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ABSTRACT

Title: An innovative neuroevolutionary approach for heart beat analysis with ANN

The prominence of artificial neural networks (ANNs) is rising in a variety of applications. Most

mathematical models have a form of differential equations (DEs), and recent research work has

demonstrated that neural networks (NN) can be used to solve differential equations (DEs). In

this thesis, we present a new neuroevolutionary approach called hybrid fractional particle swarm

optimization (FO-PSO) to solve a differential equation (DE). Here we find an approximate

solution to a 2nd order non-linear ordinary differential equation (ODE), known as the Van der Pol

(VdP) heartbeat model (HBM), utilizing artificial neural networks (ANNs) with feed-forward

(FF), and also examine the effectiveness of our technique and approach. Fractional order particle

swarm optimization (FO-PSO) is a hybrid technique for the fractional order velocity of the

particle swarm optimization algorithm. For this thesis, we considered two problems: One of the

problems contains a forcing term, while the other does not. Each problem has two scenarios, and

each scenario has four cases. These cases arise because of some variations in parameters. We

make a comparison of our proposed hybrid FO-PSO–ASA technique’s results with the hybrid

genetic algorithm with the interior point technique’s results. 100 independent runs have been

performed. In terms of mean absolute deviation, root-mean-square error, and Nash–Sutcliffe

efficiency, statistical analyses demonstrate its application, efficacy, and dependability.
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CHAPTER 1

INTRODUCTION

In chapter 1, some important topics related to our research area are listed. The topics, that

help and guide us to understand the phenomena and basics of our research area. These topics

include artificial intelligence, neural networks, types of neural networks, differential equations,

their types, and different methods to solve differential equations.

1.1 Artificial intelligence (AI)

We are currently witnessing the phenomenal progress of artificial intelligence in science and

society. Recent developments in research studies and real-life achievements are possible because

of artificial intelligence (AI). However, establishing a strong mathematical basis is still in its

infancy. The resurgence of machine learning’s popularity around 1980 is marked by a number of

significant developments. The rise of artificial intelligence also had a substantial impact on a

variety of mathematical disciplines. Artificial neural networks (ANN) are a biological sub-field

of AI.
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1.2 Brain Neuron

The brain is made of cells called neurons. The neural network (NN) of the brain is made up

of connections between these neurons. In the human brain, there are around 1011 neurons and

about 10,000 connections between them. An imitation of a natural neural network is an ANN,

where artificial neurons are interconnected similarly to the brain neural network.

A neuron consists of an axon, dendrites, and a cell body. The dendrite receives electrochem-

ical signals from other neurons and transmits them to the cell body. The cell’s soma contains

the nucleus and other chemical components necessary for the cell’s survival. Axons transmit

neuronal signals to other neurons. A synapse is a connection between the dendrites of two

neurons or between a neuron and a muscle cell [1], as shown in Fig. 1.1.

1.3 Artificial Neural Networks (ANNs)

An imitation of the human brain is known as an artificial neural network (ANN). Despite the

significant advancements in machine learning techniques over the past few years, using these

new methods to solve differential equations (DEs) has proven to be quite tricky sometimes. The

most encouraging outcomes so far have either entailed learning enhanced solvers or directly

learning the solution [2]. The notion of directly learning a DE’s solution applies to all DEs, and

because it is such a basic idea, it provides us with a good starting place.

Using feed-forward (FF) neural networks’ ability to approximate functions, neural network

approaches can solve both ordinary and partial differential equations and produce closed-form

solutions. In this version, the basic approximation element is a feed-forward neural network

(FF-NN), whose parameters are changed to minimize the relevant error function.

Any optimization technique may be used to train the NN, which needs the computation of

the error gradient with respect to the network parameters. In this technique, a trial solution to a

DE is expressed as the sum of two sections. The boundary or initial conditions are satisfied by

the first section, which contains no changeable parameters. The second section is designed to

have no effect on the boundary or initial conditions and consists of an FF-NN with customizable

parameters.
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Figure 1.1: Biological neuron model

1.3.1 History of NNs

In this section, we stated the history of NN. The 1940s were the beginning of the era of neural

networks. Most people think that neuro-computing began when McCulloch and Pitts published a

research paper in 1943. Hebb wrote a book called "The Organization of Behavior" in 1949. In

the 1940s, there were other researchers, who analyzed the challenges of neurocomputing. The

era between the 1960s and 1950s marked the beginning of the "golden age" of NNs. The quiet

years were the 1970s. The 1980s: Revived Enthusiasm [3, 4, 5].

1.4 Modeling ANNs Mathematically

A neuron Mi will take in a number of n inputs S = {t j| j = 1,2, ...,n} shown in Fig 1.2. This

one has a simple structure for an ANN. Before an input reaches the main body of a neuron, Mi,



4

it is weighted based on the connection strength, i.e., wi j for j = 1,2, ...,n. The threshold value

must be met or surpassed for the neuron to create an output signal, and it has a bias term called b.

On the generated weighted signal, f (s) operates known as activation function is the name of this

process. The ith neuron’s output, Mi is expressed mathematically as:

Oi = f

[
b+

n

∑
j=1

wi jt j

]
. (1.1)

The operation of an artificial neuron (AN) in a NN is depicted in great detail in Fig. 1.2.

Figure 1.2: ANN Mathematical model

1.5 Activation Functions

As stated in the preceding section, the output is a function of the neuron’s multiple weights

wi j and inputs t j. Initially, a threshold function was proposed for the neuron output function,

although sigmoid, step functions, linear, and sign are extensively utilized [6], as shown in Fig. 1.3
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inputs, thresholds, neurons, and weights output may be real. Neuron’s net input is mathematically

written as:

net =

(
θ +

n

∑
j=1

wi jt j

)
, (1.2)

where θ is a threshold value added to the neurons. The neuron acts in an activation-function like

manner or f (net) and create a result say y, stated as:

y = f (net) = f

(
θ +

n

∑
j=1

wi jt j

)
. (1.3)

In the above equation, f represents the activation function. Following are some examples of

activation functions.

1.5.1 Linear Activation Function

The linear activation function, which is depicted in Fig. 1.3a, is the name of the linear neuron

transfer function. Mathematically, it can be represented as follows:

y = f (net) = f

(
θ +

n

∑
j=1

wi jt j

)
= net. (1.4)

1.5.2 Sigmoid Activation Function

It is a nonlinear function with an S-type shape. The output is between 0 and 1. If the input

value approaches infinity, then the output value converges to +1, as shown in Fig. 1.3b, and

mathematically can be written as follows:

y =
(

1
1+ e−λ t

)
. (1.5)

1.5.3 Sign Activation Function

This function is a type of piecewise function. This function defines limits to −1 and +1, and

sometimes zero, as shown in Fig. 1.3c, and can be mathematically formulated as:

y =

 +1 ifnet ≥ 0

−1 ifnet < 0.
(1.6)
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Figure 1.3: Activation Functions
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1.5.4 Step Activation Function

This one is also a type of piecewise function. This function defines the +1 and 0 limits

shown in Fig. 1.3d and mathematically can be expressed as follows:

y =

 +1 if net ≥ 0

0 if net < 0.
(1.7)

1.6 Neural Network Architecture

In practical situations, a single node is insufficient, and networks with numerous nodes are

routinely employed. The manner in which nodes are connected impacts how computations

are performed and are a crucial early design decision for neural network developers. A neural

network is essentially a data processing system made up of a large number of simple, highly

interconnected processing components called neurons, as shown in Figs. 1.4-1.6. In this graph,

we chose one input layer, one output layer, and two hidden layers. The word nodes stand for

neurons and synaptic lengths are shown by edges [7].

1.6.1 Recurrent Neural Networks

A recurrent network can include arbitrary connections between any two nodes including

connections that travel backward from output nodes to input nodes. A recurrent network can be

said to have a memory because of the way that its internal state can change as input data sets are

presented to it. This is very helpful, when trying to solve issues, when the answer depends on all

prior inputs as well as the current ones.

The recurrent network sends data from inputs to outputs through the network while learning,

as well as the other way around, and until the output numbers stay the same, continue this

operation. The network is said to be in a stable or equilibrated condition at this moment. This

type of NN is presented graphically in Fig. 1.5.
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Figure 1.4: Feed Forward Neural Networks structure

1.6.2 Feed Forward Neural Networks (FF-NN)

A feed-forward neural network’s (FF-NN) neurons are organized into layers. Instead of

generating a series of values from a given input, FF only produces one set of output values. The

simplest version or devise of ANN is FF-NN. In this type of network, we move the signals or

information in one direction, from input to hidden layers and finally to the output layer [8]. This

type of NN represents in Fig. 1.4.

1.6.3 Radial Basis Function Neural Network (RBF-NN)

This one is made of three layers. Considering the first layer as the input layer, the second

layer as the BBF layer, and the third layer as the output layer. Graphically shown in Fig. 1.6
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Figure 1.5: Recurrent Neural Networks structure

1.7 Paradigms of Learning

The ability of ANN to learn from a set of data and generalize is one of its most important

features. There are two types of learning, that is stated below:

1.7.1 Supervised Learning

In supervised training, both inputs and results are provided. Then the network examines

the inputs and evaluates the outcomes about the desired outcomes. A comparison between the

network’s computed output and the predicted output after correction is done to determine the

inaccuracy. Once the error has been identified, network settings can be changed to enhance

performance [9]. In other words, the inputs to the causal chain are assumed to come first, and the

outputs are assumed to come last. Variables that serve as bridges between inputs and outputs can

be incorporated into models.
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Figure 1.6: (BBF) NNs structure

1.7.2 Unsupervised Learning

The alternative to supervised training is unsupervised training. In unsupervised training, the

network is given inputs but not the anticipated outputs. The following step is for the system to

decide which features will be utilized to arrange the data input. Adaptability or self-organization

are phrases used to characterize this process [9]. Since the goal is to make decisions that

maximize the benefits rather than produce a classification, unsupervised learning generally

fits within the decision problem paradigm and is seen to be more challenging than supervised

learning. Unsupervised learning’s objective is to unearth latent structures in unlabeled data [10].

Because the examples given to the learner are unlabeled, there is no mistake or reward signal to

assess a suggested potential solution.
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1.8 Differential Equation (DE)

In the mathematics field, an equation with one or more functions’ derivatives is called

a differential equation (DE) [11]. The differential equation (DE) can also be defined as a

relationship between the derivatives of an unknown function and the function itself. Most

mathematical models are formulated in the form of differential equations (DEs).

1.9 Differential Equations Classification

Differential equations (DEs) can be classified into the following categories [12]:

1.9.1 The Ordinary Differential Equation (ODE)

The ordinary differential equation (ODE) is a differential equation with just one independent

variable. This type of differential equation (DEs) is also known as 2D differential equation (DE).

ODEs have two types of variables, one is an unknown variable and the second one is a known

variable. The classical form of the nth-order ODE is stated below:

f
(

θ ,φ ,
dφ

dθ
,
d2φ

dθ 2 , . . . ,
dnφ

dθ n

)
= 0. (1.8)

1.9.2 Partial Differential Equation (PDE)

Partial differential equations (PDE) are differential equations with two or more independent

variables. The classical form of nth order PDE is written bellow:

f
(

θ1,θ2, . . . ,θn,
∂φ

∂θ1
,

∂φ

∂θ2
, . . . ,

∂φ

∂θn
,

∂ 2φ

∂θ1∂θ2
, . . . ,

∂ 2φ

∂θ1∂θn
, . . .

)
= 0. (1.9)

1.9.3 Delay Differential Equation (DDE)

DDE is a sub-type of functional differential equations. In a delay differential equation, the

derivative of an unknown function at a particular time is expressed in terms of the function’s
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values at earlier times, as opposed to the ODE in which the derivative is expressed in terms of

the function’s values at earlier times. Therefore, the solution of a delay differential equation

necessitates information not only of the current state but also of the situation at a specific period

in the past.

1.9.4 Differential algebraic equation (DAE)

A differential algebraic equation (DAE) is a generalized form of an ordinary differential

equation in which an unknown function and its derivatives are involved. This type of equation

emerges in the mathematical modeling of a wide range of engineering and scientific problems,

chemical process control, including optimum control, in-compressible fluids, etc.

1.9.5 Stochastic differential equation (SDE)

A stochastic differential equation (SDE) is a differential equation with stochastic terms.

Consequently, the solution is itself a stochastic process. Modeling many phenomena based on

stochastic differential equations, such as fluctuating stock prices or physical systems sensitive to

thermal fluctuations.

1.10 Types of DE Problems

Differential equations have two types of problems. These are stated below:

1.10.1 Initial Value Problems (IVPs)

In an initial value problem, the dependent variable and any potential derivatives are stated

immediately or at the same value as the independent variable in the equation. Initial value

problems typically include a time component.



13

For example:

An initial value problem would define a value of y(t) at time 0 if the independent variable is

time over the range [0, 1]. Physically, if someone taps a motionless body of water with a certain

force, the ripple that results provides us with the original situation.

1.10.2 Boundary Value Problems (BVPs)

When the dependent variable and its potential derivatives are stated at the extreme of the

independent variable, we have a boundary value problem. The auxiliary conditions for steady-

state equilibrium problems are boundary conditions applied to the full closed solution domain

boundary.

