �j � �j#(�j); (2.17)

�j =
1

N 0
2(�j)

� 1
�j(#(�j�1)�#(�j�2))+�j�1(#(�j�2)�#(�j))+�j�2(#(�j)�#(�j�1))

(�j��j�2)(�j�2��j�1)
+ #[�j ;�j�1]

;
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the order of convergence of (2.17) is 1.8393. For the solution of nonlinear systems,

Cordero et al. [47] modi�ed the method (2.17) in the form of following iterative ex-

pression with memory:

�j+1 = �j � [[�j ;�j�1;S] + [�j ;�j�1;�j�2;S](�j � �j�1)]�1S(�j); j = 2; 3; : : :

with the order of convergence is 1.8393 and error equation is

ej+1 � C3ej�1ej�2ej :

� In 2020, Chicharro et al. [5] developed an iterative method with memory by using the

approximation S0(�t), which is the derivative, using Kurchatov�s divided di¤erence

operator. [2�j � �j�1;�j�1;S] by setting b = B(j), where B(j) is a matrix.

B(j) = �[2�j � �j�1;�j�1;S]�1 � �[S0(�t)]�1; (2.18)

The following derivative-free family of iterative methods, denoted by FM3, with third-

order convergence was given:8>>>>>><>>>>>>:

yj = �j � [�j ;�j ;S]�1S(�j);

�j+1 = yj � [�j ;yj ;S]�1S(yj); j = 0; 1; 2; : : :

where �j = �j + bS(�j):

for any value of b with the following error equation:

ej+1 = C2(1 + bS
0(�t))e

3
j +O(e

4
j );

where ej = �j ��t: In this way, a new �fth-order convergence method (namely FM5)

with memory by using (2.18), presented by Chicharro et al. [5], whose expression is
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as follows:

�j = �j � [2�j � �j�1;�j�1;S]�1S(�j);

yj = �j � [�j ;�j ;S]�1S(�j);

�j+1 = yj � [�j ;yj ;S]�1S(yj); j = 1; 2; : : : ;

and with the following error equation:

ej+1 = (�8A52e3j + 8A42e2j )e3j +O(e4j ):

� In 2021, Beny Neta. [48] suggested a three-step method for solving nonlinear equations,

with a 7.35 convergence order; this is given below.

yj = �j �
#(�j)

(#(�j�2)�#(�j))
�j�2��j

� (#(�j�2)�#(�j�1))
�j�2��j�1

+
(#(�j�1)�#(�j))

�j�1��j

;

zj = yj �
#(yj)

#0(yj)
;

�j+1 = zj �
#(zj)

#0(zj)
:

The derivatives in the last two steps are approximated by Newton�s interpolating

polynomial of degree three, which is as follows:

#0(yj) = [yj ; �j ]� [yj ; �j ; �j�1](yj � �j) + [yj;�j ; �j�1;�j�2](yj � �j)(yj � �j�1);

and

#0(zj) = [zj ; yj ]� [zj ; yj ; �j ](zj � yj) + #[zj ; yj ; �j ; �j�1](zj � yj)(yj � �j):

� In 2022, Bayrak et al. [49] developed a modi�cation of the Newton-Rapson method

by using fractional derivatives and fractional Taylor expansions. They developed two
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methods called the �rst- and second-order Newton-Rapson methods. The �rst-order

method, denoted as FNR, is as follows:

�j+1 = �j + (
#(�j)

#(�)(�j)
�(� + 1))1=� ; #(�)(�j) 6= 0:

The formulation of �rst-order FNR gives the following second-order FNR:

�j+1 = �j + (
�(2� + 1)[�#(�)(�j)

(��+1) +

r
(
#(�)(�j)

(��+1) )
2 � 4 #(2�)(�j)

�(2�+1)#(�j)
]

2#(2�)(�j)
)
1
� :

The order of convergence of the �rst-order fractional Newton-Rapson (FNR) method

was quadratic, while that of the second FNR is 3=2. The number of iterations for

both the developed methods were decreased by reducing the fractional parameter to

one.

2.2 Convergence Analysis

Iterative methods produce sequences of iterates whose convergence to exact root

must be examined in order to validate the proposed method. In this section, convergence of

some recently developed iterative methods [4,5] have studied and given in form of theorems.

Without Memory Method

Wang et al. [4], using the central di¤erence [�j + S(�j);�j � S(�j);S] proposed

the following iterative scheme:8>><>>:
yj = �j � [�j ;�j ;S]�1S(�j);

�j+1 = 	4(�j ;�j ;�j ;yj) = yj � �1S(yj);
(2.19)
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where

�1 = (3I � 2[�j ;�j ;S]�1[yj ;�j ;S])[�j ;�j ;S]�1; (2.20)

�j = �j + S(�j); �j = �j � S(�j):

and I is the identity matrix.

Wang et al. [4], also introduced zj = 	4(�j ;�j ;�j ;yj); in order of improve the

convergence and proposed following method:

�j+1 = 	5(�j ;�j ;�j ;yj ; zj) = zj � �1S(zj): (2.21)

with the following error equation:

ej+1 = (�11S0(�t)2C3C32+30C52�11C3C32+2S0(�t)2C23C2+C23C2+(S0(�t)4C23C2)e6j+O(e7j ):

which shows order of convergence of the given method is Six. The equation (2.21) increases

one function evaluation as compared to (2.19).

Theorem 1 Let �t 2 Rn be a solution of the system S(�) = 0 and S : D � Rn ! Rn; be

a su¢ ciently di¤erentiable function in an open convex set D: Let us suppose that S0(�) is

continuous and nonsingular in �t 2 D; a solution of S(�) = 0. Iterative methods given by

(2.19) converges to �t when the initial iteration �0 2 Rn is close enough to �t, with order

of convergence four and having the following error equation:

" = (�(S0(�t)2C3C2 + 5C32 � C3C2)e4j +O(e6j );

where ej = �j � �t and Ej = yj � �t: Iterative method (2.21) is of six order convergence

and its error equation is

ej+1 = (�11S0(�t)2C32C3+30C52+S0(�t)4C2C23+2S0(�t)2C2C23�11C32C3+C2C23 )e6j+O(e7j ):
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where ej+1 = �j+1 � �t:

Proof. The �rst order divided di¤erence of S [50] is

[�;� + h; S] =

Z 1

0
S0(� + ht)dt; (2.22)

expanding S0(� + th) in the Taylor series at the point �

[�;� + h;S] =

Z 1

0
S0(�)dt+

h

2

Z 1

0
S00(�)dt+

h2

6

Z 1

0
S000(�)dt+ � � �

integration gives:

[�;�+h;S] = S0(�)+
1

2
S00(�)h+

1

6
S000(�)h2+

1

24
S(iv)(�)h3+

1

120
S(v)(�)h4+ � � � . (2.23)

Expanding �j = ej + �t; using Taylor series and making suitable substitution. i.e., Ci =

1
i!S0(�t)

S(i)(�t); i = 2; 3; :::;

S(�j) = S
0(�t)(C5e

5
j + C4e

4
j + C3e

3
j + C2e

2
j + ej): (2.24)

On di¤erentiating (2.24),8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

S0(�j) = S
0(�t)

�
5C5e

4
j + 4C4e

3
j + 3C3e

2
j + 2C2ej + I

�
;

S00(�j) = S
0(�t)

�
20C5e

3
j + 12C4e

2
j + 6C3ej + 2C2

�
;

S000(�j) = S
0(�t)

�
60C5e

2
j + 24C4ej + 6C3

�
;

S(iv)(�j) = S
0(�t) (120C5ej + 24C4) ;

S(
v)(�j) = S

0(�t) (120C5) :

(2.25)

Using (2.25) in (2.23),

[�j ;�j + h;S] = S0(�t)

