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ABSTRACT

In this thesis, Grüss type integral inequalities were established for conformable

fractional integral given by Katugampola [11]. Grüss type integral provides the es-

timation of a function to its integral mean. It is useful in error estimations of the

quadrature rules in numerical analysis. Grüss type integral inequality to weighted

Ostrowski-Grüss type inequality are modi�ed for di¤erentiable mapping in terms of

the upper and lower bounds of the �rst derivative via Katugampola conformable frac-

tional integral. The inequality is then applied to numerical integration. Afterward,

the application to numerical integration of modi�ed Grüss type inequality to weighted

Ostrowski-Grüss inequality via conformable fractional integral for ��fractional dif-

ferentiable mapping is described.
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1.1 IntroductionIn y u l dIn y u l dIn Vo It ok ot to be ok Mr Qe

Goren�o et al. [1] provided the idea of fractional calculus, it is a branch!of

mathematics�concerned with the study and application of arbitrary order integrals

and derivatives. Despite being uncommon, the word "fractional" is nonetheless used

frequently. Fractional calculus is a topic that is both old and new. However, it may be

considered an unknown area as well, because it has only been objecting to specialist

conferences and treatises for a little more than twenty years. The use of fractional

calculus in numerical analysis and other branches of science and engineering, probably

including fractal phenomena, has generated a great deal of interest in calculus recent

years.

With the development of di¤erential and integral calculus, the di¤erential and

                       Chapter 1

        Introduction and Preliminaries
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integral inequalities also grew very rapidly. These inequalities have great importance

in mathematical sciences. These inequalities provide us lower and upper bounds

on functions and their derivatives and have wide applications in special means and

numerical integration.

Mathematics and allied subjects cover numerous aspects of convexity. Furthermore,

Finance and biology both heavily rely on the concept of convexity. This represents a

powerful principle that can be used in many ways. The technique foruinvestigating a

diverse range of unconnected topics in pure and applied. This includes looking at the

topic from di¤erent angles, as well as exploring it. The development of the theory of

inequalities is strongly related to the convexity concept. Di¤erential equation is an

important tool for understanding certain properties of it.

In the modelling of engineering and science issues, fractional di¤erential and inte-

gral equations are becoming increasingly signi�cant. It has been demonstrated that

in many cases, these models produce better outcomes than equivalent models using

integer derivatives. The theory of fractional di¤erential equations and the calculus of

fractional order derivatives have been thoroughly investigated. The existing result for

fractional di¤erential equations is established through a �xed point technique in the

majority of the current literature. Qualitative features of fractional di¤erential equa-

tions utilizing the Riemann-Liouville (R-L) and Caputo derivatives for di¤erential and

integral inequalities. Scientists develop a comparative conclusion for the R-L type of

integral inequalities by utilising the conventional Lipschitz condition on the nonlinear
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component. In this case, the comparison theorem and the explicit declaration come

in handy. One of the most important use for fractionaliintegral inequalities is deter-

mining solutions to numerical problems. This can be done in many di¤erent �elds,

such as quadrature, transform theory and probability. Additionally, these inequali-

ties provide upper and lower bounds on answers to equations which proceed them. In

mathematics, this is often very valuable information when trying to solve a problem

or �nd an optimal solution. A fractional di¤erential equation with variable coe¢ -

cients can be used to demonstrate the existence of the fractional di¤erential equation.

It is critical to remember this when working on equations and issues involving these

sorts of equations, since it will make solving them much easier. A quasi-linearization

approach is used to solve nonlinear fractional di¤erential equations. This is a novel

approach for solving these equations, and it is superior.

The purpose of this chapter is to look into generalizations of integraluinequalities

for n-times di¤erentiableimappings. Explicit limits for interior point rules are estab-

lished using the contemporary theory of inequality and a generic Peano kernel. Where

n times di¤erentiable functions are taken into account. The acquired integral equali-

ties are,then utilised to create inequalitiesffor n-times di¤erentiable mappingslon the

three norms jj:jj1; jj:jj�; jj:jj1: Speci�cally, explicit limits for perturbedltrapezoid, mid-

point, Simpson�s,aNewton-Cotes, and leftoand right rectangle rules are explored. The

inequalitiessare also applied to various compositekquadrature rules, and the analysis

allows for the determination of the partition necessary to ensure that the accuracy
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ofpthe result is within a speci�ed error tolerance.

Integration using weight functions is employed in a wide range of mathematical

issues, including approximation theory and spectral analysis, statistical analysis, and

distribution theory. Grüss proposed an integral inequality and Ostrowski discovered

an intriguing integral inequality related to di¤erentiable mappings, which has im-

portant implications in numericaleintegration, probability and optimizationatheory,

stochastic, statistics, information, and integralloperator theory. Many scholars have

focused their emphasis in recent years on the study and generalizations of the two

inequalities.

Recently, a novel inequality was built utilizing the weighted Peano kernel, which is

more generic than earlier inequalities discovered and discussed. The weighted Peano

kernel method not only broadened the results but also provided several more intrigu-

ing inequalities as special examples. By using the weightedhGrüss inequalitytfor

bounded di¤erentiableomappings, they created another version of the Ostrowski-

Grüssytype inequality, which generalizes the earlier inequalities discovered. It is also

possible to derive perturbed midpoint and trapezoid inequalities. This inequality is

expanded to accommodate for numerical integration applications.

Many mathematicians have great contributions in this direction in the form of

books, like, writing of the book by Mitrinovíc et al. [2] and the classical book by

Hardy Littlewood and Polya [3].

Ostrowski rintroduced the classical integralsinequality as follows:
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Theorem 1 : Let f x: [s1; s2 ]! R; with s1 < s2 be di¤erentiable mapping on (s1 ,

s2 ) whose derivative f
0
: (s1 , s2 )! R is bounded on (s1 , s2 ),

jf0 (t)j � M <1; for allxk 2 [s1; s2 ] :

Then, the inequality is given byfa ds re ye Sh Ke dr ha ak re fo bc wo fa ds of al t������ f(k)� 1

s2 � s1

s2Z
s1

f(t)dt

������ �
"
1

4
+

�
k � s1+s2

2

�2
(s2 � s1)2

(s2 � s1) M
#
;

fordall k 2 [s1;s2 ]; whereuM is somexconstant: Thexconstant 1
4
xis the best possible.

The constant 1
4
is sharp!in the sense that!it can not be replaced by a smaller one.

Many researchers introduced various kinds of Ostrowski type integral inequalities

to achieve desired results [2, 4, 5]. Mathematical inequalities play a signi�cant role

in the study of mathematics and many related subjects, and their applications are

diverse. In the case of fractional partial di¤erential equations, fractional integral

inequalities are useful in determining the uniqueness of solutions. They also give

upper and lower boundaries for fractional boundary value problem solutions. These

recommendations have led various researchers in the �eld of integral inequalities to

inquire into certain extensions by involving fractional calculus operators.

In 1935, Grüss [6] introduced an integral inequality which estimates the di¤erence

between the integral of the product of two functions and product of their integrals

and is given in the form of the following theorem:

Theorem 2 : Let f and g :[s1; s2 ] ! R be two integrable functions such that � �

f(k) �  and 
 � g(k) � � for all k 2 [s1; s2 ] and �;  ; 
 and � are constants. We,
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then, have the following inequality:������ 1

s2 � s1

s2Z
s1

f(k)g(k)dk � 1

(s2 � s1)2

s2Z
s1

f(k)dk

s2Z
s1

g(k)dk

������ � 1

4
( � �)(�� 
): (1.1)

The constant 1
4
is sharp.

In the meantime, a number of mathematician introduced the concept of non-

integer order of the derivatives and the integrals known as fractional derivatives and

the fractional integrals [1, 7, 3, 8].ty gi yo s ak go tr Th e ae a lo kf ds h wl �yo

The Grüss type inequality is useful in a variety of situations. Di¤erence equations,

integral arithmetic mean, and h-integral arithmetic mean are examples. On the other

hand, we investigate the Grüss type inequality in spaces with intern product, and as

a result, several applications of the Mellin transform of sequences and polynomials in

Hilbert spaces are investigated. In this regard, there are several notable inequalities

that use integer order integrals, including Jensen�s inequality, Holder�s inequality,

Minkowski�s inequality [10], and reverse Minkowiski�s inequality. The space of the

p-integrable functions, Lp(s1, s2 ), is particularly important for studying such in-

equalities, as well as functions, integrals, and norms. However, this employ the space

of Lebesgue mensurable functions, which accepts the space Lp(s1, s2 ). The advent of

fractional calculus allows for a variety of modi�cations, conclusions, and key ideas in

sciences, and other �elds. As a result, various fractional integrals, such as Riemann-

Liouville, Katugampola, Hadamard, Erd�elyi-Kober, Liouville, and Weyl types, might

be de�ned. Other fractional integrals can be discovered. As a result, various inequali-
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ties incorporating such formulations have been established throughout the years using

fractional integrals, such as the reverse Minkowski, Hermite-Hadamard inequalities,

Ostrowski type inequalities, and Fejer type inequalities. It is also highlighted that

there are extensions in the literature that use fractional integrals of Riemann-Liouville,

Hadamard, and the q-fractional integral.

The suitable fractional derivative (or integral) depends on the system under con-

sideration, and as a result, there are several works of literature devoted to various

fractional operators. Katugampola [11] has introduced new fractional operators that

generalize both the Riemann-Liouville and Hadamard fractional operators. Although

the Katugampola fractional integral operator is an Erd�elyi-Kober type operator, the

author contended that Hadamard equivalence operators cannot be obtained from

Erd�elyi-Kober type operators. In this sense, Almeida, Malinowska, and Odzijewicz

created the Caputo-Katugampola derivative, which generalizes the idea of Caputo

and Caputo-Hadamard fractional derivatives. The new operator turns out to be the

left inverse of the Katugampola fractional integral and retains some of the essential

features of the Caputo and Caputo Hadamard fractional derivatives. This derivative

generalizes the Caputo and Caputo Hadamard fractional derivatives.

In recent years, a limit based de�nition of conformable derivative and conformable

fractional integral was presented by Katugampola [11] in order to overcome some of

di¢ culties pointed out by [12].to i yo s k g tr T Te ae a l qf s th w �yo
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1.2 uPreliminaries

In this section, some de�nitions of fractional derivatives, fractional integrals [12,

13, 14], Riemann Integral and Katugampola derivative of fractional order [8] are

covered. Some basic de�nitions and concepts presented here will be used throughout

this dissertation.