For example:

An equation for a boundary value problem would specify values for y(t) for both t = 0 and

t = 1 if the independent variable is time over the range [0, 1]. If the problem depends on both

space and time, the data could be provided at a given time for all spaces rather than describing

the value of the problem at a specific place for all time.

Further, boundary condition have three types [13], which are stated as follows:

Dirichlet Boundary Condition

The values of the function are given on the boundary in a Dirichlet boundary condition. For

example, if one end of an iron rod is maintained at absolute zero, the value of the issue is known

at that location in space. Finding the solution to such equations is known as the Dirichlet problem.

A Dirichlet boundary condition is imposed on an ordinary or partial differential equation that

specifies the values of a solution to take on the border of the domain.

For example: Consider the following example of a partial differential equation.
∂ 2φ

∂θ 2 +
∂ 2φ

∂ t2 = f (x,y)

φ(0, t) = A,φ(L, t) = B,
(1.10)

where A and B are integers. Given that the value of the function φ(θ , t) is stated on the

boundary for θ = 0 and θ = L, the boundary condition in the aforementioned equation is a
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Dirichlet boundary condition.

Neumann Boundary Condition

Values of the function are defined on the derivative normal to the boundary in the Neumann

boundary condition. For instance, energy would be provided continuously if one iron rod had a

heater at one end, but the actual temperature would not be known. Ordinary or partial differential

equations are subjected to Neumann boundary conditions, which specify the derivative values of

solutions to be applied to the domain’s edge.

For example:


∂ 2φ

∂θ 2 +
∂ 2φ

∂ t2 = f (x,y)

∂φ

∂n (0.t) = ω1,
∂φ

∂n (L.t) = ω2.

(1.11)

Mixed Boundary Condition

Mixed boundary conditions, commonly referred to as the Cauchy boundary condition, are

the linear combination of Dirichlet and Neumann boundary conditions. When a mixed boundary

condition is applied to an ordinary or partial differential equation, it specifies the values that

the differential equation must take into account at the domain’s boundary as well as its normal

derivative. Invoking both the Dirichlet and Neumann boundary conditions is equivalent.

For example:


∂ 2φ

∂θ 2 +
∂ 2φ

∂ t2 = f (x,y)

ω1
∂φ

∂n (0, t)+ω2φ(0, t) = ω,

ω1
∂φ

∂n (L, t)+ω2φ(L, t) = ωi.

(1.12)

1.11 Numerical Methods (NMs) for solving DEs

Numerous theorems in the field of mathematics provide assurance that solutions exist in

many situations, yet there is currently no known numerical method for getting those solutions
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in the explicit and closed form [14, 15]. Due to these drawbacks of analytical approaches in

real-world applications, numerical methods have developed. For different types of complicated

problems with no analytical solution, there exist several numerical techniques. These are stated

following:

1.11.1 Shooting Method

This method transforms boundary value problems into two initial value problems by adding

a sufficient number of conditions at one end and adjusting these conditions until the given

conditions are satisfied at the other end. The Taylor series, Runge-Kutta, and other techniques

are used to solve these two initial value problems. and the sum of the two solutions acquired by

resolving initial value problems provides the necessary solution to the supplied boundary value

problem.

1.11.2 Finite Difference Method

Functions are represented by their values at specific grid locations in the finite difference

method (FDM), and derivatives are approximately determined by differences in these values. The

domain under examination is represented by a limited subset of points for the finite difference

method. These are referred to as "nodal points" of the grid. This grid is generally set up in a

rectangular fashion, whether it is uniform or not. A collection of difference equations is used in

place of the differential equation, and these equations can be solved directly or iteratively.

1.11.3 Finite Element Method

The finite element method is a numerical approach similar to the finite difference approach,

but it is more powerful and applicable to issues in the real world with intricate boundary

conditions. Functions are modeled using basis functions in the finite element method (FEM), and

differential equations are resolved in their integral (weak) form. The domain under examination

is divided into a finite set of elements, {Ωi}, in the finite element approach such that Ωi
⋂

Ω j

for (i not equal j), and
⋃

Ωi = Ω: The function is then approximated by a low degree piece-wise
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polynomial. Additionally, they are built in a way that just a few aspects are supported by them.

It is simpler to describe a complicated function as a collection of simple polynomials, which is

the basic justification for using an approximation solution on a group of subdomains.

1.11.4 Finite Volume Method

Differential equations are modeled and evaluated as algebraic equations using the finite

volume method. The little volume that surrounds each node point on a mesh is known as a

finite volume. Similar to the Finite Difference Method, the Finite Volume Method calculates

values at discrete points inside mesh geometry. Using the divergence theorem, this approach

transforms volume integrals in a differential equation with a divergence term into surface integrals.

These terms are assessed as fluxes at the surfaces of each finite volume, and the procedure is

conservative in that the flux entering one volume is the same as the flux exiting the one next to it.

In comparison to the finite difference approach, the finite volume method has the benefit of not

requiring a structured mesh and allowing for non-intrusive application of boundary conditions.

This approach works well with irregular grids and calculations where the mesh moves to follow

interfaces.

1.11.5 Spline-Based Method

A spline is typically a piecewise polynomial function that is defined in a region, with the

function being a polynomial of some degree in each of the region’s subregions. The differential

equation is discretized in spline-based approaches utilizing approximations based on splines. For

the definition of a spline, the end conditions are derived. The created algorithm approximates

both the answers and their higher-order derivatives.

1.11.6 Physical Problems Associated with Differential Equations (DEs)

Mountains crumble, river bottoms move, machinery malfunctions, the environment becomes

increasingly polluted, populations shift, economies change, and technology develops as the planet

rotates. Therefore, every quantity that can be expressed mathematically over an extended period
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of time must alter with time. Many quantities vary quickly as a function of time, relativistically

speaking, including heartbeats, pendulum swings, chemical explosions [16], etc. Other examples

are the natural pulsing of quartz crystals, heartbeats, and the swing of a pendulum. In this

research work, we considered the heartbeat mathematical model known as the van der Pol

differential equation.

Our experience suggests that the rate of change of a physical or biological quantity relative

to time contains crucial information about the system when it comes to the quantitative study of

any system. The majority of physical and biological models that can be analyzed mathematically

are formulated with this rate of change in mind.

1.12 Design Framework of This Thesis

This thesis structure includes six chapters, as mentioned below:

Chapter 2 describes the literature review. The review model of the heartbeat problem modification

is listed in Chapter 4. Chapter 5 proposes a design methodology for computing the results.

Chapter 6 describes numerical simulation results and has some discussion on them. Chapter 3

reports the conclusion and represents future work.

we review the importance of artificial intelligence (AI), artificial neural networks (ANNs),

and their types and the beginning of this revolution in the mathematics field. Then we presented

the definition of differential equations (DE), their types, and classifications. The applications of

DEs are overviewed. The heartbeat model (HBM) modification review is presented in chapter 4.

Actually, HBM is the problem that we are going to solve in our thesis research. The next chapter

2 is about the literature review.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, the different research studies that are related to our research area are reviewed.

Also, highlighted the literature related to the research topic and cite different articles. This

chapter will help us improve our basic knowledge regarding our topic. At the end, we conducted

our numerical simulation process.

Due to the lack of exact solutions for the nonlinear VdP oscillatory system, a wide variety of

analytical and numerical solvers have been developed. A few of them are Adomian decomposition

methods (ADM) [17], Laplace decomposition method [18], homotopy analysis method [19],

He’s parameter-expanding methods [20], and linearization method (LM) [21], etc. Each of these

techniques has its own inherent value, scope, restrictions, and applications. However, aside

from the stochastic solvers’ well-known strength, AI-based stochastic solvers are thought to be

efficient, precise, and dependable methods for solving numerous unconstrained and constrained

optimization problems that arise in a number of applications in a wide range of domains

[22, 23, 24, 25].

Astrophysics modeling is among the few new applications tackled by ANNs-based AI

approaches [26]. Some other applications of astrophysics modeling are Bi-linear programming

problems (BPP) [27], second kind Fredholm integral equations (FIE) [28], buckling analysis of a

beam–column [29], an inverse kinematics problem [30], etc. The effectiveness of FF ANN as

an approximation of a universal function is utilised to build stochastic numerical approaches,

and typically, these networks are optimised by combining viable local and also global search

techniques for solving nonlinear systems [31, 32, 33, 34, 35]. Recent potential applications of
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these solvers include the solution of nonlinear, rigid VdP oscillatory systems [36, 37], control fuel

ignition model derived from combustion theory [38], nanofluidics problems [39, 40], problems

in fluid mechanics based on thin-film flow [41], nonlinear equations of the Troesch type arise in

plasma physics [42, 43], model of longitudinal heat transfer fins [44], system based on linear

volterra integral equations [45], fuzzy differential equations [46], Navier–Stokes equations

[47], BVPs of pantograph-type functional ODEs [48, 49], the problem of moving singularities

in nonlinear Painleve’-type equations [50], magnetohydrodynamics (MHD) studies [51, 52],

models of electrical conducting solids [53], thermodynamics studies of spherical cloud model

[54], nonlinear fractional order systems [55], fractional optimal control problems [56], problems

arising in electromagnetic theory [57] and nonlinear. Lane–Emden-type equations [58], the above

are my motivations as a researcher. It explores the robustness of stochastic solvers to design

a robust, alternate, reliable, and accurate computing method for studying the VdP heartbeat

dynamic model.

The PSO has been employed with effectiveness in numerous fields, including robotics

[59, 60, 61, 62], sport sciences [63] and electric systems [64]. However, a common issue with

the PSO and other optimization algorithms is that they might become stuck in a local optimum,

even though they may be effective for a particular situation, but could fall short on another issue.

Numerous authors have recommended different changes to the PSO algorithm’s settings that

combine fuzzy logic to get around this issue, where fuzzy logic is used to dynamically change

the inertia weight w "IF THEN" [65] rules.

Recently, Pires et al. used fractional calculus to regulate the PSO’s rate of convergence [66].

The authors adjust the order of the velocity derivative by rearranging the original velocity equation

(4.1). Based on the work of Pires et al., this research attempts to regulate the convergence rate of

an evolving version of the PSO, since the most successful PSO variations are those based on

evolutionary approaches [67].

Numerous writers have investigated combining selection, differential evolution (DE) ,

crossover, and mutation into the PSO algorithm. The primary objective is to increase pop-

ulation variety by preventing particles from moving too closely together and colliding [68, 69] or

to automatically adjust variables like the acceleration constants, constriction factor [70] or inertia

weight [71]. The GA-PSO was created by combining genetic algorithms (GA) and the PSO [72].

This combines the benefits of a natural selection system and swarm intelligence, include GA,

to boost the proportion of highly regarded agents, while reducing the quantity of agents with
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low evaluation scores at each iteration stage. Similar to the previous one, the EPSO algorithm

adds a selection process to the basic PSO algorithm in an evolutionary fashion, furthermore

has characteristics that can adapt on their own. This approach incorporates an evolutionary

programming method for tournament selection [73]. On the basis of the EPSO, a DE operator

has been developed to enhance the algorithm’s performance in two distinct ways. The 1st one

[74] eliminates particles that enter local minima by applying the DE operator to the particle’s

optimal position (DEPSO), the second one [75] uses it to determine the acceleration constants

and ideal inertia for the standard PSO (C-PSO).

A deep literature review related to our research area (topic) states and discusses the research

work that has already been done in the field of "solving differential equations using artificial

neural networks" or related to our research thesis topic, i.e. an innovative neuroevolutionary

approach for heartbeat analysis with ANN.
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CHAPTER 3

REVIEW OF HEARTBEAT MODEL

3.1 Modeling of the heart using nonlinear Van der Pol oscillators

An overview of the background research for the Van der Pol (VdP) system, which is repre-

sented in Eq. (4.1), is given in this section. The first purpose of the VdP system was to describe

relaxation oscillators in electronic circuit modeling and is often used in theoretical models

of the heart’s rhythm. The following nonlinear oscillator model is the heart’s mathematical

representation based on the VdP system [76, 77]:

ẍ+ α̃
(
x2 −1

)
ẋ+ωx = 0, (3.1)

where the constant coefficients are ω and α̃ , represents dupping and damping respectively related

parameters of system. Due to the similarity of the biological systems and VdP equation in terms

of chaos, limit cycles, and synchronization. Theoretical models of heart oscillations commonly

employ a VdP-based DE system [78, 17, 18, 19, 20, 21, 22]. The VdP equation adjusts its

inherent frequency to the driving pacemaker frequency from outside, without any amplitude

change, which is an essential component of a cardiac pacemaker. Zebrowski and Grudzinski 1st

presented these traditional VdP heart models (HMs) [79]. Later modifications were made to the

original VdP HM and its characteristics are drastically altered, simply adding together two fixed

positions, stable node at x =−2d and saddle-node at x =−d. Accordingly, the VdP system for

the HM with updated unsymmetrical voltage-related damping terms is given as follows:

ẍ+ α̃
(
x2 −µ

)
ẋ+

x(x+d)(x+(2×d))
d ×d

= 0. (3.2)
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The distance between these two fixed positions cannot be altered according to equation (3.2);

equation (3.2) is consequently modified by the addition of a new parameter e, it is in charge of

altering the depolarization period as:

ẍ+ α̃
(
x2 −µ

)
ẋ+

x(x+ e)(x+d)
e×d

= 0. (3.3)

In equation (3.3) replacing the term
(
x2 −µ

)
with (x−v1)(x−v2), the new terms are asymmetric

w.r.t x, formulated as below:

ẍ+ α̃ (x− v2)(x− v1) ẋ+
x(x+ e)(x+d)

e×d
= 0. (3.4)

The above equation is the homogeneous form of the VdP heartbeat model (HBM). To keep

the system’s self-oscillatory properties, the condition v1v2 < 0 must be met. Further, the equation

(3.4) is formulated, and detail discussed below.