�
(5C5e

4
j + 4C4e

3
j + 3C3e

2
j + 2C2ej + I) +

1

2
h((20C5e

3
j

+12C4e
2
j + 6C3ej + 2C2) +

1

6
h2(60C5e

2
j + 24C4ej (2.26)

+6C3) +
1

24
h3(120C5ej + 24C4) +

1

120
h4120C5

�
:
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Setting y = �+h and Ej = y� �t gives h = Ej � ej . Replacing value of h in (2.26) gives:

[�j ;yj ;S] = S0(�t)
�
(I +EjC2 +E

2
jC3) + (4C4E

2
j + C3Ej + C2)ej + (10C5E

2
j

�2C4Ej + C3)e2j + (�10C5Ej + 2C4)e3j + 5C5e4j +O(e5j )
�
: (2.27)

Considering �j � �t = e+ S(�j) and �j � �t = e� S(�j) , replacing Ej by e+ S(�j) and

ej by e� S(�j);

[�j ;�j ;S] = S0(�t)(I + 2C2ej + (3C3 + C3S
0(�t)

2)e2j +O(e
3
j ): (2.28)

Inverse divided di¤erence using Taylor series expansion of (2.28) is:

[�j ;�j ;S]
�1 = (I � 2C2ej + (4C22 � 3C3 � C3S0(�t)2)e2j +O(e3j ): (2.29)

Now,

Ej = yj � �t;

From (2.19) yj = �j � [�j ;�j ;S]�1S(�j) and �j � �t = ej ; therefore,

Ej = �j � [�j ;�j ;S]�1S(�j)� �t;

Ej = ej � [�j ;�j ;S]�1S(�j): (2.30)

Using (2.29) and (2.24) in (2.30) gives:

Ej = C2e
2
j + (�2C22 + 3C3)e3j +O(e4j ): (2.31)

Similar to (2.24),

S(yj) = S
0(�t)(Ej + C2E

2
j +O(E

3
j ); (2.32)

Also,

�1 = (3I � 2[�j ;�j ;S]�1[yj ;�j ;S])[�j ;�j ;S]�1;
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Using (2.29) and (2.27) in (2.20), gives:

�1 = I+(C3S
0(�t)

2�6C22+C3)e2j+(16C32�6C3C2�4C3C2S0(�t)2�4C4)e3j+O(e4j ): (2.33)

The error equation of scheme (2.19) is:

" = 	4(�j ;�j ;�j ;yj)� �t = zj � �t;

" = yj � �1S(yj)� �t;

" = Ej � �1S(yj): (2.34)

Using (2.32) and (2.33) in (2.34) gives:

" = (�(S0(�t)2C3Ej � (S)0(�t)2C3C2E2j + 6C32E2j �EjC3 � C3C2E2j + 6C22Ej)e2j � C2E2j

(2.35)

Which shows that order of convergence of (2.35) is 4. As last term C2E
2
j includes E

2
j and

from (2.31), convergence order of Ej is evaluated equals to 2. Therefore order of convergence

of E2j will be 4.

Solving (2.21) gives,

ej+1 = �j+1 � �t;

ej+1 = 	5(�j ;�j ;�j ;yj ; zj)� �t;

ej+1 = zj � �1S(zj)� �t;

ej+1 = "� �1S(zj):

Similar to (2.32),

S(zj) = S
0(�t)("+ C

2
2"
2 +O("3)); (2.36)
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Using (2.35), (2.33) and (2.36), the convergence order of (2.21) becomes six and the error

is equation is as follows:

ej+1 = (�11S0(�t)2C3C32 + 30C52 � 11C3C32 + 2S0(�t)2C23C2 + C23C2 + (S0(�t)4C23C2)e6j +

(�2S0(�t)2C52C3 + 11C72 � 2C52C3)e8j +O(e9j ):

With Memory Method

It is conventional to work with the divided di¤erence operator

[�; �;S] : Rn � Rn ! L(Rn);

such that

(�� �)[�; �;S] = S(�)� S(�);

where L(Rn) denotes the linear mappings of Rn; approximation of S0(�j). This allows for the

design of derivative-free methods for solving nonlinear systems. Traub-Ste¤ensen�s family

of iterative methods is developed by substituting this operator for the Jacobian matrix in

Newton�s scheme [51] using the iterative structure

�
j+1

= �j � [�j ;�j ;S]�1S(�j); j = 1; 2; : : : ; (2.37)

where

�j = �j + bS(�j);

and b is a nonzero arbitrary parameter(i.e., b = �[S0(�t)]�1),. Let�s note that the iterative

expression (2.1) for b = 1 is the well-known Ste¤ensen�s approach for systems, that Samanski

introduced in [52].
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Chicharro et al. [5] developed iterative with memory methods, by approximating

S0(�t) using Kurchatov�s divided di¤erence operator:

[2�j � �j�1;�j�1;S]:

Set b =B(j) where B(j) is a matrix given by:

B(j) = �[2�j � �j�1;�j�1 ;S]
�1 � �[S0(�t)]�1;

Thus, the resulting scheme is a method with memory, represented by FM3 with the iterative

scheme given as follows::8>><>>:
�j = �j � [2�j � �j�1;�j�1; S]�1S(�j);

�j+1 = �j � [�j ;�j ; S]�1S(�j); j = 0; 1; 2; : : :

(2.38)

with the following error equation:

ej+1 = 2C22e
3
j + (3C

3
2 + 2C2C3)e

4
j + (2C

4
2 + 6C

2
2C3 + 3C2C4 � C5)e5j

+(7C32C3 + 2C
2
2C4 � C2C23 + C2C5 + 2C3C4)e6j +O(e7j ):

where,

ej = �j � �t:

On this basis, a novel memory-based �fth order (namely FM5) convergence approach was

introduced. This said technique is as follows:8>>>>>><>>>>>>:

�j = �j � [2�j � �j�1 ;�j�1 ;S]
�1S(�j);

yj = �j � [�j ;�j ;S]�1S(�j);

�j+1 = yj � [�j ;yj ;S]�1S(yj); j = 1; 2; : : :

(2.39)
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Theorem 2 Let �t 2 Rn be a solution of the system S(�) = 0 and S : D � Rn ! Rn; be

a su¢ ciently di¤erentiable function in an open convex set D: Let us suppose that S0(�) is

continuous and nonsingular in �t 2 D; a solution of S(�) = 0. Iterative methods given by

(2.38) converges to �t when the initial iterations �0; �1 2 Rn are close enough to �t, with

order of convergence three and having the following error equation

ej+1 = 2C22e
3
j + (3C

3
2 + 2C2C3)e

4
j + (2C

4
2 + 6C

2
2C3 + 3C2C4 � C5)e5j

+(7C32C3 + 2C
2
2C4 � C2C23 + C2C5 + 2C3C4)e6j +O(e7j ):

where ej = �j � �t , j = 0; 1; 2; : : : ; Ci =
S(i)(�t)
i!S0(�t)

; i � 2:and Iterative method (2.39) is of

�fth order convergence and its error equation is:

ej+1 = (8C
4
2�22C22C3+5C2C4�2C23�C5)e5j+(16C52+80C32C3�14C22C4+2C2C23 )e6j+O(e7j ):

Proof. Let us denote the approximate error in each iteration by ej = �j � �t for

all j. By using Taylor�s expansion,

S(�j) = S(�t + ej);

S(�j) = S(�t) + S
0(�t)ej +

S00(�t)

2!
e2j +

S000(�t)

3!
e3j + � � � (2.40)

Putting S(�t) = 0 in (2.40) and making suitable substitution i.e.

Ci =
S(i)(�t)

i!S0(�t)
; i � 2:

S(�j) = S
0(�t)(ej + C2e

2
j + C3e

3
j + C4e

4
j + C5e

5
j ): (2.41)

Consider,

�j = �j + b0S
0(�t)S(�j);
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�j = �t + (b0S
0(�t) + I)ej + b0S

0(�t)C2e
2
j + b0S

0(�t)C3e
3
j + b0S

0(�t)C4e
4
j ; (2.42)

�1 = I + b0S
0(�t); (2.43)

By using (2.43) in (2.42),

�j = �t + �1ej � C2e2j � C3e3j + C2�1e2j � C4e4j + C3�1e3j + C4�1e4j (2.44)

Recall (2.23), i.e.

