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ABSTRACT 

 

A Novel Study of Distance Based Similarity Measures on GLIVIFSESs 

            Similarity plays an essential rule in pattern recognitions, in image processing and 

interdisciplinary fields such as statistics, information retrieval and data science. “Generalized 

linguistic interval valued intuitionistic fuzzy soft expert sets” (GLIVIFSESs) is comprehensive 

model in fuzzy algebra which allows flexi and more hesitant information in the form of intervals 

with expert expertise. We developed different types of similarity measures on GLIVIFSESs. Also 

separately for each similarity measure we constructed practical problems from real world data 

examples and checked-out the accuracy level of these measures. Behind similarity measures we 

attempted to apply dissimilarity measure, which plays an essential role in decision making 

problems. In which we firstly introduced the mathematical expression to measure dissimilarity for 

GLIVIFSESs and then tested the validity of that dissimilarity measure by considering the 

practical example related to judgments regarding the authorities of “X” state education 

department, and we obtained mostly accurate result. After that we used the idea of Entropy and 

employed it in similarity measurements which provided us comparatively most accurate results. 

We also introduced the concept of linguistic fuzzy implication for distance measure between 

GLIVIFSESs and then employed the exports opinions under linguistic fuzzy implication 

environment and obtained considerable accurate results.  
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CHAPTER 1 

             

INTRODUCTION 

 

            FUZZY, Uncertainty, Irresolute, Vagueness, Unclearity, Hesitancy, doubt in surety, these 

are common words in real life problems and frequently arises such that classical theories to dealt 

with problems which are either true or false, wrong or right, good or bad, 1 or 0, so that there are 

no other possibilities. The basic idea of fuzzy theory was introduced by L.A Zadeh in 1965 [1]. 

Then after that there are many extensions have been taken place. The best one among that is 

intuitionistic approach in which Attanasov considered the degree of non-membership at the same 

time with the degree of membership [2]. 

            Now the linguistic approach to these fuzzy values, or fuzzy information has gained a lot 

of consideration because usually we prefer a linguistic word i.e. good, bad, very good, excellent, 

poor etc., to represent or to make opinion on certain quantity rather than a numerical value such 

that 0, 0.4, 0.25, 1 etc. with 1 is equivalent to excellent and 0 is equivalent to very poor. In 

linguistic approach basically we have a predefined term set from whom we take linguistic number 

for making opinion about some quantity with extreme subscript ‘t’ which is a positive integer 

such that 𝑠𝑖 + 𝑠𝑗 ≤ 𝑠𝑡 where 𝑠𝑖 ≤ 𝑠𝑡 & 𝑠𝑗 ≤ 𝑠𝑡 & 𝑠𝑖, 𝑠𝑗, 𝑠𝑡 ∈ {𝑠0, … , 𝑠𝑖 , … , 𝑠𝑗, … , 𝑠𝑡}. Similarly 

intuitionistic fuzzy sets we have linguistic intuitionistic fuzzy sets which were derived by Zhang 

in 2014, in which degree of membership and degree of non-membership both are considered in 

linguistic terms rather than a numerical numbers. Further extensions of these sets are into interval 

valued linguistic intuitionistic fuzzy sets. In linguistic approach there is concept of 1-D and 2-D 

which is used to fulfill the requirements of multiple attribute group decision making process. In 

which 1-D basically represents the decision maker’s assessment values while 2-D represent the 

decision maker’s validity on his/her assessment value or in other words 2-D represents the 

decision maker’s knowledge or expertise about assassinator. The linguistic approach is as 
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compared to numerical values is more reliable and flexible because in linguistic term we can store 

more than one numerical value. For instance consider the linguistic term “good”, such that this 

word as different approach according to different experts. For example one consider 0.7 as good 

number, the other one consider 0.8 as a good number and the other one considers 0.6 as a good 

number, so that the linguistic term “good” covers the range 0.6 ≤ 𝑔𝑜𝑜𝑑 ≤ 0.8 such that this 

approach shows flexi behavior rather than a fixed numerical quantity. 

            There are several extensions have been taken place in terms of linguistic approach such as 

interval valued intuitionistic fuzzy variables, in which both the degree of membership and degree 

of non-membership are considered in intervals in linguistic terms such that there is a flexibility in 

the choice of linguistic term selection or in other words the interval shows the hesitancy of expert 

for assigning the linguistic term to an alternative. Now the problem was to aggregate all the 

opinions given by different experts to obtain a final, competent, reliable and reality based result. 

For that there are many choices such as arithmetic mean, geometric mean, harmonic mean but the 

most real one was given by Yager [3] “an ordered weighted averaging aggregation operator” in 

which the opinions of experts are arranged in ascending order and then multiplied with weighting 

vector, in which associated weights are multiplied with expert values based on the value provided 

by the expert. 

            Later on there are many extensions have been taken place in ordered weighted averaging 

operators and used in the case of interval valued fuzzy sets, interval valued intuitionistic fuzzy 

sets and so on. The approach of ordered weighted averaging aggregation operators concludes the 

different linguistic variables into a single one variable. Now for all experts with same attributes 

for specific alternative and these calculations the decision making problem is then solved with the 

help of score and accuracy functions, such that if the value of score function of specific linguistic 

variable which represents the specific alternative is greater than the score function values of other 

linguistic variables then the most appropriate choice will be that alternative, and also if value of 

score function is greater or equal to other linguistic variables values then the value of accuracy 

function for it must be greater or equal than the other variables, and if the value of score function 

for two different linguistic variables will be same then the distinction will be made on the behalf 

of value of accuracy function.  
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            Now we used the model “Generalized linguistic interval valued intuitionistic fuzzy soft 

expert sets” (GLIVIFSESs) [23] to define similarity measures on them. Basically generalized 

comes from the concept of accuracy, accuracy in terms of measuring or finding the most 

appropriate alternative. For that purpose we increase the number of dimensions for most relevant 

and realistic judgment. For instance if we select a team of three persons to select the proposal 

from “n” proposals which has most diversities or flexibilities for innovative work in the field 

fuzzy algebra, so for that purpose in 1-dimension we take their opinion regarding the degree of 

membership and degree of non-membership and for reality purposes we take 2-D in which the 

decision maker’s express their knowledge about fuzzy algebra in linguistic terms, and so on we 

can add different factors by adding higher order dimensions to enhance the accuracy in selection 

process. In the study of similarity measures there are lot of choices are available in which some 

are similarity measures and some are distance based similarity measures. The similarity and 

distance based similarity measures are basically used to find the similarity index between two 

different structures which can be used further in many dimensions such as in pattern recognition, 

in face recognition and so on. 

            Firstly we take into account Type-I similarity measure [19, 22] and modify for under-

study structure which is based on supremum and infimum properties. In which we separately 

calculate the infimum’s w.r.t different criteria’s and experts for each alternative and then find the 

supremum of all these obtained infimum’s, similarly for all other alternatives and then calculate 

their average. On the same points we imply Type-II similarity measure [19] with shifting of 

infimum operation in the place of supremum and supremum on the place of infimum (in the way 

of struggling) to enhance the accuracy in results. In Type-III similarity measure [19] we take into 

account the concept of intersection and union of under-study structure. Such that for each 

alternative we calculate intersection and divide it by union of same sets with specific criteria and 

specific expert and then done it for all with at the end sum-up for all criteria’s and after that for 

all experts, then finally we take the average of these similarity results to get the similarity 

between the opinions of experts over all the alternatives. 

            Type-IV similarity measures in which we propose a new similarity measure based on the 

idea from Type-III, such that in Type-III while taking intersection and union of two different 
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under-study structures we convert the linguistic terms with membership values as an interval into 

a constant numerical number by taking the average value of extreme ends of interval which 

violates the structure of under-study structure. So in Type-IV to remove that violence we take the 

intervals as it is and then use the properties of fuzzy intervals for union and intersection. From 

Type-III similarity measure we make Type-V similarity measure from a point that linguistic 

terms in case of linguistic intuitionistic fuzzy sets have no relation with fuzzy interval such that 

the second term may be lower in order than the first-one with the property that 𝑠𝑎 + 𝑠𝑏 ≤ 𝑠𝑡 . 

Further to reduce the inaccuracy in similarity results between the opinions of experts we take in 

modified Type-V similarity measure only the intersections of under-study structures and then 

calculate their sum to find the similarity between opinions for specific alternative and then for 

collectively all alternatives we calculates similarities results(for specific alternatives) average. 

From the idea of entropy, which is used to measure the fuzziness of fuzzy sets, we modify the 

entropy measure for interval-valued intuitionistic fuzzy sets [4] to GLIVIFSESs and then 

calculate entropy based similarity measure for under-study structure. From [6] we take the idea of 

dissimilarity which was implied in [6] on intuitionistic fuzzy sets, which is based on the idea of 

differences between the opinions of experts. Here in case of under-study structure we extend that 

measure for such structure for specific proposals w.r.t different criteria’s and apply it on practical 

example to see the reliability of that dissimilarity measure. As correlation represents a 

relationship or in other words a similarity measure [7], so we employed correlation to measure 

the similarity between different structures of GLIVIFSESs. We use [8, 9] to extend the idea of 

similarity measure on under-study structure using the operation of max-min for that structure. 

            Then we modify that max-min similarity measure by bringing the change in statement of 

similarity measure to enhance the accuracy in similarity results. Further we use classical and 

fuzzy implications [10] and extend these implications for linguistic cases & use these fuzzy 

implications with matrix norms and [13, 14] to measure the distance between under-study 

structures. After that we discus about distance measures [16, 17] and extend these distance 

measures for linguistic case and then generalizes for under-study structure and call these as 

modified hamming and Euclidean distances. On the basis of these modified distances we apply 

similarity measures on under-study structure and compare results with practical examples. 
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CHAPTER 2 

             

LITERATURE REVIEW 

 

            In this chapter we will discuss about the previous work in the field of fuzzy algebra done 

up to that time. In which we take into account mainly the similarity measures proposed by 

different researchers in case of fuzzy expressions in the of form numerical quantities and then 

come to main point “linguistic approach” towards fuzzy information and mainly discuss about 

under-study structure also briefly consider into account linguistic approach extensions from 

simple fuzzy set towards under-study structure.    

            In literature the first start of fuzzy algebra/fuzzy mathematics was initiated by L.A Zadeh 

[1] in which he introduced the idea of “uncertainty for selection”. Then after that it gains 

popularity by many researchers also by many well reputed agencies/companies and lot of 

extensions of fuzzy set theory has been taken place but the most popularity gained by 

“intuitionistic fuzzy theory” [20, 21, 2] in which K.T Attanasov considered about “uncertainty for 

rejection” at the same time with uncertainty for selection. Then after that Molodtsov [28] 

introduced the concept of softness in fuzzy structures by introducing the concept of 

parameters/attributes/criteria’s such that for the purpose of assign a belongingness sign or non-

belongingness the judgment will be based on criteria’s/parameters related to the ideal structure, 

i.e. in the selection of valid university the parameters will be research excellency, competency of 

teachers, fee structure and so on. Then V.Torra [29] discussed about hesitancy of fuzzy sets and 

calls them as hesitant fuzzy sets, such that in these sets we take hesitancy as also a part of fuzzy 

information or in other words what amount of lack of knowledge present in selection or rejection 

of specific individual. 
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            Further for a case of relation/link between fuzzy sets, here study of relations between 

fuzzy sets has great importance due to its applications in many fields, the major one’s are medical 

diagnosis, data mining’s, assigning a preference [30], and so on. Bustince and Burillo [31] 

introduced the entropy for intuitionistic fuzzy sets and interval-valued intuitionistic fuzzy sets to 

measure the fuzziness of these sets, which plays an essential role in measuring the relationship 

because when we are sure about fuzziness of two different individuals we can easily draw their 

similar portion. Ismat beg and Samina Ashraf [32] discussed about similarity measures for fuzzy 

sets and proposed a new axiomatic similarity measure and discuses about the relevance of these 

new proposed axioms with classical/already-present axioms. Li Yingfang [33] studied about 

interval-valued fuzzy sets and presented similarity measure for measuring similarity between 

IVFSs, here IVFSs have an over advantage on fuzzy sets that these covers information if decision 

makers have unclearity in the form of intervals. 

            Deqing Li [34] discussed about hesitant fuzzy sets and presented some new distance and 

similarity measures for hesitant fuzzy sets with comparison to classical similarity measures and 

applies them to pattern recognition problem. Here in measures we have distance measures and 

similarity measures, while we can draw similarity measures on the behalf of distance measures 

such that if two sets are same then there will be no distance between them but their similarity will 

be the perfect value so, by subtracting that similarity value from perfect value we get the distance 

measure and vice versa. Chong Wu [35] discussed about interval-valued intuitionistic fuzzy sets 

along with hesitancy degree and presented new similarity measure on the basis of entropy 

measure and hesitancy degree and then employ that similarity measure to expert system for 

pattern recognition problems. 

            Expert system is demanding research field due to its vast use in practical problems 

because we are facing a lot of situations in real life in which we have to make decisions for 

appropriate choice from the multiple choices set and expert systems plays fundamental role for 

appropriate choice or in other words we can say that expert system plays a role just like a 

program in which we substitute different values and after operation defined in it we get the result 

which meets our needs. 
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            Now in case of linguistic approach towards fuzzy theory, because some times in real-

world situations it is not possible to depict the information in quantitative way i.e. to describe the 

patient condition after taking medicine will be in form of, well, bed, excruciating and so on. 

Zadeh [36] firstly introduced the concept of linguistic variables, which basically reflects the fact 

that humans reasoning or selection is not an exact value but an approximation and the values in 

these variables are words not a numbers. Zhang [37] proposed from linguistic fuzzy sets, 

linguistic intuitionistic fuzzy sets for the purpose of better dealing with unsurely information, 

along with the usage of t-norm and t-conorm some aggregation operators to aggregate linguistic 

intuitionistic fuzzy values and uses that structure in multiple attribute group decision making 

problems. Since the decision making process with the help of linguistic approach is good but at 

the same time the selection of linguistic term may be biased, may be inappropriate due to the 

weaknesses of experts in selecting the appropriate choices which leads to non-negligible 

inappropriate results. To overcome that drawback Zhu et al [38] give the idea of 2-D, in which 

decision makers have to give opinions in the form of 2-DLVs in which 1-D represents judgments 

and the second dimension (2-D) represents reliability of judgmental results or in other words it 

represents the expertise of decision maker, i.e. the innovator as an expert give the judgment as 

“excellent” and in familiarity “perfectly familiar”. 

            Yu et al [39] further discussed on 2-DL and used concept of triangular fuzzy number to 

distinct from 1-DL and developed weighted averaging and ordered weighted averaging 

aggregation operators for 2-DL information and apply them in MCDM problems. As from 

linguistic intuitionistic fuzzy information we have a degree of freedom in selection of best 

alternative but its drawback is its lack of ability to take into account the reliability of experts, on 

the other hand 2-DL information, it only gives information on reliability of expert’s opinions. So 

the both representations have limitations, to overcome these limitations Verma et al [3] presented 

the hybrid model containing both linguistic intuitionistic and 2-D linguistic fuzzy information 

structures and call it as 2-DLIFVs. They also introduced the operational laws for that hybrid 

structure, also with some aggregation operators which include 2-D linguistic intuitionistic fuzzy 

weighted averaging operator, 2-D linguistic intuitionistic fuzzy ordered weighted averaging 

operator, 2-D linguistic intuitionistic fuzzy weighted geometric operator, 2-D linguistic 

intuitionistic fuzzy ordered weighted geometric operator. With the help of averaging and ordered 
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averaging operator they introduced the idea of 2-D linguistic intuitionistic fuzzy hybrid averaging 

operator, similarly from weighted geometric and ordered weighted geometric operator they 

introduced 2-D linguistic intuitionistic fuzzy hybrid geometric operator. Also they employ that 

new proposed 2-D structure in multi-criteria group decision making (MCGDM) problems and use 

the proposed aggregated results for aggregating the 2-DLIFVs. 

            Later on Tasaduq & Afshan Qayyum [23] studied the linguistic approach and by adopting 

the fact that dimensions order impacts the results, they used the term “generalized” for the order 

of dimensions. Also from linguistic intuitionistic fuzzy variables, due to the hesitancy of decision 

makers for exactly in the choice of specific linguistic term such that linguistic intuitionistic 

variables limitation in case of hesitancy in choice, they introduced the idea of intervals in 

linguistic prospective. So that it allows more flexibility in the choice of linguistic terms even 

judgments based on lack of surety. At the same time they take into account the concept of soft 

sets and its generalization into soft expert sets, such that introduced the concept of parameters 

with the selection of IVIFVs, which also improves the reliability of resulted information. In 

combing these proposed advancements, they call as “generalized linguistic interval-valued 

intuitionistic fuzzy soft expert sets”.  
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CHAPTER 3 

             

PRELIMINARIES 

 

            In this chapter we will consider some basic definitions about fuzzy sets, interval-valued 

fuzzy sets, intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets, cubic soft expert sets 

which were presented for numerical data, defining definition of Type-I and Type-II similarity 

measures under cubic sets. Also discuss these under linguistic approach, finally discuss under-

study structure.     

Definition [1] 

Suppose 𝑋 = {𝑥𝑖: 𝑖 = 1,2,3,… , 𝑛} represents a set of discourse and 𝐴 ⊆ 𝑋 mathematically 

defined as 

𝐴 = {〈𝑥, 𝛼𝐴(𝑥)〉: 𝑥 ∈ 𝑋 & 𝛼𝐴(𝑥) ∈ [0,1]} 

known as fuzzy set. 

Definition [1] 

Suppose 𝑋 = {𝑥𝑖: 𝑖 = 1,2,3,… , 𝑛} represents a set of discourse and 𝐵 ⊆ 𝑋 mathematically 

defined as 

𝐵 = {〈𝑥, [𝛼𝐵(𝑥), 𝛼
′
𝐵(𝑥)]〉: 𝑥 ∈ 𝑋 & 𝛼𝐵(𝑥), 𝛼

′
𝐵(𝑥) ∈ [0,1] 𝑠. 𝑡 𝛼𝐵(𝑥) ≤  𝛼

′
𝐵(𝑥)} 

known as interval-valued fuzzy set. 

Definition [20] 

Suppose 𝑋 = {𝑥𝑖: 𝑖 = 1,2,3,… , 𝑛} represents a set of discourse and 𝐶 ⊆ 𝑋 mathematically 

defined as 

𝐶 = {〈𝑥, 𝛼𝐶(𝑥), 𝛽𝐶(𝑥)〉: 𝑥 ∈ 𝑋 & 𝛼𝐶(𝑥),𝛽𝐶(𝑥) ∈ [0,1] 𝑠. 𝑡 𝛼𝐶(𝑥) + 𝛽𝐶(𝑥) ≤ 1} 

here 𝛼𝐶(𝑥) represents membership function and 𝛽𝐶(𝑥) represents non-membership function. The 

above defined set is known as intuitionistic fuzzy set. 
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Definition [2] 

Suppose 𝑋 = {𝑥𝑖: 𝑖 = 1,2,3,… , 𝑛} represents a set of discourse and 𝐷 ⊆ 𝑋 mathematically 

defined as 

𝐷 = {〈𝑥, [𝛼𝐷(𝑥),𝛼
′
𝐷(𝑥)], [𝛽𝐷(𝑥), 𝛽

′
𝐷
(𝑥)]〉: 𝑥 ∈ 𝑋 & 𝛼𝐷(𝑥),𝛼

′
𝐷(𝑥), 𝛽𝐷(𝑥),𝛽

′
𝐷
(𝑥) ∈ [0,1] & 

𝛼𝐷(𝑥) ≤ 𝛼
′
𝐷(𝑥), 𝛽𝐷(𝑥) ≤ 𝛽

′
𝐷
(𝑥) 𝑠. 𝑡 𝛼′𝐷(𝑥) + 𝛽

′
𝐷
(𝑥) ≤ 1} 

known as interval-valued intuitionistic fuzzy set. 

Definition [19] 

Suppose 𝑋 = {𝑥𝑖: 𝑖 = 1,2,3,… , 𝑛} represents a set of alternatives with 𝐹 ⊆ 𝑋 and 𝐸 =

{𝑒𝑗: 𝑗 = 1,2,3,… ,𝑚} represents a set of experts and 𝐶 = {𝑐𝑎: 𝑎 = 1,2,3,… ,𝑤} represents a set of 

criteria’s then 

𝐹 = {〈𝑥, 𝛼𝐹(𝑥), [𝛼1𝐹(𝑥), 𝛼1
′
𝐹
(𝑥)]〉: 𝑥 ∈ 𝑋 & 𝛼𝐹(𝑥), 𝛼1𝐹(𝑥),𝛼1

′
𝐹
(𝑥) ∈ [0,1]} 

known as cubic soft expert set, which is basically a combination of fuzzy set and interval-valued 

fuzzy set. 

Definition [22] 

Suppose 𝑋 = {𝑥𝑖: 𝑖 = 1,2,3,… , 𝑛} represents a set of alternatives and 𝐸 = {𝑒𝑗: 𝑗 = 1,2,3,… ,𝑚} 

represents a set of experts and 𝐶 = {𝑐𝑎: 𝑎 = 1,2,3,… ,𝑤} represents a set of criteria’s and R & F 

are cubic soft expert sets of X then 

𝑆(𝑅, 𝐹) =

1

𝑛
∑ [𝑚𝑎𝑥 [∑ ∑ 𝑚𝑖𝑛 {

𝛼1𝐹(𝑥)+𝛼1
′
𝐹(𝑥)−𝛼1𝐹(𝑥)𝛼1

′
𝐹(𝑥)

3
,
𝛼1𝑅(𝑥)+𝛼1

′
𝑅(𝑥)−𝛼1𝑅(𝑥)𝛼1

′
𝑅(𝑥)

3
, 𝛼𝐹(𝑥), 𝛼𝑅(𝑥)}

𝑤
𝑎=1

𝑚
𝑗=1 ]] 𝑛

𝑖=1 , 

1

𝑛
∑ [𝑚𝑎𝑥 [∑ ∑ 𝑚𝑖𝑛 {

𝛼1𝐹(𝑥)+𝛼1
′
𝐹(𝑥)−𝛼1𝐹(𝑥)𝛼1

′
𝐹(𝑥)

3
,
𝛼1𝑅(𝑥)+𝛼1

′
𝑅(𝑥)−𝛼1𝑅(𝑥)𝛼1

′
𝑅(𝑥)

3
, 𝛼𝐹(𝑥), 𝛼𝑅(𝑥)}

𝑤
𝑎=1

𝑚
𝑗=1 ]]𝑛

𝑖=1  

known as Type-I & Type-II similarity measures for cubic soft expert sets respectively. 

Definition [37] 

Suppose 𝑋 = {𝑥𝑖: 𝑖 = 1,2,3,… , 𝑛} represents universe of discourse and 𝑆 = {𝑠𝑟: 𝑠0 ≤ 𝑠𝑟 ≤

𝑠𝑡, &𝑡 ∈ 2ℤ} represents a set of continuous linguistic terms, then 

𝐴 = {〈𝑥, 𝑠𝑖, 𝑠𝑗〉: 𝑥 ∈ 𝑋 &𝑠𝑖, 𝑠𝑗 ∈ 𝑆} 

known as linguistic intuitionistic fuzzy set with 𝑠𝑖 and 𝑠𝑗 respectively represents degree of 

membership and non-membership. 
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Definition [38] 

Suppose 𝑋 = {𝑥𝑖: 𝑖 = 1,2,3,… , 𝑛} represents universe of discourse and 𝑆 = {�̇�𝑟: �̇�0 ≤ �̇�𝑟 ≤

�̇�𝑡, &𝑡 ∈ 2ℤ} represents a set of continuous linguistic terms for the choice of linguistic terms in 

judgments. Also let 𝑆° = {�̈�𝑢: �̈�0 ≤ �̈�𝑢 ≤ �̈�𝑡′ , & 𝑡
′ ∈ 2ℤ} which represents continuous linguistic 

terms for appropriate selection of reliability, then 

𝐵 = {〈𝑥, �̇�𝑖〉, 〈𝑥, �̈�𝑘〉: 𝑥 ∈ 𝑋 & �̇�𝑖 ∈ 𝑆, �̈�𝑘 ∈ 𝑆
°} 

known as 2-D linguistic fuzzy set with (�̇�𝑖, �̈�𝑘) respectively represents degree of membership. 

Definition [3] 

Suppose 𝑋 = {𝑥𝑖: 𝑖 = 1,2,3,… , 𝑛} represents universe of discourse and 𝑆 = {�̇�𝑟: �̇�0 ≤ �̇�𝑟 ≤

�̇�𝑡, & 𝑡 ∈ 2ℤ} represents a set of continuous linguistic terms for the choice of linguistic terms in 

judgments. Also let 𝑆° = {�̈�𝑢: �̈�0 ≤ �̈�𝑢 ≤ �̈�𝑡′ , & 𝑡
′ ∈ 2ℤ} which represents continuous linguistic 

terms for appropriate selection of reliability, then 

𝐶 = {〈𝑥, �̇�𝑖, �̇�𝑗〉, 〈𝑥, �̈�𝑘, �̈�𝑙〉: 𝑥 ∈ 𝑋 & �̇�𝑖, �̇�𝑗 ∈ 𝑆, �̈�𝑘 , �̈�𝑙 ∈ 𝑆
°} 

known as 2-D linguistic intuitionistic fuzzy set with (�̇�𝑖, �̈�𝑘) and (�̇�𝑗, �̈�𝑙) respectively represents 

degree of membership and non-membership. 

Definition [3] 

Let 

S1={〈ṡα , ṡβ〉 , 〈s̈γ , s̈δ〉} 

S2={〈ṡα′ , ṡβ′〉 , 〈s̈γ′  , s̈δ′〉} 

be two different generalized linguistic intuitionistic fuzzy soft sets, the score function for them is 

as under 

S(S1)=S
(
t+α−β

2t
)×(

t′+γ−δ

2t′
)
 

and the accuracy function is defined as under 

H(S1)= S(α+β
t
)×(

γ+δ

t′
)
 

With following properties 

i.If S(S1) > S(S2) then S1 > S2 

ii.If S(S1) = S(S2) and H(S1) > H(S2) then S1 > S2 

iii.If S(S1) = S(S2) and H(S1) = H(S2) then S1 = S2 
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Definition [23] 

Suppose 𝑋 = {𝑥𝑖: 𝑖 = 1,2,3,… , 𝑛} represents universe of discourse and 𝐸 = {𝑒𝑗: 𝑗 = 1,2,3,… ,𝑚} 

represents a set of experts and 𝐶 = {𝑐𝑎: 𝑎 = 1,2,3,… ,𝑤} represents a set of criteria’s and 𝑆 =

{�̇�𝛼: �̇�0 ≤ �̇�𝛼 ≤ �̇�𝛼′ ≤ �̇�𝑡, & 𝑡 ∈ 2ℤ} represents a set of continuous linguistic terms for the choice 

of linguistic terms in judgments. Also let 𝑆° = {�̈�𝛾: �̈�0 ≤ �̈�𝛾 ≤ �̈�𝛾′ ≤ �̈�𝑡′ , & 𝑡
′ ∈ 2ℤ} which 

represents continuous linguistic terms for appropriate selection of reliability, then 

𝑌 = {〈𝑥, �̇�[𝛼,𝛼′], �̇�[𝛽,𝛽′]〉 , 〈𝑥, �̈�[𝛾,𝛾′], �̈�[𝛿,𝛿′]〉 : 𝑥 ∈ 𝑋 & �̇�𝛼 , �̇�𝛼′ , �̇�𝛽, �̇�𝛽′ ∈ 𝑆, �̈�𝛾 , �̈�𝛾′ , �̈�𝛿 , �̈�𝛿′ ∈ 𝑆
°} 

known as generalized linguistic interval-valued intuitionistic fuzzy soft expert set, with the 

condition that �̇�𝛼′ + �̇�𝛽′ ≤ �̇�𝑡 and �̈�𝛾′ + �̈�𝛿′ ≤ �̈�𝑡′ where {�̇�[𝛼,𝛼′], �̈�[𝛾,𝛾′]} and {�̇�[𝛽,𝛽′], �̈�[𝛿,𝛿′]} 

respectively represents degree of membership and degree of non-membership. 
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CHAPTER 4 

             

SIMILARITY MEASURES ON GENERALIZED LINGUISTIC 

INTERVAL VALUED INTUITIONISTIC FUZZY SOFT EXPERT 

SETS (GLIVIFSESs) 

 

            In this chapter we will discuss/extend/propose similarity measures on under-study 

structure and check their validity by considering different practical problems examples. Also we 

consider a common practical problem example for comparison reasons between different 

similarity measures results. In doing so we firstly propose Type-I similarity measure over under-

study structure and for validity of results obtained after that measure we generally consider a 

problem of finding the similarities between the opinions of experts/students against their teachers. 

Further we propose Type-II similarity measure over under-study structure and firstly compare 

similarity result by taking Example 4.1.1 and then consider a practical problem regarding the 

judgment of employees. Then we propose Type-III similarity measure and constructed a practical 

problem example regarding the recruitment of competitive teachers to bring into the mind of 

students about creativity rather than a usual process of just memorize the course contents and 

promote to the next level with high grades. Further we propose Type-IV similarity measure and 

compare these with Type-I, II under the data of Example 4.1.1, also constructed a practical 

problem example for resolving the issue of allocation budget to a specific department on the 

behalf of its performance results.  

            Similarly later on we propose Type-V and its extension as Modified Type-V similarity 

measure from Type-III similarity measure also compare these results by using Example 4.1.1 And 

constructed practical problem example regarding the issuance of mining certificate to do mining 

in specific areas of Balochistan and compare these two similarity measure results. Finally, in that 

section we propose Max-Min and Modified Max-Min similarity measure for under-study 



14 
 

structure, also compare these similarities results with previous ones under Example 4.1.1 data, 

also we constructed practical problem example regarding selection of appropriate candidates for 

Hungarian-Stipend to Pakistani students for study in Hungry specified/sponsored institutions.                        

4.1. TYPE-I SIMILARITY MEASURE FOR GLIVIFSESs. 

Definition. Let 𝑆𝑡 = {𝑆0, 𝑆1, 𝑆2,   .  .  .  , 𝑆𝑡} be a linguistic term set which is predefined, where ′𝑡′ is 

any positive integer with even cardinality such that 

S1={〈ṡ[α,α′], ṡ[β,β′]〉 , 〈s̈[γ,γ′] , s̈[δ,δ′]〉}, 

which represents the generalized (specifically we taken 2-D) linguistic interval valued 

intuitionistic fuzzy soft expert set, similarly we have 

S2={〈ṡ[α,α′], ṡ[β,β′]〉 , 〈s̈[γ,γ′] , s̈[δ,δ′]〉}. 

Let SM(S1, S2) represents the Type-I similarity measure between these two sets, to calculate the 

similarity measure between them we have to calculate the similarity measure between each 

correspondence. Such that we have to find the similarity measure between the linguistic sets for a 

specific proposal with certain criteria from which S1 and S2 obtained by applying aggregation 

operators, for which we consider the proposal’s be a finite set P = {pi: i = 1, .  .   .   , m} and the 

criteria for membership is again a finite set C = {cj: j = 1, .   .   .   , n} and the number of judges 

for appropriate judgment we again consider a set J = {jk: k = 1 , .   .   .   , o} where m,n, o ∈ ℤ  

with the possibility of equality. Then we take 𝑆𝑖(cj, jk) as ith similarity measure based on the 

proposal pi which is defined as follows 
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𝑆𝑖(S1, S2, … , So) = 

𝑠𝑢𝑝

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑖𝑛𝑓

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
〈s1̇(cj, jk)

[
α+α′−

αα′

t
3

]

, s1̇(cj, jk)

[

ββ′

t
3
]

〉 , 〈s1̈(cj, jk)

[
γ+γ′−

γγ′

t′
3

]

, s1̈(cj , jk)

[

δδ′

t′
3
]

〉

)

 
 
,

(

 
 
〈s2̇(cj, jk+1)

[
α+α′−

αα′

t
3

]

, s2̇(cj, jk+1)

[

ββ′

t
3
]

〉 , 〈s̈2(cj, jk+1)

[
γ+γ′−

γγ′

t′
3

]

, s̈2(cj, jk+1)

[

δδ′

t′
3
]

〉

)

 
 
,… ,

(

 
 
〈ṡo(cj , jo)

[
α+α′−

αα′

t
3

]

, ṡo(cj, jo)

[

ββ′

t
3
]

〉 , 〈s̈o(cj , jo)

[
γ+γ′−

γγ′

t′
3

]

, s̈o(cj, jo)

[

δδ′

t′
3
]

〉

)

 
 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,

𝑖𝑛𝑓

[
 
 
 
 
 
 
 
 
 
 

(

 
 
〈ṡ1(cj+1, jk)

[
α+α′−

αα′

t
3

]

, ṡ1(cj+1, jk)

[

ββ′

t
3
]

〉 , 〈s̈1(cj+1, jk)

[
γ+γ′−

γγ′

t′
3

]

, s̈1(cj+1, jk)

[

δδ′

t′
3
]

〉

)

 
 
,… ,

(

 
 
〈ṡo(cj+1, jo)

[
α+α′−

αα′

t
3

]

, ṡo(cj+1, jo)

[

ββ′

t
3
]

〉 , 〈s̈o(cj+1, jo)

[
γ+γ′−

γγ′

t′
3

]

, s̈o(cj+1, jo)

[

δδ′

t′
3
]

〉

)

 
 

]
 
 
 
 
 
 
 
 
 
 

, … ,

𝑖𝑛𝑓

[
 
 
 
 
 
 
 
 
 
 

(

 
 
〈ṡ1(cn, jk)

[
α+α′−

αα′

t
3

]

, ṡ1(cn, jk)

[

ββ′

t
3
]

〉 , 〈s̈1(cn, jk)

[
γ+γ′−

γγ′

t′
3

]

, s̈1(cn, jk)

[

δδ′

t′
3
]

〉

)

 
 
,… ,

(

 
 
〈ṡo(cn, jo)

[
α+α′−

αα′

t
3

]

, ṡo(cn, jo)

[

ββ′

t
3
]

〉 , 〈s̈o(cn, jo)

[
γ+γ′−

γγ′

t′
3

]

, s̈o(cn, jo)

[

δδ′

t′
3
]

〉

)

 
 

]
 
 
 
 
 
 
 
 
 
 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(4.1) 

here "t′" represents the length of term set for 2-D linguistic approach and "t" represents length of 

term set for 1-D. Also ‘i’ represents a specific proposal such that it varies from 0 to ‘m’ and by 

using the above equation we have to find 𝑆𝑖(S1, S2) for each ‘i’.  

After calculating all these values we obtain a Type-I similarity measure by using the following 

equation 
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SMS1, S2, … , So) =
∑ 𝑆𝑖(S1, S2, … , So)
m
i=0

m
→ (A). 

To better understanding the above methodology we will consider data from practical example to 

demonstrate the above presented methodology. 

EXAMPLE 4.1.1.  

            Consider two students {𝑎, 𝑏} from a class are selected (here we take these two students as 

judges) they are allowed to characterized your teachers {𝑡1, 𝑡2} on the behalf of following two 

habit’s  

    Loyalty  

 Humbleness  

And we form a set of criteria’s {ℎ1, ℎ2} by assigning  

ℎ1 = Loyalty,  ℎ2 = Humbleness 

Now, on the behalf of students experience with teachers, length of time spend with them we 

increase the order of dimension from 1-D to 2-D with term sets are as under 

𝑆𝑡 = {𝑆0 = 𝑝𝑜𝑜𝑟, 𝑆1 = 𝑣𝑒𝑟𝑦 𝑏𝑎𝑑, 𝑆2 = 𝑏𝑎𝑑, 𝑆3 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒, 𝑆4 = 𝑎𝑏𝑜𝑣𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑔𝑜𝑜𝑑), 𝑆5
= 𝑣𝑒𝑟𝑦 𝑔𝑜𝑜𝑑, 𝑆6 = 𝑒𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡} 

𝑆𝑡′ = {𝑆0 = 𝑛𝑒𝑤 𝑠𝑡𝑢𝑑𝑒𝑛𝑡(𝑁𝑜 𝑡𝑖𝑚𝑒 𝑠𝑝𝑒𝑛𝑑), 𝑆1 = 𝑙𝑖𝑡𝑡𝑙𝑒 𝑡𝑖𝑚𝑒, 𝑆2 = 𝑓𝑟𝑜𝑚 𝑙𝑎𝑠𝑡 𝑦𝑒𝑎𝑟, 𝑆3
= 𝑙𝑜𝑛𝑔 𝑡𝑖𝑚𝑒, 𝑆4 = 𝑙𝑖𝑣𝑖𝑛𝑔 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒𝑚}. 

The general form a result obtained after their evaluation will be of the form 

                                   S1={〈ṡ[α,α′], ṡ[β,β′]〉  , 〈s̈[γ,γ′] , s̈[δ,δ′]〉} 

and  

                                   S2={〈ṡ[α,α′], ṡ[β,β′]〉 , 〈s̈[γ,γ′] , s̈[δ,δ′]〉}. 

            We consider the evaluation of student ‘a’ as S1 and the evaluation of student ‘b’ with S2. 

Now we wanted to find out the Type-I similarity measure between these above Generalized 

Linguistic Interval-valued Intuitionistic Fuzzy soft expert sets. For that first we will find out, 
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sup

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

inf

{
  
 

  
 
(〈ṡ1(h1, a)

[
2+3−

6
6

3
]

, ṡ1(h1, a)
[

1×2
6
3
]

〉 , 〈s̈1(h1, a)
[
1+2−

2
4

3
]

, s̈1(h1, a)
[

1×2
4
3
]

〉) ,

(〈ṡ2(h1, b)
[
3+4−

12
6

3
]

, ṡ2(h1, b)
[

1×2
6
3
]

〉 , 〈s̈2(h1, b)
[
1+2−

2
4

3
]

, s̈2(h1, b)
[

1×2
4
3
]

〉)

}
  
 

  
 

inf

{
  
 

  
 
(〈ṡ1(h2, a)

[
1+3−

3
6

3
]

, ṡ1(h2, a)
[

2×3
6
3
]

〉 , 〈s̈1(h2, a)
[
1+2−

2
4

3
]

, s̈1(h2, a)
[

1×2
4
3
]

〉) ,

(〈ṡ2(h2, b)
[
1+2−

2
6

3
]

, ṡ2(h2, b)
[

3×4
6
3
]

〉 , 〈s̈2(h2, b)
[
1+2−

2
4

3
]

, s̈2(h2, b)
[

1×2
4
3
]

〉)

}
  
 

  
 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,   

this implies after simplification and finding infimum between them we get 

𝑠𝑢𝑝 {(〈𝑠1
3
̇ , 𝑠1

9
̇ 〉 , 〈�̈�2.5

3
, 𝑠1
6
̈ 〉) , (〈𝑠8

9
̇ , 𝑠2

3
̇ 〉 , 〈�̈�2.5

3
, 𝑠1
6
̈ 〉)}, 

which implies that the similarity between the opinions of students in case of teacher 𝑡1  

                                            =(〈𝑠8
9

̇ , 𝑠1
9

̇ 〉 , 〈�̈�2.5
3

, 𝑠1
6

̈ 〉). 

Now we have to find out the similarity in the case of second teacher 

sup

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

inf

{
  
 

  
 
(〈ṡ1(h1, a)

[
1+2−

2
6

3
]

, ṡ1(h1, a)
[

2×4
6
3
]

〉 , 〈s̈1(h1, a)
[
1+2−

2
4

3
]

, s̈1(h1, a)
[

1×2
4
3
]

〉) ,

(〈ṡ2(h1, b)
[
2+4−

8
6

3
]

, ṡ2(h1, b)
[

1×2
6
3
]

〉 , 〈s̈2(h1, b)
[
1+2−

2
4

3
]

, s̈2(h1, b)
[

1×2
4
3
]

〉)

}
  
 

  
 

inf

{
  
 

  
 
(〈ṡ1(h2, a)

[
2+3−

6
6

3
]

, ṡ1(h2, a)
[

2×3
6
3
]

〉 , 〈s̈1(h2, a)
[
1+2−

2
4

3
]

, s̈1(h2, a)
[

1×2
4
3
]

〉) ,

(〈ṡ2(h2, b)
[
1+2−

2
6

3
]

, ṡ2(h2, b)
[

3×4
6
3
]

〉 , 〈s̈2(h2, b)
[
1+2−

2
4

3
]

, s̈2(h2, b)
[

1×2
4
3
]

〉)

}
  
 

  
 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,   

this implies that  

𝑠𝑢𝑝 {(〈�̇�8
9
, �̇�4
9

〉 , 〈�̈�2.5
3
, 𝑠1
6
̈ 〉) , (〈𝑠8

9
̇ , 𝑠2

3
̇ 〉 , 〈�̈�2.5

3
, 𝑠1
6
̈ 〉)}, 

this implies that the similarity between opinions in case of second teacher is as under 

                                                                   =(〈𝑠8
9

̇ , 𝑠4
9

̇ 〉 , 〈�̈�5
6

, 𝑠1
6

̈ 〉).           
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By adding these two results we get 

  =(〈�̇�400
243

, �̇�14
81

〉 , 〈�̈�215
144

, �̈� 1

144

〉).           

Now by multiplying above equation with 
1

2
 we get  

                                             =(〈𝑠8
9

̇ , �̇�1.01835015〉 , 〈�̈�5
6

, �̈�1
6

〉).           

Thus the similarity between the opinions of two different students for two different teachers is 

given as 

SM(S1, S2)  =  (〈�̇�8
9

, �̇�1.01835015〉 , 〈�̈�5
6

, �̈�1
6

〉). 

Theorem: - Let S1 and S2 be any GLIVIFSESs and 𝑠𝜎 ∈ [𝑠0, 𝑠𝑡], then these are said to be 𝑠𝜎 

similar if SM(S1, S2) ≥ 𝑠𝜎 . We call S1 and S2 as significantly similar if SM(S1, S2) ≥ 𝑠𝑡
2

.         

4.2. TYPE-II SIMILARITY MEASURE BETWEEN GLIVIFSESs. 

Type-II similarity measures are same as Type-I similarity measures with variation in supremum 

and infimum usage, mathematically defined as 
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𝑆𝑖(S1, S2, … , So) = 

𝑖𝑛𝑓

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑠𝑢𝑝

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
〈s1̇(cj, jk)

[
α+α′−

αα′

t
3

]

, s1̇(cj, jk)

[

ββ′

t
3
]

〉 , 〈s1̈(cj, jk)

[
γ+γ′−

γγ′

t′
3

]

, s1̈(cj , jk)

[

δδ′

t′
3
]

〉

)

 
 
,

(

 
 
〈s2̇(cj, jk+1)

[
α+α′−

αα′

t
3

]

, s2̇(cj, jk+1)

[

ββ′

t
3
]

〉 , 〈s̈2(cj, jk+1)

[
γ+γ′−

γγ′

t′
3

]

, s̈2(cj, jk+1)

[

δδ′

t′
3
]

〉

)

 
 
,… ,

(

 
 
〈ṡo(cj , jo)

[
α+α′−

αα′

t
3

]

, ṡo(cj, jo)

[

ββ′

t
3
]

〉 , 〈s̈o(cj , jo)

[
γ+γ′−

γγ′

t′
3

]

, s̈o(cj, jo)

[

δδ′

t′
3
]

〉

)

 
 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,

𝑠𝑢𝑝

[
 
 
 
 
 
 
 
 
 
 

(

 
 
〈ṡ1(cj+1, jk)

[
α+α′−

αα′

t
3

]

, ṡ1(cj+1, jk)

[

ββ′

t
3
]

〉 , 〈s̈1(cj+1, jk)

[
γ+γ′−

γγ′

t′
3

]

, s̈1(cj+1, jk)

[

δδ′

t′
3
]

〉

)

 
 
,… ,

(

 
 
〈ṡo(cj+1, jo)

[
α+α′−

αα′

t
3

]

, ṡo(cj+1, jo)

[

ββ′

t
3
]

〉 , 〈s̈o(cj+1, jo)

[
γ+γ′−

γγ′

t′
3

]

, s̈o(cj+1, jo)

[

δδ′

t′
3
]

〉

)

 
 

]
 
 
 
 
 
 
 
 
 
 

, … ,

𝑠𝑢𝑝

[
 
 
 
 
 
 
 
 
 
 

(

 
 
〈ṡ1(cn, jk)

[
α+α′−

αα′

t
3

]

, ṡ1(cn, jk)

[

ββ′

t
3
]

〉 , 〈s̈1(cn, jk)

[
γ+γ′−

γγ′

t′
3

]

, s̈1(cn, jk)

[

δδ′

t′
3
]

〉

)

 
 
,… ,

(

 
 
〈ṡo(cn, jo)

[
α+α′−

αα′

t
3

]

, ṡo(cn, jo)

[

ββ′

t
3
]

〉 , 〈s̈o(cn, jo)

[
γ+γ′−

γγ′

t′
3

]

, s̈o(cn, jo)

[

δδ′

t′
3
]

〉

)

 
 

]
 
 
 
 
 
 
 
 
 
 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(4.2) 

  

with 

SM(S1, S2, … , So) =
∑ 𝑆𝑖(S1,S2,…,So)
m
i=0

m
. 
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 To better understand firstly we see the result variation of Example 4.1.1 using that similarity 

measure and then construct an example to see its working.  

EXAMPLE 4.2.1. 