3.2 Heartbeat Model (HBM)

Due to their stability, simplicity, and single limit cycle, VdP oscillatory systems have been

utilized to precisely replicate the theoretical model of cardiac functions [80, 81], including

relaxation, bifurcations, chaotic behavior, and periodicity [78]. In the form of a non-linear

oscillator, the heartbeat model (HBM) can be formulated as follows [82]:

ẍ+ α̃ (x− v1)(x− v2) ẋ+ (x+e)(x+d)x
e×d = F(t),

x(0) = c1, ẋ(0) = c2.
(3.5)

The above equation is the final form of equation (3.4). Where α̃ represents the pulse

modification factor of the heartbeat, v1 and v2 represent asymmetric parameters. x is the length

of heart fiber, d is a factor that appears when a cubic term is used to replace the harmonic force in

the traditional VdP equation, e is for the period of ventricular contraction, and F(t) is an external

force term. The heart biological model is given in Fig. 3.1.

Equation (4.1) is the representation of the Van der Pol (VdP) heartbeat model (HBM) modified

form. In this thesis, we analyzed this model using our hybrid technique fractional order particle

swarm optimization (FO-PSO). We perform some variations in parameters (α̃,v1,v2) , that are

used in equation (4.1) and choose constant values for some parameters (d,e). The terms x(0) = c1

and ẋ(0) = c2 are initial conditions. Where the values of c1 =−0.1 and c2 = 0.025.
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Figure 3.1: 3D Human heart model generated in mid-journey AI (an independent research lab)
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3.3 Particle Swarm Optimization (PSO) Algorithm

Population-based searches may be a useful alternative when the search space is too huge to

be searched thoroughly, but they cannot ensure that you will find the optimal (best) solution.

Dr. James Kennedy and Dr. Russell C. Eberhart originally introduced particle swarm opti-

mization in 1995. Particle Swarm Optimisation (PSO), a population-based search methodology,

will be covered. The PSO Algorithm and the Genetic Algorithm both have features in common,

but they approach the search area in fundamentally different ways [60].

The following points are shared by both genetic algorithms and particle swarm optimizers:

1. Both methods initialize a population in the same way.

2. To establish how suitable (excellent) a proposed solution is, both employ an evaluation

function.

3. Both are generational, which means they both repeatedly go through the same set of steps

over a predefined period of time.

The two main operators in particle swarm are velocity update and position update. Each

particle is accelerated towards its prior best position and the overall best position during each

generation. Based on each particle’s current velocity, distance from its prior best location, and

distance from the global best position, a new velocity value is determined for each iteration. The

next point of the particle in the search space is then determined using the new velocity value.

Then, this procedure is repeated a predetermined number of times, or up until a minimum error

is reached [67, 65]. The detailed mathematical formulation is stated in chapter 4.

3.4 Fractional Order Calculus

The letter Leibniz wrote to L’Hopital in 1695 demonstrates that the intuitive notion of FOC is

as old as IOC. The IOC is being applied to a genuine or complex order. Fractional order calculus

dates back to the origins of differential calculus theory. FC hasn’t been used much until the last

20 years, though, because of changes in nonlinear and complex systems that have shown subtle

links with FC principles. Regarding FC applications study there have been initiatives in the field
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of viscoelasticity [83, 84, 85], [86, 87] chaos, fractals, electronics, diffusion, signal processing,

irreversibility, modeling, percolation, physics, biology, and wave propagation. Various attempts

have been made since its inception to generalize the concepts of derivative and integral to a

non-integer order, α . Due to this, fractional derivatives have multiple different definitions.

Various attempts have been made since its inception to generalize the concepts of derivative and

integral to a non-integer order of α [83, 84, 85],. Due to this, fractional derivatives have multiple

different definitions. Here, taking Laplace’s definition as an example, Laplace’s definition of a

fractional-order derivative α in C of the signal x(t),Dα [x(t)], is a ’direct’ generalization of the

conventional integer-order scheme, yielding:

L {Dα [x(t)]}= sαX(s). (3.6)

The Grünwald–Letnikov definition, which is based on the concept of fractional differential,

is an alternate method [83]. The further formulation is stated in chapter 4.

3.5 Fractional Order Particle Swarm Optimization (FO-PSO)

A modification of the standard Particle Swarm Optimisation (PSO) algorithm that uses

fractional calculus ideas is called Fractional Order Particle Swarm Optimisation (FO-PSO). PSO

is a metaheuristic algorithm that is frequently employed for optimization issues. It was inspired

by the social behavior of flocking birds or schooling fish.

FO-PSO uses the idea of fractional order calculus to improve the algorithm’s search capa-

bilities. Because it allows for the differentiation and integration of non-integer order, fractional

calculus expands on classical calculus. This method adds memory and history to the optimization

process, allowing the algorithm to more thoroughly scan the search space.

A population of particles that represent potential answers to the optimization problem is

iteratively updated by FO-PSO to operate. Based on its own best position from the past and

the best position discovered by the entire population, each particle modifies its position. When

employing fractional order differentiation and integration operators to update the particles’

position and velocity, the fractional order aspect is relevant.

FO-PSO offers a more flexible and effective search space exploration by combining frac-

tional calculus, enabling a better trade-off between exploration and exploitation. It has been
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demonstrated to be very successful in resolving challenging optimization issues in non-convex

and non-linear search spaces.

FO-PSO, which stands for fractional order PSO, is an improved variant of PSO that uses frac-

tional order calculus to enhance search capabilities and algorithm efficiency in optimization tasks.

For further mathematical formulation kindly see the chapter 4 proposed research methodology.

3.6 Novelty of Our Research Thesis

After reviewing so many scholarly works, it is clear that computation intelligence (CI)-based

solvers continue to be the primary concern of scientists in this technological era. These CI-based

strategies are efficient for solving nonlinear models such as those given in [88, 89, 90, 91, 92]

due to their proficiency and high performance. Studies have shown that they can effectively scale

up to tackle large-scale problems, in contrast to conventional optimization approaches, which are

more effective for small-scale problems. FO-PSO has a lot of room to grow in terms of learning

methodologies, but so far little has really changed.
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CHAPTER 4

AN INNOVATIVE NEUROEVOLUTIONARY APPROACH FOR

HEARTBEAT ANALYSIS WITH ANN

In this chapter, we proposed a novel design methodology, also called the proposed design of

soft computing. This proposed design methodology consists of a series solution for our model, a

fitness function used for the optimization of our problems by minimizing the mean square error,

and at the end, we presented a note on our hybrid technique FO-PSO-ASA. This process will

help us conduct the numerical simulation and get our results, which are stated in the next chapter

5.

4.1 Heartbeat Model

The following equation is the general form of the heartbeat model:

ẍ+ α̃ (x− v1)(x− v2) ẋ+ (x+e)(x+d)x
e×d = F(t),

x(0) = c1, ẋ(0) = c2.
(4.1)
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4.2 Proposed Design Methodology

Even though machine learning techniques have come a long way in the past few years, it has

been hard to use these new methods to solve differential equations (DEs) for a long time. So far,

the most promising results have come from learning either better ways to solve problems or the

solution itself. This last method is especially easy to understand. The idea of directly learning

how to solve a DE works for all DEs, and because it is such a basic idea, it gives us a good place

to start.

Although there are numerous approaches to learning a DE’s solution, our proposed method-

ology for our mathematical model consists of two main parts; the 1st phase contains the creation

of an unsupervised ANN model to govern the system of differential equations (DE) provided in

Equation 4.1. In the 2nd phase, weights for these networks are optimized using soft computing

methods shown in figure 4.4.

4.3 Mathematical modeling of neural networks (NNs)

The math model of neural networks for ODEs is made by using the power of approximation

theory in the form of continuous mapping. Here we consider x̂(t) as approximate solution of our

heart model (HM). The following networks are provided for the approximate solution x̂(t) and

the derivatives of x̂(t):

x̂(t) =
m

∑
j=1

ϕ j f
(
w jt +β j

)
, (4.2)

ˆ̇x(t) =
m

∑
j=1

ϕ j ḟ
(
w jt +β j

)
(4.3)

ˆ̈x(t) =
m

∑
j=1

ϕ j f̈
(
w jt +β j

)
, (4.4)

. . . . . .

. . . . . .

. . . . . .

x̂(n)(t) =
m

∑
j=1

ϕ j f (n)
(
w jt +β j

)
. (4.5)
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In above equations β = [β1,β2,β3, . . . ,βm], ϕ = [ϕ1,ϕ2,ϕ3, . . . ,ϕm] and w=[w1, w2, w3,

. . . wm] are the real values which is arbitrary bounded. Updated form of the network set from

Equations (4.2-4.5) using the log-sigmoid activation function f (x) = 1/(1+ e−x) and its deriva-

tives is given as:

x̂(t) =
m

∑
j=1

ϕ j

(
1

1+ e−(w j(t)+β j)

)
, (4.6)

ˆ̇x(t) =
m

∑
j=1

ϕ jw j

 e−(w j(t)+β j)(
1+ e−(w j(t)+β j)

)2

 , (4.7)

ˆ̈x(t) =
m

∑
j=1

ϕ jw2
j

 2e−2(w jt+β j)(
1+ e−(w jt+β j)

)3 −
e−(w jt+β j)(

1+ e−(w jt+β j)
)2

 , (4.8)

. . .

. . .

. . .

A mathematical representation of Equations (4.2-4.5) or (4.6-4.8) can be created using the

appropriate network configurations specified in a set of Equation (4.1). Input, output, and hidden

layers make up the NN architecture of a heart model based on the VdP equation, which is seen

in Fig. 4.1.

4.3.1 Fitness Function (FF)

Using the mean square sense, a fitness function is created as follows in order to solve the

cardiac dynamics model presented in the system (4.1):

minimize ε = ε1 + ε2, (4.9)

where the nonlinear VdP equation’s mean square error function or ε1, is provided as follows:

ε1 =
1
N

M

∑
m=1

(
ˆ̂x+ α̃ (x̂m − v2)(x̂m − v1) x̂m +

x̂m (x̂m + e)(x̂m +d)
e×d

)2

(4.10)

for N = 1
h , x̂m = x̂(tm) , and tm = mh,

Heart model is an initial value problem (IVP), so we are takin ε2 is the mean square error for

initial conditions. It is stated below in equation form:
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ε2 =
1
2

(
(c1 + x̂0)

2 +(−c2 + ẋ0)
2
)
. (4.11)

If training weights W = [ϕ,ω,β ] for the ANNs model are available, the solution for the

heart model provided in model (4.1) can be determined such that the fitness value ε is close to

zero, i.e. ε → 0, then the ANN model’s solution becomes closer to the equation’s exact solution.

i.e. x̂(t)→ x(t).

Figure 4.1: Graphical abstract of ANNs for heart model

4.3.2 Optimization procedure: FO-PSO–ASA

In order to solve the Van der Pol heart dynamics model 4.1, an evolutionary computing

approach called FO-PSO-ASA, which combines fractional-order calculus (FOC) and particle

swarm optimization (PSO) algorithms supported by an active set algorithm, is utilized to train

the unknown adjustable parameter of ANNs.

Particle Swarm Optimization (PSO) Algorithm

The optimization technique known as Particle Swarm Optimization (PSO) was influenced

by the group behaviour of fish schooling or bird flocking. It updates a swarm of particles in the
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search space iteratively in an attempt to discover the best answer. The following mathematical

formulation of the PSO algorithm is possible:

1. Initialization:

• Define the N population size (particle count).

• Set each particle’s position and speed randomly at the beginning of the search space

(1 ≤ i ≤ N).

• Each particle’s current location is set to the original best position (pbest).

• Initialise the global best position (gbest) as the top particle position.

2. item Update particle position and velocity:

Do the following for each particle (1 ≤ i ≤ N):

• Apply the following equation to update particle velocity:

ut+1 = ut +φ1(B−X)+φ2(g−X), (4.12)

where ut is current velocity of a particle, u(t +1) is the updated velocity at time t.

B is the best individual position and g is the best global position. X is the position

of a particle. φ1 and φ2 are local and global information. The terms φ1(B−X) and

φ2(g−X) represents local and global influence.

• Using the equation below, adjust particle location:

Xt+1 = Xt +ut+1, (4.13)

3. Review and update the best particle positions:

For each particle, i (1 ≤ i ≤ N),dothe f ollowing :

4. Determine the particle fitness or objective function value in its new location.

5. Update pbesti with the new position if it increases fitness in comparison to the

previous best position (pbesti).