Riemann Integral:z z oi rt Wvl bn ed sx pu Pu fw kd fa w oc d fa

Let f be a function de�ned on an interval I = [s1, s2]: Suppose that there is a

numberR such that for each " > 0; there is a � > 0 such that if _P = f([ki�1; ki]; ti) : i =

1; 2 ; 3; :::; ng is any tagged partition of [s1; s2 ]; where k i�ki�1 < � for i = 1; 2; 3; :::; n;

then �����
nX
i=1

f(ti)(ki � ki�1)�R

����� � ":

Then, we write to g yo k go tr h T az oi rt Wvl bn ev jf ih gv cb nd sx pd z oi rt W vl

R =
Z s2

s1

f(k)dk ;

and say that R is a Riemann integral of f over the interval [s1; s2 ]:

1.2.1 Fractional Derivatives

Liouville left-sided derivative : tl g yo k go tr h T az oi rt Wvl bn ed sx ag gc

D�
0+ [f(k)] =

1

�(n� �)

dn

dkn

Z k

0

(k � t)��+n�1f(t)dt; k > 0:
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Liouville right-sided derivative :rt Wvl bn ed sx pu Pu oc d fa wo tr Th Te

D�
0� [f(k)] =

(�1)n
�(n� �)

dn

dkn

Z 1

k

(k � t)��+n�1f(t)dt; k <1:

Riemann-Liouville left-sided derivative:th wl �yo aw lo d fa wf ds th wl

If f(k) 2 C ([s1; s2 ]) and s1 < k < s2 then the left sided Riemann-Lioville deriv-

ative istr Th Te ae a lo of ds th wl �

RLD�
s+1
[f (k)] =

1

�(n� �)

dn

dkn

Z k

s1

(k � t)n���1f(t)dt ; k � s1:

Riemann-Liouville right-sided derivative: td g yo so zg t af ds h wl

If f(k) 2 C ([s1; s2 ]) and s1 < k < s2 then the right sided Riemann-Lioville

derivative isCr La wn yu Gu Tq lo an Gr wo fa ds of al tiwn yu Gu Tq Pt Sg Gl Bo sn

RLD�
s2� [f (k)] =

(�1)n
�(n� �)

dn

dkn

Z s2

k

(k � t)n���1f(t) dt ; k � s2 :

Caputo left-sided derivative:gi tr Th Te az oi rt dg fa we a lo wl �yo

The Caputo left-sided derivative of function f (k) is de�ned as

�D
�
s+1
[f(k)] =

1

�(n� �)

Z k

s1

(k � t)n���1
dn

dkn
[f(t)]dt; k � s1:

Caputo right-sided derivative:Th Te n j E Pa yt ed B VD PX ZV or

The Caputo right-sided derivative of function f (k) is de�ned as

�D
�
s2� [f(k)] =

(�1)n
�(n� �)

Z s2

k

(k � t)n���1
dn

dkn
[f(t)]dt; k � s2 :
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Local fractional Yang derivative: to gi Kd

D�
�[f (k)]jk=k0 = lim

k!k0

��[f (k)� f (k0)]
(k � k0)

:

1.2.2 Fractional Integrals

Riemann-Liouville left-sided integral:Th Te U av Ld af lf ds H wl dk yo

Let f 2 L1 [s1, s2 ], the left-sided Riemann-Liouville J�s1+f (k) of order � > 0 with

s1 � 0 are de�ned by go tl B VD PX ZV or Th Te ae a l B Vx cg fy D

J�s1+f (k) =
1

�(�)

kZ
s1

(k � t)��1f (t)dt ; k � s1;

where �(�) is the Gamma function.ak go tr Thl B VD PX ZV oA a lo of D th wl �yo

Riemann-Liouville right-sided integral:Te ae oof ds H wl F M ds jv

Let f 2 L1 [s1; s2 ], the right-sided Riemann-Liouville J�s2�f (k) of order � > 0 with

s1 � 0 are de�ned bytj gi yo so ak l B VD PX ZV ogo tr a lo of ds yo

J�s2�f (k) =
1

�(�)

s2Z
k

(t � k)��1f (t)dt ; k � s2 ;

where �(�) is the Gamma functionto gi yo S of ds H �yo

J0
s+1
f (k) = J0

s�2
f (k) = f (k):
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Conformable Fractional Integral:A N I E M L W T Z of ds H w P Q

Let � 2 (n; n+1) and � = ��n: Then, the left and right-sided conformable

integrals of order � > 0 are given by:

J�s1f (k) =
1

n!

kZ
s1

(k � t)n(t � s1)��1f (t) dt ;

andd p b f r u a lo of ds Cr La wn yu Guc d fa wlo an Gr Gn Vo pr Qen Hl Pt Sg Gl Bo sn

J s2s1 f (k) =
1

n!

s2Z
k

(t � k)n(s2 � t)��1f (t)dt ;

respectively. Note that for � = n+1; and � = 1; n = 0; 1; 2;...

The conformable fractional integral becomes RL-integrals, that is f l b xow q

J s1� f (k) = J�
s+1
f (k);

and J s2� f (k) = J�
s�2
f (k):

Local fractional Yang integral:P R Z I C Q L G FT R M L X Wof

It is de�ned as follows:Aq go tr Th lo ds th wl �y

J�s2 f (k) =
1

�(1 + �)

s2Z
s1

f (t)(dt)�:

Hermite-Hadamard�s Inequality:r ha k r a dof ds H w l F as of l ti

Let f : I � R! R be a convex function de�ned on an interval I of real numbers

and s1, s2 2 I with s1 < s2 . The inequalityIn re ye s d fo b c wo fa ds of a l

f (
s1 + s2
2

) �
s2Z
s1

f (k)dk � f (s1) + f (s2 )

2
;

is well known in the literature as Hermite-Hadamard�s inequality.
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Katugampola Fractional Integral:

Let [s1; s2 ] � R be a �nite interval. Then the Katugampola fractional integral of

order � > 0 are de�ned by:

�I�s1+f(k) =
�1��

�(�)

kZ
s1

t��1f(t)

(k� � t�)1��
dt;

where s1 < k < s2 ; � > 0; � is Gamma function and the integral exist.

Katugampola Derivative of Fractional order and Conformable Frac-

tional Integral:re ye ha ak H E P M Z Q M V

The Katugampola derivative of fractional order � 2 (0; 1] and for s 2 [0;1) is

de�ned as:In re y Sh e dr h ak re fo b wo fa ds of al

D�(f (s)) = lim
"!0

f (se"s
��
)� f (s)
"

; (1.2)

D�(f (0)) = lim
s!0

D�(f (s));

provided the limit exists. If f is fully di¤erentiable at s, thenL VF x f zg w

D�(f (s)) = s1��
df (s)

ds
: (1.3)

A function f is �-di¤erentiable at a point s � 0; if the limit in (1:2) exists and is

�nite. Consequently, the results are given in the form of the following theorem: to g

yo k go tr h T az oi rt Wz v u Tq lo an Gr wo fa ds of al es sh ng on yu gu hd wn yu Gv

wo fa ds of al ti Td ar eq re ye re ye Sh Ke dr ha ak re fo bc wo fa ds of al ti i Sh Ke dr ha

ak re fo bc wo fa ds of al ti i i In re ye Sh Kj o bc Gv wo fa ti wn yu o fa ds of al es sh ng

on yu gu hd Gu l Th Te az oi rt dg fa we a lo wl fh bn ev jf ih gv cb nd sx pd z oi rt W vl
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Theorem 3 : Let � 2 (0; 1] and f; g be ��di¤erentiable at a point s > 0; then

(i) D�(s1f + s2g) = s1D
�(f ) + s2D

�(g); for all s11; s12 2 R;

(ii) D�(s1) = 0; for all constant functions f (s) = s1;

(iii) D�(fg) = fD�(g) + gD�(f); he ly ad to gi yo soes sh ng Wn y

(iv) D�( f
g
) = gD�(f )�fD�(g)

g2
; he ly to gi yo soe ad to g s sh ng cy

(v) D�(sn) = nsn��; for all n 2 R; he ly ad to gi yo s sh ng Wn y

(vi) D�(f og)(s) = f
0
(g(s))D�(g(s)); for f is di¤erentiable at g(s):

Conformable Fractional Integral : Let � 2 (0; 1] and 0 � s1 < s2 : A function

f : [s1, s2 ]! R is ��fractional integral on [s1, s2 ]; if the integralo bc wo fa ds of alZ s2

s1

f (t)d�t =

Z s2

s1

f (t)t��1dt ; (1.4)

exists and is �nite. Further,fo bc ds fo bc k e p o x wo fa ds of al

J s1� (f (t)) = J�1 (t
��1f ) =

Z t

s1

f (s)

s1��
ds;

where the integral is the Riemann improper integral with � 2 (0; 1]:

The following results are also obvious:fo bc wo fa ds fo bc of al ds fo bc wo fa ds

Lemma 4 : Let the conformable di¤erential operator D� be given as in theorem (3),

where � 2 (0; 1] and s � 0 and suppose that f and g are ��di¤erentiable. Then

(i) D�(ln s) = s��, for s > 0; he ly sn sh nr Wn y

(ii) D�
hR s
s1
f (s; t)

i
d�t = f (s; s) +

R s
s1
D�[f (s; t)]d�t ;

(iii)
R s2
s1
f (s)D�(g(s))d�s = fg js2s1 �

R s2
s1
g(s)D�(f (s))d�s:
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p-Convex Function:

Let I � (0;1) be a real interval and p 2 Rnf0g: A function f : I! R is said to

be p�convex, if

f
�
[tsp1 + (1� t)sp2 ]

1=p
�
� tf(s1) + (1� t)f(s2 ); (1.5)

for all s1; s2 2 I and t 2 [0, 1]. to g yo k go tr h T az oi rt Wz v u Tq lo an Gr wo fa ds

of al es sh ng on yu gu hd wn yu Gv wo fa ds of al ti Td ar eq re ye re ye Sh Ke dr ha ak

re fo bc wo fa ds of al ti i Sh Ke dr ha ak re fo bc wo fa ds of al ti i i In re ye Sh Kj o bc

Gv wo fa ti wn yu o fa ds of al es sh ng on yu gu hd Gu l Th Te az oi rt dg fa we a lo wl

fh bn ev jf ih gv cb nd sx pd z oi rt W vl
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2.1 Existing Literaturewn u G Tq l

Kirmaci [15] provided some inequalities for di¤erentiable convex mappings, includ-

ing Hermite-integral Hadamard�s inequality for convex functions. There are also some

applications to speci�c methods of real numbers mentioned. Then, several midway

formula error estimates are derived.

Alomari et al. [16] addressed various extensions of the Ostrowski integral inequal-

ity for limited variation maps. It also considered distinct Lipschitzian, monotonic,

completely continuous, and n-times di¤erentiable mapping equations with error es-

timates. In certain circumstances, speci�c techniques or numerical quadrature rules

are used to do these computations. Their main goal is to prove several Ostrowski�s

type inequalities for the class of convex (concave) functions.

                       Chapter 2

     Literature Survey and Motivations
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Theorem 5 Let f : I � [0;1)! R be a di¤erentiable mapping on I� such that f0 2

L [s1; s2 ]; where s1,s2 2 I with s1 < s2 . If jf
0j is convex function on [s1; s2 ]; then the

following inequality holds:of al ti In re ye Sh Ke dr ha e fo bc wo fa ds of al ti In re������f(k)� 1

s2 � s1

s2Z
s1

f(u)du

������
�

"
1

6
+
1

3

�
(k � s1)
(s2 � s1)

�3#
jf 0(s2 )j+

"
1

6
+
1

3

�
(s2 � s1)
(s2 � s1)

�3#
jf 0(s1)j; (2.1)

for all k 2 [s1; s2 ]:of al ti In re ye Sh Ke dr ha e fo bc wo fa ds of al ti In re ye Sh Ke dr

For functions with convex derivative absolute values, an Ostrowski like inequality

may be deduced as follows:of al ti In re ye Sh Ke dr ha e fo bc wo fa ds of al t

Corollary 6 In Theorem (5), additionally, if jf0(k)j � M, for M > 0; then the in-

equality������f(k)� 1

s2 � s1

s2Z
s1

f(u)du

������ �M(s2 � s1)
�
1

3
+
(s2 � k)3 + (k � s1)3

3(s2 � s1)3

�
; (2.2)

holds. The constant 1
3
is the best possible in terms of being replaceable by smaller one.