Using data from Example 4.1.1, firstly to find the similarity between the opinions of student ‘a’ 

and student ‘b’ for a first teacher we use 

inf

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

sup

{
  
 

  
 
(〈ṡ1(h1, a)

[
2+3−

6
6

3
]

, ṡ1(h1, a)
[

1×2
6
3
]

〉 , 〈s̈1(h1, a)
[
1+2−

2
4

3
]

, s̈1(h1, a)
[

1×2
4
3
]

〉) ,

(〈ṡ2(h1, b)
[
3+4−

12
6

3
]

, ṡ2(h1, b)
[

1×2
6
3
]

〉 , 〈s̈2(h1, b)
[
1+2−

2
4

3
]

, s̈2(h1, b)
[

1×2
4
3
]

〉)

}
  
 

  
 

sup

{
  
 

  
 
(〈ṡ1(h2, a)

[
1+3−

3
6

3
]

, ṡ1(h2, a)
[

2×3
6
3
]

〉 , 〈s̈1(h2, a)
[
1+2−

2
4

3
]

, s̈1(h2, a)
[

1×2
4
3
]

〉) ,

(〈ṡ2(h2, b)
[
1+2−

2
6

3
]

, ṡ2(h2, b)
[

3×4
6
3
]

〉 , 〈s̈2(h2, b)
[
1+2−

2
4

3
]

, s̈2(h2, b)
[

1×2
4
3
]

〉)

}
  
 

  
 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,   

this gives after arithmetic evaluation and finding supremum between them we get 

                    𝑖𝑛𝑓 {(〈𝑠4
3

̇ , 𝑠1
9

̇ 〉 , 〈�̈�5
6

, 𝑠1
6

̈ 〉) , (〈𝑠7
6

̇ , 𝑠1
3

̇ 〉 , 〈�̈�5
6

, 𝑠1
6

̈ 〉)} = (〈𝑠7
6

̇ , 𝑠1
3

̇ 〉 , 〈�̈�5
6

, 𝑠1
6

̈ 〉),  

this represents the similarity between opinions of two different students for first teacher. 

Now to find the similarity between student’s opinions for second teacher, we have 
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inf

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

sup

{
  
 

  
 
(〈ṡ1(h1, a)

[
1+2−

2
6

3
]

, ṡ1(h1, a)
[

2×4
6
3
]

〉 , 〈s̈1(h1, a)
[
1+2−

2
4

3
]

, s̈1(h1, a)
[

1×2
4
3
]

〉) ,

(〈ṡ2(h1, b)
[
2+4−

8
6

3
]

, ṡ2(h1, b)
[

1×2
6
3
]

〉 , 〈s̈2(h1, b)
[
1+2−

2
4

3
]

, s̈2(h1, b)
[

1×2
4
3
]

〉)

}
  
 

  
 

sup

{
  
 

  
 
(〈ṡ1(h2, a)

[
2+3−

6
6

3
]

, ṡ1(h2, a)
[

2×3
6
3
]

〉 , 〈s̈1(h2, a)
[
1+2−

2
4

3
]

, s̈1(h2, a)
[

1×2
4
3
]

〉) ,

(〈ṡ2(h2, b)
[
1+2−

2
6

3
]

, ṡ2(h2, b)
[

3×4
6
3
]

〉 , 〈s̈2(h2, b)
[
1+2−

2
4

3
]

, s̈2(h2, b)
[

1×2
4
3
]

〉)

}
  
 

  
 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,   

that yields after simplification and finding supremum’s we have 

𝑖𝑛𝑓 {(〈�̇�14
9
, 𝑠1
9

̇ 〉 , 〈�̈�5
6

, 𝑠1
6

̈ 〉) ,(〈𝑠4
3

̇ , 𝑠1
3

̇ 〉 , 〈�̈�5
6

, 𝑠1
6

̈ 〉)} = (〈𝑠4
3

̇ , 𝑠1
3

̇ 〉 , 〈�̈�5
6

, 𝑠1
6

̈ 〉), 

which represents the similarity in opinions of both student’s for second teacher. 

Now by adding these two similarities, which are in the form of generalized linguistic intuitionistic 

fuzzy soft expert sets we get 

(〈𝑠7
6

̇ , 𝑠1
3

̇ 〉 , 〈�̈�5
6

, 𝑠1
6

̈ 〉) ⊕ (〈𝑠4
3

̇ , 𝑠1
3

̇ 〉 , 〈�̈�5
6

, 𝑠1
6

̈ 〉) =(〈�̇�121
54

, �̇� 1
54

〉 , 〈�̈�215
144

, �̈� 1

144

〉), 

now by using Equation (A) we get 

SM(S1, S2) = (〈�̇�18−√203
3

, 𝑠1
3

̇ 〉 , 〈�̈�5
6

, �̈�1
6

〉), 

Which represents the similarity between opinions of two student’s for two different teachers in 

the form generalized linguistic intuitionistic fuzzy soft expert set. By observation or by 

comparing it is clear that the linguistic terms appear in Example 4.1.1 similarity set and in 

Example 4.2.1 similarity set are not both are same. 

EXAMPLE 4.2.2. 

Consider a company wants to judge the performance of new enrolled employee’s on the behalf of criteria 

fixed by the owner. For that purpose the executive committee made a committee of experts working with 

that company to judge the performance and present the reports to executive committee.                                                                                                                         
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To get the reality based opinion’s the executive committee order the experts that also mention the 

own experience of working with them. The executive committee takes decision on the behalf of 

majority opinion from decision makers and for that purpose they wanted to calculate similarity 

between judgments of experts. 

For simplicity reasons and to demonstrate the Type-II similarity measure we consider three new 

enrolled employees {𝑒1, 𝑒2, 𝑒3} with two decision makers {𝑗1, 𝑗2} and two criteria’s {𝑐1, 𝑐2}  

 𝑐1= working speed 

 𝑐2= focus on work 

Here we consider the linguistic term set 𝑆𝑡 with variation of t as 1 ≤ 𝑡 ≤13 and linguistic term set 

𝑆𝑡′  which is predefined for 2-D linguistic approach, with variation of 𝑡′ as1 ≤ 𝑡′ ≤ 12. 

Now firstly we suppose roughly the judgments of both experts in the form of generalized 

linguistic interval-valued intuitionistic fuzzy soft expert sets for employee 𝑒1 and then find the 

similarity between them by using Type-II similarity measure for GLIVIFSESs. 

inf

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

sup

{
  
 

  
 
(〈ṡ1(c1, j1)

[
1+3−

3
13

3
]

, ṡ1(c1, j1)
[

2×3
13
3
]

〉 , 〈s̈1(c1, j1)
[
4+5−

4×5
12

3
]

, s̈1(c1, j1)
[

1×2
12
3
]

〉) ,

(〈ṡ2(c1, j2)
[
3+4−

12
13

3
]

, ṡ2(c1, j2)
[

1×2
13
3
]

〉 , 〈s̈2(c1, j2)
[
5+6−

30
12

3
]

, s̈2(c1, j2)
[

4×5
12
3
]

〉)

}
  
 

  
 

sup

{
  
 

  
 
(〈ṡ1(c2, j1)

[
1+3−

3
13

3
]

, ṡ1(c2, j1)
[

2×3
13
3
]

〉 , 〈s̈1(c2, j1)
[
2+4−

8
12

3
]

, s̈1(c2, j1)
[

1×2
12
3
]

〉) ,

(〈ṡ2(c2, j2)
[
3+4−

12
13

3
]

, ṡ2(c2, j2)
[

4×5
13
3
]

〉 , 〈s̈2(c2, j2)
[
1+2−

2
12

3
]

, s̈2(c2, j2)
[

5×6
12
3
]

〉)

}
  
 

  
 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,   

that yield’s after simplification 

𝑖𝑛𝑓𝑖𝑚𝑢𝑚 {(〈�̇�79
39
, �̇� 2
39

〉 , 〈�̈�17
6
, �̈� 1
18

〉) ,(〈�̇�79
39
, �̇� 2
13

〉 , 〈�̈�16
9
, �̈� 1
18

〉)} = (〈�̇�79
39
, �̇� 2
13

〉 , 〈�̈�16
9
, �̈� 1
18

〉), 

this represents the similarity between the opinions of experts for an employee 𝑒1. 

Now for an employee 𝑒2 we have 
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inf

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

sup

{
  
 

  
 
(〈ṡ1(c1, j1)

[
4+5−

20
13

3
]

, ṡ1(c1, j1)
[

5×6
13
3
]

〉 , 〈s̈1(c1, j1)
[
1+2−

2
12

3
]

, s̈1(c1, j1)
[

3×4
12
3
]

〉) ,

(〈ṡ2(c1, j2)
[
2+3−

6
13

3
]

, ṡ2(c1, j2)
[

1×5
13
3
]

〉 , 〈s̈2(c1, j2)
[
2+3−

6
12

3
]

, s̈2(c1, j2)
[

5×6
12
3
]

〉)

}
  
 

  
 

sup

{
  
 

  
 
(〈ṡ1(c2, j1)

[
1+4−

4
13

3
]

, ṡ1(c2, j1)
[

2×6
13
3
]

〉 , 〈s̈1(c2, j1)
[
2+4−

8
12

3
]

, s̈1(c2, j1)
[

2×3
12
3
]

〉) ,

(〈ṡ2(c2, j2)
[
3+4−

12
13

3
]

, ṡ2(c2, j2)
[

1×5
13
3
]

〉 , 〈s̈2(c2, j2)
[
2+6−

12
12

3
]

, s̈2(c2, j2)
[

1×4
12
3
]

〉)

}
  
 

  
 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,   

after simplification and finding supremum’s we get 

𝑖𝑛𝑓 {(〈�̇�97
39

, �̇� 5
39

〉 , 〈�̈�3
2

, 𝑠1
3

̈ 〉) , (〈�̇�61
39

, �̇� 5
39

〉 , 〈�̈�7
3

, �̈�1
9

〉)} = (〈�̇�97
39

, �̇� 5
39

〉 , 〈�̈�3
2

, �̈�1
3

〉),                                               

the above equation shows the similarity between expert’s opinions for employee 𝑒2. 

Now to find the similarity in opinions of experts for employee 𝑒3 we have 

inf

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

sup

{
  
 

  
 
(〈ṡ1(c1, j1)

[
2+6−

12
13

3
]

, ṡ1(c1, j1)
[

1×4
13
3
]

〉 , 〈s̈1(c1, j1)
[
1+3−

3
12

3
]

, s̈1(c1, j1)
[

3×4
12
3
]

〉) ,

(〈ṡ2(c1, j2)
[
2+5−

10
13

3
]

, ṡ2(c1, j2)
[

1×6
13
3
]

〉 , 〈s̈2(c1, j2)
[
2+3−

6
12

3
]

, s̈2(c1, j2)
[

3×6
12
3
]

〉)

}
  
 

  
 

sup

{
  
 

  
 
(〈ṡ1(c2, j1)

[
1+7−

7
13

3
]

, ṡ1(c2, j1)
[

2×6
13
3
]

〉 , 〈s̈1(c2, j1)
[
2+4−

8
12

3
]

, s̈1(c2, j1)
[

2×6
12
3
]

〉) ,

(〈ṡ2(c2, j2)
[
3+7−

21
13

3
]

, ṡ2(c2, j2)
[

2×5
13
3
]

〉 , 〈s̈2(c2, j2)
[
2+6−

12
12

3
]

, s̈2(c2, j2)
[

1×5
12
3
]

〉)

}
  
 

  
 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,   

that yields after simplification and finding supremum’s between them we get 

𝑖𝑛𝑓 {(〈�̇�92
39
, �̇� 4
39

〉 , 〈�̈�3
2
, �̈�1
3

〉) ,(〈�̇�109
39
, �̇�10
39

〉 , 〈�̈�7
3
, �̈� 5
36

〉)} = (〈�̇�92
39
, �̇�10
39

〉 , 〈�̈�3
2
, �̈�1
3

〉), 

this represents the similarity between expert’s opinions for employee 𝑒3. 

Now by adding these similarities we get 
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(〈�̇�79
39
, �̇� 2
13

〉 , 〈�̈�16
9
, �̈� 1
18

〉) ⊕ (〈�̇�97
39
, �̇� 5
39

〉 , 〈�̈�3
2
, �̈�1
3

〉) ⊕ (〈�̇�92
39
, �̇�10
39

〉 , 〈�̈�3
2
, �̈�1
3

〉) 

=(〈�̇�5.73567 , �̇�2.99×10−5〉, 〈�̈�601
144

, �̈�4.28669×10−5〉), 

now by using the Equation (A) 

SM(S1, S2) =  (〈�̇�2.292352, �̇�0.171601〉, 〈�̈�1.59342 , �̈�0.18344〉). 

4.3. TYPE-III SIMILARITY MEASURE FOR GLIVIFSESs. 

Definition. Let 𝑈 = {𝑢𝑖: 𝑖 = 1, .  .  .  , 𝑛}  be a set of alternatives and 𝐸 = {𝑒𝑗: 𝑗 = 1, .  .  .  ,𝑚} 

represents the set of decision makers and 𝐶 = {𝑐𝑘: 𝑘 = 1, .  .  .  , 𝑟} represents the set of criteria 

where n, r, m ∈ ℤ with the property that either ‘n’, ‘r’, ‘m’ are same or different. Suppose  

S1={〈ṡ[α,α′], ṡ[β,β′]〉 , 〈s̈[γ,γ′] , s̈[δ,δ′]〉}, 

and 

S2={〈ṡ[α,α′], ṡ[β,β′]〉 , 〈s̈[γ,γ′] , s̈[δ,δ′]〉}, 

the general form of generalized linguistic interval-valued intuitionistic fuzzy soft expert sets. 

According to Type-III similarity measure between different GLIVIFSESs we have firstly to 

calculate the similarity between GLIVIFSESs for a specific alternative, in mathematically 

 

∑ ∑ {
 
 

 
 

〈Ṡ1(𝑒𝑗,𝑐𝑘)α⊕α′
2

,Ṡ
1(𝑒𝑗,𝑐𝑘)

β⊕β′

2

〉 ,〈S̈
1(𝑒𝑗,𝑐𝑘)γ⊕γ′

2

 ,S̈
1(𝑒𝑗,𝑐𝑘)

δ⊕δ′

2

〉

}
 
 

 
 

⋀

{
 
 

 
 

〈Ṡ2(𝑒𝑗+1,𝑐𝑘)α⊕α′
2

,Ṡ
2(𝑒𝑗+1,𝑐𝑘)

β⊕β′

2

〉 ,〈S̈
2(𝑒𝑗+1,𝑐𝑘)γ⊕γ′

2

 ,S̈
2(𝑒𝑗+1,𝑐𝑘)

δ⊕δ′

2

〉

}
 
 

 
 

{
 
 

 
 

〈Ṡ1(𝑒𝑗,𝑐𝑘)α⊕α′
2

,Ṡ
1(𝑒𝑗,𝑐𝑘)

β⊕β′

2

〉 ,〈S̈
1(𝑒𝑗,𝑐𝑘)γ⊕γ′

2

 ,S̈
1(𝑒𝑗,𝑐𝑘)

δ⊕δ′

2

〉

}
 
 

 
 

⋁

{
 
 

 
 

〈Ṡ2(𝑒𝑗+1,𝑐𝑘)α⊕α′
2

,Ṡ
2(𝑒𝑗+1,𝑐𝑘)

β⊕β′

2

〉 ,〈S̈
2(𝑒𝑗+1,𝑐𝑘)γ⊕γ′

2

 ,S̈
2(𝑒𝑗+1,𝑐𝑘)

δ⊕δ′

2

〉

}
 
 

 
 

𝑟
𝑘=1

𝑚
𝑗=1    (4.3) 

 

which shows the similarity between the opinions of expert’s for specific alternative 𝑢𝑖 where ‘i’ 

range goes from one to ‘n’. Here the point is to be noticed that division of intervals is undefined 

when zero belongs to the denominator interval in case interval-valued intuitionistic fuzzy sets and 

other interval-valued fuzzy sets but in our case such that in linguistic approach this problem 

doesn’t interrupt such that S0 instead of ‘0’ doesn’t produces the undetermined case. Similarly for 
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each alternative we will use the above mentioned formula to calculate the similarity between the 

opinions of experts. 

Now to find the combined similarity in the opinions of experts for all alternatives we will use the 

following relation 

SM(S1, S2, … , So) =
∑ 𝑆𝑖(S1, S2, … , So)
m
i=0

m
, 

here the point should be note that in general not only two GLIVIFSESs (S1, S2) but these goes up 

to a finite number such that their quantity depends upon the number of experts involved in certain 

problem. To illustrate the above mentioned technique for measuring similarity between 

GLIVIFSESs we will firstly consider the Example 4.1.1 and then construct a separate example to 

briefly demonstrate that technique. 

EXAMPLE 4.3.1. 

By taking data from Example 4.1.1 we have the following generalized linguistic interval-valued 

intuitionistic fuzzy soft expert sets 

S1(h1, a)={〈ṡ[2,3], ṡ[1,2]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S1(h2, a)={〈ṡ[3,4], ṡ[1,2]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S2(h1, b)={〈ṡ[1,3], ṡ[2,3]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S2(h2, b)={〈ṡ[1,2], ṡ[3,4]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

these sets represent the evaluation values by students ‘a’ and ‘b’ for the teacher 𝑡1. Now for the 

second teacher 𝑡2 the evaluation values are as under 

S1(h1, a)={〈ṡ[1,2], ṡ[2,4]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S1(h2, a)={〈ṡ[2,4], ṡ[1,2]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S2(h1, b)={〈ṡ[2,3], ṡ[2,3]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S2(h2, b)={〈ṡ[1,2], ṡ[3,4]〉 , 〈s̈[1,2] , s̈[1,2]〉}. 

Now by using the Type-III similarity measure we will firstly find the similarity between opinions 

of experts in case of 𝑡1. 
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{〈Ṡ1(ℎ1,𝑎)2⊕3
2

,Ṡ1(ℎ1,𝑎)1⊕2
2

〉 ,〈S̈1(ℎ1,𝑎)1⊕2
2

 ,S̈1(ℎ1,𝑎)1⊕2
2

〉}⋀{〈Ṡ2(ℎ1,𝑏)1⊕3
2

,Ṡ2(ℎ1,𝑏)2⊕3
2

〉 ,〈S̈2(ℎ1,𝑏)1⊕2
2

 ,S̈2(ℎ1,𝑏)1⊕2
2

〉}

{〈Ṡ1(ℎ1,𝑎)2⊕3
2

,Ṡ1(ℎ1,𝑎)1⊕2
2

〉 ,〈S̈1(ℎ1,𝑎)1⊕2
2

 ,S̈1(ℎ1,𝑎)1⊕2
2

〉}⋁{〈Ṡ2(ℎ1,𝑏)1⊕3
2

,Ṡ2(ℎ1,𝑏)2⊕3
2

〉 ,〈S̈2(ℎ1,𝑏)1⊕2
2

 ,S̈2(ℎ1,𝑏)1⊕2
2

〉}

⊕

{〈Ṡ1(ℎ2,𝑎)3⊕4
2

,Ṡ1(ℎ2,𝑎)1⊕2
2

〉 ,〈S̈1(ℎ2,𝑎)1⊕2
2

 ,S̈1(ℎ2,𝑎)1⊕2
2

〉}⋀{〈Ṡ2(ℎ2,𝑏)1⊕2
2

,Ṡ2(ℎ2,𝑏)3⊕4
2

〉 ,〈S̈2(ℎ2,𝑏)1⊕2
2

 ,S̈2(ℎ2,𝑏)1⊕2
2

〉}

{〈Ṡ1(ℎ2,𝑎)3⊕4
2

,Ṡ1(ℎ2,𝑎)1⊕2
2

〉 ,〈S̈1(ℎ2,𝑎)1⊕2
2

 ,S̈1(ℎ2,𝑎)1⊕2
2

〉}⋁{〈Ṡ2(ℎ2,𝑏)1⊕2
2

,Ṡ2(ℎ2,𝑏)3⊕4
2

〉 ,〈S̈2(ℎ2,𝑏)1⊕2
2

 ,S̈2(ℎ2,𝑏)1⊕2
2

〉}

  

=
(〈𝑠2̇,�̇�3

2

〉,〈�̈�3
2

,�̈�3
2

〉)

(〈𝑠5
2

̇ ,�̇�3
2

〉,〈�̈�3
2

,�̈�3
2

〉)

⊕
(〈𝑠3

2

̇ ,�̇�7
2

〉,〈�̈�3
2

,�̈�3
2

〉)

(〈𝑠7
2
̇ ,𝑠3
2

̇ 〉,〈�̈�3
2

,�̈�3
2

〉)

= (〈𝑠2
9

̇ , 𝑠9
5

̇ 〉 , 〈�̈�1
4

, �̈�23
12

〉)⊕ (〈𝑠1
6

̇ , �̇�76
21

〉 , 〈�̈� 9
16

, �̈�39
16

〉) 

=(〈�̇�31
81

, �̇�38
35

〉 , 〈�̈�199
256

, �̈�299
256

〉), 

this represents the similarity between the opinions of experts for the first teacher. Now for the 

second teacher 𝑡2, by substituting the opinions of expert in expression of Type-III similarity 

measure we get 

{〈Ṡ1(ℎ1,𝑎)1⊕2
2

,Ṡ1(ℎ1,𝑎)2⊕4
2

〉 ,〈S̈1(ℎ1,𝑎)1⊕2
2

 ,S̈1(ℎ1,𝑎)1⊕2
2

〉}⋀{〈Ṡ2(ℎ1,𝑏)2⊕3
2

,Ṡ2(ℎ1,𝑏)2⊕3
2

〉 ,〈S̈2(ℎ1,𝑏)1⊕2
2

 ,S̈2(ℎ1,𝑏)1⊕2
2

〉}

{〈Ṡ1(ℎ1,𝑎)1⊕2
2

,Ṡ1(ℎ1,𝑎)2⊕4
2

〉 ,〈S̈1(ℎ1,𝑎)1⊕2
2

 ,S̈1(ℎ1,𝑎)1⊕2
2

〉}⋁{〈Ṡ2(ℎ1,𝑏)2⊕3
2

,Ṡ2(ℎ1,𝑏)2⊕3
2

〉 ,〈S̈2(ℎ1,𝑏)1⊕2
2

 ,S̈2(ℎ1,𝑏)1⊕2
2

〉}

⊕

{〈Ṡ1(ℎ2,𝑎)2⊕4
2

,Ṡ1(ℎ2,𝑎)1⊕2
2

〉 ,〈S̈1(ℎ2,𝑎)1⊕2
2

 ,S̈1(ℎ2,𝑎)1⊕2
2

〉}⋀{〈Ṡ2(ℎ2,𝑏)1⊕2
2

,Ṡ2(ℎ2,𝑏)3⊕4
2

〉 ,〈S̈2(ℎ2,𝑏)1⊕2
2

 ,S̈2(ℎ2,𝑏)1⊕2
2

〉}

{〈Ṡ1(ℎ2,𝑎)2⊕4
2

,Ṡ1(ℎ2,𝑎)1⊕2
2

〉 ,〈S̈1(ℎ2,𝑎)1⊕2
2

 ,S̈1(ℎ2,𝑎)1⊕2
2

〉}⋁{〈Ṡ2(ℎ2,𝑏)1⊕2
2

,Ṡ2(ℎ2,𝑏)3⊕4
2

〉 ,〈S̈2(ℎ2,𝑏)1⊕2
2

 ,S̈2(ℎ2,𝑏)1⊕2
2

〉}

   

after simplifications we get 

=
(〈�̇�3

2

,𝑠3̇〉,〈�̈�3
2

,�̈�3
2

〉)

(〈�̇�5
2

,�̇�5
2

〉,〈�̈�3
2

,�̈�3
2

〉)

⊕
(〈𝑠3

2

̇ ,�̇�7
2

〉,〈�̈�3
2

,�̈�3
2

〉)

(〈𝑠3̇,𝑠3
2

̇ 〉,〈�̈�3
2

,�̈�3
2

〉)

= (〈�̇� 1
10

, �̇�16
5

〉 , 〈�̈�1
4

, �̈�23
12

〉) ⊕ (〈�̇�1
6

, �̇�131
36

〉 , 〈�̈� 9
16

, �̈�39
16

〉) 

=(〈�̇�19
72

, �̇�262
135

〉 , 〈�̈�199
256

, �̈�299
256

〉). 

Now by using Equation (A) we obtain 

=
(〈�̇�31

81

,�̇�38
35

〉,〈�̈�199
256

,�̈�299
256

〉)⊕(〈�̇�19
72

,�̇�262
135

〉,〈�̈�199
256

,�̈�299
256

〉)

2
=

(〈�̇�22037
34992

,�̇� 4978
14175

〉,〈�̈�1.40362167 ,�̈�0.3410378〉)

2
, 

this implies that 
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SM(S1, S2) = (〈�̇�0.3236134 , �̇�1.4515819〉, 〈�̈�199
256
, �̈�299
256

〉), 

form above equation it is clear that the generalized (2-D) linguistic intuitionistic fuzzy soft expert 

set obtained from Type-III similarity measure is different from Type-II and Type-I similarity 

measures. 

Now to find the relation between these similarity measures types such that from which type we 

get the more similarity between the opinions, we will use a score function and accuracy function 

[3] to rank these types of similarity measures for generalized linguistic intuitionistic fuzzy soft 

expert sets. Now by applying score function on a set obtained by Type-I similarity measure we 

have 

𝑆(SM(S1, S2)) =  s
(
6+
8
9
−1.01835015

12
)×(

4+
5
6
−
1
6

8
)

= s0.2853734. 

Now by applying score function on Type-II similarity measure we get 

𝑆(SM(S1, S2)) =  s

(
6+
18−√203

3
−
1
3

12
)×(

4+
5
6
−
1
6

8
)

= s0.33626239 . 

Now by applying score function on Type-III similarity measure we get 

𝑆(SM(S1, S2)) =  s
(
6+0.3236134−1.4515819

12
)×(

4+
199
256

−
299
256

8
)

= s0.1831769 . 

From above calculations it is clear that the Type-II similarity measure gives the value for 

similarity greater than the values of similarities by other two types. Now to briefly demonstrate 

the above similarity measure we consider another example. 

EXAMPLE 4.3.2. 

Government “A” wanted to improve the education system by adopting creative learning styles 

and for that purpose they wanted to hire the teachers how will fulfill their dreams. To achieve 
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those objective authorities made a committee of experts for selection of candidates with the 

criteria fixed by the authorities and for reality based recruitment government restricts the experts 

that also mention their own expertise.  For simplicity reasons we consider a set of two experts 

{𝑒1, 𝑒2} with only two candidates applied for recruitment process {𝑡1, 𝑡2} with two criteria’s have 

been set by authorities  

A. Creativeness in their own work 

B. Experience in respective field 

we call them as 𝑐1 and 𝑐2 respectively, such that {𝑐1, 𝑐2} represents a set of criteria. While the 

final decision for their selection of specific candidate is based on the majority opinion in favor of 

that candidate. Since the experts opinions will be in the form of linguistic terms and due to 

restriction on experts to also give their own expertise so, the opinions will be in the form of 2-D 

linguistic intuitionistic interval-valued fuzzy soft expert set because of hesitation and opinion 

against certain candidate. 

For linguistic terms we consider a predefined linguistic term set 𝑆𝑡 with variation of ‘t’ as  0 ≤

𝑡 ≤ 16, similarly linguistic term set for information about expertise we consider a linguistic term 

set 𝑆𝑡′ with variation of ‘𝑡′’ as 0 ≤ 𝑡′ ≤ 14. 

The opinions of experts regarding 𝑡1 are  

S1(c1, e1)={〈ṡ[4,5], ṡ[5,7]〉 , 〈s̈[1,2] , s̈[1,5]〉}, 

S1(c2, e1)={〈ṡ[3,4], ṡ[1,6]〉 , 〈s̈[1,4] , s̈[1,3]〉}, 

S2(c1, e2)={〈ṡ[2,3], ṡ[2,5]〉 , 〈s̈[3,5] , s̈[4,5]〉}, 

S2(c2e2, )={〈ṡ[4,6], ṡ[3,4]〉 , 〈s̈[5,6] , s̈[6,7]〉}, 

and the opinions of experts regarding 𝑡2 are 

S1(c1, e1)={〈ṡ[1,5], ṡ[3,7]〉 , 〈s̈[3,6] , s̈[3,5]〉}, 

S1(c2, e1)={〈ṡ[1,4], ṡ[1,6]〉 , 〈s̈[3,4] , s̈[1,3]〉}, 

S2(c1, e2)={〈ṡ[2,3], ṡ[3,5]〉 , 〈s̈[2,5] , s̈[1,5]〉}, 

S2(c2e2, )={〈ṡ[4,5], ṡ[3,4]〉 , 〈s̈[4,6] , s̈[3,7]〉}. 

Now by using Type-III similarity measure the similarity between opinions of experts in case of  

′𝑡1′ is 
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{〈Ṡ1(𝑐1,𝑒1)4⊕5
2

,Ṡ1(𝑐1,𝑒1 )5⊕7
2

〉 ,〈S̈1(𝑐1,𝑒1)1⊕2
2

 ,S̈1(𝑐1,𝑒1)1⊕5
2

〉}⋀{〈Ṡ2(𝑐1,𝑒2)2⊕3
2

,Ṡ2(𝑐1,𝑒2)2⊕5
2

〉 ,〈S̈2(𝑐1,𝑒2)3⊕5
2

 ,S̈2(𝑐1,𝑒2)4⊕5
2

〉}

{〈Ṡ1(𝑐1,𝑒1)4⊕5
2

,Ṡ1(𝑐1,𝑒1 )5⊕7
2

〉 ,〈S̈1(𝑐1,𝑒1)1⊕2
2

 ,S̈1(𝑐1,𝑒1)1⊕5
2

〉}⋁{〈Ṡ2(𝑐1,𝑒2)2⊕3
2

,Ṡ2(𝑐1,𝑒2)2⊕5
2

〉 ,〈S̈2(𝑐1,𝑒2)3⊕5
2

 ,S̈2(𝑐1,𝑒2)4⊕5
2

〉}

⊕

{〈Ṡ1(𝑐2,𝑒1)3⊕4
2

,Ṡ1(𝑐2,𝑒1)1⊕6
2

〉 ,〈S̈1(𝑐2,𝑒1)1⊕4
2

 ,S̈1(𝑐2,𝑒1)1⊕3
2

〉}⋀{〈Ṡ2(𝑐2,𝑒2)4⊕6
2

,Ṡ2(𝑐2,𝑒2)3⊕4
2

〉 ,〈S̈2(𝑐2,𝑒2)5⊕6
2

 ,S̈2(𝑐2,𝑒2)6⊕7
2

〉}

{〈Ṡ1(𝑐2,𝑒1)3⊕4
2

,Ṡ1(𝑐2,𝑒1)1⊕6
2

〉 ,〈S̈1(𝑐2,𝑒1)1⊕4
2

 ,S̈1(𝑐2,𝑒1)1⊕3
2

〉}⋁{〈Ṡ2(𝑐2,𝑒2)4⊕6
2

,Ṡ2(𝑐2,𝑒2)3⊕4
2

〉 ,〈S̈2(𝑐2,𝑒2)5⊕6
2

 ,S̈2(𝑐2,𝑒2)6⊕7
2

〉}

   

=(〈�̇� 5

144

, �̇�221
36

〉 , 〈�̈� 1
28

, �̈�523
112

〉) ⊕ (〈�̇� 1
16

, �̇�117
32

〉 , 〈�̈� 5
56

, �̈�508
77

〉) = (〈�̇� 1193
12288

, �̇�2873
2048

〉 , 〈�̈� 2739
21952

, �̈�66421
30184

〉) 

the above equation represents the similarity between the opinions of experts in the process of 

selecting 𝑡1. Similarly, similarity between opinions of experts in case of  ′𝑡2′ using Type-III 

similarity measure 

{〈Ṡ1(𝑐1,𝑒1)1⊕5
2

,Ṡ1(𝑐1,𝑒1 )3⊕7
2

〉 ,〈S̈1(𝑐1,𝑒1)3⊕6
2

 ,S̈1(𝑐1,𝑒1)3⊕5
2

〉}⋀{〈Ṡ2(𝑐1,𝑒2)2⊕3
2

,Ṡ2(𝑐1,𝑒2)3⊕5
2

〉 ,〈S̈2(𝑐1,𝑒2)2⊕5
2

 ,S̈2(𝑐1,𝑒2)1⊕5
2

〉}

{〈Ṡ1(𝑐1,𝑒1)1⊕5
2

,Ṡ1(𝑐1,𝑒1 )3⊕7
2

〉 ,〈S̈1(𝑐1,𝑒1)3⊕6
2

 ,S̈1(𝑐1,𝑒1)3⊕5
2

〉}⋁{〈Ṡ2(𝑐1,𝑒2)2⊕3
2

,Ṡ2(𝑐1,𝑒2)3⊕5
2

〉 ,〈S̈2(𝑐1,𝑒2)2⊕5
2

 ,S̈2(𝑐1,𝑒2)1⊕5
2

〉}

⊕

{〈Ṡ1(𝑐2,𝑒1)1⊕4
2

,Ṡ1(𝑐2,𝑒1)1⊕6
2

〉 ,〈S̈1(𝑐2,𝑒1)3⊕4
2

 ,S̈1(𝑐2,𝑒1)1⊕3
2

〉}⋀{〈Ṡ2(𝑐2,𝑒2)4⊕5
2

,Ṡ2(𝑐2,𝑒2)3⊕4
2

〉 ,〈S̈2(𝑐2,𝑒2)4⊕6
2

 ,S̈2(𝑐2,𝑒2)3⊕7
2

〉}

{〈Ṡ1(𝑐2,𝑒1)1⊕4
2

,Ṡ1(𝑐2,𝑒1)1⊕6
2

〉 ,〈S̈1(𝑐2,𝑒1)3⊕4
2

 ,S̈1(𝑐2,𝑒1)1⊕3
2

〉}⋁{〈Ṡ2(𝑐2,𝑒2)4⊕5
2

,Ṡ2(𝑐2,𝑒2)3⊕4
2

〉 ,〈S̈2(𝑐2,𝑒2)4⊕6
2

 ,S̈2(𝑐2,𝑒2)3⊕7
2

〉}

   

=(〈�̇� 5

128

, �̇�251
48

〉 , 〈�̈� 1
12

, �̈�262
63

〉) ⊕ (〈�̇� 5

112

, �̇�529
144

〉 , 〈�̈�1
8

, �̈�359
70

〉) = (〈�̇� 19175
229376

, �̇�132779
110592

〉 , 〈�̈� 93
448

, �̈�47029
30870

〉), 

 above equation represents the similarity between opinions of experts from selection judgments 

for 𝑡2. Now to find the overall similarity we use (A)  

=
(〈�̇� 1193

12288

,�̇�2873
2048

〉,〈�̈� 2739
21952

,�̈�66421
30184

〉)⊕(〈�̇� 19175
229376

,�̇�132779
110592

〉,〈�̈� 93
448

,�̈�47029
30870

〉)

2
 

=
(〈�̇� 7818611713

41427140608

,�̇� 381474067
3623878656

〉,〈�̈� 45505785
137682944

,�̈� 3123713209
13044921120

〉)

2
,        

this implies that 

SM(S1, S2) = (〈�̇�0.0946457456, �̇�1.297793748〉, 〈�̈�0.1453533018 , �̈�1.830960040〉). 
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4.4. TYPE-IV SIMILARITY MEASURE FOR GLIVIFSESs. 

Definition. Let  {𝑧𝑖: 𝑖 = 1,.    .  . , 𝑞} where 𝑞 ∈ ℤ represents a set of experts and {𝑤𝑗: 𝑗 =

1,.    .  . , 𝑟} with 𝑟 ∈ ℤ represents the alternatives or proposals and {ℎ𝑣: 𝑣 = 1,.    .  . , 𝑎} with 𝑎 ∈

ℤ represents the set of criteria’s with general form of generalized linguistic interval-valued 

intuitionistic fuzzy soft expert sets 

S1={〈ṡ[α,α′], ṡ[β,β′]〉 , 〈s̈[γ,γ′] , s̈[δ,δ′]〉}, 

S2={〈ṡ[α1,α1′ ], ṡ[β1 ,β1′ ]〉 , 〈s̈[γ1,γ1′ ] , s̈[δ1,δ1′ ]〉}.  

According to Type-IV similarity measure between the opinions of experts for a specific 

alternative or for a specific proposal 

∑∑
[
 
 
 
 {〈Ṡ1(ℎ𝑣,𝑧𝑖)[α,α′]

, Ṡ1(ℎ𝑣,𝑧𝑖)
[β,β′]

〉  , 〈S̈1(ℎ𝑣,𝑧𝑖)[γ,γ′]
 , S̈1(ℎ𝑣,𝑧𝑖)

[δ,δ′]
〉} ∧

{〈Ṡ2(ℎ𝑣,𝑧𝑖+1)
[α1,α1

′ ]

, Ṡ2(ℎ𝑣,𝑧𝑖+1)
[β1,β1

′
]

〉  , 〈S̈2(ℎ𝑣,𝑧𝑖+1)
[γ1,γ1

′ ]
 , S̈2(ℎ𝑣,𝑧𝑖+1)

[δ1,δ1
′
]

〉}
]
 
 
 
 

[
 
 
 
 {〈Ṡ1(ℎ𝑣,𝑧𝑖)[α,α′]

, Ṡ1(ℎ𝑣,𝑧𝑖)
[β,β′]

〉  , 〈S̈1(ℎ𝑣,𝑧𝑖)[γ,γ′]
 , S̈1(ℎ𝑣,𝑧𝑖)

[δ,δ′]
〉} ∨

{〈Ṡ2(ℎ𝑣,𝑧𝑖+1)[α1,α1′ ]
, Ṡ2(ℎ𝑣,𝑧𝑖+1)

[β1,β1
′
]

〉  , 〈S̈2(ℎ𝑣,𝑧𝑖+1)[γ1,γ1′ ]
 , S̈2(ℎ𝑣,𝑧𝑖+1)

[δ1,δ1
′
]

〉}
]
 
 
 
 

𝑞

𝑖=1

𝑎

𝑣=1

            (4.4) 

now to find the overall similarity between the opinions of experts for all alternatives we will use    

SM(S1, S2) =
∑ 𝑆𝑗(S1, S2)
r
j=1

j
. 

To illustrate the above we construct an example to briefly discuss the methodology of that 

similarity measure, but firstly we consider the Example 4.1.1 to observe the difference between 

similarities by different similarity measures. 

EXAMPLE 4.4.1. 

 Collecting data from Example 4.1.1, the expert’s opinions regarding  𝑡1 are as under  

S1(h1, a)={〈ṡ[2,3], ṡ[1,2]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 
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S1(h2, a)={〈ṡ[3,4], ṡ[1,2]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S2(h1, b)={〈ṡ[1,3], ṡ[2,3]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S2(h2, b)={〈ṡ[1,2], ṡ[3,4]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

and the opinions of experts regarding  𝑡2 are as under 

S1(h1, a)={〈ṡ[1,2], ṡ[2,4]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S1(h2, a)={〈ṡ[2,4], ṡ[1,2]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S2(h1, b)={〈ṡ[2,3], ṡ[2,3]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S2(h2, b)={〈ṡ[1,2], ṡ[3,4]〉 , 〈s̈[1,2] , s̈[1,2]〉}. 

Now by applying Type-IV similarity measure to find the similarity between the opinions of 

experts for  𝑡1 we get 

[
{〈ṡ1(ℎ1,𝑎)[2,3] , ṡ1(ℎ1,𝑎)[1,2]

〉  , 〈s̈1(ℎ1,𝑎)[1,2]  , s̈1(ℎ1,𝑎)[1,2]〉} ∧

{〈ṡ2(ℎ1,𝑏)[1,3] , ṡ2(ℎ1,𝑏)[2,3]
〉  , 〈s̈2(ℎ1,𝑏)[1,2]  , s̈2(ℎ1,𝑏)[1,2]〉}

]

[
{〈ṡ1(ℎ1,𝑎)[2,3] , ṡ1(ℎ1,𝑎)[1,2]

〉  , 〈s̈1(ℎ1,𝑎)[1,2]  , s̈1(ℎ1,𝑎)[1,2]〉} ∨

{〈ṡ2(ℎ1,𝑏)[1,3] , ṡ2(ℎ1,𝑏)[2,3]
〉  , 〈s̈2(ℎ1,𝑏)[1,2]  , s̈2(ℎ1,𝑏)[1,2]〉}

]

⊕

[
{〈ṡ1(ℎ2,𝑎)[3,4] , ṡ1(ℎ2,𝑎)[1,2]

〉  , 〈s̈1(ℎ2,𝑎)[1,2]  , s̈1(ℎ2,𝑎)[1,2]〉} ∧

{〈ṡ2(ℎ2,𝑏)[1,2] , ṡ2(ℎ2,𝑏)[3,4]
〉  , 〈s̈2(ℎ2,𝑏)[1,2]  , s̈2(ℎ2,𝑏)[1,2]〉}

]

[
{〈ṡ1(ℎ2,𝑎)[3,4] , ṡ1(ℎ2,𝑎)[1,2]

〉  , 〈s̈1(ℎ2,𝑎)[1,2]  , s̈1(ℎ2,𝑎)[1,2]〉} ∨

{〈ṡ2(ℎ2,𝑏)[1,2] , ṡ2(ℎ2,𝑏)[3,4]
〉  , 〈s̈2(ℎ2,𝑏)[1,2]  , s̈2(ℎ2,𝑏)[1,2]〉}

]

 

after finding intersection and union we get 

=[
{(〈ṡ[1,3], ṡ[2,3]〉 , 〈s̈[1,2] , s̈[1,2]〉)⨂(〈ṡ[1

3
,
1

2
]
, ṡ
[
1

2
,1]
〉 , 〈s̈

[
1

2
,1]
 , s̈

[
1

2
,1]
〉)}⨁

{(〈ṡ[1,2], ṡ[3,4]〉 , 〈s̈[1,2] , s̈[1,2]〉)⨂(〈ṡ[1
4
,
1

3
]
, ṡ
[
1

2
,1]
〉 , 〈s̈

[
1

2
,1]
 , s̈

[
1

2
,1]
〉)}

] 

=(〈ṡ
[
1

18
,
1

4
]
, ṡ
[
7

3
,
7

2
]
〉 , 〈s̈

[
1

8
,
1

2
]
 , s̈

[
11

8
,
5

2
]
〉)⨁(〈ṡ

[
1

24
,
1

9
]
, ṡ
[
10

3
,
13

2
]
〉 , 〈s̈

[
1

8
,
1

2
]
 , s̈

[
11

8
,
5

2
]
〉) 

=(〈ṡ
[
251

2592
,
77

216
]
, ṡ
[
35

27
,
91

36
]
〉 , 〈s̈

[
63

256
,
15

16
]
 , s̈

[
121

256
,
25

16
]
〉), 

This represents the similarity between the opinions of experts regarding the teacher 𝑡1. 

Similarly, similarity between opinions of experts in case of  𝑡2 using Type-IV similarity measure 
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[
{〈ṡ1(ℎ1,𝑎)[1,2] , ṡ1(ℎ1,𝑎)[2,4]

〉  , 〈s̈1(ℎ1,𝑎)[1,2]  , s̈1(ℎ1,𝑎)[1,2]〉} ∧

{〈ṡ2(ℎ1,𝑏)[2,3] , ṡ2(ℎ1,𝑏)[2,3]
〉  , 〈s̈2(ℎ1,𝑏)[1,2]  , s̈2(ℎ1,𝑏)[1,2]〉}

]

[
{〈ṡ1(ℎ1,𝑎)[1,2] , ṡ1(ℎ1,𝑎)[2,4]

〉  , 〈s̈1(ℎ1,𝑎)[1,2]  , s̈1(ℎ1,𝑎)[1,2]〉} ∨

{〈ṡ2(ℎ1,𝑏)[2,3] , ṡ2(ℎ1,𝑏)[2,3]
〉  , 〈s̈2(ℎ1,𝑏)[1,2]  , s̈2(ℎ1,𝑏)[1,2]〉}

]

⊕

[
{〈ṡ1(ℎ2,𝑎)[2,4] , ṡ1(ℎ2,𝑎)[1,2]

〉  , 〈s̈1(ℎ2,𝑎)[1,2]  , s̈1(ℎ2,𝑎)[1,2]〉} ∧

{〈ṡ2(ℎ2,𝑏)[1,2] , ṡ2(ℎ2,𝑏)[3,4]
〉  , 〈s̈2(ℎ2,𝑏)[1,2]  , s̈2(ℎ2,𝑏)[1,2]〉}

]

[
{〈ṡ1(ℎ2,𝑎)[2,4] , ṡ1(ℎ2,𝑎)[1,2]

〉  , 〈s̈1(ℎ2,𝑎)[1,2]  , s̈1(ℎ2,𝑎)[1,2]〉} ∨

{〈ṡ2(ℎ2,𝑏)[1,2] , ṡ2(ℎ2,𝑏)[3,4]
〉  , 〈s̈2(ℎ2,𝑏)[1,2]  , s̈2(ℎ2,𝑏)[1,2]〉}

]

 

=[
{(〈ṡ[1,2], ṡ[2,4]〉 , 〈s̈[1,2] , s̈[1,2]〉)⨂ (〈ṡ

[
1

3
,
1

2
]
, ṡ
[
1

3
,
1

2
]
〉 , 〈s̈

[
1

2
,1]
 , s̈

[
1

2
,1]
〉)}⨁

{(〈ṡ[1,2], ṡ[3,4]〉 , 〈s̈[1,2] , s̈[1,2]〉)⨂(〈ṡ[1
4
,
1

2
]
, ṡ
[
1

2
,1]
〉 , 〈s̈

[
1

2
,1]
 , s̈

[
1

2
,1]
〉)}

] 

=(〈ṡ
[
1

18
,
1

6
]
, ṡ
[
20

9
,
25

6
]
〉 , 〈s̈

[
1

8
,
1

2
]
 , s̈

[
11

8
,
5

2
]
〉)⨁(〈ṡ

[
1

24
,
1

6
]
, ṡ
[
10

3
,
13

2
]
〉 , 〈s̈

[
1

8
,
1

2
]
 , s̈

[
11

8
,
5

2
]
〉)      

=(〈ṡ
[
251

2592
,
71

216
]
, ṡ
[
100

81
,
325

108
]
〉 , 〈s̈

[
63

256
,
15

16
]
 , s̈

[
121

256
,
25

16
]
〉), 

this represents the similarity between the opinions of experts for evaluation of teacher 𝑡2. 