6. Update the global best position (gbest) with the new position if the fitness of the

new position is better than the global best position (gbest).
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Till a termination requirement (such as the maximum number of iterations or the target fitness

level) is satisfied, repeat steps 2 and 3 as necessary. By altering the velocity and location of

particles based on both their own best positions and the overall best positions discovered by the

swarm, the algorithm seeks to converge to the best result.

Fractional order Calculus (FOC)

Recent studies show that fractional calculus (FC) attracted numerous scholars to use it in

resolving and defining engineerin, mechanical, applied mathematics problems. By changing an

unknown function y(t) as in equation (4.14), Grunwald-Letnikor defined a fractional derivative

including fractional coefficients as a real number α ∈C.

Dα [y(t)] = lim
h→0

[
1

hα

+∞

∑
m=0

(−1)mΓ(α +1)(t −mh)y
Γ(m+1)Γ(α −m+1)

]
, (4.14)

where the gamma function is denoted by the symbol Γ. It is clarified further that in equation

(4.14), the series is defined by finite terms if the derivative is of integer order. On the other

side, the outcome is represented by the infinite term if α is of fractional order. Therefore, it is

exciting to see that fractional operators convey a recollection of previous modifications, whereas

conventional derivatives are local/instantaneous operators. Additionally, our ability to recall the

past declines with time. In equation (4.15), a discrete instance derivative is defined:

Dα [y(t)] =
1

T α

r

∑
m=0

(−1)mΓ(α +1)x(t −mT )
Γ(m+1)Γ(α −m+1)

, (4.15)

where T stands for the time periods during which events occurred, while r stands for truncated

terms. Due of their ability to maintain memories, fractional calculus tools are valuable in chaotic

and irreversible processes.

4.3.3 Combined Form of FO-PSO algorithm

Here, we present an evolutionary technique for managing the particle swarm optimization

algorithm. In order to modify the order of the velocity derivative, the initial velocity equation of

a straightforward PSO is first rearranged, from equation (4.12) as shown below:

ut+1 = ut +φ1(B−X)+φ2(g−X), (4.16)

The movement of a particle is guided by two terms: cognitive and social. The cognitive term

φ1(B−X) represents the particle’s tendency to move towards its own best position X , where φ1
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is the weight for personal information. while the social term φ2(g−X) represents the particle’s

tendency to move towards the best position of the population g and the weight information for

population is shown by φ2. By equation xt+1 = Xt +ut+1. The updated velocity is represented by

ut+1 while the first term, ut , displays the current velocity. By references [83, 84, 85], the above

equation can be written as:

ut+1 −ut = φ1(B−X)+φ2(g−X), (4.17)

The Particle Swarm Optimization (PSO) algorithm takes into account the chaotic behavior

of swarms, making fractional calculus tools useful for tracking previous swarm movements. The

following expression results from setting the inertial weight in FO-PSO to T = 1,w = 1 using

equation (4.15), and taking into consideration the work done in [93], the equation 4.17 can be

written as:

Dα [ut+1] = φ1(B−X)+φ2(g−X). (4.18)

For r ≥ 4, the FO-PSO method yields identical empirical results. Additionally, the

complexity of computation grows linearly and takes up O(r) memory. Consequently, the 5th

term and subsequent terms are trimmed for speedier convergence. As a result, r is maintained at

4. When these four differential derivative terms are added, the velocity term in FO-PSO is equal

to that in Eq. (4.19):

ut+1 −αut −
1
2

αut−1 −
1
6

α(1−α)ut−2 −
1

24
α(1−α)(2−α)ut−3 = φ1(B−X)+φ2(g−X),

(4.19)

Rearranging the equation we get the final form:

ut+1 = αut +
1
2

αut−1 +
1
6

α(1−α)ut−2 +
1

24
α(1−α)(2−α)ut−3 +φ1(B−X)+φ2(g−X).

(4.20)

Our new soft computing approach is based on the hybrid global search technique FO-PSO

with the local search technique ASA. i.e., FO-PSO–ASA. In order to solve the Van der Pol

heart model (4.1), ANNs’ unknown adjustable parameter is trained using FO-PSO–ASA. PSO

are regarded as one of the most reliable, robust, efficient, and accurate methods in the class of

evolutionary computing algorithms that are widely applied in diverse fields of applied sciences.

As we select the hybrid form of FO-PSO, it causes an increase in the efficiency, accuracy,

and reliability of our approach. Because the best velocities for our algorithm can be found in any

order of velocities, In order to obtain a precise solution for linear and nonlinear systems based on
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restricted and unconstrained problems, our method, FO-PSO, is a trusted optimization technique

or mechanism. The flowchart of FO-PSO and illustration of ASA is shown in Fig. 4.3.

In order to swiftly get the desired results for an optimization problem, the hybridization

technique with effective local search takes advantage of the real strength of FO-PSO optimization

capabilities. The active set algorithm (ASA), which starts with the best FO-PSO individual, is

used to quickly fine-tune the variables. In Fig. 4.3 the ASA flowchart is displayed. Many opti-

mization issues that arise in various domains are successfully resolved by ASA, including those

with hyperbolicity cone optimization, models of discrete-time infectious diseases with parameter

estimation, nonlinear programming in nonconvex and many more. The above statements make

ASA an attractive choice.

In order to solve the system model of heart model as provided in equation (4.1), a hybrid

computing methodology called FO-PSO–ASA is utilised to identify suitable design variables

of an ANNs model. This is done while taking into consideration the strengths of FO-PSO as

a global method and ASA as a local, trustworthy method. These settings affect the proposed

algorithm FO-PSO–ASA, and even a little adjustment could lead it to converge too soon. The

parameters are set with care and through rigorous experimentation. Table 4.1 provides the

pseudo-code for the design approach FO-PSO-ASA.

In short, the heart beat problem is solved through artificial neural networks trained

with fractional order particle swarm optimization methodology. We formulated the proposed

methodology of artificial neural networks (ANNs) while solving differential equations (our

research problem). Also formulated the fitness function of differential equations. We discussed

the optimization of absolute error for differential equations. Further, add the discussion of our

optimization procedure for our hybrid technique of fractional order particle swarm optimization

(FO-PSO) along with local search active set algorithm (ASA), i.e., FO-PSO-ASA. At the end, we

formulated the equation related to FO-PSO. In the next chapter 5, we discussed the experiments,

results, and discussion.
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Table 4.1: FO-PSO–ASA algorithm
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Figure 4.2: Flowchart of FO-PSO

Figure 4.3: Illustration of the ASA
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Figure 4.4: Flowchart of the designed technique for solving the VdP heartbeat model dynamics.
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CHAPTER 5

NUMERICAL EXPERIMENTATION WITH DISCUSSION

Two case studies make up the results of the numerical experiments we did on the VdP

equation of our proposed method. In the very first case study of the numerical experiment,

we considered one problem with two scenarios, and each scenario has four cases. The second

case study has the same problem: they contain two scenarios, and each scenario has four cases.

Figure 5.1 depicts graphs of all of our case studies. The VdP equation is a non-linear ordinary

differential equation (ODE) with initial conditions, which is stated as follows:

5.1 Problem 1; HBM with F(t) = 0

In this problem, we considered F(t) = 0 in model (4.1). In this problem, we analyzed

the dynamics of HBM in the absence of an external force term, i.e., F(t). In problem 1, we are

considering two types of scenarios. In the 1st scenario, we are making variations in α̃ , that is,

the pulse shape modification factor, and in the 2n scenario, we are varying the values of v1 and

v2, which represent the asymmetric damping terms in the heartbeat model (4.1). We consider the

other parameters to have constant values. This problem scenario is stated as follows:



39

Figure 5.1: Flowchart of Problem 1,2

5.1.1 Scenario 1: variation in α̃

In this scenario, we make a variation in the pulse shape modification factor, that is, α̃

and consider fixed values for the remaining variables, as stated below:

Case1: v1 = 0.83, d = 3, v2 =−0.83, e = 6, and α̃ = 3,

Case2: v1 = 0.83, d = 3, v2 =−0.83, e = 6, and α̃ = 2,

Case3: v1 = 0.83, d = 3, v2 =−0.83, e = 6, and α̃ = 1,

Case4: v1 = 0.83, d = 3, v2 =−0.83,e = 6, and α̃ = 0.01.

Substituting these values in the equation (4.1), we get the form, as formulated below:

ẍ+ α̃(x−0.83)(x+0.83)ẋ+ (x+6)(x+3)
18 x = 0.

x(0) =−0.1 and ẋ(0) = 0.025.
(5.1)

In equation (5.1) α̃ varies for values α̃ = 3,2,1,0,01. As we know that for equation 5.1

exact solution is not available. In this simulation process, we solved the four cases in scenario

1. The results of the hybrid genetic algorithm with the interior point algorithm (GA-IPA) were

compared with our results to assess the accuracy level of our proposed technique. The next step
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for our proposed scheme is to write the equation (5.1) in the form of a fitness function (FF) with

the same domain [0,2] and an increment of h = 0.1. The fitness function is stated below:

ε =
1
N

N

∑
m=1

(
ˆ̇xm + α̃ (x̂m −0.83)(x̂m +0.83) x̂m (5.2)

+
x̂m (x̂m +6)(x̂m +3)

18

)2

+
1
2

(
(x̂0 +0.1)2 +

(
ˆ̇x0 −0.025

)2
)
.

Next step to optimize the equation (4.6-4.8) using our proposed algorithm FO-PSO and

one set of FF-valued weights

x̂c1 =



15.3279
1+e−(−0.3096t+4.3232) +

5.9050
1+e−(29.9998t+23.7594)

+ −8.8026
1+e−(−1.7310t+6.2122) +

28.9849
1+e(−26.3797t−39.8251)

+ −30.1700
1+e−(7.7927t−24.8558) +

−0.0118
1+e−(−51.8496t−−0.8005)

+ −15.5022284679284
1+e−(30.0000t+28.4725) +

3.1565
1+e−(−8.9775t+28.9828)

+ 29.9843
1+e−(−35.7825t−9.5631) +

29.9995
1+e−(6.6484t−30.0124) ,

(5.3)

x̂c2 =



0.1339
1+e−(−0.6756t+1.4881) +

−1.5017
1+e−(−0.3369t+3.0265)

+ 0.0075
1+e−(−2.1802t−0.6363) +

0.0688
1+e−(1.1027t−2.4080)

+ −0.6091
1+e−(1.0731t−2.0099) +

−0.2614
1+e−(0.1408t−0.2667)

+ −0.2756
1+e−(−0.6184t−1.3405) +

1.4370
1+e−(−0.1136t+2.5645)

+ 0.4944
1+e−(−1.2362t+5.0140) +

0.4717
1+e−(1.0161t−−1.3526) ,

(5.4)

x̂c3 =



−1.4091
1+e−(−0.6858t−3.8223) +

2.9797
1+e−(−0.9719t−4.8931)

+ 2.5975
1+e−(0.0782t−1.3661) +

−1.8859
1+e−(−0.3299t−3.7000)

+ 1.6800
1+e−(0.9489t−2.3008) +

−3.3085
1+e−(0.9972t−4.7074)

+ 2.1867
1+e−(1.3454t+4.3235) +

−2.4459
1+e−(0.9411t+3.3095)

+ 2.4692
1+e−(−0.4934t−2.0018) +

1.0490
1+e−(1.0401t−3.1263) ,

(5.5)

x̂c4 =



2.2978
1+e−(1.2415t−2.5226) +

1.9443
1+e−(−0.7308t−1.0914)

+ 2.3700
1+e−(−0.0995t+0.0553) +

−0.7981
1+e−(−1.8161t−3.8849)

+ −2.0235
1+e−(0.8352t+4.7106) +

−1.5512
1+e−(1.6637t+4.6148) .

+ −3.6439
1+e−(1.1124t−3.4057) +

1.5489
1+e−(1.9606t−4.6833)

+ −0.2709
1+e−(1.3279t−3.8548) +

2.23711
1+e−(0.6577t+1.1247) .