Corollary 7 In Theorem (5), choose k = s1 + s2
2

; then:ak re fo z fa ds of al ti������f(s1 + s22
)� 1

s2 � s1

s2Z
s1

f(u)du

������ � 5(s2 � s1)
24

[jf 0(s2 )j+ jf
0
(s1)j]: (2.3)

Liu [17] proved some super-multiplicative or super-additive Ostrowski type in-

equalities for h-convex functions are obtained using Riemann-Liouville fractional in-

tegrals. They present fresh estimates for various sorts of Ostrowski inequalities for

fractional integrals.a ds re ye Sh Ke
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Edmundo et al. [10] presented the concepts of fractional order derivatives and

integrals used in Mathematics, Physics and di¤erent courses of Engineering. In con-

trast to what happens in fractional calculus, the derivative in classical calculus has

a signi�cant geometric interpretation. It is related with the idea of tangent. This

disparity might be viewed as an issue for fractional calculus poor success up until

1900. In 1826, Abel solved an integral equation related to the tautochrone issue,

which is regarded as the �rst use of fractional calculus. This is referred to as the �rst

Liouville de�nition. The second de�nition proposed by Liouville is stated in terms

of an integral and is known as the Liouville version for the integration of noninte-

ger order. Riemann produced the most important article after a series of studies by

Liouville, ten years after his passing. Furthermore, both the Liouville and Riemann

formulations contain the so-called complementary function, which is a problem to be

solved. The Caputo version is compared to the Riemann-Liouville formulation be-

cause of its importance. Caputo�s concept inverts the order of integral and derivative

operators with the noninteger order derivative of the Riemann-Liouville equation.

The distinction between these two formulations is summarized as:

In Caputo, �rst compute the derivative of integer order, then compute the integral

of noninteger order. In the Riemann-Liouville equation, �rst compute the integral of

noninteger order, then compute the derivative of integer order. It is vital to note

that the Caputo derivative may be used to confront situations when the beginning

conditions are done in the function and in the relevant integer order derivatives.
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Following the inaugural congress at the University of New Haven in 1974, fractional

calculus has grown and various applications in many �elds of scienti�c knowledge

have arisen. As a result, multiple ways to solving derivative issues have been o¤ered,

and distinct de�nitions of the fractional derivative are accessible in the literature.

In addition, it provides systematic formulations of existing fractional derivatives and

integrals.

Qayyum et al. [18] generate inequalities of the Ostrowski type inequality. In

terms of the second derivative�s norms or limits, their work developed limits for

departures from combinations of integrals across end intervals that span all feasible

interval lengths. Furthermore, perturbed outcomes were discovered that may be

explained statistically. It is also found that limitations on a speci�c quadrature rule

for di¤erentiable functions, which extend the two times di¤erentiable functions. There

is also discussion of some fresh disturbed outcomes. Their expanded inequalities have

applications in approximation theory, probability theory, and numerical analysis. It

demonstrate how the inequalities derived for the cumulative distribution function may

be used. Using extended fractional integral operators, the following theorem is the

proof of several novel inequalities related to the Ostrowski inequality.yo s

Theorem 8 Let f : [s1; s2 ]! R be a two times di¤erentiable function,

�(k ;�; �) : =
1

2 (�+ �)
[�(k � s1)� �(s2 � k)]f

0
(k)� f (k)

+
1

�+ �
[�M (f ; s1; k) + �M (f ; k ; s2 )]; (2.4)
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where M (f; s1; k) is the integral mean de�ned in [19]. Then,Ho k go t H s jt Sc

j�(k ;�; �)j

�

8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:

[�(k � s1)� �(s2 � k)] jjf
00 jj1

6(�+�)
;

f
00 2 L1[s1; s2 ];

1
(2m+1)1=m

� [�m(k � s1)m+1 � �m(s2 � k)m+1]1=s2 jjf 00 jjs
2 (�+�)

;

f
00 2 Ls[s1; s2 ];

s > 1; 1
s
� 1

m
= 1;

(�(k � s1)� �(s2 � k) + j�(k � s1)� �(s2 � k)j);

� jjf
00 jj1

4(�+�)
; f

00 2 L1[s1; s2 ];

for all k 2 [s1; s2 ]:Hs jt z fa ds re ye Sh Ke dr ha ak re fo bc

Many scholars have recently focused on the theory of convexity. As a result, em-

ploying fresh and original ideas, the traditional notions of convex sets and convex

functions have been expanded and developed in numerous areas. It is worth noting

here that, in addition to classical convex functions, the class of p-convex functions

also contains harmonically convex functions. Many academics have been drawn to the

link between the theory of convex functions and the theory of inequalities. Hermite-

Hadamard inequality, named after Hermite and Hadamard, is one of the most thor-

oughly studied inequalities for convex functions. This inequality is both required and

su¢ cient for a function to be convex. For a recent study on Hermite-Hadamard type

inequalities and look at the p-convex function class for two new integral identities

for di¤erentiable functions are derived. It will establish our main results, which are
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Hermite-Hadamard type inequalities for di¤erentiable p-convex functions, using these

results. To solve our integrals, we employ hypergeometric functions. It is hoped that

the concepts and methodologies presented in this study will spark additional research

in this �eld. Tq lo an l Pt t Sg Gl Bo sn ar j

Noor et al. [20] proved some Hermite-Hadamard type inequalities for di¤erentiable

p-convex function in the form of the following theorem:

Theorem 9 Let f : I = [s1; s2 ] � R ! R be a di¤erentiable function on I� (the

interior of I) with s1 < s2 , such that f
0 2 L [s1; s2 ]: If jf

0j is p�convex function, then

we have:������ f (s1) + f (s2 )2
� p

sp2 � s
p
1

s2Z
s1

f (k)

k 1�p
dk

������ � s1�p2 :
sp2 � s

p
1

2p
fK1jf

0
(s1)j+K2 jf

0
(s2 )jg;

where Fr id e ng on yu gu he ly ad s sh ng on yu gu he ly ady

K1 =
2

3
:2F1

�
1� 1

p
; 3; 4; 1� s

p
1

sp2

�
� 1

2
:2F1

�
1� 1

p
; 2 ; 3; 1� s

p
1

sp2

�
+
1

12
:2F1

�
1� 1

p
; 2 ; 4;

1

2

�
1� s

p
1

sp2

��
; (2.5)

and Hs jt Sc tr Bg kn Hz De La ymz De La ym ir jt Sc tr Bg kt

K2 =
1

3
:2F1

�
1� 1

p
; 2 ; 4; 1� s

p
1

sp2

�
� 1

2
:2F1

�
1� 1

p
; 1; 3; 1� s

p
1

sp2

�
+
1

2
:2F1

�
1� 1

p
; 1; 3;

1

2

�
1� s

p
1

sp2

��
� 1

12
:2F1

�
1� 1

p
; 2 ; 4;

1

2

�
1� s

p
1

sp2

��
: (2.6)
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Theorem 10 Let f : I = [s1; s2 ] � R ! R be a di¤erentiable function on I� (the

interior of I) with s1 < s2 , such that f
0 2 L [s1; s2 ]: If jf

0jq is p�convex function where

q � 1; then, we have:������ f (s1) + f (s2 )2
� p

sp2 � s
p
1

s2Z
s1

f (k)

k 1�p
dk

������ � s1�p2 :
sp2 � s

p
1

2p
fK1jf

0
(s1)jq +K2 jf

0
(s2 )jqg1=q;

where K1;K1 are given by (2.5) and (2.6) and

H = 2F1

�
1� 1

p
; 2 ; 3; 1� s

p
1

sp2

�
� 2

�
1� 1

p
; 1; 2 ; 1� s

p
1

sp2

�
+2F1

�
1� 1

p
; 1; 3;

1

2

�
1� s

p
1

sp2

��
:

Convexity is currently receiving a lot of attention from many researchers, which

has led to the extension and generalization of classical concepts such as convex sets

and convex functions using innovative ideas. It ís worth mentioning here that this

new research has had a number of important consequences for our understanding

of mathematics. Besides the classic convex functions, there is also a class of p-

convex functions which was introduced and studied recently. Many researchers have

recently become interested in the interrelationship between convex function theory

and inequality theory. One of the most extensively studied inequalities involving

convex functions is Hermite-Hadamard inequality, which was developed by French

mathematicians Pierre Hermite and Henri Hadamard.xr to gi yo s go t

Y¬ld¬z et al. [21] established numerous important inequalities for particular dif-

ferentiable mappings using the Riemann-Liouville fractional integrals and are related

to the well-known Ostrowski type integral inequality. Numerous authors have re-
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cently considered a number of generalizations of the Ostrowski integral inequality for

mappings with bounded variation as well as Lipschitzian, monotonic, absolutely con-

tinuous, and n-times di¤erentiable mappings with error estimates for certain special

means and other numerical quadrature rules.

Theorem 11 Let f : [s1; s2 ]! R; be a di¤erentiable mapping on (s1; s2 ) with s1 < s2

such that f
0 2 L [s1, s2 ]: If jf

0j is convex on [s1; s2 ] and k 2 [s1; s2 ]; then the following

inequality for fractional integrals with � > 0 holds:yu gu he ly ad to�����(k - s1)� + (s2 - k)�(s2 - s1)�+1

�
f (k)� �(�+ 1)

(s2 - s1)�+1
[J�k+f (s2 ) + J�k�f (s1)]

����
� 1

�+ 2

8>><>>:
�
(s2�k)�+2
(s2�k)�+2 +

(k�s1)�+1
(s2�s1)�+1

h
1

�+1
+ (s2�k)

(s2�s1)

i�
jf 0(s1)j

+
�
(k�s1)�+2
(s2�k)�+2 +

(s2�k)�+1
(s2�s1)�+1

h
1

�+1
+ (k�s1)

(s2�s1)

i�
jf 0(s2 )j

9>>=>>; ;

where � is a Euler Gamma function. Fr id es sh u fx ia r ea wa in x yo wa to gi yo so p

Mehmet et al. [14] constructed Hermite- Hadamard- Fejér type inequalities for

p-convex functions. He also constructed an integral identity and di¤erent Hermite-

Hadamard-Fejér type integral inequalities for p- convex functions. Several Hermite-

Hadamard and Hermite-Hadamard-Fejér inequalities for convex, harmonically convex,

and p- convex functions were established. Because Hermite-Hadamard type inequali-

ties and fractional integrals are widely used, many scholars expand their investigations

to Hermite-Hadamard type inequalities employing fractional integrals rather than in-

teger integrals. More and more Hermite-Hadamard inequalities involving fractional

integrals have recently been established for various classes of functions. Some of the

conclusions for p-convex functions are presented here.
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Theorem 12 Let f : I � Rnf0g ! R be a harmonically convex function and s1, s2

2 I with s1 < s2 . If f 2 L [s1; s2 ] and w: [s1; s2 ] � Rnf0g ! R is a non-negative,

integrable and harmonically symmetric with respect to 2s1s2
s1 + s2

; thenak re fo bc wo fa dx

f

�
2s1s2
s1 + s2

� s2Z
s1

w(k)

k2
dk �

s2Z
s1

f (k)w(k)

k2
dk � f (s1) + f (s2 )

2

s2Z
s1

w(k)

k2
dk :