Now to find the similarity between opinions of experts for both the teachers  𝑡1 and 𝑡2, we use the 

following rule 

SM(S1, S2) =
∑ 𝑆𝑖(S1, S2)
2
i=1

2
, 

 By substituting these values we get 

=

(〈ṡ
[
251
2592

,
77
216

]
,ṡ
[
35
27
,
91
36
]
〉 ,〈s̈

[
63
256

,
15
16
]
 ,s̈
[
121
256

,
25
16
]
〉)⨁(〈ṡ

[
251
2592

,
71
216

]
,ṡ
[
100
81

,
325
108

]
〉 ,〈s̈

[
63
256

,
15
16
]
 ,s̈
[
121
256

,
25
16
]
〉)

2
 

=
1

2
(〈ṡ

[
7744103

40310784
,
811

1296
]
, ṡ
[
1750

6561
,
29575

23328
]
〉 , 〈s̈

[
125055

262144
,
1695

1024
]
 , s̈

[
14641

262144
,
625

1024
]
〉), 

by applying operation of scalar multiplication we get 

SM(S1, S2) =  (〈ṡ[ 251
2592

,0.3214993]
, ṡ[1.26505565,2.75803167]〉 , 〈s̈[ 63

256
,
15
16
]
 , s̈

[
121
256

,
25
16
]
〉), 

that above equation represents the similarity between opinions of experts for all the alternatives 

(teachers) using Type-IV similarity measure. 
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Now to compare the similarity results obtained by Type-IV similarity measure with the previous 

similarity measures results we use the score and accuracy function such that  

𝑆(SM(S1, S2)) = s
[
6+

251
2592

−1.26505565

12
,
6+0.3214993−2.75803167

12
]⨂[

4+
63
256

−
121
256

8
,
4+
15
16
−
25
16

8
]

 

=s
[0.4026484,0.29695564]⨂[

483

1024
,
27

64
]
= s[0.125278160,0.1899210715] = 𝑠0.1575996157, 

this shows that similarity result obtained by Type-IV similarity measure is lowest among 

previous similarity measures results. 

EXAMPLE 4.4.2. 

A company announces to allocate the budget to its department if the following conditions will be 

satisfied 

 Department annual performance 

 Continuity in work 

 Customer’s responses 

for that purpose the executive committee of that company nominates the experts {𝑒1, 𝑒2} to give 

suggestions by evaluation of that department, where the decision will be made on the behalf of 

expert’s opinions regarding the fulfillment of conditions seated by company with the restriction 

on experts that also attach their own knowledge information about that department. 

Experts set a set of criteria for judgment of departmental performance based on the conditions 

imposed by executive committee of company 

 Number of employees  

 Office scheduled timings  

we call them as 𝑥1, 𝑥2 respectively such that {𝑥1, 𝑥2} represent a set of criteria. Now due to 

unshorten or leak of exactly the right opinion, experts give opinions in the form of intervals from 

predefined linguistic term set 𝑆𝑡 with 0 ≤ 𝑡 ≤ 20 for opinions regarding department and for 

information regarding the own knowledge the predefined linguistic  term set 𝑆𝑡′  with 0 ≤ 𝑡′ ≤

14.  
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The expert’s opinions regarding the ‘department annual performance’  

S1(x1, e1)={〈ṡ[1,6], ṡ[2,4]〉 , 〈s̈[1,3] , s̈[5,8]〉}, 

S1(x2, e1)={〈ṡ[2,8], ṡ[1,3]〉 , 〈s̈[2,4] , s̈[1,5]〉}, 

S2(x1, e2)={〈ṡ[5,6], ṡ[2,3]〉 , 〈s̈[1,3] , s̈[1,2]〉}, 

S2(x2, e2)={〈ṡ[5,8], ṡ[3,4]〉 , 〈s̈[1,4] , s̈[3,4]〉}.   

 The expert’s opinions regarding the ‘continuity in work’ 

S1(x1, e1)={〈ṡ[4,8], ṡ[1,3]〉 , 〈s̈[2,3] , s̈[5,6]〉}, 

S1(x2, e1)={〈ṡ[7,8], ṡ[1,2]〉 , 〈s̈[3,4] , s̈[3,5]〉}, 

S2(x1, e2)={〈ṡ[5,9], ṡ[2,5]〉 , 〈s̈[2,3] , s̈[1,3]〉}, 

S2(x2, e2)={〈ṡ[5,10] , ṡ[2,4]〉 , 〈s̈[3,7] , s̈[1,2]〉}. 

The expert’s opinions regarding the ‘customer’s responses’ 

S1(x1, e1)={〈ṡ[3,6], ṡ[2,5]〉 , 〈s̈[3,4] , s̈[1,2]〉}, 

S1(x2, e1)={〈ṡ[6,8], ṡ[1,2]〉 , 〈s̈[2,7] , s̈[1,3]〉}, 

S2(x1, e2)={〈ṡ[5,9], ṡ[2,4]〉 , 〈s̈[6,9] , s̈[1,4]〉}, 

S2(x2, e2)={〈ṡ[5,8], ṡ[1,4]〉 , 〈s̈[5,10] , s̈[1,3]〉}. 

Now by applying Type-IV similarity measure to calculate the similarity between opinions of 

experts in case of ‘department annual report’ we get 

[
{〈ṡ1(x1,e1)[1,6] , ṡ1(x1,e1)[2,4]

〉  , 〈s̈1(x1,e1)[1,3]  , s̈1(x1,e1)[5,8]〉} ∧

{〈ṡ2(x1,e2)[5,6] , ṡ2(x1,e2)[2,3]
〉  , 〈s̈2(x1,e2)[1,3]  , s̈2(x1,e2)[1,2]〉}

]

[
{〈ṡ1(x1,e1)[1,6] , ṡ1(x1,e1)[2,4]

〉  , 〈s̈1(x1,e1)[1,3]  , s̈1(x1,e1)[5,8]〉} ∨

{〈ṡ2(x1,e2)[5,6] , ṡ2(x1,e2)[2,3]
〉  , 〈s̈2(x1,e2)[1,3]  , s̈2(x1,e2)[1,2]〉}

]

⊕

[
{〈ṡ1(x2,e1)[2,8] , ṡ1(x2,e1)[1,3]

〉  , 〈s̈1(x2,e1)[2,4]  , s̈1(x2,e1)[1,5]〉} ∧

{〈ṡ2(x2,e2)[5,8] , ṡ2(x2,e2)[3,4]
〉  , 〈s̈2(x2,e2)[1,4]  , s̈2(x2,e2)[3,4]〉}

]

[
{〈ṡ1(x2,e1)[2,8] , ṡ1(x2,e1)[1,3]

〉  , 〈s̈1(x2,e1)[2,4]  , s̈1(x2,e1)[1,5]〉} ∨

{〈ṡ2(x2,e2)[5,8] , ṡ2(x2,e2)[3,4]
〉  , 〈s̈2(x2,e2)[1,4]  , s̈2(x2,e2)[3,4]〉}

]

 

=[
{(〈ṡ[1,6], ṡ[2,4]〉 , 〈s̈[1,3] , s̈[5,8]〉)⨂ (〈ṡ

[
1

6
,
1

5
]
, ṡ
[
1

3
,
1

2
]
〉 , 〈s̈

[
1

3
,1]
 , s̈

[
1

2
,1]
〉)}⨁

{(〈ṡ[2,8], ṡ[3,4]〉 , 〈s̈[1,4] , s̈[3,5]〉)⨂ (〈ṡ
[
1

8
,
1

5
]
, ṡ
[
1

3
,1]
〉 , 〈s̈

[
1

4
,
1

2
]
 , s̈

[
1

4
,1]
〉)}

] 
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=(〈ṡ
[
1

120
,
3

50
]
, ṡ
[
23

10
,
22

5
]
〉 , 〈s̈

[
1

42
,
3

28
]
 , s̈

[
149

28
,
59

7
]
〉)⨁(〈ṡ

[
1

80
,
2

25
]
, ṡ
[
197

60
,
24

5
]
〉 , 〈s̈

[
1

56
,
1

7
]
 , s̈

[
179

56
,
79

14
]
〉) 

=(〈ṡ
[
1333

64000
,
1747

12500
]
, ṡ
[
4531

12000
,
132

125
]
〉 , 〈s̈

[
457

10976
,
683

2744
]
 , s̈

[
26671

21952
,
4661

1372
]
〉). 

The similarity between opinions of experts for ‘continuity in work’ using Type-IV similarity 

measure is given as 

[
{〈ṡ1(x1,e1)[4,8] , ṡ1(x1,e1)[1,3]

〉  , 〈s̈1(x1,e1)[2,3]  , s̈1(x1,e1)[5,6]〉} ∧

{〈ṡ2(x1,e2)[5,9] , ṡ2(x1,e2)[2,5]
〉  , 〈s̈2(x1,e2)[2,3]  , s̈2(x1,e2)[1,3]〉}

]

[
{〈ṡ1(x1,e1)[4,8] , ṡ1(x1,e1)[1,3]

〉  , 〈s̈1(x1,e1)[2,3]  , s̈1(x1,e1)[5,6]〉} ∧

{〈ṡ2(x1,e2)[5,9] , ṡ2(x1,e2)[2,5]
〉  , 〈s̈2(x1,e2)[2,3]  , s̈2(x1,e2)[1,3]〉}

]

⊕

[
{〈ṡ1(x2,e1)[7,8] , ṡ1(x2,e1)[1,2]

〉  , 〈s̈1(x2,e1)[3,4]  , s̈1(x2,e1)[3,5]〉} ∧

{〈ṡ2(x2,e2)[5,10] , ṡ2(x2,e2)[2,4]
〉  , 〈s̈2(x2,e2)[3,7]  , s̈2(x2,e2)[1,2]〉}

]

[
{〈ṡ1(x2,e1)[7,8] , ṡ1(x2,e1)[1,2]

〉  , 〈s̈1(x2,e1)[3,4]  , s̈1(x2,e1)[3,5]〉} ∨

{〈ṡ2(x2,e2)[5,10] , ṡ2(x2,e2)[2,4]
〉  , 〈s̈2(x2,e2)[3,7]  , s̈2(x2,e2)[1,2]〉}

]

 

=[
{(〈ṡ[4,8], ṡ[2,5]〉 , 〈s̈[2,3] , s̈[5,6]〉)⨂ (〈ṡ

[
1

9
,
1

5
]
, ṡ
[
1

3
,1]
〉 , 〈s̈

[
1

3
,
1

2
]
 , s̈

[
1

3
,1]
〉)}⨁

{(〈ṡ[5,8], ṡ[2,4]〉 , 〈s̈[3,4] , s̈[3,5]〉)⨂(〈ṡ[ 1
10
,
1

7
]
, ṡ
[
1

2
,1]
〉 , 〈s̈

[
1

4
,
1

3
]
 , s̈

[
1

2
,1]
〉)}

] 

=(〈ṡ
[
1

45
,
2

25
]
, ṡ
[
23

10
,
23

4
]
〉 , 〈s̈

[
1

21
,
3

28
]
 , s̈

[
73

14
,
46

7
]
〉)⨁(〈ṡ

[
1

40
,
2

35
]
, ṡ
[
49

20
,
24

5
]
〉 , 〈s̈

[
3

56
,
2

21
]
 , s̈

[
95

28
,
79

14
]
〉) 

=(〈ṡ
[
1699

36000
,
5999

4375
]
, ṡ
[
1127

4000
,
69

50
]
〉 , 〈s̈

[
1663

16464
,
415

2058
]
 , s̈

[
6935

5488
,
1817

686
]
〉). 
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Similarly, the similarity between the opinions of experts in a case of ‘custom’s responses’  

[
{〈ṡ1(x1,e1)[3,6] , ṡ1(x1,e1)[2,5]

〉  , 〈s̈1(x1,e1)[3,4]  , s̈1(x1,e1)[1,2]〉} ∧

{〈ṡ2(x1,e2)[5,9] , ṡ2(x1,e2)[2,4]
〉  , 〈s̈2(x1,e2)[6,9]  , s̈2(x1,e2)[1,4]〉}

]

[
{〈ṡ1(x1,e1)[3,6] , ṡ1(x1,e1)[2,5]

〉  , 〈s̈1(x1,e1)[3,4]  , s̈1(x1,e1)[1,2]〉} ∨

{〈ṡ2(x1,e2)[5,9] , ṡ2(x1,e2)[2,4]
〉  , 〈s̈2(x1,e2)[6,9]  , s̈2(x1,e2)[1,4]〉}

]

⊕

[
{〈ṡ1(x2,e1)[6,8] , ṡ1(x2,e1)[1,2]

〉  , 〈s̈1(x2,e1)[2,7]  , s̈1(x2,e1)[1,3]〉} ∧

{〈ṡ2(x2,e2)[5,8] , ṡ2(x2,e2)[1,4]
〉  , 〈s̈2(x2,e2)[5,10]  , s̈2(x2,e2)[1,3]〉}

]

[
{〈ṡ1(x2,e1)[6,8] , ṡ1(x2,e1)[1,2]

〉  , 〈s̈1(x2,e1)[2,7]  , s̈1(x2,e1)[1,3]〉}⋁

{〈ṡ2(x2,e2)[5,8] , ṡ2(x2,e2)[1,4]
〉  , 〈s̈2(x2,e2)[5,10]  , s̈2(x2,e2)[1,3]〉}

]

 

=[
{(〈ṡ[3,6], ṡ[2,5]〉 , 〈s̈[3,4] , s̈[1,4]〉)⨂ (〈ṡ

[
1

9
,
1

5
]
, ṡ
[
1

4
,
1

2
]
〉 , 〈s̈

[
1

9
,
1

6
]
 , s̈

[
1

2
,1]
〉)}⨁

{(〈ṡ[5,8], ṡ[1,4]〉 , 〈s̈[2,7] , s̈[1,3]〉)⨂ (〈ṡ
[
1

8
,
1

6
]
, ṡ
[
1

2
,1]
〉 , 〈s̈

[
1

10
,
1

5
]
 , s̈

[
1

3
,1]
〉)}

] 

=(〈ṡ
[
1

60
,
3

50
]
, ṡ
[
89

40
,
43

8
]
〉 , 〈s̈

[
1

42
,
1

21
]
 , s̈

[
41

28
,
33

7
]
〉)⨁(〈ṡ

[
1

32
,
1

15
]
, ṡ
[
59

40
,
24

5
]
〉 , 〈s̈

[
1

70
,
1

10
]
 , s̈

[
55

42
,
53

14
]
〉) 

=(〈ṡ
[
613

12800
,
1897

15000
]
, ṡ
[
5251

32000
,
129

100
]
〉 , 〈s̈

[
1567

41160
,
433

2940
]
 , s̈

[
2255

16464
,
1749

1372
]
〉). 

Now to find the overall similarity between opinions of experts for the departmental evaluation in 

favor and against them using all the criteria’s we use Equation (A) 

=
1

3

[
 
 
 
 
 (〈ṡ[ 1333

64000
,
1747

12500
]
, ṡ
[
4531

12000
,
132

125
]
〉  , 〈s̈

[
457

10976
,
683

2744
]
 , s̈

[
26671

21952
,
4661

1372
]
〉)⨁

(〈ṡ
[
1699

36000
,
5999

4375
]
, ṡ
[
1127

4000
,
69

50
]
〉 , 〈s̈

[
1663

16464
,
415

2058
]
 , s̈

[
6935

5488
,
1817

686
]
〉)⨁

(〈ṡ
[
613

12800
,
1897

15000
]
, ṡ
[
5251

32000
,
129

100
]
〉 , 〈s̈

[
1567

41160
,
433

2940
]
 , s̈

[
2255

16464
,
1749

1372
]
〉)

]
 
 
 
 
 

 

=
(〈s[0.115698,1.61835] ̇ ,s[0.0000436,0.0046997] ̇ 〉 ,〈s[0.18002,0.58955]̈  ,s[0.00107,0.058252]̈ 〉)

3
, 

sm(s1, s2) = (〈ṡ[0.03864,0.55469] , ṡ[0.259328,1.23417]〉 , 〈s̈[0.06027,0.188854] , s̈[0.59413,2.25176]〉). 

4.5. TYPE-V SIMILARITY MEASURE FOR GLIVIFSESs. 

Type-V similarity measure is same as Type-III similarity measure for generalized linguistic 

interval-valued intuitionistic fuzzy soft expert sets with variation in place shifting of linguistic 
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terms in conversion from division to multiplication of two generalized linguistic intuitionistic 

fuzzy soft expert sets. 

Definition. Let 𝑈 = {𝑢𝑖: 𝑖 = 1, .  .  .  , 𝑛}  be a set of alternatives and 𝐸 = {𝑒𝑗: 𝑗 = 1, .  .  .  ,𝑚} 

represents the set of decision makers and 𝐶 = {𝑐𝑘: 𝑘 = 1, .  .  .  , 𝑟} represents the set of criteria 

where n, r, m∈ ℤ with the property that either ‘n’, ‘r’, ‘m’ are same or different. Suppose  

S1={〈ṡ[α,α′], ṡ[β,β′]〉 , 〈s̈[γ,γ′] , s̈[δ,δ′]〉}, 

and 

S2={〈ṡ[α1,α1′ ], ṡ[β1 ,β1′ ]〉 , 〈s̈[γ1,γ1′ ] , s̈[δ1,δ1′ ]〉}, 

the general form of generalized linguistic interval-valued intuitionistic fuzzy soft expert sets. 

 According to Type-V similarity measure between different GLIVIFSESs we have firstly to 

calculate the similarity between GLIVIFSESs for a specific alternative, the expression for that 

calculation is defined as   

                           ∑ ∑ [
 
 
 
 
 
 
 

{〈Ṡ1(𝑒𝑗,𝑐𝑘)α⊕α′
2

,Ṡ
1(𝑒𝑗,𝑐𝑘)β⊕β′

2

〉 ,〈S̈
1(𝑒𝑗,𝑐𝑘)γ⊕γ′

2

 ,S̈
1(𝑒𝑗,𝑐𝑘)δ⊕δ′

2

〉}∧

{
 

 
〈Ṡ2(𝑒𝑗+1,𝑐𝑘)α1⊕α1

′

2

,Ṡ
2(𝑒𝑗+1,𝑐𝑘)β1⊕β1

′

2

〉 ,〈S̈
2(𝑒𝑗+1,𝑐𝑘)γ1⊕γ1

′

2

 ,S̈
2(𝑒𝑗+1,𝑐𝑘)δ1⊕δ1

′

2

〉

}
 

 

]
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 

{〈Ṡ1(𝑒𝑗,𝑐𝑘)α⊕α′
2

,Ṡ
1(𝑒𝑗,𝑐𝑘)β⊕β′

2

〉 ,〈S̈
1(𝑒𝑗,𝑐𝑘)γ⊕γ′

2

 ,S̈
1(𝑒𝑗,𝑐𝑘)δ⊕δ′

2

〉}∨

{
 

 
〈Ṡ2(𝑒𝑗+1,𝑐𝑘)α1⊕α1

′

2

,Ṡ
2(𝑒𝑗+1,𝑐𝑘)β1⊕β1

′

2

〉 ,〈S̈
2(𝑒𝑗+1,𝑐𝑘)γ1⊕γ1

′

2

 ,S̈
2(𝑒𝑗+1,𝑐𝑘)δ1⊕δ1

′

2

〉

}
 

 

]
 
 
 
 
 
 
 

𝑟
𝑘=1

𝑚
𝑗=1        (4.5) 

which shows the similarity between the opinions of expert’s for specific alternative 𝑢𝑖 where ‘i’ 

range goes from one to ‘n’. Similarly for each alternative we will use the above mentioned 

formula to calculate the similarity between the opinions of experts. 

Now to find the combined similarity in the opinions of experts for all alternatives we will use the 

following relation 

SM(S1, S2) =
∑ 𝑆𝑖(S1, S2)
n
i=0

n
. 
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To compare that similarity measure with previous similarity measures firstly we consider 

Example 4.1.1 and then construct a practical example to briefly discuss the above mentioned 

strategy to measure the similarity between GLIVIFSESs. 

EXAMPLE 4.5.1. 

By taking data from Example 4.1.1 we have the following generalized linguistic interval-valued 

intuitionistic fuzzy soft expert sets 

S1(h1, a)={〈ṡ[2,3], ṡ[1,2]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S1(h2, a)={〈ṡ[3,4], ṡ[1,2]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S2(h1, b)={〈ṡ[1,3], ṡ[2,3]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S2(h2, b)={〈ṡ[1,2], ṡ[3,4]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

these sets represent the evaluation values by students ‘a’ and ‘b’ for the teacher  𝑡1. Now for the 

second teacher 𝑡2 the evaluation values are as under 

S1(h1, a)={〈ṡ[1,2], ṡ[2,4]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S1(h2, a)={〈ṡ[2,4], ṡ[1,2]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S2(h1, b)={〈ṡ[2,3], ṡ[2,3]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S2(h2, b)={〈ṡ[1,2], ṡ[3,4]〉 , 〈s̈[1,2] , s̈[1,2]〉}. 

Now by using the Type-V similarity measure we will firstly find the similarity between opinions 

of experts in case of 𝑡1 

{〈Ṡ1(ℎ1,𝑎)2⊕3
2

,Ṡ1(ℎ1,𝑎)1⊕2
2

〉 ,〈S̈1(ℎ1,𝑎)1⊕2
2

 ,S̈1(ℎ1,𝑎)1⊕2
2

〉}⋀{〈Ṡ2(ℎ1,𝑏)1⊕3
2

,Ṡ2(ℎ1,𝑏)2⊕3
2

〉 ,〈S̈2(ℎ1,𝑏)1⊕2
2

 ,S̈2(ℎ1,𝑏)1⊕2
2

〉}

{〈Ṡ1(ℎ1,𝑎)2⊕3
2

,Ṡ1(ℎ1,𝑎)1⊕2
2

〉 ,〈S̈1(ℎ1,𝑎)1⊕2
2

 ,S̈1(ℎ1,𝑎)1⊕2
2

〉}⋀{〈Ṡ2(ℎ1,𝑏)1⊕3
2

,Ṡ2(ℎ1,𝑏)2⊕3
2

〉 ,〈S̈2(ℎ1,𝑏)1⊕2
2

 ,S̈2(ℎ1,𝑏)1⊕2
2

〉}

⊕

{〈Ṡ1(ℎ2,𝑎)3⊕4
2

,Ṡ1(ℎ2,𝑎)1⊕2
2

〉 ,〈S̈1(ℎ2,𝑎)1⊕2
2

 ,S̈1(ℎ2,𝑎)1⊕2
2

〉}⋀{〈Ṡ2(ℎ2,𝑏)1⊕2
2

,Ṡ2(ℎ2,𝑏)3⊕4
2

〉 ,〈S̈2(ℎ2,𝑏)1⊕2
2

 ,S̈2(ℎ2,𝑏)1⊕2
2

〉}

{〈Ṡ1(ℎ2,𝑎)3⊕4
2

,Ṡ1(ℎ2,𝑎)1⊕2
2

〉 ,〈S̈1(ℎ2,𝑎)1⊕2
2

 ,S̈1(ℎ2,𝑎)1⊕2
2

〉}⋀{〈Ṡ2(ℎ2,𝑏)1⊕2
2

,Ṡ2(ℎ2,𝑏)3⊕4
2

〉 ,〈S̈2(ℎ2,𝑏)1⊕2
2

 ,S̈2(ℎ2,𝑏)1⊕2
2

〉}

  

=
(〈𝑠2̇,�̇�3

2

〉,〈�̈�3
2

,�̈�3
2

〉)

(〈�̇�5
2

,�̇�3
2

〉,〈�̈�3
2

,�̈�3
2

〉)

⊕
(〈�̇�3

2

,�̇�7
2

〉,〈�̈�3
2

,�̈�3
2

〉)

(〈�̇�7
2
,𝑠3
2

̇ 〉,〈�̈�3
2

,�̈�3
2

〉)
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=[(〈𝑠2̇, 𝑠3
2

̇ 〉 , 〈�̈�3
2

, �̈�3
2

〉)⨂(〈𝑠2
5

̇ , 𝑠2
3

̇ 〉 , 〈�̈�2
3

, �̈�2
3

〉)] ⊕ [(〈𝑠3
2

̇ , 𝑠7
2

̇ 〉 , 〈�̈�3
2

, �̈�3
2

〉)⨂(〈𝑠2
7

̇ , 𝑠2
3

̇ 〉 , 〈�̈�2
3

, �̈�2
3

〉)] 

=(〈�̇� 2
15

, �̇�2〉 , 〈�̈�1
4

, �̈�23
12

〉)⊕ (〈�̇� 1
14

, �̇�34
9

〉 , 〈�̈�1
4

, �̈�23
12

〉) = (〈�̇� 44
315

, �̇�34
27

〉 , 〈�̈�31
64

, �̈�529
576

〉). 

This represents the similarity between the opinions of experts for the first teacher. Now for the 

second teacher 𝑡2, by substituting the opinions of expert in expression of Type-V similarity 

measure we get 

{〈ṡ1(ℎ1,𝑎)1⊕2
2

,ṡ1(ℎ1,𝑎)2⊕4
2

〉 ,〈s̈1(ℎ1,𝑎)1⊕2
2

 ,s̈1(ℎ1,𝑎)1⊕2
2

〉}⋀{〈ṡ2(ℎ1,𝑏)2⊕3
2

,ṡ2(ℎ1,𝑏)2⊕3
2

〉 ,〈s̈2(ℎ1,𝑏)1⊕2
2

 ,s̈2(ℎ1,𝑏)1⊕2
2

〉}

{〈ṡ1(ℎ1,𝑎)1⊕2
2

,ṡ1(ℎ1,𝑎)2⊕4
2

〉 ,〈s̈1(ℎ1,𝑎)1⊕2
2

 ,s̈1(ℎ1,𝑎)1⊕2
2

〉}⋁{〈ṡ2(ℎ1,𝑏)2⊕3
2

,ṡ2(ℎ1,𝑏)2⊕3
2

〉 ,〈s̈2(ℎ1,𝑏)1⊕2
2

 ,s̈2(ℎ1,𝑏)1⊕2
2

〉}

⊕

{〈ṡ1(ℎ2,𝑎)2⊕4
2

,ṡ1(ℎ2,𝑎)1⊕2
2

〉 ,〈s̈1(ℎ2,𝑎)1⊕2
2

 ,s̈1(ℎ2,𝑎)1⊕2
2

〉}⋀{〈ṡ2(ℎ2,𝑏)1⊕2
2

,ṡ2(ℎ2,𝑏)3⊕4
2

〉 ,〈s̈2(ℎ2,𝑏)1⊕2
2

 ,s̈2(ℎ2,𝑏)1⊕2
2

〉}

{〈ṡ1(ℎ2,𝑎)2⊕4
2

,ṡ1(ℎ2,𝑎)1⊕2
2

〉 ,〈s̈1(ℎ2,𝑎)1⊕2
2

 ,s̈1(ℎ2,𝑎)1⊕2
2

〉}⋁{〈ṡ2(ℎ2,𝑏)1⊕2
2

,ṡ2(ℎ2,𝑏)3⊕4
2

〉 ,〈s̈2(ℎ2,𝑏)1⊕2
2

 ,s̈2(ℎ2,𝑏)1⊕2
2

〉}

   

after simplifications we get 

=
(〈𝑠3

2

̇ ,𝑠3̇〉,〈�̈�3
2

,�̈�3
2

〉)

(〈𝑠5
2

̇ ,𝑠5
2

̇ 〉,〈�̈�3
2

,�̈�3
2

〉)

⊕
(〈𝑠3

2

̇ ,𝑠7
2
̇ 〉,〈�̈�3

2

,�̈�3
2

〉)

(〈𝑠3̇,𝑠3
2

̇ 〉,〈�̈�3
2

,�̈�3
2

〉)

 

=[(〈𝑠3
2

̇ , 𝑠3̇〉 , 〈�̈�3
2

, �̈�3
2

〉)⨂(〈𝑠2
5

̇ , 𝑠2
5

̇ 〉 , 〈�̈�2
3

, �̈�2
3

〉)] ⊕ [(〈𝑠3
2

̇ , 𝑠7
2

̇ 〉 , 〈�̈�3
2

, �̈�3
2

〉)⨂(〈𝑠3̇, 𝑠2
3

̇ 〉 , 〈�̈�2
3

, �̈�2
3

〉)] 

=(〈�̇� 1
10

, �̇�16
5

〉 , 〈�̈�1
4

, �̈�23
12

〉) ⊕ (〈𝑠3
4

̇ , �̇�34
9

〉 , 〈�̈�1
4

, �̈�23
12

〉) = (〈�̇�67
80

, �̇�272
135

〉 , 〈�̈�31
64

, �̈�529
576

〉). 

Now by using Equation (A) we have 

=
(〈�̇� 44

315
,�̇�34
27

〉,〈�̈�31
64

,�̈�529
576

〉)⊕(〈�̇�67
80

,�̇�272
135

〉,〈�̈�31
64

,�̈�529
576

〉)

2
, 

this implies that 

SM(S1, S2) = (〈�̇�0.49965 , �̇�1.59285〉, 〈�̈�31
64
, �̈�529
576

〉). 

Now to compare the result obtained by Type-V similarity measure with the previous similarity 

measure’s results we use score and accuracy function. 

According to score function 
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𝑆(SM(S1, S2)) = s
[
6+0.49965−1.59285

12
]×[

4+
31
64
−
529
576

8
]

= s0.1822658, 

this shows that similarity results obtained by Type-V similarity measure are higher in order from 

Type-IV similarity measure results with miner difference from Type-III similarity measure 

results.         

Now to illustrate the Type-V similarity measure methodology briefly we consider a practical 

problem. 

EXAMPLE 4.5.2. 

 Government of A county interested in mining of specific areas in F city where A geological 

center point out that in these areas there will be in large amount reserves of gold( approximately 

1297 tons, which is still under the earth due to lack of special technology and skills to separate it), 

copper(more than 1352 tons, this amount is largest in all over the world), chromite(which is 

estimated as 226.5 million metric tons), coal(150 billion tons, in tharparkar recently 3 billion tons 

high quality coal reserves were found), oil(estimated as 618 billion barrel but no capacity to bring 

out), gypsum(six billion tons or higher), zinc(24 million tons), marble and granite(297 billion 

tons but according to report, obtained only 229 tons in 2018 from mountains), iron(1500 million 

tons), precious stones(according to report published in 2017 A has more than 30% of precious 

stones present on earth, but unfortunately exports of these stones like other minerals is negligible 

such that only 0.03%) and so many other mineral’s( according to research report in about 600000 

square kilometer area in A minerals are present) to take benefits by their exports and spend the 

money on country peoples, in developing projects and to overcome the country loans which are 

increasing day by day due to interest rates to remove the financial bearer’s in the way of country 

needs fulfillment. 

Now to achieve these objectives government issued a tender notice internationally for mining, 

with the following conditions to be fulfilled by a company to do mining 

 High quality machinery 

 Special skills  
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 Achievements in mining processes up to that 

and nominate experts {𝑒1, 𝑒2} to present reports regarding the companies applied for mining 

processes after their evaluation on the behalf of criteria’s fixed by government executive 

authority with the condition that also give the details regarding own expertise about mining 

processes, to overcome the inappropriate results regarding companies. 

We call the set of conditions as of criteria’s with representative set {𝑐1, 𝑐2, 𝑐3}. Three companies 

BGCC, TCC, NRPL applied for mining license in A, we call them as 𝑢1,  𝑢2, 𝑢3 respectively 

such that {𝑢1,  𝑢2, 𝑢3} represent a set of alternatives. The strategy of government for issuance of 

mining license to certain company based on similarity between experts opinions in fever of that 

company, such that if similarity between opinions of experts is greater than 50% than that 

company will be considered for license issuance.     

Here we consider the predefined linguistic term set 𝑆𝑡 for opinions about companies with 0 ≤ 𝑡 ≤

18 and linguistic term set 𝑆𝑡′ for information about own expertise by experts with 0 ≤ 𝑡′ ≤ 16, 

here the opinions will be in the form 2-D linguistic interval-valued intuitionistic fuzzy soft expert 

sets due to uncertain and vague information.  

The decisions of experts for 𝑢1 are 

S1(c1, 𝑒1)={〈ṡ[3,4], ṡ[1,2]〉 , 〈s̈[2,3] , s̈[1,3]〉}, 

S1(c2, 𝑒1)={〈ṡ[5,10] , ṡ[2,5]〉 , 〈s̈[3,5] , s̈[3,4]〉}, 

S1(c3, 𝑒1)={〈ṡ[11,12], ṡ[4,5]〉 , 〈s̈[9,10] , s̈[1,2]〉}, 

S2(c1, 𝑒2)={〈ṡ[3,5], ṡ[1,3]〉 , 〈s̈[2,4] , s̈[1,3]〉}, 

S2(c2, 𝑒2)={〈ṡ[5,11], ṡ[2,5]〉 , 〈s̈[3,6] , s̈[2,4]〉}, 

S2(c3, 𝑒2)={〈ṡ[10,12], ṡ[4,6]〉 , 〈s̈[9,11] , s̈[2,3]〉}. 

The decisions of experts for 𝑢2 are 

S1(c1, 𝑒1)={〈ṡ[5,7], ṡ[2,3]〉 , 〈s̈[8,9] , s̈[1,2]〉}, 

S1(c2, 𝑒1)={〈ṡ[8,10] , ṡ[3,4]〉 , 〈s̈[7,8] , s̈[2,3]〉}, 

S1(c3, 𝑒1)={〈ṡ[13,14], ṡ[2,3]〉 , 〈s̈[11,13]  , s̈[1,2]〉}, 

S2(c1, 𝑒2)={〈ṡ[6,7], ṡ[2,3]〉 , 〈s̈[7,9] , s̈[1,3]〉}, 
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S2(c2, 𝑒2)={〈ṡ[8,10], ṡ[3,5]〉 , 〈s̈[7,9] , s̈[1,3]〉}, 

S2(c3, 𝑒2)={〈ṡ[12,13], ṡ[2,4]〉 , 〈s̈[11,14]  , s̈[1,2]〉}. 

The decisions of experts for 𝑢3 are 

 S1(c1, 𝑒1)={〈ṡ[2,3], ṡ[5,9]〉 , 〈s̈[7,8] , s̈[1,2]〉}, 

S1(c2, 𝑒1)={〈ṡ[3,4], ṡ[4,7]〉 , 〈s̈[7,9] , s̈[1,3]〉}, 

S1(c3, 𝑒1)={〈ṡ[5,7], ṡ[2,3]〉 , 〈s̈[6,9] , s̈[3,4]〉}, 

S2(c1, 𝑒2)={〈ṡ[7,8], ṡ[3,4]〉 , 〈s̈[6,10] , s̈[3,4]〉}, 

S2(c2, 𝑒2)={〈ṡ[5,9], ṡ[3,8]〉 , 〈s̈[5,7] , s̈[3,4]〉}, 

S2(c3, 𝑒2)={〈ṡ[1,3], ṡ[8,9]〉 , 〈s̈[3,5] , s̈[1,2]〉}. 

Now to find the similarity between the opinions of experts in case of 𝑢1 using Type-V similarity 

measure we have  
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[
 
 
 
 
 
 
 
 
 
 {〈ṡ1(𝑐1 ,𝑒1)3⊕4

2

, ṡ1(𝑐1 ,𝑒1)1⊕2
2

〉 , 〈s̈1(𝑐1 ,𝑒1)2⊕3
2

 , s̈1(𝑐1,𝑒1)1⊕3
2

〉}⋀

{〈ṡ2(𝑐1,𝑒2)3⊕5
2

, ṡ2(𝑐1,𝑒2)1⊕3
2

〉 , 〈s̈2(𝑐1,𝑒2)2⊕4
2

 , s̈2(𝑐1,𝑒2)1⊕3
2

〉}

{〈ṡ1(𝑐1,𝑒1)3⊕4
2

, ṡ1(𝑐1,𝑒1)1⊕2
2

〉 , 〈s̈1(𝑐1,𝑒1)2⊕3
2

 , s̈1(𝑐1 ,𝑒1)1⊕3
2

〉} ∨

{〈ṡ2(𝑐1,𝑒2)3⊕5
2

, ṡ2(𝑐1,𝑒2)1⊕3
2

〉 , 〈s̈2(𝑐1,𝑒2)2⊕4
2

 , s̈2(𝑐1,𝑒2)1⊕3
2

〉}
]
 
 
 
 
 
 
 
 
 
 

⊕

[
 
 
 
 
 
 
 
 
 
 {〈ṡ1(𝑐2 ,𝑒1)5⊕10

2

, ṡ1(𝑐2 ,𝑒1)2⊕5
2

〉 , 〈s̈1(𝑐2 ,𝑒1)3⊕5
2

 , s̈1(𝑐2 ,𝑒1)3⊕4
2

〉} ⋀

{〈ṡ2(𝑐2,𝑒2)5⊕11
2

, ṡ2(𝑐2 ,𝑒2)2⊕5
2

〉 , 〈s̈2(𝑐2 ,𝑒2)3⊕6
2

 , s̈2(𝑐2 ,𝑒2)2⊕4
2

〉}

{〈ṡ1(𝑐2,𝑒1)5⊕10
2

, ṡ1(𝑐2,𝑒1)2⊕5
2

〉 , 〈s̈1(𝑐2,𝑒1)3⊕5
2

 , s̈1(𝑐2,𝑒1)3⊕4
2

〉} ∨

{〈ṡ2(𝑐2,𝑒2)5⊕11
2

, ṡ2(𝑐2 ,𝑒2)2⊕5
2

〉 , 〈s̈2(𝑐2 ,𝑒2)3⊕6
2

 , s̈2(𝑐2 ,𝑒2)2⊕4
2

〉}
]
 
 
 
 
 
 
 
 
 
 

⊕

[
 
 
 
 
 
 
 
 
 
 {〈ṡ1(𝑐3 ,𝑒1)11⊕12

2

, ṡ1(𝑐3,𝑒1)4⊕5
2

〉 , 〈s̈1(𝑐3,𝑒1)9⊕10
2

 , s̈1(𝑐3,𝑒1)1⊕2
2

〉}⋀

{〈ṡ2(𝑐3,𝑒2)10⊕12
2

, ṡ2(𝑐3 ,𝑒2)4⊕6
2

〉 , 〈s̈2(𝑐3,𝑒2)9⊕11
2

 , s̈2(𝑐3,𝑒2)2⊕3
2

〉}

{〈ṡ1(𝑐3,𝑒1)11⊕12
2

, ṡ1(𝑐3 ,𝑒1)4⊕5
2

〉  , 〈s̈1(𝑐3 ,𝑒1)9⊕10
2

 , s̈1(𝑐3 ,𝑒1)1⊕2
2

〉} ∨

{〈ṡ2(𝑐3,𝑒2)10⊕12
2

, ṡ2(𝑐3 ,𝑒2)4⊕6
2

〉 , 〈s̈2(𝑐3,𝑒2)9⊕11
2

 , s̈2(𝑐3,𝑒2)2⊕3
2

〉}
]
 
 
 
 
 
 
 
 
 
 

 

=(〈�̇�0.153397 , �̇�0.15403〉, 〈�̈�0.166436 , �̈�0.10965〉). 

Now to find the similarity between the opinions of experts in case of 𝑢2 using Type-V similarity 

measure we have  
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[
 
 
 
 
 
 
 
 
 
 {〈ṡ1(𝑐1 ,𝑒1)5⊕7

2

, ṡ1(𝑐1 ,𝑒1)2⊕3
2

〉 , 〈s̈1(𝑐1 ,𝑒1)8⊕9
2

 , s̈1(𝑐1,𝑒1)1⊕2
2

〉}⋀

{〈ṡ2(𝑐1,𝑒2)6⊕7
2

, ṡ2(𝑐1,𝑒2)2⊕3
2

〉 , 〈s̈2(𝑐1,𝑒2)7⊕9
2

 , s̈2(𝑐1,𝑒2)1⊕3
2

〉}

{〈ṡ1(𝑐1 ,𝑒1)5⊕7
2

, ṡ1(𝑐1 ,𝑒1)2⊕3
2

〉 , 〈s̈1(𝑐1 ,𝑒1)8⊕9
2

 , s̈1(𝑐1,𝑒1)1⊕2
2

〉}⋁

{〈ṡ2(𝑐1,𝑒2)6⊕7
2

, ṡ2(𝑐1,𝑒2)2⊕3
2

〉 , 〈s̈2(𝑐1,𝑒2)7⊕9
2

 , s̈2(𝑐1,𝑒2)1⊕3
2

〉}
]
 
 
 
 
 
 
 
 
 
 

⊕

[
 
 
 
 
 
 
 
 
 
 {〈ṡ1(𝑐2 ,𝑒1)8⊕10

2

, ṡ1(𝑐2 ,𝑒1)3⊕4
2

〉 , 〈s̈1(𝑐2 ,𝑒1)7⊕8
2

 , s̈1(𝑐2 ,𝑒1)2⊕3
2

〉} ⋀

{〈ṡ2(𝑐2,𝑒2)8⊕10
2

, ṡ2(𝑐2 ,𝑒2)3⊕5
2

〉 , 〈s̈2(𝑐2 ,𝑒2)7⊕9
2

 , s̈2(𝑐2 ,𝑒2)1⊕3
2

〉}

{〈ṡ1(𝑐2 ,𝑒1)8⊕10
2

, ṡ1(𝑐2 ,𝑒1)3⊕4
2

〉 , 〈s̈1(𝑐2 ,𝑒1)7⊕8
2

 , s̈1(𝑐2 ,𝑒1)2⊕3
2

〉} ⋁

{〈ṡ2(𝑐2,𝑒2)8⊕10
2

, ṡ2(𝑐2 ,𝑒2)3⊕5
2

〉 , 〈s̈2(𝑐2 ,𝑒2)7⊕9
2

 , s̈2(𝑐2 ,𝑒2)1⊕3
2

〉}
]
 
 
 
 
 
 
 
 
 
 

⊕

[
 
 
 
 
 
 
 
 
 
 {〈ṡ1(𝑐3 ,𝑒1)13⊕14

2

, ṡ1(𝑐3,𝑒1)2⊕3
2

〉 , 〈s̈1(𝑐3,𝑒1)11⊕13
2

 , s̈1(𝑐3 ,𝑒1)1⊕2
2

〉} ⋀

{〈ṡ2(𝑐3,𝑒2)12⊕13
2

, ṡ2(𝑐3 ,𝑒2)2⊕4
2

〉 , 〈s̈2(𝑐3,𝑒2)11⊕14
2

 , s̈2(𝑐3 ,𝑒2)1⊕2
2

〉}

{〈ṡ1(𝑐3 ,𝑒1)13⊕14
2

, ṡ1(𝑐3,𝑒1)2⊕3
2

〉 , 〈s̈1(𝑐3,𝑒1)11⊕13
2

 , s̈1(𝑐3 ,𝑒1)1⊕2
2

〉} ⋁

{〈ṡ2(𝑐3,𝑒2)12⊕13
2

, ṡ2(𝑐3 ,𝑒2)2⊕4
2

〉 , 〈s̈2(𝑐3,𝑒2)11⊕14
2

 , s̈2(𝑐3 ,𝑒2)1⊕2
2

〉}
]
 
 
 
 
 
 
 
 
 
 

 

=(〈�̇�0.157815 , �̇�012359〉, 〈�̈�0.17676 , �̈�0.06204〉). 