(5.6)

The graphical representation of our approximate solution was determined using the above

equations (5.3-5.6) on a domain [0,2] with increment h = 0.1. shown in figure 5.3a and the
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Figure 5.2: Trained weights for all the 4 cases; scenario 1, problem 1

absolute error (AE) graph is shown in figure 5.3b. It has been observed that the accuracy of our

technique (FO-PSO) is 10−14 −10−7 for cases 1, 2, 3, and 4, respectively; see table 5.1. For

this step, we run our method (FO-PSO) 100 times in Matlab to find weights for our model. Our

best-trained weights are plotted in figure 5.2. This helps us figure out how well our method

converges and how accurate it is. We used standard deviation (STD) and minimum mean results

for statistical analysis. Table 5.1 lists the comparison of the outcomes of the absolute error (AE)

based on 100 independent runs of the hybrid GA-IPA and our proposed technique FO-PSO-ASA.
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Figure 5.3: Solution and AE graphs for all the 4 cases; scenario 1, problem 1
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Table 5.1: Comparison of min AE of scenario 1, problem 1 of the heart model

Case 1 Case 2 Case 3 Case 4

t Min (GA) Min(FO-PSO) Min (GA) Min(FO-PSO) Min (GA) Min(FO-PSO) Min (GA) Min(FO-PSO)

0.0 1.98E-09 3.55E-12 8.44E-10 1.33E-13 7.76E-11 2.19E-10 1.00E-11 4.99E-12

0.1 4.19E-09 2.82E-08 7.23E-10 1.77E-12 7.81E-10 9.39E-11 8.09E-06 1.27E-11

0.2 3.29E-08 6.93E-07 1.28E-08 1.29E-13 5.49E-10 1.88E-10 3.75E-05 3.23E-12

0.3 1.31E-07 2.45E-09 9.55E-09 2.53E-14 1.63E-08 6.42E-11 9.25E-05 3.01E-12

0.4 1.14E-07 3.09E-08 1.31E-08 8.22E-13 3.90E-10 2.08E-14 1.79E-04 1.21E-11

0.5 9.84E-08 9.88E-08 2.68E-08 2.90E-12 3.51E-08 4.10E-11 3.02E-04 5.46E-12

0.6 4.57E-07 1.42E-07 1.34E-08 2.94E-12 7.45E-08 7.89E-11 4.65E-04 5.99E-13

0.7 7.04E-08 1.32E-07 8.11E-10 4.97E-13 9.36E-08 5.70E-11 6.71E-04 1.48E-11

0.8 3.60E-07 7.83E-08 2.59E-09 8.18E-13 1.19E -07 1.30E-11 9.24E-04 2.42E-11

0.9 4.73E-07 1.87E-08 1.87E-10 5.50E-12 7.15E-09 1.38E-12 1.22E-03 9.61E-12

1.0 6.36E-07 1.69E-09 1.93E-07 8.42E-12 6.51E-08 2.51E-11 1.57E-03 7.64E-13

1.1 3.08E-07 4.77E-08 1.97E-07 5.02E-12 8.95E-08 4.39E-11 1.96E-03 2.34E-11

1.2 6.62E-07 1.21E-07 3.11E-07 3.18E-13 6.34E-08 3.10E-11 2.40E-03 3.87E-11

1.3 3.03E-07 1.44E-07 3.43E-07 2.08E-12 2.93E-08 5.58E-12 2.88E-03 1.32E-11

1.4 1.30E-07 7.51E-08 1.96E-07 8.15E-12 2.19E-07 2.64E-12 3.40E-03 3.52E-12

1.5 2.40E-07 8.25E-10 1.85E-07 8.18E-12 3.66E-07 2.08E-11 3.95E-03 4.54E-11

1.6 2.98E-07 7.57E-08 3.68E-07 1.32E-12 5.43E-08 2.31E-11 4.52E-03 4.71E-11

1.7 5.18E-07 1.94E-07 5.58E-07 2.98E-12 1.94E-08 3.23E-12 5.11E-03 1.45E-12

1.8 2.25E-06 3.92E-08 5.51E-07 1.74E-11 2.97E-07 8.90E-12 5.72E-03 3.05E-11

1.9 1.81E-06 1.97E-07 3.65E-07 1.22E-11 2.70E-07 2.52E-11 6.33E-03 2.36E-11

2.0 7.62E-07 1.38E-08 4.36E-07 1.52E-11 2.54E-07 1.59E-11 6.92E-03 3.57E-11

5.1.2 Scenario 2: Variation in v1v2

In this scenario, we are varying the asymmetric components (v1,v2) to analyze another

dynamic of our heartbeat model.

Case1: v1 = 0.93, v2 =−0.93, e = 6,d = 3, and α̃ = 2.

Case2: v1 = 0.83, v2 =−0.83,e = 6,d = 3, and α̃ = 2.

Case3: v1 = 0.63, v2 =−0.63,e = 6,d = 3, and α̃ = 2.

Case4: v1 = 0.43, v2 =−0.43, e = 6,d = 3 and α̃ = 2.
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Using above conditions, the heartbeat model 4.1 can be written as:

ẍ+2(x− v2)(x− v1)ẋ+
x(x+6)(x+3)

18 = 0,

x(0) =−0.1 and ẋ(0) = 0.025.
(5.7)

In this scenario, we make variations in the asymmetric damping components (v1,v2) in

the above equation (5.7), while fixing the values of other parameters. The above equation (5.7)

has no exact solution. Therefore, calculated numerical AM solutions are used as references for

the results. applied in the same way as in the above scenario. But the FF for this section is noted

below:

ε =
1
N

N

∑
m=1

(
ˆ̇xm +2(x̂m − v1)(x̂m − v2) x̂m (5.8)

+
x̂m (x̂m +6)(x̂m +3)

18

)2

+
1
2

(
(x̂0 +0.1)2 +

(
ˆ̇x0 −0.025

)2
)
,

After this section, we find out the best weights for our approximate solution using the

hybrid FO-PSO-ASA and then tune these weights in the series solution. The series solution for

four cases is formulated below:

x̂c1 =



3.9180
1+e−(3.1520t−4.3060) +

−0.5103
1+e−(3.0545t−0.2147)

+ 1.8239
1+e−(0.2630t−1.0223) +

2.2897
1+e−(2.6451t−2.6244)

+ 2.8513
1+e−(−0.1097t+1.0381) +

−2.0137
1+e−(−2.6539t+5.2125)

+ −0.3643
1+e−(4.0960t+1.8291) +

−6.5574
1+e−(1.9996t−6.0663)

+ −−5.7526
1+e−(2.0457t−3.3746) +

−2.0913
1+e−(−2.8881t−2.5976) ,

(5.9)

x̂c2 =



−1.5586
1+e−(−0.4589t−2.1229) +

−0.0476
1+e−(−0.4495t−0.2177)

+ −7.6070
1+e−(1.9958t−6.0543) +

−3.3697
1+e−(−2.4299t+2.8337)

+ 2.9401
1+e−(3.1289t−4.4210) +

4.9809
1+e−(−0.2378t−5.0801)

+ −3.2737
1+e−(−3.9565t−6.0022) +

2.0875
1+e−(−2.1929t+0.0056)

+ 2.9932
1+e−(1.34366t+1.1201) +

−2.9876
1+e−(2.48193t−3.6877) ,

(5.10)

x̂c3 =



−0.2666
1+e−(0.5858t−0.8541) +

1.5401
1+e−(−1.3615t+2.8040)

+ −2.3245
1+e−(−2.8163t−3.9490) +

−0.3548
1+e−(−3.4767t−1.8749)

+ −1.8780
1+e−(−2.9173t+3.4448) +

1.7181
1+e−(3.2114t−4.7240)

+ −6.3073
1+e−(2.1168t−6.3104) +

0.6229
1+e−(2.9093t−2.2264)

+ 0.8699
1+e−(−2.2375t−0.1870) +

−3.0195
1+e−(−2.0782t−4.9961) ,

(5.11)
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Figure 5.4: Trained weights for all the 4 cases; scenario 2, problem 1

x̂c4 =



−0.9901
1+e−(2.9090t−0.2019) +

−2.3957
1+e−(−1.2450t−0.9180)

+ 0.8400
1+e−(−1.1748t+2.5664) +

−5.7366
1+e−(1.4708t−5.3218)

+ −0.2039
1+e−(−0.0993t−0.8017) +

0.1564
1+e−(2.1576t−3.3206)

+ −1.1670
1+e−(0.9005t−1.6729) +

−2.9374
1+e−(0.6231t+5.1076)

+ 3.2784
1+e−(−2.2409t+5.5770) +

4.8947
1+e−(2.3920t−3.3090) .

(5.12)

Equations (5.9-5.12) are used to get the proposed solution and absolute error (AE) for

domain [0,1] with increment h = 0.1. The proposed solution and absolute error are graphically

represented in Fig. 5.5. Our best-trained weights are plotted in Fig. 5.4. The minimum AE

range is between 10−13 −10−8 see the tale 5.2. The results of 100 separate runs of our proposed

technique, the hybrid FO-PSO-ASA, are summarized in Table 5.2 which shows the comparison

between our proposed technique’s AE and the GA-IPA technique’s AE. Fitness evaluation is

represented in Fig. 5.6.
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Figure 5.5: Solution and AE graphs for all the 4 cases; scenario 2, problem 1
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Figure 5.6: Fitness function graphs, problem 1
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Table 5.2: Comparison of min AE of scenario 2, problem 1 of the heart model

Case 1 Case 2 Case 3 Case 4

t Min (GA) Min(FO-PSO) Min (GA) Min(FO-PSO) Min (GA) Min(FO-PSO) Min (GA) Min(FO-PSO)

0.0 2.00E-09 4.95E-12 1.20E-10 2.50E-08 2.10E-11 2.53E-12 1.70E-11 1.93E-11

0.1 4.20E-09 2.30E-10 3.80E-10 3.90E-08 6.60E-10 1.37E-11 4.60E-11 1.92E-11

0.2 3.30E-08 1.05E-10 5.90E-09 7.63E-09 5.30E-09 5.42E-13 2.30E-10 1.83E-11

0.3 1.30E-07 2.00E-11 7.90E-09 3.21E-09 1.10E-08 6.76E-12 5.70E-09 9.15E-13

0.4 1.10E-07 2.26E-11 5.30E-09 3.29E-09 3.30E-08 7.87E-12 3.20E-10 4.92E-12

0.5 9.80E-08 2.60E-11 1.30E-08 1.31E-09 2.90E-08 1.38E-15 1.70E-08 1.37E-11

0.6 4.60E-07 4.78E-12 4.00E-08 6.19E-09 3.90E-08 1.09E-11 4.40E-09 1.06E-11

0.7 7.00E-08 2.79E-10 6.80E-08 1.67E-11 8.90E-09 2.01E-11 3.60E-09 2.13E-12

0.8 3.60E-07 7.59E-10 8.20E-08 6.41E-09 4.60E-08 4.84E-12 2.40E-09 5.90E-13

0.9 4.70E-07 4.07E-10 6.60E-08 2.84E-10 2.50E-08 5.90E-12 4.60E-09 6.44E-12

1.0 6.40E-07 8.92E-11 6.90E-08 1.58E-08 9.90E-08 3.91E-11 2.00E-08 1.04E-11

1.1 3.10 E-07 1.85E-09 5.10E-08 2.39E-09 2.10E-07 3.59E-11 2.90E-08 7.08E-12

1.2 6.60E-07 2.05E-09 4.70E-08 4.87E-08 1.80E-07 5.73E-13 3.30E-10 1.13E-12

1.3 3.00E-07 1.06E-11 6.40E-08 1.07E-08 7.60E-08 3.96E-11 2.00E-09 8.91E-13

1.4 1.30E-07 4.13E-09 9.40E-08 9.03E-08 3.30E-09 8.36E-11 5.50E-09 6.61E-12

1.5 2.40E-07 3.08E-09 1.20E-07 6.21E-11 3.50E-09 1.12E-11 3.30E-08 9.42E-12

1.6 3.00E-07 1.29E-09 1.10E-07 5.39E-08 5.40E-08 6.85E-11 2.40E-08 4.10E-12

1.7 5.20E-07 4.85E-09 8.50E-08 9.65E-08 8.80E-08 1.96E-10 2.10E-08 1.03E-13

1.8 2.30E-06 1.23E-09 6.80E-08 1.09E-08 2.10E-07 2.40E-12 9.50E-09 7.80E-12

1.9 1.80E-06 8.56E-11 7.50E-08 1.02E-08 1.90E-07 4.04E-10 6.00E-09 9.26E-12

2.0 7.60E-07 5.65E-10 5.10E-08 4.45E-10 1.10E-07 1.08E-10 7.30E-09 6.23E-12

5.2 Problem 2; Heartbeat (HB) dynamic Model with F(t) ̸= 0

In problem 2, we analyzed two scenarios of the heartbeat model (HBM) (4.1). In this

problem, we consider the forcing function F(t) ̸= 0 in the model (4.1) and conduct the same

procedure as we did in problem 1. In 1st scenario, we vary α̃ and take the constant value of other

(v1,v2,e,d) parameters. The same procedure is conducted for the 2nd scenario but only varies

the value of v1,v2 in equation (4.1) and takes constant values for other (α̃,e,d) parameters.
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While in this analysis the forcing term F(t) is assumed to:

F(t) = Asin(wt). (5.13)

5.2.1 Scenario 1: Variation in α̃

In this scenario, we analyze the dynamics of the HBM (4.1) by making variations in the

pulse modification factor (α̃). Four different cases for HBM (4.1) are listed below:

Case1: v1 = 0.97, ω = 1.9, b = 2.5,e = 6, d = 3, v2 =−1, and α̃ = 0.5.

Case2: v1 = 0.97, ω = 1.9, b = 2.5,e = 6,d = 3, v2 =−1, and α̃ = 0.4.

Case3: v1 = 0.97, ω = 1.9, b = 2.5,e = 6,d = 3, v2 =−1, and α̃ = 0.3.

Case4: v1 = 0.97, ω = 1.9, b = 2.5,e = 6,d = 3, v2 =−1, and α̃ = 0.2.