[� + h;�;S] = S0(�) +
1

2
S00(�)h+

1

6
S000(�)h2 +

1

24
S(iv)(�)h3 +

1

120
S(v)(�)h4 + � � �

Using (2.25) in (2.23) gives,

[�j + h;�j ;S] = (10C5e
2
j + 4C4ej + C3)h

2 + (10C5e
3
j + 6C4e

2
j + 3C3ej (2.45)

+C2)h+ 5C5e
4
j + 4C4e

3
j + 3C3e

2
j + 2C2ej + I;

It is observed that factor �1 appears in the equation (2.44). The value of Kurchatov�s

divided di¤erence operator [2�j � �j�1;�j�1;S] is calculated by substituting h in (2.45),

[2�j � �j�1;�j�1;S] = I + (40C5ej�1 + 8C4)e
3
j + (�80C5e2j�1 � 8C4ej�1 + 4C3)e2j +(2.46)

(60C5e
3
j�1 + 4C4e

2
j�1 � 2C3ej�1 + 2C2)ej � 15C5e4j�1 + C3e2j�1;

where

h = 2�j � �j�1 � �j�1 = 2(ej � ej�1):

The inverse value is

[2�j � �j�1;�j�1;S]�1 = I � (40C5ej�1 + 8C4)e3j � (�80C5e2j�1 � 8C4ej�1

+4C3)e
2
j � (60C5e3j�1 + 4C4e2j�1 � 2C3ej�1

+2C2)ej � 15C5e4j�1 + C3e2j�1; (2.47)
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Recall (2.43),

�1 = I + b0S
0(�t);

b0 = �[2�j � �j�1;�j�1;S]�1;

b0 = �I + (40C5ej�1 + 8C4)e3j + (�80C5e2j�1 � 8C4ej�1 + 4C3)e2j +

(60C5e
3
j�1 + 4C4e

2
j�1 � 2C3ej�1 + 2C2)ej + 15C5e4j�1 � C3e2j�1;

Therefore, the approximate value of �1 is:

�1 � 2C2ej : (2.48)

Using (2.48) in (2.44),

�j = �t + C2e
2
j + 2C

2
2e
3
j � C3e3j + 2C2C3e4j ; (2.49)

Recall (2.45), i.e.

[�j + h;�j ;S] = (10C5e
2
j + 4C4ej + C3)h

2 + (10C5e
3
j + 6C4e

2
j + 3C3ej

+C2)h+ 5C5e
4
j + 4C4e

3
j + 3C3e

2
j + 2C2ej + I;

h = �j � �j ;

h = 2C2C3e
4
j + 2C

2
2e
3
j � C3e3j + C2e2j � ej ; (2.50)

By using (2.50) in (2.45) gives,

[�j ;�j ;S] = (4C32C3 + 3C
2
2C4 + 5C2C5 � C3C4)e5j + (5C22C3 + C2C4 � C23 )e4j

+(2C32 + C4)e
3
j + (C

2
2 + C3)e

2
j + C2ej + I
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By using Taylor expansion,

[�j ;�j ;S]
�1 = I�C2ej�(C22+C3)e2j�(2C32+C4)e3j�(5C22C3+C2C4�C23 )e4j+ � � � (2.51)

It should be noted that we used the notation � � � to avoid di¢ cult to handle terms that

the Taylor expansion produced for high degree terms because these terms will eventually

vanish. Using (2.41) and (2.51),

�1 = [�j ;�j ;S]
�1S(�j);

�1 = ej � 2C22e3j + (�3C32 � 2C2C3)e4j + (�2C42 � 6C22C3 � (2.52)

3C2C4 + C5)e
5
j +O(e

6
j ):

From (2.38),

�j+1 = (�t + ej)� �1;

Using (2.52),

�j+1 = �t + 2C
2
2e
3
j + (3C

3
2 + 2C2C3)e

4
j + (2C

4
2 + 6C

2
2C3 + 3C2C4 � C5)e5j

+(7C32C3 + 2C
2
2C4 � C2C23 + C2C5 + 2C3C4)e6j +O(e7j ): (2.53)

which shows that the scheme (2.38) has third order of convergence, with the following error

equation

ej+1 = 2C22e
3
j + (3C

3
2 + 2C2C3)e

4
j + (2C

4
2 + 6C

2
2C3 + 3C2C4 � C5)e5j

+(7C32C3 + 2C
2
2C4 � C2C23 + C2C5 + 2C3C4)e6j +O(e7j ):

On the basis of (2.38), the new scheme (2.39) was introduced. Recall (2.44) i.e.

�j = �t + �1ej � C2e2j � C3e3j + C2�1e2j � C4e4j + C3�1e3j + C4�1e4j
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h = (C5�1 � C5)e5j + (C4�1 � C4)e4j + (C3�1 � C3)e3j + (C2�1 � C2)e2j + (�1 � I)ej :

Using h in (2.45) gives,

[�j ;�j ;S] = I + (C2�1 + C2)ej + (C
2
2�1 + C3�

2
1 � C22 + C3�1 � 2C3)e2j +

(2C2C3�
2
1 � C2C3�1 + 4C4�21 � C2C3 � 8C4�1 + 4C4)e3j :

By using Taylor expansion,

[�j ;�j ;S]
�1 = I � (C2�1 + C2)ej � (C22�1 + C3�21 � C22 + C3�1 � 2C3)e2j + � � �

yj = (�t + ej)� [�j ;�j ;S]�1S(�j);

yj = �t + C2�1e
2
j + (2C

2
2�1 + C3�

2
1 + C3�1 � 3C3)e3j + (C32�1 + 3C2C3�21

�C32 + C2C3�1 + 4C4�21 � 2C2C3 � 8C4�1 + 3C4)e4j +O(e5j ): (2.54)

Using Taylor series and making suitable substitution,

S(yj) = C2�1e
2
j + (2C

2
2�1 + C3�

2
1 + C3�1 � 3C3)e3j + (C32�21 + C32�1 + 3C2C3�21

�C32 + C2C3�1 + 4C4�21 � 2C2C3 � 8C4�1 + 3C4)e4j +O(e5j ): (2.55)

From (2.39),

�j+1 = yj � [�j ;yj ;S]�1S(yj): (2.56)

Putting h in (2.45) gives,

[�j ;yj ;S] = (2C
3
2�1 + 4C4)e

3
j + (C3�

2
1 + C

2
2 � 3C3�1 + 3C3)e2j + (�C2�1 + 2C2)ej + I;
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where

h = yj � �j ;

h = (C32�1 + 3C2C3�
2
1 � C32 + C2C3�1 + 4C4�21 � 2C2C3 � 8C4�1 + 3C4)e4j

+(2C22�1 + C3�
2
1 � 2C3)e3j + C2e2j � �1ej ;

[�j ;yj ;S]
�1 = I � (�C2�21 + 2C2�1)ej � (2C22�31 � 6C22�21 + 3C3�31

+3C22�1 � 13C3�21 + 15C3�1 � 4C3)e2j ; (2.57)

Using (2.57) and (2.55) gives,

�2 = [�j ;�j ;S]
�1S(yj);

�2 = (�2C32�41 + 8C32�31 � 2C2C3�41 � 6C32�21 + 12C2C33�1 + C32�1 � 17C2C3�21 � C32

+11C2C3�1 + 4C
2
4�1 � 2C2C3 � 8C4�1 + 3C4)e4j + (C22�31 � 2C22�21 + 2C22�1

+C3�
2
1 + C3�1 � 3C3)e3j + C2�1e2j : (2.58)

Using (2.54) and (2.58) in (2.56),

�j+1 = (2C32�
4
1 � 8C32�31 + 2C2C3�41 + 6C32�21 � 12C2C3�31 (2.59)

+20C2C3�
2
1 � 10C2C3�1)e4j + (�C22�31 + 2C22�21)e3j + �t:

Using �1 in (2.59) gives,

�j+1 = (16C
5
2+80C

3
2C3�14C22C4+2C2C23 )e6j+(8c42�22C22C3+5C2C4�2C23�C5)e5j+�t:;

with the error equation as follows:

ej+1 = (8C
4
2�22C22C3+5C2C4�2C23�C5)e5j+(16C52+80C32C3�14C22C4+2C2C23 )e6j+O(e7j );

which shows FM5 has �fth order of convergence.
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Chapter 3

Without Memory Derivative Free

Methods

Derivative-free iterative methods are used in numerical analysis to solve systems

of nonlinear equations. These methods aim to �nd the values of the unknowns that satisfy

a set of nonlinear equations without explicitly calculating or relying on derivative infor-

mation. These methods play a crucial role, particularly in problems where the function

lacks derivative information or when the derivatives are expensive or di¢ cult to compute

accurately.