Now to find the similarity between the opinions of experts in case of 𝑢3 using Type-V similarity 

measure we have  
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[
 
 
 
 
 
 
 
 
 
 {〈ṡ1(𝑐1 ,𝑒1)2⊕3

2

, ṡ1(𝑐1 ,𝑒1)5⊕9
2

〉 , 〈s̈1(𝑐1 ,𝑒1)7⊕8
2

 , s̈1(𝑐1,𝑒1)1⊕2
2

〉}⋀

{〈ṡ2(𝑐1 ,𝑒2)7⊕8
2

, ṡ2(𝑐1 ,𝑒2)3⊕4
2

〉  , 〈s̈2(𝑐1 ,𝑒2)6⊕10
2

 , s̈2(𝑐1,𝑒2)3⊕4
2

〉}

{〈ṡ1(𝑐1 ,𝑒1)2⊕3
2

, ṡ1(𝑐1 ,𝑒1)5⊕9
2

〉 , 〈s̈1(𝑐1 ,𝑒1)7⊕8
2

 , s̈1(𝑐1,𝑒1)1⊕2
2

〉}⋁

{〈ṡ2(𝑐1 ,𝑒2)7⊕8
2

, ṡ2(𝑐1 ,𝑒2)3⊕4
2

〉  , 〈s̈2(𝑐1 ,𝑒2)6⊕10
2

 , s̈2(𝑐1,𝑒2)3⊕4
2

〉}
]
 
 
 
 
 
 
 
 
 
 

⊕

[
 
 
 
 
 
 
 
 
 
 {〈ṡ1(𝑐2 ,𝑒1)3⊕4

2

, ṡ1(𝑐2,𝑒1)4⊕7
2

〉 , 〈s̈1(𝑐2,𝑒1)7⊕9
2

 , s̈1(𝑐2,𝑒1)1⊕3
2

〉}⋀

{〈ṡ2(𝑐2,𝑒2)5⊕9
2

, ṡ2(𝑐2,𝑒2)3⊕8
2

〉 , 〈s̈2(𝑐2,𝑒2)5⊕7
2

 , s̈2(𝑐2,𝑒2)3⊕4
2

〉}

{〈ṡ1(𝑐2 ,𝑒1)3⊕4
2

, ṡ1(𝑐2,𝑒1)4⊕7
2

〉 , 〈s̈1(𝑐2,𝑒1)7⊕9
2

 , s̈1(𝑐2,𝑒1)1⊕3
2

〉}⋁

{〈ṡ2(𝑐2,𝑒2)5⊕9
2

, ṡ2(𝑐2,𝑒2)3⊕8
2

〉 , 〈s̈2(𝑐2,𝑒2)5⊕7
2

 , s̈2(𝑐2,𝑒2)3⊕4
2

〉}
]
 
 
 
 
 
 
 
 
 
 

⊕

[
 
 
 
 
 
 
 
 
 
 {〈ṡ1(𝑐3 ,𝑒1)5⊕7

2

, ṡ1(𝑐3,𝑒1)2⊕3
2

〉 , 〈s̈1(𝑐3,𝑒1)6⊕9
2

 , s̈1(𝑐3,𝑒1)3⊕4
2

〉}⋀

{〈ṡ2(𝑐3,𝑒2)1⊕3
2

, ṡ2(𝑐3,𝑒2)8⊕9
2

〉 , 〈s̈2(𝑐3,𝑒2)3⊕5
2

 , s̈2(𝑐3,𝑒2)1⊕2
2

〉}

{〈ṡ1(𝑐3 ,𝑒1)5⊕7
2

, ṡ1(𝑐3,𝑒1)2⊕3
2

〉 , 〈s̈1(𝑐3,𝑒1)6⊕9
2

 , s̈1(𝑐3,𝑒1)3⊕4
2

〉}⋁

{〈ṡ2(𝑐3,𝑒2)1⊕3
2

, ṡ2(𝑐3,𝑒2)8⊕9
2

〉 , 〈s̈2(𝑐3,𝑒2)3⊕5
2

 , s̈2(𝑐3,𝑒2)1⊕2
2

〉}
]
 
 
 
 
 
 
 
 
 
 

 

=(〈�̇�0.06474 , �̇�1.08529〉, 〈�̈�0.138411 , �̈�0.2457〉). 

From above similarity results obtained by Type-V similarity measure shows inappropriate 

similarity between the opinions of experts, as their opinions are close to each other but similarity 

between them is too low. To overcome that we now modify Type-V similarity measure. 

Firstly we consider the opinions of experts which are too different from each other to observe the 

similarity in that case. Here we take imaginary GLIVIFSESs containing opinions of experts. 

The decisions of experts for 𝑢1 are 
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S1(c1, 𝑒1)={〈ṡ[0,11] , ṡ[5,6]〉 , 〈s̈[5,7] , s̈[7,8]〉}, 

S1(c2, 𝑒1)={〈ṡ[0,1], ṡ[1,2]〉 , 〈s̈[7,8] , s̈[5,7]〉}, 

S1(c3, 𝑒1)={〈ṡ[2,3], ṡ[7,9]〉 , 〈s̈[1,3] , s̈[5,10]〉}, 

S2(c1, 𝑒2)={〈ṡ[3,5], ṡ[1,3]〉 , 〈s̈[2,4] , s̈[1,3]〉}, 

S2(c2, 𝑒2)={〈ṡ[5,11], ṡ[2,5]〉 , 〈s̈[3,6] , s̈[2,4]〉}, 

S2(c3, 𝑒2)={〈ṡ[10,12], ṡ[4,6]〉 , 〈s̈[9,11] , s̈[2,3]〉}. 

Now to find the similarity between the opinions of experts in case of 𝑢1 using Type-V similarity 

measure we have  

[
 
 
 
 
 
 
 
 
 
 {〈ṡ1(𝑐1 ,𝑒1)0⊕11

2

, ṡ1(𝑐1 ,𝑒1)5⊕6
2

〉 , 〈s̈1(𝑐1 ,𝑒1)5⊕7
2

 , s̈1(𝑐1 ,𝑒1)7⊕8
2

〉} ⋀

{〈ṡ2(𝑐1,𝑒2)3⊕5
2

, ṡ2(𝑐1,𝑒2)1⊕3
2

〉 , 〈s̈2(𝑐1,𝑒2)2⊕4
2

 , s̈2(𝑐1,𝑒2)1⊕3
2

〉}

{〈ṡ1(𝑐1 ,𝑒1)0⊕11
2

, ṡ1(𝑐1 ,𝑒1)5⊕6
2

〉 , 〈s̈1(𝑐1 ,𝑒1)5⊕7
2

 , s̈1(𝑐1 ,𝑒1)7⊕8
2

〉} ⋁

{〈ṡ2(𝑐1,𝑒2)3⊕5
2

, ṡ2(𝑐1,𝑒2)1⊕3
2

〉 , 〈s̈2(𝑐1,𝑒2)2⊕4
2

 , s̈2(𝑐1,𝑒2)1⊕3
2

〉}
]
 
 
 
 
 
 
 
 
 
 

⊕

[
 
 
 
 
 
 
 
 
 
 {〈ṡ1(𝑐2 ,𝑒1)0⊕1

2

, ṡ1(𝑐2,𝑒1)1⊕2
2

〉 , 〈s̈1(𝑐2,𝑒1)7⊕8
2

 , s̈1(𝑐2,𝑒1)5⊕7
2

〉}⋀

{〈ṡ2(𝑐2 ,𝑒2)5⊕11
2

, ṡ2(𝑐2 ,𝑒2)2⊕5
2

〉 , 〈s̈2(𝑐2,𝑒2)3⊕6
2

 , s̈2(𝑐2 ,𝑒2)2⊕4
2

〉}

{〈ṡ1(𝑐2 ,𝑒1)0⊕1
2

, ṡ1(𝑐2,𝑒1)1⊕2
2

〉 , 〈s̈1(𝑐2,𝑒1)7⊕8
2

 , s̈1(𝑐2,𝑒1)5⊕7
2

〉}⋁

{〈ṡ2(𝑐2 ,𝑒2)5⊕11
2

, ṡ2(𝑐2 ,𝑒2)2⊕5
2

〉 , 〈s̈2(𝑐2,𝑒2)3⊕6
2

 , s̈2(𝑐2 ,𝑒2)2⊕4
2

〉}
]
 
 
 
 
 
 
 
 
 
 

⊕

[
 
 
 
 
 
 
 
 
 
 {〈ṡ1(𝑐3 ,𝑒1)2⊕3

2

, ṡ1(𝑐3,𝑒1)7⊕9
2

〉 , 〈s̈1(𝑐3,𝑒1)1⊕3
2

 , s̈1(𝑐3,𝑒1)5⊕10
2

〉} ⋀

{〈ṡ2(𝑐3 ,𝑒2)10⊕12
2

, ṡ2(𝑐3 ,𝑒2)4⊕6
2

〉 , 〈s̈2(𝑐3 ,𝑒2)9⊕11
2

 , s̈2(𝑐3 ,𝑒2)2⊕3
2

〉}

{〈ṡ1(𝑐3 ,𝑒1)2⊕3
2

, ṡ1(𝑐3,𝑒1)7⊕9
2

〉 , 〈s̈1(𝑐3,𝑒1)1⊕3
2

 , s̈1(𝑐3,𝑒1)5⊕10
2

〉} ⋁

{〈ṡ2(𝑐3 ,𝑒2)10⊕12
2

, ṡ2(𝑐3 ,𝑒2)4⊕6
2

〉 , 〈s̈2(𝑐3 ,𝑒2)9⊕11
2

 , s̈2(𝑐3 ,𝑒2)2⊕3
2

〉}
]
 
 
 
 
 
 
 
 
 
 

  

=(〈�̇�0.056465 , �̇�0.59094〉, 〈�̈�0.081126 , �̈�1.452468〉). 
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By comparing that with previous GLIVIFSES (〈𝑠0.153397̇ , 𝑠0.15403̇ 〉, 〈𝑠0.166436, 𝑠0.10965̈̈ 〉) which is 

obtained when opinions of experts are close to each other, we can observe that similarity in case 

of 1-D slightly decreases but similarity in case of 2-D increases significantly.    

4.6. MODIFIED TYPE-V SIMILARITY MEASURE FOR GLIVIFSESs. 

Definition. Let 𝑈 = {𝑢𝑖: 𝑖 = 1, .  .  .  , 𝑛}  be a set of alternatives and 𝐸 = {𝑒𝑗: 𝑗 = 1, .  .  .  ,𝑚} 

represents the set of decision makers and 𝐶 = {𝑐𝑘: 𝑘 = 1, .  .  .  , 𝑟} represents the set of criteria 

where n, r, m∈ ℤ with the property that either ‘n’, ‘r’, ‘m’ are same or different. Suppose  

S1={〈ṡ[α,α′], ṡ[β,β′]〉 , 〈s̈[γ,γ′] , s̈[δ,δ′]〉}, 

and 

S2={〈ṡ[α1,α1′ ], ṡ[β1 ,β1′ ]〉 , 〈s̈[γ1,γ1′ ] , s̈[δ1,δ1′ ]〉}, 

the general form of generalized linguistic interval-valued intuitionistic fuzzy soft expert sets. 

According to modified Type-V similarity measure between different GLIVIFSESs we have firstly 

to calculate the similarity between GLIVIFSESs for a specific alternative, which is defined 

mathematically as under, 

∑∑

[
 
 
 
 
 {〈ṡ1(𝑒𝑗,𝑐𝑘)α⊕α′

2

, ṡ1(𝑒𝑗,𝑐𝑘)β⊕β′
2

〉 , 〈s̈1(𝑒𝑗,𝑐𝑘)γ⊕γ′
2

 , s̈1(𝑒𝑗,𝑐𝑘)δ⊕δ′
2

〉} ∧

{〈ṡ2(𝑒𝑗+1,𝑐𝑘)α1⊕α1′
2

, ṡ2(𝑒𝑗+1,𝑐𝑘)β1⊕β1′
2

〉 , 〈s̈2(𝑒𝑗+1,𝑐𝑘)γ1⊕γ1′
2

 , s̈2(𝑒𝑗+1,𝑐𝑘)δ1⊕δ1′
2

〉}
]
 
 
 
 
 

r

k=1

m

j=1

       (4.6) 

which shows the similarity between the opinions of expert’s for specific alternative 𝑢𝑖 where ‘i’ 

range goes from one to ‘n’. Similarly for each alternative we will use the above mentioned 

formula to calculate the similarity between the opinions of experts. 

Now to find the combined similarity in the opinions of experts for all alternatives we will use the 

following relation 

SM(S1, S2) =
∑ 𝑆𝑖(S1, S2)
n
i=0

n
. 
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Now to compare that similarity measure with Type-V similarity measure we consider the data of 

Example 4.5.2. 

EXAMPLE 4.6.1. 

By taking data presented in Example 4.5.2 with experts opinions, now by applying modified 

Type-V similarity measure to find the similarity between the opinions of experts in case of 𝑢1. 

We have 

[
 
 
 
 
 {〈Ṡ1(𝑐1,𝑒1)3⊕4

2

, Ṡ1(𝑐1,𝑒1)1⊕2
2

〉  , 〈S̈1(𝑐1,𝑒1)2⊕3
2

 , S̈1(𝑐1,𝑒1)1⊕3
2

〉}⋀

{〈Ṡ2(𝑐1,𝑒2)3⊕5
2

, Ṡ2(𝑐1,𝑒2)1⊕3
2

〉  , 〈S̈2(𝑐1,𝑒2)2⊕4
2

 , S̈2(𝑐1,𝑒2)1⊕3
2

〉}
]
 
 
 
 
 

⊕

[
 
 
 
 
 {〈ṡ1(𝑐2,𝑒1)5⊕10

2

, ṡ1(𝑐2,𝑒1)2⊕5
2

〉  , 〈s̈1(𝑐2,𝑒1)3⊕5
2

 , s̈1(𝑐2,𝑒1)3⊕4
2

〉}⋀

{〈ṡ2(𝑐2,𝑒2)5⊕11
2

, ṡ2(𝑐2,𝑒2)2⊕5
2

〉  , 〈s̈2(𝑐2,𝑒2)3⊕6
2

 , s̈2(𝑐2,𝑒2)2⊕4
2

〉}
]
 
 
 
 
 

⊕

[
 
 
 
 
 {〈ṡ1(𝑐3,𝑒1)11⊕12

2

, ṡ1(𝑐3,𝑒1)4⊕5
2

〉  , 〈s̈1(𝑐3,𝑒1)9⊕10
2

 , s̈1(𝑐3,𝑒1)1⊕2
2

〉}⋀

{〈ṡ2(𝑐3,𝑒2)10⊕12
2

, ṡ2(𝑐3,𝑒2)4⊕6
2

〉  , 〈s̈2(𝑐3,𝑒2)9⊕11
2

 , s̈2(𝑐3,𝑒2)2⊕3
2

〉}
]
 
 
 
 
 

 

= (〈�̇�7
2

, �̇�2〉 , 〈�̈�5
2

, �̈�2〉) ⊕ (〈�̇�15
2

, �̇�7
2

〉 , 〈�̈�4, �̈�7
2

〉)⊕ (〈�̇�11, �̇�5〉, 〈�̈�19
2

, �̈�5
2

〉), 

after evaluating the addition operator we get  

𝑆𝑢1(𝑆1, 𝑆2) = (〈�̇�14.71069 , �̇�0.10802〉, 〈�̈�11.88672 , �̈�0.06836〉). 

Now in case of 𝑢2 the similarity between opinions of experts using modified Type-V similarity 

measure, we have 
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[
 
 
 
 
 {〈ṡ1(𝑐1,𝑒1)5⊕7

2

, ṡ1(𝑐1,𝑒1)2⊕3
2

〉  , 〈s̈1(𝑐1,𝑒1)8⊕9
2

 , s̈1(𝑐1,𝑒1)1⊕2
2

〉}⋀

{〈ṡ2(𝑐1,𝑒2)6⊕7
2

, ṡ2(𝑐1,𝑒2)2⊕3
2

〉  , 〈s̈2(𝑐1,𝑒2)7⊕9
2

 , s̈2(𝑐1,𝑒2)1⊕3
2

〉}
]
 
 
 
 
 

⊕

[
 
 
 
 
 {〈ṡ1(𝑐2,𝑒1)3⊕4

2

, ṡ1(𝑐2,𝑒1)4⊕7
2

〉  , 〈s̈1(𝑐2,𝑒1)7⊕9
2

 , s̈1(𝑐2 ,𝑒1)1⊕3
2

〉}⋀

{〈ṡ2(𝑐2,𝑒2)5⊕9
2

, ṡ2(𝑐2,𝑒2)3⊕8
2

〉  , 〈s̈2(𝑐2,𝑒2)5⊕7
2

 , s̈2(𝑐2,𝑒2)3⊕4
2

〉}
]
 
 
 
 
 

⊕

[
 
 
 
 
 {〈ṡ1(𝑐3,𝑒1)13⊕14

2

, ṡ1(𝑐3,𝑒1)2⊕3
2

〉  , 〈s̈1(𝑐3,𝑒1)11⊕13
2

 , s̈1(𝑐3,𝑒1)1⊕2
2

〉}⋀

{〈ṡ2(𝑐3,𝑒2)12⊕13
2

, ṡ2(𝑐3,𝑒2)2⊕4
2

〉  , 〈s̈2(𝑐3,𝑒2)11⊕14
2

 , s̈2(𝑐3,𝑒2)1⊕2
2

〉}
]
 
 
 
 
 

 

= (〈�̇�6, �̇�5
2

〉 , 〈�̈�8, �̈�2〉) ⊕ (〈�̇�9, �̇�4〉, 〈�̈�15
2

, �̈�5
2

〉) ⊕ (〈�̇�25
2

, �̇�3〉 , 〈�̈�12, �̈�3
2

〉), 

after evaluating addition operator we get  

𝑆𝑢2(𝑆1, 𝑆2) = (〈�̇�16.1667 , �̇�0.09259〉, 〈�̈�14.9375, �̈�0.029297〉). 

Now to find the similarity between the opinions of experts using modified Type-V similarity 

measure we have 

[
 
 
 
 
 {〈ṡ1(𝑐1,𝑒1)2⊕3

2

, ṡ1(𝑐1,𝑒1)5⊕9
2

〉  , 〈s̈1(𝑐1,𝑒1)7⊕8
2

 , s̈1(𝑐1,𝑒1)1⊕2
2

〉}⋀

{〈ṡ2(𝑐1,𝑒2)7⊕8
2

, ṡ2(𝑐1,𝑒2)3⊕4
2

〉  , 〈s̈2(𝑐1,𝑒2)6⊕10
2

 , s̈2(𝑐1,𝑒2)3⊕4
2

〉}
]
 
 
 
 
 

⊕

[
 
 
 
 
 {〈ṡ1(𝑐2,𝑒1)3⊕4

2

, ṡ1(𝑐2,𝑒1)4⊕7
2

〉  , 〈s̈1(𝑐2,𝑒1)7⊕9
2

 , s̈1(𝑐2,𝑒1)1⊕3
2

〉}⋀

{〈ṡ2(𝑐2,𝑒2)5⊕9
2

, ṡ2(𝑐2,𝑒2)3⊕8
2

〉  , 〈s̈2(𝑐2,𝑒2)5⊕7
2

 , s̈2(𝑐2,𝑒2)3⊕4
2

〉}
]
 
 
 
 
 

⊕

[
 
 
 
 
 {〈ṡ1(𝑐3,𝑒1)5⊕7

2

, ṡ1(𝑐3,𝑒1)2⊕3
2

〉  , 〈s̈1(𝑐3,𝑒1)6⊕9
2

 , s̈1(𝑐3,𝑒1)3⊕4
2

〉}⋀

{〈ṡ2(𝑐3,𝑒2)1⊕3
2

, ṡ2(𝑐3,𝑒2)8⊕9
2

〉  , 〈s̈2(𝑐3,𝑒2)3⊕5
2

 , s̈2(𝑐3,𝑒2)1⊕2
2

〉}
]
 
 
 
 
 

 

= (〈�̇�5
2

, �̇�7〉 , 〈�̈�15
2

, �̈�7
2

〉) ⊕ (〈�̇�7
2

, �̇�11
2

〉 , 〈�̈�6, �̈�7
2

〉) ⊕ (〈�̇�2, �̇�17
2

〉 , 〈�̈�4, �̈�7
2

〉), 

after evaluating addition operator we get  

𝑆𝑢3(𝑆1, 𝑆2) = (〈�̇�6.90123 , �̇�1.01003〉, 〈�̈�12.015625 , �̈�0.16748〉). 
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These similarity results show a vast difference between Type-V and modified Type-V similarity 

measures.  

From the above similarity results, we can observe that the similarity between the opinions of 

experts in case of 𝑢1 and 𝑢2 is greater than 50% in fever of these alternatives but further in case 

of 𝑢2 similarity in fever goes to 89% which is higher than the case of 𝑢1. So, from above 

calculations it is clear that the nomination by experts for mining license in A is 𝑢2 which is 

tethyan copper company (TCC). 

4.7. MAX-MIN SIMILARITY MEASURE FOR GLIVIFSESs. 

Max-min similarity measure for GLIVIFSESs uses the operation of minimum and maximum for 

similarity reasons which we take from [8] in some sense because in that paper Karacapilidis et al. 

Uses that operator in finding similarity measure for simple fuzzy sets and then Wen-Liang Hung 

et al. [9] extended that idea for intuitionistic fuzzy sets. 

Definition. Let 𝑈 = {𝑢𝑖: 𝑖 = 1, .  .  .  , 𝑛}  be a set of alternatives and 𝐸 = {𝑒𝑗: 𝑗 = 1, .  .  .  ,𝑚} 

represents the set of decision makers and 𝐶 = {𝑐𝑘: 𝑘 = 1, .  .  .  , 𝑟} represents the set of criteria 

where n, r, m∈ ℤ with the property that either ‘n’, ‘r’, ‘m’ are same or different. Suppose  

S1={〈ṡ[α,α′], ṡ[β,β′]〉 , 〈s̈[γ,γ′] , s̈[δ,δ′]〉}, 

and 

S2={〈ṡ[α1,α1′ ], ṡ[β1 ,β1′ ]〉 , 〈s̈[γ1,γ1′ ] , s̈[δ1,δ1′ ]〉}, 

the general form of generalized linguistic interval-valued intuitionistic fuzzy soft expert sets. 

According to max-min similarity measure for GLIVIFSESs we have 
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=

∑

[
 
 
 
 
 

∑ ∑

[
 
 
 
 
 {〈ṡ1(𝑒𝑗,𝑐𝑘)[α,α′]

, ṡ1(𝑒𝑗,𝑐𝑘)
[β,β′]

〉  , 〈s̈1(𝑒𝑗,𝑐𝑘)[γ,γ′]
 , s̈1(𝑒𝑗,𝑐𝑘)

[δ,δ′]

〉}∧

{〈ṡ2(𝑒𝑗+1 ,𝑐𝑘)
[α1,α1

′ ]

, ṡ2(𝑒𝑗+1,𝑐𝑘)
[β1,β1

′
]

〉  , 〈s̈2(𝑒𝑗+1,𝑐𝑘)
[γ1,γ1

′ ]
 , s̈2(𝑒𝑗+1,𝑐𝑘)

[δ1,δ1
′
]

〉}
]
 
 
 
 
 

𝑟
𝑘=1

𝑚
𝑗=1

]
 
 
 
 
 

𝑛
𝑖=1

∑

[
 
 
 
 
 

∑ ∑

[
 
 
 
 
 {〈ṡ1(𝑒𝑗,𝑐𝑘)[α,α′]

, ṡ1(𝑒𝑗,𝑐𝑘)
[β,β′]

〉  , 〈s̈1(𝑒𝑗,𝑐𝑘)[γ,γ′]
 , s̈1(𝑒𝑗,𝑐𝑘)

[δ,δ′]

〉}∨

{〈ṡ2(𝑒𝑗+1 ,𝑐𝑘)
[α1,α1

′ ]

, ṡ2(𝑒𝑗+1,𝑐𝑘)
[β1,β1

′
]

〉  , 〈s̈2(𝑒𝑗+1,𝑐𝑘)[γ1,γ1′ ]
 , s̈2(𝑒𝑗+1,𝑐𝑘)

[δ1,δ1
′
]

〉}
]
 
 
 
 
 

𝑟
𝑘=1

𝑚
𝑗=1

]
 
 
 
 
 

𝑛
𝑖=1

 (a) 

 

Such that for a specific alternative i.e. 𝑖 = 𝑔 where 𝑔 ∈ {1,2 , .  .  .  , 𝑟} we have 

 

=

∑ ∑

[
 
 
 
 {〈ṡ1(𝑒𝑗 ,𝑐𝑘)[α,α′]

, ṡ1(𝑒𝑗 ,𝑐𝑘)[β,β′]
〉 , 〈s̈1(𝑒𝑗 ,𝑐𝑘)[γ,γ′]

 , s̈1(𝑒𝑗,𝑐𝑘)[δ,δ′]
〉} ∧

{〈ṡ2(𝑒𝑗+1 ,𝑐𝑘)[α1,α1′ ]
, ṡ2(𝑒𝑗+1,𝑐𝑘)[β1,β1′ ]

〉 , 〈s̈2(𝑒𝑗+1,𝑐𝑘)[γ1,γ1′ ]
 , s̈2(𝑒𝑗+1,𝑐𝑘)[δ1,δ1′ ]

〉}
]
 
 
 
 

𝑟
𝑘=1

𝑚
𝑗=1

∑ ∑

[
 
 
 
 {〈ṡ1(𝑒𝑗 ,𝑐𝑘)[α,α′]

, ṡ1(𝑒𝑗 ,𝑐𝑘)[β,β′]
〉 , 〈s̈1(𝑒𝑗 ,𝑐𝑘)[γ,γ′]

 , s̈1(𝑒𝑗,𝑐𝑘)[δ,δ′]
〉} ∨

{〈ṡ2(𝑒𝑗+1 ,𝑐𝑘)[α1,α1′ ]
, ṡ2(𝑒𝑗+1 ,𝑐𝑘)[β1,β1′ ]

〉 , 〈s̈2(𝑒𝑗+1,𝑐𝑘)[γ1,γ1′ ]
 , s̈2(𝑒𝑗+1 ,𝑐𝑘)[δ1,δ1′ ]

〉}
]
 
 
 
 

𝑟
𝑘=1

𝑚
𝑗=1

 

 

(b) 

here point to notice that we can change aggregation in above Equation (b) in combing opinions 

when experts and criteria’s changes. 

Now to illustrate the above listed methodology we construct a practical problem but firstly 

consider data from Example 4.1.1 for comparison reasons with previously discussed similarity 

measures. 

EXAMPLE 4.7.1. 

By taking data from Example 4.1.1 we have the following GLIVIFSESs, which basically 

represent the opinions of experts (students) regarding their teachers (alternatives). 

S1(h1, a)={〈ṡ[2,3], ṡ[1,2]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S1(h2, a)={〈ṡ[3,4], ṡ[1,2]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S2(h1, b)={〈ṡ[1,3], ṡ[2,3]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 
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S2(h2, b)={〈ṡ[1,2], ṡ[3,4]〉 , 〈s̈[1,2] , s̈[1,2]〉}. 

These sets represent the evaluation values by students ‘a’ and ‘b’ for the teacher 𝑡1. Now for the 

second teacher 𝑡2 the evaluation values are as under 

S1(h1, a)={〈ṡ[1,2], ṡ[2,4]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S1(h2, a)={〈ṡ[2,4], ṡ[1,2]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S2(h1, b)={〈ṡ[2,3], ṡ[2,3]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S2(h2, b)={〈ṡ[1,2], ṡ[3,4]〉 , 〈s̈[1,2] , s̈[1,2]〉}. 

Now by applying max-min similarity measure for aggregating opinions regarding 𝑡1  

=

[

{〈Ṡ1(𝑎,ℎ1)[2,3]
,Ṡ1(𝑎,ℎ1)[1,2]

〉 ,〈S̈1(𝑎,ℎ1)[1,2]
 ,S̈1(𝑎,ℎ1)[1,2]

〉}∧

{〈Ṡ2(𝑏,ℎ1)[1,3]
,Ṡ2(𝑏,ℎ1)[2,3]

〉 ,〈S̈2(𝑏,ℎ1)[1,2]
 ,S̈2(𝑏,ℎ1)[1,2]

〉}
]⨁[

{〈Ṡ1(𝑎,ℎ2)[3,4]
,Ṡ1(𝑎,ℎ2)[1,2]

〉 ,〈S̈1(𝑎,ℎ2)[1,2]
 ,S̈1(𝑎,ℎ2)[1,2]

〉}∧

{〈Ṡ2(𝑏,ℎ2)[1,2]
,Ṡ2(𝑏,ℎ2)[3,4]

〉 ,〈S̈2(𝑏,ℎ2)[1,2]
 ,S̈2(𝑏,ℎ2)[1,2]

〉}
]

[

{〈Ṡ1(𝑎,ℎ1)[2,3]
,Ṡ1(𝑎,ℎ1)[1,2]

〉 ,〈S̈1(𝑎,ℎ1)[1,2]
 ,S̈1(𝑎,ℎ1)[1,2]

〉}∨

{〈Ṡ2(𝑏,ℎ1)[1,3]
,Ṡ2(𝑏,ℎ1)[2,3]

〉 ,〈S̈2(𝑏,ℎ1)[1,2]
 ,S̈2(𝑏,ℎ1)[1,2]

〉}
]⨁[

{〈Ṡ1(𝑎,ℎ2)[3,4]
,Ṡ1(𝑎,ℎ2)[1,2]

〉 ,〈S̈1(𝑎,ℎ2)[1,2]
 ,S̈1(𝑎,ℎ2)[1,2]

〉}∨

{〈Ṡ2(𝑏,ℎ2)[1,2]
,Ṡ2(𝑏,ℎ2)[3,4]

〉 ,〈S̈2(𝑏,ℎ2)[1,2]
 ,S̈2(𝑏,ℎ2)[1,2]

〉}
]

   

=

〈�̇�
[
11
6
,4]
, �̇�[1,2]〉 , 〈�̈�[7

4
,3]
, �̈�
[
1
4
,1]
〉

〈�̇�[4,5], �̇�[1
6
,
2
3
]
〉 , 〈�̈�

[
7
4
,3]
, �̈�
[
1
4
,1]
〉
. 

Also, by applying max-min similarity measure for aggregating opinions regarding 𝑡2 we get 

=

[

{〈Ṡ1(𝑎,ℎ1)[1,2]
,Ṡ1(𝑎,ℎ1)[2,4]

〉 ,〈S̈1(𝑎,ℎ1)[1,2]
 ,S̈1(𝑎,ℎ1)[1,2]

〉}∧

{〈Ṡ2(𝑏,ℎ1)[2,3]
,Ṡ2(𝑏,ℎ1)[2,3]

〉 ,〈S̈2(𝑏,ℎ1)[1,2]
 ,S̈2(𝑏,ℎ1)[1,2]

〉}
]⨁[

{〈Ṡ1(𝑎,ℎ2)[2,4]
,Ṡ1(𝑎,ℎ2)[1,2]

〉 ,〈S̈1(𝑎,ℎ2)[1,2]
 ,S̈1(𝑎,ℎ2)[1,2]

〉}∧

{〈Ṡ2(𝑏,ℎ2)[1,2]
,Ṡ2(𝑏,ℎ2)[3,4]

〉 ,〈S̈2(𝑏,ℎ2)[1,2]
 ,S̈2(𝑏,ℎ2)[1,2]

〉}
]

[

{〈Ṡ1(𝑎,ℎ1)[1,2]
,Ṡ1(𝑎,ℎ1)[2,4]

〉 ,〈S̈1(𝑎,ℎ1)[1,2]
 ,S̈1(𝑎,ℎ1)[1,2]

〉}∨

{〈Ṡ2(𝑏,ℎ1)[2,3]
,Ṡ2(𝑏,ℎ1)[2,3]

〉 ,〈S̈2(𝑏,ℎ1)[1,2]
 ,S̈2(𝑏,ℎ1)[1,2]

〉}
]⨁[

{〈Ṡ1(𝑎,ℎ2)[2,4]
,Ṡ1(𝑎,ℎ2)[1,2]

〉 ,〈S̈1(𝑎,ℎ2)[1,2]
 ,S̈1(𝑎,ℎ2)[1,2]

〉}∨

{〈Ṡ2(𝑏,ℎ2)[1,2]
,Ṡ2(𝑏,ℎ2)[3,4]

〉 ,〈S̈2(𝑏,ℎ2)[1,2]
 ,S̈2(𝑏,ℎ2)[1,2]

〉}
]

   

=

〈�̇�
[
11
6
,
10
3
]
, �̇�
[1,
8
3
]
〉 , 〈�̈�

[
7
4
,3]
, �̈�
[
1
4
,1]
〉

〈�̇�
[
23
6
,5]
, �̇�
[
1
3
,1]
〉 , 〈�̈�

[
7
4
,3]
, �̈�
[
1
4
,1]
〉
. 

Now by substituting these values in equation (a) we get 

=

(〈�̇�
[
11
6
,4]
, �̇�[1,2]〉 , 〈�̈�[7

4
,3]
, �̈�
[
1
4
,1]
〉)⨁(〈�̇�

[
11
6
,
10
3
]
, �̇�
[1,
8
3
]
〉 , 〈�̈�

[
7
4
,3]
, �̈�
[
1
4
,1]
〉)

(〈�̇�[4,5], �̇�[1
6
,
2
3
]
〉 , 〈�̈�

[
7
4
,3]
, �̈�
[
1
4
,1]
〉)⨁(〈�̇�

[
23
6
,5]
, �̇�
[
1
3
,1]
〉 , 〈�̈�

[
7
4
,3]
, �̈�
[
1
4
,1]
〉)
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=

〈�̇�
[
671
216

,
49
9
]
, �̇�
[
1
6
,
8
9
]
〉 , 〈�̈�

[
175
64

,
15
4
]
, �̈�
[
1
64
,
1
4
]
〉

〈�̇�
[
95
18
,
35
6
]
, �̇�
[
1
108

,
1
6
]
〉 , 〈�̈�

[
175
64

,
15
4
]
, �̈�
[
1
64
,
1
4
]
〉
 

=(〈�̇�
[
671

216
,
49

9
]
, �̇�
[
1

6
,
8

9
]
〉 , 〈�̈�

[
175

64
,
15

4
]
, �̈�
[
1

64
,
1

4
]
〉)⨂(〈�̇�

[
6

35
,
18

95
]
, �̇�
[
1

108
,
1

6
]
〉 , 〈�̈�

[
4

15
,
64

175
]
, �̈�
[
1

64
,
1

4
]
〉), 

here notice that due to violation of [0, 𝑡] and [0, 𝑡′] we take out the intervals for non-membership 

for 1-D and 2-D as it is. Now by multiplying these GLIVIFSESs we get 

=(〈�̇�
[
671

7560
,
49

285
]
, �̇�
[
683

3888
,
167

162
]
〉 , 〈�̈�

[
35

192
,
12

35
]
, �̈�
[
511

16384
,
31

64
]
〉). 

Now to compare that similarity result with previous similarity results we use score function, 

according to score function 

= 𝑠[0.49276,0.4284]×[0.51889,0.48231] = 𝑠[0.2066,0.255689] = 𝑠0.23114 , 

but if we take score function for GLIVIFSESs as 

=𝑠
[
𝑡−(𝛼−𝛽)

2𝑡
′
𝑡−(𝛼′−𝛽′)

2𝑡
]×[

𝑡′−(𝛾−𝛿)

2𝑡′
′
𝑡′−(𝛾′−𝛿′)

2𝑡′
]
, 

rather than the score function  

=𝑠
[
𝑡+𝛼−𝛽

2𝑡
′
𝑡+𝛼′−𝛽′

2𝑡
]×[

𝑡′+𝛾−𝛿

2𝑡′
′
𝑡′+𝛾′−𝛿′

2𝑡′
]
, 

which is defined for GLIVIFSESs, then we get intervals without violation of their property of 

infimum and supremum such that 

=𝑠[0.50724,0.571578]×[0.481112,0.51769]=𝑠[0.24404,0.2959], 

for comparison reasons we take average value from interval such that the value of score function 

is given as 

=𝑠0.26997. 

Which shows that similarity result obtained by max-min similarity measure is greater than the 

similarity results obtained by Type-I, Type-III, Type-IV and Type-V similarity measures. 

EXAMPLE 4.7.2. 

Higher education commission of Pakistan (HEC) and tempus public foundation of hungry (TPF) 

signed a document of understanding (DOU), according to which Hungarian scholarship program 



54 
 

will provide stipend to Pakistani students for undergraduate, graduate, one-tier master degree and 

doctoral level programs for study in Hungarian specified universities after evaluation of higher 

education commission and tempus public foundation on merit bases for the award of scholarships 

to deserving students. The final decision for award will be made on similarity bases between the 

opinions of HEC and TPF with the restriction that similarity would be greater than 30%. 

For simplicity reasons we take {𝑒1, 𝑒2} as authorities of HEC and TPF respectively for making 

decisions about candidates. We take candidates as {𝑎, 𝑏, 𝑐} with criteria’s fixed for their 

nomination as 

 English proficiency 

 Innovative work 

 Performance/marks in previous study levels 

we call these criteria’s as {𝑐1, 𝑐2, 𝑐3} respectively. To avoid any inconvenience the authorities 

{𝑒1, 𝑒2} of HEC and TPF are directed that while giving opinions about specific candidates also 

give the experience details with specific alternatives. 

We take linguistic term set 𝑆𝑡 for linguistic terms related to candidate selection with variation of 

′𝑡′ as 0 ≤ 𝑡 ≤ 16 and linguistic term set 𝑆𝑡′  for linguistic terms related to experience with 

variation of ′𝑡′′ as 0 ≤ 𝑡′ ≤ 14. 

From above discussed problem it is clear that opinions of authorities will be in the form of 

GLIVIFSESs, such that opinions will be in the form of intervals rather than a fixed linguistic 

terms due to lack of perfectness in assigning any linguistic term, similarly in case of rejection. 

The opinions of authorities regarding candidate ‘a’ are as under 

S1(c1, e1)={〈ṡ[5,7], ṡ[4,5]〉 , 〈s̈[6,7] , s̈[2,3]〉}, 

S1(c2, e1)={〈ṡ[3,4], ṡ[5,7]〉 , 〈s̈[7,9] , s̈[1,2]〉}, 

S1(c3, e1)={〈ṡ[5,5.6], ṡ[3,4]〉 , 〈s̈[6,7] , s̈[2.2,3]〉}, 

S2(c1, e2)={〈ṡ[5.5,7], ṡ[4,5.5]〉 , 〈s̈[6,6.5] , s̈[2,4]〉}, 

S2(c2, e2)={〈ṡ[3,5], ṡ[5,6.5]〉 , 〈s̈[8,9] , s̈[1,2]〉}, 

S2(c3, e2)={〈ṡ[5,6], ṡ[3,4]〉 , 〈s̈[6,7] , s̈[2,3]〉}. 
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Now by applying max-min similarity measure for specific case defined in equation (b) we get 

=
[
[{〈ṡ[5,7],ṡ[4,5]〉 ,〈s̈[6,7] ,s̈[2,3]〉}∧{〈ṡ[5.5,7],ṡ[4,5.5]〉 ,〈s̈[6,6.5] ,s̈[2,4]〉}]⨁[{〈ṡ[3,4],ṡ[5,7]〉 ,〈s̈[7,9] ,s̈[1,2]〉}⋀{〈ṡ[3,5],ṡ[5,6.5]〉 ,〈s̈[8,9] ,s̈[1,2]〉}]

⨁[{〈ṡ[5,5.6],ṡ[3,4]〉 ,〈s̈[6,7] ,s̈[2.2,3]〉}⋀{〈ṡ[5,6],ṡ[3,4]〉 ,〈s̈[6,7] ,s̈[2,3]〉}]
]

[
[{〈ṡ[5,7],ṡ[4,5]〉 ,〈s̈[6,7] ,s̈[2,3]〉}∨{〈ṡ[5.5,7],ṡ[4,5.5]〉 ,〈s̈[6,6.5] ,s̈[2,4]〉}]⨁[{〈ṡ[3,4],ṡ[5,7]〉 ,〈s̈[7,9] ,s̈[1,2]〉}∨{〈ṡ[3,5],ṡ[5,6.5]〉 ,〈s̈[8,9] ,s̈[1,2]〉}]

⨁[{〈ṡ[5,5.6],ṡ[3,4]〉 ,〈s̈[6,7] ,s̈[2.2,3]〉}∨{〈ṡ[5,6],ṡ[3,4]〉 ,〈s̈[6,7] ,s̈[2,3]〉}]
]

  

=

{〈ṡ
[
2523
256

,
929
80

]
, ṡ
[
15
64
,
77
128

]
〉 , 〈s̈

[
82
7
,
709
56

]
 , s̈

[
11
490

,
6
49
]
〉}

{〈ṡ
[
4991
512

,
1553
128

]
, ṡ
[
15
64
,
65
128

]
〉 , 〈s̈

[
590
49

,
51
4
]
 , s̈

[
1
49
,
6
49
]
〉}

 

 

(b1) 

= {〈ṡ[0.0508,0.07445], ṡ[2.17476,4.7078]〉 , 〈s̈[0.0656,0.07511] , s̈[0.2446,8.2177]〉}. 

The opinions of experts regarding candidate ‘b’ are   

S1(c1, e1)={〈ṡ[11,12] , ṡ[2,3]〉 , 〈s̈[7,8] , s̈[2,4]〉}, 

S1(c2, e1)={〈ṡ[8,9], ṡ[3,4]〉 , 〈s̈[5,7] , s̈[2,4]〉}, 

S1(c3, e1)={〈ṡ[10,11] , ṡ[1,3]〉 , 〈s̈[9,10]  , s̈[1,2]〉}, 

S2(c1, e2)={〈ṡ[2,3], ṡ[2,2.5]〉 , 〈s̈[7,8.5] , s̈[1,3]〉}, 

S2(c2, e2)={〈ṡ[1,3], ṡ[3,4]〉 , 〈s̈[6,8] , s̈[1,2]〉}, 

S2(c3, e2)={〈ṡ[0,2], ṡ[2,4]〉 , 〈s̈[8,10] , s̈[2,3]〉}, 

By applying max-min similarity measure for ‘b’ we get 

=
[
[{〈ṡ[11,12],ṡ[2,3]〉 ,〈s̈[7,8] ,s̈[2,4]〉}∧{〈ṡ[2,3],ṡ[2,2.5]〉 ,〈s̈[7,8.5] ,s̈[1,3]〉}]⨁[{〈ṡ[8,9],ṡ[3,4]〉 ,〈s̈[5,7] ,s̈[2,4]〉}⋀{〈ṡ[1,3],ṡ[3,4]〉 ,〈s̈[6,8] ,s̈[1,2]〉}]

⨁[{〈ṡ[10,11],ṡ[1,3]〉 ,〈s̈[9,10]  ,s̈[1,2]〉}⋀{〈ṡ[0,2],ṡ[2,4]〉 ,〈s̈[8,10] ,s̈[2,3]〉}]
]

[
[{〈ṡ[11,12],ṡ[2,3]〉 ,〈s̈[7,8] ,s̈[2,4]〉}∨{〈ṡ[2,3],ṡ[2,2.5]〉 ,〈s̈[7,8.5] ,s̈[1,3]〉}]⨁[{〈ṡ[8,9],ṡ[3,4]〉 ,〈s̈[5,7] ,s̈[2,4]〉}∨{〈ṡ[1,3],ṡ[3,4]〉 ,〈s̈[6,8] ,s̈[1,2]〉}]

⨁[{〈ṡ[10,11],ṡ[1,3]〉 ,〈s̈[9,10] ,s̈[1,2]〉}∨{〈ṡ[0,2],ṡ[2,4]〉 ,〈s̈[8,10] ,s̈[2,3]〉}]
]

  

=

{〈ṡ
[
23
8
,
865
128

]
, ṡ
[
3
64
,
3
16
]
〉 , 〈s̈

[
169
14

,
92
7
]
 , s̈

[
2
49
,
12
49
]
〉}

{〈ṡ
[
241
16

,
989
64

]
, ṡ
[
3
128

,
15
128

]
〉 , 〈s̈

[
88
7
,
653
49

]
 , s̈

[
1
196

,
1
98
]
〉}

 

 

(b2) 

= {〈ṡ[0.01163,0.02804] , ṡ[0.07024,8.620833]〉 , 〈s̈[0.0647,0.07468]  , s̈[0.0459,0.2549]〉}. 

The opinions of experts for candidate ‘c’ are as under 

S1(c1, e1)={〈ṡ[2,3], ṡ[6,8]〉 , 〈s̈[9,11]  , s̈[1,2]〉}, 

S1(c2, e1)={〈ṡ[3,4], ṡ[6,7]〉 , 〈s̈[6,8] , s̈[1,4]〉}, 

S1(c3, e1)={〈ṡ[2,3], ṡ[5,6]〉 , 〈s̈[4,5] , s̈[1,3]〉}, 

S2(c1, e2)={〈ṡ[1,3], ṡ[10,12]〉 , 〈s̈[7,9] , s̈[1,4]〉}, 

S2(c2, e2)={〈ṡ[2,3], ṡ[3,4]〉 , 〈s̈[5,7] , s̈[1,3]〉}, 

S2(c3, e2)={〈ṡ[4,5], ṡ[6,7]〉 , 〈s̈[5,6] , s̈[2,3]〉}. 



56 
 

Now by applying max-min similarity measure for specific alternative ‘c’ 

=
[
[{〈ṡ[2,3],ṡ[6,8]〉 ,〈s̈[9,11] ,s̈[1,2]〉}∧{〈ṡ[1,3],ṡ[10,12]〉 ,〈s̈[7,9] ,s̈[1,4]〉}]⨁[{〈ṡ[3,4],ṡ[6,7]〉 ,〈s̈[6,8] ,s̈[1,4]〉}⋀{〈ṡ[2,3],ṡ[3,4]〉 ,〈s̈[5,7] ,s̈[1,3]〉}]

⨁[{〈ṡ[2,3],ṡ[5,6]〉 ,〈s̈[4,5] ,s̈[1,3]〉}⋀{〈ṡ[4,5],ṡ[6,7]〉 ,〈s̈[5,6] ,s̈[2,3]〉}]
]

[
[{〈ṡ[2,3],ṡ[6,8]〉 ,〈s̈[9,11] ,s̈[1,2]〉}∨{〈ṡ[1,3],ṡ[10,12]〉 ,〈s̈[7,9] ,s̈[1,4]〉}]⨁[{〈ṡ[3,4],ṡ[6,7]〉 ,〈s̈[6,8] ,s̈[1,4]〉}∨{〈ṡ[2,3],ṡ[3,4]〉 ,〈s̈[5,7] ,s̈[1,3]〉}]

⨁[{〈ṡ[2,3],ṡ[5,6]〉 ,〈s̈[4,5] ,s̈[1,3]〉}∨{〈ṡ[4,5],ṡ[6,7]〉 ,〈s̈[5,6] ,s̈[2,3]〉}]
]

  

=

{〈ṡ
[
289
64

,
1899
256

]
, ṡ
[
45
32
,
147
64

]
〉 , 〈s̈

[
151
14

,
347
28

]
 , s̈

[
1
98
,
12
49
]
〉}

{〈ṡ
[
239
32

,
595
64

]
, ṡ
[
45
128

,
3
4
]
〉 , 〈s̈

[
596
49

,
650
49

]
 , s̈

[
1
56
,
9
98
]
〉}

 

 

(b3) 

= {〈ṡ[0.03036,0.06208] , ṡ[2.622396,4.73297]〉 , 〈s̈[0.058077,0.07278]  , s̈[0.02805,10.9433]〉}. 