The HBM VdP equation (4.1) with initial condition is written bellow:

ẍ+ α̃(x+1)(x−0.97)ẋ+ x(x+6)(x+3)
18 = 2.5sin(1.9t),

x(0) =−0.1 and ẋ(0) = 0.025.
(5.14)

We analyzed the dynamics of HBM by making variations in α̃ from 0.5,0.4,0.3,and0.2

for cases 1, 2, 3, and 4, respectively. The equation (5.14) has no exact solution. This scenarios

have the same pattern, which is applied to the above scenario. So, the fitness function (FF) is

stated below:

ε =
1
N

N

∑
m=1

(
ˆ̇xm + α̃ (x̂m −1)(x̂m −0.97)

(
ˆ̇xm (5.15)

+
x̂m (x̂m +6)(x̂m +3)

18

)2

+
1
2

(
(x̂0 +0.1)2 +

(
ˆ̇x0 −0.025

)2
)
.

For one set of optimised weights with the same FF value as for four cases of the VdP

model, the proposed solution is given below:

x̂c1 =



2.1726
1+e−(−3.2809t−4.1302) +

3.0586
1+e−(−2.4326t+5.3891)

+ 0.6439
1+e−(−1.4141t−1.5433) +

−3.6723
1+e−(−3.0796t−4.7784)

+ −3.0205
1+e−(−2.1545t+4.2737) +

0.8840
1+e−(−0.9828t−1.5020)

+ 1.1035
1+e−(3.4842t−6.6746) +

−1.5605
1+e−(−0.1807t−1.6291)

+ −1.3497
1+e−(−1.0666t−1.9327) +

−0.5944
1+e−(−2.6004t−3.4302) ,

(5.16)
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x̂c2 =



−0.6180
1+e−(−1.1150t+3.0545) +

−0.2386
1+e−(−1.1466t+1.0196)

+ −0.3717
1+e−(0.0108t+4.9489) +

−2.6266
1+e−(3.7084t−5.2430)

+ 5.4389
1+e−(3.3932t−5.0487) +

0.5789
1+e−(−1.9580t+0.3469)

+ 4.3881
1+e−(−1.8008t+3.2579) +

−0.2476
1+e−(−5.8220t+9.7978)

+ −3.7829
1+e−(1.7613t+5.0492) +

2.4947
1+e−(1.2763t−1.4992) ,

(5.17)

x̂c3 =



−0.1436
1+e−(0.0864t−0.5822) +

−0.5525
1+e−(−1.7690t+3.0262)

+ 1.7855
1+e−(−0.9672t+2.3123) +

−0.8736
1+e−(0.1860t+0.5865)

+ −2.1041
1+e−(−0.3969t−0.7890) +

1.5929
1+e−(−0.5689t+0.4342)

+ 1.1744
1+e−(1.2098t−1.3870) +

−1.4695
1+e−(0.8598t+3.9592)

+ 0.9422
1+e−(2.0668t−4.7300) +

0.5570
1+e−(−0.1479t+0.1885) ,

(5.18)

x̂c4 =



−2.2562
1+e−(−0.4479t−2.5143) +

1.2557
1+e−(−0.8271t+0.1927)

+ −1.7151
1+e−(−0.4168t+0.6442) +

2.0245
1+e−(−0.1759t+0.4111)

+ 0.0505
1+e−(0.3064t−3.5071) +

1.5396
1+e−(−0.9133t−1.3956)

+ −4.0473
1+e−(0.6725t−2.9291) +

0.3933
1+e−(21.2848t−2.9088)

+ −2.2713
1+e−(−0.6572t+01.4765) +

1.6891
1+e−(0.5921t+0.4085) .

(5.19)

We get our proposed solution using equations (5.16-5.19) for domain [0,2] with h = 0.1

to find the AE and our proposed approximate solution. Our A graphic representation of AE

and the proposed solution are plotted in Fig. 5.8. We have witnessed the significantly high

accuracy of our proposed outcomes in these cases. The weights 3D graph is shown in Fig. 5.7.

The values of absolute error (AE) around 10−8 − 10−12 in the table 5.3 clearly indicated the

convergence and accuracy of the outcomes of our technique. Moreover, 100 independent runs of

FO-PSO-ASA yielded the statistical performance indicators inserted in table 5.5. In addition,

minor values of the standard deviation (STD) are seen in every case. The comparison of our

hybrid technique FO-PSO-ASA and another hybrid technique GA-IPA is inserted in table 5.3.
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Figure 5.7: Trained weights for all the 4 cases; scenario 1, problem 2

5.2.2 Scenario 2: Variation in v1v2

In this scenario of problem 2, we analyze the dynamics of the heartbeat model (HBM)

(4.1) by making variations in the pulse modification factor (v1,v2) and keeping constant the

values of other terms (e, α̃,d. Four different cases for HBM (4.1) are listed below:

Case1: b = 2.5 v1 = 0.97,e = 6, d = 3, ω = 1.9, v2 =−1, and α̃ = 0.5.

Case2: b = 2.5 v1 = 0.87, e = 6, d = 3, ω = 1.9, v2 =−3, and α̃ = 0.5.

Case3: b = 2.5 v1 = 0.67, e = 6, d = 3, ω = 1.9, v2 =−4, and α̃ = 0.5.

Case4: b = 2.5 v1 = 0.47, e = 6, d = 3, ω = 1.9, v2 =−5, and α̃ = 0.5.

A derived Van der Pol (VdP) differential equation (DE) with initial conditions (ICs) in
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Figure 5.8: Solution and AE graphs for all the 4 cases; scenario 1, problem 2
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light of the above circumstances or cases can be written in the form below:

ẍ+ .5(x− v2)(x− v1)ẋ+
x(x+6)(x+3)

18 = 2.5sin(1.9× t),

x(0) =−0.1 and ẋ(0) = 0.025.
(5.20)

Table 5.3: Comparison of min AE of scenario 1, problem 2 of the heart model

Case 1 Case 2 Case 3 Case 4

t Min (GA) Min(FO-PSO) Min (GA) Min(FO-PSO) Min (GA) Min(FO-PSO) Min (GA) Min(FO-PSO)

0.0 2.00E-09 4.65E-10 1.20E-10 6.84E-09 2.10E-11 1.50E-11 1.70E-11 1.11E-05

0.1 4.20E-09 4.58E-09 3.80E-10 1.92E-08 6.60E-10 7.10E-10 4.60E-11 0.007

0.2 3.30E-08 7.72E-09 5.90E-09 3.42E-10 5.30E-09 5.68E-10 2.30E-10 0.029

0.3 1.30E-07 3.87E-10 7.90E-09 8.59E-09 1.10E-08 4.85E-11 5.70E-09 0.057

0.4 1.10E-07 3.50E-09 5.30E-09 2.77E-09 3.30E-08 2.73E-10 3.20E-10 0.081

0.5 9.80E-08 4.84E-10 1.30E-08 1.87E-09 2.90E-08 2.40E-10 1.70E-08 0.094

0.6 4.60E-07 2.96E-09 4.00E-08 3.84E-09 3.90E-08 2.29E-10 4.40E-09 0.097

0.7 7.00E-08 5.28E-12 6.80E-08 6.31E-12 8.90E-09 7.06E-10 3.60E-09 0.098

0.8 3.60E-07 1.98E-09 8.20E-08 2.43E-09 4.60E-08 8.21E-10 2.40E-09 0.111

0.9 4.70E-07 5.41E-10 6.60E-08 3.07E-10 2.50E-08 6.42E-10 4.60E-09 0.160

1.0 6.40E-07 2.30E-10 6.90E-08 1.39E-09 9.90E-08 1.33E-09 2.00E-08 0.304

1.1 3.10 E-07 1.37E-09 5.10E-08 9.61E-10 2.10E-07 8.58E-10 2.90E-08 0.664

1.2 6.60E-07 7.97E-10 4.70E-08 6.97E-10 1.80E-07 2.72E-09 3.30E-10 1.415

1.3 3.00E-07 1.19E-09 6.40E-08 2.32E-09 7.60E-08 6.92E-10 2.00E-09 2.642

1.4 1.30E-07 5.69E-09 9.40E-08 2.95E-11 3.30E-09 3.91E-09 5.50E-09 4.058

1.5 2.40E-07 7.60E-10 1.20E-07 4.60E-09 3.50E-09 1.14E-09 3.30E-08 4.881

1.6 3.00E-07 1.55E-08 1.10E-07 1.12E-09 5.40E-08 7.71E-09 2.40E-08 4.297

1.7 5.20E-07 2.44E-09 8.50E-08 8.27E-09 8.80E-08 1.84E-09 2.10E-08 2.364

1.8 2.30E-06 3.62E-08 6.80E-08 7.47E-09 2.10E-07 1.26E-08 9.50E-09 0.418

1.9 1.80E-06 5.97E-08 7.50E-08 3.63E-08 1.90E-07 2.16E-08 6.00E-09 0.195

2.0 7.60E-07 8.96E-09 5.10E-08 6.89E-09 1.10E-07 3.64E-09 7.30E-09 2.255

In equation (5.20) we vary the values of asymmetric components v1 ,v2 from ( 97, -1) (

87,-3) ( 67, -4) ( 47, -5), for cases 1, 2 ,3 , 4 respectively, while keeping the values of α̃,d,ande

constant. The exact solution of the above equation is not possible. For this scenario 2, we applied

the same procedure as above in problem 2 scenario 1. Also using the same procedure, we derived

the fitness function (FF) for scenario 2 of problem 2, which is stated below:



54

ε =
1
N

N

∑
m=1

(
ˆ̇xm + α̃ (x̂m −1)(x̂m −0.97)

(
ˆ̇xm (5.21)

+
x̂m (x̂m +6)(x̂m +3)

18

)2

+
1
2

(
(x̂0 +0.1)2 +

(
ˆ̇x0 −0.025

)2
)
.

The above equation (5.21) is the fitness function (FF) for the Van der Pol (VdP) heartbeat

model (4.1) under the case studies of scenario 2 of problem 2. Using the trained weights of this

case study, we generate the equations stated below:

x̂c1 =



−0.7699
1+e−(0.4062t−3.0756) +

−1.7545
1+e−(−2.7929t+2.8618)

+ 1.2037
1+e−(−2.3263t+4.7310) +

0.4745
1+e−(−2.9802t+0.3020)

+ −3.3257
1+e−(−3.4729t−4.4040) +

2.9330
1+e−(3.3611t−4.5447)

+ 1.1171
1+e−(−3.0159t+4.1018) +

−1.0560
1+e−(0.2411t+2.6528)

+ 4.1400
1+e−(−0.1895t−4.9949) +

−7.4376
1+e−(2.4223t−7.7011) ,

(5.22)

x̂c2 =



1.8118
1+e−(3.9979t−4.6522) +

−8.2619
1+e−(1.9613t−6.5601)

+ 0.0196
1+e−(−5.1951t+0.6021) +

−1.7990
1+e−(1.2795t−1.2709)

+ −2.0077
1+e−(0.4887t+1.4769) +

2.3604
1+e−(−0.5356t−2.4571)

+ 2.6796
1+e−(2.6065t+3.0080) +

−0.9617
1+e−(0.1821t+3.6132)

+ 2.0357
1+e−(3.0991t−2.8617) +

−0.3740
1+e−(3−2.1198t−4.8614) ,

(5.23)

x̂c3 =



4.4180
1+e−(−1.5198t−5.4495) +

−1.6323
1+e−(−3.3597t+3.1037)

+ 0.4365
1+e−(−1.3097t+1.5445) +

−2.9833
1+e−(2.8321t+1.9532)

+ 3.3277
1+e−(4.6426t+3.8022) +

−0.5749
1+e−(1.1840t−1.6403)

+ −5.4185
1+e−(2.0064t−7.4368) +

−2.3747
1+e−(1.9764t−5.7124)

+ 0.7107
1+e−(4.1447t+1.0848) +

1.3305
1+e−(4.0857t−4.5109) ,

(5.24)
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x̂c4 =



−2.03418
1+e−(1.8127t+1.0480) +

1.9961
1+e−(−14.2577t−30.2714)

+ −3.4863
1+e−(41.6965t+10.3994) +

3.0349
1+e−(1.6507t−3.9701)

+ 11.7822
1+e−(−20.4480t−76.0752) +

25.2156
1+e−(−4.1055t−27.8810)

+ −2.3653
1+e−(−2.6490t−2.1974) +

2.3798
1+e−(−1.6103t+1.0441)

+ −0.0247
1+e−(−132.8579t+0.0174) +

3.3249
1+e−(103.4426t+49.3694) .