Theorem 13 Let f : I � R(0; 1) ! R be a di¤erentiable function on I� such that

f
0 2 L [s1; s2 ], where s1; s2 2 I

�
and s1 < s2 . If jf

0j is p�convex function on [s1; s2 ]

for p 2 Rnf0g, w: [s1; s2 ]! R is continuous, then the following inequality holds:������
s2Z
s1

f (k)w(k)

k 1�p
dk � f

 �
sp1 + s2

p

2

�1=p! s2Z
s1

w(k)

k 1�p
dk

������
�

�
s2
p + sp1
p

�2
jjwjj1[C1(p)jf

0
(s1)j+ C2 (p)jf

0
(s2 )j];

whereak re fo bc wo fa ds of al ti ak re fo bc wo fa dse fo bc wo fa ds of al wo fa ds o

C1(p) =

264
1
2Z
0

t2

[tsp1 + (1� t)s2 p]
1� 1

p

dt +

1Z
1
2

t � t2

[tsp1 + (1� t)s2 p]
1� 1

p

dt

375 ;

C2 (p) =

264
1
2Z
0

t � t2

[tsp1 + (1� t)s2 p]
1� 1

p

dt +

1Z
1
2

(1� t)2

[tsp1 + (1� t)s2 p]
1� 1

p

dt

375 :

Remark 14 In theorem (13), Mehmet Kunt et al. [14] observered the followings:

(1) For p = 1 and w(k) = 1, one has [[15], Theorem 2.2],

(2) If choose w(k) = 1, one has [[20], Theorem 3.3].L B E M W Z p q a z
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Gauhar et al. [22] proposed several new Grüss type inequalities which are gener-

alizations of basic Grüss type inequality (1.1) for conformable fractional integrals in

their study in the form of following theorem:ak re fo e

Theorem 15 Let f be an integrable function on [0; 1). Assume that there exist two

integrable functions �1; �2 on [0; 1) such that Fr id es sh gi yo so ak

�1(k) � f (k) � �2 (k); k 2 [0;1): (2.7)

Proof. For k ; �; � > 0, we have:en Hl Pt Sg Gl B uo a er Fr id es

�=��1(k)�=�f(k) +� =��2 (k)�=�f(k) �� =��2 (k)�=��1(k) +� =�f(k)�=�f(k):

(2.8)

From (2.7), for all � ; � � 0; it follows thaten Hl Pt Sg Gl Bo sg ln nx Y es

[�2 (�)� f(�)][f(�)� �1(�)] � 0:

Therefore, we haveen Hl Pt Sg Gl Bo sn r x p Hl el na er fa pw T Lx Fr id e

�2 (�)f(�) + �1(�)f(�) � �1(�)�2 (�) + f(�)f(�): (2.9)

Multiplying both sides of (2.9) by 1
�(�)

( k
�� ��

�
)��1���1 ,en H el na e id es

f(�)
1

�(�)
(
k� � ��

�
)��1���1�2 (�) + �1(�)

1

�(�)
(
k� � ��

�
)��1���1f(�)

� 1

�(�)
(
k� � ��

�
)��1���1�1(�)�2 (�)en Hl Pt S ak re r id es

+f(�)f(�)
1

�(�)
(
k� � ��

�
)��1���1:en Hl P t S aka er Fr id es (2.10)
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Integrating (2.10) over � 2 (0; k)en Hl Pt S ak re fo bc wo fa ds H na er Fr id es

f(�)

kZ
0

1

�(�)
(
k� � ��

�
)��1���1�2 (�)d� + �1(�)

kZ
0

1

�(�)
(
k� � ��

�
)��1���1f(�)d�

� �1(�)

kZ
0

1

�(�)
(
k� � ��

�
)��1���1�2 (�)d� + f(�)

kZ
0

1

�(�)
(
k� � ��

�
)��1���1f(�)d� :

We know that,en Hl Pt Sg Gl Bo sn Hl el na er Fr id p fo bc wo fa ds oz

�=�f(k) = 1

�(�)

kZ
0

(
k� � ��

�
)��1

f(�)

� 1��
d� ; (2.11)

and ea wa in a sh ti lt Do yo wa to gi yo so wM O fo bc wo fa ds of al ti ak re fo bc wo fa

f(�)

kZ
0

1

�(�)
(
k� � ��

�
)��1���1�2 (�)d�

= f(�)
1

�(�)

kZ
0

(
k� � ��

�
)��1

�2 (�)

� 1��
d� ;

= f(�)
1

�(�)

kZ
0

(
k� � ��

�
)��1

f(�)

� 1��
d� ;

= f(�)�=�f(k) = f(�)�=��2 (k):

The integration leads tob aI Wm Pc Qk iy ox fz ql b aI Wm Pc Qk iy ox fz ql sq Me Mi

f(�)�=��2 (k) + �1(�)
�=�f(k) � �1(�)

�=��2 (k) + f(�)�=�f(k): (2.12)

Multiplying both sides of (2.12) by 1
�(�)

( k
�� ��

�
)��1���1 gives,ea in sh ti lt o

�=��2 (k)
1

�(�)
(
k� � ��

�
)��1���1f(�)

+�=�f(k) 1

�(�)
(
k� � ��

�
)��1���1�1(�)

� �=��2 (k)
1

�(�)
(
k� � ��

�
)��1���1�1(�)

+�=�f(k) 1

�(�)
(
k� � ��

�
)��1���1f(�): (2.13)
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Integrating (2.13) over � 2 (0;k) ea wa in x yo a ea wa in x yoto gi yo so o

�=��2 (k)
1

�(�)

kZ
0

(
k� � ��

�
)��1���1f(�)d�

+�=�f(k) 1

�(�)

kZ
0

(
k� � ��

�
)��1���1�1(�)d�

� �=��2 (k)
1

�(�)

kZ
0

(
k� � ��

�
)��1���1�1(�)d�

+�=�f(k) 1

�(�)

kZ
0

(
k� � ��

�
)��1���1f(�)d�: (2.14)

Then by integrating, we getea wa in a sh x to gi yo so ak go

�=��1(k)�=�f(k) +� =��2 (k)�=�f(k) �� =��2 (k)�=��1(k) +� =�f(k)�=�f(k):

While studying the error bounds of di¤erent numerical methods, Ostrowski in-

equality plays a vital role. A quadrature rule is a mathematical formula that helps to

calculate the position of points on a plane. This was motivated by the need to �nd

re�nements, generalizations, extensions, and applications for this tool. Researchers

continue to search for new ways to improve or perfect these rules in order to bet-

ter serve their purposes. Fractional calculus is a �eld of mathematics that studies

non-integral order integral and di¤erential operators. Many Mathematicians, notably

Liouville, Riemann, weyl, and Fourier, have made signi�cant contributions to this

topic. Abel, Lacroix, Leibniz, and Grunwald expanded on the theory underlying
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fractional calculus. Riemann developed the �rst de�nition for an operator regulating

integrals over nonlinear spaces in terms of a fractional derivative.

Hurye Kadakal [12] used a better technique than power-mean inequality and an

identity for di¤erentiable functions, he obtained inequalities for functions whose ab-

solute value derivatives at speci�c powers are convex. It is demonstrated numerically

that enhanced power-mean integral inequality provides a superior method than power-

mean inequality. There are also some applications to special means of real numbers

and some error estimates for the midpoint formula are described by this author.

Theorem 16 Let f : I� � R ! R be a di¤erentiable mapping on I�; s1; s2 2 I with

s1 < s2 and let q � 1. If the mapping jf
0jq is convex on the interval [s1; s2 ], then the

following inequality holds: Hs jt z m ir go tv yd exs sh ng on yu gu he ly wk qu d pm Q���� 1

s2 � s1

Z s2

s1

f(k)dk � f

�
s1 + s2
2

�����
�

�����s2 � s14

�
1

q + 2

�1=q "�����f 0 �s1 + s22

�����q + jf 0(s2 )jqq + 1

�1=q
+

�����f 0 �s1 + s22

�����q + jf 0(s1)jqq + 1

�1=q#����� : (2.15)

Iqbal et al. [23] stated the fact that the Grüss type inequality connection between

the integral of the product of two functions and the product of their integrals. The

continuous and discrete cases of Grüss-type variants play a considerable role in ex-

amining the qualitative conduct of di¤erential and integral equations. Their main

purpose is to show some new and modi�ed versions of the Grüss inequality by using a

generalized k-fractional derivative. Such new versions of the inequalities are supposed
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to be vital and the exploration has continued to develop investigations for such kinds

of variants. The Grüss inequality is one of the most fascinating inequalities amongst

the �eld of inequalities. Some Ostrowski�s type inequalities for the Riemann-Stieltjes

integral of continuous complex valued integrands de�ned on the complex unit circle

and various subclasses of integrators of bounded variation are given. Natural ap-

plications for functions of unitary operators in Hilbert spaces are provided as well.

For the generalized fractional derivative, also used Young�s inequality to �nd new

forms of inequalities. Such conclusions for this novel and generalized fractional deriv-

ative are extremely useful and valuable in the domains of di¤erential equations and

fractional di¤erential calculus, both of which have a strong connections to real-world

situations. These �ndings may stimulate additional research in a variety of �elds of

pure and applied sciences. Mathematical inequalities play a signi�cant role in the

study of mathematics and many related subjects, and their applications are diverse.

In the case of fractional partial di¤erential equations, fractional integral inequalities

are useful in determining the uniqueness of solutions. They also give upper and lower

boundaries for fractional boundary value problem solutions. These recommendations

have led various researchers in the �eld of integral inequalities to inquire into certain

extensions by involving fractional calculus operatorsAnd also proved several new in-

tegral inequalities for the k-Hilfer fractional derivative operator, which is a fractional

calculus operator.
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Theorem 17 Let k > 0 and (D�+�(n��)
s1+;k


) be a positive function on [0;1), and let

(kD�;�
s1+f) denote the Hilfer k-Hilfer fractional derivative of order �; 0 < � < 1, and

type 0 < � � 1: Suppose that there exist (D�+�(n��)
s1+;k

	1); (D
�+�(n��)
s1+;k

	2) such that

(D
�+�(n��)
s1+;k

	1)(�) � (D�+�(n��)
s1+;k


)(�) � (D�+�(n��)
s1+;k

	2)(�); (2.16)

for all � 2 [0;1): Then,

(kD�;�
s1+	1)(�)(

kD�;�
s1+
)(�) + (

kD�;�
s1+	2)(�)(

kD�;�
s1+
)(�)

� (kD�;�
s1+	1)(�)(

kD�;�
s1+	2)(�) + (

kD�;�
s1+
)(�)(

kD�;�
s1+
)(�): (2.17)

Proof. Using (2.16) for all 
 � 0; � � 0; we have

h
(D

�+�(n��)
s1+;k

	2)(
)� (D�+�(n��)
s1+;k


)(
)
i

�
h
(D

�+�(n��)
s1+;k


)(�)� (D�+�(n��)
s1+;k

	1)(�)
i
� 0;

and then b aI Wm Pc Qk iy ox fz ql b aI Wm Pc Qk iy ox fz ql sq Me Mi

(D
�+�(n��)
s1+;k

	2)(
)(D
�+�(n��)
s1+;k


)(�) + (D
�+�(n��)
s1+;k

	1)(�)(D
�+�(n��)
s1+;k


)(
)

� (D
�+�(n��)
s1+;k

	1)(�)(D
�+�(n��)
s1+;k

	2)(
) + (�)(D
�+�(n��)
s1+;k


)(
)(D
�+�(n��)
s1+;k


):(2.18)

If we multiply by (��
)
�(n��)

k
�1

k�k(�(n��)) on both sides of (2.18) and integrate the resulting
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identity for the variable 
 over the interval (s1; �), we get

(D
�+�(n��)
s1+;k


)(�)
1

k�k(�(n� �))

�Z
s1

(� � 
)
�(n��)

k
�1(D

�+�(n��)
s1+;k

	2)(
)d


+(D
�+�(n��)
s1+;k

	1)(�)
1

k�k(�(n� �))

�Z
s1

(� � 
)
�(n��)

k
�1(D

�+�(n��)
s1+;k


)(
)d


� (D
�+�(n��)
s1+;k

	1)(�)
1

k�k(�(n� �))

�Z
s1

(� � 
)
�(n��)

k
�1(D

�+�(n��)
s1+;k

	2)(
)d


+(D
�+�(n��)
s1+;k


)(�)
1

k�k(�(n� �))

�Z
s1

(� � 
)
�(n��)

k
�1(D

�+�(n��)
s1+;k


)(
)d
;

which can be written as follows:

(D
�+�(n��)
s1+;k


)(�)(kD�;�
s1+	2)(�) + (D

�+�(n��)
s1+;k

	1)(�)(
kD�;�

s1+
)(�)

� (D
�+�(n��)
s1+;k

	1)(�)(
kD�;�

s1+	2)(�) + (D
�+�(n��)
s1+;k


)(�)(kD�;�
s1+
)(�): (2.19)

Now, multiplying by (��
)
�(n��)

k
�1

k�k(�(n��)) on both sides of (2.19) and integrate the resulting

identity for the variable � over the interval (s1; �), we get

(kD�;�
s1+	1)(�)(

kD�;�
s1+
)(�) + (

kD�;�
s1+	2)(�)(

kD�;�
s1+
)(�)

� (kD�;�
s1+	1)(�)(

kD�;�
s1+	2)(�) + (

kD�;�
s1+
)(�)(

kD�;�
s1+
)(�):

This completes the proof.