As from calculations from equations (b1), (b2) and (b3) it is clear that results obtained doesn’t 

fulfill the similarity between the opinions of experts because as we can observe that opinions of 

experts are not too different from each other but the similarity results obtained by max-min 

similarity measure are approximately approaches 𝑠0. 

To overcome this inappropriateness we now modify the max-min similarity measure for 

GLIVIFSESs. 

4.8. MODIFIED MAX-MIN SIMILARITY MEASURE FOR GLIVIFSESs. 

Definition. Let 𝑈 = {𝑢𝑖: 𝑖 = 1, .  .  .  , 𝑛}  be a set of alternatives and 𝐸 = {𝑒𝑗: 𝑗 = 1, .  .  .  ,𝑚} 

represents the set of decision makers and 𝐶 = {𝑐𝑘: 𝑘 = 1, .  .  .  , 𝑟} represents the set of criteria 

where n, r, m∈ ℤ with the property that either ‘n’, ‘r’, ‘m’ are same or different. Suppose  

S1={〈ṡ[α,α′], ṡ[β,β′]〉 , 〈s̈[γ,γ′] , s̈[δ,δ′]〉}, 

and 

S2={〈ṡ[α1,α1′ ], ṡ[β1 ,β1′ ]
〉 , 〈s̈[γ1,γ1′ ] , s̈[δ1,δ1′ ]

〉}, 

the general form of generalized linguistic interval-valued intuitionistic fuzzy soft expert sets. 

According to modified max-min similarity measure for GLIVIFSESs  
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=∑

[
 
 
 
 
 
 
 
 
 

[
 
 
 
 

∑∑

[
 
 
 
 {〈ṡ1(𝑒𝑗,𝑐𝑘)[α,α′]

, ṡ1(𝑒𝑗 ,𝑐𝑘)[β,β′]
〉 , 〈s̈1(𝑒𝑗,𝑐𝑘)[γ,γ′]

 , s̈1(𝑒𝑗,𝑐𝑘)[δ,δ′]
〉} ∧

{〈ṡ2(𝑒𝑗+1,𝑐𝑘)[α1,α1′ ]
, ṡ2(𝑒𝑗+1,𝑐𝑘)[β1,β1′ ]

〉  , 〈s̈2(𝑒𝑗+1,𝑐𝑘)[γ1,γ1′ ]
 , s̈2(𝑒𝑗+1,𝑐𝑘)[δ1,δ1′ ]

〉}
]
 
 
 
 𝑟

𝑘=1

𝑚

𝑗=1

]
 
 
 
 

⊗

[
 
 
 
 

∑∑

[
 
 
 
 {〈ṡ1(𝑒𝑗 ,𝑐𝑘)[α,α′]

, ṡ1(𝑒𝑗,𝑐𝑘)[β,β′]
〉  , 〈s̈1(𝑒𝑗 ,𝑐𝑘)[γ,γ′]

 , s̈1(𝑒𝑗 ,𝑐𝑘)[δ,δ′]
〉} ∨

{〈ṡ2(𝑒𝑗+1 ,𝑐𝑘)[α1,α1′ ]
, ṡ2(𝑒𝑗+1 ,𝑐𝑘)[β1,β1′ ]

〉 , 〈s̈2(𝑒𝑗+1 ,𝑐𝑘)[γ1,γ1′ ]
 , s̈2(𝑒𝑗+1 ,𝑐𝑘)[δ1,δ1′ ]

〉}
]
 
 
 
 𝑟

𝑘=1

𝑚

𝑗=1

]
 
 
 
 

]
 
 
 
 
 
 
 
 
 

𝑛

𝑖=1

       (4.8) 

now by applying modified max-min similarity measure on Example 4.7.2. 

EXAMPLE 4.8.1. 

By taking data from Example 4.7.2 we have 

the opinions of authorities regarding candidate ‘a’ are as under 

S1(c1, e1)={〈ṡ[5,7], ṡ[4,5]〉 , 〈s̈[6,7] , s̈[2,3]〉}, 

S1(c2, e1)={〈ṡ[3,4], ṡ[5,7]〉 , 〈s̈[7,9] , s̈[1,2]〉}, 

S1(c3, e1)={〈ṡ[5,5.6], ṡ[3,4]〉 , 〈s̈[6,7] , s̈[2.2,3]〉}, 

S2(c1, e2)={〈ṡ[5.5,7], ṡ[4,5.5]〉 , 〈s̈[6,6.5] , s̈[2,4]〉}, 

S2(c2, e2)={〈ṡ[3,5], ṡ[5,6.5]〉 , 〈s̈[8,9] , s̈[1,2]〉}, 

S2(c3, e2)={〈ṡ[5,6], ṡ[3,4]〉 , 〈s̈[6,7] , s̈[2,3]〉}. 

Now by applying modified max-min similarity measure for specific case we get 

 =

[
 
 
 
 [

[{〈ṡ[5,7], ṡ[4,5]〉 , 〈s̈[6,7] , s̈[2,3]〉} ∧ {〈ṡ[5.5,7], ṡ[4,5.5]〉 , 〈s̈[6,6.5] , s̈[2,4]〉}]⨁[{〈ṡ[3,4], ṡ[5,7]〉 , 〈s̈[7,9] , s̈[1,2]〉}⋀{〈ṡ[3,5], ṡ[5,6.5]〉 , 〈s̈[8,9] , s̈[1,2]〉}]

⨁[{〈ṡ[5,5.6], ṡ[3,4]〉 , 〈s̈[6,7] , s̈[2.2,3]〉}⋀{〈ṡ[5,6], ṡ[3,4]〉 , 〈s̈[6,7] , s̈[2,3]〉}]
]

⨂ [
[{〈ṡ[5,7], ṡ[4,5]〉 , 〈s̈[6,7] , s̈[2,3]〉} ∨ {〈ṡ[5.5,7], ṡ[4,5.5]〉 , 〈s̈[6,6.5] , s̈[2,4]〉}]⨁[{〈ṡ[3,4], ṡ[5,7]〉 , 〈s̈[7,9] , s̈[1,2]〉} ∨ {〈ṡ[3,5], ṡ[5,6.5]〉 , 〈s̈[8,9] , s̈[1,2]〉}]

⨁[{〈ṡ[5,5.6], ṡ[3,4]〉 , 〈s̈[6,7] , s̈[2.2,3]〉} ∨ {〈ṡ[5,6], ṡ[3,4]〉 , 〈s̈[6,7] , s̈[2,3]〉}]
]
]
 
 
 
 

 

= {〈ṡ
[
2523
256

,
929
80

]
, ṡ
[
15
64
,
77
128

]
〉 , 〈s̈

[
82
7
,
709
56

]
 , s̈

[
11
490

,
6
49
]
〉}⨂ {〈ṡ

[
4991
512

,
1553
128

]
, ṡ
[
15
64
,
65
128

]
〉 , 〈s̈

[
590
49

,
51
4
]
 , s̈

[
1
49
,
6
49
]
〉} 

= {〈ṡ[6.0045,8.8056] , ṡ[0.4653,1.09028]〉 , 〈s̈[10.07497,11.53029] , s̈[0.0428,0.2438]〉}. 

By comparing it with previous similarity result obtained by max-min similarity measure we can 

observe that there is vast difference between the similarity results in opinions of experts. 

According to similarity between authorities in favor of candidate ‘a’ is approximately 46%.  
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The opinions of experts regarding candidate ‘b’ are   

S1(c1, e1)={〈ṡ[11,12] , ṡ[2,3]〉 , 〈s̈[7,8] , s̈[2,4]〉}, 

S1(c2, e1)={〈ṡ[8,9], ṡ[3,4]〉 , 〈s̈[5,7] , s̈[2,4]〉}, 

S1(c3, e1)={〈ṡ[10,11] , ṡ[1,3]〉 , 〈s̈[9,10]  , s̈[1,2]〉}, 

S2(c1, e2)={〈ṡ[2,3], ṡ[2,2.5]〉 , 〈s̈[7,8.5] , s̈[1,3]〉}, 

S2(c2, e2)={〈ṡ[1,3], ṡ[3,4]〉 , 〈s̈[6,8] , s̈[1,2]〉}, 

S2(c3, e2)={〈ṡ[0,2], ṡ[2,4]〉 , 〈s̈[8,10] , s̈[2,3]〉}. 

By applying modified max-min similarity measure for ‘b’ we get 

=

[
 
 
 
 [
[{〈ṡ[11,12], ṡ[2,3]〉 , 〈s̈[7,8] , s̈[2,4]〉} ∧ {〈ṡ[2,3], ṡ[2,2.5]〉 , 〈s̈[7,8.5] , s̈[1,3]〉}]⨁[{〈ṡ[8,9], ṡ[3,4]〉 , 〈s̈[5,7] , s̈[2,4]〉} ∧ {〈ṡ[1,3], ṡ[3,4]〉 , 〈s̈[6,8] , s̈[1,2]〉}]

⨁[{〈ṡ[10,11], ṡ[1,3]〉 , 〈s̈[9,10] , s̈[1,2]〉} ∧ {〈ṡ[0,2], ṡ[2,4]〉 , 〈s̈[8,10] , s̈[2,3]〉}]
]

⨂ [
[{〈ṡ[11,12], ṡ[2,3]〉 , 〈s̈[7,8] , s̈[2,4]〉} ∨ {〈ṡ[2,3], ṡ[2,2.5]〉 , 〈s̈[7,8.5] , s̈[1,3]〉}]⨁[{〈ṡ[8,9], ṡ[3,4]〉 , 〈s̈[5,7] , s̈[2,4]〉} ∨ {〈ṡ[1,3], ṡ[3,4]〉 , 〈s̈[6,8] , s̈[1,2]〉}]

⨁[{〈ṡ[10,11], ṡ[1,3]〉 , 〈s̈[9,10] , s̈[1,2]〉} ∨ {〈ṡ[0,2], ṡ[2,4]〉 , 〈s̈[8,10] , s̈[2,3]〉}]
]
]
 
 
 
 

 

= {〈ṡ
[
23
8
,
865
128

]
, ṡ
[
3
64
,
3
16
]
〉 , 〈s̈

[
169
14

,
92
7
]
 , s̈

[
2
49
,
12
49
]
〉}⨂ {〈ṡ

[
241
16

,
989
64

]
, ṡ
[
3
128

,
15
128

]
〉 , 〈s̈

[
88
7
,
653
49

]
 , s̈

[
1
196

,
1
98
]
〉} 

= {〈ṡ[2.70654,6.5268], ṡ[0.07024,0.30423]〉 , 〈s̈[10.83965,12.5106]  , s̈[0.0459,0.2549]〉}. 

By comparing it with previous similarity measure result we can observe too much difference 

between results. The similarity between opinions of authorities in favor of candidate ‘b’ is 

approximately 29%. 

The opinions of experts for candidate ‘c’ are as under 

S1(c1, e1)={〈ṡ[2,3], ṡ[6,8]〉 , 〈s̈[9,11]  , s̈[1,2]〉}, 

S1(c2, e1)={〈ṡ[3,4], ṡ[6,7]〉 , 〈s̈[6,8] , s̈[1,4]〉}, 

S1(c3, e1)={〈ṡ[2,3], ṡ[5,6]〉 , 〈s̈[4,5] , s̈[1,3]〉}, 

S2(c1, e2)={〈ṡ[1,3], ṡ[10,12]〉 , 〈s̈[7,9] , s̈[1,4]〉}, 

S2(c2, e2)={〈ṡ[2,3], ṡ[3,4]〉 , 〈s̈[5,7] , s̈[1,3]〉}, 

S2(c3, e2)={〈ṡ[4,5], ṡ[6,7]〉 , 〈s̈[5,6] , s̈[2,3]〉}. 

Now by applying modified max-min similarity measure for specific alternative ‘c’ 

=

[
 
 
 
 
[{〈ṡ[2,3], ṡ[6,8]〉 , 〈s̈[9,11] , s̈[1,2]〉} ∧ {〈ṡ[1,3], ṡ[10,12]〉 , 〈s̈[7,9] , s̈[1,4]〉}]⨁[{〈ṡ[3,4], ṡ[6,7]〉 , 〈s̈[6,8] , s̈[1,4]〉} ∧ {〈ṡ[2,3], ṡ[3,4]〉 , 〈s̈[5,7] , s̈[1,3]〉}]

⨁[{〈ṡ[2,3], ṡ[5,6]〉 , 〈s̈[4,5] , s̈[1,3]〉} ∧ {〈ṡ[4,5], ṡ[6,7]〉 , 〈s̈[5,6] , s̈[2,3]〉}]

[
[{〈ṡ[2,3], ṡ[6,8]〉 , 〈s̈[9,11] , s̈[1,2]〉} ∨ {〈ṡ[1,3], ṡ[10,12]〉 , 〈s̈[7,9] , s̈[1,4]〉}]⨁[{〈ṡ[3,4], ṡ[6,7]〉 , 〈s̈[6,8] , s̈[1,4]〉} ∨ {〈ṡ[2,3], ṡ[3,4]〉 , 〈s̈[5,7] , s̈[1,3]〉}]

⨁[{〈ṡ[2,3], ṡ[5,6]〉 , 〈s̈[4,5] , s̈[1,3]〉} ∨ {〈ṡ[4,5], ṡ[6,7]〉 , 〈s̈[5,6] , s̈[2,3]〉}]
]
]
 
 
 
 

 

= {〈ṡ
[
289
64

,
1899
256

]
, ṡ
[
45
32
,
147
64

]
〉 , 〈s̈

[
151
14

,
347
28

]
 , s̈

[
1
98
,
12
49
]
〉}⨂ {〈ṡ

[
239
32

,
595
64

]
, ṡ
[
45
128

,
3
4
]
〉 , 〈s̈

[
596
49

,
650
49

]
 , s̈

[
1
56
,
9
98
]
〉} 



59 
 

= {〈ṡ[2.10788,4.92599] , ṡ[1.7269,2.9392]〉 , 〈s̈[9.37068,11.7425] , s̈[0.02805,0.335]〉}, 

thus the similarity between the opinions of experts in favor in candidate ‘c’ case is approximately 

22%. 

Now from above calculations for similarity between opinions of authorities of HEC & TPF it is 

clear that only in case of candidate ‘a’ similarity is 46% > 30%, thus the candidate ‘a’ is 

nominated for scholarship from a set of three candidates. 

Now we apply modified max-min similarity measure on Example 4.1.1 to compare this measure 

with previous similarity measures. 

EXAMPLE 4.8.2. 

By taking data from Example 4.1.1 we have 

S1(h1, a)={〈ṡ[2,3], ṡ[1,2]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S1(h2, a)={〈ṡ[3,4], ṡ[1,2]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S2(h1, b)={〈ṡ[1,3], ṡ[2,3]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S2(h2, b)={〈ṡ[1,2], ṡ[3,4]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

these sets represent the evaluation values by students ‘a’ and ‘b’ for the teacher 𝑡1. Now for the 

second teacher 𝑡2 the evaluation values are as under 

S1(h1, a)={〈ṡ[1,2], ṡ[2,4]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S1(h2, a)={〈ṡ[2,4], ṡ[1,2]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S2(h1, b)={〈ṡ[2,3], ṡ[2,3]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S2(h2, b)={〈ṡ[1,2], ṡ[3,4]〉 , 〈s̈[1,2] , s̈[1,2]〉}. 

Now by applying modified max-min similarity measure for aggregating opinions regarding 𝑡1. 
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=

[
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 

[
 
 
 
 
 {〈ṡ1(𝑎,ℎ1)[2,3]

, ṡ1(𝑎,ℎ1)[1,2]
〉 , 〈s̈1(𝑎,ℎ1)[1,2] , s̈1(𝑎,ℎ1)[1,2]

〉}∧

{〈ṡ2(𝑏,ℎ1)[1,3]
, ṡ2(𝑏,ℎ1)[2,3]

〉 , 〈s̈2(𝑏,ℎ1)[1,2] , s̈2(𝑏,ℎ1)[1,2]
〉}

]
 
 
 
 
 

⨁

[
 
 
 
 
 {〈ṡ1(𝑎,ℎ2)[3,4]

, ṡ1(𝑎,ℎ2)[1,2]
〉 , 〈s̈1(𝑎,ℎ2)[1,2] , s̈1(𝑎,ℎ2)[1,2]

〉}∧

{〈ṡ2(𝑏,ℎ2)[1,2]
, ṡ2(𝑏,ℎ2)[3,4]

〉 , 〈s̈2(𝑏,ℎ2)[1,2] , s̈2(𝑏,ℎ2)[1,2]
〉}
]
 
 
 
 
 

]
 
 
 
 
 

⨂

[
 
 
 
 
 

[
 
 
 
 
 {〈ṡ1(𝑎,ℎ1)[2,3]

, ṡ1(𝑎,ℎ1)[1,2]
〉 , 〈s̈1(𝑎,ℎ1)[1,2] , s̈1(𝑎,ℎ1)[1,2]

〉}∨

{〈ṡ2(𝑏,ℎ1)[1,3]
, ṡ2(𝑏,ℎ1)[2,3]

〉 , 〈s̈2(𝑏,ℎ1)[1,2] , s̈2(𝑏,ℎ1)[1,2]
〉}
]
 
 
 
 
 

⨁

[
 
 
 
 
 {〈ṡ1(𝑎,ℎ2)[3,4]

, ṡ1(𝑎,ℎ2)[1,2]
〉 , 〈s̈1(𝑎,ℎ2)[1,2] , s̈1(𝑎,ℎ2)[1,2]

〉}∨

{〈ṡ2(𝑏,ℎ2)[1,2]
, ṡ2(𝑏,ℎ2)[3,4]

〉 , 〈s̈2(𝑏,ℎ2)[1,2] , s̈2(𝑏,ℎ2)[1,2]
〉}
]
 
 
 
 
 

]
 
 
 
 
 

]
 
 
 
 
 
 
 
 
 
 
 

 

 = {〈�̇�
[
11

6
,4]
, �̇�[1,2]〉 , 〈�̈�[7

4
,3]
, �̈�
[
1

4
,1]
〉}⨂ {〈�̇�[4,5], �̇�[1

6
,
2

3
]
〉 , 〈�̈�

[
7

4
,3]
, �̈�
[
1

4
,1]
〉} 

 = {〈�̇�
[
11

9
,
10

3
]
, �̇�
[
41

36
,
22

9
]
〉 , 〈�̈�

[
49

64
,
9

4
]
, �̈�
[
31

64
,
7

4
]
〉}. 

Now in case of t2, the similarity between opinions of experts from max-min similarity measure is 

given as 

=

[
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 

[
 
 
 
 
 {〈ṡ1(𝑎,ℎ1)[1,2]

, ṡ1(𝑎,ℎ1)[2,4]
〉 , 〈s̈1(𝑎,ℎ1)[1,2] , s̈1(𝑎,ℎ1)[1,2]

〉}∧

{〈ṡ2(𝑏,ℎ1)[2,3]
, ṡ2(𝑏,ℎ1)[2,3]

〉 , 〈s̈2(𝑏,ℎ1)[1,2] , s̈2(𝑏,ℎ1)[1,2]
〉}

]
 
 
 
 
 

⨁

[
 
 
 
 
 {〈ṡ1(𝑎,ℎ2)[2,4]

, ṡ1(𝑎,ℎ2)[1,2]
〉 , 〈s̈1(𝑎,ℎ2)[1,2] , s̈1(𝑎,ℎ2)[1,2]

〉}∧

{〈ṡ2(𝑏,ℎ2)[1,2]
, ṡ2(𝑏,ℎ2)[3,4]

〉 , 〈s̈2(𝑏,ℎ2)[1,2] , s̈2(𝑏,ℎ2)[1,2]
〉}
]
 
 
 
 
 

]
 
 
 
 
 

⨂

[
 
 
 
 
 

[
 
 
 
 
 {〈ṡ1(𝑎,ℎ1)[1,2]

, ṡ1(𝑎,ℎ1)[2,4]
〉 , 〈s̈1(𝑎,ℎ1)[1,2] , s̈1(𝑎,ℎ1)[1,2]

〉}∨

{〈ṡ2(𝑏,ℎ1)[2,3]
, ṡ2(𝑏,ℎ1)[2,3]

〉 , 〈s̈2(𝑏,ℎ1)[1,2] , s̈2(𝑏,ℎ1)[1,2]
〉}
]
 
 
 
 
 

⨁

[
 
 
 
 
 {〈ṡ1(𝑎,ℎ2)[2,4]

, ṡ1(𝑎,ℎ2)[1,2]
〉 , 〈s̈1(𝑎,ℎ2)[1,2] , s̈1(𝑎,ℎ2)[1,2]

〉}∨

{〈ṡ2(𝑏,ℎ2)[1,2]
, ṡ2(𝑏,ℎ2)[3,4]

〉 , 〈s̈2(𝑏,ℎ2)[1,2] , s̈2(𝑏,ℎ2)[1,2]
〉}
]
 
 
 
 
 

]
 
 
 
 
 

]
 
 
 
 
 
 
 
 
 
 
 

 

= {〈�̇�
[
11
6
,
10
3
]
, �̇�
[1,
8
3
]
〉 , 〈�̈�

[
7
4
,3]
, �̈�
[
1
4
,1]
〉}⨂ {〈�̇�

[
23
6
,5]
, �̇�
[
1
3
,1]
〉 , 〈�̈�

[
7
4
,3]
, �̈�
[
1
4
,1]
〉} 

= {〈�̇�
[
253
216

,
25
9
]
, �̇�
[
23
18
,
29
9
]
〉 , 〈�̈�

[
49
64
,
9
4
]
, �̈�
[
31
64
,
7
4
]
〉}. 

Now by adding these similarity results for teacher t1 and t2 respectively to find the overall 

similarity between the opinions of experts for all alternatives. Thus the modified max-min 

similarity measure proceed as under 

= {〈�̇�
[
11
9
,
10
3
]
, �̇�
[
41
36
,
22
9
]
〉 , 〈�̈�

[
49
64
,
9
4
]
, �̈�
[
31
64
,
7
4
]
〉}⨁ {〈�̇�

[
253
216

,
25
9
]
, �̇�
[
23
18
,
29
9
]
〉 , 〈�̈�

[
49
64
,
9
4
]
, �̈�
[
31
64
,
7
4
]
〉} 

= {〈�̇�
[
25135
11664

,
370
81

]
, �̇�
[
943
3888

,
319
243

]
〉 , 〈�̈�

[
22687
16384

,
207
64

]
, �̈�
[
961
16384

,
49
64
]
〉}. 

Now to compare similarity result obtained by modified max-min similarity measure we use score 

function. According to score function we have 

= s[0.6594,0.77126]×[0.66576,0.8086] = s[0.439,0.623641] . 
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For comparison reasons we take average value from interval such that the value of score function 

is given as 

=𝑠0.5313 . 

Which shows that similarity result obtained by modified max-min similarity measure is greater 

than the similarity results obtained by Type-I, Type-II, Type-III, Type-IV, Type-V, Max-Min 

similarity measures and from correlation for GLIVIFSESs result. 
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CHAPTER 5 

             

DISTANCE BASED SIMILARITY MEASURES ON 

GENERALIZED LINGUISTIC INTERVAL VALUED 

INTUITIONISTIC FUZZY SOFT EXPERT SETS (GLIVIFSESs) 

 

            In this chapter we discus about distance based similarity measures for under-study 

structure and propose some new distance based similarity measures. Such as Modified Hamming 

distance, in which we firstly consider Hamming distance which is already defined for fuzzy sets, 

and then extend that idea by considering different parameters and different criteria’s for assigning 

expert opinion. From the point that distance and similarity are converse of each other, we draw 

similarity measure on Modified Hamming distance by taking converse of linguistic terms 

subscripts with the restriction that as we have both member-ship and non-membership intervals 

so we take converse as subtraction of subscript from half of extreme value our mod on it. Further 

we construct practical problem example regarding the construction of well-equipped car that 

fulfills customer’s demands. Also we apply data of Example 4.1.1 under Modified Hamming 

distance based similarity measure and compare its result with previous similarity measures 

results. Further we extend the idea of Euclidean distance into Modified Euclidean distance 

measure for under-study structure and then into Modified Euclidean distance-based similarity 

measure. And then consider the data of Example 4.1.1 and from car construction problem, to 

compare that similarity measure with previous/other similarity measures results. 

            Further we take into account the concept of Entropy measure, which is used to measure 

the fuzziness of fuzzy objects. And extend that idea along with linguistic approach and propose 

Entropy based similarity measure for under-study structure. And consider data of Example 4.1.1 

under Entropy based similarity measure. Further we propose the idea of Dissimilarity measure for 

under-study structure and construct a practical problem example regarding the improvement of 
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school education department. Later on we propose the concept of correlation for under-study 

structure, which is used to measure the similarity. And then extend the data of Example 4.1.1 

under correlation, for comparison reasons. Lastly in this section we introduce the idea of 

linguistic fuzzy implication for measuring distance between under-study structures. And take data 

of Example 4.1.1 under linguistic fuzzy implication distance measure to check the validity of that 

distance measure.                  
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DISTANCE BASED SIMILARITY MEASURES FOR GLIVIFSESs. 

To measure the distance between any two GLIVIFSESs, or in generalized case to measure the 

distance between finite number of these systems/sets we use the well-known distance measures 

such as Hamming distance and generalized Hamming distance [16], Normalized Hamming 

distance, Euclidean distance [17], and Normalized Euclidean distance [18]. These distance 

measures have been widely used for fuzzy sets and to further extensions of fuzzy sets, now we 

modify/extend these measures for linguistic approach in fuzzy theory. 

According to Hamming distance for fuzzy sets 

𝑑𝐻(𝐴, 𝐵) =∑|𝛼𝐴(𝑥𝑖) − 𝛼𝐵(𝑥𝑖)|

𝑛

𝑖=1

, 

here “n” represents order of set of alternatives/universe of discourse where 𝛼𝐴(𝑥𝑖) and 𝛼𝐵(𝑥𝑖) 

represents membership functions of fuzzy sets A and B respectively. 

Now in case of linguistic with 2-D IVIFSESs that distance measure takes the following form 

𝑑𝑀𝐻(𝑆1, 𝑆2) =∑(
∑ 𝑠1(𝑐𝑗, 𝑥𝑖)
𝑟
𝑗=1

𝑟
−
∑ 𝑠2(𝑐𝑗, 𝑥𝑖)
𝑟
𝑗=1

𝑟
)

𝑛

𝑖=1

        (5.0) 

here 𝑐𝑗 represents a specific alternative with “r” represents order of set of criteria’s. 

Where 𝑆1 and 𝑆2 are generally defined as 

S1={〈ṡ[α,α′], ṡ[β,β′]〉 , 〈s̈[γ,γ′] , s̈[δ,δ′]〉}, 

S2={〈ṡ[α1,α1′ ], ṡ[β1 ,β1′ ]〉 , 〈s̈[γ1,γ1′ ] , s̈[δ1,δ1′ ]〉}, 

with normalized case is defined by dividing the expression of modified hamming distance by 

order of set of alternatives 

𝑑𝑁𝑀𝐻(𝑆1, 𝑆2) =

∑ (
∑ 𝑠1(𝑐𝑗, 𝑥𝑖)
𝑟
𝑗=1

𝑟
−
∑ 𝑠2(𝑐𝑗, 𝑥𝑖)
𝑟
𝑗=1

𝑟
)𝑛

𝑖=1

𝑛
. 
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Now we can extend that to finite number of GLIVIFSESs, such that instead of finding the 

distance between any two GLIVIFSESs we can find the overall distance between any finite 

orders of these systems, which is defined as under 

𝑑𝑀𝐻(𝑆1, 𝑆2 , 𝑆3, … , 𝑆𝑚) =∑[∑ (
∑ 𝑆𝑘(𝑐𝑗, 𝑥𝑖 , 𝑒𝑘)
𝑟
𝑗=1

𝑟
−
∑ 𝑆𝑘+1(𝑐𝑗 , 𝑥𝑖 , 𝑒𝑘+1)
𝑟
𝑗=1

𝑟
)

𝑚−1

𝑘=1

]

𝑛

𝑖=1

, 

with 

𝑑𝑁𝑀𝐻(𝑆1, 𝑆2 , 𝑆3, … , 𝑆𝑚) =

∑ [∑ (
∑ 𝑆𝑘(𝑐𝑗, 𝑥𝑖 , 𝑒𝑘)
𝑟
𝑗=1

𝑟
−
∑ 𝑆𝑘+1(𝑐𝑗 , 𝑥𝑖 , 𝑒𝑘+1)
𝑟
𝑗=1

𝑟
)𝑚−1

𝑘=1 ]𝑛
𝑖=1

𝑛
. 

Now by using the modified Hamming distance measure we define a distance based similarity 

measure keeping in view the basic idea that if distance between two sets is lowest than the 

similarity between these sets will be highest. 

5.1. MODIFIED HAMMING DISTANCE BASED SIMILARITY MEASURE FOR 

GLIVIFSESs. 

Suppose 𝐶 = {𝑐𝑗: 𝑗 = 1,2,3,… , 𝑟} represents a set of criteria’s & 𝑋 = {𝑥𝑖: 𝑖 = 1,2,3,… , 𝑛} 

represents a set of alternatives with 

S1={〈ṡ[α,α′], ṡ[β,β′]〉 , 〈s̈[γ,γ′] , s̈[δ,δ′]〉}, 

S2={〈ṡ[α1,α1′ ], ṡ[β1 ,β1′ ]〉 , 〈s̈[γ1,γ1′ ] , s̈[δ1,δ1′ ]〉}, 

be two any general GLIVIFSESs. Now we also take 𝑑𝑀𝐻(𝑆1, 𝑆2) with arbitrary values such that 

𝑑𝑀𝐻(𝑆1, 𝑆2) = {〈ṡ[ρ,ρ′], ṡ[σ,σ′]〉  , 〈s̈[φ,φ′] , s̈[ω,ω′]〉}, 

then the similarity measure based on modified hamming distance is 

𝑆𝑑𝑀𝐻(𝑆1 , 𝑆2) = {〈ṡ[| t2−ρ
′|,|
t
2−ρ|]

, ṡ
[|
t
2−σ

′|,|
t
2−σ|]

〉  , 〈s̈
[|
t′

2−φ
′|,|
t′

2−φ|]
 , s̈

[|
t′

2−ω
′|,|
t′

2−ω|]
〉}       (5.1) 

The above expression shows that value of similarity measure is complement of value of distance 

measure. But in above expression we used 
t

2
 rather than ′t′ since we are countering both the 
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membership and non-membership at the same time with the restriction that their sum will be less 

than or equal to st.  Such that if distance is 𝑠0 then similarity will be 𝑠𝑡 and conversely if distance 

between GLIVIFSESs will be highest then similarity between them will be lowest. 

To compare the above listed similarity measure we firstly consider Example 4.1.1 and then for 

illustration purposes we construct a practical problem and apply that similarity measure to check 

the reliability that similarity measure. 

EXAMPLE 5.1.1. 

By taking data from Example 4.1.1 we have following GLIVIFSESs  

S1(h1, a)={〈ṡ[2,3], ṡ[1,2]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S1(h2, a)={〈ṡ[3,4], ṡ[1,2]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S2(h1, b)={〈ṡ[1,3], ṡ[2,3]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S2(h2, b)={〈ṡ[1,2], ṡ[3,4]〉 , 〈s̈[1,2] , s̈[1,2]〉}. 

These sets represent the evaluation values by students ‘a’ and ‘b’ for the teacher 𝑡1. Now for the 

second teacher 𝑡2 the evaluation values are as under 

S1(h1, a)={〈ṡ[1,2], ṡ[2,4]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S1(h2, a)={〈ṡ[2,4], ṡ[1,2]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S2(h1, b)={〈ṡ[2,3], ṡ[2,3]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S2(h2, b)={〈ṡ[1,2], ṡ[3,4]〉 , 〈s̈[1,2] , s̈[1,2]〉}. 

Now 

𝑑𝑀𝐻(𝑆1, 𝑆2) =∑(
∑ 𝑆1(ℎ𝑗, 𝑡𝑖)
2
𝑗=1

2
−
∑ 𝑆2(ℎ𝑗, 𝑡𝑖)
2
𝑗=1

2
)

2

𝑖=1

, 

= [{〈ṡ[2.5359,3.5505] , ṡ[1,2]〉 , 〈s̈[1,2] , s̈[1,2]〉} − {〈ṡ[1,2.5359], ṡ[2.449,3.4641]〉 , 〈s̈[1,2] , s̈[1,2]〉} ] + 

[{〈ṡ[1.5279,3.17157], ṡ[1.4142,2.8284]〉 , 〈s̈[1,2] , s̈[1,2]〉}

− {〈ṡ[1.5279,2.5359] , ṡ[2.449,3.4641]〉 , 〈s̈[1,2] , s̈[1,2]〉} ] 

= {〈ṡ[1.95855,2.51522] , ṡ[0.40817,1.1547]〉 , 〈s̈[1
4
,1]
 , s̈

[
1
4
,1]
〉} + {〈ṡ[0.3891,1.97613], ṡ[0.57723,1.63298]〉 , 〈s̈[1

4
,1]
 , s̈

[
1
4
,1]
〉} 
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 = {〈ṡ[2.220638,3.66295] , ṡ[0.039268,0.31427]〉 , 〈s̈[0.484375,1.75]  , s̈[0.015625,0.25]〉}.    

The above calculated set represents the distance between GLIVIFSESs. Now to calculate distance 

based similarity between 𝑆1 & 𝑆2 we have 

𝑆𝑑𝑀𝐻(𝑆1 , 𝑆2) = {〈ṡ[| t2−ρ
′|,|
t
2−ρ|]

, ṡ
[|
t
2−σ

′|,|
t
2−σ|]

〉  , 〈s̈
[|
t′

2−φ
′|,|
t′

2−φ|]
 , s̈

[|
t′

2−ω
′|,|
t′

2−ω|]
〉}, 

by substituting required values in above equation we get 

𝑆𝑑𝑀𝐻(𝑆1, 𝑆2) = {〈ṡ[0.66295,0.779362], ṡ[2.68573,2.960732]〉 , 〈s̈[0.25,1.515625]  , s̈[1.75,1.984375]〉}. 

 Which represents distance based similarity between 𝑆1 and 𝑆2. Now to compare that similarity 

result with    previous similarity measures results on the same data sets we use score function for 

GLIVIFSESs. 

According to score function (here we use score function 𝑠
[
𝑡+𝛼+𝛽

2𝑡
′
𝑡+𝛼′+𝛽′

2𝑡
]×[

𝑡′+𝛾+𝛿

2𝑡′
′
𝑡′+𝛾′+𝛿′

2𝑡′
]
 to sustain 

the upper bound and lower bound property of intervals) 

𝑆$(𝑆𝑑𝑀𝐻) = 𝑠[0.7791,0.8116745]×[0.75,0.9375] = 𝑠[0.584325,0.760945] , 

for comparison reasons we take the arithmetic mean of extreme values of interval such that 

𝑆$(𝑆𝑑𝑀𝐻) = 𝑠0.672635 . 

By comparing that similarity result with previous similarity results we can observe that this value 

is greater than Type-I, Type-II, Type-III, Type-IV, Type-V, Correlation, Max-Min similarity 

measure. 

Now to demonstrate that distance based similarity measure we construct a practical problem. 

EXAMPLE 5.1.2. 

Executive authority of Auto Car Company is interested to manufacture a car which includes all 

the possible features for different personality’s peoples. To fulfill that willing they take the 
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opinions of Engineers for wearing a cloth of reality on that and propose some models of cars, 

with criteria’s set as general favorable qualities in a car a user can demand it. For simplicity 

reasons we take criteria set with three quantities 𝐶 = {𝑐𝑖: 𝑖 = 1,2,3} namely 

 𝑐1 = flexibility in size 

 𝑐2 = quality assurance 

 𝑐3 = suitable for any type of way 

and the set of experts/engineers 𝐸 = {𝑒𝑗: 𝑗 = 1,2,3} with set of proposed models of cars 𝑈 =

{𝑢𝑘: 𝑘 = 1,2}. Here the restriction imposed on engineers is that while categorizing the models 

also mentions their own expertise regarding these mechanisms.   

From the above listed situation it is clear that opinions will be in the form of linguistic terms 

rather than numerical quantities because it is difficult to assign a numerical number to any quality 

of any object, with interval on subscripts rather than a fixed value due to hesitation, along with 

similar data for opposition. For that purpose we take as generally a term set 𝑆 = {𝑠𝑡: 𝑡 =

1,2,3,… ,15} also for linguistic approach towards expertise we take term set 𝑆′ = {𝑠𝑡′: 𝑡
′ =

1,2,3,… ,17} such that the overall opinion will be in the form of 2-DLIVIFSES/GLIVIFSES. 

Now the opinions of engineers regarding the proposal 𝑢1 are 

S1(𝑐1, 𝑒1)={〈ṡ[4,5], ṡ[6,7]〉 , 〈s̈[10,12]  , s̈[1,3]〉}, 

S1(𝑐2, 𝑒1)={〈ṡ[3,4], ṡ[5,7]〉 , 〈s̈[8,9] , s̈[3,5]〉}, 

S1(𝑐3, 𝑒1)={〈ṡ[6,10] , ṡ[2,3]〉 , 〈s̈[11,14] , s̈[1,2]〉}, 

S2(𝑐1, 𝑒2)={〈ṡ[7,8], ṡ[3,4]〉 , 〈s̈[9,12] , s̈[1,3]〉}, 

S2(𝑐2, 𝑒2)={〈ṡ[5,7], ṡ[7,8]〉 , 〈s̈[9,10] , s̈[4,5]〉}, 

S2(𝑐3, 𝑒2)={〈ṡ[6,10], ṡ[2,3]〉 , 〈s̈[7,8] , s̈[5,6]〉}, 

S3(𝑐1, 𝑒3)={〈ṡ[4,7], ṡ[5,6]〉 , 〈s̈[8,9] , s̈[2,3]〉}, 

S3(𝑐2, 𝑒3)={〈ṡ[7,8], ṡ[4,6]〉 , 〈s̈[9,10] , s̈[4,5]〉}, 

S3(𝑐3, 𝑒3)={〈ṡ[5,7], ṡ[7,8]〉 , 〈s̈[8,12] , s̈[4,5]〉}. 

Similarly, in case of proposed model u2 the opinions of experts are 

S1(𝑐1, 𝑒1)={〈Ṡ[2,5], Ṡ[5,7]〉 , 〈S̈[10,11]  , S̈[1,4]〉}, 

S1(𝑐2, 𝑒1)={〈Ṡ[6,7], Ṡ[5,7]〉 , 〈S̈[8,10] , S̈[3,4]〉}, 
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S1(𝑐3, 𝑒1)={〈ṡ[9,10] , ṡ[3,5]〉 , 〈s̈[11,13] , s̈[2,4]〉}, 

S2(𝑐1, 𝑒2)={〈ṡ[7,9], ṡ[3,5]〉 , 〈s̈[9,11] , s̈[4,5]〉}, 

S2(𝑐2, 𝑒2)={〈ṡ[6,7], ṡ[7,8]〉 , 〈s̈[9,10] , s̈[4,6]〉}, 

S2(𝑐3, 𝑒2)={〈ṡ[7,10], ṡ[2,5]〉 , 〈s̈[7,8] , s̈[5,7]〉}, 

S3(𝑐1, 𝑒3)={〈ṡ[5,7], ṡ[6,7]〉 , 〈s̈[8,9] , s̈[2,4]〉}, 

S3(𝑐2, 𝑒3)={〈ṡ[9,10], ṡ[4,5]〉 , 〈s̈[9,10]  , s̈[4,6]〉}, 

S3(𝑐3, 𝑒3)={〈ṡ[6,7], ṡ[7,8]〉 , 〈s̈[9,12] , s̈[4,5]〉}. 

Now, in order to take into account the decisions of engineers the executive committee uses the 

technique that the greatest similarity result obtained in favor for specific proposal between the 

opinions of experts on the behalf of distance measure between them. 

Now here we imply the modified hamming distance 

𝑑𝑀𝐻(𝑆1 , 𝑆2, 𝑆3)u1,u2 =∑[∑(
∑ 𝑆𝑘(𝑐𝑗, 𝑢𝑖 , 𝑒𝑘)
3
𝑗=1

3
−
∑ 𝑆𝑘+1(𝑐𝑗, 𝑢𝑖 , 𝑒𝑘+1)
3
𝑗=1

3
)

2

𝑘=1

]

2

𝑖=1

, 

this represents the expression for overall distance measure by taking into account the all 

alternatives. Here the summation sign is used because as if for instantly the distance measure 

between GLIVIFSESs is ‘2’ in case of u1 and in case of u2 its ‘4’ then obviously by considering 

both u1 and u2 at the same time it will be ‘6’.  Now in case of specific alternative u1 we have 

𝑑𝑀𝐻(𝑆1, 𝑆2, 𝑆3)u1 = ∑(
∑ 𝑆𝑘(𝑐𝑗, 𝑢1, 𝑒𝑘)
3
𝑗=1

3
−
∑ 𝑆𝑘+1(𝑐𝑗 , 𝑢1, 𝑒𝑘+1)
3
𝑗=1

3
)

2

𝑘=1

, 

by substituting and evaluating these values we have 

𝑑𝑀𝐻(𝑆1, 𝑆2 , 𝑆3)u1 = (〈�̇�[3.7,6.93], �̇�[3.22,5.03]〉, 〈�̈�[7.77,10.83], �̈�[1.25,2.98]〉). 

Now by applying similarity measure 

𝑆𝑑𝑀𝐻(𝑆1, 𝑆2, 𝑆3)𝑢1 = {〈ṡ[| t2−ρ
′|,|
t
2−ρ|]

, ṡ
[|
t
2−σ

′|,|
t
2−σ|]

〉  , 〈s̈
[|
t′

2−φ
′|,|
t′

2−φ|]
 , s̈

[|
t′

2−ω
′|,|
t′

2−ω|]
〉} 

= (〈�̇�[0.57,3.8], �̇�[2.47,4.28]〉, 〈�̈�[2.33,0.73], �̈�[5.52,7.25]〉). 

Now in case of second proposal u2 we have 

𝑑𝑀𝐻(𝑆1, 𝑆2, 𝑆3)u2 = ∑(
∑ 𝑆𝑘(𝑐𝑗, 𝑢2, 𝑒𝑘)
3
𝑗=1

3
−
∑ 𝑆𝑘+1(𝑐𝑗 , 𝑢2, 𝑒𝑘+1)
3
𝑗=1

3
)

2

𝑘=1

, 
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after simplifications we get 

𝑑𝑀𝐻(𝑆1, 𝑆2, 𝑆3)u2 = (〈�̇�[5.22,7.81], �̇�[3.42,6.34]〉, 〈�̈�[7.9,10.28] , �̈�[2.23,4.04]〉). 

Now by applying similarity measure which is based on modified hamming distance we have 

𝑆𝑑𝑀𝐻(𝑆1, 𝑆2, 𝑆3)𝑢2 = {〈ṡ[| t2−ρ
′|,|
t
2−ρ|]

, ṡ
[|
t
2−σ

′|,|
t
2−σ|]

〉  , 〈s̈
[|
t′

2−φ
′|,|
t′

2−φ|]
 , s̈

[|
t′

2−ω
′|,|
t′

2−ω|]
〉} 

= (〈�̇�[0.31,2.28], �̇�[1.16,4.08]〉, 〈�̈�[1.78,0.6], �̈�[4.46,6.27]〉). 

From above calculations it’s clear that the similarity between the opinions of engineers is greater 

in case of u1 and also the similarity for expertise is also greater than u2 so, the proposed model u1 

will be further proceeding. 

5.2. MODIFIED EUCLIDEAN DISTANCE BASED SIMILARITY MEASURE FOR 

GLIVIFSESs. 

According to Euclidean distance for fuzzy sets 

𝑑𝐸(𝐴, 𝐵) = √∑|𝛼𝐴(𝑥𝑖) − 𝛼𝐵(𝑥𝑖)|2
𝑛

𝑖=1

, 

here “n” represents order of set of alternatives/universe of discourse where 𝛼𝐴(𝑥𝑖) and 𝛼𝐵(𝑥𝑖) 

represents membership functions of fuzzy sets A and B respectively. 

Now in case of linguistic with 2-D IVIFSESs that distance measure takes the following form 

𝑑𝑀𝐸(𝑆1, 𝑆2) = √∑(
∑ 𝑆1(𝑐𝑗, 𝑥𝑖)
𝑟
𝑗=1

𝑟
−
∑ 𝑆2(𝑐𝑗, 𝑥𝑖)
𝑟
𝑗=1

𝑟
)

2𝑛

𝑖=1

       (5.2) 

here 𝑐𝑗 represents a specific alternative with “r” represents order of set of criteria’s. 