In derivative-free methods, the derivatives are approximated using �nite di¤er-

ences [53], and the algorithm iteratively updates the solution based on the di¤erence be-

tween function evaluations at di¤erent points. This approach is particularly useful when

obtaining derivatives is computational expensive or not feasible. They are designed to

�nd approximate solutions by iteratively exploring the parameter space without relying on

                        Chapter 3

Without Memory Derivative Free Methods 
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derivative information.

Derivative-free methods are speci�cally designed to handle problems where the

derivatives of the function are not available or are unreliable. This makes them applicable

to a wide range of real-world problems where the objective function is complex or di¢ cult

to di¤erentiate. Derivative-free methods [54] possess �exibility and generality. They pro-

vide a versatile framework that can handle a wide range of problems. They do not make

assumptions about the form or structure of the objective function, making them applica-

ble in various domains such as engineering, �nance, machine learning, and computational

science. Computing derivatives can be computational expensive, especially when dealing

with high-dimensional problems or complex models. Derivative-free methods eliminate the

need for derivative computations, resulting in reduced computational costs and allowing for

more e¢ cient optimization.

Modern physical, chemical, and economic measurements, as well as engineering

applications where computer simulation is used for the evaluation of objective functions, all

involve numerical problems where the derivatives cannot be computed.

One common method for determining roots of the nonlinear system of equation

S(�) = 0; is the modi�ed Newton�s method, whose iterative expression is:

�j+1 = �j �
�
S0(�j)

��1
S(�j):

Sometimes it may be di¢ cult to determine the derivative S0(�) or it may even be unavailable.

To overcome this problem derivative of function in the Modi�ed Newtons Method may be

replaced by divided di¤erence

S0(�j) �
�
�j � �j

�
S[�j ;�j ] = S(�j)� S(�j);
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where

�j = �j + S(�j);

Therefore, the modi�ed Newton�s method becomes,

�j+1 = �j � S[�j;�j ]�1S(�j):

Researchers are now providing derivative-free iterative methods for solving systems of non-

linear equations [55�59] to reduce cost of computation and avoid failure of the methods

involving derivatives.

Mozafar et al. [60] proposed following derivative free with memory iterative method

for the solution of system of non-linear equation:8>>>>>><>>>>>>:

�j = �j +B
(j)S(�j); j > 1;

zj = �j �
�
�j ;�j ;S

��1
S(�j);

�j+1 = zj � [�j ;�j ;S]�1S(zj ):

(3.1)

where

� = B(j) = �
�
�j�1;�j�1;S

��1 � � hS0(�t)i�1 ; j > 1:
The iterative method (3.1) is actually the generalization of Ste¤enson�s scheme for solving

non-linear system. That is given in [59]:

8>><>>:
�j = �j + S(�j);

�j+1 = �j � [�j ;�j ;S]�1S(�j); j = 0; 1; 2 : : :

(3.2)

and a two-step iterative method given in [60] and [59].8>><>>:
zj = �j �

�
�j ;�j ;S

��1
S(�j);

�j+1 = zj � [�j ;�j ;S]�1S(zj ):
(3.3)
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wherein

�j = �j + �S(�j); � 2 R:

Mozafar et al. [60] investigated convergence of proposed method (3.1) and obtain

an error equation

ej+1 = (�S
0(�) + I)(�S0(�) + 2I)C22e

3
j +O(e

4
j );

which shows its r order of convergence as

1

2
(
p
13 + 3) ' 3:30278:

Taking inspiration of this research, we proposed in section 2, three step iterative

method of convergence order 8 that is proved in sub-sequent section.

3.1 Proposed Method

It is understood that the derivatives of any function one desires to optimize con-

tain a wealth of important information. Nonetheless, there have always been many situa-

tions where derivatives are unavailable or numerically unreliable for a number of reasons.

Derivative-free approaches [59] are developed to solve nonlinear problems when the deriv-

atives of the relevant function are unavailable. They provide a valuable toolkit for solving

optimization problems in numerical analysis, o¤ering �exibility and e¢ ciency in scenar-

ios where derivative information is unavailable or impractical to compute. Derivative-free

methods are currently in high demand due to factors such as growing mathematical mod-

elling complexity, advanced scienti�c computing, and an excess of legacy codes. Because
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this type of situation occurs frequently, there is a great demand from professionals for such

algorithms.

The choice of derivative-free method depends on the properties of the system,

the available information, and the desired convergence characteristics. It is important to

consider the convergence properties and computational e¢ ciency these methods for di¤erent

types of systems and problem formulations. Derivative-free methods have wide-ranging

applications and continue to be an active area of research and development in the �eld of

optimization.

NF1 Without Memory

For the solution of a nonlinear system of equations i.e. S(�) = 0: The following

derivative free iterative method is proposed:8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

�j = �j + S(�j);

yj = �j � (Mj)
�1S(�j);

zj = yj � (Mj)
�1S(yj);

�j+1 = �j � (Dj)
�1S(zj); j = 0; 1; 2; : : :

where Mj = [�j ;�j ;S]; and Dj = [�j ; zj ;S]� [�j ;yj ; zj ;S](�j � zj):

(3.4)

3.2 Convergence Analysis

Theorem 3 Let S have at least three times Frechet di¤erentiable in the non empty open

convex domain D. Also suppose that [u; v;S] 2 L(D;D), for all u; v 2 D(u 6= v) and (��)

is close enough to �t. Then, the sequence f�kgk�0 obtained using the iterative expression

(3.4) converges to �t with at least eight order of convergence.
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Proof. Consider the approximate value

�j = ej + �t; (3.5)

where �t is the exact root and ej is the approximate error. From previously calculated

equation (2.41),

S(�j) = S
0(�t)(ej + C2e

2
j + C3e

3
j + C4e

4
j + C5e

5
j );

From (3.4),

�j = �j + b0S
0(�t)S(�j); (3.6)

De�ne,

�1 = I + b0S
0(�t); (3.7)

�j becomes:

�j = �t + �1ej � C2e2j � C3e3j + C2�1e2j � C4e4j + C3�1e3j + C4�1e4j +O(e5j ):

From (3.4) following appears,

Mj = [�j ;�j ;S]:

From (2.22),

[� + h;�;S] =

Z 1

0
S0(� + th)dt; 8(�;h) 2 Rm �Rm: (3.8)

Expanding the Taylor series S0(� + th) and integrating from 0 to 1.