2.2 Conceptual Framework

The main objective of the present study is to establish weighted Ostrowski-Grüss

type inequality for di¤erentiable mapping in terms of the upper and lower bounds of



31

the �rst derivative via Katugampola conformable fractional integral.

� In chapter-3, some integral inequalities via conformable fractional integrals are

existing in literature are presented. Hs jt Sc tr

� In chapter-4, modi�cation of the Grüss type inequality to weighted Ostrowski-

Grüss type inequalities via conformable fractional integral are established.

� In chapter-5, application to numerical integration is given.

� In chapter-6, some conclusions and future research study in directions of further

generalized inequalities are discussed. These generalized inequalities can be

helpful in mathematical analysis.Mr Q en Hl Pt Sg Gl Bo sn Hl l na er Fr id es

MQ en Hl Pt Sg Gl Bo sn Hl el na er Fr id es Mr Q en Hl Pt Sg Gl Bo sn Hl e el na

er Fr id es Mr Q en Hl Pt l na eid sM en Hl Pt Sg Gl Bo sn Hl el na er Fr id es Mr

Q en Hl Pt Sg Gl Bo sn Hl e Sg Gl Bo sn Hl el na er Fr id es Mr Q en Hl Pt Sg Bo

sn Hl el na er Fr id es Mr Q en Hl Pt Sg Mr Qw en id es sh r ha ak re fo bc wo fa ds

qf al ti Td ar eq fa ac yo ad El hn da be aw wo ph On yu st wh Kh dr yl gt ad Kn

dr ar br in Ko La bu ma nu Ko fr or cs pe wa th in



32

e

y

We shall discuss here the subjected modi�cation which was introduced by Ahmad

F. et al. [26].

                       Chapter 3

      Modification of Grüss Type

      Inequalities to Weighted

     Ostrowski-Grüss Inequality
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3.1 Weight Function and Moments

Let the weight function w: [s1; s2 ]! R be non-negative such that:Bg kn Hz D yoZ s2

s1

w(s)ds <1: (3.1)

The domain of w may be �nite or in�nite and may vanish at the boundary points.

We donated the moments by m, M and the symbolic notation � as follows:i yo

m(s1; s2 ) =

Z s2

s1

w(s)ds;

M (s1; s2 ) =

Z s2

s1

sw(s)ds;

and �(s1; s2 ) =
M (s1; s2 )

m(s1; s2 )
: (3.2)

3.2 Main ResultsB k z De La X Y Q P o g yo

Dragomir modi�ed Grüss type inequality to weighted Grüss inequality as follows

[29]:

Theorem 18 : Let f; g : [s1; s2 ]! R be integrable functions such that � � f(k) �  

and 
 � g(k) � �; for all k 2 [s1; s2 ] and �;  ; 
 and � are constants.

Then, we have the following inequality:Bg kn Hz De La ym ir xr to gi yo������ 1

m(s1; s2 )

s2Z
s1

f (k)g(k)w(k)dk � 1

m(s1; s2 )

s2Z
s1

f (k)w(k)dk
1

m(s1; s2 )

s2Z
s1

g(k)w(k)dk

������
� 1

4
( � �)(�� 
): (3.3)

The constant 1
4
is sharp.Bg kn H ir xr to gi yq ow z De tx en ir xr to gi yo i o
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Dragomir and Rassias modi�ed Grüss inequality to Ostrowski-Grüss type inequal-

ity for di¤erentiable function in terms of the upper and lower bounds of �rst order

derivative in the form of the theorem [17].Bg kn Hm ir xr to p tr fx pk yo

Theorem 19 : Let f : [s1; s2 ] ! R be a continuous on [s1; s2 ] and di¤erentiable on

(s1; s2 ), where �rst derivative satis�es the condition:Bg kn Hz De La ym ir x


 � f 0(k) � �; 8k 2 (s1; s2 );

thenBg kn Hz De La ym ir xr to gi yo ND IX Wd kn Hz De La ym ir xr to gi yo������f(k)�
�
k � s1 + s2

2

�
f (s2 )� f (s1)
s2 � s1

� 1

s2 � s1

s2Z
s1

f (t)dt

������
� 1

4
(s2 � s1)(�� 
); 8 k 2 (s1; s2 ): (3.4)

Ahmad F. et al. [26] pointed out new estimation of (3.4) giving much better

results than estimation. The new estimation is given in the form of the following

theorem:vu dm l xu vt � bw zp mr bu ct gn pw br jc gf

Theorem 20 : Let f : [s1; s2 ] ! R be a continuous on [s1; s2 ] and di¤erentiable on

(s1; s2 ), with Bg kn Hz De La ym ir xr Hz De aja ym yo

� � f 0(k) �  ; k 2 (s1; s2 ):

ThenBg kn Hm ir xr to gi yx oB g kn Hz De La ym z De La ym ir xr to gi yx oB g kn Hz������f (k)� (k � �(s1; s2 ))f
0
(k)� 1

m(s1; s2 )

s2Z
s1

f (t)w(t)dt

������
� 1

8
( � �)(m(s1; s2 )) +

������
s2Z
s1

w(t)sgn(t � k)dt

������ ; 8 k 2 [s1; s2 ]: (3.5)
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Proof. De�ne the mapping p(:; :) : [s1; s2 ]2 ! R bye La ym ir xr to gi yo

p (k ; t) =

8>><>>:
R t
s1
w(s)ds; if t 2 [s1; k ];R t

s2
w(s)ds; if t 2 [k ; s2 ]:

(3.6)

Dragomir and Rassias proved the following identity [25] using integration by parts:

Z s2

s1

p(k ; t)f
0
(t)dt = m(s1; s2 )f (k)�

Z s2

s1

f (t)w(t)dt : (3.7)

The proof of (3.7) is as follows:wn yu Gu Tq lo an m ir xr to gi y

Z s2

s1

p(k ; t)f
0
(t)dt =

Z k

s1

�Z t

s1

w(s)ds

�
f
0
(t)dt +

Z s2

k

�Z t

s2

w(s)ds

�
f
0
(t)dt ;

=

Z k

s1

m(s1; t)f
0
(t)dt +

Z s2

k

m(s2 ; t)f
0
(t)dt ;

= m(s1; t)f (t)jks1 �
Z k

s1

f (t)w(t)dt +m(s2 ; t)f (t)js2k

�
Z s2

k

f (t)w(t)dt ;

= m(s1; k)f (k)�m(s1; s1)f (s1)

�
Z s2

s1

f (t)w(t)dt +m(s2 ; s2 )f (s2 )�m(s2 ; k)f (k):

Z s2

s1

p(k ; t)f
0
(t)dt = m(s1; k)f (k)�m(s2 ; k)f (k)�

Z s2

s1

f (t)w(t)dt ;

= (m(s1; k) +m(k ; s2 ))f (k)�
Z s2

s1

f (t)w(t)dt ;Z s2

s1

p(k ; t)f
0
(t)dt = m(s1; s2 )f (k)�

Z s2

s1

f (t)w(t)dt :

The equation (2.4) is maintained by the following �nding:wn yu Gu Tq lo an m ir xr

toS Z s2

s1

p(k ; t)dt = m(s1; s2 )(r �M (s1; s2 )): (3.8)
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From (3.6), we have:wn yu Gu Tq lo an Gr Gn Vo Itc or

Z s2

s1

p(k ; t)dt =

Z k

s1

�Z t

s1

w(s)ds

�
dt +

Z s2

k

�Z t

s2

w(s)ds

�
dt ;

=

�Z t

s1

w(s)ds

�
t jks1 �

Z k

s1

tw(t)dt +

�Z t

s2

w(s)ds

�
t js2k �

Z s2

k

tw(t)dt ;

= k

Z k

s1

w(s)ds�
Z k

s1

tw(t)dt � k
Z k

s2

w(s)ds�
Z s2

k

tw(t)dt ;

= km(s1; k)�M (s1; k)� km(s2 ; k)�M (k ; s2 );

= k(m(s1; k) +m(k ; s2 ))� (M (s1; k) +M (k ; s2 ));

= km(s1; s2 )�M (s1; s2 );Z s2

s1

p(k ; t)dt = m(s1; s2 )

�
k � M (s1; s2 )

m(s1; s2 )

�
;Z s2

s1

p(k ; t)dt = m(s1; s2 )�(s1; s2 ):

which is the required result.wn yu Gu Tq lown yu Gu Tq an Gr Gn Vo It ok ot

They further proved the following estimation:n Gr Gn Vo It It ok ot fCok ot fC uZ

0 � p (k ; t) � max

8>><>>:
R s2
k
w(s)ds; if t 2 [s1; s1+s22

];R k
s1
w(s)ds; if t 2 ( s1+s2

2
; s2 ];

= max

�Z s2

k

w(s)ds;

Z k

s1

w(s)ds

�
;

=
1

2

�Z s2

s1

w(t)dt +

����Z s2

s1

sgn(t � k)w(t)dt
����� ;

=
1

2

�
m(s1; s2 ) +

����Z s2

s1

sgn(t � k)w(t)dt
����� :
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Since, w(k) is a non-negative function, therefore g(k) = p(k ; t)
w(k)

; we have:

0 � p (k ; t) (3.9)

� 1

2

�
m(s1; s2 ) +

����Z s2

s1

sgn(t � k)w(t)dt
����� :

Apply weighted Grüss type inequality (3.3) for mappings f (:) =f
0
(:), g(:) = p(k ; :)

w(k)
and

using (3.9), we get:wn yu Gu Tq lo am ir xr to gi yx oB g kn Hz De La ym n Gr Gn Vo It ok ot���� 1

m(s1; s2 )

Z s2

s1

p(k ; t)f
0
(t)dt � 1

m(s1; s2 )

Z s2

s1

p(k ; t)dt
1

m(s1; s2 )

Z s2

s1

f
0
(t)w(t)dt

����
� 1

8
( � �)