(5.25)

Figure 5.9: Trained weights for all the 4 cases; scenario 2, problem 2

Each solution for cases 1, 2, 3, and 4 in equation (5.22-5.25) contains thirty weights

that we generated using Matlab. The trained weights are plotted in 3D graphs in Fig. 5.9. The

minimum absolute errors (AE) for our solutions are represented in table 5.4. using domain [0,2]

with increment h = 0.1. The proposed solution and AE graphs are shown in Fig. 5.11. Our AE is

in the range of 10−8 −10−13 The fitness values of the proposed solution are represented in table

5.4 These results are the results of the hybrid technique FO-PSO–ASA. Our results indicated

that our technique has more accuracy and convergence.
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Figure 5.10: Solution and AE graphs for all the 4 cases; scenario 2, problem 2
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Figure 5.11: Solution and AE graphs for all the 4 cases; scenario 2, problem 2
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Figure 5.12: Fitness function graphs, problem 2
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Table 5.4: Comparison of min AE of scenario 2, problem 2 of the heart model

Case 1 Case 2 Case 3 Case 4

t Min (GA) Min(FO-PSO) Min (GA) Min(FO-PSO) Min (GA) Min(FO-PSO) Min (GA) Min(FO-PSO)

0.0 2.00E-08 6.32E-13 4.00E-10 1.22E-09 2.10 E-10 4.73E-10 5.10E-10 1.40E-16

0.1 3.00E-07 6.95E-11 1.50E-09 9.49E-09 2.90E-08 2.87E-09 1.40E-07 1.93E-10

0.2 9.80E-07 6.87E-10 4.70E-08 1.40E-08 1.20E-08 3.35E-09 2.50E-07 7.98E-09

0.3 4.60E-07 1.04E-09 3.30E-08 4.18E-09 4.60E-08 1.32E-09 1.70E-07 1.08E-08

0.4 8.40E-08 2.11E-11 3.40E-08 2.17E-08 1.20E-07 2.53E-09 1.90E-07 4.26E-09

0.5 6.40E-07 2.20E-09 4.60E-08 1.18E-09 4.30E-08 2.10E-09 7.70E-08 2.84E-09

0.6 1.10E-06 3.85E-13 1.20E-07 3.37E-08 1.70E-08 1.07E-08 1.30E-08 1.04E-08

0.7 1.90E-07 4.58E-09 1.00E-08 2.68E-09 1.30E-08 8.93E-09 4.90E-07 2.10E-09

0.8 2.40E-07 2.30E-10 1.80E-07 4.05E-08 3.40E-08 8.30E-09 7.40E-07 2.82E-09

0.9 3.10E-08 7.97E-09 3.30E-08 4.93E-09 1.40E-07 1.46E-08 1.10E-07 1.15E-08

1.0 8.50E-08 2.27E-09 2.10E-08 4.27E-08 1.50E-07 1.98E-09 8.50E-08 5.43E-09

1.1 8.10E-07 9.82E-09 4.70E-08 4.56E-09 2.10 E-07 1.29E-08 3.00E-07 4.71E-10

1.2 1.10E-06 7.46E-09 7.60E-08 4.64E-08 3.80E-08 9.29E-10 3.00E-07 1.11E-08

1.3 4.80E-07 8.83E-09 1.00E-08 6.94E-09 1.30E-08 3.67E-09 5.50E-01 1.21E-08

1.4 1.10E-07 1.50E-08 1.20E-08 3.34E-08 8.70E-08 1.38E-08 8.10E-07 5.15E-10

1.5 3.60E-07 5.10E-09 5.90E-08 8.42E-09 9.60E-08 6.18E-09 2.20E-07 9.66E-09

1.6 3.60E-07 2.06E-08 9.20E-08 1.68E-08 8.50E-08 1.46E-08 1.80E-07 2.30E-08

1.7 9.10E-07 2.20E-09 1.60E-08 4.00E-09 1.70E-07 7.63E-08 9.70E-07 4.10E-09

1.8 1.00E-06 1.90E-08 6.60E-09 9.95E-09 9.70E-08 3.76E-10 1.10E-06 1.62E-08

1.9 1.10E-06 7.67E-09 1.80E-09 5.99E-09 5.90E-09 2.48E-07 4.90E-07 4.61E-08

2.0 9.30E-08 2.18E-11 1.60E-07 1.84E-09 2.80E-08 6.50E-08 1.30E-06 3.20E-08

5.3 Analyses Comparative to Performance Indices

In this analysis, we study the comparison of the proposed technique, hybrid PO-PSO-

ASA, in order to evaluate its convergence and accuracy. There are three performance indicators

included to measure performance: root mean square error (RMSE), mean absolute error deviation

(MAD), and error in Nash-Sutcliffe efficiency (ENSE). Mathematical formations for these RMSE,

MAD, RMSE, and NSE are given below:
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MAD =
1
N

N

∑
m=1

(|x̂(ti)− x(ti)|) , (5.26)

RMSE =

√
1
N

N

∑
m=1

(x̂(ti)− x(ti))
2, (5.27)

NSE = 1−

(
∑

N
i=1 (x̂(ti)− x(ti))

2

∑
N
i=1
(
x(ti)− 1

N ∑
N
i=1 (x(ti))

)2

)
. (5.28)

ENSE = |1−NSE|. (5.29)

For 100 independent runs, fitness, RMSE, ENSE, and MAD values for performance

measures are computed, and the efficacy and consistency of the suggested computing approach

are evaluated. See Figures 5.6 and 5.12 for semi-log scale depictions of MAD, RMSE, fitness,

and ENSE, respectively, for 100 runs.

Observations reveal that MAD, RMSE, and ENSE values fluctuate directly with low-to-

high fitness levels. MAD, ENSE, and RMSE data indicate that these variances are minimal for

problem-1, scenario-1, and C1. Moreover, in the instance in question, the value of these indicators

is relatively diminished. In addition, the technique’s dependability is assessed by calculating the

proportion of converged runs based on the fitness, MAD, RMSE, and ENSE values. For each

example, the converged runs (Cr) successfully for a hundred different simulations are calculated,

and our outputs for both issues are given in table 5.5. These computations are performed

according to the following conditions: (CrFIT )⩽ E−07, (CrMAD)⩽ E−05, (CrRMSE)⩽ E−05,

and (CrENSE)⩽ E −07. It is intriguing to note that our scheme’s average rate of convergence is

about 100%.

The performance of our technique is evaluated by characterizing its efficacy using global

metrics, such as global MAD, worldwide RMSE, global fitness, and global ENSE. The formulas

for these factors are as follows:

GbMAD =
1

Rn

Rn

∑
r=1

(
1

Gp

Gp

∑
i=1

|x̂r (ti)− x(ti)|
)
, (5.30)

GbRMSE =
1

Rn

Rn

∑
r=1


√√√√ 1

Gp

Gp

∑
i=1

(x̂(ti)− x(ti))
2

 , (5.31)

GbENSE =
1

Rn

Rn

∑
r=1

(
∑

N
i=1 (x̂(ti)− x(ti))

2

∑
N
i=1
( 1

N ∑
N
i=1 (x(ti))− x(ti)

)2

)
, (5.32)
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GbFIT =
1

Rn

Rn

∑
r=1

εr, (5.33)

where Gp represents the total no. of input values, where Rn is the total no. of runs, r is

the objective value of the experiment, rth, and x̂(t) and xr(t) are the standard solutions for the

same number of runs. In this investigation, the inputs t ∈ [0,2] with a step size of 0.1 are used,

i.e., Gp is 21 whereas Rn is 100. In addition, the lower global performance indicator values for

the majority of cases demonstrate the accuracy and consistency of FO-PSO.

The suggested algorithm is subjected to a computational complexity analysis (CCA)

because of the average duration required for the computation of undetermined parameters of

artificial neural networks by FO-PSO, the average number of populations, and function evaluation

creation. The no. of function evaluations, mean population creation, and approximate time of

2045 seconds, respectively, for problem 1 The values for problem 2 are about 2111 seconds. All

calculations and evaluations for this study were performed on a Dell Latitude E7450 laptop with

an Intel(R) Core(TM) i5-5300U CPU @ 2.30GHz, 8.00 GB of RAM, 64-bit operating system,

× 64-based processor, Microsoft Windows 10 Pro, and MATLAB R2021a.

Table 5.5: Study comparing several heart model modifications based on the values of global

performance indices

Problem Scenario Cases FIT MAD RMSE ENSE

Mean STD Mean STD Mean STD Mean STD

P1 S1 C1 6.48E-09 7.22E-08 9.23E-07 9.98.E-07 6.65E-06 1.05E-05 9.96E-08 1.32E-06

C2 1.21E-09 9.96E-10 9.87E-07 4.21E-06 8.20E-06 7.56E-06 1.01E-08 1.09E-08

C3 8.03E-10 1.06.E-09 7.26E-07 8.26E-07 4.89E-06 1.24E-06 3.26E-09 8.27E-09

C4 4.23E-11 9.45E-11 6.85E-05 7.86E-07 9.43E-05 7.38E-07 9.97.E-05 2.51E-06

S2 C1 5.86E-09 7.19E-08 4.53E-05 9.11E-06 2.71E-06 4.55E-05 3.24E-07 9.07E-08

C2 9.21E-10 9.72E-10 9.12E-07 9.90E-07 5.12E-06 2.34E-06 1.03.E-08 1.10E-08

C3 3.11E-10 8.46E-09 5.93E-06 8.66E-07 8.36E-07 1.29E-06 2.06E-09 4.28E-09

C4 6.56E-11 2.44E-09 6.92E-07 3.42E-07 7.92E-07 9.83E-07 3.43E-10 7.82E-10

P2 S1 C1 1.01E-06 4.69E-06 9.67E-06 5.18E-05 9.26E-05 1.32E-04 2.61E-05 9.98E-06

C2 7.32.E-07 8.79E-06 2.01.E-05 8.09E-06 2.21E-05 8.89E-05 7.56E-06 1.02E-04

C3 1.45E-07 9.68E-08 1.04E-06 9.01E-06 3.44E-06 7.84E-06 1.22E-08 2.36E-07

C4 1.64E-05 1.09E-05 6.21.E-04 2.30E-06 3.90E-05 8.32E-06 5.06E-09 6.77E-07

S2 C1 1.01E-06 6.88E-06 7.11E-05 3.81E-05 1.61E-04 8.36E-04 1.23E-05 6.80E-04

C2 1.76E-07 7.46.E-07 2.43E-06 7.11E-05 5.36E-06 6.01E-06 2.34E-08 8.32E-07

C3 9.17.E-09 1.01.E-08 7.56E-07 9.60E-07 9.89E-07 7.76E-07 1.30E-09 3.96E-10

C4 2.23E-08 6.67E-08 3.32E-06 8.21E-06 6.56E-06 6.99E-06 5.87E-10 4.01E-08
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In short, we discussed the mathematical structure of neural networks while solving

our problem (the heartbeat model). Here we consider two main problems. In problem 1, we

considered the external force term F(t)= 0, and for problem 1, we considered two main scenarios,

each scenario having four different cases. In the first scenario, we vary pulse modification factors

(α̃ and in the second scenario, we vary asymmetric terms for the modification of damping terms

(v1andv2). In problem 2, we considered the forcing term, i.e., F(t) = 2.5sin(1.9t), and also

considered two scenarios. Each scenario has four cases, and then the same procedure is followed

as in problem 1. We also inserted graphs of trained weights for each case, graphs of solutions for

each scenario, fitness value graphs, and four results containing tables for each scenario. In the

tables, we show the absolute error (AE) comparison between our hybrid technique (FO-PSO–

ASA) and hybrid genetic algorithm (GA-IPA) to assess the accuracy of our proposed technique.

Also, we show the statistical analysis of our proposed methodology.
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CHAPTER 6

CONCLUSION

Recent studies about the development of different ANN methods to solve differential

equations (DEs) shows that the ANNs methodology is a very convenient methodology. Each

technique of ANN represents a novel way to solve DEs. In order to take advantage of these

methods’ characteristics, this may be very different from more conventional numerical techniques.

This chapter of our thesis contains conclusions on the basis of our numerical experiments, which

are listed below:

A new approach inspired biologically by fractional order velocity is designed to analyze

the Van der Pol (VdP) equation-based heartbeat model using the robustness of series solution

and feed-forward (FF) artificial neural networks (ANNs). Then carried the optimization process

uses hybrid search techniques, that is a combination of the global search technique fractional

order particle swarm optimization (FO-PSO) and local search technique active search algorithm

(ASA), which can be written as FO-PSO–ASA.

Our approximate solution of the Van der Pol (VdP) heartbeat model is seen to be in

excellent accord with the cited hybrid genetic algorithm (GA) as a global and interior point tech-

nique, written as GA-IPA for each case of problems 1 and 2. The suggested hybrid algorithm’s

performance is evaluated using the standard deviation (STD) and mean values of statistical

markers, and the absolute error (AE) based results are analyzed, The AE is almost very close to

zero for all cases of problems 1 and 2.

Analyzing the performance of our proposed technique or algorithm is evaluated using

the standard deviation (STD) and mean values of statistical indicators, and results based on AE
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are almost consistently found to be close to zero for both VdP heartbeat models, demonstrating

the scheme’s consistency in accuracy.

The suggested approach is computationally analyzed using efficiency operators based on

mean execution time values, the maximum number of function evaluations, and the number of

iterations the optimization algorithm uses to determine the design parameter of ANN models of

VdP systems, and results indicate that these parameters do not differ noticeably, which alleviates

the algorithm’s constant action in each case.

Convergence and accuracy of the proposed algorithm are proven by reaching ideal values

of several performance metrics based on ENSE, RMSE, and MAD, as well as their global

equivalents GbENSE, GbRMSE, and GbMAD, in both VdP-based heart dynamics investigations.

In short, in this research study, we discussed our findings and assess how accurate,

robust, efficient, and convergent our proposed hybrid technique (FO-PSO-ASA) is. We also

discussed the applications of this methodology in different fields of study. we also presented our

contribution to this research work and also discussed our future work.

6.1 Contribution

The following are some of the study’s numerous contributions that show the dynamics of

the HB model:

An FFNN-based integrated technique is created to model the proposed problem. Set the

order of velocity 0 < α ≤ 1 of moving particles in a global search technique i.e. particle swarm

optimization. The combination is FO-PSO. To optimize FO-PSO, the mean squared error (MSE)

is minimized as the fitness objective function.