Where 𝑆1 and 𝑆2 are generally defined as 

S1={〈ṡ[α,α′], ṡ[β,β′]〉 , 〈s̈[γ,γ′] , s̈[δ,δ′]〉}, 
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S2={〈ṡ[α1,α1′ ], ṡ[β1 ,β1′ ]〉 , 〈s̈[γ1,γ1′ ] , s̈[δ1,δ1′ ]〉}, 

with normalized case is defined by dividing the expression of Modified Euclidean distance by 

order of set of alternatives 

𝑑𝑁𝑀𝐸(𝑆1, 𝑆2) =

√∑ (
∑ 𝑆1(𝑐𝑗, 𝑥𝑖)
𝑟
𝑗=1

𝑟
−
∑ 𝑆2(𝑐𝑗, 𝑥𝑖)
𝑟
𝑗=1

𝑟
)

2

𝑛
𝑖=1

𝑛
. 

Now we can extend that to finite number of GLIVIFSESs, such that instead of finding the 

distance between any two GLIVIFSESs we can find the overall distance between any finite 

orders of these systems 

𝑑𝑀𝐸(𝑆1, 𝑆2, 𝑆3, … , 𝑆𝑚) = √∑[∑ (
∑ 𝑆𝑘(𝑐𝑗, 𝑥𝑖 , 𝑒𝑘)
𝑟
𝑗=1

𝑟
−
∑ 𝑆𝑘+1(𝑐𝑗, 𝑥𝑖 , 𝑒𝑘+1)
𝑟
𝑗=1

𝑟
)

2𝑚−1

𝑘=1

]

𝑛

𝑖=1

, 

with 

𝑑𝑁𝑀𝐸(𝑆1 , 𝑆2, 𝑆3 , … , 𝑆𝑚) =

√∑ [∑ (
∑ 𝑆𝑘(𝑐𝑗, 𝑥𝑖 , 𝑒𝑘)
𝑟
𝑗=1

𝑟
−
∑ 𝑆𝑘+1(𝑐𝑗, 𝑥𝑖 , 𝑒𝑘+1)
𝑟
𝑗=1

𝑟
)

2

𝑚−1
𝑘=1 ]𝑛

𝑖=1

𝑛
. 

Now by using the Modified Euclidean distance measure we define a distance based similarity 

measure. 

Suppose 𝐶 = {𝑐𝑗: 𝑗 = 1,2,3,… , 𝑟} represents a set of criteria’s & 𝑋 = {𝑥𝑖: 𝑖 = 1,2,3,… , 𝑛} 

represents a set of alternatives with 

S1={〈ṡ[α,α′], ṡ[β,β′]〉 , 〈s̈[γ,γ′] , s̈[δ,δ′]〉}, 

S2={〈ṡ[α1,α1′ ], ṡ[β1 ,β1′ ]〉 , 〈s̈[γ1,γ1′ ] , s̈[δ1,δ1′ ]〉}, 

be two any general GLIVIFSESs. Now we also take 𝑑𝑀𝐸(𝑆1, 𝑆2) with arbitrary values such that 

𝑑𝑀𝐸(𝑆1 , 𝑆2) = {〈ṡ[a,a′], ṡ[z,z′]〉  , 〈s̈[w,w′] , s̈[q,q′]〉}. 

Then the similarity measure based on Modified Euclidean distance is 

𝑆𝑑𝑀𝐸(𝑆1, 𝑆2) = {〈ṡ[| t2−a
′|,|
t
2−a|]

, ṡ
[|
t
2−z

′|,|
t
2−z|]

〉  , 〈s̈
[|
t′

2−w
′|,|
t′

2−w|]
 , s̈

[|
t′

2−q
′|,|
t′

2−q|]
〉}       (5.2.1) 
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now to compare that similarity measure with previous one’s we take into account Example 4.1.1. 

EXAMPLE 5.2.1. 

By taking data from Example 4.1.1 we have following GLIVIFSESs  

S1(h1, a)={〈ṡ[2,3], ṡ[1,2]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S1(h2, a)={〈ṡ[3,4], ṡ[1,2]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S2(h1, b)={〈ṡ[1,3], ṡ[2,3]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S2(h2, b)={〈ṡ[1,2], ṡ[3,4]〉 , 〈s̈[1,2] , s̈[1,2]〉}. 

These sets represent the evaluation values by students ‘a’ and ‘b’ for the teacher 𝑡1. Now for the 

second teacher 𝑡2 the evaluation values are as under 

S1(h1, a)={〈ṡ[1,2], ṡ[2,4]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S1(h2, a)={〈ṡ[2,4], ṡ[1,2]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S2(h1, b)={〈ṡ[2,3], ṡ[2,3]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S2(h2, b)={〈ṡ[1,2], ṡ[3,4]〉 , 〈s̈[1,2] , s̈[1,2]〉}. 

Now 

𝑑𝑀𝐸(𝑆1 , 𝑆2) = √∑(
∑ 𝑆1(𝑐𝑗, 𝑥𝑖)
𝑟
𝑗=1

𝑟
−
∑ 𝑆2(𝑐𝑗, 𝑥𝑖)
𝑟
𝑗=1

𝑟
)

2𝑛

𝑖=1

, 

By substituting and simplifying these algebraic expressions we get 

 = √
[{〈ṡ[2.5359,3.5505], ṡ[1,2]〉 , 〈s̈[1,2]  , s̈[1,2]〉}− {〈ṡ[1,2.5359] , ṡ[2.449,3.4641]〉 , 〈s̈[1,2]  , s̈[1,2]〉} ]

2
+

[{〈ṡ[1.5279,3.17157], ṡ[1.4142,2.8284]〉 , 〈s̈[1,2] , s̈[1,2]〉}− {〈ṡ[1.5279,2.5359] , ṡ[2.449,3.4641]〉 , 〈s̈[1,2] , s̈[1,2]〉} ]
2 =

√(〈ṡ[1.95855,2.51522] , ṡ[0.40817,1.1547]〉 , 〈s̈[1
4
,1]
 , s̈

[
1

4
,1]
〉)
2

+ (〈ṡ[0.3891,1.97613] , ṡ[0.57723,1.63298]〉 , 〈s̈[1
4
,1]
 , s̈

[
1

4
,1]
〉)
2

 

= √(〈s[0.64,1.054], s[0.79,2.087]〉 , 〈s[0.016,0.25]  , s[0.48,1.75]〉) + (〈s[0.025,0.6508], s[1.099,2.82]〉 , 〈s[0.016,0.25]  , s[0.48,1.75]〉) 

= √(〈ṡ[0.6623,1.5905], ṡ[0.1447,0.98089]〉 , 〈s̈[0.0319,0.484]  , s̈[0.0576,0.7656]〉) 

= (〈ṡ[1.9934,3.089], ṡ[0.0728,0.5123]〉 , 〈s̈[0.3572,1.3914]  , s̈[0.0289,0.4031]〉). 
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The above calculated set represents the distance between GLIVIFSESs. Now to calculate distance 

based similarity between 𝑆1 & 𝑆2 we have 

𝑆𝑑𝑀𝐸(𝑆1 , 𝑆2) = {〈ṡ[| t2−a
′|,|
t
2−a|]

, ṡ
[|
t
2−z

′|,|
t
2−z|]

〉  , 〈s̈
[|
t′

2−w
′|,|
t′

2−w|]
 , s̈

[|
t′

2−q
′|,|
t′

2−q|]
〉}, 

by substituting these values we get 

𝑆𝑑𝑀𝐸(𝑆1, 𝑆2) = {〈ṡ[0.089,1.0066] , ṡ[2.4877,2.9272]〉 , 〈s̈[0.6086,1.6428]  , s̈[1.5969,1.9711]〉}. 

 Which represents distance based similarity between 𝑆1 and 𝑆2. Now to compare that similarity 

result with previous similarity measures results on the same data sets we use score function for 

GLIVIFSESs. 

According to score function (here we use score function 𝑠
[
𝑡+𝛼+𝛽

2𝑡
′
𝑡+𝛼′+𝛽′

2𝑡
]×[

𝑡′+𝛾+𝛿

2𝑡′
′
𝑡′+𝛾′+𝛿′

2𝑡′
]
) 

𝑆$(𝑆𝑑𝑀𝐸) = 𝑠[0.71,0.83]×[0.78,0.95] = 𝑠[0.5538,0.7885]. 

For comparison reasons we take the arithmetic mean of extreme values of interval such that 

𝑆$(𝑆𝑑𝑀𝐸) = 𝑠0.67115. 

By comparing that similarity result with previous similarity results we can observe that this value 

is greater than Type-I, Type-II, Type-III, Type-IV, Type-V, Correlation, Max-Min similarity 

measure but a smallest differ in order of similarity result than the Hamming distance similarity 

measure result. 

Now we take data from Example 5.1.2 to more briefly understand the difference between these 

similarity measures. 

EXAMPLE 5.2.2. 

By taking problem statement from Example 5.1.2 we have,  

the opinions of engineers regarding the proposal 𝑢1 are 
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S1(𝑐1, 𝑒1)={〈ṡ[4,5], ṡ[6,7]〉 , 〈s̈[10,12]  , s̈[1,3]〉}, 

S1(𝑐2, 𝑒1)={〈ṡ[3,4], ṡ[5,7]〉 , 〈s̈[8,9] , s̈[3,5]〉}, 

S1(𝑐3, 𝑒1)={〈ṡ[6,10] , ṡ[2,3]〉 , 〈s̈[11,14] , s̈[1,2]〉}, 

S2(𝑐1, 𝑒2)={〈ṡ[7,8], ṡ[3,4]〉 , 〈s̈[9,12] , s̈[1,3]〉}, 

S2(𝑐2, 𝑒2)={〈ṡ[5,7], ṡ[7,8]〉 , 〈s̈[9,10] , s̈[4,5]〉}, 

S2(𝑐3, 𝑒2)={〈ṡ[6,10], ṡ[2,3]〉 , 〈s̈[7,8] , s̈[5,6]〉}, 

S3(𝑐1, 𝑒3)={〈ṡ[4,7], ṡ[5,6]〉 , 〈s̈[8,9] , s̈[2,3]〉}, 

S3(𝑐2, 𝑒3)={〈ṡ[7,8], ṡ[4,6]〉 , 〈s̈[9,10] , s̈[4,5]〉}, 

S3(𝑐3, 𝑒3)={〈ṡ[5,7], ṡ[7,8]〉 , 〈s̈[8,12] , s̈[4,5]〉}. 

Similarly, in case of proposed model u2 the opinions of experts are 

S1(𝑐1, 𝑒1)={〈Ṡ[2,5], Ṡ[5,7]〉 , 〈S̈[10,11]  , S̈[1,4]〉}, 

S1(𝑐2, 𝑒1)={〈Ṡ[6,7], Ṡ[5,7]〉 , 〈S̈[8,10] , S̈[3,4]〉}, 

S1(𝑐3, 𝑒1)={〈ṡ[9,10] , ṡ[3,5]〉 , 〈s̈[11,13] , s̈[2,4]〉}, 

S2(𝑐1, 𝑒2)={〈ṡ[7,9], ṡ[3,5]〉 , 〈s̈[9,11] , s̈[4,5]〉}, 

S2(𝑐2, 𝑒2)={〈ṡ[6,7], ṡ[7,8]〉 , 〈s̈[9,10] , s̈[4,6]〉}, 

S2(𝑐3, 𝑒2)={〈ṡ[7,10], ṡ[2,5]〉 , 〈s̈[7,8] , s̈[5,7]〉}, 

S3(𝑐1, 𝑒3)={〈ṡ[5,7], ṡ[6,7]〉 , 〈s̈[8,9] , s̈[2,4]〉}, 

S3(𝑐2, 𝑒3)={〈ṡ[9,10], ṡ[4,5]〉 , 〈s̈[9,10]  , s̈[4,6]〉}, 

S3(𝑐3, 𝑒3)={〈ṡ[6,7], ṡ[7,8]〉 , 〈s̈[9,12] , s̈[4,5]〉}. 

Now here we imply the Modified Euclidean distance 

𝑑𝑀𝐸(𝑆1, 𝑆2 , 𝑆3) = √∑[∑(
∑ 𝑆𝑘(𝑐𝑗, 𝑥𝑖 , 𝑒𝑘)
3
𝑗=1

𝑟
−
∑ 𝑆𝑘+1(𝑐𝑗 , 𝑥𝑖 , 𝑒𝑘+1)
3
𝑗=1

𝑟
)

22

𝑘=1

]

2

𝑖=1

, 

in case of specific alternative u1 we have 

𝑑𝑀𝐸(𝑆1 , 𝑆2, 𝑆3)𝑢1 = √∑(
∑ 𝑆𝑘(𝑐𝑗, 𝑥𝑖 , 𝑒𝑘)
3
𝑗=1

𝑟
−
∑ 𝑆𝑘+1(𝑐𝑗, 𝑥𝑖 , 𝑒𝑘+1)
3
𝑗=1

𝑟
)

22

𝑘=1

, 

after simplifications on substituting theses values we get 

𝑑𝑀𝐸(𝑆1 , 𝑆2, 𝑆3)𝑢1 = {〈ṡ[2.82,5.56] , ṡ[4.46,6.47]〉 , 〈s̈[6.24,9.18]  , s̈[1.98,4.25]〉}. 

Now by implying modified Euclidean distance based similarity measure 
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𝑆𝑑𝑀𝐸(𝑆1 , 𝑆2, 𝑆3)𝑢1 = {〈ṡ[| t2−a
′|,|
t
2−a|]

, ṡ
[|
t
2−z

′|,|
t
2−z|]

〉  , 〈s̈
[|
t′

2−w
′|,|
t′

2−w|]
 , s̈

[|
t′

2−q
′|,|
t′

2−q|]
〉}, 

 by substituting these values we get 

𝑆𝑑𝑀𝐸(𝑆1 , 𝑆2, 𝑆3)𝑢1 = {〈ṡ[1.94,4.68] , ṡ[1.03,3.04]〉 , 〈s̈[0.68,2.26]  , s̈[4.25,6.52]〉}. 

Now in case of specific alternative u2 we have 

𝑑𝑀𝐸(𝑆1 , 𝑆2, 𝑆3)𝑢2 = √∑(
∑ 𝑆𝑘(𝑐𝑗, 𝑥𝑖 , 𝑒𝑘)
3
𝑗=1

𝑟
−
∑ 𝑆𝑘+1(𝑐𝑗, 𝑥𝑖 , 𝑒𝑘+1)
3
𝑗=1

𝑟
)

22

𝑘=1

, 

after simplifications with substituting theses values we get 

𝑑𝑀𝐸(𝑆1 , 𝑆2, 𝑆3)𝑢2 = {〈ṡ[4.04,6.38] , ṡ[4.69,7.81]〉 , 〈s̈[6.33,8.61]  , s̈[3.31,5.51]〉}. 

Now by implying modified Euclidean distance based similarity measure 

𝑆𝑑𝑀𝐸(𝑆1 , 𝑆2, 𝑆3)𝑢2 = {〈ṡ[| t2−a
′|,|
t
2−a|]

, ṡ
[|
t
2−z

′|,|
t
2−z|]

〉  , 〈s̈
[|
t′

2−w
′|,|
t′

2−w|]
 , s̈

[|
t′

2−q
′|,|
t′

2−q|]
〉}, 

 by substituting these values we get 

𝑆𝑑𝑀𝐸(𝑆1 , 𝑆2, 𝑆3)𝑢2 = {〈ṡ[1.12,3.46] , ṡ[0.31,2.81]〉 , 〈s̈[0.11,2.17]  , s̈[2.99,5.19]〉}. 

From above expressions of similarity measures in opinions of engineers it is clear that similarity 

measure in favor in case of 𝑢2 is greater than 𝑢1, thus 𝑢1 will be considered as appropriate 

proposal. While by comparing results of similarity measures in 𝑢1 case with Modified Hamming 

distance based similarity measure results we can observe that similarity measure in favor is 

higher in Modified Euclidean distance based similarity measure. 

5.3. ENTROPY SIMILARITY MEASURE FOR GLIVIFSESs. 

The entropy similarity measure for GLIVIFSESs is a generalization of entropy similarity measure 

for interval-valued intuitionistic fuzzy sets (IVIFSs) [4] which we modify according to over 

structure of GLIVIFSESs. 
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Definition. Let suppose two general GLIVIFSESs  

S1={〈ṡ[α,α′], ṡ[β,β′]〉 , 〈s̈[γ,γ′] , s̈[δ,δ′]〉}, 

and 

S2={〈ṡ[α1,α1′ ], ṡ[β1 ,β1′ ]〉 , 〈s̈[γ1,γ1′ ] , s̈[δ1,δ1′ ]〉}. 

According to entropy measure for interval-valued intuitionistic fuzzy set 𝑊 =

{〈𝑢𝑖 , [𝛼, 𝛼
′], [𝛽, 𝛽′]〉: 𝑖 ∈ 𝑈} 

𝐸(𝑊) =
1

𝑛
∑

𝑚𝑖𝑛{𝛼, 𝛽} +𝑚𝑖𝑛{𝛼′, 𝛽′} + 𝜋𝑖 + 𝜋𝑖
′

𝑚𝑎𝑥{𝛼, 𝛽} +𝑚𝑎𝑥{𝛼′, 𝛽′} + 𝜋𝑖 + 𝜋𝑖
′

𝑛

𝑖=1

, 

here 𝜋𝑖 represents the hesitancy of maximum values for membership and non-membership and 𝜋𝑖
′ 

represents the hesitancy of lowest membership and non-membership values. 

Now in case of generalized linguistic intuitionistic fuzzy soft expert sets, let 𝑈 = {𝑢𝑒: 𝑒 = 1,

.  .  .  , 𝑛} represents a set of alternatives and 𝐸 = {𝑑𝑐: 𝑐 = 1, .  .  .  , 𝑞} represents a set of experts, 

also let 𝐶 = {𝑐𝑖: 𝑖 = 1, .  .  .  , 𝑟} which represents a set of criteria’s for decision making, in 

mathematically the entropy measure for S1 is defined as 

𝐸(S1) =
1

n
∑

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 [

min{Ṡα(𝑑𝑐,𝑐𝑖),Ṡβ(𝑑𝑐,𝑐𝑖)}⨁min{Ṡ𝛼′(𝑑𝑐,𝑐𝑖),Ṡ𝛽′(𝑑𝑐,𝑐𝑖)}⨁min{S̈𝛾(𝑑𝑐,𝑐𝑖),S̈δ(𝑑𝑐,𝑐𝑖)}⨁ �̇�𝑒(𝑑𝑐,𝑐𝑖)⨁ �̇�𝑒
′ (𝑑𝑐,𝑐𝑖)

⨁min{S̈
γ′
(𝑑𝑐,𝑐𝑖),S̈

δ′
(𝑑𝑐,𝑐𝑖)}⨁�̈�𝑒(𝑑𝑐 ,𝑐𝑖)⨁�̈�𝑒

′ (𝑑𝑐,𝑐𝑖)
]

[
max{Ṡα(𝑑𝑐,𝑐𝑖),Ṡβ(𝑑𝑐,𝑐𝑖)}⨁max{Ṡ𝛼′(𝑑𝑐,𝑐𝑖),Ṡ𝛽′(𝑑𝑐,𝑐𝑖)}⨁max{S̈𝛾(𝑑𝑐,𝑐𝑖),S̈δ(𝑑𝑐,𝑐𝑖)}⨁ �̇�𝑒(𝑑𝑐,𝑐𝑖)⨁ �̇�𝑒

′ (𝑑𝑐,𝑐𝑖)

⨁max{S̈
γ′
(𝑑𝑐,𝑐𝑖),S̈

δ′
(𝑑𝑐,𝑐𝑖)}⨁�̈�𝑒(𝑑𝑐,𝑐𝑖)⨁�̈�𝑒

′ (𝑑𝑐,𝑐𝑖)
]

⊕

[
min{Ṡα(𝑑𝑐,𝑐𝑖+1),Ṡβ(𝑑𝑐,𝑐𝑖+1)}⨁min{Ṡ𝛼′(𝑑𝑐,𝑐𝑖+1),Ṡ𝛽′(𝑑𝑐,𝑐𝑖+1)}⨁min{S̈𝛾(𝑑𝑐,𝑐𝑖+1),S̈δ(𝑑𝑐,𝑐𝑖+1)}

⨁ �̇�𝑒(𝑑𝑐,𝑐𝑖+1)⨁ �̇�𝑒
′ (𝑑𝑐,𝑐𝑖+1)⨁min{S̈γ′

(𝑑𝑐,𝑐𝑖+1),S̈
δ′
(𝑑𝑐,𝑐𝑖+1)}⨁�̈�𝑒(𝑑𝑐,𝑐𝑖+1)⨁�̈�𝑒

′ (𝑑𝑐,𝑐𝑖+1)
]

[
max{Ṡα(𝑑𝑐,𝑐𝑖+1),Ṡβ(𝑑𝑐,𝑐𝑖+1)}⨁max{Ṡ𝛼′(𝑑𝑐,𝑐𝑖+1),Ṡ𝛽′(𝑑𝑐,𝑐𝑖+1)}⨁max{S̈𝛾(𝑑𝑐,𝑐𝑖+1),S̈δ(𝑑𝑐,𝑐𝑖+1)}

⨁ �̇�𝑒(𝑑𝑐,𝑐𝑖+1)⨁ �̇�𝑒
′ (𝑑𝑐,𝑐𝑖+1)⨁max{S̈γ′

(𝑑𝑐,𝑐𝑖+1),S̈
δ′
(𝑑𝑐 ,𝑐𝑖+1)}⨁�̈�𝑒(𝑑𝑐,𝑐𝑖+1)⨁�̈�𝑒

′ (𝑑𝑐,𝑐𝑖+1)
]

⊕ .  .  .  ⊕

[
min{Ṡα(𝑑𝑐,𝑐𝑟),Ṡβ(𝑑𝑐,𝑐𝑟)}⨁min{Ṡ𝛼′(𝑑𝑐,𝑐𝑟),Ṡ𝛽′(𝑑𝑐,𝑐𝑟)}⨁min{S̈𝛾(𝑑𝑐,𝑐𝑟),S̈δ(𝑑𝑐,𝑐𝑟)} ⨁ �̇�𝑒(𝑑𝑐,𝑐𝑟)⨁ �̇�𝑒

′ (𝑑𝑐,𝑐𝑟)

⨁min{S̈
γ′
(𝑑𝑐,𝑐𝑟),S̈

δ′
(𝑑𝑐,𝑐𝑟)}⨁�̈�𝑒(𝑑𝑐 ,𝑐𝑟)⨁�̈�𝑒

′ (𝑑𝑐,𝑐𝑟)
]

[
max{Ṡα(𝑑𝑐,𝑐𝑟),Ṡβ(𝑑𝑐,𝑐𝑟)}⨁max{Ṡ𝛼′(𝑑𝑐,𝑐𝑟),Ṡ𝛽′(𝑑𝑐,𝑐𝑟)}⨁max{S̈𝛾(𝑑𝑐,𝑐𝑟),S̈δ(𝑑𝑐,𝑐𝑟)}⨁ �̇�𝑒(𝑑𝑐,𝑐𝑟)⨁ �̇�𝑒

′ (𝑑𝑐,𝑐𝑟)

⨁max{S̈
γ′
(𝑑𝑐 ,𝑐𝑟),S̈

δ′
(𝑑𝑐,𝑐𝑟)}⨁�̈�𝑒(𝑑𝑐,𝑐𝑟)⨁�̈�𝑒

′ (𝑑𝑐,𝑐𝑟)
]

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

n
e=1       (5.3)  

Similarly in case of second GLIVIFSES S2 the entropy measure is defined mathematically as 
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𝐸(S2) =
1

n
∑

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 min{Ṡα1(𝑑𝑐+1,𝑐𝑖),Ṡβ1(𝑑𝑐+1,𝑐𝑖)

}⨁min{Ṡ𝛼1′
(𝑑𝑐+1,𝑐𝑖),Ṡ𝛽1

′(𝑑𝑐+1,𝑐𝑖)}⨁min{S̈𝛾1(𝑑𝑐+1,𝑐𝑖),S̈δ1
(𝑑𝑐+1,𝑐𝑖)}

⨁ �̇�𝑒(𝑑𝑐+1,𝑐𝑖)⨁ �̇�𝑒
′ (𝑑𝑐+1,𝑐𝑖)⨁min{S̈γ1

′ (𝑑𝑐+1,𝑐𝑖),S̈
δ1
′ (𝑑𝑐+1,𝑐𝑖)}⨁�̈�𝑒(𝑑𝑐+1,𝑐𝑖)⨁�̈�𝑒

′ (𝑑𝑐+1,𝑐𝑖)
]
 
 
 

[
 
 
 max{Ṡα1(𝑑𝑐+1,𝑐𝑖),Ṡβ1

(𝑑𝑐+1,𝑐𝑖)}⨁max{Ṡ𝛼1′
(𝑑𝑐+1,𝑐𝑖),Ṡ𝛽1

′(𝑑𝑐+1,𝑐𝑖)}⨁max{S̈𝛾1(𝑑𝑐+1,𝑐𝑖),S̈δ1
(𝑑𝑐+1,𝑐𝑖)}

⨁ �̇�𝑒(𝑑𝑐+1,𝑐𝑖) ⨁ �̇�𝑒
′ (𝑑𝑐+1,𝑐𝑖)⨁max{S̈γ1

′ (𝑑𝑐+1,𝑐𝑖),S̈
δ1
′ (𝑑𝑐+1,𝑐𝑖)}⨁�̈�𝑒(𝑑𝑐+1,𝑐𝑖)⨁�̈�𝑒

′ (𝑑𝑐+1,𝑐𝑖)
]
 
 
 

⊕ [
 
 
 min{Ṡα1(𝑑𝑐+1,𝑐𝑖+1),Ṡβ1(𝑑𝑐+1,𝑐𝑖+1)

}⨁min{Ṡ
𝛼1
′ (𝑑𝑐+1,𝑐𝑖+1),Ṡ𝛽1

′ (𝑑𝑐+1,𝑐𝑖+1)}⨁min{S̈𝛾1(𝑑𝑐+1,𝑐𝑖+1),S̈δ1
(𝑑𝑐+1,𝑐𝑖+1)}

⨁ �̇�𝑒(𝑑𝑐+1,𝑐𝑖+1)⨁ �̇�𝑒
′ (𝑑𝑐+1,𝑐𝑖+1)⨁min{S̈γ1

′ (𝑑𝑐+1,𝑐𝑖+1),S̈
δ1
′ (𝑑𝑐+1,𝑐𝑖+1)}⨁�̈�𝑒(𝑑𝑐+1,𝑐𝑖+1)⨁�̈�𝑒

′ (𝑑𝑐+1,𝑐𝑖+1)
]
 
 
 

[
 
 
 max{Ṡα1(𝑑𝑐+1,𝑐𝑖+1),Ṡβ1(𝑑𝑐+1,𝑐𝑖+1)

}⨁max{Ṡ
𝛼1
′ (𝑑𝑐+1,𝑐𝑖+1),Ṡ𝛽1

′ (𝑑𝑐+1,𝑐𝑖+1)}⨁max{S̈𝛾1(𝑑𝑐+1,𝑐𝑖+1),S̈δ1
(𝑑𝑐+1,𝑐𝑖+1)}

⨁ �̇�𝑒(𝑑𝑐+1,𝑐𝑖+1)⨁ �̇�𝑒
′(𝑑𝑐+1,𝑐𝑖+1)⨁max{S̈γ1

′ (𝑑𝑐+1,𝑐𝑖+1),S̈
δ1
′ (𝑑𝑐+1,𝑐𝑖+1)}⨁�̈�𝑒(𝑑𝑐+1,𝑐𝑖+1)⨁�̈�𝑒

′ (𝑑𝑐+1,𝑐𝑖+1)
]
 
 
 

⊕ .  .  .  ⊕

[
 
 
 min{Ṡα1(𝑑𝑐+1,𝑐𝑟),Ṡβ1

(𝑑𝑐+1,𝑐𝑟)}⨁min{Ṡ𝛼1′
(𝑑𝑐+1,𝑐𝑟),Ṡ𝛽1

′(𝑑𝑐+1,𝑐𝑟)}⨁min{S̈𝛾1(𝑑𝑐+1,𝑐𝑟),S̈δ1
(𝑑𝑐+1,𝑐𝑟)}

⨁ �̇�𝑒(𝑑𝑐+1,𝑐𝑟)⨁ �̇�𝑒
′ (𝑑𝑐+1,𝑐𝑟)⨁min{S̈γ1

′ (𝑑𝑐+1,𝑐𝑟),S̈
δ1
′ (𝑑𝑐+1,𝑐𝑟)}⨁�̈�𝑒(𝑑𝑐+1,𝑐𝑟)⨁�̈�𝑒

′ (𝑑𝑐+1,𝑐𝑟)
]
 
 
 

[
 
 
 max{Ṡα1(𝑑𝑐+1,𝑐𝑟),Ṡβ1(𝑑𝑐+1,𝑐𝑟)

}⨁max{Ṡ𝛼1′(𝑑𝑐+1,𝑐𝑟),Ṡ𝛽1
′(𝑑𝑐+1,𝑐𝑟)}⨁max{S̈𝛾1(𝑑𝑐+1,𝑐𝑟),S̈δ1

(𝑑𝑐+1,𝑐𝑟)}

⨁ �̇�𝑒(𝑑𝑐+1,𝑐𝑟) ⨁ �̇�𝑒
′ (𝑑𝑐+1,𝑐𝑟)⨁max{S̈γ1

′ (𝑑𝑐+1,𝑐𝑟),S̈
δ1
′ (𝑑𝑐+1,𝑐𝑟)}⨁�̈�𝑒(𝑑𝑐+1,𝑐𝑟)⨁�̈�𝑒

′ (𝑑𝑐+1,𝑐𝑟)
]
 
 
 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

n
e=1   

similarly so on. 

AXIOMS FOR ENTROPY. 

According to axioms for function defined on interval-valued intuitionistic fuzzy sets [5] to 

become entropy 

a. E(W)=0 if and only if ‘W’ is a crisp set 

b. E(W)=1 if and only if [𝛼, 𝛼′] = [𝛽, 𝛽′] for each 𝑥 ∈ 𝑋 

c. E(W)= E(𝑊𝐶) 

d. If 𝑊1 ⊆ 𝑊2  With  𝛼𝑊2 ≤ 𝛽𝑊2  and 𝛼𝑊2
′ ≤ 𝛽𝑊2

′  for all alternatives then 𝐸(𝑊1) ≤ 𝐸(𝑊2). 

Now in case of generalized linguistic intuitionistic fuzzy soft expert sets 

a. 𝐸(S1) = s0 if and only if S1 is a crisp set 

b. 𝐸(S1) = [s1
t

⊕ s1
t

⊕ .  .  .  ⊕ s1
t

] (n-times) if and only if ṡ[α,α′] = ṡ[β,β′]and s̈[γ,γ′] = s̈[δ,δ′] 

c. 𝐸(S1) = 𝐸(S1
C) 
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d. If 𝑆1 ⊆ 𝑆2 and S[α2,α2′ ] 
̇ ≤ S[β2,β2′ ] 

̇  and S[γ2,γ2′ ]
̈ ≤ S[δ2,δ2′ ]

̈  for all alternatives then 𝐸(𝑆1) ≤

𝐸(𝑆2).  

PROOF (a). Suppose that S1 is a crisp set then 

𝐸(S1) =
1

n
∑

[
 
 
 
 
 
 
 

[ṡ0⨁ṡ0⨁ṡ0⨁ s̈0⨁ṡ0⨁s̈0⨁s̈0⨁s̈0]

[ṡt⨁ṡt⨁s̈t′
⨁ṡ0⨁ṡ0⨁s̈t′

⨁s̈0⨁s̈0]

⊕
[ṡ0⨁ṡ0⨁ṡ0⨁ s̈0⨁ṡ0⨁s̈0⨁s̈0⨁s̈0]

[ṡt⨁ṡt⨁s̈t′
⨁ṡ0⨁ṡ0⨁s̈t′

⨁s̈0⨁s̈0]

⊕ .  .  .  ⊕
[ṡ0⨁ṡ0⨁ṡ0⨁ s̈0⨁ṡ0⨁s̈0⨁s̈0⨁s̈0]

[ṡt⨁ṡt⨁s̈t′
⨁ṡ0⨁ṡ0⨁s̈t′

⨁s̈0⨁s̈0] ]
 
 
 
 
 
 
 

n
e=1  = 

[
 
 
 
 
 
 

[ṡ0⨁ṡ0⨁ṡ0⨁s̈0⨁ṡ0⨁s̈0⨁s̈0⨁s̈0]

[ṡt⨁ṡt⨁s̈t′⨁ṡ0⨁ṡ0⨁s̈t′⨁s̈0⨁s̈0]

⊕
[ṡ0⨁ṡ0⨁ṡ0⨁ s̈0⨁ṡ0⨁s̈0⨁s̈0⨁s̈0]

[ṡt⨁ṡt⨁s̈t′⨁ṡ0⨁ṡ0⨁s̈t′⨁s̈0⨁s̈0]

⊕ .  .  .  ⊕
[ṡ0⨁ṡ0⨁ṡ0⨁s̈0⨁ṡ0⨁s̈0⨁s̈0⨁s̈0]

[ṡt⨁ṡt⨁s̈t′⨁ṡ0⨁ṡ0⨁s̈t′⨁s̈0⨁s̈0] ]
 
 
 
 
 
 

.  

As we know that  

s0⨁s0 = s0 & st⨁st = st & st⨁s0 = s0⨁st = st, 

Thus 

𝐸(S1) = [
[ṡ0⨁s̈0]

[ṡt⨁s̈t′]
⊕
[ṡ0⨁s̈0]

[ṡt⨁s̈t′]
⊕ .  .  .  ⊕

[ṡ0⨁s̈0]

[ṡt⨁s̈t′]
], 

now from here we have two choices  

  ṡt⨁s̈t′ = s
t+t′−

tt′

t

 or   ṡt⨁s̈t′ = s
t+t′−

tt′

t′

, 

here we take 

  ṡt⨁s̈t′ = s
t+t′−

tt′

t

= st, 

this implies that 

𝐸(S1) = [
s0
st
⊕
s0
st
⊕ .  .  .  ⊕

s0
st
], 

here 
s0

st
= s0⨂s1

t

= s 0
t2
= s0, 

thus 

𝐸(S1) = [s0⊕s0⊕ .  .  .  ⊕ s0] = s0, 

this states that if S1 is a crisp set then 𝐸(S1) = s0. 

Now conversely suppose that 𝐸(S1) = s0 and we wanted to show that S1 is crisp set, to do this we 

follow the steps done when S1 was crisp in a reverse order and at the end we get   
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𝐸(S1) =
1

n
∑

[
 
 
 
 
 
 
 
 
[ṡ0⨁ṡ0⨁ṡ0⨁ s̈0⨁ṡ0⨁s̈0⨁s̈0⨁s̈0]

[ṡt⨁ṡt⨁s̈t′⨁ṡ0⨁ṡ0⨁s̈t′⨁s̈0⨁s̈0]

⊕
[ṡ0⨁ṡ0⨁ṡ0⨁ s̈0⨁ṡ0⨁s̈0⨁s̈0⨁s̈0]

[ṡt⨁ṡt⨁s̈t′⨁ṡ0⨁ṡ0⨁s̈t′⨁s̈0⨁s̈0]

⊕ .  .  .  ⊕
[ṡ0⨁ṡ0⨁ṡ0⨁ s̈0⨁ṡ0⨁s̈0⨁s̈0⨁s̈0]

[ṡt⨁ṡt⨁s̈t′⨁ṡ0⨁ṡ0⨁s̈t′⨁s̈0⨁s̈0] ]
 
 
 
 
 
 
 
 

n

e=1

, 

which shows that S1 is a crisp set. Thus for GLIVIFSES S1 𝐸(S1) = s0 if and only if S1 is crisp. 

PROOF (b). Firstly suppose that ṡ[α,α′] = ṡ[β,β′]and s̈[γ,γ′] = s̈[δ,δ′] 

then  

𝐸(S1) =
1

n
∑

[
 
 
 
 
 
 
 
 
 
 [ṡα(𝑑𝑐 , 𝑐𝑖)⨁ṡ𝛼′(𝑑𝑐, 𝑐𝑖)⨁s̈𝛾(𝑑𝑐 , 𝑐𝑖)⨁ṡt−2α⨁ṡt−2α′⨁s̈γ′(𝑑𝑐 , 𝑐𝑖)⨁s̈t−2γ⨁s̈t−2γ′]

[ṡα(𝑑𝑐 , 𝑐𝑖)⨁ṡ𝛼′(𝑑𝑐, 𝑐𝑖)⨁s̈𝛾(𝑑𝑐 , 𝑐𝑖)⨁ṡt−2α⨁ṡt−2α′⨁s̈γ′(𝑑𝑐 , 𝑐𝑖)⨁s̈t−2γ⨁s̈t−2γ′]

⊕
[ṡα(𝑑𝑐 , 𝑐𝑖+1)⨁ṡ𝛼′(𝑑𝑐 , 𝑐𝑖+1)⨁s̈𝛾(𝑑𝑐 , 𝑐𝑖+1)⨁ṡt−2α⨁ṡt−2α′⨁s̈γ′(𝑑𝑐 , 𝑐𝑖+1)⨁s̈t−2γ⨁s̈t−2γ′]

[ṡα(𝑑𝑐 , 𝑐𝑖+1)⨁ṡ𝛼′(𝑑𝑐 , 𝑐𝑖+1)⨁s̈𝛾(𝑑𝑐 , 𝑐𝑖+1)⨁ṡt−2α⨁ṡt−2α′⨁s̈γ′(𝑑𝑐 , 𝑐𝑖+1)⨁s̈t−2γ⨁s̈t−2γ′]

⊕ .  .  .  ⊕

[ṡα(𝑑𝑐 , 𝑐𝑟)⨁ṡ𝛼′(𝑑𝑐 , 𝑐𝑟)⨁s̈𝛾(𝑑𝑐 , 𝑐𝑟)⨁ṡt−2α⨁ṡt−2α′⨁s̈γ′(𝑑𝑐 , 𝑐𝑟)⨁s̈t−2γ⨁s̈t−2γ′]

[ṡα(𝑑𝑐 , 𝑐𝑟)⨁ṡ𝛼′(𝑑𝑐 , 𝑐𝑟)⨁s̈𝛾(𝑑𝑐 , 𝑐𝑟)⨁ṡt−2α⨁ṡt−2α′⨁s̈γ′(𝑑𝑐 , 𝑐𝑟)⨁s̈t−2γ⨁s̈t−2γ′] ]
 
 
 
 
 
 
 
 
 
 

n

e=1

 

=
1

n
∑ [

Sa

Sa
⊕

Sx

Sx
⊕ .  .  .  ⊕

Sm

Sm
]n

e=1 =
1

n
∑ [s1

t

⊕ s1
t

⊕ .  .  .  ⊕ s1
t

]n
e=1 =[s1

t

⊕ s1
t

⊕ .  .  .  ⊕ s1
t

].  

Conversely suppose that  

𝐸(S1) = [s1
t

⊕s1
t

⊕ .  .  .  ⊕ s1
t

] (n-times),  

by applying the steps done previously in converse order we get ṡ[α,α′] = ṡ[β,β′]and s̈[γ,γ′] = s̈[δ,δ′]. 
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PROOF(c). As we know that  

𝐸(S1) =
1

n
∑

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 [

min{Ṡα(𝑑𝑐,𝑐𝑖),Ṡβ(𝑑𝑐,𝑐𝑖)}⨁min{Ṡ𝛼′(𝑑𝑐,𝑐𝑖),Ṡ𝛽′(𝑑𝑐,𝑐𝑖)}⨁min{S̈𝛾(𝑑𝑐,𝑐𝑖),S̈δ(𝑑𝑐,𝑐𝑖)}⨁ �̇�𝑒(𝑑𝑐,𝑐𝑖)⨁ �̇�𝑒
′ (𝑑𝑐,𝑐𝑖)

⨁min{S̈
γ′
(𝑑𝑐,𝑐𝑖),S̈

δ′
(𝑑𝑐,𝑐𝑖)}⨁�̈�𝑒(𝑑𝑐,𝑐𝑖)⨁�̈�𝑒

′ (𝑑𝑐,𝑐𝑖)
]

[
max{Ṡα(𝑑𝑐,𝑐𝑖),Ṡβ(𝑑𝑐,𝑐𝑖)}⨁max{Ṡ𝛼′(𝑑𝑐,𝑐𝑖),Ṡ𝛽′(𝑑𝑐,𝑐𝑖)}⨁max{S̈𝛾(𝑑𝑐,𝑐𝑖),S̈δ(𝑑𝑐,𝑐𝑖)}⨁ �̇�𝑒(𝑑𝑐,𝑐𝑖)⨁ �̇�𝑒

′ (𝑑𝑐,𝑐𝑖)

⨁max{S̈
γ′
(𝑑𝑐,𝑐𝑖),S̈

δ′
(𝑑𝑐,𝑐𝑖)}⨁�̈�𝑒(𝑑𝑐,𝑐𝑖)⨁�̈�𝑒

′ (𝑑𝑐,𝑐𝑖)
]

⊕

[
min{Ṡα(𝑑𝑐,𝑐𝑖+1),Ṡβ(𝑑𝑐,𝑐𝑖+1)}⨁min{Ṡ𝛼′(𝑑𝑐,𝑐𝑖+1),Ṡ𝛽′(𝑑𝑐,𝑐𝑖+1)}⨁min{S̈𝛾(𝑑𝑐,𝑐𝑖+1),S̈δ(𝑑𝑐,𝑐𝑖+1)}

⨁ �̇�𝑒(𝑑𝑐,𝑐𝑖+1)⨁ �̇�𝑒
′ (𝑑𝑐,𝑐𝑖+1)⨁min{S̈γ′

(𝑑𝑐,𝑐𝑖+1),S̈
δ′
(𝑑𝑐,𝑐𝑖+1)}⨁�̈�𝑒(𝑑𝑐,𝑐𝑖+1)⨁�̈�𝑒

′ (𝑑𝑐,𝑐𝑖+1)
]

[
max{Ṡα(𝑑𝑐,𝑐𝑖+1),Ṡβ(𝑑𝑐,𝑐𝑖+1)}⨁max{Ṡ𝛼′(𝑑𝑐,𝑐𝑖+1),Ṡ𝛽′(𝑑𝑐,𝑐𝑖+1)}⨁max{S̈𝛾(𝑑𝑐,𝑐𝑖+1),S̈δ(𝑑𝑐,𝑐𝑖+1)}

⨁ �̇�𝑒(𝑑𝑐,𝑐𝑖+1) ⨁ �̇�𝑒
′ (𝑑𝑐,𝑐𝑖+1)⨁max{S̈γ′

(𝑑𝑐,𝑐𝑖+1),S̈
δ′
(𝑑𝑐,𝑐𝑖+1)}⨁�̈�𝑒(𝑑𝑐,𝑐𝑖+1)⨁�̈�𝑒

′ (𝑑𝑐,𝑐𝑖+1)
]

⊕ .  .  .  ⊕

[
min{Ṡα(𝑑𝑐,𝑐𝑟),Ṡβ(𝑑𝑐,𝑐𝑟)}⨁min{Ṡ𝛼′(𝑑𝑐,𝑐𝑟),Ṡ𝛽′(𝑑𝑐,𝑐𝑟)}⨁min{S̈𝛾(𝑑𝑐,𝑐𝑟),S̈δ(𝑑𝑐,𝑐𝑟)}⨁ �̇�𝑒(𝑑𝑐,𝑐𝑟)⨁ �̇�𝑒

′ (𝑑𝑐,𝑐𝑟)

⨁min{S̈
γ′
(𝑑𝑐,𝑐𝑟),S̈

δ′
(𝑑𝑐,𝑐𝑟)}⨁�̈�𝑒(𝑑𝑐,𝑐𝑟)⨁�̈�𝑒

′ (𝑑𝑐,𝑐𝑟)
]

[
max{Ṡα(𝑑𝑐,𝑐𝑟),Ṡβ(𝑑𝑐,𝑐𝑟)}⨁max{Ṡ𝛼′(𝑑𝑐,𝑐𝑟),Ṡ𝛽′(𝑑𝑐,𝑐𝑟)}⨁max{S̈𝛾(𝑑𝑐,𝑐𝑟),S̈δ(𝑑𝑐 ,𝑐𝑟)}⨁ �̇�𝑒(𝑑𝑐,𝑐𝑟)⨁ �̇�𝑒

′(𝑑𝑐 ,𝑐𝑟)

⨁max{S̈
γ′
(𝑑𝑐,𝑐𝑟),S̈

δ′
(𝑑𝑐,𝑐𝑟)}⨁�̈�𝑒(𝑑𝑐,𝑐𝑟)⨁�̈�𝑒

′ (𝑑𝑐,𝑐𝑟)
]

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

n
e=1 ,  

now  

𝐸 (S1
C
) =

1

n
∑

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 [

min{Ṡβ(𝑑𝑐,𝑐𝑖),Ṡα(𝑑𝑐,𝑐𝑖)}⨁min{Ṡ𝛽′(𝑑𝑐,𝑐𝑖),Ṡ𝛼′(𝑑𝑐,𝑐𝑖)}⨁min{S̈δ(𝑑𝑐,𝑐𝑖),S̈𝛾(𝑑𝑐,𝑐𝑖)}⨁ �̇�𝑒(𝑑𝑐,𝑐𝑖)⨁ �̇�𝑒
′ (𝑑𝑐,𝑐𝑖)

⨁min{S̈
δ′
(𝑑𝑐,𝑐𝑖),S̈γ′

(𝑑𝑐,𝑐𝑖)}⨁�̈�𝑒(𝑑𝑐,𝑐𝑖)⨁�̈�𝑒
′ (𝑑𝑐,𝑐𝑖)

]

[
max{Ṡβ(𝑑𝑐,𝑐𝑖),Ṡα(𝑑𝑐,𝑐𝑖)}⨁max{Ṡ𝛽′(𝑑𝑐,𝑐𝑖),Ṡ𝛼′(𝑑𝑐,𝑐𝑖)}⨁max{S̈δ(𝑑𝑐,𝑐𝑖),S̈𝛾(𝑑𝑐,𝑐𝑖)}⨁ �̇�𝑒(𝑑𝑐,𝑐𝑖)⨁ �̇�𝑒

′ (𝑑𝑐,𝑐𝑖)

⨁max{S̈
δ′
(𝑑𝑐 ,𝑐𝑖),S̈γ′

(𝑑𝑐,𝑐𝑖)}⨁�̈�𝑒(𝑑𝑐,𝑐𝑖)⨁�̈�𝑒
′(𝑑𝑐 ,𝑐𝑖)

]

⊕

[
min{Ṡβ(𝑑𝑐,𝑐𝑖+1),Ṡα(𝑑𝑐,𝑐𝑖+1)}⨁min{Ṡ𝛽′(𝑑𝑐 ,𝑐𝑖+1),Ṡ𝛼′(𝑑𝑐,𝑐𝑖+1)}⨁min{S̈δ(𝑑𝑐 ,𝑐𝑖+1),S̈𝛾(𝑑𝑐,𝑐𝑖+1)}

⨁ �̇�𝑒(𝑑𝑐,𝑐𝑖+1)⨁ �̇�𝑒
′ (𝑑𝑐,𝑐𝑖+1)⨁min{S̈

δ′
(𝑑𝑐,𝑐𝑖+1),S̈γ′

(𝑑𝑐,𝑐𝑖+1)}⨁�̈�𝑒(𝑑𝑐,𝑐𝑖+1)⨁�̈�𝑒
′ (𝑑𝑐,𝑐𝑖+1)

]

[
max{Ṡβ(𝑑𝑐,𝑐𝑖+1),Ṡα(𝑑𝑐,𝑐𝑖+1)}⨁max{Ṡ𝛽′(𝑑𝑐,𝑐𝑖+1),Ṡ𝛼′(𝑑𝑐,𝑐𝑖+1)}⨁max{S̈δ(𝑑𝑐,𝑐𝑖+1),S̈𝛾(𝑑𝑐,𝑐𝑖+1)}

⨁ �̇�𝑒(𝑑𝑐,𝑐𝑖+1)⨁ �̇�𝑒
′ (𝑑𝑐,𝑐𝑖+1)⨁max{S̈

δ′
(𝑑𝑐 ,𝑐𝑖+1),S̈γ′

(𝑑𝑐,𝑐𝑖+1)}⨁�̈�𝑒(𝑑𝑐,𝑐𝑖+1)⨁�̈�𝑒
′(𝑑𝑐 ,𝑐𝑖+1)

]

⊕ .  .  .  ⊕

[
min{Ṡβ(𝑑𝑐,𝑐𝑟),Ṡα(𝑑𝑐,𝑐𝑟)}⨁min{Ṡ𝛽′(𝑑𝑐,𝑐𝑟),Ṡ𝛼′(𝑑𝑐,𝑐𝑟)}⨁min{S̈δ(𝑑𝑐,𝑐𝑟),S̈𝛾(𝑑𝑐,𝑐𝑟)}⨁ �̇�𝑒(𝑑𝑐,𝑐𝑖)⨁ �̇�𝑒

′ (𝑑𝑐,𝑐𝑖)

⨁min{S̈
δ′
(𝑑𝑐,𝑐𝑟),S̈γ′

(𝑑𝑐,𝑐𝑟)}⨁�̈�𝑒(𝑑𝑐,𝑐𝑖)⨁�̈�𝑒
′(𝑑𝑐,𝑐𝑖)

]

[
max{Ṡβ(𝑑𝑐,𝑐𝑟),Ṡα(𝑑𝑐,𝑐𝑟)}⨁max{Ṡ𝛽′(𝑑𝑐,𝑐𝑟),Ṡ𝛼′(𝑑𝑐,𝑐𝑟)}⨁max{S̈δ(𝑑𝑐,𝑐𝑟),S̈𝛾(𝑑𝑐,𝑐𝑟)}⨁ �̇�𝑒(𝑑𝑐,𝑐𝑖)⨁ �̇�𝑒

′ (𝑑𝑐,𝑐𝑖)

⨁max{S̈
δ′
(𝑑𝑐,𝑐𝑟),S̈γ′

(𝑑𝑐,𝑐𝑟)}⨁�̈�𝑒(𝑑𝑐,𝑐𝑖)⨁�̈�𝑒
′ (𝑑𝑐,𝑐𝑖)

]

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

n
e=1 ,  

by observation we can see that the equations for 𝐸(S1) and 𝐸(S1
C) are same with the alteration in 

intervals of linguistic terms from membership to non-membership but at the end we obtain same 

result since 

min{ṡα(𝑑𝑐, 𝑐𝑖), ṡβ(𝑑𝑐, 𝑐𝑖)} = min{ṡβ(𝑑𝑐, 𝑐𝑖), ṡα(𝑑𝑐, 𝑐𝑖)}, 

and 

max{ṡα(𝑑𝑐, 𝑐𝑖), ṡβ(𝑑𝑐, 𝑐𝑖))} = max{ṡβ(𝑑𝑐, 𝑐𝑖), ṡα(𝑑𝑐, 𝑐𝑖)}, 
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with no variation in linguistic term for hesitancy degree. Thus  

𝐸(S1) = 𝐸 (S1
C). 