�
m(s1; s2 ) +

����Z s2

s1

sgn(t � k)w(t)dt
����� :

Using mean value theorem for integrals, it further implies: mt wz hd ic �ec���� 1

m(s1; s2 )

Z s2

s1

p(k ; t)f
0
(t)dt � 1

m(s1; s2 )

Z s2

s1

p(k ; t)dt
f
0
(k)

m(s1; s2 )
(m(s1; s2 ))

����
� 1

8
( � �)

�
m(s1; s2 ) +

����Z s2

s1

sgn(t � k)w(t)dt
����� ;���� 1

m(s1; s2 )

Z s2

s1

p(k ; t)f
0
(t)dt � f

0
(k)

m(s1; s2 )

Z s2

s1

p(k ; t)dt

����
� 1

8
( � �)

�
m(s1; s2 ) +

����Z s2

s1

sgn(t � k)w(t)dt
����� : (3.10)

Using (3.7)and (3.8) in (3.10), we getkc �xf vn py���� 1

m(s1; s2 )
(m(s1; s2 )f (k)�

Z s2

s1

f (t)w(t)dt � f
0
(k)

m(s1; s2 )
(m(s1; s2 )(k � �(s1; s2 )))

����
� 1

8
( � �)

�
m(s1; s2 ) +

����Z s2

s1

sgn(t � k)w(t)dt
����� ;����f (k)� 1

m(s1; s2 )

Z s2

s1

f (t)dt � (k � �(s1; s2 ))f
0
(k)

����
� 1

8
( � �)

�
m(s1; s2 ) +

����Z s2

s1

sgn(t � k)w(t)dt
����� ;

which is the required inequality.wn yu an Gr Gn Vu an Gr Gn Vu an Gr Gno It BS
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Remark 21 : If we put w(t) = 1 in (3.5), we get the following inequality:����f (k)� �k � s1 + s22

�
f
0
(k)� 1

s2 � s1

Z s2

s1

f (t)dt

���� � 1

4
( ��)

�
s2 � s1
2

+ jk � s1 + s2
2

j
�
:

Corollary 22 : Under the assumption of theorem (20) and putting k = s1+s2
2 in

(3.5), we have the mid-point like inequality:es sh ng on hk ad to gi yo so����f �s1 + s22

�
�
�
s1 + s2
2

� �(s1; s2 )

�
f

�
s1 + s2
2

�
� 1

m(s1; s2 )

Z s2

s1

f (t)w(t)dt

����
� 1

8
( � �)

�
m(s1; s2 ) +

����Z s2

s1

sgn(t � s1 + s2
2

)w(t)dt

����� : (3.11)

Corollary 23 : Under the assumptions of theorem (20), we have the trapezoidal like

inequality. The inequality is concluded from (3.3) with k = s1 and k = s2 adding the

results and using the triangular inequality and then dividing by 2 :Gc Es sh ng on yu���� f (s1) + f (s2 )2
� 1

2

�
s1f

0
(s1) + s2 f

0
(s2 )� �(s1; s2 )(f

0
(s2 ) + f

0
(s1)
�

� 1

m(s1; s2 )

Z s2

s1

f (t)w(t)dt

����
� 1

16
( � �)

�
2m(s1; s2 ) +

����Z s2

s1

w(t)sgn(t � s2 )dt
����+ ����Z s2

s1

w(t)sgn(t � s1)dt
����� ;

=
1

16
( � �) 4 m (s1; s2 ); es sh ng on h ka dt og i y o so

=
1

4
( � �) m (s1; s2 ):es sh ng on h ka dt og i y o so (3.12)

3.3 Applications

Let Jn : s1 =k0 <k1 <k2 <k3 < ::: <kn�1 <kn = s2 be the division of the interval

[s1; s2 ]; �i 2 [k i;k i+1]; i = 1; :::; n� 1:es sh ng on yu gi yo so
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We have the following quadrature formula in the form of the following theorem:

Theorem 24 : Let f: [s1; s2 ] ! R be continuous on [s1; s2 ] and di¤erentiable on

(s1; s2 ) and f
0
: [s1; s2 ] ! R satisfy the condition � � f

0
(k) �  ; for all k 2 (s1; s2 ).

Then, we have the following perturbed Riemann�s type quadrature formula:

Z s2

s1

f (s)w(s)ds = B(f ; f
0
; �; Jn) +R(f ; f

0
; �; Jn); (3.13)

wherees sh ng on yu gu he ly adm ir xr to gi yx oB g kn Hz De La

B
�
f ; f

0
; �; Jn

�
=

n�1X
i=0

m(ki; iki+1)f (�i)�
n�1X
i=0

m(ki; iki+1)� �(ki; iki+1)f
0
(�i);

and the remainder term gives the estimation:es sh he ly

���R�f ; f 0 ; �i; Jn���� es sh n gn yu gu he ly.Pf.ws.dx
� 1

8
( � �)

n�1X
i=0

m(ki; ki+1)

�
m(ki; iki+1) +

����Z ki+1

ki

sgn(s� �i)w(s)ds

����� ;
8�i 2 [ki; iki+1]; where hi = ki+1 � ki; for i = 1; 2 ; :::; n� 1: (3.14)

Proof. Applying theorem (20) on the interval [k i; ik i+1]; �i 2 [k i; ik i+1]; where

hi = k i+1�k i; for i = 1; 2 ; :::; n� 1; we get:es sh ng to gi yo so����Z ki+1

ki

f (s)w(s)ds�m(ki; iki+1)f (�i) +m(ki; iki+1)(�i � �(ki; iki+1))f
0
(�i)

����
� 1

8
( � �)m(ki; iki+1)

�
m(ki; iki+1) +

����Z ki+1

ki

sgn(s� �i)w(s)ds

����� :
Summing over i from 0 to n-1 and using the generalized triangular inequality, we get

the required estimation (3.14).
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Corollary 25 Under the assumption of theorem (24), by choosing �i =
ki+ ki+1

2
; we

obtain mid-point quadrature formula:

Z ki+1

ki

f (s)w(s)ds = BM

�
f ; f

0
; �; Jn

�
+RM

�
f ; f

0
; �; Jn

�
;

where es sh ng on yu gu h he ly ad to gi yo soes sh ng on ye ly ad to gi yo so xn

BM

�
f ; f

0
; �; Jn

�
=

n�1X
i=0

m(ki; iki+1)f

�
ki + ki+1
2

�
�

n�1X
i=0

m(ki; iki+1)

�
ki + ki+1
2

� �(ki; iki+1)

�
� f 0

�
ki; iki+1
2

�
;

and the remainder term satis�es the estimation:

���RM �f ; f 0 ; �; Jn���� � 1

8
( � �)

n�1X
i=0

m(ki; iki+1) ��
m(ki; iki+1) +

����Z ki+1

ki

w(s)sgn(s� ki; iki+1
2

)

����� :
n re ye Sh Ke dr e ye Sh Ke dr ha ak re fo bc wo fa ds of al ti In re ye Sh Ke dr ha ak

re fo bc wo fa ds of al ti hn da be aw wo ph On yu st wh Kh dr yl gt ad Kn dr ar br in h

in En In re ye Sh Ke dr ha ak re fo bc wo fa ds of al ti In re ye Sh Ke dr ha ak re fo bc wo

fa dof re zo Is ok ot to be ok Mr ue Hs jt Sc tr Bg In re ye Sh Ke ng on yu gu he ly ad at

fd zo Is ok ot to be ok Mr ue Hs jt Sc tr Bg In re ye Sh Ke dr ha ak re fo bc wo fa ds o al

ti Td ar eq fa ac yo ad El hn da be aw wo ph On yu st wh Kh dr y Bg In re ye Sh Ke ng

on yu gu he ly ad at fd zo Is ok ot to be ok Mr ue Hs jt Sc tr Bg In re ye Sh Ke dr ha al

gt ad Kn dr ar
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a

Here, modi�cation of the Grüss type inequality to Ostrowski-Grüss type inequality

via conformable fractional integral is established. We shall generalize the results of

Chapter 3 via Katugamopola Conformable Fractional Integral [8]. ng on yu gu he ly

ad at fd zo Is ok ot to be ok Mr ue Hs jt Sc tr Bg In re ye Sh Ke dr ha ak re fo bc wo fa

ds o al ti Td ar eq fa ac yo ad El hn da be aw wo ph On yu st wh Kh dr yl gt ad Kn dr ar

br in h in En su Th be tl ab te dr is at th sh ti lt Do yo wa to gi yo so ak go tr Th Te ae a

lo of ds th wl �yo ac ku es wa cx pl mn bv ed oa r ue Hs jt Sc tr Bg In re ye Sh Ke dr hr

tr yo so te ar th mo fa a mt pr Hi ra dr in Ko Sq Gp Cr La wn yu Gu Tq l.

                       Chapter 4

                Modified Weighted

       Ostrowski-Grüss Inequality via

       Conformable Fractional Integral
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Let us denote the moments m; M and the symbolic notation � via conformable

fractional integral as follows:

m(s1; s2 ) =

Z s2

s1

w(s) d�s;

M (s1; s2) =

Z s2

s1

sw(s) d�s;

and �(s1; s2) =
M (s1; s2)

m(s1; s2)
; (4.1)

where the weight function w: [s1; s2 ]! R is non-negative such thatbd of wm u

Z s2

s1

w(s)d�s <1: (4.2)

4.1 Main TheoremKc eM sP Wl nb do nv

Let us now establish Grüss type inequality to weighted Ostrowski-Grüss inequality

via Katugampola conformable fractional integral for di¤erentiable mapping in the

form of the following theorem:es sh ng on yu gu he ly ad to gi

Theorem 26 Let f : [s1; s2 ] ! R be continuous on [s1; s2 ] and �-fractional di¤er-

entiable for � 2 (0; 1]; where � � D�f(k) �  , for all k 2 (s1; s2 ). Then, we have

the following weighted Ostrowski-Grüss type inequality via Katugampola conformable

fractional integral for di¤erentiable mapping:es sh ng on yu to gi yo so

����f (k)� 1

m(s1; s2 )

Z s2

s1

f (t)w(t)d�t � (k � �(s1; s2 ))D
�(f (k))

����
� 1

8
( � �)

����ml(s1; s2 ) + Z s2

s1

sgnl(t � k)w(t)d�t
���� : (4.3)
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Lemma 27 Let us prove the following identity:es sh ng he ly ad es sh ng

Z s2

s1

p(k ; t)d�t = m(s1; s2 )(k � �(s1; s2 )); (4.4)

where the mapping p(:; :)l : [s1l,s2 ]2 ! R is de�ned by:Fn Wc Ul ya

p (k ; t) =

8>><>>:
R t
s1
w(s)d�s; if t 2 [s1; k ];R t

s2
w(s)d�s; if t 2 (k ; s2 ]:

Proof. Integration by parts gives the following:es sh ng on yu gu he ly f

Z s2

s1

p(k ; t)d�t =

Z k

s1

(

Z t

s1

w(s)d�s)d�t +

Z s2

k

(

Z t

s2

w(s)d�s)d�t ;

= (

Z t

s1

w(s)d�s)t jks1 �
Z k

s1

tw(t)d�t +

(

Z t

s2

w(s)d�s)t js2k �
Z s2

k

tw(t)d�t ;

=

Z k

s1

w(s)d�s�
Z s2

s1

tw(t)d�t � k
Z k

s2

w(s)d�s;

= kmi(s1; k)�M i(s1; s2 ) + k

Z s2

k

w(s)d�s;

= k(mi(s1; k) +M (k ; s2 ))�M (s1; s2 );