To validate the efficacy and robustness of the proposed algorithm, the optimized solutions

of FO-PSO are compared with the numerical results of a genetic algorithm hybrid with an interior

point algorithm (GAs-IPA) approach. The statistical and quantitative analyses are established to

validate FO-PSO’s performance.
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6.2 Future Work

A fast-growing field of study is the application of artificial neural networks (ANNs) to

solve real-world problems containing differential equations. Despite the recent considerable

advancements, there are still numerous chances for future work in this area. Here are some

potential future research topics that could be covered in my Ph.D. thesis or research articles on

employing ANN approaches to solve differential equations:

Improving accuracy: Achieving high levels of accuracy is one of the main challenges when

utilizing ANNs to solve differential equations. The design of more effective computational algo-

rithms, the application of new activation functions, the incorporation of regularisation techniques,

and other methods of improving accuracy could all be explored in future studies.

Handling complex systems: The creation of techniques for employing ANNs to resolve

complex systems of differential equations is a significant topic of future research. This can entail

creating new architectures that can process several equations concurrently or looking into how to

include extra data, like boundary conditions or beginning values.

Dealing with high-dimensional data: High-dimensional data is a common component of

differential equations, which presents difficulties for conventional ANN structures. The usage

of neural networks could be one of the new methods for processing high-dimensional data that

are investigated in future research.

Dealing with fractional-order differential equations: The differential equations having

fractional order are one of the latest research projects. We can consider it in our future work. We

can apply ANN techniques to solve fractional-order partial differential equations (PDEs).

Applications of ANN in biomathematics: This research area is the most prominent

and novel one. We can consider ANN as a tool for evaluating and optimizing the spread of

different health diseases. A study on applying ANN techniques to solve differential equations

can improve the development of a novel new method for solving challenging mathematical issues

by examining these and other areas of research.

In short, The following are prospective directions for future research in the application

of artificial intelligence algorithms to complex biomedical engineering challenges. Robustness,

efficiency, accuracy, and convergence can be enhanced for the VdP heart model by adding

either recently established optimization mechanisms based on complex software packages or the

availability of powerful computer hardware platforms. Design methodology can also be utilized
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to produce dependable answers for mathematical models of treatment and diagnostic issues for

HIV infection, brain tumors, breast cancer research, etc.
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APPENDIX A

SERIES SOLUTION OF OUR PROPOSED TECHNIQUE

Our derived series solution for VdP heartbeat model using propose algorithm FO-PSO–

ASA for problem 1 is written below:

A.1 Scenario 1, All Cases, Problem 1

x̂c1 =



15.3279
1+e−(−0.3096t+4.3232) +

5.9050
1+e−(29.9998t+23.7594)

+ −8.8026
1+e−(−1.7310t+6.2122) +

28.9849
1+e(−26.3797t−39.8251)

+ −30.1700
1+e−(7.7927t−24.8558) +

−0.0118
1+e−(−51.8496t−−0.8005)

+ −15.5022284679284
1+e−(30.0000t+28.4725) +

3.1565
1+e−(−8.9775t+28.9828)

+ 29.9843
1+e−(−35.7825t−9.5631) +

29.9995
1+e−(6.6484t−30.0124) ,

(A.1)
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x̂c2 =



0.1339
1+e−(−0.6756t+1.4881) +

−1.5017
1+e−(−0.3369t+3.0265)

+ 0.0075
1+e−(−2.1802t−0.6363) +

0.0688
1+e−(1.1027t−2.4080)

+ −0.6091
1+e−(1.0731t−2.0099) +

−0.2614
1+e−(0.1408t−0.2667)

+ −0.2756
1+e−(−0.6184t−1.3405) +

1.4370
1+e−(−0.1136t+2.5645)

+ 0.4944
1+e−(−1.2362t+5.0140) +

0.4717
1+e−(1.0161t−−1.3526) ,

(A.2)

x̂c3 =



−1.4091
1+e−(−0.6858t−3.8223) +

2.9797
1+e−(−0.9719t−4.8931)

+ 2.5975
1+e−(0.0782t−1.3661) +

−1.8859
1+e−(−0.3299t−3.7000)

+ 1.6800
1+e−(0.9489t−2.3008) +

−3.3085
1+e−(0.9972t−4.7074)

+ 2.1867
1+e−(1.3454t+4.3235) +

−2.4459
1+e−(0.9411t+3.3095)

+ 2.4692
1+e−(−0.4934t−2.0018) +

1.0490
1+e−(1.0401t−3.1263) ,

(A.3)

x̂c4 =



2.2978
1+e−(1.2415t−2.5226) +

1.9443
1+e−(−0.7308t−1.0914)

+ 2.3700
1+e−(−0.0995t+0.0553) +

−0.7981
1+e−(−1.8161t−3.8849)

+ −2.0235
1+e−(0.8352t+4.7106) +

−1.5512
1+e−(1.6637t+4.6148)

+ −3.6439
1+e−(1.1124t−3.4057) +

1.5489
1+e−(1.9606t−4.6833)

+ −0.2709
1+e−(1.3279t−3.8548) +

2.23711
1+e−(0.6577t+1.1247) .

(A.4)
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A.2 Scenario 2, All Cases, Problem 1

x̂c1 =



3.9180
1+e−(3.1520t−4.3060) +

−0.5103
1+e−(3.0545t−0.2147)

+ 1.8239
1+e−(0.2630t−1.0223) +

2.2897
1+e−(2.6451t−2.6244)

+ 2.8513
1+e−(−0.1097t+1.0381) +

−2.0137
1+e−(−2.6539t+5.2125)

+ −0.3643
1+e−(4.0960t+1.8291) +

−6.5574
1+e−(1.9996t−6.0663)

+ −−5.7526
1+e−(2.0457t−3.3746) +

−2.0913
1+e−(−2.8881t−2.5976) ,

(A.5)

x̂c2 =



−1.5586
1+e−(−0.4589t−2.1229) +

−0.0476
1+e−(−0.4495t−0.2177)

+ −7.6070
1+e−(1.9958t−6.0543) +

−3.3697
1+e−(−2.4299t+2.8337)

+ 2.9401
1+e−(3.1289t−4.4210) +

4.9809
1+e−(−0.2378t−5.0801)

+ −3.2737
1+e−(−3.9565t−6.0022) +

2.0875
1+e−(−2.1929t+0.0056)

+ 2.9932
1+e−(1.34366t+1.1201) +

−2.9876
1+e−(2.48193t−3.6877) ,

(A.6)

x̂c3 =



−0.2666
1+e−(0.5858t−0.8541) +

1.5401
1+e−(−1.3615t+2.8040)

+ −2.3245
1+e−(−2.8163t−3.9490) +

−0.3548
1+e−(−3.4767t−1.8749)

+ −1.8780
1+e−(−2.9173t+3.4448) +

1.7181
1+e−(3.2114t−4.7240)

+ −6.3073
1+e−(2.1168t−6.3104) +

0.6229
1+e−(2.9093t−2.2264)

+ 0.8699
1+e−(−2.2375t−0.1870) +

−3.0195
1+e−(−2.0782t−4.9961) ,

(A.7)
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x̂c4 =



−0.9901
1+e−(2.9090t−0.2019) +

−2.3957
1+e−(−1.2450t−0.9180)

+ 0.8400
1+e−(−1.1748t+2.5664) +

−5.7366
1+e−(1.4708t−5.3218)

+ −0.2039
1+e−(−0.0993t−0.8017) +

0.1564
1+e−(2.1576t−3.3206)

+ −1.1670
1+e−(0.9005t−1.6729) +

−2.9374
1+e−(0.6231t+5.1076)

+ 3.2784
1+e−(−2.2409t+5.5770) +

4.8947
1+e−(2.3920t−3.3090) .

(A.8)

Our derived series solution for VdP heartbeat model using propose algorithm FO-PSO–

ASA for problem 2 is written below:

A.3 Scenario 1, All Cases, Problem 2

x̂c1 =



2.1726
1+e−(−3.2809t−4.1302) +

3.0586
1+e−(−2.4326t+5.3891)

+ 0.6439
1+e−(−1.4141t−1.5433) +

−3.6723
1+e−(−3.0796t−4.7784)

+ −3.0205
1+e−(−2.1545t+4.2737) +

0.8840
1+e−(−0.9828t−1.5020)

+ 1.1035
1+e−(3.4842t−6.6746) +

−1.5605
1+e−(−0.1807t−1.6291)

+ −1.3497
1+e−(−1.0666t−1.9327) +

−0.5944
1+e−(−2.6004t−3.4302) ,

(A.9)

x̂c2 =



−0.6180
1+e−(−1.1150t+3.0545) +

−0.2386
1+e−(−1.1466t+1.0196)

+ −0.3717
1+e−(0.0108t+4.9489) +

−2.6266
1+e−(3.7084t−5.2430)

+ 5.4389
1+e−(3.3932t−5.0487) +

0.5789
1+e−(−1.9580t+0.3469)

+ 4.3881
1+e−(−1.8008t+3.2579) +

−0.2476
1+e−(−5.8220t+9.7978)

+ −3.7829
1+e−(1.7613t+5.0492) +

2.4947
1+e−(1.2763t−1.4992) ,

(A.10)
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x̂c3 =



−0.1436
1+e−(0.0864t−0.5822) +

−0.5525
1+e−(−1.7690t+3.0262)

+ 1.7855
1+e−(−0.9672t+2.3123) +

−0.8736
1+e−(0.1860t+0.5865)

+ −2.1041
1+e−(−0.3969t−0.7890) +

1.5929
1+e−(−0.5689t+0.4342)

+ 1.1744
1+e−(1.2098t−1.3870) +

−1.4695
1+e−(0.8598t+3.9592)

+ 0.9422
1+e−(2.0668t−4.7300) +

0.5570
1+e−(−0.1479t+0.1885) ,

(A.11)

x̂c4 =



−2.2562
1+e−(−0.4479t−2.5143) +

1.2557
1+e−(−0.8271t+0.1927)

+ −1.7151
1+e−(−0.4168t+0.6442) +

2.0245
1+e−(−0.1759t+0.4111)

+ 0.0505
1+e−(0.3064t−3.5071) +

1.5396
1+e−(−0.9133t−1.3956)

+ −4.0473
1+e−(0.6725t−2.9291) +

0.3933
1+e−(21.2848t−2.9088)

+ −2.2713
1+e−(−0.6572t+01.4765) +

1.6891
1+e−(0.5921t+0.4085) .

(A.12)

A.4 Scenario 2, All Cases, Problem 2

x̂c1 =



−0.7699
1+e−(0.4062t−3.0756) +

−1.7545
1+e−(−2.7929t+2.8618)

+ 1.2037
1+e−(−2.3263t+4.7310) +

0.4745
1+e−(−2.9802t+0.3020)

+ −3.3257
1+e−(−3.4729t−4.4040) +

2.9330
1+e−(3.3611t−4.5447)

+ 1.1171
1+e−(−3.0159t+4.1018) +

−1.0560
1+e−(0.2411t+2.6528)

+ 4.1400
1+e−(−0.1895t−4.9949) +

−7.4376
1+e−(2.4223t−7.7011) ,

(A.13)
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x̂c2 =



1.8118
1+e−(3.9979t−4.6522) +

−8.2619
1+e−(1.9613t−6.5601)

+ 0.0196
1+e−(−5.1951t+0.6021) +

−1.7990
1+e−(1.2795t−1.2709)

+ −2.0077
1+e−(0.4887t+1.4769) +

2.3604
1+e−(−0.5356t−2.4571)

+ 2.6796
1+e−(2.6065t+3.0080) +

−0.9617
1+e−(0.1821t+3.6132)

+ 2.0357
1+e−(3.0991t−2.8617) +

−0.3740
1+e−(3−2.1198t−4.8614) ,

(A.14)

x̂c3 =



4.4180
1+e−(−1.5198t−5.4495) +

−1.6323
1+e−(−3.3597t+3.1037)

+ 0.4365
1+e−(−1.3097t+1.5445) +

−2.9833
1+e−(2.8321t+1.9532)

+ 3.3277
1+e−(4.6426t+3.8022) +

−0.5749
1+e−(1.1840t−1.6403)

+ −5.4185
1+e−(2.0064t−7.4368) +

−2.3747
1+e−(1.9764t−5.7124)

+ 0.7107
1+e−(4.1447t+1.0848) +

1.3305
1+e−(4.0857t−4.5109) ,

(A.15)

x̂c4 =



−2.03418
1+e−(1.8127t+1.0480) +

1.9961
1+e−(−14.2577t−30.2714)

+ −3.4863
1+e−(41.6965t+10.3994) +

3.0349
1+e−(1.6507t−3.9701)

+ 11.7822
1+e−(−20.4480t−76.0752) +

25.2156
1+e−(−4.1055t−27.8810)

+ −2.3653
1+e−(−2.6490t−2.1974) +

2.3798
1+e−(−1.6103t+1.0441)

+ −0.0247
1+e−(−132.8579t+0.0174) +

3.3249
1+e−(103.4426t+49.3694) .

(A.16)
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