[�+h;�;S] = S0(�)+
1

2
S00(�)h+

1

6
S000(�)h2+

1

24
S(iv)(�)h3+

1

120
S(v)(�)h4+O(h5): (3.9)

By using already calculated (2.25),

[�j ;�j + h;S] = 1 + C5h
4 + h3C4 + h

2C3 + hC2 + (5h
3C5 + 4h

2C4 + 3hC3 + 2C2)ej

+(10h2C5 + 6hC4 + 3C3)e
2
j + (10hC5 + 4C4)e

3
j + 5C5e

4
j : (3.10)
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Using (3.6) and (3.7) and putting h in (3.10),

Mj = 1 + (C2 + C2�1)ej + (C
2
2�1 + C3�

2
1 � C22 + C3�1 + C3)e2j

+(C4 + C4�1 � 2C2C3 + C4�21 + C4�31 + 2C2C3�21)e3j +O(e4j );

where

h = �j � �j

h = (�1 � 1)S(�j)

(Mj)
�1 = 1 + (�C2�1 � C2)ej + (�C22�1 � C3�21 + C22 � C3�1

�C3 + (C2�1 + C2)2)e2j + � � � )S0(�t)�1 +O(e3j ): (3.11)

Using (3.5), (3.11) and (2.41) in (3.4), The resulted value is,

yj = �t + C2�1e
2
j + (�C22�21 + C3�21 � C22 + C3�1)e3j + (C32�31 � 2C2C3�31 +

2C32�1 � C2C3�21 + C4�31 + C32 � 2C2C3�1 + C4�21 � 2C2C3 + C4�1)e4j

+ � � �O(e5j ): (3.12)

with the error equation as follows:

ey = C2�1e
2
j + (�C22�21 + C3�21 � C22 + C3�1)e3j +O(e4j ): (3.13)

Applying Taylor series on (3.12) and making suitable substitution to get

S(yj) = C2�1e
2
j + (�C22�21 + C3�21 � C22 + C3�1)e3j + (C32�31 + C32�21 � 2C2C3�31

+2C32�1 � C2C3�21 + C4�31 + C32 � 2C2C3�1 (3.14)

+C4�
2
1 � 2C2C3 + C4�1)e4j ;
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Using (3.12), (3.11) and (3.14) in the proposed value of zj in (3.4),

zj = �t + (C
2
2�
2
1 + C

2
2�1)e

3
j + (�2C32�31 � 3C32�21 + 2C2C3�31 � 3C32�1

+3C2C3�
2
1 � C32 + 2C2C3�1)e4j +O(e5j );

With the following error equation:

ez = (C
2
2�1(�1 + 1)e

3
j +O(e

4
j ): (3.15)

Applying Taylor series and making some substitutions,

S(zj) = C22�1(�1 + 1)e
3
j � C2(2C22�31 + 3C22�21 � 2C3�31 (3.16)

+3C22�1 � 3C3�21 + C22 � 2C3�1)e4j :

For [�j ; zj ;S]; substitute h in (3.10), which is as follows:

[�j ; zj ;S] = 1 + C2ez + C3e
2
z + C4e

3
z + C5e

4
z + (C5e

3
z + C4e

2
z + C3ez + C2)ej

+(C5e
2
z + C4ez + C3)e

2
j + (C5ez + C4)e

3
j + C5e

4
j : (3.17)

where

h = ez � ej ;

The value of second order divided di¤erence [�j ;yj ; zj ;S](�j � zj) is evaluated [47] using

the following relation:

[�;� + h;� + q;S] =
1

2
S00(�) +

1

3
S000(�)(h+

q

2
) +

1

8
Siv(�)(h2 +

q2

3
+ hq);

where h = ej � ej�1; q = ej�2 � ej�1: (3.18)
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By substituting (2.25) in (3.18)

[�j ;�j + h;�j + q;S] = 15C5ej + 3C4)h
2 + (15qC5ej + 20C5ej + 3qC4 + 8C4ej + 2C3h

+5q2C5ej + 10qC5ej + 10C5ej + q
2C4 + 4qC4ej + 6C4ej + qC3

+3C3ej + C2; (3.19)

Putting h = ey � ej and q = ez � ej ; in (3.19) to get [�j ;yj ; zj ;S](�j � zj):given below

[�j ;yj ; zj ;S](�j � zj ) = 15C5e
3
j + (�25C5ey � 15C5ez + C4)ej + 15C5e2y + 15C5eyez +

(5C5e
2
z � C4ey � C4ez)ej + 3C4e2y + 3C4eyez + C4e2z + 2C3ey

+C3ez + C2; (3.20)

Using (3.17) and (3.20) in (3.4) to calculate Dj as follows:

Dj = 16C5e
4
j + (�25C5ey � 29C5ez + 2C4)e3j + (15C5e2y + 40C5eyez + 21C5e2z � C4ey

�C4ez + C3)e2j + (�15C5e2yez � 15C5eye2z � 4C5e3z + 3C4e2y + 4C4eyez + 3C4e2z

+2C3ey + 2C3ez + 2C2)ej + C5e
4
z � 3C4e2yez � 3C4eye2z � 2C3eyez + I;

By Taylor series expansion (Dj)
�1 is calculated as follows:

(Dj)
�1 = 1 + 2C3eyez + 3C4e

2
yez + 3C4eye

2
z � C5e4z + (15C5e2yez + 15C5eye2z + 4C5e3z

�3C4e2y � 4C4eyez � 3C4e2z � 2C3ey � 2C3ez � 2C2)ej + (�15C5e2y � 40C5eyez

�21C5e2z + C4ey + C4ez � C3)e2j + (25C5ey + 29C5ez � 2C4)e3j (3.21)

Using (3.21) and (3.16) in the last step of the (3.4) obtaining �j+1 as follows:

�j+1 = (C22C5�
2
1e
4
z � 3C22C4�21e2yez � 3C22C4�21eye2z + C22C5�1e4z � 2C22C3�21eyez

�3C22C4�1e2yez � 3C22C4�1eye2z � 2C22C3�1eyez)e3j + �t: (3.22)
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Now using (3.13) and (3.15)

ey ' C2�1e
2
j ;

ez ' (C22�
2
1 + C

2
2�1)e

3
j :

Substituting ey and ez in (3.22),

�j+1 = (�3C62C4�61�6C62C4�51�3C62C4�41)e10j +(�2C52C3�51�4C52C3�41�2C52C3�31)e8j +�t:

The error equation of proposed method is as follow:

ej+1 = (�3C62C4�61�6C62C4�51�3C62C4�41)e10j +(�2C52C3�51�4C52C3�41�2C52C3�31)e8j : (3.23)

Which shows the order of convergence of the proposed scheme (3.4) is eight.

We observe that proposed scheme uses just one more function value and one more

divided di¤erence evaluation.
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Chapter 4

Higher Order With Memory

Iterative Methods

In Chapter No 3, a three step derivative-free iterative method for the solution of

system of non-linear equation is proposed. The proposed method also analyzed and proved

its convergence through analysis is eight.

Now the method (3.4) shall be modi�ed here in order to improve its convergence.

B(j) = �[2�j � �j�1;�j�1;S]�1; j � 1: (4.1)

Using (4.1) we proposed here with memory methods which is actually a modi�cation of

(3.1) and other methods given in [5].