= km(s1; s2 )�M (s1; s2 );

= m(s1; s2 )

�
k � M (s1; s2 )

m(s1; s2 )

�
;Z s2

s1

p(k ; t)d�t = mi(s1; s2 )(k � �(s1; s2 )): (4.5)
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Lemma 28 : Let w : [s1; s2 ]! R be a non-negative weight function and

f : [s1; s2 ] ! R be �-fractional di¤erentiable for � 2 (0; 1] in the sense of Katugam-

pola. Then we have the following identity:es sh ng on yu gu he ly ad to giZ s2

s1

p(k ; t)iD�(f (t))d�t i = mi(s1; s2 )f (k)�
Z s2

s1

w(t)f (t)d�t ; (4.6)

where

p (k ; t) =

8>><>>:
m(s1; t); t 2 [s1; ik ];

m(s2 ; t); t 2 (k ; is2 ]:

Proof. Using integration by parts, we have:es sh ng on yu gu he d to gi yo soZ s2

s1

p(k ; t)D�(f (t))d�t =

Z k

s1

m(s1; t)D�(f (t))d�t +

Z s2

k

m(s2 ; t)D�(f (t))d�t ;

= m(s1; t)f (t)jks1 �
Z k

s1

f (t)w(t)s2�t +m(s2 ; t)if (t)js2k

�
Z s2

k

f (t)w(t)d�t ;

= m(s1; k)if (k)�m(s2 ; k)f (k)�
Z s2

s1

f (t)w(t)d�t ;

= (m(s1; k) +m(k ; s2 )i)f (k)�
Z s2

s1

f (t)w(t)d�t ;

= m(s1; s2 )f (k)�
Z s2

s1

f (t)w(t)d�t ;

which is the required identity.

cs pe wa th ih EnTq lo an Gr Gn Vo pt mr Qen Hl Pt Sg Gl Bo sn a ds of al tiwn yu

Gu Tq lo an G Gui ra dr kn Ko Sq Gp C Tq lo an Gr Gn Vo pt mr Qen Hl Pt Sg Gl Bo

sn a ds of al tiwn yu Gu Tq lo an G Gui ra dr qn Ko Sq Gp Cr La wn yu Gl Bo sn a ds of

al tiwn yu Gu Tq lo an G Gui ra dr Ko Sq Gp Cr La wn yu Gu r ue Hs jt Sc tr Bg In re

ye Sh Ke dr hTq lo an Gr Gn Vo It ok ot to be ok Mr Qen Hl
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4.2 Kernel Estimation Gp ua kg mt pa mt pr co S Gp

Let us prove that the kernel satis�es the estimation:th in En su Th b e tl ab te dr

0 � p (k ; it) � max

8>><>>:
R s2
k
wi(s)d�s; if it 2 [s1; s1+s22

];R k
s1
wi(s)d�s; if it 2 ( s1+s2

2
; s2 ]:

0 � p (k ; t) � max
�Z k

s1

w(s)d�s;

Z s2

k

w(s)d�s

�
=

1

2

�Z s2

s1

w(s)d�s+

����Z s2

s1

sgn(s� k)w(s)d�s
����� ;

=
1

2

�
mi(s1; s2 ) +

����Z s2

s1

sgn(s� k)w(s)d�s
����� :

We further note that w(k) is a non-negative function. This implies cs p e wa th in En s

0 � p (k ; t)

w(k)
� 1

2

�
m(s1; s2 ) +

����Z s2

s1

sgn(s� k)w(s)d�s
����� : (4.7)

Proof. (Theorem 26)cs pe Gp ua mt pr co Sq Gp uq Gp ua mt pr co th in En s

Applying weighted Grüss inequality (3.3) for mapping f (:) =D�(f (:))g(:) = p(k ; :)
w(k)

and using (4.7), we have:cs pe wa th in En su Th be tl ab te dr���� 1

m(s1; s2 )

Z s2

s1

p (k ; t)D�(f (t))d�t

� 1

m(s1; s2 )

Z s2

s1

p (k ; t) d�t �
1

m(s1; s2 )

Z s2

s1

D�(f (t))w(t)d�t

����
� 1

8
( � �)

�
m(s1; s2 ) +

����Z s2

s1

sgn(t � k)w(t)d�t
����� :

Using mean value theorem for integrals, it further implieslc wi zk ad mc ru gz gj���� 1

m(s1; s2 )

Z s2

s1

p (k ; t)D�(f (t))d�t �
D�(f (t))

m(s1; s2 )

Z s2

s1

p (k ; t) d�t

����
� 1

8
( � �)

�
m(s1; s2 ) +

����Z s2

s1

sgn(t � k)w(t)d�t
����� : (4.8)
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Using (4.7) and (4.6) in (4.8); we get the required inequality (4.3).kg so zt dl hf q

Remark 29 : If we put w(t) = 1; � = 1 in (4.3), we get the followingdinequality������f (k)�
�
k � s1 + s2

2

�
f
0
(k)� 1

s2 � s1

s2Z
s1

f (t)dt

������
� 1

4
( � �)

�
s2 � s1
2

+

�����k � s1 + s22

������ ;
which is remark (21) in [26].kd tx pr qi ak mz ps qm

Corollary 30 : Under the assumption of theorem (26), putting k = s1 + s2
2

and � = 1;

we get the mid-point inequality of [26].

����f (s1 + s22
)�

�
s1 + s2
2

�
� �(s1; s2 )f

0
�
s1 + s2
2

�
� 1

mi(s1; s2 )

Z s2

s1

f (t)w(t)dt

����
� 1

8
( � �)

�
mi(s1; s2 ) +

����Z s2

s1

sgn

�
t � s1 + s2

2

�
w(t)dt

����� :
Corollary 31 : Under the assumption of theorem (26), with k = s1 and k = s2 ;

adding the results and using triangular inequality and then dividing by 2 and gives

us:cs pe wa th in En su Th be tl ab te En su Th be tl ab te dr

���� f (s1) + f (s2 )2
� 1

2
[s1 D

�f (s1) + s2D
�f (s2 )� �(s1; s2 ) (D

�f (s2 ) +D�f (s1))]

� 1i

mi(s1; s2 )

Z s2

s1

f (t)w(t)d�t

����
� 1

16
( � �)

�
2 mi(s1; s2 ) +

����Z s2

s1

w(t)sgn(t � s2 )d�t
����+ ����Z s2

s1

w(t)sgn(t � s1)d�t
����� ;

=
1

16
( � �)4 mi(s1; s2 ); cz sx pw eg wu af ti hQ iP nQ Es nh jd ur

=
1

4
( � �) mi(s1; s2 ):cz sx pw eg wu af ti hQ iP nQ Es nh jd ur kd
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Corollary 32 : From corollary (31), for � = 1; we get corollary (23) of [26].

a mt pr co Sa mt pr co Sq Gp ua mt pr co Sq e dr e ye Sh Ke dr ha ak re fo bc wo fa

ds of al ti In re ye Sh Ke dr ha ak re fo bc wo fa ds of al ti hn da be aw wo ph On yu st wh

Kh dr yl gt ad Kn dr ar br in h in En In re ye Sh Ke dr ha ak re fo bc wo fa ds of al ti In

re ye Sh Ke dr ha ak re fo bc wo fa dof re zo Is ok ot to be ok Mr ue Hs jt Sc tr Bg In re

ye Sh Ke ng on yu gu he ly ad at fd zo Is ok ot to be ok Mr ue Hs jt Sc tr Bg In re ye Sh

Ke dr ha ak re fo bc wo fa ds o al ti Td ar eq fa ac yo ad El hn da be aw wo ph On yu st

wh Kh dr y Bg In re ye Sh Ke ng on yu gu he ly ad at fd zo Is ok ot to be ok Mr ue Hs jt

Sc tr Bg In re ye Sh Ke dr ha al gt ad Kn dr are dr e ye Sh Ke dr ha ak re fo bc wo fa ds

of al ti In re ye Sh Ke dr ha ak re fo bc wo fa ds of al ti hn da be aw wo ph On yu st wh

Kh dr yl gt ad Kn dr ar br in h in En In re ye Sh Ke dr ha ak re fo bc wo fa ds of al ti In

re ye Sh Ke dr ha ak re fo bc wo fa dof re zo Is ok ot to be ok Mr ue Hs jt Sc tr Bg In re

ye Sh Ke ng on yu gu he ly ad at fd zo Is ok ot to be ok Mr ue Hs jt Sc tr Bg In re ye Sh

Ke dr ha ak re fo bc wo t wh Kh dr yl gt ad Kn dr ar br in h in En In re ye Sh Ke dr ha

ak re fo bc wo fa ds of al ti In re ye Sh Ke dr ha ak re fo bc wo fa dof re zo Is ok ot to be

ok Mr ue Hs jt Sc tr Bg In re ye Sh Ke ng on yu gu he ly ad at fd zo Is ok ot to be ok Mr

ue e Sh Ke dr ha al gt ad Kn dr arGp uq Gp ua mt pr co Sq Gp u. m l ab t /e dr is at th ha

a ma of 16 es tt we ca ea wa in a st pr co S n re ye Sh Ke dr ha ak re fo bc wo fa ds of al

ti i es sh ng on yu gu he ly ad to gi yo soes sh ng on yu gu he ly ad to gi yo soes sh ng on

yu gu he ly ad to gi yo soes sh ng on yu gu he wo fa ds of al ti In re ye Sh Ke dr ha ak re

fo bc wo fa ds of al ly ad to gi yo son re ye Sh Ke dr ha ak re fo bc wo fa ds
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yu mt pr ng yu gu he ly ad

Fractional integral inequalities have been shown to be one of the most signi�cant

and potent tools for advancement in many �elds of pure and applied mathematics.

Determining the uniqueness of fractional boundary value issue solutions in numerical

quadrature, transform theory, probability, and statistics is the most signi�cant use of

these inequalities. Additionally, they o¤er upper and lower bounds for the solutions

to the previous equations.

The Katugampola fractional derivative was recently introduced by Katugampola.

It is a limit-based fractional derivative that keeps many of the fundamental char-

acteristics of ordinary derivatives, including the product, quotient, and chain rules.

Fractional derivatives are often handled using an integral form and are hence non-local

                       Chapter 5

           Application in Numerical

          Integration
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in nature. The current study begins with a fundamental property of the Katugampola

fractional derivative D�[y] = t1�� dy
dx
; and the corresponding di¤erential operator D�

= t1��D1. These operators, as well as their inverses, commutators, anti-commutators,

and a number of key di¤erential equations, are investigated.

The growth of di¤erential and integral inequalities was accelerated by the invention

of di¤erential and integral calculus. In the mathematical sciences, these imperfections

are quite signi�cant. The lower and upper bounds on functions and their derivatives

are provided by these inequalities, which also have several applications in special

means and numerical integration. There are many di¤erent branches covered by

mathematics and associated �elds. Convexity is a key idea in both biology and

�nance. This illustrates a potent idea that can be applied in numerous contexts.

The method is pure and applicable, and it can be used to study a wide variety of

unrelated subjects. This entails both exploring the subject and approaching it from

several perspectives. The convexity idea has a signi�cant impact on the growth of

inequality theory.

In the modeling of engineering and scienti�c issues, fractional di¤erential and in-

tegral equations are becoming increasingly signi�cant. It has been demonstrated that

these models routinely outperform equivalent models that employ integer derivatives.