PROOF (d). As we know that 

S1={〈ṡ[α,α′], ṡ[β,β′]〉 , 〈s̈[γ,γ′] , s̈[δ,δ′]〉}, 

S2={〈ṡ[α1,α1′ ], ṡ[β1 ,β1′ ]〉 , 〈s̈[γ1,γ1′ ] , s̈[δ1,δ1′ ]〉}. 

Suppose that 𝑆1 ⊆ 𝑆2 and ṡ[α2,α2′ ] ≤ ṡ[β2,β2′ ], s̈[γ2,γ2′ ] ≤ s̈[δ1,δ1′ ],   

here 𝑆1 ⊆ 𝑆2 implies ṡ[α,α′] ≤ ṡ[α1,α1′ ]& ṡ[β1,β1′ ] ≤ ṡ[β,β′]& s̈[γ,γ′] ≤ s̈[γ1,γ1′ ] & s̈[δ1,δ1′ ] ≤ s̈[δ,δ′]. 

Where Entropy measure, 

𝐸(S1) =
1

n
∑

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 [

min{Ṡα(𝑑𝑐,𝑐𝑖),Ṡβ(𝑑𝑐,𝑐𝑖)}⨁min{Ṡ𝛼′(𝑑𝑐,𝑐𝑖),Ṡ𝛽′(𝑑𝑐,𝑐𝑖)}⨁min{S̈𝛾(𝑑𝑐,𝑐𝑖),S̈δ(𝑑𝑐,𝑐𝑖)}⨁ �̇�𝑒(𝑑𝑐,𝑐𝑖)⨁ �̇�𝑒
′ (𝑑𝑐,𝑐𝑖)

⨁min{S̈
γ′
(𝑑𝑐,𝑐𝑖),S̈

δ′
(𝑑𝑐,𝑐𝑖)}⨁�̈�𝑒(𝑑𝑐,𝑐𝑖)⨁�̈�𝑒

′ (𝑑𝑐,𝑐𝑖)
]

[
max{Ṡα(𝑑𝑐,𝑐𝑖),Ṡβ(𝑑𝑐,𝑐𝑖)}⨁max{Ṡ𝛼′(𝑑𝑐,𝑐𝑖),Ṡ𝛽′(𝑑𝑐,𝑐𝑖)}⨁max{S̈𝛾(𝑑𝑐,𝑐𝑖),S̈δ(𝑑𝑐,𝑐𝑖)}⨁ �̇�𝑒(𝑑𝑐,𝑐𝑖)⨁ �̇�𝑒

′ (𝑑𝑐,𝑐𝑖)

⨁max{S̈
γ′
(𝑑𝑐,𝑐𝑖),S̈

δ′
(𝑑𝑐,𝑐𝑖)}⨁�̈�𝑒(𝑑𝑐,𝑐𝑖)⨁�̈�𝑒

′ (𝑑𝑐,𝑐𝑖)
]

⊕

[
min{Ṡα(𝑑𝑐,𝑐𝑖+1),Ṡβ(𝑑𝑐,𝑐𝑖+1)}⨁min{Ṡ𝛼′(𝑑𝑐,𝑐𝑖+1),Ṡ𝛽′(𝑑𝑐,𝑐𝑖+1)}⨁min{S̈𝛾(𝑑𝑐,𝑐𝑖+1),S̈δ(𝑑𝑐,𝑐𝑖+1)}

⨁ �̇�𝑒(𝑑𝑐,𝑐𝑖+1)⨁ �̇�𝑒
′ (𝑑𝑐,𝑐𝑖+1)⨁min{S̈γ′

(𝑑𝑐,𝑐𝑖+1),S̈
δ′
(𝑑𝑐,𝑐𝑖+1)}⨁�̈�𝑒(𝑑𝑐,𝑐𝑖+1)⨁�̈�𝑒

′ (𝑑𝑐,𝑐𝑖+1)
]

[
max{Ṡα(𝑑𝑐,𝑐𝑖+1),Ṡβ(𝑑𝑐,𝑐𝑖+1)}⨁max{Ṡ𝛼′(𝑑𝑐,𝑐𝑖+1),Ṡ𝛽′(𝑑𝑐,𝑐𝑖+1)}⨁max{S̈𝛾(𝑑𝑐,𝑐𝑖+1),S̈δ(𝑑𝑐,𝑐𝑖+1)}

⨁ �̇�𝑒(𝑑𝑐,𝑐𝑖+1) ⨁ �̇�𝑒
′ (𝑑𝑐,𝑐𝑖+1)⨁max{S̈γ′

(𝑑𝑐,𝑐𝑖+1),S̈
δ′
(𝑑𝑐,𝑐𝑖+1)}⨁�̈�𝑒(𝑑𝑐,𝑐𝑖+1)⨁�̈�𝑒

′ (𝑑𝑐,𝑐𝑖+1)
]

⊕ .  .  .  ⊕

[
min{Ṡα(𝑑𝑐,𝑐𝑟),Ṡβ(𝑑𝑐,𝑐𝑟)}⨁min{Ṡ𝛼′(𝑑𝑐,𝑐𝑟),Ṡ𝛽′(𝑑𝑐,𝑐𝑟)}⨁min{S̈𝛾(𝑑𝑐,𝑐𝑟),S̈δ(𝑑𝑐,𝑐𝑟)}⨁ �̇�𝑒(𝑑𝑐,𝑐𝑟)⨁ �̇�𝑒

′ (𝑑𝑐,𝑐𝑟)

⨁min{S̈
γ′
(𝑑𝑐,𝑐𝑟),S̈

δ′
(𝑑𝑐,𝑐𝑟)}⨁�̈�𝑒(𝑑𝑐,𝑐𝑟)⨁�̈�𝑒

′ (𝑑𝑐,𝑐𝑟)
]

[
max{Ṡα(𝑑𝑐,𝑐𝑟),Ṡβ(𝑑𝑐,𝑐𝑟)}⨁max{Ṡ𝛼′(𝑑𝑐,𝑐𝑟),Ṡ𝛽′(𝑑𝑐,𝑐𝑟)}⨁max{S̈𝛾(𝑑𝑐,𝑐𝑟),S̈δ(𝑑𝑐 ,𝑐𝑟)}⨁ �̇�𝑒(𝑑𝑐,𝑐𝑟)⨁ �̇�𝑒

′(𝑑𝑐 ,𝑐𝑟)

⨁max{S̈
γ′
(𝑑𝑐,𝑐𝑟),S̈

δ′
(𝑑𝑐,𝑐𝑟)}⨁�̈�𝑒(𝑑𝑐,𝑐𝑟)⨁�̈�𝑒

′ (𝑑𝑐,𝑐𝑟)
]

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

n
e=1 ,  

and  
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𝐸(S2) =
1

n
∑

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 min{Ṡα1(𝑑𝑐+1,𝑐𝑖),Ṡβ1(𝑑𝑐+1,𝑐𝑖)

}⨁min{Ṡ𝛼1′
(𝑑𝑐+1,𝑐𝑖),Ṡ𝛽1

′(𝑑𝑐+1,𝑐𝑖)}⨁min{S̈𝛾1(𝑑𝑐+1,𝑐𝑖),S̈δ1
(𝑑𝑐+1,𝑐𝑖)}

⨁ �̇�𝑒(𝑑𝑐+1,𝑐𝑖) ⨁ �̇�𝑒
′ (𝑑𝑐+1,𝑐𝑖)⨁min{S̈γ1

′ (𝑑𝑐+1,𝑐𝑖),S̈
δ1
′ (𝑑𝑐+1,𝑐𝑖)}⨁�̈�𝑒(𝑑𝑐+1,𝑐𝑖)⨁�̈�𝑒

′ (𝑑𝑐+1,𝑐𝑖)
]
 
 
 

[
 
 
 max{Ṡα1(𝑑𝑐+1,𝑐𝑖),Ṡβ1

(𝑑𝑐+1,𝑐𝑖)}⨁max{Ṡ𝛼1′
(𝑑𝑐+1,𝑐𝑖),Ṡ𝛽1

′(𝑑𝑐+1,𝑐𝑖)}⨁max{S̈𝛾1(𝑑𝑐+1,𝑐𝑖),S̈δ1
(𝑑𝑐+1,𝑐𝑖)}

⨁ �̇�𝑒(𝑑𝑐+1,𝑐𝑖)⨁ �̇�𝑒
′ (𝑑𝑐+1,𝑐𝑖)⨁max{S̈γ1

′ (𝑑𝑐+1,𝑐𝑖),S̈
δ1
′ (𝑑𝑐+1,𝑐𝑖)}⨁�̈�𝑒(𝑑𝑐+1,𝑐𝑖)⨁�̈�𝑒

′ (𝑑𝑐+1,𝑐𝑖)
]
 
 
 

⊕ [
 
 
 min{Ṡα1(𝑑𝑐+1,𝑐𝑖+1),Ṡβ1(𝑑𝑐+1,𝑐𝑖+1)

}⨁min{Ṡ
𝛼1
′ (𝑑𝑐+1,𝑐𝑖+1),Ṡ𝛽1

′ (𝑑𝑐+1,𝑐𝑖+1)}⨁min{S̈𝛾1(𝑑𝑐+1,𝑐𝑖+1),S̈δ1
(𝑑𝑐+1,𝑐𝑖+1)}

⨁ �̇�𝑒(𝑑𝑐+1,𝑐𝑖+1)⨁ �̇�𝑒
′ (𝑑𝑐+1,𝑐𝑖+1)⨁min{S̈γ1

′ (𝑑𝑐+1,𝑐𝑖+1),S̈
δ1
′ (𝑑𝑐+1,𝑐𝑖+1)}⨁�̈�𝑒(𝑑𝑐+1,𝑐𝑖+1)⨁�̈�𝑒

′ (𝑑𝑐+1,𝑐𝑖+1)
]
 
 
 

[
 
 
 max{Ṡα1(𝑑𝑐+1,𝑐𝑖+1),Ṡβ1(𝑑𝑐+1,𝑐𝑖+1)

}⨁max{Ṡ
𝛼1
′ (𝑑𝑐+1,𝑐𝑖+1),Ṡ𝛽1

′ (𝑑𝑐+1,𝑐𝑖+1)}⨁max{S̈𝛾1(𝑑𝑐+1,𝑐𝑖+1),S̈δ1
(𝑑𝑐+1,𝑐𝑖+1)}

⨁ �̇�𝑒(𝑑𝑐+1,𝑐𝑖+1)⨁ �̇�𝑒
′ (𝑑𝑐+1,𝑐𝑖+1)⨁max{S̈γ1

′ (𝑑𝑐+1,𝑐𝑖+1),S̈
δ1
′ (𝑑𝑐+1,𝑐𝑖+1)}⨁�̈�𝑒(𝑑𝑐+1,𝑐𝑖+1)⨁�̈�𝑒

′ (𝑑𝑐+1,𝑐𝑖+1)
]
 
 
 

⊕ .  .  .  ⊕

[
 
 
 min{Ṡα1(𝑑𝑐+1,𝑐𝑟),Ṡβ1

(𝑑𝑐+1,𝑐𝑟)}⨁min{Ṡ𝛼1′
(𝑑𝑐+1,𝑐𝑟),Ṡ𝛽1

′(𝑑𝑐+1,𝑐𝑟)}⨁min{S̈𝛾1(𝑑𝑐+1,𝑐𝑟),S̈δ1
(𝑑𝑐+1,𝑐𝑟)}

⨁ �̇�𝑒(𝑑𝑐+1,𝑐𝑟) ⨁ �̇�𝑒
′ (𝑑𝑐+1,𝑐𝑟)⨁min{S̈γ1

′ (𝑑𝑐+1,𝑐𝑟),S̈
δ1
′ (𝑑𝑐+1,𝑐𝑟)}⨁�̈�𝑒(𝑑𝑐+1,𝑐𝑟)⨁�̈�𝑒

′ (𝑑𝑐+1,𝑐𝑟)
]
 
 
 

[
 
 
 max{Ṡα1(𝑑𝑐+1,𝑐𝑟),Ṡβ1(𝑑𝑐+1,𝑐𝑟)

}⨁max{Ṡ𝛼1′(𝑑𝑐+1,𝑐𝑟),Ṡ𝛽1
′(𝑑𝑐+1,𝑐𝑟)}⨁max{S̈𝛾1(𝑑𝑐+1,𝑐𝑟),S̈δ1

(𝑑𝑐+1,𝑐𝑟)}

⨁ �̇�𝑒(𝑑𝑐+1,𝑐𝑟)⨁ �̇�𝑒
′ (𝑑𝑐+1,𝑐𝑟)⨁max{S̈γ1

′ (𝑑𝑐+1,𝑐𝑟),S̈
δ1
′ (𝑑𝑐+1,𝑐𝑟)}⨁�̈�𝑒(𝑑𝑐+1,𝑐𝑟)⨁�̈�𝑒

′ (𝑑𝑐+1,𝑐𝑟)
]
 
 
 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

n
e=1   

After substituting the supposed conditions we get 𝐸(𝑆1) ≤ 𝐸(𝑆2). 

Now we make a rule to find the similarity between two GLIVIFSESs. 

Let 

𝑀𝑆1𝑆21(𝑢) =
∑ [𝑚𝑖𝑛{�̇�|𝛼 − �̇�𝛼1|, �̇�|𝛽 − �̇�𝛽1|}]
𝑟
𝑖=1

2
, 

𝑀𝑆1𝑆22(𝑢) =
∑ [𝑚𝑖𝑛 {�̇�|𝛼′ − �̇�𝛼1′|, �̇�|𝛽′ − �̇�𝛽1

′|
}]𝑟

𝑖=1

2
, 

𝑀𝑆1𝑆23(𝑢) =
∑ [𝑚𝑎𝑥{�̇�|𝛼 − �̇�𝛼1|, �̇�|𝛽 − �̇�𝛽1|}]
𝑟
𝑖=1

2
, 

𝑀𝑆1𝑆24(𝑢) =
∑ [𝑚𝑎𝑥 {�̇�|𝛼′ − �̇�𝛼1′|, �̇�|𝛽′ − �̇�𝛽1′|

}]𝑟
𝑖=1

2
, 

𝑀𝑆1𝑆25(𝑢) =
∑ [𝑚𝑖𝑛{�̈�|𝛾 − �̈�𝛾1|, �̈�|𝛿 − �̈�𝛿1|}]
𝑟
𝑖=1

2
, 

𝑀𝑆1𝑆26(𝑢) =
∑ [𝑚𝑖𝑛 {�̈�|𝛾′ − �̈�𝛾1′|, �̈�|𝛿′ − �̈�𝛿1′|

}]𝑟
𝑖=1

2
, 

𝑀𝑆1𝑆27(𝑢) =
∑ [𝑚𝑎𝑥{�̈�|𝛾 − �̈�𝛾1|, �̈�|𝛿 − �̈�𝛿1|}]
𝑟
𝑖=1

2
, 
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𝑀𝑆1𝑆28(𝑢) =
∑ [𝑚𝑎𝑥 {�̈�|𝛾′ − �̈�𝛾1′|, �̈�|𝛿′ − �̈�𝛿1′|

}]𝑟
𝑖=1

2
, 

here  

�̇�|𝛼 − �̇�𝛼1| = �̇�|𝛼−𝛼1+
𝛼𝛼1
𝑡
|
, 

and ‘r’ represents the number of criteria’s, ‘u’ represents specific alternative such that 𝑢 ∈ 𝑈 

where ‘U’ represents set of alternatives. 

Now take 

[𝑚𝑖𝑛(𝑀𝑆1𝑆21(𝑢), 𝑀𝑆1𝑆22(𝑢)) ,𝑚𝑎𝑥(𝑀𝑆1𝑆21(𝑢),𝑀𝑆1𝑆22(𝑢))] =

[𝛼𝑠1𝑠2 , 𝛼𝑠1𝑠2
′ ], [min (𝑀𝑆1𝑆23(𝑢),𝑀𝑆1𝑆24(𝑢)),max (𝑀𝑆1𝑆23(𝑢),𝑀𝑆1𝑆24(𝑢))] =

[𝛽𝑠1𝑠2 , 𝛽𝑠1𝑠2
′ ], [𝑚𝑖𝑛(𝑀𝑆1𝑆25(𝑢),𝑀𝑆1𝑆26(𝑢)),𝑚𝑎𝑥(𝑀𝑆1𝑆25(𝑢),𝑀𝑆1𝑆26(𝑢))] =

[𝛾𝑠1𝑠2 , 𝛾𝑠1𝑠2
′ ], [𝑚𝑖𝑛(𝑀𝑆1𝑆27(𝑢),𝑀𝑆1𝑆28(𝑢)),𝑚𝑎𝑥(𝑀𝑆1𝑆27(𝑢),𝑀𝑆1𝑆28(𝑢))] = [𝛿𝑠1𝑠2 , 𝛿𝑠1𝑠2

′ ], 

such that 

𝑆𝑢 = {〈�̇�[𝛼𝑠1𝑠2 ,𝛼𝑠1𝑠2
′ ], �̇�[𝛽𝑠1𝑠2 ,𝛽𝑠1𝑠2

′ ]〉 , 〈�̈�[𝛾𝑠1𝑠2 ,𝛾𝑠1𝑠2
′ ], �̈�[𝛿𝑠1𝑠2 ,𝛿𝑠1𝑠2

′ ]〉}, 

represents GLIVIFSES, where ‘u’ represents specific criteria. Similarly we find the GLIVIFSESs 

for all alternatives and then at the end we again apply the above technique and GLIVIFSES ‘S’, 

such that 𝐸(𝑆) represents similarity measure. 

Now to illustrate that similarity measure we consider Example 4.1.1 and find entropy similarity 

measure and then find the score function to compare that similarity measure with previous 

similarity measures. 

EXAMPLE 5.3.1. 
By taking data from Example 4.1.1 we have the following generalized linguistic interval-valued 

intuitionistic fuzzy soft expert sets 

S1(h1, a)={〈ṡ[2,3], ṡ[1,2]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S1(h2, a)={〈ṡ[3,4], ṡ[1,2]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S2(h1, b)={〈ṡ[1,3], ṡ[2,3]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S2(h2, b)={〈ṡ[1,2], ṡ[3,4]〉 , 〈s̈[1,2] , s̈[1,2]〉}. 
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These sets represent the evaluation values by students ‘a’ and ‘b’ for the teacher 𝑡1. Now for the 

second teacher 𝑡2 the evaluation values are as under 

S1(h1, a)={〈ṡ[1,2], ṡ[2,4]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S1(h2, a)={〈ṡ[2,4], ṡ[1,2]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S2(h1, b)={〈ṡ[2,3], ṡ[2,3]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S2(h2, b)={〈ṡ[1,2], ṡ[3,4]〉 , 〈s̈[1,2] , s̈[1,2]〉}. 

Now 

𝑀𝑆1𝑆21(𝑡1) =
[𝑚𝑖𝑛{�̇�|2 − �̇�1|, �̇�|1 − �̇�2|}]⨁[𝑚𝑖𝑛{�̇�|3 − �̇�1|, �̇�|1 − �̇�3|}]

2
 

=ṡ1.101021  

𝑀𝑆1𝑆22(𝑡1) =
[𝑚𝑖𝑛{�̇�|3 − �̇�3|, �̇�|2 − �̇�3|}]⨁[𝑚𝑖𝑛{�̇�|4 − �̇�2|, �̇�|2 − �̇�4|}]

2
 

=ṡ0.343146 

𝑀𝑆1𝑆23(𝑡1) =
[𝑚𝑎𝑥{�̇�|2 − �̇�1|, �̇�|1 − �̇�2|}]⨁[𝑚𝑎𝑥{�̇�|3 − �̇�1|, �̇�|1 − �̇�3|}]

2
 

=ṡ1.9585 

𝑀𝑆1𝑆24(𝑡1) =
[𝑚𝑎𝑥{�̇�|3 − �̇�3|, �̇�|2 − �̇�3|}]⨁[𝑚𝑎𝑥{�̇�|4 − �̇�2|, �̇�|2 − �̇�4|}]

2
 

=ṡ2.535898 

𝑀𝑆1𝑆25(𝑡1) =
[𝑚𝑖𝑛{�̈�|1 − �̈�1|, �̈�|1 − �̈�1|}]⨁[𝑚𝑖𝑛{�̈�|1 − �̈�1|, �̈�|1 − �̈�1|}]

2
 

=s̈1
4

 

𝑀𝑆1𝑆26(𝑡1) =
[𝑚𝑖𝑛{�̈�|2 − �̈�2|, �̈�|2 − �̈�2|}]⨁[𝑚𝑖𝑛{�̈�|2 − �̈�2|, �̈�|2 − �̈�2|}]

2
 

=s̈1 

𝑀𝑆1𝑆27(𝑡1) =
[𝑚𝑎𝑥{�̈�|1 − �̈�1|, �̈�|1 − �̈�1|}]⨁[𝑚𝑎𝑥{�̈�|1 − �̈�1|, �̈�|1 − �̈�1|}]

2
 

=s̈1
4

 

𝑀𝑆1𝑆28(𝑡1) =
[𝑚𝑖𝑛{�̈�|2 − �̈�2|, �̈�|2 − �̈�2|}]⨁[𝑚𝑖𝑛{�̈�|2 − �̈�2|, �̈�|2 − �̈�2|}]

2
 

=s̈1 

thus  

𝑆𝑡1 = {〈�̇�[0.343146,1.101021] , �̇�[1.9585,2.535898]〉, 〈�̈�[1
4
,
1
4
]
, �̈�[1,1]〉}. 

Now to find the GLIVIFSES 𝑆𝑡2 we have 
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𝑀𝑆1𝑆21(𝑡2) =
[𝑚𝑖𝑛{�̇�|1 − �̇�2|, �̇�|2 − �̇�2|}]⨁[𝑚𝑖𝑛{�̇�|2 − �̇�1|, �̇�|1 − �̇�3|}]

2
 

=ṡ0.78251  

𝑀𝑆1𝑆22(𝑡2) =
[𝑚𝑖𝑛{�̇�|2 − �̇�3|, �̇�|4 − �̇�3|}]⨁[𝑚𝑖𝑛{�̇�|4 − �̇�2|, �̇�|2 − �̇�4|}]

2
 

=ṡ0.343146 

𝑀𝑆1𝑆23(𝑡2) =
[𝑚𝑎𝑥{�̇�|1 − �̇�2|, �̇�|2 − �̇�2|}]⨁[𝑚𝑎𝑥{�̇�|2 − �̇�1|, �̇�|1 − �̇�3|}]

2
 

=ṡ1.58412  

𝑀𝑆1𝑆24(𝑡2) =
[𝑚𝑎𝑥{�̇�|2 − �̇�3|, �̇�|4 − �̇�3|}]⨁[𝑚𝑎𝑥{�̇�|4 − �̇�2|, �̇�|2 − �̇�4|}]

2
 

=ṡ3.17157  

𝑀𝑆1𝑆25(𝑡2) =
[𝑚𝑖𝑛{�̈�|1 − �̈�1|, �̈�|1 − �̈�1|}]⨁[𝑚𝑖𝑛{�̈�|1 − �̈�1|, �̈�|1 − �̈�1|}]

2
 

=s̈1
4

 

𝑀𝑆1𝑆26(𝑡2) =
[𝑚𝑖𝑛{�̈�|2 − �̈�2|, �̈�|2 − �̈�2|}]⨁[𝑚𝑖𝑛{�̈�|2 − �̈�2|, �̈�|2 − �̈�2|}]

2
 

=s̈1 

𝑀𝑆1𝑆27(𝑡2) =
[𝑚𝑎𝑥{�̈�|1 − �̈�1|, �̈�|1 − �̈�1|}]⨁[𝑚𝑎𝑥{�̈�|1 − �̈�1|, �̈�|1 − �̈�1|}]

2
 

=s̈1
4

 

𝑀𝑆1𝑆28(𝑡2) =
[𝑚𝑖𝑛{�̈�|2 − �̈�2|, �̈�|2 − �̈�2|}]⨁[𝑚𝑖𝑛{�̈�|2 − �̈�2|, �̈�|2 − �̈�2|}]

2
 

=s̈1 

thus 

𝑆𝑡2 = {〈�̇�[0.343146,0.78251] , �̇�[1.58412,3.17157]〉, 〈�̈�[1
4
,
1
4
]
, �̈�[1,1]〉}. 

Now to find the GLIVIFSES ‘S’ we have 

𝑀𝑆1𝑆21(𝑡2) =
[𝑚𝑖𝑛{�̇�|0.343146−�̇�0.343146|,�̇�|1.9585−�̇�1.58412|}]

2
=ṡ0.0098205, 

𝑀𝑆1𝑆22(𝑡1) =
[𝑚𝑖𝑛{�̇�|1.101021−�̇�0.78251|,�̇�|2.535898−�̇�3.17157|}]

2
=ṡ0.23568, 

𝑀𝑆1𝑆23(𝑡2) =
[𝑚𝑎𝑥{�̇�|0.343146−�̇�0.343146|,�̇�|1.9585−�̇�1.58412|}]

2
=ṡ0.07178 , 

𝑀𝑆1𝑆24(𝑡1) =
[𝑚𝑎𝑥{�̇�|1.101021−�̇�0.78251|,�̇�|2.535898−�̇�3.17157|}]

2
=ṡ0.3634, 

𝑀𝑆1𝑆25(𝑡2) =
[𝑚𝑖𝑛{�̈�

|
1
4
−�̈�1

4
|
,�̈�|1−�̈�1|}]

2
=s̈0.00782, 
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𝑀𝑆1𝑆26(𝑡2) =
[𝑚𝑖𝑛{�̈�

|
1
4
−�̈�1

4
|
,�̈�|1−�̈�1|}]

2
= s̈0.00782 ,   

𝑀𝑆1𝑆27(𝑡2) =
[𝑚𝑎𝑥{�̈�

|
1
4
−�̈�1

4
|
,�̈�|1−�̈�1|}]

2
=s̈0.127017, 

𝑀𝑆1𝑆28(𝑡2) =

[𝑚𝑎𝑥 {�̈�
|
1
4
− �̈�1

4
|
, �̈�|1 − �̈�1|}]

2
= s̈0.127017 , 

so,  

𝑆 = {〈�̇�[0.0098205,0.23568] , �̇�[0.07178,0.3634]〉, 〈�̈�[0.00782,0.00782], �̈�[0.127017,0.127017]〉}. 

Now by applying entropy measure on ‘S’ we get 

𝐸(S) =

[
 
 
 [
min{ṡ0.0098205, ṡ0.07178}⨁min{ṡ0.23568, ṡ0.3634)}⨁min{s̈0.00782 , s̈0.127017}⨁ ṡ5.9183995⨁ṡ5.40092

⨁min{s̈0.00782 , s̈0.127017}⨁s̈3.865163⨁s̈3.865163
]

[
max{ṡ0.0098205 , ṡ0.07178}⨁max{ṡ0.23568, ṡ0.3634)}⨁max{s̈0.00782, s̈0.127017}⨁ ṡ5.9183995⨁ṡ5.40092

⨁max{s̈0.00782 , s̈0.127017}⨁s̈3.865163⨁s̈3.865163
]
]
 
 
 

, 

 which after simplifications we obtain 

=
�̇�5.99739⨁s̈3.99547
�̇�5.992437⨁s̈3.995739

=
𝑠5.99739
𝑠5.99747

= 𝑠5.99746 . 

Now by comparing that similarity measure we can observe that the result obtained by entropy 

similarity measure is highest in order then the previous similarity measures techniques, also we 

can observe from theorem that 𝑆1and 𝑆2 are significantly similar.    

5.4. DISSIMILARITY MEASURE FOR GLIVIFSESs. 

We now present the dissimilarity measure for generalized linguistic interval valued intuitionistic 

fuzzy soft expert sets to compare these sets, for that purpose we utilized the idea of Li 2004 [6] 

up to some sense because it measures the dissimilarity in case of intuitionistic fuzzy sets which 

are some numerical numbers lies between the range of 0 and 1 and our sets contains linguistic 

terms which are totally different from numerical numbers with differences in their operators for 

aggregation. 
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Definition. Let 𝑈 = {𝑢𝑖: 𝑖 = 1 , .  .  .  , 𝑛} represents the set of alternatives and 𝐶 = {𝑐𝑗: 𝑗 = 1 ,

.  .  .  , 𝑟} represents the set of criteria’s fixed for decision making process and 𝐸 = {𝑒𝑘: 𝑘 = 1 ,

.  .  .  ,𝑚} represents the set of decision maker’s. 

According to general form of GLIVIFSESs 

S={〈ṡ[α,α′], ṡ[β,β′]〉  , 〈s̈[γ,γ′] , s̈[δ,δ′]〉}.  

For each 𝑢𝑖 ∈ 𝑈 the dissimilarity measure between GLIVIFSESs is defined as 

𝐷𝑆𝑀(𝑆𝑎 , 𝑆𝑏) =∑{〈�̇�(𝑐𝑗)
[|𝛼′−𝛼1

′+
𝛼′𝛼1

′

𝑡
|,|𝛼−𝛼1+

𝛼𝛼1
𝑡
|]
, �̇�(𝑐𝑗)

[
𝛽𝛽1
𝑡
 ,
𝛽′𝛽1

′

𝑡
]
〉 , 〈�̈�(𝑐𝑗)

[|𝛾−𝛾1+
𝛾𝛾1
𝑡′
|,|𝛾′−𝛾1

′+
𝛾′𝛾1

′

𝑡′
|]
, �̈�(𝑐𝑗)

[
𝛿𝛿1
𝑡′
 ,
𝛿′𝛿1

′

𝑡′
]
〉}

𝑟

𝑗=1

, 

now to demonstrate the above listed methodology we solve a practical problem related to 

dissimilarity. 

EXAMPLE 5.4.1. 

X government wants to improve the educational facilities in rural areas of X state which are 

almost approaches to negligence due to many features such as corruption (which is the major 

problem in facilitating the educational facilities to the child of rural areas), lack of recruitments 

on merits (which is linked with corruption because by taking illegal money from candidates 

members of X state authorities bring out the testing paper’s before the examination dates through 

which ineligible persons get recruited), fake or bugs degrees (these degrees are awarded by 

authorities in examination centers by illegal contents with peoples who wanted to avail these 

degrees). 

To achieve these objectives X government education minister conduct a survey with one person 

𝑒1 from civilian and one 𝑒2 person from education department such that {𝑒1, 𝑒2} represents a set 

of experts and allows them to make judgments about SED (school education department) on the 

behalf of criteria’s  

e. Teaching capability of teaching staff 



88 
 

f. Check and balance system 

the second restriction on experts that along with judgments about SED also provide the 

information regarding their linkage with that department.    

Now the secret society of X government makes a strategy based on the dissimilarity between the 

opinions of experts because a person nominated from SED will give its judgments in the favor of 

fellow colleagues but the civilian who one is not availing any benefit from department but its 

relatives or either he/she is student. They fixed the dissimilarity level 20% such that if it is greater 

than 20% then the actions will be taken against the SED authorities. 

The judgments of experts will in the form of generalized linguistic interval valued intuitionistic 

fuzzy soft expert sets because they use linguistic terms to express their opinions with 

generalization on 2-D which represents their linkage information. Here we take predefined 

linguistic term set 𝑆𝑡 with variation of ′𝑡′ as 0 ≤ 𝑡 ≤ 5 and predefined linguistic term set 𝑆𝑡′  for 

2-D linguistic information with variation of 𝑡′ as 0 ≤ 𝑡′ ≤ 6.  

The opinions of experts are as under  

S1(c1, e1)={〈ṡ[1,2], ṡ[2,3]〉 , 〈s̈[3,4] , s̈[1,2]〉}, 

S1(c2, e1)={〈ṡ[0,1], ṡ[2,3]〉 , 〈s̈[2,3] , s̈[1,2]〉}, 

S2(c1, e2)={〈ṡ[3,4], ṡ[0,1]〉 , 〈s̈[3,4] , s̈[0,1]〉}, 

S2(c2, e2)={〈ṡ[3.5,4], ṡ[0,1]〉 , 〈s̈[3,4.5] , s̈[0,1]〉}, 

By substituting these values in dissimilarity expression, we have 

𝐷𝑆𝑀(𝑆1, 𝑆2) =

[
 
 
 
 {〈�̇�(𝑐1)[|2−4+8

5
|,|1−3+

3
5
|]
, �̇�(𝑐1)[0 ,3

5
  ]
〉 ′ 〈�̈�(𝑐1)[|3−3+9

6
|,|4−4+

16
6
|]
, �̈�(𝑐1)[0 ,4

6
]
〉}⨁

{〈�̇�(𝑐2)[|1−4+4
5
|,|0−3.5+0|]

, �̇�(𝑐2)[0 ,3
5
  ]
〉 ′ 〈�̈�(𝑐2)[|2−3+6

6
|,|3−4.5+

13.5
6
|]
, �̈�(𝑐2)[0 ,2

6
]
〉}
]
 
 
 
 

, 

after evaluating the operation of addition we get 

𝐷𝑆𝑀(𝑆1, 𝑆2) = {〈ṡ[2.424,3.92], ṡ[0,0.072]〉 , 〈s̈[1.5,3.0833]  , s̈[0,0.037037]〉}. 

From above expression it is clear that dissimilarity between opinions of experts is greater than 

20% or in other words it is greater than 𝑠1 because 𝑠𝑡 the pick value in linguistic term set is 𝑠5. So 

the decisions will be taken out against the authorities of X state school education department. 
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5.5. CORRELATION OF GLIVIFSESs. 

Correlation of generalized linguistic IVIFSESs is basically measure of similarity between them, 

for that we used the sense of correlation of intuitionistic fuzzy sets [7] which represents the 

amount of correlation between these sets. 

Definition. Let 𝑈 = {𝑢𝑖: 𝑖 = 1 , .  .  .  , 𝑛} represents a set of alternatives and 𝐶 = {𝑐𝑗: 𝑗 = 1 ,

.  .  .  , 𝑚} represents a set of different criteria’s such that 

S1={〈ṡ[α,α′], ṡ[β,β′]〉 , 〈s̈[γ,γ′] , s̈[δ,δ′]〉}, 

S2={〈ṡ[α1,α1′ ], ṡ[β1 ,β1′ ]〉 , 〈s̈[γ1,γ1′ ] , s̈[δ1,δ1′ ]〉}, 

represents two different GLIVIFSESs. Now for a specific alternative 𝑢𝑖 the correlation of S1 and 

S2 denoted as C𝑢𝑖(S1, S2) defined as 

C𝑢𝑖(S1, S2) =∑[
〈(ṡ(𝑐𝑗)[α,α′]⨂ṡ

(𝑐𝑗)[α1,α1′ ]
) , (ṡ(𝑐𝑗)[β,β′]⨂ṡ

(𝑐𝑗)[β1,β1′ ]
)〉 ,

〈(s̈(𝑐𝑗)[γ,γ′]⨂s̈(𝑐𝑗)[γ1,γ1′ ]
) , (s̈(𝑐𝑗)[δ,δ′]⨂s̈(𝑐𝑗)[δ1,δ1′ ]

)〉
]

m

j=1

       (5.5) 

similarly for each alternative 𝑢𝑖 we calculate C𝑢𝑖(S1, S2) where i = 1,2,3,… ,m. 

Now for correlation of (S1, S2) for all alternatives we use  

C(S1, S2) =∑C𝑢𝑖(S1, S2)

n

i=1

→ (B) 

To demonstrate the above listed methodology we consider Example 4.1.1 for comparison reasons 

and to illustrate the above methodology.      

EXAMPLE 5.5.1. 

Taking data from Example 4.1.1 we have 

S1(h1, a)={〈ṡ[2,3], ṡ[1,2]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S1(h2, a)={〈ṡ[3,4], ṡ[1,2]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S2(h1, b)={〈ṡ[1,3], ṡ[2,3]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 
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S2(h2, b)={〈ṡ[1,2], ṡ[3,4]〉 , 〈s̈[1,2] , s̈[1,2]〉}. 

These sets represent the evaluation values by students ‘a’ and ‘b’ for the teacher 𝑡1. Now for the 

second teacher 𝑡2 the evaluation values are as under 

S1(h1, a)={〈ṡ[1,2], ṡ[2,4]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S1(h2, a)={〈ṡ[2,4], ṡ[1,2]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S2(h1, b)={〈ṡ[2,3], ṡ[2,3]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S2(h2, b)={〈ṡ[1,2], ṡ[3,4]〉 , 〈s̈[1,2] , s̈[1,2]〉}. 

Now for alternative 𝑡1 

C𝑡1(S1, S2) =

[
 
 
 
 {
〈(ṡ(ℎ1)[2,3]⨂ṡ(ℎ1)[1,3]), (ṡ(ℎ1)[1,2]⨂ṡ(ℎ1)[2,3])〉,

〈(s̈(ℎ1)[1,2]⨂s̈(ℎ1)[1,2]), (s̈(ℎ1)[1,2]⨂s̈(ℎ1)[1,2])〉
}⨁

{
〈(ṡ(ℎ2)[3,4]⨂ṡ(ℎ2)[1,2]), (ṡ(ℎ2)[1,2]⨂ṡ(ℎ2)[3,4])〉,

〈(s̈(ℎ2)[1,2]⨂s̈(ℎ2)[1,2]), (s̈(ℎ2)[1,2]⨂s̈(ℎ2)[1,2])〉
}
]
 
 
 
 

 

={〈ṡ
[
47

72
,
5

2
]
, ṡ
[
14

9
,
28

9
]
〉 , 〈s̈

[
31

64
,
7

4
]
 , s̈

[
49

64
,
9

4
]
〉}. 

Similarly for alternative 𝑡2   

C𝑡2(S1, S2) =

[
 
 
 
 {
〈(ṡ(ℎ1)[1,2]⨂ṡ(ℎ1)[1,3]), (ṡ(ℎ1)[2,4]⨂ṡ(ℎ1)[2,3])〉,

〈(s̈(ℎ1)[1,2]⨂s̈(ℎ1)[1,2]), (s̈(ℎ1)[1,2]⨂s̈(ℎ1)[1,2])〉
}⨁

{
〈(ṡ(ℎ2)[2,4]⨂ṡ(ℎ2)[1,2]), (ṡ(ℎ2)[1,2]⨂ṡ(ℎ2)[3,4])〉,

〈(s̈(ℎ2)[1,2]⨂s̈(ℎ2)[1,2]), (s̈(ℎ2)[1,2]⨂s̈(ℎ2)[1,2])〉
}
]
 
 
 
 

 

= {〈ṡ
[
53
108

,
19
9
]
, ṡ
[
35
18
,
35
9
]
〉 , 〈s̈

[
31
64
,
7
4
]
 , s̈

[
49
64
,
9
4
]
〉}. 

 Now for correlation of (S1, S2) for all alternatives we use Equation (B) so, that 

C(S1, S2) = {〈ṡ
[
50861
46656

,
403
108

]
, ṡ
[
245
486

,
490
243

]
〉 , 〈s̈

[
14911
16384

,
175
64

]
 , s̈

[
2401
16384

,
81
64
]
〉}. 

Now to compare that with the previous similarity types we use the score and accuracy function. 

According to score function we have 

S(C(S1, S2)) = s[0.5488,0.64292]×[0.5954,0.6836] = s[0.36268,0.4395]. 
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To compare it with previous score function results we take the average value from the interval 

such that 

S(C(S1, S2)) = s0.40109 , 

now by comparing that score function result with previous results of score functions we can 

observe easily that its order is greater than Type-I, Type-II, Type-III and Type-IV measures. 

5.6. LINGUISTIC FUZZY IMPLICATION FOR DISTANCE MEASURE BETWEEN 

GLIVIFSESs. 

Fuzzy implication [10] which is basically a simple extension of classical implication from the 

domain set {0,1} to the domain [0,1]. Operator of classical implication is a map 

𝑞: {0,1} × {0,1} → {0,1}, 

this satisfies the following conditions      

 𝑞(0,0) = 𝑞(0,1) = 𝑞(1,1) = 1 

 𝑞(1,0) = 0. 

Similarly fuzzy implication is a map 

𝑡⟹: [0,1] × [0,1] → [0,1], 

with conditions 

 𝑡⟹(0,1) = 𝑡⟹(1,1) = 𝑡⟹(0,0) = 1 

 𝑡⟹(1,0) = 0. 