                           Chapter 4

Higher Order With Memory Iterative Methods 
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4.1 Modi�cations of Method

For initial guesses �0; B0, the following three step method is considered:8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

Mj�1 = [�j�1;�j�1;S]; �j = �j +B
(j)S(�j); j � 1;

yj = �j + (Mj�1)�1S(�j); j � 0;

zj = yj + (Mj�1)�1S(yj);

�j+1 = �j + (Dj)
�1S(zj);

where Dj = [�j ; zj ;S]� [�j ;yj ; zj ;S](�j � zj):

(4.2)

Recently, Chicharro et al. [5] proposed �fth order iterative method by using following ap-

proximation for B(j) given by:

B(j) = �[2�j � �j�1;�j�1;S]�1; (4.3)

as follows: 8>><>>:
yj = �j �

�
�j ;�j ;S

��1
S(�j);

�j+1 = yj �
�
�j ;yj ;S

��1
S(yj);

(4.4)

where

�j = �j +B
(j)S(�j):

4.1.1 NF2 With Memory Method

In order to increase the order of convergence of iterative scheme given in (4.4), it

is modi�ed and �nally proposed the following method:

8>>>>>><>>>>>>:

yj = �j �
�
�j ;�j ;S

��1
S(�j);

zj = yj �
�
�j ;yj ;S

��1
S(yj);

�j+1 = zj � ([�j ;yj ;S]� [�j ;�j ;yj ;S](�j � yj))�1S(zj):

(4.5)
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Remark 4 The main notion in constructing iterative scheme with memory for non-linear

system solution may include calculating the perimeter matrix b := B(j); j � 1; as the

iterative scheme proceeds by using some approximation to �S0(�t). If we approximate b0 =

b1 = b2 = B(j) = �[�j�1;�j�1;S]�1 � �S0(�t)�1;then r-order convergence higher than

eight can be achieved.

Lemma 5 Let S have at least three times Frechet di¤erentiable in the non-empty open

convex domian D. The initial approximation �0 and �t are close to each. If we de�ne B
(j) =

�[�j�1;�j�1;S]�1and �1 := I + B(j)S0(�t);then the following asymptotic error relation is

obtained:

�1 � ej�1: (4.6)

Proof. Apply the Taylor series expansion on [�j�1;�j�1;S] around the simple zero

is as follow:

B(j) = �[�j�1;�j�1;S]�1; (4.7)

S(�t + h) = S
0(�t)(h+

p�1X
q=2

Cqh
q) +O(hp);

S(�j�1) = S(�j�1 � �t + �t) = S(ej�1 + �t);

S(�j�1) = S(�t) + S
0(�t)ej�1 +

S00(�t)

2!
e2j�1 + � � �+O(e9j�1);

Putting S(�t) = 0 and making suitable substitution i.e. Cq =
Sq(�t)
S0(�t):q!

,

S(�j�1) = S
0(�t)(ej�1 + C2e

2
j�1 + C3e

3
j�1 + C4e

4
j�1) +O(e

5
j�1): (4.8)

�j�1 = �j�1 + b0S(�j�1);
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�j�1 = b0(S)
0(�t)C5e

5
j�1 + b0S

0(�t)C4e
4
j�1 + b0S

0(�t)C3e
3
j�1

+b0S
0(�t)C2e

2
j�1 + (b0S

0(�t) + 1)ej�1 + �t:

S(�j�1) = (2C22�
2
1 + C3�

3
1 � 2C22�1 + C3�1 � C3)e3j�1

+(C2�
2
1 + C2�1 � C2)e2j�1 + �1ej�1 + � � �+O(e9j ):

Take B(j) = b0;

�1 = 1 + b0S
0(�t);

[�j�1;�j�1;S] = [�j�1 + b0:S(�j�1);�j�1;S];

h = (C5�1�C5)e5j�1+(C4�1�C4)e4j�1+(C3�1�C3)e3j�1+(C2�1�C2)e2j�1+(�1�I)ej�1;

Using h in (2.45),

[�j�1;�j�1;S] = S0(�t)(I + (C2:�1 + C2)ej�1 + (C
2
2 :�1 + C3�

2
1 � C22 + C3:�1 + C3)e2j�1

(2:C2:C3�
2
1 + C4�

3
1 + C4�

2
1 � 2:C2C3 + C4:�1 + C4)e3j�1 + � � �+O(e9j�1):

[�j�1;�j�1;S]
�1 = S0(�t)(I + (�C2�1 � C2)ej�1 + (�C3�1 + 2C22 � C3�21

+(C2�1)
2 + C22�1 � C3)e2j�1 + � � �+O(e9j�1): (4.9)

Comparing (4.9) with (4.7) ,

B(j) = �(I � C2(I + �1)ej�1 +O(e2j�1))S0(�t)�1; (4.10)

De�ne,

�1 := I +B
(j)S0(�t); (4.11)

Using (4.11) in (4.10),

B(j) = �(I � C2(2I +B(j)S0(�t))ej�1 +O(e2j�1))S0(�t)�1 (4.12)
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Now by using (4.11) and (4.12),

�1 = I +B(j)S0(�t);

�1 = C2(2I +B
(j)S0(�t))ej�1 +O(e

2
j�1):

Using B(j) � �S0(�t)�1

�1 � ej�1:

The proof is complete.

Theorem 6 Assume the similar conditions as in previous theorem. Initial matrix B0 is

close enough to S0(�t). The sequence f�jgj�0 obtained using the iteration expression (4.2)

converges to �t with at least 4 +
p
19 ' 8:3589 r-order of convergence.

Proof. Let f�jg be a sequence generated by iterative method (4.5). It converges

to a simple root �t of S(�) = 0 with r-order of convergence. The error relation may be

written as:

ej+1 � Dj;rerj ; (4.13)

Where limj�!1Dj;r = Dr and Dr is asymptotic error constant of (4.5). By using (4.13),

ej+1 � Dj;r(Dj�1;r(erj�1))r = Dj;rDrj�1er
2

j�1 � er
2

j�1; (4.14)

The error equation (3.23) is for iterative scheme (4.1) for arbitrary � is given as:

ej+1 � (�2C52C3�51 � 4C52C3�41 � 2C52C3�31)e8j ; (4.15)

By using (4.6), (4.13) and (4.15) for (4.5),

ej+1 � e3j�1e8rj�1; (4.16)
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Comparing (4.14) and (4.16),8>><>>:
r2 � 8r � 3 = 0;

r = 4 +
p
19 = 8:358898944:

4.1.2 NF3 With Memory Method

We developed the following iterative scheme for nonlinear system:8>>>>>>>>>><>>>>>>>>>>:

�j = �j � [2�j � �j�1;�j�1;S]�1S(�j); j � 1;

yj = �j �
�
�j ;�j ;S

��1
S(�j); j � 0;

zj = yj �
�
�j ;yj ;S

��1
S(yj);

�j+1 = zj � ([�j ;yj ;S]� [�j ;�j ;yj ;S](�j � yj))�1S(zj ):

(4.17)

The convergence order of the proposed scheme is Ten.

4.1.3 Convergence Analysis

Theorem 7 Consider the same conditions as in Theorem 3 as well as the initial matrix

B0; which close enough to S0(�t). Then, sequence f�jgj�0 obtained during the iterative

expression (4.17) converges to �t with order of convergence is Ten.

Proof. Let �j be the approximate root with error ej = �j � �t: The Taylor

expansion of S around the approximate points is

S(�j) = S(�t) + S
0(�t)ej +

S00(�t)

2!
e2j +

S000(�t)

3!
e3j + � � � (4.18)

Using S(�t) = 0 and making suitable substitution

S(�j) = (ej + C2e
2
j + C3e

3
j + C4e

4
j + C5e

5
j ): (4.19)



68

Recall (2.46),

[2�j � �j�1;�j�1;S] = I + C3e
2
j�1 � 15C5e4j�1 + (60C5e3j�1 + 4C4e2j�1 � 2C3ej�1 + 2C2)ej

+(�80C5e2j�1 � 8C4ej�1 + 4C3)e2j + (40C5ej�1 + 8C4)e3j :

[2�j � �j�1;�j�1;S]�1 = I + 15C5e
4
j�1 � C3e2j�1 � (60C5e3j�1 + 4C4e2j�1 � 2C3ej�1 + 2C2)ej

�(�80C5e2j�1 � 8C4ej�1 + 4C3)e2j � (40C5ej�1 + 8C4)e3j : (4.20)

�j = �1ej � C2e2j � C3e3j + C2�1e2j � C4e4j + C3�1e3j + C4�1e4j ;

The error value is

e� = �1ej (4.21)