A thorough investigation has been conducted in the theory of fractional di¤eren-

tial equations and the calculus of fractional order derivatives. The majority of the

present literature establishes the solution to fractional di¤erential equations using a
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�xed point approach. The qualitative properties of the Riemann-Liouville (R-L) and

Caputo derivatives are studied using di¤erential and integral inequalities in fractional

di¤erential equations. We reach a comparable conclusion for the R-L type of integral

inequalities using the common Lipschitz condition on the nonlinear component.

In this case, the comparison theorem and the explicit declaration are useful. One of

the most important uses of fractional integral inequalities is the �nding of numerical

problem solutions. This is conceivable in a variety of �elds, including probability,

transform theory, and quadrature. These inequalities also provide upper and lower

bounds on the solutions to the equations that follow. This knowledge is usually quite

useful in mathematics when attempting to solve a problem or select the best answer.

A fractional di¤erential equation with variable coe¢ cients can be used to show the

existence of the fractional di¤erential equation. It is critical to keep this in mind

when dealing with equations and issues involving these types of equations since doing

so will make the problems much simpler to solve. A quasi-linearization approach is

used to solve nonlinear fractional di¤erential equations. The Katugampola fractional

derivative was de�ned using the Katugampola fractional integral, and it expands the

capability of using real number powers or complex number powers of the integral

and di¤erential operators, just like any other fractional di¤erential operator. These

operators combine the fractional derivatives of Riemann-Liouville and Hadamard into

a single form.

In Mathematics, Physics and di¤erent courses of Engineering, the concept of frac-
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tional order derivatives and integrals are used by Edmundo Capelas de Oliveira et

al. [10]. In fractional calculus, the derivative in classical calculus has a signi�cant

geometric interpretation, it is concern with the idea of tangent. This disparity might

be shown as an issue for fractional calculus poor success up until ninteen centuary.

First use of fractional calculus is regarded as integral equation that was solved by

Abel. This is known as the �rst Liouville de�nition. Liouville�s second de�nition,

given in terms of an integral, is currently known as the Liouville version for the in-

tegration of noninteger order. After a series of research by Liouville, Riemann wrote

the most important piece 10 years after his death. It is also worth noting that both

the Liouville and Riemann formulations contain the so-called complementary func-

tion, which is a problem to be solved. We will compare the Caputo version to the

Riemann-Liouville formulation because of its importance. With the noninteger order

derivative of the Riemann-Liouville equation, Caputo�s concept inverts the order of

integral and derivative operators. The contrast between these two formulations may

be summed up as follows: In Caputo, �rst compute the integer order derivative, sub-

sequently the noninteger order integral. Compute the integral of noninteger order

�rst, then the derivative of integer order in the Riemann-Liouville equation. It is

important to note that the Caputo derivative may be utilized to deal with scenarios

where the initial conditions are done in the function and the necessary integer order

derivatives. Fractional calculus has expanded since its inception at the University of

New Haven in 1974, with numerous applications in many sectors of scienti�c knowl-
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edge. As a result, several solutions to derivative problems have been proposed, and

numerous de�nitions of the fractional derivative are available in the literature. This

study provides systematic formulations of current fractional derivatives and integrals.

A mathematical technique known as the quadrature rule aids in calculating the

locations of points on a plane. Finding improvements, generalizations, expansions,

and uses for this tool served as the driving force behind this. In order for these rules to

better ful�l their intended functions, researchers are constantly looking for new meth-

ods to enhance or perfect them. Mathematicians who specialize in fractional calculus

study non-integral order integral and di¤erential operators. Numerous mathemati-

cians have made substantial contributions to this �eld, including Liouville, Riemann,

Weyl, and Fourier. The theory underlying fractional calculus was developed by Abel,

Lacroix, Leibniz, and Grunwald. In terms of a fractional derivative, Riemann created

the �rst formulation of an operator governing integrals over nonlinear spaces.

In this chapter, the applications to numerical integration of Grüss type inequal-

ity to weighted Ostrowski-Grüss inequality via conformable fractional integral for

��fractional di¤erentiable mapping is discussed.mt pr Hi ra dr in Ko Sq dn yu

Let Jn ; s1 =k0 <k1 <k2 <k3 < ::: <kn�1 <kn = s2 be the division of the interval

[s1 , s2 ]; �i 2 [k i; k i+1]; i= 1; :::; n� 1:a mt pr Hi ra dr in Ko Sq Gp Ca wn yu

We have the following quadratureoformula in the form of the following theorem:

Theorem 33 : Let f : [s1; s2 ] ! R be continuous on [s1; s2 ] and �-fractional dif-

ferentiable function on (s1; s2 ) and D�f(k) : (s1; s2 ) ! R satisfy the condition � �
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D�f(k) �  , for all k 2 [s1; s2 ]. Then, we have the following perturbed Riemann�s

type quadrature formula:Z s2

s1

f (s)w(s)d�s = B(f ; D
�

(f ); �; Jn) +R(f ; D�(f); �; Jn); (5.1)

where

B(f ; D
�

(f ); �; Jn)

=
n�1X
i=0

m(ki; ki+1)f (�i)

�
n�1X
i=0

m(ki; ki+1)� �(ki; ki+1)D
�(f (�i));

and the remainder term gives the estimation:

jR(f ; D�(f ); �; Jn)j �
1

8
( � �)

n�1X
i=0

m(ki; ki+1) ��
m(ki; ki+1) +

����Z ki+1

ki

sgn(s� �i)w(s)d�s

����� ; (5.2)

for all �i 2 [ki; ki+1]; where hi =ki+1�ki; for i = 1; 2 ; :::;n�1:

Proof. Applying theorem (26), on the interval [k i; k i+1]; �i 2 [k i; k i+1]; where

hi =k i+1�k i; for i = 1; 2 ; :::; n� 1; we get����Z ki+1

ki

f (s)w(s)d�s�m (k i; k i+1)f (�i)

+m(ki; ki+1)(�i � �(k i; k i+1))D�(f (�i))j

� 1

8
( � �)m(ki; ki+1)

�
m(ki; ki+1) +

����Z ki+1

ki

sgn(s� �i)w(s)d�s

����� :
Summing over i from 0 to n�1 and using the generalized triangular inequality, we

get the required estimation (5.2).
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Corollary 34 : Under the assumption of theorem (33), by choosing �i =
ki+ ki+1

2
;

� = 1, we obtain mid-point quadrature of [26]:

Z ki+1

ki

f (s)w(s)ds = BM

�
f ; f

0
(f ); �; Jn

�
+RM

�
f ; f

0
(f ); �; Jn

�
;

where

BM

�
f ; f

0
(f ); �; Jn

�
=

n�1X
i=0

m(ki; ki+1)f (
ki + ki+1
2

)

�
n�1X
i=0

m(ki; ki+1)(
ki + ki+1
2

� �(ki; ki+1)

�f 0(f (ki + ki+1
2

));

and the remainder term satis�es the estimation:

���RM �f ; f 0(f ); �; Jn����
� 1

8
( � �)

n�1X
i=0

m(ki; ki+1)

�
�
m(ki; ki+1) +

����Z ki+1

ki

w(s)sgn(s� ki + ki+1
2

)

����� :
The notion of convexity has received fresh attention from several academics. As a

result, the classical concepts of convex sets and convex functions have been expanded

upon and modi�ed in a variety of ways. It is important to note that the class of p-

convex functions also includes harmonically convex functions in addition to classical

convex functions. The connection between the theory of convex functions and the idea

of inequalities has attracted the attention of many academics. One of the inequalities
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for convex functions that has received the most attention is the Hermite-Hadamard

inequality, named after Hermite and Hadamard. This Hermite-Hadamard inequality

must be satis�ed by a function in order to be convex.mt pr Hi ra dr in Ko Sq Gp Crmt

p an Gr Gn Vo It ok ot to be ok It ok ot to be ok M dr ha ak re fo bc wo fa ds re ye Sh Ke

dr ha ak re fo bc wt mr Q en Hl Pt Sg Gl Bo sn a ds of al tiwn yu Gu Tq loo fa ds of al ti

wn yu Gu Tq lo an G Gu Tq lo an Gr Gn VQ en Hl Pt Sg Gl Bo sn Hl el na er Fr id es sh

ng on yu gu he ly adae a lo of ds th wl �yo ad or tr yo so te ar th mo fa a mt pr Hi ra dr

in Ko Sq Gp Cr La wn yu Gu Tq lo an Gr Gn Vo It ok ot u he ly ad to gi yo so ak In Kh

dr y Bg In re ye Sh Ke ng on yu gu he ly ad at fd zo Is ok ot to be ok Mr ue Hs jt Sc tr

Bg In re ye Sh Ke dr ha al gt ad Kn dr are dr e ye Sh Ke dr ha ak re fo bc wo fa ds of al ti

In re ye Sh Ke dr ha ak re fo bc wo fa ds of al ti hn da be aw wo ph On yu st wh Kh dr yl

gt ad Kn dr ar br in h in En In re ye Sh Ke dr ha ak re fo bc wo fa ds of al ti In re ye Sh

Ke dr ha ak re fo bc wo fa dof re zo Is ok ot to be ok Mr ue Hs jt Sc tr Bg In re ye Sh Ke

ng on yu gu he ly ad at fd zo Is ok ot to be ok Mr ue Hs jt Sc tr Bg In re ye Sh Ke dr ha

ak re fo bc wo t wh Kh dr yl gt ad Kn dr ar br in h in En In re ye Sh Ke dr ha ak re fo bc

wo fa ds of al ti In re ye Sh Ke dr ha ak re fo bc wo fa dof re zo Is ok ot to be ok Mr ue Hs

jt Sc tr Bg In re ye Sh Ke ng on yu gu he ly ad at fd zo Is ok ot to be re ye Sh Ke dr ha

ak re fo bc wo fa ds qf al ti Td ar eq fa ac yo ad El hn da be aw wo ph On yu st wh Kh dr

yl gt ad Kn dr ar br in Ko La bu ma nu Ko fr or cs pe wa th in En su we ca ea wa in a sh

ti ad or
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In this research, �rst of all established some integral inequalities for conformable

fractional integral given by Katugampola. Later modi�ed Grüss type integral inequal-

ity to weighted Ostrowski-Grüss type inequality for di¤erentiable mapping in terms

of the upper and lower bounds of the �rst derivative via Katugampola conformable

fractional integral has been derived. The inequality is then applied to numerical

integration. Then, the applications to numerical integration of Grüss type inequal-

ity to weighted Ostrowski-Grüss inequality via conformable fractional integral for

��fractional di¤erentiable mapping are described. We can demonstrate a modi�ca-

tion of Grüss type inequalities to weighted Ostrowski-Grüss inequality after reading

and seeing so many research publications. We changed the weighted Ostrowski-Grüss

inequality conformable fractional integral after changing the Grüss type inequality. or

tr yo so te ar th mo fa a mt pr Hi

                       Chapter 6

                     Conclusions
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6.1 Concluding Remarks

In this thesis, we de�ned weight function and moments via Katugampola �-

fractional di¤erentiable mappings, �-fractional integrals. Also established two new

identities via Katugampola conformable fractional integral. Then modi�ed weighted

Ostrowski-Grüss type inequality is generalized by using Katugampola fractional deriv-

ative and integral for �-fractional derivative. At the end, application to numerical

integration is provided.

6.2 Recommendations

For several additional fractional integrals, we may develop a newmodi�ed weighted

Ostrowski-Grüss inequality. Within this work, we can extend these inequalities to

additional convex functions for di¤erential mappings. Error estimations of Grüss-

type inequalities can be looked into. New applications of numerical integration and

special means methods can also be explored.
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