We now extend the idea of classical implication and fuzzy implication into “classical linguistic 

implication” and “linguistic fuzzy implication” respectively with term set {𝑠0, 𝑠𝑡} and [𝑠0, 𝑠𝑡] 

respectively, where 𝑡 ∈ ℤ+ with odd cardinality. 

The classical linguistic implication is simply a map with following properties     

𝑤: {𝑠0, 𝑠𝑡} × {𝑠0, 𝑠𝑡} → {𝑠0, 𝑠𝑡}, 

 𝑤(𝑠0, 𝑠0) = (𝑠0 , 𝑠𝑡) = (𝑠𝑡 , 𝑠𝑡) = 𝑠𝑡 

 𝑤(𝑠1, 𝑠0) = 𝑠0 . 

Similarly fuzzy linguistic implication is a map  
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𝑥⟹: [𝑠0 , 𝑠𝑡] × [𝑠0 , 𝑠𝑡] → [𝑠0 , 𝑠𝑡], 

with following properties 

 𝑥⟹(𝑠0, 𝑠𝑡) = 𝑥⟹(𝑠𝑡 , 𝑠𝑡) = 𝑥⟹(𝑠0, 𝑠0) = 𝑠𝑡  

 𝑥⟹(𝑠𝑡 , 𝑠0) = 𝑠0 

from these above boundary conditions the following properties must hold. 

If 𝑠𝑖,𝑠𝑗 ∈ 𝑆𝑡 with the property 𝑠0 ≤ 𝑠𝑖 ≤ 𝑠𝑗 ≠ 𝑠𝑡 then for any arbitrary 𝑠𝑥 ∈ 𝑆𝑡  

 𝑥⟹(𝑠𝑖 , 𝑠𝑥) ≥  𝑥⟹(𝑠𝑗, 𝑠𝑥)   

 𝑥⟹(𝑠𝑥 , 𝑠𝑖) ≤  𝑥⟹(𝑠𝑥 , 𝑠𝑗)  

 𝑥⟹(𝑠𝑡 , 𝑠𝑥) = 𝑠𝑥  & 𝑥⟹(𝑠0, 𝑠𝑥) = 𝑠𝑡   

 𝑥⟹(𝑠𝑖 , 𝑠𝑗) = 𝑠𝑡 . 

The extension of Mamdani rule [11] and Larsen rule [12] as  

𝑥⟹(𝑎, 𝑏) = 𝑚𝑖𝑛{𝑎, 𝑏} 𝑖𝑛𝑡𝑜 𝑥⟹(𝑠𝑖 , 𝑠𝑗) = 𝑚𝑖𝑛{𝑠𝑖, 𝑠𝑗} & 𝑥⟹(𝑎, 𝑏) = 𝑎. 𝑏 𝑖𝑛𝑡𝑜 𝑥⟹(𝑠𝑖, 𝑠𝑗) = 𝑠𝑖. 𝑠𝑗 

respectively   which contradicts with fuzzy implication and linguistic fuzzy implication, we call 

these as “engineering implications with linguistic approach”. 

Now we use the concept of linguistic fuzzy implication to define a distance measure between 

GLIVIFSESs, the idea of distance measure using fuzzy implications and norms was proposed by 

Hatzimichailidis et al. for fuzzy sets [13] and intuitionistic fuzzy sets [14] which is defined as 

under 

𝑑(𝐴, 𝐵, 𝑡⟹) = ‖ℿ𝛼𝐴
−ℿ𝛼𝐵

‖ + ‖ℿ𝛽𝐴
−ℿ𝛽𝐵

‖, 

where  𝛼𝐴 represents a membership function of a set A, 𝛼𝐵 represents a membership function of 

B. similarly 𝛽𝐴 and 𝛽𝐵 represents non-membership function of A and B respectively with the 

property that 𝛼𝐴(𝑖) + 𝛽𝐴(𝑖) ≤ 1 also 𝛼𝐵(𝑖) + 𝛽𝐵(𝑖) ≤ 1 where 𝛼𝐴(𝑖), 𝛽𝐴(𝑖), 𝛼𝐵(𝑖), 𝛽𝐵(𝑖) ∈ [0,1]. 

Where 

ℿ𝛼𝐴
= [𝑡 ⟹

𝑖=1,2,…,𝑛
(𝛼𝐴(𝑥𝑖), 𝛼𝐴(𝑥𝑖))] = 𝑡⟹

(

 
 
 
 

[
 
 
 
 
 
 
𝛼𝐴(𝑥1)

𝛼𝐴(𝑥2)

𝛼𝐴(𝑥3)
.
.
.

𝛼𝐴(𝑥𝑛)]
 
 
 
 
 
 

, [𝛼𝐴(𝑥1), 𝛼𝐴(𝑥2), 𝛼𝐴(𝑥3), . . . , 𝛼𝐴(𝑥𝑛)]

)
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=

[
 
 
 
 
 
 
 
𝑡⟹(𝛼𝐴(𝑥1), 𝛼𝐴(𝑥1))    𝑡⟹(𝛼𝐴(𝑥1), 𝛼𝐴(𝑥2)) .  .  .  𝑡⟹(𝛼𝐴(𝑥1), 𝛼𝐴(𝑥𝑛))

𝑡⟹(𝛼𝐴(𝑥2), 𝛼𝐴(𝑥1))   𝑡⟹(𝛼𝐴(𝑥2), 𝛼𝐴(𝑥2)) .  .  .  𝑡⟹(𝛼𝐴(𝑥2), 𝛼𝐴(𝑥𝑛))

𝑡⟹(𝛼𝐴(𝑥3), 𝛼𝐴(𝑥1))   𝑡⟹(𝛼𝐴(𝑥3), 𝛼𝐴(𝑥2)) .  .  .  𝑡⟹(𝛼𝐴(𝑥3), 𝛼𝐴(𝑥𝑛))
.                                   .                           .                      .
.                                   .                           .                      .
.                                   .                           .                      .

𝑡⟹(𝛼𝐴(𝑥𝑛), 𝛼𝐴(𝑥1))   𝑡⟹(𝛼𝐴(𝑥𝑛), 𝛼𝐴(𝑥2)) .  .  .  𝑡⟹(𝛼𝐴(𝑥𝑛), 𝛼𝐴(𝑥𝑛))]
 
 
 
 
 
 
 

, 

here “n” represents the number of alternatives present in universal set or in other words it 

represents order of universal set. Similarly for a membership function of fuzzy set B. 

Now 

ℿ𝛽𝐴
= [𝑡 ⟹

𝑖=1,2,…,𝑛
(𝛽

𝐴
(𝑥𝑖), 𝛽𝐴(𝑥𝑖))] = 𝑡⟹

(

 
 
 
 
 

[
 
 
 
 
 
 
 
𝛽
𝐴
(𝑥1)

𝛽
𝐴
(𝑥2)

𝛽
𝐴
(𝑥3)
.
.
.

𝛽
𝐴
(𝑥𝑛)]

 
 
 
 
 
 
 

, [𝛽
𝐴
(𝑥1), 𝛽𝐴(𝑥2), 𝛽𝐴(𝑥3), . . . , 𝛽𝐴(𝑥𝑛)]

)

 
 
 
 
 

 

=

[
 
 
 
 
 
 
 
 𝑡⟹ (𝛽

𝐴
(𝑥1), 𝛽𝐴(𝑥1))     𝑡⟹ (𝛽

𝐴
(𝑥1), 𝛽𝐴(𝑥2))  .  .  .  𝑡⟹ (𝛽

𝐴
(𝑥1), 𝛽𝐴(𝑥𝑛))

𝑡⟹ (𝛽
𝐴
(𝑥2), 𝛽𝐴(𝑥1))    𝑡⟹ (𝛽

𝐴
(𝑥2), 𝛽𝐴(𝑥2))  .  .  .  𝑡⟹ (𝛽

𝐴
(𝑥2), 𝛽𝐴(𝑥𝑛))

𝑡⟹ (𝛽
𝐴
(𝑥3), 𝛽𝐴(𝑥1))    𝑡⟹ (𝛽

𝐴
(𝑥3), 𝛽𝐴(𝑥2))  .  .  .  𝑡⟹ (𝛽

𝐴
(𝑥3), 𝛽𝐴(𝑥𝑛))

.                                   .                           .                      .

.                                   .                           .                      .

.                                   .                           .                      .

𝑡⟹ (𝛽
𝐴
(𝑥𝑛), 𝛽𝐴(𝑥1))    𝑡⟹ (𝛽

𝐴
(𝑥𝑛), 𝛽𝐴(𝑥2))  .  .  .  𝑡⟹ (𝛽

𝐴
(𝑥𝑛), 𝛽𝐴(𝑥𝑛))]

 
 
 
 
 
 
 
 

, 

similarly for a non-membership function of fuzzy set B. 

Now we extend that idea in case of linguistic approach, suppose 𝑆1 and 𝑆2 are two GLIVIFSESs 

defined as 

S1={〈ṡ[α,α′], ṡ[β,β′]〉 , 〈s̈[γ,γ′] , s̈[δ,δ′]〉}, 

S2={〈ṡ[α1,α1′ ], ṡ[β1 ,β1′ ]〉 , 〈s̈[γ1,γ1′ ] , s̈[δ1,δ1′ ]〉}, 

with 𝐶 = {𝑐𝑗: 𝑗 = 1 , .  .  .  , 𝑟} represents a set of criteria’s and 𝑋 = {𝑥𝑖: 𝑖 = 1 , .  .  .  , 𝑛} 

represents a set of alternatives. 

Here instead of 𝛼𝐴(𝑥𝑖) and 𝛽𝐴(𝑥𝑖) we have 

S1(c1, xi)={〈ṡ[α2,α′2], ṡ[β2,β′2]
〉  , 〈s̈[γ2,γ′2]

 , s̈[δ2,δ′2]〉}, 
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S1(c2, xi)={〈ṡ[α3,α′3], ṡ[β3,β′3]
〉 , 〈s̈[γ3,γ′3]

 , s̈[δ3,δ′3]〉}, 

S1(c3, xi)={〈ṡ[α4,α′4], ṡ[β4,β′4]
〉 , 〈s̈[γ4,γ′4]

 , s̈[δ4,δ′4]〉}, 

. 

. 

. 
S1(cr, xi)={〈ṡ[αr+1,α′r+1], ṡ[βr+1,β′r+1]

〉 , 〈s̈[γr+1,γ′r+1]
 , s̈[δr+1,δ′r+1]〉}. 

Now we take the average for all the values obtained by different criteria’s such that for xi the 

membership and non-membership function in the form of GLIVIFSES is defined as 

=
∑ S1(cj, xi)
r
j=1

r
. 

Now the distance between GLIVIFSESs using linguistic fuzzy implication is defined as 

𝑑(𝑆1 , 𝑆2, 𝑥⟹) = ‖ℿ𝑆1 −ℿ𝑆2 ‖       (5.6) 

with 

ℿ𝑆1
= [𝑥 ⟹

𝑖=1,2,…,𝑛
(
∑ S1(cj, xi)
r
j=1

r
,
∑ S1(cj, xi)
r
j=1

r
)] = 𝑥⟹

(

 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
∑ S1(cj, x1)
r
j=1

r
∑ S1(cj, x2)
r
j=1

r
∑ S1(cj, x3)
r
j=1

r.
.
.

∑ S1(cj, xn)
r
j=1

r ]
 
 
 
 
 
 
 
 
 
 
 

, [
∑ S1(cj, x1)
r
j=1

r
,
∑ S1(cj, x2)
r
j=1

r
,
∑ S1(cj, x3)
r
j=1

r
, . . . ,

∑ S1(cj, xn)
r
j=1

r
]

)
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=

[
 
 
 
 
 
 
 
 
 
 
 
 𝑥⟹ (

∑ S1(cj, x1)
r
j=1

r
,
∑ S1(cj, x1)
r
j=1

r
)    𝑥⟹ (

∑ S1(cj, x1)
r
j=1

r
,
∑ S1(cj, x2)
r
j=1

r
) .  .  .  𝑥⟹ (

∑ S1(cj, x1)
r
j=1

r
,
∑ S1(cj, xn)
r
j=1

r
)

𝑥⟹ (
∑ S1(cj, x2)
r
j=1

r
,
∑ S1(cj, x1)
r
j=1

r
)   𝑥⟹ (

∑ S1(cj, x2)
r
j=1

r
,
∑ S1(cj, x2)
r
j=1

r
) .  .  .  𝑥⟹ (

∑ S1(cj, x2)
r
j=1

r
,
∑ S1(cj, xn)
r
j=1

r
)

𝑥⟹ (
∑ S1(cj, x3)
r
j=1

r
,
∑ S1(cj, x1)
r
j=1

r
)   𝑥⟹ (

∑ S1(cj, x3)
r
j=1

r
,
∑ S1(cj, x2)
r
j=1

r
) .  .  .  𝑥⟹ (

∑ S1(cj, x3)
r
j=1

r
,
∑ S1(cj, xn)
r
j=1

r
)

.                                   .                           .                      .

.                                   .                           .                      .

.                                   .                           .                      .

𝑥⟹ (
∑ S1(cj, xn)
r
j=1

r
,
∑ S1(cj, x1)
r
j=1

r
)   𝑥⟹ (

∑ S1(cj, xn)
r
j=1

r
,
∑ S1(cj, x2)
r
j=1

r
) .  .  .  𝑥⟹ (

∑ S1(cj, xn)
r
j=1

r
,
∑ S1(cj, xn)
r
j=1

r
)
]
 
 
 
 
 
 
 
 
 
 
 
 

      (5.6.1) 

similarly in the case of ℿ𝑆2 such that 

ℿ𝑆2
= [𝑥 ⟹

𝑖=1,2,…,𝑛
(
∑ S2(cj, xi)
r
j=1

r
,
∑ S2(cj, xi)
r
j=1

r
)] = 𝑥⟹

(

 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
∑ S2(cj, x1)
r
j=1

r
∑ S2(cj, x2)
r
j=1

r
∑ S2(cj, x3)
r
j=1

r.
.
.

∑ S2(cj, xn)
r
j=1

r ]
 
 
 
 
 
 
 
 
 
 
 

, [
∑ S2(cj, x1)
r
j=1

r
,
∑ S2(cj, x2)
r
j=1

r
,
∑ S2(cj, x3)
r
j=1

r
, . . . ,

∑ S2(cj, xn)
r
j=1

r
]

)

 
 
 
 
 
 
 
 
 

 

=

[
 
 
 
 
 
 
 
 
 
 
 
 𝑥⟹ (

∑ S2(cj, x1)
r
j=1

r
,
∑ S2(cj, x1)
r
j=1

r
)    𝑥⟹ (

∑ S2(cj, x1)
r
j=1

r
,
∑ S2(cj, x2)
r
j=1

r
) .  .  .  𝑥⟹ (

∑ S2(cj, x1)
r
j=1

r
,
∑ S2(cj, xn)
r
j=1

r
)

𝑥⟹ (
∑ S2(cj, x2)
r
j=1

r
,
∑ S2(cj, x1)
r
j=1

r
)   𝑥⟹ (

∑ S2(cj, x2)
r
j=1

r
,
∑ S2(cj, x2)
r
j=1

r
) .  .  .  𝑥⟹ (

∑ S2(cj, x2)
r
j=1

r
,
∑ S2(cj, xn)
r
j=1

r
)

𝑥⟹ (
∑ S2(cj, x3)
r
j=1

r
,
∑ S2(cj, x1)
r
j=1

r
)   𝑥⟹ (

∑ S2(cj, x3)
r
j=1

r
,
∑ S2(cj, x2)
r
j=1

r
) .  .  .  𝑥⟹ (

∑ S2(cj, x3)
r
j=1

r
,
∑ S2(cj, xn)
r
j=1

r
)

.                                   .                           .                      .

.                                   .                           .                      .

.                                   .                           .                      .

𝑥⟹ (
∑ S2(cj, xn)
r
j=1

r
,
∑ S2(cj, x1)
r
j=1

r
)   𝑥⟹ (

∑ S2(cj, xn)
r
j=1

r
,
∑ S2(cj, x2)
r
j=1

r
) .  .  .  𝑥⟹ (

∑ S2(cj, xn)
r
j=1

r
,
∑ S2(cj, xn)
r
j=1

r
)
]
 
 
 
 
 
 
 
 
 
 
 
 

      (5.6.2). 

To demonstrate the above mentioned methodology we simply apply it to Example 4.1.1 to find 

the distance between GLIVIFSESs given by different experts. 

EXAMPLE 5.6.1. 

By taking data from Example 4.1.1 the opinions of experts are given as 

S1(h1, a)={〈ṡ[2,3], ṡ[1,2]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S1(h2, a)={〈ṡ[3,4], ṡ[1,2]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S2(h1, b)={〈ṡ[1,3], ṡ[2,3]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 
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S2(h2, b)={〈ṡ[1,2], ṡ[3,4]〉 , 〈s̈[1,2] , s̈[1,2]〉}. 

These sets represent the evaluation values by students ‘a’ and ‘b’ for the teacher 𝑡1. Now for the 

second teacher 𝑡2 the evaluation values are as under 

S1(h1, a)={〈ṡ[1,2], ṡ[2,4]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S1(h2, a)={〈ṡ[2,4], ṡ[1,2]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S2(h1, b)={〈ṡ[2,3], ṡ[2,3]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

S2(h2, b)={〈ṡ[1,2], ṡ[3,4]〉 , 〈s̈[1,2] , s̈[1,2]〉}. 

Here we use the Mamdani rule in fuzzy implication, thus by using linguistic fuzzy implication 

based distance measure in case of 𝑆1 we have 

ℿ𝑆1 =

[
 
 
 
 𝑥⟹ (

∑ S1(hj, t1)
2
j=1

2
,
∑ S1(hj, t1)
2
j=1

2
)    𝑥⟹ (

∑ S1(hj, t1)
2
j=1

2
,
∑ S1(hj, t2)
2
j=1

2
)

𝑥⟹ (
∑ S1(hj, t2)
2
j=1

2
,
∑ S1(hj, t1)
2
j=1

2
)   𝑥⟹ (

∑ S1(hj, t2)
2
j=1

2
,
∑ S1(hj, t2)
2
j=1

2
) 
]
 
 
 
 

, 

here firstly by calculating the required values 

∑ S1(hj, t1)
2
j=1

2
=
{〈ṡ[2,3], ṡ[1,2]〉 , 〈s̈[1,2] , s̈[1,2]〉} ⊕ {〈ṡ[3,4], ṡ[1,2]〉 , 〈s̈[1,2] , s̈[1,2]〉}

2
 

= {〈ṡ[2.5359,3.5505] , ṡ[1,2]〉 , 〈s̈[1,2] , s̈[1,2]〉}, 

similarly  

∑ S1(hj, t2)
2
j=1

2
=
{〈ṡ[1,2], ṡ[2,4]〉 , 〈s̈[1,2] , s̈[1,2]〉} ⊕ {〈ṡ[2,4], ṡ[1,2]〉 , 〈s̈[1,2] , s̈[1,2]〉}

2
 

= {〈ṡ[1.5279,3.172] , ṡ[1.4142,2.828]〉 , 〈s̈[1,2] , s̈[1,2]〉}. 

Now by substituting these calculated values in expression of ℿ𝑆1 we obtain 

ℿ𝑆1 = [
{〈ṡ[2.5359,3.5505] , ṡ[1,2]〉 , 〈s̈[1,2] , s̈[1,2]〉}               {〈ṡ[1.5279,3.172] , ṡ[1.4142,2.828]〉 , 〈s̈[1,2] , s̈[1,2]〉}

{〈ṡ[1.5279,3.172] , ṡ[1.4142,2.828]〉 , 〈s̈[1,2] , s̈[1,2]〉}   {〈ṡ[1.5279,3.172] , ṡ[1.4142,2.828]〉 , 〈s̈[1,2] , s̈[1,2]〉}
]. 

Similarly in case of opinions from second expert “b”  

ℿ𝑆2 =

[
 
 
 
 𝑥⟹ (

∑ S2(hj, t1)
2
j=1

2
,
∑ S2(hj, t1)
2
j=1

2
)    𝑥⟹ (

∑ S2(hj, t1)
2
j=1

2
,
∑ S2(hj, t2)
2
j=1

2
)

𝑥⟹ (
∑ S2(hj, t2)
2
j=1

2
,
∑ S2(hj, t1)
2
j=1

2
)   𝑥⟹ (

∑ S2(hj, t2)
2
j=1

2
,
∑ S2(hj, t2)
2
j=1

2
) 
]
 
 
 
 

. 
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Firstly by calculating the required values  

∑ S2(hj, t1)
2
j=1

2
=
{〈ṡ[1,3], ṡ[2,3]〉 , 〈s̈[1,2] , s̈[1,2]〉} ⊕ {〈ṡ[1,2], ṡ[3,4]〉 , 〈s̈[1,2] , s̈[1,2]〉}

2
 

= {〈ṡ[1,2.536], ṡ[2.449,3.464]〉 , 〈s̈[1,2] , s̈[1,2]〉} 

∑ S2(hj, t2)
2
j=1

2
=
{〈ṡ[2,3], ṡ[2,3]〉 , 〈s̈[1,2] , s̈[1,2]〉} ⊕ {〈ṡ[1,2], ṡ[3,4]〉 , 〈s̈[1,2] , s̈[1,2]〉}

2
 

= {〈ṡ[1.5279,2.536], ṡ[2.449,3.464]〉 , 〈s̈[1,2] , s̈[1,2]〉}. 

 Now by substituting these values in expression of ℿ𝑆2 we obtain 

ℿ𝑆2 = [
{〈ṡ[1,2.536] , ṡ[2.449,3.464]〉 , 〈s̈[1,2] , s̈[1,2]〉}          {〈ṡ[1,2.536] , ṡ[2.449,3.464]〉 , 〈s̈[1,2] , s̈[1,2]〉}

{〈ṡ[1,2.536], ṡ[2.449,3.464]〉 , 〈s̈[1,2] , s̈[1,2]〉}   {〈ṡ[1.5279,2.536], ṡ[2.449,3.464]〉 , 〈s̈[1,2] , s̈[1,2]〉}
]. 

Now by substituting these values in ℿ𝑆1 − ℿ𝑆2 expression we get  

= [

{〈ṡ[1.9575,2.515], ṡ[0.40817,1.15467]〉 , 〈s̈[1
4
,1]
 , s̈

[
1
4
,1]
〉}    {〈ṡ[0.78255,1.977] , ṡ[0.577,1.6327]〉 , 〈s̈[1

4
,1]
 , s̈

[
1
4
,1]
〉}

{〈ṡ[0.78255,1.977], ṡ[0.577,1.6327]〉 , 〈s̈[1
4
,1]
 , s̈

[
1
4
,1]
〉}       {〈ṡ[0.3891,1.977] , ṡ[0.577,1.6327]〉 , 〈s̈[1

4
,1]
 , s̈

[
1
4
,1]
〉}
], 

Since the above matrix is a square matrix then the for norm we take the determinant of that 

matrix such that 

𝑑(𝑆1 , 𝑆2, 𝑥⟹) = |ℿ𝑆1 −ℿ𝑆2| 

= |

{〈ṡ[1.9575,2.515], ṡ[0.40817,1.15467]〉 , 〈s̈[1
4
,1]
 , s̈

[
1
4
,1]
〉}   {〈ṡ[0.78255,1.977] , ṡ[0.577,1.6327]〉 , 〈s̈[1

4
,1]
 , s̈

[
1
4
,1]
〉}

{〈ṡ[0.78255,1.977] , ṡ[0.577,1.6327]〉 , 〈s̈[1
4
,1]
 , s̈

[
1
4
,1]
〉}       {〈ṡ[0.3891,1.977], ṡ[0.577,1.6327]〉 , 〈s̈[1

4
,1]
 , s̈

[
1
4
,1]
〉}
| 

= {〈ṡ[0.1269,0.8287] , ṡ[1.0124,2.47317]〉 , 〈s̈[ 1
64
,
1
4
]
 , s̈

[
31
64
,
7
4
]
〉} ⊖ {〈ṡ[0.1021,0.651] , ṡ[1.10229,2.8211]〉 , 〈s̈[ 1

64
,
1
4
]
 , s̈

[
31
64
,
7
4
]
〉} 

here by evaluating subtraction operator we get  

𝑑(𝑆1, 𝑆2 , 𝑥⟹) = {〈s[0.02696,0.2676] , s[0.186,1.1628]〉 , 〈s[0.000061,0.0156]  , s[0.05865,0.765625]〉}. 

 From above expression we can observe that the result obtained by linguistic fuzzy implication to 

measure distance between GLIVIFSESs give appropriate results because we can observe that the 

values of sets 𝑆1 and 𝑆2 slightly differ from each other.  

 

 



98 
 

CHAPTER 6 

             

CONCLUSIONS 

 

Since the concept of GLIVIFSESs introduced by Tasaduq Mahmood and Afshan Qayyum [23] is 

the comprehensive model in the field of linguistic approach, as it covers all the necessary 

possibilities which the fuzzy structures may have, so we used that structure for further study on it 

and applied a lot of new similarity measures on that structure, due to their importance for many 

decision making problems and a lot of other applications in real world situations we compared the 

results by taking out common example throughout these measures. Also separately for each 

similarity measure we constructed practical problems from real world data examples and 

checked-out the accuracy level of these measures. We have the following observations for 

GLIVIFSESs, 

Modified Hamming 

Distance Based 

Similarity Measure  

{
〈ṡ[0.66295,  0.779362], ṡ[2.68573,  2.960732]〉 

,  〈s̈[0.25,1.515625]  , s̈[1.75,1.984375]〉
}
 𝑠0.672635  

Modified Euclidean 

Distance Based 

Similarity Measure  

{
〈ṡ[0.089,  1.0066] , ṡ[2.4877,  2.9272]〉 ,  

〈s̈[0.6086,1.6428] , s̈[1.5969,1.9711]〉
}
 𝑠0.67115 

Entropy Similarity 

Measure  

�̇�5.99739⨁s̈3.99547
�̇�5.992437⨁s̈3.995739

 𝑠5.99746 

Correlation Measure 

{

〈ṡ
[
50861
46656

,  
403
108

]
, ṡ
[
245
486

,  
490
243

]
〉 ,  

〈s̈
[
14911
16384

,
175
64

]
 , s̈

[
2401
16384

,
81
64
]
〉
}

 s0.40109  
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Type-I Similarity 

Measure  {

〈�̇�8
9
, �̇�1.01835015〉 ,

〈�̈�5
6
, �̈�1
6

〉
}

 𝑠0.2853734  

Type-II Similarity 

Measure  (

〈�̇�
18− √203

3

, 𝑠1
3
̇ 〉 ,

〈�̈�5
6
, �̈�1
6

〉
)

 𝑠0.33626239  

Type-III Similarity 

Measure  {
〈�̇�0.3236134 , �̇�1.4515819〉,

〈�̈�199
256
, �̈�299
256

〉 }
 𝑠0.1831769 

Type-IV Similarity 

Measure  {

〈�̇�
[
251
2592

,0.3214993]
, �̇�[1.26505565,2.75803167]〉  ,  

〈�̈�
[
63
256

,
15
16
]
 , �̈�

[
121
256

,
25
16
]
〉

}

 𝑆0.1575996157  

Type-V Similarity 

Measure  {
〈�̇�0.49965 , �̇�1.59285〉,

〈�̈�31
64
, �̈�529
576

〉 }
 𝑆0.1822658  

Max-Min Similarity 

Measure 
(〈�̇�

[
671
7560

,
49
285

]
, �̇�
[
683
3888

,
167
162

]
〉 , 〈�̈�

[
35
192

,
12
35
]
, �̈�
[
511
16384

,
31
64
]
〉) 𝑠0.26997 

Modified Max-Min 

Similarity Measure 
{〈�̇�

[
25135
11664

,
370
81

]
, �̇�
[
943
3888

,
319
243

]
〉 , 〈�̈�

[
22687
16384

,
207
64

]
, �̈�
[
961
16384

,
49
64
]
〉} 𝑠0.5313  

 

 Entropy similarity measure produces more accurate result’s than Modified Hamming 

distance based similarity measure 

 Modified Hamming distance based similarity measure produces more accurate results 

then Modified Euclidean distance based similarity measure 

 Modified Euclidean distance based similarity measure produces more accurate results 

than Modified Max-Min similarity measure 

 Modified Max-Min similarity measure produces more accurate results than correlation 

similarity measure  
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  Correlation measure produces more accurate results than Type-II similarity measure 

 Type-II similarity measure produces more accurate results than Type-I similarity measure 

 Type-I similarity measure produces more accurate results than Max-Min similarity 

measure 

  Max-Min similarity measure produces more accurate results than Type-III similarity 

measure 

  Type-III similarity measure produces more accurate results than Type-V similarity 

measure 

 Type-V similarity measure produces more accurate results than Type-IV similarity 

measure. In graphically representation we have 

 

 

Here in Type-V similarity measure we made some amendments and call the new one as Modified 

Type-V similarity measure and further us extended the practical example related to mining 

license under Modified Type-V similarity measure and got the most appropriate results. Here one 

can also employ example.1 under Modified Type-V similarity measure. 

CM MEDBSM MHDBSM ESM T2M T1M
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Behind similarity measures we attempted to apply dissimilarity measure, which plays an essential 

role in decision making problems. In which we firstly introduced the mathematical expression to 

measure dissimilarity for GLIVIFSESs and then tested the validity of that dissimilarity measure 

by considering the practical example related to judgments regarding the authorities of X state 

education department, and we obtained mostly accurate result. 

Later on we introduced the concept of linguistic fuzzy implication for distance measure between 

GLIVIFSESs and then employed the exports opinions from Example 4.1.1 to measure distance 

between them under linguistic fuzzy implication environment and obtained considerable accurate 

results. 

Future Plan 

We intend to investigate these measures using programming tools with complexed real life 

situations for infinitely large data’s to apply these practically.   

  

 

 

 

 

 

 

 

 

 



102 
 

REFERENCES 

1. Zadeh, L. (1965). Fuzzy sets. Inform Control, 8, 338-353. 

2. Atanassov, K. T., & Atanassov, K. T. (1999). Interval valued intuitionistic fuzzy sets. Intuitionistic 

Fuzzy Sets: Theory and Applications, 139-177. 

3. Verma, R., & Merigó, J. M. (2020). Multiple attribute group decision making based on 2-dimension 

linguistic intuitionistic fuzzy aggregation operators. Soft Computing, 24(22), 17377-17400. 

4. Wei, C. P., Wang, P., & Zhang, Y. Z. (2011). Entropy, similarity measure of interval-valued 

intuitionistic fuzzy sets and their applications. Information Sciences, 181(19), 4273-4286. 

5. Liu, X. D., Zheng, S. H., & Xiong, F. L. (2005). Entropy and subsethood for general interval-valued 

intuitionistic fuzzy sets. In Fuzzy Systems and Knowledge Discovery: Second International 

Conference, FSKD 2005, Changsha, China, August 27-29, 2005, Proceedings, Part I 2 (pp. 42-

52). Springer Berlin Heidelberg. 

6. Li, D. F. (2004). Some measures of dissimilarity in intuitionistic fuzzy structures. Journal of 

Computer and System Sciences, 68(1), 115-122. 

7. Gerstenkorn, T., & Mańko, J. (1991). Correlation of intuitionistic fuzzy sets. Fuzzy sets and 

systems, 44(1), 39-43. 

8. Pappis, C. P., & Karacapilidis, N. I. (1993). A comparative assessment of measures of similarity of 

fuzzy values. Fuzzy sets and systems, 56(2), 171-174. 

9. Hung, W. L., & Yang, M. S. (2008). On similarity measures between intuitionistic fuzzy 

sets. International journal of intelligent systems, 23(3), 364-383. 

10. Baczynski, M., & Jayaram, B. (2008). Fuzzy implications (Vol. 231, pp. 151-160). Berlin: Springer. 

11. Balasubramaniam, J., & Rao, C. J. M. (2002, March). R-implication operators and rule reduction in 

Mamdani-type fuzzy systems. In 6th Joint Conf. Information Sciences, Fuzzy Theory, 

Technology (pp. 8-12). 

12. Ostrosky-Zeichner, L., Sable, C., Sobel, J., Alexander, B. D., Donowitz, G., Kan, V., ... & Rex, J. 

H. (2007). Multicenter retrospective development and validation of a clinical prediction rule for 

nosocomial invasive candidiasis in the intensive care setting. European Journal of Clinical 

Microbiology & Infectious Diseases, 26, 271-276. 

13. Balopoulos, V., Hatzimichailidis, A. G., & Papadopoulos, B. K. (2007). Distance and similarity 

measures for fuzzy operators. Information Sciences, 177(11), 2336-2348. 

14. Hatzimichailidis, A. G., Papakostas, G. A., & Kaburlasos, V. G. (2012). A novel distance measure 

of intuitionistic fuzzy sets and its application to pattern recognition problems. International journal 

of intelligent systems, 27(4), 396-409. 

15. Xu, Z. (2005). Deviation measures of linguistic preference relations in group decision 

making. Omega, 33(3), 249-254. 

https://www.sciencedirect.com/science/article/pii/S001999586590241X/pdf?md5=ab09be72c9a505fe35c80644322cf559&pid=1-s2.0-S001999586590241X-main.pdf.
https://link.springer.com/chapter/10.1007/978-3-7908-1870-3_2
https://link.springer.com/chapter/10.1007/978-3-7908-1870-3_2
https://link.springer.com/article/10.1007/s00500-020-05026-z
https://link.springer.com/article/10.1007/s00500-020-05026-z
https://www.sciencedirect.com/science/article/pii/S0020025511002751
https://www.sciencedirect.com/science/article/pii/S0020025511002751
https://link.springer.com/chapter/10.1007/11539506_6
https://link.springer.com/chapter/10.1007/11539506_6
https://link.springer.com/chapter/10.1007/11539506_6
https://link.springer.com/chapter/10.1007/11539506_6
https://www.sciencedirect.com/science/article/pii/S0022000003001338
https://www.sciencedirect.com/science/article/pii/S0022000003001338
https://www.sciencedirect.com/science/article/pii/016501149190031K
https://www.sciencedirect.com/science/article/pii/016501149190031K
https://www.sciencedirect.com/science/article/pii/0165011493901414
https://www.sciencedirect.com/science/article/pii/0165011493901414
https://onlinelibrary.wiley.com/doi/abs/10.1002/int.20271
https://onlinelibrary.wiley.com/doi/abs/10.1002/int.20271
https://link.springer.com/content/pdf/10.1007/978-3-540-69082-5.pdf
https://people.iith.ac.in/jbala/publications/JCIS/JCIS%20Article.PDF
https://people.iith.ac.in/jbala/publications/JCIS/JCIS%20Article.PDF
https://people.iith.ac.in/jbala/publications/JCIS/JCIS%20Article.PDF
https://link.springer.com/article/10.1007/s10096-007-0270-z
https://link.springer.com/article/10.1007/s10096-007-0270-z
https://link.springer.com/article/10.1007/s10096-007-0270-z
https://link.springer.com/article/10.1007/s10096-007-0270-z
https://www.sciencedirect.com/science/article/pii/S0020025507000345
https://www.sciencedirect.com/science/article/pii/S0020025507000345
https://onlinelibrary.wiley.com/doi/abs/10.1002/int.21529
https://onlinelibrary.wiley.com/doi/abs/10.1002/int.21529
https://onlinelibrary.wiley.com/doi/abs/10.1002/int.21529
https://www.sciencedirect.com/science/article/pii/S0305048304000696
https://www.sciencedirect.com/science/article/pii/S0305048304000696


103 
 

16. Bookstein, A., Kulyukin, V. A., & Raita, T. (2002). Generalized hamming distance. Information 

Retrieval, 5, 353-375. 

17. Danielsson, P. E. (1980). Euclidean distance mapping. Computer Graphics and image 

processing, 14(3), 227-248. 

18. Ejegwa, P. A., Akubo, A. J., & Joshua, O. M. (2014). Intuitionistic fuzzy set and its application in 

career determination via normalized Euclidean distance method. European scientific 

journal, 10(15). 

19. Qayyum, A., Abdullah, S., & Aslam, M. (2016). Cubic soft expert sets and their application in 

decision making. Journal of Intelligent & Fuzzy Systems, 31(3), 1585-1596. 

20. Atanassov, K. T., & Atanassov, K. T. (1999). Applications of intuitionistic fuzzy sets. Intuitionistic 

Fuzzy Sets: Theory and Applications, 237-288. 

21. Atanassov, K. T. (1994). New operations defined over the intuitionistic fuzzy sets. Fuzzy sets and 

Systems, 61(2), 137-142. 

22. Madiha, Qayyum., A. (2022). On Some Similarity Measures For Cubic Soft Expert Sets. UET-TXL 

23. Mehmood., Tasaduaq., Qayyum., A. (2023). Decision Analysis of General Linguistic Interval 

Valued Intuitionistic Fuzzy Soft Expert Sets. NUML-ISL. 

24. Goguen, J. A. (1967). L-fuzzy sets. Journal of mathematical analysis and applications, 18(1), 145-

174. 

25. Negoiţă, C. V., & Ralescu, D. A. (1975). Applications of fuzzy sets to systems analysis (p. 187). 

Basel, Switzerland:: Birkhäuser. 

26. Dubois, D. J. (1980). Fuzzy sets and systems: theory and applications (Vol. 144). Academic 

press. 

27. Carlsson, C., & Fullér, R. (1996). Fuzzy multiple criteria decision making: Recent 

developments. Fuzzy sets and systems, 78(2), 139-153. 

28. Molodtsov, D. (1999). Soft set theory—first results. Computers & mathematics with 

applications, 37(4-5), 19-31. 

29. Torra, V. (2010). Hesitant fuzzy sets. International journal of intelligent systems, 25(6), 529-539. 

30. Xia, M., & Xu, Z. (2010). Some new similarity measures for intuitionistic fuzzy values and their 

application in group decision making. Journal of Systems Science and Systems 

Engineering, 19(4), 430-452. 

31. Burillo, P., & Bustince, H. (1996). Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy 

sets. Fuzzy sets and systems, 78(3), 305-316. 

32. Beg, I., & Ashraf, S. (2009). Similarity measures for fuzzy sets. Appl. comput. math, 8(2), 192-202. 

33. Li, Y., Qin, K., He, X., & Meng, D. (2015). Similarity measures of interval-valued fuzzy 

sets. Journal of Intelligent & Fuzzy Systems, 28(5), 2113-2125. 

34. Zeng, W., Li, D., & Yin, Q. (2016). Distance and similarity measures between hesitant fuzzy sets 

and their application in pattern recognition. Pattern Recognition Letters, 84, 267-271. 

https://link.springer.com/article/10.1023/A:1020499411651
https://link.springer.com/article/10.1023/A:1020499411651
https://www.sciencedirect.com/science/article/pii/0146664X80900544
https://www.sciencedirect.com/science/article/pii/0146664X80900544
https://core.ac.uk/download/pdf/328024322.pdf
https://core.ac.uk/download/pdf/328024322.pdf
https://core.ac.uk/download/pdf/328024322.pdf
https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs151652
https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs151652
https://link.springer.com/content/pdf/10.1007/978-3-7908-1870-3_5.pdf
https://link.springer.com/content/pdf/10.1007/978-3-7908-1870-3_5.pdf
https://ifigenia.org/images/5/54/FSS-1994-61-2-137-142.pdf
https://ifigenia.org/images/5/54/FSS-1994-61-2-137-142.pdf
https://core.ac.uk/download/pdf/82486542.pdf
https://core.ac.uk/download/pdf/82486542.pdf
https://link.springer.com/book/10.1007/978-3-0348-5921-9
https://link.springer.com/book/10.1007/978-3-0348-5921-9
https://books.google.com/books?hl=en&lr=&id=JmjfHUUtMkMC&oi=fnd&pg=PP1&dq=Fuzzy+Sets+and+Systems:+Theory+and+Applications&ots=jPc1NvIit8&sig=mpq7OsZK6unqAPSIp69XB3lAcqU
https://books.google.com/books?hl=en&lr=&id=JmjfHUUtMkMC&oi=fnd&pg=PP1&dq=Fuzzy+Sets+and+Systems:+Theory+and+Applications&ots=jPc1NvIit8&sig=mpq7OsZK6unqAPSIp69XB3lAcqU
https://www.sciencedirect.com/science/article/pii/0165011495001654
https://www.sciencedirect.com/science/article/pii/0165011495001654
https://www.sciencedirect.com/science/article/pii/S0898122199000565
https://www.sciencedirect.com/science/article/pii/S0898122199000565
https://onlinelibrary.wiley.com/doi/abs/10.1002/int.20418
https://link.springer.com/article/10.1007/s11518-010-5151-9
https://link.springer.com/article/10.1007/s11518-010-5151-9
https://link.springer.com/article/10.1007/s11518-010-5151-9
https://www.sciencedirect.com/science/article/pii/0165011496846112
https://www.sciencedirect.com/science/article/pii/0165011496846112
https://www.researchgate.net/profile/Ismat-Beg/publication/228744370_Similarity_measures_for_fuzzy_sets/links/5835651208aef19cb8224581/Similarity-measures-for-fuzzy-sets.pdf
https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs1492
https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs1492
https://www.sciencedirect.com/science/article/pii/S0167865516303142
https://www.sciencedirect.com/science/article/pii/S0167865516303142


104 
 

35. Wu, C., Luo, P., Li, Y., & Ren, X. (2014). A new similarity measure of interval-valued intuitionistic 

fuzzy sets considering its hesitancy degree and applications in expert systems. Mathematical 

Problems in Engineering, 2014. 

36. Zadeh, L. A. (1983). Linguistic variables, approximate reasoning and dispositions. Medical 

Informatics, 8(3), 173-186. 

37. Zhang, H. (2014). Linguistic intuitionistic fuzzy sets and application in MAGDM. Journal of Applied 

Mathematics, 2014, 1-11. 

38. Liu, Peide. "An approach to group decision making based on 2-dimension uncertain linguistic 

information." Technological and Economic Development of Economy 18.3 (2012): 424-437. 

39. Yu, X., Xu, Z., Liu, S., & Chen, Q. (2012). Multicriteria decision making with 2‐dimension linguistic 

aggregation techniques. International Journal of Intelligent Systems, 27(6), 539-562. 

 

 

 

 

 

  

https://www.hindawi.com/journals/mpe/2014/359214/
https://www.hindawi.com/journals/mpe/2014/359214/
https://www.hindawi.com/journals/mpe/2014/359214/
https://www.tandfonline.com/doi/pdf/10.3109/14639238309016081
https://www.tandfonline.com/doi/pdf/10.3109/14639238309016081
https://www.hindawi.com/journals/jam/2014/432092/
https://www.hindawi.com/journals/jam/2014/432092/
https://www.tandfonline.com/doi/abs/10.3846/20294913.2012.702139
https://www.tandfonline.com/doi/abs/10.3846/20294913.2012.702139
https://onlinelibrary.wiley.com/doi/abs/10.1002/int.21535
https://onlinelibrary.wiley.com/doi/abs/10.1002/int.21535

	complet Intoductory Pages.3
	Thesis modified copy with references.
	Definition [1]
	Definition [1] (1)
	Definition [20]
	Definition [19]
	Definition [22]
	Definition [37]
	Definition [38]
	Definition [3]
	Definition [3] (1)
	Definition [23]
	EXAMPLE 4.1.1.
	4.2. TYPE-II SIMILARITY MEASURE BETWEEN GLIVIFSESs.
	EXAMPLE 4.2.1.
	EXAMPLE 4.2.2.

	4.3. TYPE-III SIMILARITY MEASURE FOR GLIVIFSESs.
	EXAMPLE 4.3.1.
	EXAMPLE 4.3.2.

	4.4. TYPE-IV SIMILARITY MEASURE FOR GLIVIFSESs.
	EXAMPLE 4.4.1.
	EXAMPLE 4.4.2.

	4.5. TYPE-V SIMILARITY MEASURE FOR GLIVIFSESs.
	EXAMPLE 4.5.1.
	EXAMPLE 4.5.2.

	4.6. MODIFIED TYPE-V SIMILARITY MEASURE FOR GLIVIFSESs.
	EXAMPLE 4.6.1.

	4.7. MAX-MIN SIMILARITY MEASURE FOR GLIVIFSESs.
	EXAMPLE 4.7.1.
	EXAMPLE 4.7.2.
	4.8. MODIFIED MAX-MIN SIMILARITY MEASURE FOR GLIVIFSESs.
	EXAMPLE 4.8.1.
	EXAMPLE 4.8.2.

	DISTANCE BASED SIMILARITY MEASURES FOR GLIVIFSESs.
	5.1. MODIFIED HAMMING DISTANCE BASED SIMILARITY MEASURE FOR GLIVIFSESs.
	EXAMPLE 5.1.1.
	EXAMPLE 5.1.2.
	5.2. MODIFIED EUCLIDEAN DISTANCE BASED SIMILARITY MEASURE FOR GLIVIFSESs.
	EXAMPLE 5.2.1.
	EXAMPLE 5.2.2.

	5.3. ENTROPY SIMILARITY MEASURE FOR GLIVIFSESs.
	AXIOMS FOR ENTROPY.
	EXAMPLE 5.3.1.

	5.4. DISSIMILARITY MEASURE FOR GLIVIFSESs.
	EXAMPLE 5.4.1.

	5.5. CORRELATION OF GLIVIFSESs.
	EXAMPLE 5.5.1.

	5.6. LINGUISTIC FUZZY IMPLICATION FOR DISTANCE MEASURE BETWEEN GLIVIFSESs.
	EXAMPLE 5.6.1.
	2. Atanassov, K. T., & Atanassov, K. T. (1999). Interval valued intuitionistic fuzzy sets. Intuitionistic Fuzzy Sets: Theory and Applications, 139-177.