S(�j) = �1ej + (C2�
2
1 + C2�1 � C2)e2j + (2C22�21 + C3�31 � 2C22�1 + C3�1 � C3)e3j +O(e4j ):

h = (C3�1 � C3)e3j + (C2�1 � C2)e2j + (�1 � 1)ej

Putting h in (2.45)

[�j ;�j ;S] = I + (C2 + C2�1)ej + (C
2
2�1 + C3�

2
1 � C22 + C3�1C3)e2j + (C4 +

C4�1 � 2C2C3 + C4�21 + C4�31 + 2C2C3�21)e3j +O(e4j ):

where

h = ep � ey

The inverse becomes

[�j ;�j ;S]
�1 = S0(�t)

�1 �I + (�C2�1 � C2)ej + (�C22�1 � C3�21 + C22 � C3�1
�C3 + (C2�1 + C2)2)e2j )

�
+O(e3j ): (4.22)
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Using (4.19) and (4.22),

�1 = ej � C2�1e2j + (�2C22�1 � C3�21 � C3�1 + 3C3)e3j +O(e4j ):

From (4.17),

yj = �j � �1;

yj = (�t + ej )� �1;

yj = �t + C2�1e
2
j + (�C22�21 + C3�21 � C22 + C3�1)e3j + (C32�31 � 2C2C3�31 + 2C32�1

�C2C3�21 + C4�31 + C32 � 2C2C3�1 + C4�21 � 2C2C3 + C4�1)e4j +O(e5j ); (4.23)

The error equation is,

ey = �1C2e
2
j : (4.24)

By Taylor series and suitable substitution,

S(yj) = C2�1e
2
j + (�C22�21 + C3�21 � C22 + C3�1)e3j + (C32�31 + C32�21 � 2C2C3�31

+2C32�1 � C2C3�21 + C4�31 + C32 � 2C2C3�1 + C4�21 � 2C2C3 + C4�1e4j :

Putting h in (2.45) gives,

[�j ;yj ;S] = (2C
3
2�1 + 4C4)e

3
j + C3�

2
1 + C

2
2 � 3C3�1 + 3C3)e2j + (�C2�1 + 2C2)ej + I;

[�j ;yj ;S]
�1 = I � (�C2�21 + 2C2�1)ej � (2C22�31 � 6C22�21 + 3C3�31 +

3C22�1 � 13C3�21 + 15C3�1 � 4C3)e2j ; (4.25)

Consider,

�2 = [�j ;yj ;S]
�1S(yj);
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Using (4.25) and (4.19),

�2 = C2�1e
2
j + (C

2
2�
3
1 � 2C22�21 + 2C22�1 + C3�21 + C3�1 � 3C3)e3j +O(e4j ); (4.26)

From (4.17)

zj = yj � �2;

Using (4.26) and (4.23) gives

zj = �t + (�C22�31 + 2C22�21)e3j + (2C32�41 � 8C32�31 + 2C2C3�41 + 6C32�21 �

12C2C3�
3
1 + 20C2C3�

2
1 � 10C2C3�1)e4j ; (4.27)

The error value is

ez = (�C22�31 + 2C22�21)e3j : (4.28)

S(zj) = 2C2�1C
2
2�
3
1 � 4C22�21 + C3�31 + 3C22�1 � 6C3�21 + 10C3�1

�5C3)e4j � C22�21(�1 � 2)e3j : (4.29)

Substituting h in (2.45),

[�j ;yj ;S] = 30C5e
4
j + (�45C5ey + 15C4)e3j + (25C5e2y � 17C4ey + 7C3)e2j +

(�5C5e3y + 7C4e2y � 5C3ey + 3C2)ej � C4e3y + C3e2y � C2ey + I:

where

h = ep � ey

Recall (3.18)

[�;� + h;� + q;S] =
1

2
S00(�) +

1

3
S000(�)(h+

q

2
) +

1

8
Siv(�)(h2 +

q2

3
+ hq);
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Using (2.25),

[�;� + h;� + q;S] = (15C5ej + 3C4)h
2 + (15qC5ej + 20C5ej + 3qC4 + 8C4ej + 2C3h+

5q2C5ej + 10qC5ej + 10C5ej + q
2C4 + 4qC4ej + 6C4ej + qC3 +

3C3ej + C2; (4.30)

Substituting h = ej � e� and q = e� � ey in (4.30), we get the following divided di¤erence

as de�ned:

[�j ;�j ;yj ;S] = C4e
2
� + C4e�ey + C4e

2
y � C3e� � C3ey + C2 + (5C5e2� + 5C5e�ey +

5C5e
2
y � 7C4e� � 7C4ey + 5C3)ej + (�25C5e� � 25C5ey + 17C4)e2j

+5C5e
3
j ;

[�j ;yj ;S]� [�j ;�j ;yj ;S] = (25C5e� + 25C5ey � 2C4)e3j + (�5C5e2� � 30C5e�ey � 5C5e2y

+7C4e� + 7C4ey + 2C3)e
2
j + (5C5e

2
�ey + 5C5e�e

2
y � C4e2� �

8C4e�ey � C4e2y + C3e� + C3ey + 2C2)ej + C4e2�ey + C4e�e2y

�C3e�ey + I; (4.31)

([�j ;yj ;S]� [�j ;�j ;yj ;S])�1 = I � C4e2�ey � C4e�e2y + C3e�ey � (5C5e2�ey + 5C5e�e2y

�C4e2� � 8C4e�ey � C4e2y + C3e� + C3ey + 2C2)ej �

(�5C5e2� � 30C5e�ey � 5C5e2y + 7C4e� + 7C4ey +

2C3)e
2
j ; (4.32)

Using (4.32) and (4.29)

�4 = (C22C4�
3
1e
2
�ey + C

2
2C4�

3
1e�e

2
y � C22C3�31e�ey � 2C22C4�21e2�ey

�2C22C4�21e�e2y + 2C22C3�21e�ey � C22�31 + 2C22�21)e3j ; (4.33)
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From (4.17),

�j+1 = zj � �4;

Using (4.27) and (4.33)

�j+1 = �t + (�C22C4�31e2�ey � C22C4�31e�e2y + C22C3�31e�ey + 2C22C4�21e2�ey +

2C22C4�
2
1e�e

2
y � 2C22C3�21e�ey)e3j + (2C32�41 � 8C32�31 + 2C2C3�41 +

6C32�
2
1 � 12C2C3�31 + 20C2C3�21 � 10C2C3�1)e4j ; (4.34)

From (4.21), (4.24) and (4.28)

e� = �1ej ;

ey = �1C2e
2
j ;

ez = 2C
2
2�
2
1e
3
j ;

Using error values in (4.34)

�j+1 = �t+(�C42C4�61e5j +2C42C4�51e5j �C32C4�61e4j +2C32Ce4j +C32C3�51e3j �2C32C3�41e3j )e3j :

where

�1 � 2C2ej :

Which shows that the order of convergence of �j+1 is Ten, with the following error equation:

ej+1 � (�C42C4�61e5j+2C42C4�51e5j�C32C4�61e4j+2C32Ce4j+C32C3�51e3j�2C32C3�41e3j )e3j+O(e11j ):
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Chapter 5

Numerical Solutions of Nonlinear

Systems

In this chapter, the numerical results for three problems of system of nonlinear

equations will be compared for showing the performance of newly constructed method (3.4),

(4.5) and (4.17) denoted by NF1, NF2 and NF3 respectively with the iterative methods SF,

SHR and SHRM, are given in (2.4), (2.8) and (2.9).

5.1 Computational Cost

The operators S;S0 and DDO has a di¤erent computational cost, when dealing

with a system of n nonlinear equations. The costs of performing iterative process of newly

constructed method (3.4), (4.5) and (4.17) denoted by NF1, NF2 and NF3 respectively

and the iterative methods SF, SHR and SHRM, are given in (2.4), (2.8), (2.9) taken from

existing literature are as follow:

                             Chapter 5

    Numerical Solutions of Nonlinear Systems
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� It takes j functional evaluations to evaluate S once.

� It takes j2functional evaluations to evaluate the associated Jacobian matrix S0:

� Each functional evaluation of the �rst-order DDO takes j2 � j evaluations.

Methods p FE
SF 2 2j + j2 � j
SHR 4 4j + 2(j2 � j)
SHRM 2 +

p
6 4j + 2(j2 � j)

NF1 8 4j + 2(j2 � j)
NF2 8:3589 4j + 3(j2 � j)
NF3 10 4j + 3(j2 � j)

Stopping Criteria

All the computations are done using maple 18. However the stopping criteria are

taken as: 

S(�j)

 � ";
The numerical results are represented in the respective tables for the methods NF1, NF2

and NF3, where j represents the number of iterations and CO the convergence order. where

the iteration methods SF, SHR, SHRM, NF1, NF2 and NF3 are given in (2.4), (2.8), (2.9),

(3.4), (4.5) and (4.17).
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5.2 Some Problems of Nonlinear Systems

Here, some systems of nonlinear equations are given in the following along with

their actual solutions and initial guesses required to execute iterative methods cited above

Problem 1:

Abad et al. [39] considered the nonlinear system of two equations with two un-

knowns as

S(�1; �2) = 0;

de�ned by

�1 + e
�1 � cos(�2) = 0;

3�
1
� �2 � sin(�2) = 0;

with the initial guess:

�
0
= (0:5; 0:5)T

and

�t � (0; 0)T

is the actual solution of the problem 1 and required accuracy " = 10�100: The numerical

results are shown in the table 1:



76

Problem 2:

Ahmad et al. [62] considered the following nonlinear system,

S(�1; �2; �3; �4; �5; �6; �7; �8; �9; �10) = 0;

which is de�ned by:

S(�) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

5 exp(�1 � 2)�2 + 2�
�10
7 + 8�

�4
3 � 5�36 � �9;

5 tan(�1 + 2 + cos(�
�10
9 ) + �32 + 7�

4
3 � 2 sin3(�6);

�21 � �10�5�6�7�8�9 + tan(�2) + 2�
�4
3 � 5�36;

2 tan(�21) + 2
�2 + �23 � 5�35 � �6 + �

cos(�9)
8 ;

10�21 � �10 + cos(�2) + �23 � 5�36 � 2�8 � 4�9

cos�1(�21) sin(�2)� 2�10�45�6�9 + �23

�1�
�7
2 � �

�10
8 + �53 � 5�35 + �7;

cos�1(�10�10 + �8 + �9) + �4 sin(�2) + �3 � 15�25 + �7;

10�1 + �
2
3 � 5�25 + 10�

�8
6 � sin(�7) + 2�9;

�1 sin(�2)� 2�
�8
10 + �10 � 5�6 � 10�9;

where the actual solution �t ' (1:3273490437+0:3502924960i; 1:058599346�1:748724664i;

1:0276186794�0:0141308051i; 3:273950008+0:0127828308i; 0:8318243937+0:0017551949i;

�0:4853245912+0:6848776400i; 0:1693667630+0:1840917580i; 1:534419958�0:321214766i;

2:086379651+0:426342755i; �1:989592331+1:478395393i)T ; and �0 = (1:4+0:5I; 1:1�2:0I;

1:0�0:2I; 2:5+0:5I; 0:8�0:1I; �0:4+1:I; 0:1+0:1I; 1:4�0:6I; 2:0+0:5I; �2:0+1:45I)T :is

the initial guess for the given system. The results examining for this problem are highlighted

in Table 2. where j represents the number of iteration and required accuracy is " = 10�100.
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Problem 3

Wang et al. [4] considered the following non-linear system de�ned by:8>>>>>><>>>>>>:

�2 + �3 � e��1 = 0;

�1 + �3 � e��3 = 0;

�1 + �2 � e��3 = 0;

where

�0 = (0:5; 0:5; 0:5)
T :

�t � (0:3517337; 0:3517337; 0:3517337):

and required accuracy " = 10�2100 The numerical results is shown in the table 3:
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5.3 Numerical Results
Numerical Comparison of results of Problem 1
Iterative Method j S(�j) CO

SF 10 5.853�10�396 2.000
SHR 05 4.330�10�321 4.001
SHRM 05 2.321�10�397 4.448
NF1 04 8.241�10�621 8.02
NF2 04 8.345�10�625 8.350
NF3 03 4.545�10�889 10.00

Table 1

Numerical Comparison of results of Problem 2
Iterative Methods j S(�j) CO

SF 12 1:241� 10�471 2.000
SHR 06 1:477� 10�349 4.001
SHRM 06 4:300� 10�498 4.448
NF1 04 5:595� 10�300 8.000
NF2 04 1:349� 10�440 8.350
NF3 03 1:435� 10�702 10.00

Table 2

Numerical Comparison of results of Problem 3
Iterative Methods j S(�j) CO

SF 12 6.020�10�820 2.000
SHR 05 2.603�10�1350 4.001
SHRM 04 7.030�10�1620 4.448
NF1 04 7.354�10�1820 8.000
NF2 04 6.567�10�1910 8.35
NF3 03 7.577�10�2047 10.000

Table 3

From the numerical results presented in the table 1 to table 3 show that overall the

methods NF1 to NF3 are e¢ cient in term of number of iterations and accuracy. However,

The method NF3 is the most e¢ cient The new methods NF2 and NF3 with memory seem

to be robust in character in terms of accuracy as compared to other methods.



79

Chapter 6

Conclusions

We have developed here three new iterative methods: two with memory namely

NF2 and NF3 and NF1 without memory which are derivative free as well.

6.1 Concluding Remarks

Derivative free methods are more suitable when the derivatives calculation is com-

plicated or the method fails due to singular Jacobian. The new method NF1 without

memory seems to be e¢ cient and more accelerate as compared to some other tabulated

methods. The new method with memory use the information from the previous and cur-

rent iteration. The presented methods with have been seldom introduced in the literature

and so new methods with memory may be considered as new addition of information in

their direction. The analysis of the numerical methods have been discussed and showed a

speedy, e¢ cient and robust behavior of the new methods, particularly NF3. Derivative free

methods are more suitable when the derivatives calculation is complicated or the methods

  Chapter 6

Conclusions
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fail due to zero values of the derivatives

6.2 Recommendation for Future Work

Future suggestions for the development of derivative-free iterative methods with

memory must be made in light of the rapid advancement of computing algorithms and the

increasing complexity of nonlinear systems. The importance of such methods in solving non-

linear systems without relying on derivative information has been highlighted in this thesis,

making them suitable for situations where derivatives are either not available or computa-

tional expensive to obtain. Enhancing the e¤ectiveness and rate of convergence of current

derivative-free iterative algorithms by integrating memory mechanisms is attractive direc-

tion for future research. Memory-based techniques have shown great potential in optimizing

the search process by retaining and utilizing past information to guide the exploration of

the solution space. Integrating memory into derivative-free methods can potentially lead

to accelerated convergence and improved global optimization capabilities. With memory

methods could be further investigated to enhance the convergence behavior and e¢ ciency of

these methods. The convergence order of the previously existing methods can be increased

without addition of computation burden by providing better approximation of the parame-

ter matrices using �rst order divided di¤erence operator. These schemes may be extended

using frozen di¤erence operators. Furthermore, for future direction, the use derivative free

methods with memory and traditional derivative-based optimization techniques may hy-

brid. By combining the strengths of both approaches, it is possible to achieve enhanced

performance in terms of convergence speed, accuracy and computational cost.
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By incorporating these future recommendations, the development of derivative-

free iterative methods with memory for nonlinear systems can be advanced, leading to

more e¢ cient and robust optimization algorithms that can handle a wide range of complex

problems. This research has the potential to greatly impact various �elds, including engi-

neering, economics, and computational sciences, where nonlinear systems are prevalent and

require e¤ective optimization strategies.
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